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ABSTRACT

Forests are one of the most important resources which continue to be exploited at an alarming rate
resulting in their deforestation and degradation and associated carbon emission. Under UNFCCC and
Kyoto Protocol, reducing emission from deforestation and forest degradation (REDD) and its Measuring
Reporting and Verifying (MRV) mechanism was implemented to mitigate climate change through reduced
carbon emission from deforestation and forest degradation. Thus all countries committed to reduce
emission or remove greenhouse gases through enhanced forest management under REDD+ mechanism
should update the inventories of estimated carbon stock in their forests. However, an accurate method of
estimating forest carbon stock is a challenge.

In this study combination of extracted data from Terrestrial Laser Scanner (TLS) and WotldView-2, a very
high resolution image was used to develop an accurate method of estimating above ground carbon stock.
The total above ground biomass (AGB) was calculated using allometric equation from DBH and height
derived from TLS, which was then converted to carbon using conversion factor of 0.47. Object Base
Image analysis was applied to accurately segment crown projection area (CPA) from a very high resolution
satellite image. A relationship was then established between DBH and height from TLS and CPA from
image using 71 trees. These 71 trees are those recognized from high resolution image and matched as one
to one to their ground reference polygons and detected from point cloud data. Field measured and TLS
derived DBH and height were compared hence, both DBH and height extracted from TLS were not
significantly different from field measurement at 95% confidence level. Correlation analysis among
independent variables of above ground carbon estimation (CPA, DBH, height) was carried out. The
independent variables were also correlated with dependent variable (carbon). A non-linear regression
model was developed between calculated carbon and CPA derived from image to estimate above ground
carbon stock in the study area. The model was validated using independent data sets.

On average 70% of segmentation accuracy was achieved thus segmented CPA showed reasonable
significant relationship with DBH (R2 =0.79) and height (R2=0.68). The coefficient of determination of
CPA-carbon, DBH-catbon and height-carbon was 0.80, 0.92 and 0.74 respectively. Multiple regression
model was developed using height from TLS and CPA from very high resolution image to estimate above
ground carbon stock of plots and asses the inclusion of height from TLS to improved carbon estimates.
The validated multiple regression model was relatively accurate (R2=0.87) than the non-linear model
developed using CPA only (R2=0.84). However, above ground carbon stock of the study area was
estimated from CPA only (non-linear model) since height from terrestrial laser scanner of the whole area
cannot be detected from TLS. The amount of estimated carbon stock in the study area was approximately
185 Mg ha-1. Even though the developed model was subjected to errors, it explained about 84% of
observed carbon stock. Therefore, estimating carbon stock using data from TLS and very high resolution
imagery in tropical rain forest is feasible.

Keywords: Segmentation, Object Base Image Analysis, Terrestrial Laser Scanner, Point cloud data,
Regression, Allomertic equation, above ground biomass, above ground carbon.
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APPLICATION OF VERY HIGH RESOLUTION IMAGERY AND TERRESTRIAL LASER SCANNING FOR ESTIMATING CARBON STOCK IN TROPICAL RAIN FOREST OF
ROYAL BELUM, MALAYSIA

1. INTRODUCTION

1.1.  Bakground

Forests are among the most important resources and provide many benefits. They sustain millions of
animals that live in the forest and also provide social and economic benefits to communities who directly
or indirectly rely on the forest. Most significantly forests cover one third of terrestrial ecosystem and play
an important role in sequestration of CO; (Litton et al., 2003) and other greenhouse gases, thus stabilize
climate/weather (Butler, 2012). Nevertheless we are losing the earth’s forest at an alarming rate.

Deforestation and degradation of tropical forests is one of the main global agenda in forestry sector. Even
though efforts on combating deforestation and degradation of tropical forests have been made, there are
still indicators of degradation and deforestation in tropical forests and its effect on global carbon cycle
(FAO, 2010). Several studies (Asner, 2009; Schwartzman, 2005) estimated 10-25% of global carbon
emission from deforestation and degradation of tropical forests. Hence carbon of forests is decreasing
(Gibbs et al., 2007; FAO, 2010) mostly associated with anthropogenic activities (Wright, 2005; Hamzah,
2012 ; IPCC, 2007).

In 1992 the United Nation Frame Work Convention on Climate Change (UNFCCC) established a
framework to reduce greenhouse gases. Five years later the United Nation (UN) adopted the Kyoto
protocol by setting legally binding requirements for emission reduction (UNFCCC, 1998). Accordingly all
countries committed to UNFCCC and Kyoto protocol are required to report their national inventoty to
emission by sources and removal by sink on a regular base using effective methods (Gupta et al., 2003).
Under the UNFCCC, an important agreement was reached in Bali in December 2007 encouraging
developing countries to initiate actions to reduce emissions of carbon from deforestation and forest
degradation (REDD) (Pelletier et al., 2012; Kanninen et al., 2010). REDD later expanded to REDD+
works on the main objective of mitigating climate change through reducing emissions from deforestation
and forest degradation and removing greenhouse gases through enhancing forest management, hence
conserve carbon stock.

As part of their incentives towards reducing CO2 emissions as well as increasing their carbon stock,
participating countries must be rewarded through carbon credits (Dulal et al., 2012 ; Gupta, 2012). On the
other hand, industrialized countries ate expected to pay for their emissions in the mechanism of REDD
(Dhital, 2009). Hence countries must quantify and compare reduction of their CO, emissions using credible
and verifiable scientific methods (Dhital, 2009). Accordingly each participating country must create a
reference level, taking into account the circumstances and historical emissions trend. Therefore, REDD+
must carry out a reliable mechanism for measuring, reporting and verifying (MRV) changes in forest carbon
stock on an annual base and countries must establish amendable MRV systems (Kanninen et al., 2010;
Asner, 2011). Among REDD+ actions, most importantly, accurate measurement of ‘change in forest area’
and ‘carbon stock density per unit area’ are emphasized as the main vatiables to estimate change in carbon
stock before offering carbon credit. Consequently the requirement for vigorous and accurate measuring
and monitoring technique receive significant consideration (Pelletier et al., 2011; Calders et al., 2011). Then,
it is contemporary concern to develop a scientific method that insures higher certainty of estimating carbon
stock (Pelletier et al., 2011; Asner, 2011; Andrew et al., 2012). Based on this concern, this study aims to
address the actual need to develop an accurate method of carbon stock estimates in tropical rain forest
using data from very high resolution satellite imagery (hereafter referred to as VHRS) and Terrestrial Laser
Scanning (hereafter referred to as TLS). In doing so, it is anticipated that the research will contribute in
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reducing uncertainties of governments and organizations employed on critical assessment of carbon stock
changes, including REDD+ and its MRV system.

1.2, Problem statement

With the evolving of approaches for quantifying forest components, remote sensing offers stimulating
possibilities because of its potential ability to cover large areas and its applicability to the estimation of
above ground biomass (AGB) and above ground carbon stock in forest areas (Zheng et al., 2007; Lu, 2000;
Mohren et al,, 2012). Nevertheless, With complicated forest stand structure and diverse tree species
composition estimation of above ground biomass remains a major challenge (Lu, 2005) especially in
tropical and sub-tropical forests. According to Gibbs et al. (2007), the frequent saturation of remote
sensing instruments’ signal due to complex structure of the ecosystem is also one of the major challenges.
The direct measurements of harvesting and weighing to estimate total AGB and CO; flux have an
advantage of being unbiased and precise, but are destructive and costly (Mohren et al., 2012). Rather,
indirect methods using forest inventory data are cost-efficient, practical and provide reliable results
(Mohren et al., 2012) as the data are collected at a required scales and from population of interest in a
statistically well designed method (Brown, 2002). However, traditional methods are expensive and time
consuming (Asner, 2009). For its applicability in extensive and inaccessible areas, remote sensing is a vital
tool (Calders et al., 2011). Lu (2006); Gonzalez et al. (2010); Baker et al. (2010) highlighted the significance
to associate remote sensing technique with carbon estimation methods that are calibrated by field
measurement to quantify above ground biomass. For this instance several studies (Andrew et al., 2012;
Baral, 2011) have been conducted to estimate AGB and carbon stock in forests. On the 17% conference of
parties (COPs), UNFCCC also adopted the commitment that the national REDD+ measurement,
reporting and verification (MRV) system shall be constructed on a combined field and remote sensing data
(Vaglio, 2014).

Although the above techniques reduce cost of data and improves the quality of information (Baker et al.,
2010), the main concern for implementing the articles of Kyoto Protocol is how precise the measurements
are (Brown, 2002). Gonzalez et al. (2010) pointed out that greenhouse gas inventories and emissions
reduction programs require scientifically robust method to quantify forest carbon storage over time across
extensive landscapes. As it is a required to estimate carbon emissions with high certainty, a reliable methods
for measuring, reporting, verification is essential (K&hl et al., 2009) for the countries playing a part in
REDD+ mechanisms.

Among the parameters, diameter at breast height (DBH) is highly related to AGB and explains about 95%
of variation in AGB (Brown, 2002). But diameter at breast height of tree cannot be detected from remotely
sensed data. However there is a relationship between DBH and crown projection area (CPA) (Shimano,
1997; Hirata et al., 2009). CPA can be detected from very high resolution optical and Lidatr sensor system
providing opportunity to extract individual tree crowns through series of crown segmentation (Song et al.,
2010; Gartner et al., 2008). Several studies (Hemery et al.,, 2005; Song et al., 2010; Lefsky et al., 2002)
showed significant tree crown relations with DBH. In this context, measurements from optical images such
as crown areas and ground based measurements can be applied to establish allometric relationships (Gibbs
et al., 2007) for estimation of carbon stock with high certainty.

Tree height is essential supplementary parameter for carbon stock estimates. Lidar imagery directly provide
height and canopy structure (Song et al., 2010; Lefsky et al., 2002) which can be used to estimate AGB
integrating with data from optical images and field measurements (Karna, 2012; Maharjan, 2012). Since
biomass is a function of volume, it can be derived from height. Meanwhile relationship exists between
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DBH and CPA (Hirata et al.,, 2009), thus it is feasible that CPA and height will provide improved estimates

of carbon stock.

The significant advancement in technology made automatic extraction of forest parameters such as DBH
from TLS possible hence, its applicability in forestry seems to be practical at this time. The potential speed
of data collection available in TLS techniques is desirable (Hopkinson et al., 2004) and demonstrated its
potential and accurate estimation of AGB at plot level in eucalyptus species of Australia (Calders et al.,
2013) even though it requires integrated approach and tools to extract meaningful information (Haala et al.,
2004; Dassot et al., 2011). Likewise McHale (2008) underlined the application of TLS for forest
measurements and cost effective, accurate ability of catbon stock estimates. It is now at the forefront as
scientist begin to realize that the system is further accurate while measuring forest parameters since it
avoids subjective readings from manual measurements and errors from variation in measuring devices
(Simonse et al., 2003; Haala et al., 2004; Maas et al., 2008; Moorthy et al., 2008). Nguyet (2012) highlighted
2.1 and 4.5 kg errors in carbon estimation for “Shorea” and “other species” respectively could be from field
base measurement. Similarly Chave et al. (2004) pointed out that 16% of uncertainty in AGB estimation is
from measurements. In times where exact measurements of forest parameters are needed, TLS derived
parameters are worthwhile to achieve desired certainty.

The Intergovernmental Panel on Climate Change (IPCC) guidelines categorize three methodological tiers
based on the complexity to be used on national circumstances certainties. “Tier 1 uses globally available
coarse data and involves large uncertainties and several assumptions. A more accurate method is “Tire 27
which uses more disaggregated data at the level of region or country with comparatively reduced
uncertainties. Whereas “Tire 3” is a higher order approach which requires high resolution data and involves
modelling and inventory of measurements with lower uncertainties as compare to Tire 1 and Tire 2.

Object base image analysis made extraction of tree crown by partitioning remotely sensed optical imagery
with definite spatial and spectral scale. In this context integrating information from optical images with
parameters from TLS is not yet fully discovered. Besides the previous studies with TLS were mostly done
in temperate forests yet limited studies are done in tropical rainforests. Furthermore, achieving improved
accuracy in methods with innovative remote sensing approach is necessary (Calders et al., 2011).

Thus this study will be aiming to explore the possibility of developing a method for accurate estimations of
AGB with extrapolated forest parameters of DBH and height from TLS and CPA from very high
resolution optical satellite image using object base image analysis in tropical rain forest of Royal Belum
State Park, Malaysia. Considering the IPCC guidelines of Tier 3”, which requires development of accurate
method at country level (Gibbs et al., 2007; K6hl et al., 2009) and fundamental challenges of MRV system,
this research will have a viable contribution in developing an accurate method to estimate above ground
carbon stock.

1.3. Research Objectives
General objective

The main aim of this research is to develop a method for assessing the relationship between DBH, height
derived from Terrestrial Laser scanner (TLS) and Crown Projection Area (CPA) from very high resolution
satellite imagery (VHRS) for estimating above ground carbon stock in tropical rainforest of Royal Belum
State Park, Malaysia.
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Specific objectives

1. To assess the relationship between segmented crown projection areas (CPA) derived from VHRS image
and TLS derived DBH and height.

2. To assess the relationship between DBH and height derived from TLS and manually field measured
DBH and height.

3. To assess the relationship DBH and height estimated from CPA and measured from field.

4. To assess the relationship of CPA from High resolution image, DBH, height from TLS and calculated
carbon.

5. Research questions

1. How accurately CPA can be segmented from VHRS image?

2. Is there a significant difference between DBH and height extracted from TLS and manually
measured from field?

3. Is there a significant difference between DBH and height estimated from CPA and manually
measured from field?

4. Is there a significant relationship between DBH and height extracted from TLS and CPA segmented
from VHRS images?

Research hypothesis

1. Ho: The accuracy of CPA segmented from VHRS is < 70%.
H.: CPA can be accurately (=70%) segmented from VHRS images.

2. Ho: At 95% confidence level, there is significant difference between DBH and height derived from TLS
and manually from field.

H.: At 95% confidence level, there is no significant difference between DBH and height measured from
TLS and manually from field.

3. Ho: At 95% confidence level, there is no significant difference between DBH and height estimated from
CPA and measured from field.

H.: At 95% confidence level, there is significant difference between DBH and height estimated from CPA
and measured from field.

4. Ho: At 95% confidence level, there is no significant relationship between CPA (from VHRS) and DBH,
height (from TLS).
Ha: At 95% confidence level, there is significant relationship between CPA (from VHRS) and DBH,
Height (from TLS).

1.4. Theoretical Frame Work of the Research

After reviewing relevant literature, the research problem was identified. Based on this identified problem,
the research objectives and research questions were outlined. Then secondary data was requested and the
required fieldwork was carried out to collect ground truth data and scan target objects. The collected data
wete analysed and the research discussed and concluded based on the results. The general description of
the process is presented in Figure: 1 (Theoretical frame work of the research).
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Figure 1: Theoretical framework of the research
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2. LITERATURE REVIEW

21.  Concepts and Definitions

21.1. Biomass and Carbon

Biomass is the total organic matter of dead or live weight per unit area of a plant (Antonio et al., 2009). It
is a function of wood volume, wood density and architecture of a tree (Simone et al., 2008). Considering
the ground surface as a boundary (Gschwantner et al., 2009), above ground biomass refers to the dead or
living biomass of tree above soil including branches, leaves, stem, bark, foliage and seeds (Figure 2). While
below ground biomass is the total biomass of live roots (Ravindranath, 2008). In this study the term “above
ground biomass (AGB)” will be used to the total living biomass of trees above the ground surface.
Estimates of dry weight biomass of trees and tree components are of interest to researchers (Jenkins et al.,
2004; Brown, 1997) because above ground biomass stores most of carbon stock and atre greatly affected by
deforestation and forest degradation (Gibbs et al.,, 2007) moreover, it is an important sign of forest
efficiency. Carbon is approximately 50% of oven dry biomass (Brown, 1997; Drake et al., 2002) or 47%
(IPCC, 2007). Using this conversion factor, above ground carbon stock (hereafter referred to as carbon) of
forests can be estimated from AGB. Even though it remains difficult to quantify, forest biomass is valuable
measure in evaluating structural and functional attributes of forests efficiency.

Figure 2: Above ground and below ground biomass

21.2.  Allometric Equation

Allometric equations are most reliable method of estimating forest biomass without any destructive
approach on the bases of established relationships between easily measurable dimensions of tree such as
DBH (Simone et al.,, 2008; Ketterings et al., 2001; Wang, 2006). Choosing allometric equation is an
important step in estimating AGB (Ekoungoulou et al., 2014; Chave et al., 2005). In tropical forests, where
an area of 1ha may comprise more than 300 different tree species, it is very difficult to use species specific
regression models (Chave et al., 2005). Moreover, developing allometric equations trequites destructive
sampling and may not represent the whole forest. Therefore grouping all species to use common and
generalized equations is acceptable approach (Gibbs et al., 2007; Shah, 2011; Chave et al., 2005). The
allometric equation developed by Chave et al. (2005) is suitable for areas with annual rainfall between 2250
— 3500 mm and covered with hard wood and tropical forests.
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2.1.3.  Crown projection Area

Crown projection area (CPA), also referred to as canopy cover, is the proportion of area on the ground
covered by the vertical projection of the canopy (Jennings et al., 1999) (Figure 3). CPA is significant part of
forest inventory however, it remains difficult to determine theoretically and practically (Rote, 2003). This is
because it introduce error while measuring it for example: attempting to save time in field introduce errors
(Kothonen et al., 2006). In addition to this Korhonen et al. (2006) mentioned deciding to include the gaps
inside tree crown as part of the canopy or not makes it subjective and difficult to be accurate.

vertical projection of the crown perimeter,

© crown perimeter
@ crown projection area

Figure 3: Demonstration of crown projection area (Gschwantner et al., 2009)

21.4.  Object Base Image Analysis

With the increasing applications of high spatial resolution images and an alternative to pootly suited
traditional pixel based classification; object Base Image Analysis (OBIA) is getting more acceptances. OBIA
creates image-object thorough aggregation of pixels to image segments (Dragut et al., 2010). OBIA
considers geometry and structure information in addition to spectral character to segment desired object
of interest (Wei et al., 2005). In addition to this, humans can visually inspect to group similar toned and
spatially arranged pixels (Hay et al., 2003). The software eCognition provides all the application tools of
OBIA to extract information from high resolution imagery (Wei et al., 2005). The process of OBIA
segmentation includes two major steps. First is to segment the image in to homogenous group of pixels to
create image-object. The second step is to classify these image-objects based on colour, texture, shape and
spectral information (Maxwell, 2000).

2.2.  Principles of TLS

Terrestrial laser scanning is a light detection and ranging (Lidar) system that allow a non-destructive, fast
and accurate acquisition of 3-dimentional (3-D) data with fixed x, y, z position and intensity value from the
reflected signals (Dassot et al., 2011). The operating system of TLS technology is based on the emission-
reception of laser energy which determine distance in two alternative methods (Rosell et al., 2009) namely:
1) by determining the time difference between emitted laser pulse from the sensor and reflected from the
object back to the sensor and dividing this by 2 (time-of-flight Lidar) or 2) by measuring the phase shift
between the incident and reflected laser beams (phase-shift measurement Lidar). In case of time-of-flight,
the emitted laser deflects by a mitror to automatically scan the scene of the laser being reflected by the
object. Then the complete hemispherical rotation of the device and scanning of a vertical plane by the
deflected laser provides a comprehensive representation of objects in 3-D point cloud (Dassot et al,. 2011).
In phase-shift measurement the laser scanner modulate the emitted light in to multiple phases and
compates the phase shift of returned light then use an algorithm to fix the distance. Furthermore, Dubayah
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& Drake (2000); Hall et al. (2005) have classified Lidar data based on foot print size and way of recording
returned signals (Discrete and full waveform)

Discrete system records either one (single) return or few (multiple) returns for each pulse. These Lidar
systems emits a small beam of light (0.2- 0.9 m in diameter) (Lim et al, 2003) i.e. small foot print, thus
contains partial information of forest elements such as under estimation of canopy height in dense forests
(Means et al., 1999). On the other hand, full waveform system record entire energy returned to the sensor
for a series of equal time interval (Lim et al., 2003; Lefsky et al., 2002). They are categorized as wide beam
light (8-70m in diameter) which permits large foot print area with various forest information (Means et al.,
1999). These signals have equal importance in estimating variables (Lefsky et al., 2002). Most lasers for
terrestrial applications generally have wavelengths in the range of 900-1064nm; where vegetation reflection
is high (Lefsky et al., 2002; Hall et al., 2005).

The three dimensional coordinates (x, y, z) of target object are figured
from the difference between laser pulse, the angle at which the pulse was
fired and the absolute location of the sensor from the surface. Spatial
registration of scanned data occurs during data acquisition because the
location and orientation of sensor is known (Watt & Donoghue, 2005). ‘
Most scanners offer panoramic 3600 horizontal field of view and vertical ‘
opening angle between 80" and 135¢ that allow hemispherical scanning
(Bienert et al., 2006; Maas et al., 2008). Few scanners are also with a
camera-like limited field of view (Bienert et al., 2000).

Figure 4: Sample of Terrestrial
Laser Scanners

This study was carried out with RIEGL VZ-400 terrestrial laser scanner. RIEGL VZ-400 is a V-line three
dimensional terrestrial scanner that offers high speed data acquisition by means of a narrow laser beam and
a fast scanning mechanism. The high accuracy laser ranging is based on RIEGL’S sole echo digitalization
and online waveform processing, which permits supetior measurement. It is based on linear scanning
mechanism through the rotating multi-sided mirror. It has GPS receiver integrated with antenna, internal
data storage capability and various interfaces (LAN, WLAN, USB) (Riegl, 2013). The detailed specification
of RIEGL VZ-400 is in Table 1.

Table 1: Specifications of RIEGL VZ-400 Scanner (Riegl, 2013)

Sensor specifications

Field of view 100 X 360 degrees
Pulse rate up to 122,000Hz
Range up to 600 m
Accuracy 5mm

Beam divergence 0.3 mrad

Spot size 3cm at 100m distance
Minimum range 1.5m

Laser wavelength | Near infrared (1550 nm)
Camera High precision digital NIKON D610




APPLICATION OF VERY HIGH RESOLUTION IMAGERY AND TERRESTRIAL LASER SCANNING FOR ESTIMATING CARBON STOCK IN TROPICAL RAIN FOREST OF
ROYAL BELUM, MALAYSIA

2.3.  Overview and Techniques of Above Ground Biomass Estimation

Understanding forest biomass is important for several reasons. First, it provide an information about
condition and productivity of forests (MacKay et al., 2011). Second, estimation of biomass is a means to
obtain amount of carbon sequestered in forests (Ketterings et al., 2001). Also it is one of the facts to
explain global carbon balance as an effect of deforestation (Ketterings et al., 2001). Several methods,
techniques and tools have been used to estimate AGB/catbon stock. As the Intergovernmental Panel for
Climate Change (IPCC) most importantly emphasized, accurate method of carbon accounting is
prerequisite in monitoring carbon lose due to deforestation, forest degradation as well as gain from
reforestation.

Lu (2006) examined three different approaches of biomass estimation. These were based on field
measurements; remote sensing and GIS based methods. Field based measurement is the most accurate
method since it directly harvests the forest and weighs the dry matter to estimate biomass. However it is
destructive, time consuming and difficult to apply over large area (Asner, 2009; Lu, 2006). GIS based
methods use data from existing limited inventory to generalize biomass estimation over large area (Brown
& Gaston, 1995). However, getting quality ancillary data is difficult hence GIS based methods are not
widely applicable (Lu, 2006). Remote sensing based methods are becoming widely applicable as extensive
areas can be covered with reduced cost and efforts. Obtaining direct estimates of above ground biomass is
difficult (Gibbs et al., 2007) and so this method establishes statistical relationship between remotely sensed

and field measured tree parameters.

Remote sensing data and techniques have been extensively studied, using optical sensors (Lu, 2005),
Synthetic aperture radar (SAR) data (Hajnsek et al., 2009) and also Lidar data (Lefsky et al., 2002).
Synthetic aperture radar (SAR) employ an active sensors operating in longer microwave ranging from
1em-150 ecm (Waring et al., 1995). SAR technology has the ability to distinguish standing biomass
estimates using single L-band cross polatized (HV or VH) irrespective of whether condition. SAR system
sent signals that penetrate tree canopy have multiple scatter with in the tree canopy which then returns to
the radar antenna. From these reflected signals it is possible to estimate tree parameters such as height
(Gibbs et al., 2007). However, L-band (the longer wavelength available) tends to saturate at low biomass
levels (approximately 150 Mg/ha), which makes SAR application limited (Waring et al., 1995).

Passive optical remote sensing systems data are available at low cost and used in most of remote sensing
researches to estimate forest biophysical parameters such as biomass. The difference in sensors spatial
resolution influences their range of application. Very high resolution (<5m) optical images are relevant for
more specialized measurements of forest variables (Andersson et al., 2008) as well as essential means to
extract visual information. Medium to low resolution optical images (>100m) are suitable for coarse scale
mapping and multi spectral classification with limited classes (Gartner et al., 2008). Medium resolution
satellite images such as Landsat are applicable in various fields including biomass estimations with
improved accuracy at well aggregated grid-level (Lu, 2006). Unlike the medium resolution images, high
resolution satellite images such as WorldView, GeoEye, QuickBird and IKONOS all with high spectral
and spatial resolution, can detect physical dimensions of trees e.g. crown projected area (CPA) with high
correlation to biomass (Gonzalez et al., 2010). However, very high resolution satellite images are least
effective for pixel based image classification as spectral value among pixels greatly varies and result data
redundancy (Wei et al., 2005). An alternative approach is object base image analysis, which gives a way to
achieve desirable precision (Benz et al., 2004; Wei et al., 2005). In addition optical images are restricted by
cloud cover and tend to saturate in dense tropical forests. Optical images also lack useful vertical
information (height) that can imptrove the estimation of AGB/catbon stock (Hall et al., 2005; Hunter et
al,, 2013).
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The recently emetging Light detection and ranging (Lidat) is an alternate remote sensing sensor system.
Unlike optical sensors, Lidar technology extends the spatial analysis to the third (z) dimension and directly
provides 3-D estimates of tree parameters such as height, canopy cover (Lefsky et al., 2002) hence gives
biomass estimates with improved accuracy.

24.  Works Related to The Study

Forest inventory for management and planning purpose requires measurements of tree parameters. Of
these, the most important parameters are DBH and tree height (Maas et al., 2008). As large area forest
inventory is not realistic by means of conventional techniques, inventory of isolated plots and statistical
inference is the preferred method. Since estimation of carbon stock stored in forests provide an important
figure on impacts of global changes (Brown, 1997), researches (Bryan et al., 2010; Asner, 2009) have been
conducted to estimate above ground biomass from forest inventory and remote sensing.

Appling Object base image analysis with the use of very high resolution satellite images is an opportunity to
help identifying individual tree crown (Gougeon & Leckie, 2006) and consequently estimating AGB. The
study by Erikson (2004) with aerial image; Katoh et al. (2008) with airborne data and Tsendbazar (2011)
with Geo-Eye image applied object base image analysis to delineate individual tree crown and achieved
reasonable results. However, the complex nature of tropical rainforest with multi-layers of canopy affects

accuracy of segmentation.

Although airborne Lidar has the advantage of wide area coverage, the precision and validity of technique
depends on model’s assumptions used to retrieve parameters from point cloud (Maas et al., 2008) and
provide limited information under the canopy (Dassot et al., 2011). As an alternative for airborne Lidar and
conventional remote sensing methods, TLS with the capacity of data processing technique with great detail

and potential to reduce error is becoming a useful tool for forest inventory.

Watt & Donoghue (2005) in conifer forest and Hopkinson et al. (2004) in mixed deciduous plantations and
red pine forest worked on extracting tree parameters from TLS data. Accordingly accurate measurements
of forest variable such as DBH and height can be achieved though they recommend height could be a
slightly underestimated from compact branching. Moreover Watt & Donoghue (2005) proposed future
application of TLS for estimation of AGB. Hence McHale (2008) used DBH, height and tree density
measurements from TLS together with allometric equations to predict carbon in Fort Collins Colorado,
USA. Maan et al. (2014) assessed the potential of TLS for measurement of tree height and DBH to
compute AGB in comparison to field data in sparse plantation and came up with reasonable coefficient of
determination i.e. 0.79 and 0.96 for tree height and DBH respectively. Haala et al. (2004) investigated an
inventory to collect forest parameters and identify tree species by integrating TLS and high resolution
panoramic camera and demonstrated its applicability.
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3. STUDY AREA, MATERIALS AND METHODS

3.1.  Study Area

3.1.1.  Criteria for Study Area Selection

Ease of access was one of the main reasons for the selection of the study area since the study has to be
conducted with in limited time and budget. In addition to that WorldView-2 image of the study area was
available. In spite of its significance on carbon sequestration as a tropical rainforest and complex forest
stand structure, the study area is one of the least studied sites.

3.1.2. Geographic Location and Overview

The study was conducted in Royal Belum State Park (RBSP), in the northern part of Belum-Temenger
Forest Complex (BTFC) in the state of Parek, northern Peninsular Malaysia. It extends over an area of
117,500 ha surrounded by Thailand in the north, the state of Kalantan to the east, Sungai Gandong in the
west and Temenger forest reserve in the south (Figure 5). The area is highly protected primary tropical
rainforest with rich biodiversity of flora and fauna which makes it one of the significant ecotourism and
scientific research site. Apart from this, unique culture of native people living in the area with beautiful
landscapes and lush sceneries are signs of attraction. The state of Perak gazettes the forest as permanent
reserve for research since 2007. The east-west highway and Temenger Lake in the southern border are
some spectacular features which provide access to the area.
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Figure 5: Location of the study area
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3.1.3. Climate

The study atea has a tropical monsoon climate with relatively high temperature (24 °C - 29.9 °C) and high
humidity ranging from 70 to 98% (Hanis et al., 2014). The annual rain fall of the area ranges between
2,160-2,250 mm. It receives highest rainfall in the wettest months of April and October. Whereas the area
receives lower rain fall in the months of February and July (Hanis et al., 2014).

3.1.4. Vegetation

The tropical rainforest of the study area is recognized as one of the world’s oldest rainforest (130 million
years old). The forest type in the area ate dominated by lowland Diprerocarp, hill Dipterocarp, upper Dipterocarp
forest (Chye, 2010; WWEF, 2014) extending from 260 m to 1,533 m above sea level. The majority of the
species are characteristic of the tropical rainforest in peninsula Malaysia, Sumatra and Borneo, whereas the
minority of the species is associated with seasonal tropical forest of Thai and Burmese type. The dominant
plant species in the area are Diplerocarpus costulatns (Mersawa), Shorea Platyclados (Meranti bukit), Intsia
Palembanica Merbau).

3.1.5.  Animal Species

The forest Royal Belum is well known for its habitat of globally threatened animal species. Some of the rare
animal species in the forest includes Asian Elephant (Elphas maximus), Tigers (Panthera tigris), Sumatran
Rhinoceros (Dicerorbinus sumatrensis) and all ten species of Hornbills found in Malaysia (Chye, 2010; Kaur et
al., 2011). Besides around 316 species of birds have been identified in the forest including eight vulnerable
species namely; Mountain Peacock pheasant Polylectron ingpinatum, Wallace’s Hawk Eagle Spizaetus nanus,
Masked Finfoot Heliopais Personata, Large Green Pigeon Treron Capellei, Short-toed Concal Centropus rectunguis,
Blue-banded Kingfisher Aledo enryzona, Plain-pouched Hornbill Aceros subruficollis and Straw-headed Bulbul
Pycnotus Zeylanicus.

3.2.  Materials
3.21. Data Used For the Study
3.21.1. Satellite Image

Table 2: Satellite image specification (Digital Globe, 2009)

A very high resolution satellite image (VHRS) of

WorldView-2 was used for this study. WorldView-
2 is the first high resolution commercial satellite
image with eight bands (Digital Globe, 2009). It
has average revisit time of 1.1days with capability
of collecting about one million km?2 of 8-band
imagery per day (Digital Globe, 2009). WorldViwe-
2 multispectral image comprises 8-bands of which
four are in the visible electromagnetic spectrum
namely, Blue, Green, Red and NIR_1 and four are
new colours: coastal, yellow, red edge and NIR_2.
For this study, only the first four bands were used.
The image was acquired in February 2013 of both
multispectral and panchromatic with 2m and 0.5m
spatial resolution respectively. The image was geo-
referenced to UTM WGS 84 coordinate system.
The WorldView-2 image detail specifications are
listed in Table 2.

Specifications

WoldView-2

Spatial resolution

Multispectral: 2mx2m
Panchromatic: 0.5mx0.5m

Band wavelength (um)

Panchromatic: 450-800
Blue: 450-510, Green: 510-580,
Red: 630-690, NIR_1:770-895

Acquisition Date 4/2/2013 4:17:05 AM
Sun Azimuth (degree) 91.50

Sun Elevation (degree) | 74.80

Sensor Azimuth | 323.50

(degree)

Sensor elevation | 64.90

(degree)

Off-Nadir(degree) 22.30

Projection Transverse Mercator

Coordinate system

WGS-84 UTM zone 47
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3.21.2. Field Equipment

The equipment as listed in Table 3 was used for different data collection purposes during field-work.
Navigation and recording coordinates of individual trees and plot centre was carried out with the help of
GPS. Crown diameter in meters (m), plot diameter (m) was measured with measuring tape and DBH in
centimetres (cm) was measured by diameter tape. Tree height was measured with Lieca DISTO D5 laser
ranger in meters (m). Suunto compass, suuntu clinometer were used to measure beating and slope
respectively. Apart from measurements, TLS was used to scan trees in the plot as well as hemispherical
camera to capture the canopy cover of the plots.

Table 3: Field equipment

SN | Type of instrument Used for

1. | Terrestrial Laser Scanner(RIEGL VZ-400) Scanning trees

2. | Diameter tape (5m) Measuring diameter

3. | GPS Navigation

4. | Measuring tape (30-50m) Measuring diameter of plots
5. | Suunto compass Measuring Bearing

5 Suunto clinometer Measuring slope

6 DISTO D5 Laser ranger Measuring height

7 Field work data sheet Recording field data

8 Hemispherical camera Capturing tree canopies
10 | Densitometer Measuting canopy density

3.21.3. Software

The research used several software depending on their purpose described in Table 4. Most of the statistical
analysis was done in MS Excel, SPSS statistics22 and R studio software. While image analysis, GIS analysis
and image segmentation was done in ERDAS IMAGINE 2014, ArcMap 10.2 and eCognition 9.0.2
respectively. The task related to writing and power point presentation was performed using Microsoft word
and Micro soft Power-point 2010. TLS data was also analysed using RISCANPRO software. The list of
software used is presented in Table 4.

Table 4: Software used

Software Used for

eCognition 9.0.2 Image segmentation
ArcMap 10.2 GIS analysis

ERDAS IMAGINE 2014 Image processing.

R Studio, SPSS statistics22 and MS Excel Statistical analysis.
RiSCAN PRO 1.8.1 TLS data processing
Microsoft word 2010, Microsoft power point 2010 writing and presentation
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3.3. Research Method

The method applied for this research can be described in three different processes. These processes are
related to field data, remote sensing and statistical analysis. In the remote sensing related task: CPA, DBH

and height were obtained from the image and TLS point cloud data respectively as independent vatiables
of carbon stock estimation. Similarly DBH, height and crown diameter were measured from field as a
ground truth. Finally a statistical analysis is carried out to analyse relationship between dependent and
independent variables. The detail process and successive sections is shown in Figure 6, flowchart of the

process.
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Figure 6: Flowchart of the process
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3.3.1.  Pre-Field Work

3.3.1.1.  Sampling Design

The study applied purposive sampling strategy to represent all the trees in different forest canopy densities.
Purposive sampling is non-probability sampling method used when sampling units are selected from a
population to generate a sample with the intention to generalize. The tree canopies in less dense plots are more
likely to be recognized from the satellite image than in dense plots with intermingled canopy. Besides the area
south of the road (seen on Figure 5) have more open areas and less variation of species than the northern part.
Since the ability to process point cloud data in very dense forest is challenging, the study considered to sample
from less dense plots as well. Further, limited time, accessibility and topography of the area with the ability to
work with TLS instrument were also taken into account while determining the plots. Therefore, the research
used the mentioned strategy and collected 32 plots in which 6 plots were taken in the area south of the road (less
dense) and the 26 in the northern part (dense) of the study area. Forest densities of the plots in the field were
determined by Densitometer (an instrument used to measure canopy density) and visually with the help of high
resolution image (WorldView-2).

3.3.1.2. Pan-Sharpening

Since satellite images provide data with different spatial, spectral and temporal resolutions, a full exploitation of
these multisource data is required (Pohl & Genderen, 1998). Therefore, fusion/pan-sharpening technique is
developed to provide improved information and reliable result from combined data (Pohl & Genderen, 1998).

Pan-sharpening is an image processing technique which aims to produce high-resolution multispectral images
from fusion of multispectral low resolution pixels and panchromatic high resolution pixels (Padwick et al., 2010).
Even though it is very difficult to obtain the original sharpness of panchromatic and colour of multispectral
images, several fusion algorithms are practiced to get some quality information (Padwick et al., 2010). Among the
various fusion techniques, Hue-Intensity-Saturation (HIS), Principal Components (PC) and High Pass Filter
(HPF), Hyperspherical Colour Sharpening (HCS), Gram-Schmidt (GS) are some of the commonly used. In this
study except GS these pan-sharpening techniques were tried with WorldView-2 multispectral of 2 m and
panchromatic image of 0.5 m of spatial resolution to obtain the desired information. Hyperspherical Colour
Sharpening (HCS) gave better impression visually than the others.

HCS is a pan-sharpening technique specifically developed for Worldview-2 imagery (Padwick et al., 2010). The
technique processes any number of input bands with preserved balance between spatial and spectral quality. The
technique involves mathematics which forward and reverse the transformations to and from the original colour
space to hyperspherical colour space. Padwick et al. (2010) applied HCS pan-sharpening technique and
quantified the performance of the algorithm on spatial and spectral quality of the resulting pan-sharpened image.
The quality index measure by Padwick et al. (2010) found out that the technique is spatially robust as compare
to PCA and GS and maintained reasonable colour balance. Pan-sharpening algorithm that preserves the spatial
information of panchromatic image results better accuracy of image segmentation with OBIA analysis (Johnson
et al., 2012).

3.3.1.3. Filtering

Filtering is a technique applied to remove noise associated with high resolution digital images. Low pass filtering
smoothen an image by maintaining the low frequency and reducing high frequency information. A 5*5 low pass
filtering/smoothing was applied in this study to enhance features and improved manual and automatic
delineation of trees.
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3.3.2.  Field Data Collection

3.3.21. Biometric Data

Field work was conducted between September and October 2014. The objective of field work was to
collect primary data which is required as ground truth from the actual study area. Circular plots with radius
of 12.62m (500m? of area) were delineated. A circular plot is chosen for its advantage of least perimeter and
easy to start at plot centre and walk out at approved distance in several directions to measure. Within each
circular plot, tree height, DBH, crown diameter, tree species, x and y-coordinates of individual trees and
coordinate of plot centre were measured with their relevant instruments and recorded in the data recording
sheet (Appendix 5). Only those trees with DBH greater than 10 cm were measured since those with a DBH
less than 10cm adds insignificant amount of biomass to the plot (Brown, 2002). Besides slope cotrection
for the plots with more than 5% and aspect were also performed. All collected field data were compiled in
excel file for further analysis. The main aim of collecting field DBH and height was for assessing the
significance of correlation with DBH and height extracted from TLS.

3.3.2.2. Total Station

Total station is a surveying technique and equipment with integrated theodolite and electronic distance
measurement (EDM) to define slope distance, horizontal and vertical angel of a specific point. From the
total station, angles and distance of the plot centre were measured and x, y, z-coordinates relative to the
location of total station was calculated. In this case at least two line of sight set in a points with known
location ate needed to determine the absolute location. Therefore, throughout the field work coordinate of
two points were identified in straight line with the plot centre to calculate it’s coordinate.

During scanning time a default coordinate is given to the point cloud data by the sensor. The calculated
coordinate from the total station was used to geo-reference scanned data. Geo-referencing refers to the
process of transforming coordinates of geographic features in to absolute reference system (Chekole,
2014). In this case the scanned point cloud data with 3-D coordinate of laser sensor frame ate transformed
in to mapping frame (Chekole, 2014). Coordinates measured by total station have high accuracy and
precision (Chekole, 2014) thus this technique was used in this study. Measurement of total station of this
study was done by the survey team of University Technology Malaysia (UTM). Figure 7 shows a sample
reference map of one plot used by the team.
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Figure 7: Locanon of two known points (T1ang and Hulu sunga) and plot centre (ROYA 1761)

3.3.2.3. TLS Data Acquisition

Before the actual scanning time, several procedures should be taken in to consideration to obtain quality
scanned point cloud data. The main procedures taken in this study are in the following subsections.
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Scan position setup

Acquiting point cloud data using TLS has two approaches: single and multiple scan (Olofsson et al., 2014)
(Figure 8). Single scan approach uses only one scan from the centre of the plot and represents one side of
trees in the plot. Whereas multiple scan approach scan from different positions of the plot and represent
several views of the trees, later needs to be mended to a common coordinate system. To ensure reasonable
overlap of scanned data, greater canopy height, improved quality of information and 3-D representation of
objects, a multiple scan is required (Watt & Donoghue, 2005; Calders et al., 2014; Thies et al.,, 2004).
Therefore this study followed the multiple scan approach. Scan positions were chosen depending on the
overview of the forest structure inside the plot. For every plot four scan positions were ideal i.e. one at the
plot centre and three other positions outside in more or less 120° apart from each other. The distance
between plot centre and the three scan positions were determined depending on the topography i.c.
preferably less steep. In this study these scan positions were fixed around 2-3 m away from the plot
boundary to obtain maximum coverage of tree height and avoid blind spot. Even though it was difficult
with topography of the area, further increase in distance of the scan position also maximize scan of

unwanted areas. ®

. Position of the scanner

® Trees

Figure 8: Demonstration of single and multiple scan positions using TLS

Setting Tie points (retro-reflective objects)

Tie points are highly reflective objects which are used as a reference points for co-registering multiple
scans. This study was aimed to follow tie point based registration thus, considering the possibilities of
misdetection by the sensor or occlusion by the trees, 15 tie points were fixed in each plot. The types of tie
points used were both cylindrical 3-dimantional and circular 2-diamentional retro-reflectors. The 2-
dimantional tie points were pinned in to the trees’ stem around the central position of the canner whereas
the cylindrical were kept on top of a standing stick with more than 1m height from the ground (Figure 9).
In addition to this, the following considerations were taken into account as cylindrical tie points should be:

= Evenly distributed with nonlinear pattern

= Levelled with the tripod to avoid blocking by
the undergrowth vegetation

®  Within the range of scanner distance

= Visible to the scanner from all the scan

positions

= Stable on their stand position

s K
%\ 5

o RS
Figure 9: A sample of cylindrical tie point from the field.

Setting TLS and scanning

Data acquisition was carried out by a terrestrial laser scanner RIEGL-VZ-400 with a digital camera
NIKON D610. The horizontal and vertical field of view of the scanner is 360° and 1000 respectively. The
rotating design and multi-sided mirror enable the instrument to acquire data on its maximum field of view.
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In all cases the instrument was fixed on a ttipod to scan from preferable position where it is levelled and
possible to see most of the target trees. Levelling was done manually with the help of built-in levelling tool
to align the instrument horizontally and vertically. Prior to scanning each scan was saved as a new project
with specified scanner settings. In the main menu of scan position set up, the same scanner setting were
used through all the scans as summarized in Table 5, except brightness of the image were modified in some
dark plots. The reflectance threshold was set to 0.05 decibel (db). Reflectivity value allows easy estimation
of target’s reflectivity. Value above 0 db implies that the target gives an optical echo amplitude larger than
those of a diffuse white target, i.c. the target is retro-reflecting which easily can be recognized (Riegl, 2009).
During early actual scanning time, true colour photographs of the entire field of view were taken
automatically with the integrated above mentioned camera. In this case minimum of seven pictures for
each scan position in a plot were taken for visual interpretation of the data. Then the instrument scans the
scene once where, the retro-reflective objects appear as red spots. At this stage the retro-reflective objects
were searched manually using reflector search function. This function allows the system to write the
coordinate of retro-reflective objects and list them as corresponding tie points. With listed reference of
these retro-reflective objects, the whole scene was scanned again and saved as one scan position. The scan
data was in range form with panaroma-60. Panaroma-60 was chosen since this scan provides a full 3600
field of view with medium resolution. Since trees were the object of interest, panaroma-60 was reasonable
resolution to identify individual trees. It also takes less time of scan than panaroma-40 of fine resolution.
The immediate result of scanned scenes is point cloud with determined position (x, y, z) and intensity of
the reflected signals (i). Figure 10-12: shows scenes of scanned data in different selection view type.

Figurell: Scanned data in 2-D intensitylinevar scale
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Figure 12: 3-D Scanned data in true colour linear scale




APPLICATION OF VERY HIGH RESOLUTION IMAGERY AND TERRESTRIAL LASER SCANNING FOR ESTIMATING CARBON STOCK IN TROPICAL RAIN FOREST OF
ROYAL BELUM, MALAYSIA

Table 5: TLS settings during scanning

Sensor settings
Image acquisition Accurate
Reflector threshold 0.05db

Scan mode Panaroma-60
Range 50m

Scan form Range
Reflector size >10cm

3.3.3.  Field Data Analysis

3.3.3.1.  Manual Delineation of Trees

Recognizing actual tree crown in tropical rain forest is a challenging task. Thus even though the number
of trees measured in field were 698, only 279 (39.9%) were manually delineated in the image. Manual
delineation of recognized trees on the image is mainly performed for assessing accuracy of automatic
segmentation and model validation. Delineation of recognized trees was done in ArcGIS with 5*5 filtered
pan sharpened multispectral image. The panchromatic image was also used to alternatively check in some
cases while identifying tree crows. The suitable band combination was 4:3:2, same as used in eCognition
software for automatic segmentation. With the overlaid shape file of sample plots, the recognized trees
were delineated at the same scale of 1:250. Field measured crown diameter was used as reference to avoid
over and under estimation of manual delineation.

3.3.4. Segmentation

Segmentation is a process of partitioning of a digital image into non-overlapping discrete regions or spatial
clusters based on spectral, spatial and textural homogeneity (Ryherd & Woodcock, 1996). The process of
segmentation minimizes the with-in class spectral heterogeneity of very high resolution images to simplify
the representation of an image into image objects and extract meaningful information (Dragut et al., 2010).

Image objects with defined homogeneity, size and shape are the building blocks for further image
operations (Definiens, 2008) and determine quality of segmentation, thus defining image object is an
essential step of segmentation process (Kim et al., 2008). Basically there are two segmentation approaches
namely: top-down and bottom-up approaches with several algorithms to refine image objects according to
a given criteria (Definiens, 2008). Top-down approach starts with larger object or the entire image and
pattition in to smaller objects. Chessboard and quad-tree base segmentation are an example of top-down
segmentation approach (Definiens, 2012).

Whereas bottom-up also known as region based approach creates large objects by assembling smaller ones
or pixels (Definiens, 2012). In several successive steps, smaller image objects are fused in to larger ones. All
through this pairwise merging process, the fundamental optimization technique results in subsequent image
objects with minimum weighted heterogeneity. Multi-resolution segmentation is an example of region
based segmentation technique (Definiens, 2012).

20
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3.3.41. Multi-resolution Segmentation

Multi-resolution segmentation is one of the sophisticated and successful algorithms of region growing
approach. Multi-resolution method starts to segment from one pixel and grows by merging the best fitting
neighbouring pixels to create an image object with defined minimum heterogeneity (Benz et al., 2004).
Through successive merging process the whole image segments in to a number of larger image
objects/tegions with minimum heterogeneity (Figure 13). A segmented object is defined as homogenous
on the basis of its shape and spectral homogeneity (Definiens, 2012). The Pixel with exceeded threshold of
local homogeneity value restricts the boundaty of image objects/regions and become a new seed. This
study used multi-resolution segmentation which was carried out in eCognition developer 9.0.2.

: Image object level

Pixel level

Figure13: Mlustration of multi-resolution segmentation process (Benz et al., 2004)

3.3.42. Scale Parameter

Determining image objects’ size using scale parameter in multi-resolution segmentation is a challenging task
of segmentation. It is subjective measure that the user generate image objects that represent real world
objects with determine scale parameter. Therefore, it requires a series of trial and error to get the optimum
scale. Scale parameter is a threshold that controls degree of heterogeneity in segmented image objects.
Heterogeneity and homogeneity of input data influence size of resulting image objects and the scale
parameter at which the objects get well segmented. Larger scale parameter allows merging of more pixels

and subsequently larger objects, and vice versa.

The criterion for homogeneity is combination of spectral components (colour) and shape (compactness
and smoothness) all known as composition of homogeneity (Figure 14). The sum of these user defined
weight parameters i.e. shape-colour and compactness-smoothness is 1. The value for shape determines the
weight between shape and colour, similarly value for compactness determines the weight between
compactness and smoothness (Kavzoglu & Yildiz, 2014).
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Figure 14: Multi-resolution concepts flow diagram (Definiens, 2012)

3.3.43. ESP Tool for Estimation of Scale Parameter

With increasing applicability of OBIA to extract meaningful information and its subject of identifying
optimal scale parameter, ESP tool is developed as a technique to estimate appropriate scale parameter of
image segmentation (Dragut et al., 2010). The tool works in bottom up approach and iteratively produces
image objects and calculate rate of change of local variance (ROC-LV) at multiple scale levels. It plots
ROC-LV against scale values where it shows peaks of multiple scales implying the suitable level at which
the image can be segmented properly. Figure 15: shows the ESP tool for estimation of scale parameter.

ESP - Estimation of Scale Parameter

[—o— Local Variance —O— Rate of Change ]

Local Variance
o
Rate of Change

Scale

Figure 15: ESP tool for determining scale parameter (Definiens, 2012).

3.3.44. Masking Out of Shadow, Water Bodies and Bare Areas

Due to nature of high resolution images and viewing angle, shadow appear in most parts of the image. In
the carly phase of segmentation shadows were separated from trees and masked out using mean
brightness value. An assumption is made that shadows have lower mean brightness than trees. A
considerable part of the study area is covered by water bodies, bare areas and by the road in the southern
part of the study area. Therefore, masking these non-vegetated parts of the image was needed as part of
segmentation process. While developing a rule set, the reflectance value of the objects on different bands
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were checked. Among the image bands, near infrared was weighted as more important than the other
bands so as to achieve maximum spectral information of trees.

In masking out the water bodies, mean reflectance value of near infrared band was preferred as trees have
distinct reflectance value in this band. In this case pixels with high reflectance value in near infrared band
were considered as trees and with lower reflectance (<50 in this study) of the same band were masked out
as water body. On the other hand bare areas including the road were masked by updating the range in
mean reflectance value of red band. Mean reflectance greater than 192 was a suitable value to mask out

bare areas.

3.3.45. Watershed Transformation

In segmenting dense tropical forest with overlapping tree crowns, the watershed transformation algorithm
is widely used to separate the intermingling tree crowns into individual tree crowns on the basis of splitting
threshold. The splitting threshold is set on the basis of average tree crow width measured in the field and
expert knowledge. The algorithm considers the image as an inverted topographic surface (Figure 16). In an
inverted image, the distance of each pixel in an image object to its border becomes overturned distance.
This means the local maxima in the original image becomes local minima in the inverted image (Definiens,
2012). The inverted image looks like watershed catchment where the local minima become punched holes
and the local maxima a watershed lines. In between the local maxima and minima appears the watershed
basins which are corresponding tree crown in the original image.

Once water is introduced in the system, each valley
collects water from the local minima until water splits
in to the neighbouring valley (Wang et al., 2004). Each
valley is surrounded by watershed lines separating the
whole area in to several catchment basins and creates

Intensity

suitable boundaries. Therefore, in time of applying

watershed transformation to the forest, tree clumps are |
treated as the catchments and under flooding water Local minima
assumption, the trees (valley) touch each other and /

then those trees are separated into individual trees.

X axis
Figure 16: Ilustration of watershed transformation (Beucher, 1992)

3.3.4.6. Morphology

Morphology is an operation used for smoothing image objects, in this case tree crown. The algorithm has
two possibilities, namely open and close image objects. Open image object operation eliminates pixels
which are isolated from an image objects to have more regular shape, whilst close image object add
surrounding pixels to an image object to fill small gaps resulting from e.g. shadow effect. Furthermore the
circular and square mask options in morphology are the base for structuring image objects. Since a tree
crown is approximately circular, circular mask and close image object was applied to give the appropriate
shape.

3.3.47. Removal of Undesirable Objects

After the above mentioned operations of segmentation procedure, removal of undesirable objects was
performed. This process was aimed to eliminate smaller and elongated segments on the basis of area of
pixels and roundness values to produce more smoothed tree crowns. In this study, tiny segments with pixel
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area of less than 16 were removed since they hardly can be detected as tree crowns. In addition to this,
elongated segments which are unlikely to be tree crowns were removed.

3.3.5. Segmentation Validation

Validation of automatic image segmentation was carried out mainly to evaluate its degree of fitness relative
to that of known objects. Validation of segmentation is related to quality of data (noise, spatial and spectral
resolution) and optimal customizations of parameter settings (Moller et al., 2007) which determines
matching of segmentation results on target objects. Accuracy assessment of segmentation can be achieved
in different ways. However, it basically considers the topological and geometrical relationships of two
matching objects (Moller et al., 2007). Topological relationships of objects consider their ‘containment” and
‘overlap’ while; geometric relationships of objects is ascertained by the comparison of object positions.

The approach developed by Moller et al. (2007) assess accuracy of automatic segmentation based on relative
area in reference to manually digitized polygons. In this way, a best scote is given if the manually digitized
reference polygons are fully enclosed by automatic segments. At least 50% overlap of reference and
automatic segments is considered as acceptable (Zhan, 2005). Meanwhile matching of segments take size,
shape and position into account as completeness and cotrectness (Zhan et al., 2005).

Variation in matching of segmented objects with their reference objects is demonstrated in Figure 17. The
orange part of the polygon is matching well between automatic segment and its ground truth reference
polygon; green part is the region in segmented object but not explained by its reference whereas blue part is
a region in reference object but not explained by segmented object. In this case, (a) Indicates the match
between reference polygon and automatic segment is more than 50%; (b) matching of both objects in size
and shape but not location and in (c) and (d) the position of reference polygon and automatic segments
matched but with variation in spatial extent (Zhan et al., 2005).

(8‘ (b) ' (c) . (d) .

Figure 17: Variation in matching of polygons (Zhan et al., 2005)

On the other hand, the segmentation accuracy assessment developed by Clinton et al. (2010) basis on
geometric extent of automatic segments with reference polygons and quantify the accuracy in terms of over
and under segmentation. Over segmentation and under segmentation are explained by Clinton et al. (2010)
as follows (Equation 1 and 2)

area (xi N yj i
. ( I vieyi e Equation 1
area (xi)
area (xinyj i
IS S AR = 1 ( .YI GLEYE e Equation 2
area (yi)
Where:  xi is reference object and yj is its corresponding segmented object.

The value of segmentation is explained in terms of distance index (D), means ‘goodness of fit” which is a
combination of over and under segmentation. The D value of segmentation ranges from 0 to 1, where 0
indicates perfect match between reference and segmented objects and 1 is minimum mismatch. Goodness
of fit of segmentation is calculated as in Equation 3.
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3.3.6.  Point Cloud Data Analysis

Processing of point cloud data was done using RiISCANPRO software provided by RIEGL. RiSCANPRO
is companion software for 3-D terrestrial laser scanner systems. The data acquired by the system is
organized and stored in RISCANPRO’s project structure. The entire data includes scans, digital images,
GPS data, coordinates of tie points and all transformation matrices used to transform the multiple scan in
to well-defined common coordinate system. In addition to this, the software provides several functions for
data processing. The details of the processing steps done in the study are presented in the sub-sections
below.

3.3.6.1. Registration

Registration of point cloud data refers to the adjustment of scans by integrating local patterns into common
reference (Chekole, 2014). The first scan was taken in the centre of the plot and was used as a common
reference for overlapping the objects that exists in multiple scans of the same scene. Registration can be
done in two ways (Bienert & Maas, 2008): marker free and marker based registration. Future based (marker
free) registration method uses an extracted feature such as edges, planes or points as a base for registration
while, Iterative Closest Point (ICP) apply an algorithm to iteratively register two overlapping cloud points
on the basis of their minimum Euclidean distance. In case of marker based, reflective targets (tie points or
markers) must be placed with in the plot for later to be recognized by the user as corresponding points of
registration. In this case the identified tie points placed around central scan were used as common reference
to match the multiple scan positions in this study.

In some cases multiple scans could intersect rather than merging around the stem resulting in smaller tree
stem or may not meet well, hence leading in larger stem than the actual. As recommended by Hopkinson
(2004), these effects can be reduced by using more tie points. Similarly the study by Bienert & Maas (2008)
achieved best alignment of point cloud from multiple scans using nine tie points than four. This study
followed marker based registration approach using 16 tie points in every plot and merged multiple scans to
a common reference which is the scan taken from the centre. Marker based registration is precise (Bienert
& Maas, 2008) however, placing tie points throughout the scanning area is time consuming,

RiSCANPRO program uses three different coordinate systems, i.e. Scanner’s own Coordinates System
(SOCS), Project Coordinate System (PRCS) and Global Coordinate System. SOCS is scannet’s own local
coordinate system (Cartesian x, y, z coordinates) delivered to the raw data. While PRCS is a user defined
coordinate system such as coordinate system at the scan site. In case of GLCS, the coordinate system is
embedded usually form externally recorded coordinates. During registration tie points were needed to
convert the local coordinate system of multiple scans, (valid for one scan) to global coordinate system,
(valid for all scans) (Seidel, 2011). Coordinate of minimum three tie points visible at least from two
different scans were identified as corresponding points (control points) of linking the coordinate of
multiple scans to the centre. This means, all the multiple scans are transformed to the coordinate system of
central scan as a common reference with global coordinate system which is imported to the project system
which is externally collected from total station.

3.3.6.2. Plot Extraction

The scanned point cloud data includes large areas that are not of interest. Thus trees with in circular plot of
12.62 m radius (500m?) or more in some plots with higher slope (according to field records) were filtered
since these were the target of the study. The points within the range of distance were selected using the
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range function in the selection mode of RiISCANPRO. This was mainly done to determine the area of
interest and save processing time by excluding unwanted points.

3.3.6.3. Individual Tree Detection

Each measured tree in the plot was tagged with a number as unique identifier in the field. Identification of
individual trees with in the point cloud was done manually. Here an assumption was taken that a tree stem
appear as a distinct and enclosed circle of points (from the top view) (Hopkinson et al., 2004) which is
distant from adjacent stem and continue several meters up. In this way an individual tree stem is identified
from the proximate point clouds related to the ground and foliage. Unavoidable natural situations such as
splitting tree stem and closeness of trees’ stem were possible. Identification of individual tree was done in

the reflectance linear scale of selection view.

3.3.6.4. Individual Tree Extraction

Selection of associated point clouds of an individual tree were performed in the viewer mode window of
RiSCANPRO. The smallest crown diameter of tree measured from the field was used to set radius
horizontally around the point cloud associated with individual tree. By visual inspection, debris, foliage,
parts of neighbouring trees were removed in successive steps manually. In the higher part of the tree,
spacing between points increase thus, in some cases separating point clouds of crown associated with
target tree from neighbouring trees was difficult. Therefore, minimum horizontal distance along the dense
enclosed circle of tree stem was taken on the upper part of the trees since crown size was not the target of
the study. In this way recognized trees were sliced and saved as a polydata for measurements.

>3
o

3.3.6.5. Tree Height Measurement
Every extracted single tree in the polydata was

exported to ASCII file format. Then tree height was

calculated as a difference of the highest and lowest b;
point cloud in Z-value (Figure 18). g S
=g
Figure 18: Determination of tree height (Bienert et al., 2006) 2

3.3.6.6. DBH Measurement

For every single tree diameter at breast height was determined at
1.30 m from the lowest identified point (Figure 19). Measurement §

FEONRS

of diameter at breast high was done manually using point to point —»DBH
measurement. In the viewer mode window of RiISCANPRO, the
tree stem at 1.30 m is selected as different colour and zoomed in for

enhanced visibility of points. The measurement tool reads every x,

STy,
=22 s
s R gl

y, z value of the points and measurements were taken from point to

point along the horizontal distance of the stem as DBH.
Figure 19: Determination of DBH.
Modified from (Bienert et al., 2006)

3.3.6.7. Comparison of DBH Measured From Field and TLS

The correlation analysis of extracted height and DBH from TLS and measured from field was carried out.
This was aimed to assess the significance of the relationship between these two measurements. The analysis
of significance test was done using paired t-test and F-test in Microsoft Excel 2010.
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3.3.7.  AGB and Carbon Stock Calculation

Appling allometric equations is most common method of computing above ground biomass (Ketterings et
al., 2001) since it allow estimation of vast forest areas without distraction of forests. Hence, catbon stock
is calculated using the conversion factor that accounts 0.47 % (IPCC, 2007) of entire above ground dry
biomass. Nevertheless choosing appropriate allometric equation requires careful consideration of their
suitability. There ate several allometric equations developed for estimation of biomass in tropical forests.
Ketterings et al. (2001) and Basuki et al. (2009) developed local allometric equations in estimating above
ground biomass of forests in Indonesia. However local or regional allometric equations showed lower
performance as compare to generic models (Rutishauser et al., 2013). In tropical rainforest which comprise
more than 300 species, species-wise allometric equations are not necessatily appropriate to generate reliable
estimates of aboveground biomass (Gibbs et al., 2007). Appling generic allometric equations stratified by
ecological zones increase precision of estimates since the equations tend to be established on a larger
number of trees and include wider range of DBH (IPCC, 2007; Gibbs et al., 2007; Chave et al., 2005;
Brown, 2002). The widely used generic equation developed by Chave et al. (2005) is recommended by
IPCC guidelines in terms of REDD+ for estimating above ground biomass of moist tropical forests with
around 2000 mm of rainfall. Thus the generic allometric equation developed by Chave et al. (2005)
(equation 4) was used since the study area is located in a similar environment. The equation considered
both height and DBH with wood density of trees which varies among species.

AGB = 0.0509 x pD*H .........cooiiiiiii Equation 4

Where,

AGB: above ground biomass (kg);

p: Wood specific gravity (gem3);

D: diameter at breast height (DBH) (cm); and
H: tree height (m)

Using the conversion factor, the calculated AGB was converted to carbon stock (Equation 5).

C=B*CF .. Equation 5

Where,

C: carbon stock (MgC)

B: dry biomass

CF: carbon fraction of biomass (0.47)

3.3.8. Correlation Analysis

Prior to model development, correlation analysis of variables is an important and required in scientific
research. Thus it was carried out for both data extracted from TLS and satellite image. To determine the
relationship between variables, a scatter diagram was made. DBH and height from TLS were plotted
against CPA extracted from image. Similatly the relationship of these variables and observed (calculated)
carbon was illustrated. Coefficient of determination which indicates rate of variation in one variable as a
result of change in another variable was computed. Regression analysis of response and explanatory
variables was done. Based on that, a model was developed and validated. Paired t-test was used to analyse
mean difference of DBH and height measured from TLS and manually from field. Similatly the established
relationship between CPA and DBH, height from TLS was used to estimate DBH and height as possible
approach to estimate carbon stock. The estimated DBH and height was compared with field measured
DBH and height.
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3.3.9. Regression Analysis and Validation of Model

Regression analysis was performed mainly to inspect the relationship of dependent and independent
variables, determining an expected change in the independent variable as a result of change in the
dependent variable (Husch et al., 2003). After visual investigation of data distribution with scatter plot and
box plot, some outliers were removed as required to establish robust model prior to regression (Mora et al.,
2010). Thus non-linear relationship was established between CPA and carbon to develop a regression
model. In this case CPA segmented from image was considered as independent and calculated carbon as
dependent. The total number of trees recognized in TLS point cloud data and recognized in the image was
selected for model development and validation. Thus out of 202 trees, only 71 were used to develop the
model. The developed model was then validated with independent test data set of 25 observations. The
observed and predicted carbon was compared to determine the coefficient of determination (R?) of model
validation. Root mean square error (RMSE) was also calculated to assess model petformance. RMSE
illustrate the variation between observed values of carbon and predicted by the model. It is expressed in
percentage as the ratio of RMSE and average observed carbon. Equation 6 shows the equation used to
calculate RMSE.

RMSE = \ls'g BCP = C0)2.  oooveveeeeeeee e Equation 6

Where,

Cp: Predicted carbon

Co: Observed carbon

n: Number of observations

3.3.10. Mapping AGB and Carbon Stock

The validated model was applied to estimate AGB and carbon of the whole study atea; hence AGB/carbon
stock map was generated to display the disttibution of AGB/catbon in the study area using ArcGIS.
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4. RESULTS

41.  Image Segmentation

Automatic image segmentation of pan-sharpened image was performed using multi-resolution
segmentation. As part of the process, several procedures were executed to create appropriate image objects
representing real individual tree crowns.

4.2. Estimation of Scale Parameter

Estimation of Scale Parameter (ESP) tool was embedded to eCognition Developer 9.0.2. The tool was
applied to find the most suitable scale parameter. Higher peaks in ROC-LV indicate the appropriate
scales at which the image could be segmented. Figure 20 shows scale patameter of WotldView-2 satellite
image in which scale parameter of 24, 34 and 39 were the suitable scales.

ESP - Estimation of Scale Parameter
[=o—_Local Variance —O— Rate of Change ]

H+

30+

Local Variance
Rate of Change

Scale

Figure 20: ESP tool of WorldView-2.

4.3.  Multi-resolution Segmentation

Multi-resolution segmentation was applied with the scale parameters suggested by the ESP tool. Scale
parameter 34 and 39 showed over segmentation of tree crowns. Apart from that, different smaller scale
parameters i.e. 19, 21 were tried. However, these also tend to show under segmentation in most part of the
image. The D-value was calculated to assess the accuracy of automatic image segmentation. The over
segmentation and under segmentation value of scale 24 gave the acceptable result. Thus multi-resolution
segmentation was finally done with the 24 scale parameter and 0.8 and 0.5 values for shape and compactness
respectively. Part of the final segmented image can be seen in Figure 21.

) W

e R ?\j

Figure 21: Sample of final output of the segmented image.
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44.  Segmentation Accuracy

Accuracy assessment of segmentation was done in two ways ie. i) on the basis of 1:1 matching of
segmented and reference polygons and ii) measure of “goodness of fit”. Out of 279 manually delineated
reference polygons, only 202 were matched one to one, which is 72% of matching. The over
segmentation and under segmentation values for scale parameter 24 is 0.39 and 0.25 respectively hence,
D-value is 0.32 (68%). Therefore the average accuracy of segmentation is 70%. Table 6 shows the
summary of accuracy assessment. The results indicate that overestimation of tree crowns is greater than
under estimation from automatic image segmentation.

Table 6: Accuracy assessment of segmentation

Total reference | Total 1:1 match | Over Under D-value
polygons segmentation | segmentation
1:1 279 202
Goodness of fit 0.39 0.25 0.32
Total accuracy 72% 68%

Figure 22: shows an overly of manually delineated reference polygons indicated with pink lines and their
corresponding segments indicated with black lines.

Figure 22: Reference and segmented polygons

4.5.  Registration

Point cloud data from four different positions in every plot

Scan 1

were aligned together using a minimum of three tie points.
The coordinate of 2-D tie points pinned on the tree stem
around the central scan position were created as
corresponding points. The standard deviation of registered

point cloud data ranges between1.01cm-4.21cm. In this way
all three scan positions taken outside the plot were merged
to the coordinate of the one taken from the centre of the

plots. Figure 23 is a sample of registered points of a tree

stem.
Figure 23: Sample of registered points of a tree stem from multiple scans.
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4.6. Individual Tree Identification

Identification of an individual tree is a process of detecting points belonging to an individual tree stem
(Liang et al., 2011). Identification of individual trees from point cloud data was done with the help of
numbers tagged in the field. The tree stem was assumed as dense enclosed circular points which continue
some meters of height and are separate from adjacent stem. In this way the trees which are clearly visible
with marked number in the point cloud data were recognized as trees.

4.7. Individual Tree Extraction

The identified trees were extracted manually in RiISCANPRO. Totally 604 trees were recognized and
extracted from point cloud data. Figure 24 shows sample of manually extracted trees.

Figure 24: Sample of extracted individual trees in RISCANPRO

4.8.  Measurement of Height from Point Cloud Data

Tree height was measured as the difference between the lowest and highest point in the Z value of ASCII
file. Each extracted tree from the polydata was exported to ASCII file (Figure 25) then the lowest and
heights points were identified from the reading. Tree height of all the recognized trees (604 trees) was
measured.

A B C
4.574 3.225 9.164
4.874 3.099 9.136
5.002 3.06 9.579
5.011 3.066 9.573
5.016 3.061 9.578
4.954 2.968 9.648
4.96 2,9649 9.652
4.957 2.955 9.658
4.967 2.962 9.656
4.962 2.952 9.664
4.975 2.96 9.665
4.969 2.949 9.67
4.981 2.957 9.672
4.975 2.945 9.675
4.987 2.952 9.676
4.983 2.944 9.683

Figure 25: Tree height and Z-values (indicated with arrow) from ASCII file.
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4.9. Measurement of DBH from Point Cloud Data

Measuring DBH was done manually using point to pint in RISCANPRO software. The diameter at breast
height (DBH) was determined at 1.30 m from visually identified lowest point of Z-value. Then point to
point measurement was taken horizontally along the tree stem. Figure 26 shows the method how DBH is
determined at 1.30 m and measured.

0:A79'm

A) ®)
Figure 26: (A) Determined DBH at 1.30m and (B) Point to point measured sample of tree DBH

4.10. Descriptive statistics

A total of 32 plots were measured and recorded in field and scanned with TLS. However, measurements of
30 plots propetly scanned with TLS and measured in field were used for further analysis. A total of 698
trees were collected from these 30 plots out of which 604 (86.5%) trees were identified and measured in the
point cloud data. This means that 94 (13.4%) trees measured in the field were missed in the point cloud
data. The number of missing tress in the plots greatly varies. Some of the reasons were blocking of the
tagged number of the trees by the dense branches and limited returns (fewer number of points) from an
object related to distance from the scanner. The detailed number of observations measured both in field and
from point cloud data using TLS in each plot is given in Table 7.
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Table 7: Number of tress measured in field and extracted from Point cloud data in each plot.

Plot. | Field TLS TLS Missing | Plot. | Field TLS TLS Missing

No. recorded derived | derived | trees No records | derived | derived | trees
%) %)

1 12 12 100 - 16 26 25 96.1 1

2 19 17 89 2 17 29 23 79.3 6

3 16 12 75 4 18 13 13 100 -

4 9 9 100 19 28 25 82.1 3

5 15 15 100 - 21 25 25 100 -

6 30 14 46.6 16 22 26 25 96.1 1

7 26 18 69 8 23 30 25 83.3 5

8 22 22 100 - 24 16 15 93.75 1

9 1 9 81.2 2 25 26 21 80.7 5

10 24 20 83.3 4 26 32 24 75 8

11 29 23 79.3 6 27 24 17 70.8 7

12 29 23 79.3 6 28 22 19 86.3 3

13 28 28 100 - 30 22 21 95.4 1

14 33 32 97 1 31 35 33 94.2 2

15 18 18 100 - 32 23 22 95.6 1

Total
plots | Field records TLS derived Missed trees TLS derived (%) Missing%
30 698 604 94 86.5 13.4

A normality test of the data distribution was assessed using SPSS statistics 22. Even though Okuda et al.,
(2004) mentioned that trees with >40 m height are common in primary forests of Peninsular Malaysia, one

tree with 72.1m recorded in the field was excluded from the analysis based on our field observation

including 17 other observations as an outlier hence, observations were reduced to 586. Height and DBH

measurements from TLS were significantly different from a normal distribution, meaning that the p-value
(written as sig. on Shapiro-Wilk of the table) is much smaller than 0.05 (Table 8). As it can be visually
observed, relatively the distribution of TLS height was less skewed whilst TLS DBH is highly positively
skewed (Figure 27). Since the study was using measurements from terrestrial laser scanner, only

distribution pattern of these observations was displayed. The reader can also see distribution of field

measured height and DBH provided in Appendix 3 and 4.
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Table 8: Normality test of TLS observations

Kolmogorov-Smirnova Shapiro-Wilk

Statistic | df [ Sig. Statistic | df Sig.
TLS DBH 120 586 [3.9592E-67 | .904 586 1.295E-30
TLS height

213 586 | 2.431E-17 |.701 586 1.6233E-18

Throughout all the sample plots, 56 different tree species were identified in the study area. The most
dominant tree species occurred in the area was Sygygium spp with 16% occurrence followed by Vatica spp
and Mastixia trichotoma Blume with 15% and 10% of existence respectively. Each species of Koompassia
Malaccensis, Pimelodendron spp and Pimelodendron spp occutred with 7% of the total composition followed by
Trypanosoma spit 6% and Annonaceae 5%. The three different species in the area comprising 3% each were
Pentaspadon motley, Myristicaceae and Mallothus biaceae. Among the dominant species, the least species
identified in the area were Shorea spp with 2%. The rest of the species with less than 1% were grouped as
‘others’ consisting 16% of the figure. For better visualization the detailed distribution of the species is
displayed in a pie chart in Figure 28.

Occurence of different species "'*"“***"

M Trypanosoma sp.

16% 15% = Syzygium spp.
(]

M Pimelodendron spp.

6% m Shorea spp.

M Pimelodendron spp.

M Pentaspadon motleyi

B Myristicaceae.
Mastixia trichotoma Blume

M Mallothus biaceae

W Koompassia Malaccensis
Annonaceae.

others

Figure 28: Occurrence of different species in the study area

4.11. Relationship of DBH and Height Measured from Field and TLS

Relationship of DBH and height measured from field and extracted from point cloud data was plotted to
compare the relationship. The relationship of DBH from both measurements is linear and positive with R2
0f0.96 and correlation coefficient (1) of 0.98 (Figure 29) whereas for height is also linear with R2of 0.75
and (r) 0.85 (Figure 30). In the upper part of Figure 30 some of tree height observations especially tall trees
showed a deviation between these two measurements. Thus the relationship of field DBH and TLS DBH
has stronger linear relation than field and TLS height. The correlation of both DBH and height from field
and TLS was tested using Pearson correlation test which is found as significant (P<0.001) (Appendix 9). A
summary of both measurements is shown in Table 9.
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Figure 29: Scatter plot of field and TLS DBH
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Figure 30: Scatter plot of field and TLS height

Table 9: A) summary of DBH B) Summary of height

Statistics Field DBH | TLS DBH Statistics Field Height | TLS Height
Minimum 10.40 10 Minimum 417 4.95
Maximum 105.00 107.10 Maximum 46.00 40.25
Mean 22.87 22.30 Mean 14.50 15.04
Standard deviation | 15.75 15.70 Standard deviation | 6.8 5.84
Observation 586 586 Observations 586 586

The summary of measurements shows that there is reasonable agreement between DBH and height from
both measurements. The overall deviation of field and TLS measurements was analysed by calculating the
RMSE. For DBH there was not much tendency of under or over estimation by the scanner since the
RMSE was 2.9 cm (14.5% of mean DBH). However, in case of height measurements the RMSE was 3.3
m (20.7% of mean height). The trend of height measurement using TLS indicated a tendency to bias
estimation especially for very tall trees observed in field. Moreover significance of the relationship between
field and TLS measured DBH and height were assessed using paired t-test of 586 observations. First an F-
test was carried out to calculate and find out if there is significant difference between these two data sets.
According to the result of the P-test, relationship of both TLS derived and field measured DBH and
height was statistically significant at 95% confidence level. Assuming the two variables have equal
variances, a paired t-test was again used to assess the significance of the relationships. Results of t-test
revealed that at 95% confidence level there is no significant difference in DBH and height measured from
field and derived from TLS since t-calculated is greater than t-critical. Therefore the null hypothesis is
rejected. Table 10 is showing the result of t-test for both DBH and height.

Table 10: A) Paired t-Test of height B) Paired t-Test of DBH

Statistics Field Height | TLS Height Statistics Field DBH TLS DBH
Observations 586 586 Obsetvations 586 586

df 585 df 585

t Stat 3.45099 t Stat 4.6166518

P(T'<=t) two-tail | 1.02E-05 P(I'<=t) two-tail | 4.80E-06

t-Critical two-tail | 1.964027 t-Critical two-tail | 1.964027
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412. Plot-Wise Relationship of Field and TLS Measured DBH and Height

The deviation between field measurement and extracted from TLS was assessed for each plot (Table 11).
DBH from both measurements was highly correlated since the correlation coefficient was greater than
0.86 except that plot 6 and 31 has (r) 0.66 and 0.74 respectively. On the other hand the RMSE of the two
measurements ranges from 0.54 cm in plot 2 to 5.8 cm in plot 31.

Measurement of height from TLS and field also showed reasonable agreement in most of the plots.
Nonetheless plot 2, 3, 6 7, 11, and 31 are among the plots with lower r and R2 (T'able 11) this means, these
plots showed higher variability of height measurements. The rest of the plots have higher correlation
values (r=>0.80). The RMSE of height measurements were higher as compare to DBH. Only few of the
plots (1, 21, 22, 30, 32) has <Im mean height variation. The detail plot-wise comparison is below in Table
11.

Table 11: Plot-wise correlation analysis of field and TLS measurements of height (A) DBH (B)

A) B)

Plot. | Height | RMSE | r R2 Plot. | DBH | RMSE | r R2
No | RMSE | % No. | RMSE | %

1 093 |76 0.98 | 0.96 1 143 |67 0.98 | 0.97
2 3.1 3319 | 0.76 [ 0.58 2 0.54 | 4.6 0.91 |0.83
3 2.3 27.8 0.67 | 0.45 3 142 |81 0.98 | 0.97
4 1.3 15.8 0.86 | 0.74 4 144 |97 0.99 | 0.98
5 1.3 10.4 0.90 [ 0.81 5 1.6 9.3 0.97 | 0.95
6 314 3066 |035 |0.12 6 2.7 21 0.66 | 0.41
7 4.8 35.4 0.55 | 0.43 7 14 9.9 0.97 | 0.95
8 4.3 22.1 0.89 [ 0.80 8 2.8 126 [0.96 [0.93
9 2.3 13.4 0.96 | 0.92 9 3.3 122 1099 |0.98
10 |51 35 0.88 [ 0.78 10 |31 10.25 [ 0.99 | 0.98
11 |35 324 0.60 | 0.36 11 41 205 1093 |0.87
12 |2 15 0.94 | 0.88 12 |14 4.6 0.99 | 0.98
13 |33 23.3 0.88 | 0.79 13 |14 6 0.99 [0.98
14 |5 35.6 0.82 | 0.62 14 22 9.7 0.86 | 0.93
15 |35 23 0.80 | 0.65 15 113 6.2 0.99 | 0.98
16 |22 12.7 0.93 | 0.87 16 |14 5.2 0.99 | 0.97
17 [28 19.3 0.90 | 0.82 17 138 15 0.98 | 0.96
18 |2 14.2 0.85 | 0.83 18 |22 9.2 0.99 [0.96
19 [3 19.3 0.93 [ 0.87 19 |38 13.7 | 0.96 | 093
21 |08 5.4 0.98 | 0.96 21 |2 9.1 0.99 | 0.98
22 |08 5.9 0.99 | 0.98 22 |13 6.3 0.99 | 0.97
23 |28 18.6 0.83 | 0.69 23 |11 5 0.99 |0.93
24 1.9 13.9 0.93 | 0.86 24 |31 122|098 |0.98
25 |22 15.4 0.89 | 0.79 25 |41 16.7 | 0.97 | 0.94
26 | 1.9 11.2 0.95 [ 0.91 26 |14 5.9 0.99 | 0.98
27 |21 9.5 0.83 | 0.69 27 |3 12,6 | 0.95 | 091
28 |21 12 0.97 | 0.94 28 |3 114 098 [097
30 |05 3.8 0.99 | 0.97 30 [144 [553 [0.98 096
31 |43 31.6 0.58 | 0.33 31 |58 228 1074 | 0.56
32 |08 5.9 0.98 | 0.97 32 |15 6.6 0.98 | 0.96
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4.13. Relationshiop 0f DBH and Height Estimated From CPA and Measured From Field

DBH and height was estimated from CPA to compare the relationship with field collected DBH and
height thus if it can give reasonable carbon estimates. The correlation analysis of DBH and height
estimated from CPA was plotted against field measured DBH and height to analyse the relationship. Tree
height estimated from CPA (referred to as estimated height) was compared with field height. The resulting
R? and correlation coefficient (r) was 0.26 and 0.51 respectively (Figure 31).The estimated values of height
showed high variability as compare to field data. Similarly the correlation of DBH estimated from CPA
(referred to as estimated DBH) with field DBH was not strong with the value of R2 0.48 (Figure 32) and r
of 0.69.
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Figure 31: Scatter plot of Field and estimated height Figure 32: Scatter plot of field and estimated DBH

The significance of the relationship was assessed using paired t-test in Microsoft Excel. The result of the
test indicated that DBH and height estimated from CPA was significantly different from corresponding

field measured DBH and height since the t-calculated was smaller than t-critical. Therefore the research

concluded that CPA doesn’t give reasonable estimation of DBH and height as compare to ground truth

field data. Table 12 and13 shows the detailed result of the t-test.

Table 12: Paired t-test of estimated and field heights Table 13 Paired t-test of estimated and field DBH
Estimated Estimated

Statistics Field Height | Height Statistics Field Height | DBH
Obsetvations 586 586 Obsetvations 586 586
df 585 df 585
t Stat -1.77283 t Stat 1.485351
P(T<=t) two-tail | 0.076777 P(T<=t) two-tail | 0.137989
t-Critical two-tail | 1.964027 t-Critical two-tail | 1.964027

4.14. Model Development and Validation

The total number of trees measured in field that were recognized in the image with one to one matching
during manual delineation and identified in point cloud data were 202. Prior to model development
outliers were removed based on the visual inspection with scatter plots and box plots thus, observations
were reduced to 96. Then 71 observations from 25 different species were randomly selected for model

development and 25 independent observations for validation. The analysis of the study is based on these
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71 observations derived from TLS ie. TLS-DBH and TLS-height (hereafter referred to as DBH and
Height respectively). The descriptive statistics of the observations used for model development are
presented in Table 14.

Table 14: Summary statistics of vatiables used for model development

summary statistics Variables

DBH Height CPA
Mean 30.61 18.41 26.63
Standard deviation | 12.67 7.04 13.315
Minimum 10.2 6.9 5
maximum 66 39.83 75
Observations 71

Likewise for the 586 observations, normality test of the observations used for model development was also
performed. The result depicted the distribution of DBH and CPA is significantly different from normal
distribution (P<0.05) whereas observations of tree height were normally distributed (Z.e. P>0.05) (Table 15.
Considering the distribution of height of the whole data set (586 observations) which were neatly normal
(Figure 27), the sample data sets of all observations selected for model development were considered as
representative.

Table 15: Normality Test of DBH, height and CPA used for model development

Kolmogorov-Smirnov® Shapiro-Wilk

Statistic | df Sig. Statistic df Sig.
DBH | 136 71 |.0001" |.891 71 .0000103
Height | .065 71 |.200° 974 71 139
CPA | 128 71 [.0006 [.915 71 .000142

4.14.1. Relationship Among Independent Variables of AGB/Carbon Estimation

The strength of relationship among independent variables of carbon estimation was examined prior to
model development. The relationship between DBH from TLS (hereafter referred to as DBH on the
scatter plots) and CPA is non-linear with R2 of 0.79 (Figure 33). On the other hand height from TLS
(hereafter referred to as height on the scatter plots) and CPA is linear with R? of 0.68 (Figure 34).
Relationship of DBH and CPA was close to linear. The relationship of both DBH and height extracted
from TLS is also non-linear with R2 0.50. More over the Pearson correlation coefficient of the variable
CPA and DBH, CPA and height as well as DBH and height were 0.88, 0.81 and 0.71 respectively which is
found to be highly significant (P<0.001) in all the relationships (Table 16).
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Figure 33: Scatter plot of TLS DBH and CPA

Table 16: Correlation test of DBH, CPA, and height

Figure 34: Scatter plot of TLS height and CPA

DBH Height |CPA
DBH Pearson Correlation 1 716 886~
Sig. (2-tailed) <.0001 |<.0001
N 71 71 71
Height Pearson Correlation 716" 1 816
Sig. (2-tailed) .<000 <.0001
N 71 71 71

4.14.2. Graphical Analysis of Relationship between DBH, Height and Carbon

The study used measurements of DBH and height from TLS for analysis. After deriving the measurements

of DBH and height from TLS, above ground biomass/catbon was calculated using an allomettic equation

(equation 4). Wood density of some species was identified from publications (King et al., 2005; Basuki et

al,, 2009) while average wood density of the identified species was assigned for the species missing from

these publications. Correlation analysis of the independent vatiables used to calculate AGB/carbon with

the dependent variable which is carbon was evaluated using Pearson correlation analysis. There is a strong
positive relationship between DBH and carbon with R2 0.92 (Figure 35) whereas R2with height is only 0.74
(Figure 36). These results indicates that 92% and 74% of carbon was explained by DBH and height
respectively extracted from TLS. Comparatively extracted tree height has lower relation with calculated

carbon.
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Figure 35: Scatter plot of DBH and carbon
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Figure 36: Scatter plot of height and carbon

Significance test of correlation between DBH-carbon and height-carbon was done and was found to be
significant (P<0.001). Correlation of 0.96 and 0.80 were obtained between carbon-DBH and carbon-height

respectively (Table 17).

Table 17: Correlation test of independent and dependent variables

DBH Height Carbon
DBH Pearson Correlation | 1 716 963
Sig. (2-tailed) <.0001 <.0001
N 71 71 71
Pearson Correlation |.716~ 1 .803"
Height Sig. (2-tailed) <.000 <.0001
N 71 71 71

4.14.3. Model Development

4.14.3.1. Relationship between CPA and Carbon

Developing a model was done in two ways: one was a multiple regression model developed using TLS

derived height and CPA as independent variable and the other was using only segmented CPA. This was

mainly done to evaluate the combined effect of height derived from TLS and CPA on improved estimates

of carbon. Prior to that, the correlation of segmented CPA and observed carbon was established. The

relationship between CPA and carbon was non-linear with a correlation coefficient of 0.91 and R2=0.80

(Figure 37). The significance of the relation was also verified at 95% confidence level with one-way
ANOVA (Table 19). Correlation of height and carbon as well as CPA and height was presented in section
4.13.2 and 4.13.1 respectively.
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Figure 37: Scatter plot of CPA and carbon

4.14.3.2. Modelling Carbon from CPA and Height (Multiple Regression)

To check multi-collinearity between the two explanatory variables of multiple regression (i.e. CPA and
height), a collinearity test was executed where variance inflation factor (VIF) was less than 10 (3.167) and
no sign of multi-collinearity was found (Appendix 2). As mentioned in section 4.13, CPA data was not
normally distributed thus log transformation was applied using natural logarithm (In). Data transformation
was aimed to normalize the distribution and fitting the data to the model. Hence, a multiple regression
model of log-transformed data was established between height and CPA as explanatory variables and
calculated carbon as response variable using 71 observations (Table 18). The model resulted in values of
0.85 and 0.92 for the coefficient of determination and cortelation coefficient respectively. This
demonstrates that the 85% of observed (calculated) carbon was in agreement with CPA and height. One-
way ANOVA was employed to calculate the significance of R? of the model. The tresult shows that the
model is found as significant. A summary of the regression analysis is presented in Table 18.

Table 18: Regression analysis of CPA, height and carbon

Coefficients Standard Error t Stat P-value
Intercept -520.6854368 61.16917136 8.51222 2.58E-12
TLS Height 8.913118647 5.495862771 1.621787 0.009477
CPA 28.11780744 2.907290809 9.671481 2.1E-14
ANOVA
Regression Statistics
df SS MS F Significance F
Regression 2 12797397.69 6398699 193.3689 8.74E-29 Multiple R 0926245345
Residual 68  2250162.725 33090.63 R Square 0.857930439
Total 70 15047560.42 Adj. R Square 0.853751923
Standard Error 177.3083181

A model was developed to estimate carbon stock based on the regression results (Equation 7)

Ln Carbon= -520.68+8.91* LnHeigh+28.11* Ln CPA.............ccovenininnnn. Equation 7
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4.14.3.3. Validation of Multiple Regression Model

Multiple regression model was validated by plotting the carbon predicted from CPA and height against the
observed carbon, using 25 independent data sets. The resulting coefficient of determination was 0.87 (R2=
0.87) (Figure 38). This means that about 87% of carbon calculated from TLS height and CPA was
explained by the developed model. To check the error of estimation, RMSE of the validated model was
also calculated to be 26.6%.
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Figure 38: Scatter plot of multiple regression model validation

Even though the accuracy of multiple regression model is acceptable, the possibility of estimating carbon
stock is limited to the sample plots scanned with the sensor. In other words it is not possible to have
carbon estimation of the whole study area and map the distribution since height data is not obtainable with
terrestrial laser scanner. Therefore the study aimed to develop a second model for estimating and mapping

carbon stock in the study area using only crown projection atea (CPA) available for whole area.

4.14.3.4. Modelling Carbon from CPA (Non-Linear Model)

Regression analysis was carried out using CPA only resulting a coefficient of determination of 0.80
(R2=0.80). Since it is more relevant with higher R2 the non-linear model 7ze. quadratic model was preferred
than simple linear model. The correlation coefficient of the CPA and carbon was also high (0.84) indicating
strong correlation between the variables. According to the one-way ANOVA, the model is significant at
95% significance level. The summary of regression of the developed model for carbon stock estimation in
the study area is in Table 19.

Table 19: Regression analysis of CPA and Carbon

Coefficients Standard Error t Stat P-value
Intercept -326.8605298 71.08605815 4.5981 1.91E-05
CPA 20.76154776 4.744808143 4.375635 4.27E-05
CPAN2 0.196555196 0.078046629 2.518433 0.014146

ANOVA - .
Regression Statistics
df SS MS F Significance F ol
Regression 2 12909760.12 6454880  205.3194 153E29 MultipleR 0.849064367
Residual 68 2137800.297 31438.24 R Square 0.80467931
Total 70 15047560.42 Adj. R Square 0.802428286
Standard Error 184.0446332
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Based on the summary obtained from regression analysis (Table 19), a model was developed to estimate
carbon stock of the study area (Equation 8).

Ln Carbon= -326.86+20.76*/nCPA+0.19*%InCPAM2 .....ccoevvviniinininnninnns Equation 8

4.14.3.5. Validation of Non-Linear Model

The non-linear model was validated with observed and predicted carbon plotted against each other using
the same data set as for the multiple regression model (25 independent observations). The depicted
coefficient of determination was 0.84 (R2=0.84) (Figure 39). This indicates that about 84% of carbon
calculated from TLS data was explained by the developed model. The calculated RMSE of the model was
29.3%.
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Figure 39: Scatter plot of non-linear model validation.

4.14.4. Carbon Stock Mapping

The non-linear model for CPA and carbon gave reasonable results. Therefore, was used to estimate the
amount and map the distribution of carbon stock in the study area. The estimated above ground biomass
in the area was 1,355,574.2 Mg within around 3,442 hectare of area covered by the study area (part of the
whole BRFC of 117,500 ha). This means the amount of AGB was estimated to be 393.82 Mg per hectare.
Above ground biomass was converted to carbon stock using conversion factor (0.47). Thus the total
amount of carbon in the area was estimated to be 637,119.87 Mg. Therefore the estimated amount of
carbon per hectare in the study area was 185 Mg ha-l. The quantity of estimated carbon ranges from less
than 500Kg/tree to greater than 2000kg/tree: whete most of the trees had <500kg whilst few of the tress
had >2000kg of carbon per tree. The variation in carbon amount was inspected, and it was concluded that
the carbon per tree is more related with the size of CPA. Most of the trees with mote than 2000kg are
those with large CPA. The carbon stock map of the study area is shown in Figure 40.
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Figure 40: Carbon stock map of the study area
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5. DISCUSSION

5.1. Distribution of TLS Data

The distribution of 586 tree heights and diameters extracted from point cloud data showed high skewness
value for diameter at breast height whereas neatly a normal distribution for height. Skewness indicates lack
of symmetry of data distribution as it tilts to the left or right of the centre points (Geer & Wegkamp, 2012).
In a probability disttibution, the data can be positively (long tail in the positive direction) or negatively (long
tail in the negative direction) skewed (Doane & Seward, 2011) (Figure 41). In case of our study the variables
were skewed positively. The possible reasons for high skewness of DBH could be that measurements were
taken for trees with a DBH greater than 10 cm (since these with less than 10 cm add insignificant amount of
biomass) and if trees with less than 10 cm would have measured, the distribution would be close to normal.
More over in the naturally regenerating, protected and old tropical forest of the study area, DBH is expected
to have wider distribution as mentioned by Karna, (2012). In case of height, even though it is not highly
skewed, it portrayed variation in distribution. As indicated by Okuda et al. (2004) trees that are taller than
>40m are common in tropical rainforest of peninsula Malaysia indicating wider distribution in height as well.

// \‘ // \.
; \ \ .
Negative skewness \ f Positive skewness

,/ \ / \\

— A {

— -

Figure 41: Graph of positive and negative data skewness (Doane & Seward, 2011)

5.2.  Segmentation Accuracy

The accuracy of individual tree crown segmentation using multi-resolution approach was evaluated in two
ways. It resulted in 72 % of accuracy using one to one matching of manually delineated polygon as a
reference to automatic segments by the software. The overlap of segmented and reference polygons was
considered as one to one if it is more than 50% as stated by Zhan et al. (2005). Whereas 68% of accuracy
was obtained using calculated “goodness of fit” measure. Hence, the overall accuracy of segmentation is
70%, which implies a segmentation error of 30%.

The segmentation accuracy achieved in this study is 72% using 1:1. This is lower than the study by Wang et
al. (2004) and Koch et al. (2006) which obtained 75.6% and 87.3% in detecting tree crown of coniferous and
deciduous forests respectively and Baral (2011) who got 74.4% of segmentation accuracy in tropical forest
of Nepal using Worldvew-2. Similarly Erikson, (2011) achieved 73% of 1:1 correct correspondence of
polygons in naturally generating mixed forest using aerial image. Our study obtained higher accuracy than
that of Ke & Quackenbush (2008) who achieved 61.3% of segmentation accuracy using region growing
algorithm in mixed forest. While making comparisons, the difference in conditions under which the study is
taken, varying spatial and spectral resolution of images, species and forest type are among the most
important factors to be considered (Brandtberg & Walter, 1998).

The study applied multi-resolution segmentation of tropical rain forest with complex canopy structure and
species composition of different ages. In such dense natural forest, intermingling multi-layers of canopy and
variation of illumination within or between tree crowns are common (Figure 42)
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. Therefore, segmentation approaches which consider the top of tree crown as the seed with brightest
spectral value (Culvenor, 2002; Wang et al., 2004) are not suitable. Because, unlike coniferous trees crown
with pointed top and most possibly to have one tree top, in the tropical forests it is possible to have one
tree top characterized by large multiple branches with a non-conical shape of tree crown (Figure 41).
Rather multi-resolution segmentation is most applicable approach as it uses spatial and spectral
homogeneity of pixels to merge in to image object (tree crown). Moreover multi-resolution segmentation is
appropriate algorithm to segment heterogeneous forests (Kim et al., 2008) and is proved by Lamonaca et
al. (2008) as a powerful method to extract meaningful information from high resolution images with
heterogeneous forest attributes.

Figure 42: Multi-layers of canopy in tropical rainforest

(Source: http://www.stri.si.edu/english/research/facilities / terrestrial / cranes / forest_canopies.php)

In multi-resolution segmentation, the size and homogeneity of image objects is determined by the scale
parameter (Definiens, 2012). As categorized by Benz et al. (2004) scale parameter can be fine, medium and
course. Course scale is practical for extracting forests and open land scape and medium scale is used for
group of aggregated buildings to several medium scale settlements. Whereas fine scale is suitable for
segmenting smaller image objects such as trees, buildings and roads. Since this study was aimed at
segmenting individual tree crown and the image includes a road with some small paths, a fine scale of 24
scale parameter resulted in an optimum fit of automated segments to those of manually delineated
reference objects with 0.25 and 0.38 under- and over-segmentation. Over-segmentation is relatively higher
than under-segmentation in this study. This means that the automated segments exceed the area of
reference polygons. Over-segmentation of image is associated to the presence of noise resulting over
detection of boundaries by morphological gradient (Catleer et al, 2005). Over-segmentation can be
avoided by applying filtering to smooth and locally homogenize the gradients within a crown (Ke &
Quackenbush, 2011; Carleer et al., 2005). Therefore, a low pass 5%5 filter was applied in this study to
minimize over-segmentation.
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5.3. Processing Point Cloud Data

5.3.1.  Multiple Scan

Measuring forest parameters using TLS involves either a multiple or a single scan. In a single scan, trees are
scanned from a single position usually from the centre providing limited details from one side view of
objects. The advantage of single scan is fast and easy thus, saves scan time during field work and since
there is less number of points, it also take less time of data processing (Bienert et al., 2006). Whereas in a
multi-scan, the scanner acquire full coverage of the tree surface from several scan positions (in and out of
the centre). Registration of multiple scans was done to merge the points with different position into
common position (global coordinate) using artificial objects as a reference targets (section 3.3.6.1). Multiple
scan is better than single scan because it provide a full portrait of tree parameter from merged point clouds
(Liang, 2013)(Figure 43). Several researches (Huang et al., 2008; Hopkinson et al., 2004) used multiple scan
approach in the field of forestry.

Figure 43: Sample of multiple scan representing 3-D scene of objects.

5.3.2.  Tree Height Measurement

Measuring tree height directly from Terrestrial Laser
Scanner is very difficult in dense sample plots of tropical
rainforest. The problem lies in capturing tree tops in mostly
overlapped canopy and shadowed by the lower canopy
layers and branches which does not allow the sensor to
detect the top part of the tree or result in low density of
points in the upper part of the tree which introduce errors
(Figure 44). Particularly in some very tall species of trees
having wider crown, the influence of underestimation by
TLS was observed.

Figure 44: Less density of points on top part of the tress

47



APPLICATION OF VERY HIGH RESOLUTION IMAGERY AND TERRESTRIAL LASER SCANNING FOR ESTIMATING CARBON STOCK IN TROPICAL RAIN FOREST OF
ROYAL BELUM, MALAYSIA

&

Figure 45: Dense canopies resulting difficulties to capture actual tree height with TLS.

Depending on the tree height, forest density and slope of the plot the difference in tree height between
field and TLS varied from 0.5 to 5.1 m among the plots (Table 11). The average RMSE of tree height
measurements of 586 trees is 3.3 m (20.7% of mean tree height). The study by Hopkinson et al. (2004)
experienced similar problems and reported around 1.5m underestimation of tree height by the sensor
applying multiple scan approach. The variability of heights in our study is higher than that of Hopkinson et
al. (2004). However, the two studies are different in two ways. Firstly, Hopkinson et al., (2004) carried out
the research in both deciduous and red pine plantations with no understory and effect of canopy layers as
compate to our study. Secondly, his study compared only 9 trees in two plots. Furthermore, Maas et al.
(2008) found a RMSE of 4.55m when comparing field measured and automatically derived tree heights
using both multiple and single scan approach of 4 plots (9 tress).

In field height measurement as well, there was an obstruction of the top or bottom view by the foliage of
the trees, Liana (climber), palm and Bamboo etc. (Figure 46) and other several causes such as misreading of
actual tree height in case of tilted trees (Figure 46, B). In addition to this, using conventional tools the
assumption of geometry in height measurement is right angle triangle which may not be practical in
undulating terrain of the study area (Figure 46 A). These can systematically introduce error of over or
under estimation of field height measurements.
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B A Error
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actual tree
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Figure46: Errors in measuring actual tree height. ] ~—

(Soutrce: http:/ /wiki.awf.forst.uni-goettingen.de/ wiki/index.php/Tree_height)
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Figure47: Dense undergrowth of trees blocking the view.

5.3.3. DBH Measurement

Diameter at breast height is one of the most important tree parameters in forest inventory of biomass
estimates since it explains about 95% of variation in aboveground biomass/carbon (Brown, 2002). One of
the most important steps of measuring DBH in the field is to determine the diameter at breast height of
the trees at 1.30 m. However, determining DBH exactly at 1.30 m from the tree base is not always
practical. This is due to: firstly, different person determines the diameter at breast height of the tree based
on his or her own height. Secondly, the base of a tree may not be levelled always in this case the DBH of
the tree will be more or less than1.30 m. Furthermore, there is variation in precision of DBH measured
with different instruments such as diameter tape and calliper. These factors influence the measurement of
DBH to be subjective. The above mentioned etrors are reduced in case of TLS, because the subjective
errors such as different measuring person and variation in measuring device are excluded (Simonse et al.,
2003). In addition to this manual errors involved in reading and recording are eliminated. The advantage
of using TLS on minimizing subjective errors is discussed by Simonse et al. (2003).

The correlation of field measured and TLS derive DBH was analysed by calculating the coefficient of
determination which was found to be highly correlated. The variability of the measurements was assessed
treating each plot separately. The variation ranges between 0.54 cm to 5.8 cm and on average the overall
deviation of both measurements was 2.9 cm (14.5%of mean DBH).

5.4.  Relationship Among Independent Variables for Modeling AGB/Carbon Stock Estimation

In natural broadleaved deciduous forests, the relationship of DBH and CPA exists is non-linear since the
rate of tree stem keeps growing while CPA stabilizes with age due to the intense competition among
neighbouring tree (Shimano, 1997). Hemery et al. (2005) pointed out that relationship between CPA and
DBH is close to linear with trees 20 cm-50 c¢m in species of broadleaved trees. This is practical in our
study, due to the fact that most of observations were with DBH less than 50cm (Figure 27) and the mean
DBH of trees were 22.30 cm (Table 9), the relationship between DBH and CPA was found to be non-
linear but very close to linear with R2 value of 0.79. The study by Shah, (2011) derived higher and a linear
correlation of 0.83 for Shorea rubusta in Nepal. In addition to this, the study carried out in deciduous and
coniferous forests by Shimano, (1997) obtained non-linear relationship of R2 0.93 and 0.85 between DBH
and CPA measured in the field for deciduous and coniferous trees.
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On the other hand the relationship of tree height and DBH was also non-linear with R2 0.50 which is not
high. In areas with complex forest conditions such as species diversity, slope, aspect and altitude, this
complexity result in inaccuracy and a complex relationship of height and DBH (Temesgen et al., 2005;
Fang & Bailey, 1998). The observations used to develop the model were from 25 different species which
represent the whole data set. In such diverse and dense forest the growth characteristic of tree species
varies. Some species can advance their growth in height more rapidly while others tend to maintain their
development in DBH or vice versa depending on the species. This could tend to lower the relationship.
Likewise, the relationship of CPA and height is linear with 0.68 coefficient of determination. The crown
size increased as height of tree increases in a linear fashion. The ratio of crown diameter to tree height is
affected by competition measures (e.g. density, crown competition), tree size (e.g. age) and site (e.g. slope,
elevation, aspect) (Temesgen et al., 2005).

5.5.  Model Development

5.5.1.  Correlation Analysis between DBH- Carbon and Height-Carbon

A correlation coefficient of variables >0.7 or <-0.7 is considered to indicate a strong relationship (Clemens
et al., 2008). Emphasizing on coefficient of determination that exist between empirical relationship of
variables, correlation of independent variables (DBH, height) and dependent variable (carbon) were
analysed. The relationships were all non-linear and significant (P<0.001). The result showed that the
variable DBH was highly correlated with carbon (R2= 0.92). The result is comparable with the value of
R2=0.98, obtained by Ilyas (2013). In fact, this result may be expected since DBH is one of the most
important parameters, explaining about 95% estimate of forest biomass/carbon (Gibbs et al., 2007). The
amount of carbon in this study increased with DBH (Figure 35). However, the rate of increment in DBH is
at lower rate in the trees with larger diameters and so does the relationship is non-linear with carbon. Even
though the stem of a tree continue to grow, it does at slower rate with increasing age. Similarly, height and
carbon demonstrated a strong and significant (P<0.001) non-linear correlation (R2=0.74). The correlation
coefficient is 0.80. The result is in agreement with the study by Karna (2012) who obtained value of 0.74
for R2 and 0.86 for correlation coefficient for the species Terminalia tomentosa. The value was lower for the

other four species in Karna’s study.

5.5.2. Modelling the Relationship between CPA and Carbon

Non-linear regression was established using observed carbon as the dependent and log-transformed CPA
as the independent variable to develop a model. Since the rate of increase in size of tree crown stabilizes
while the tree continues to grow, the rate of increase in carbon also decreased at lower rate (Figure 37). The
coefficient of determination of the model was 0.80 and relationship with carbon was significant. A
reasonable accuracy of segmentation is one of the reasons for the high coefficient of determination.
Improved segmentation accuracy (77%) and higher coefficient of determination (R?=0.88) between
observed carbon and crown projection area of mixed species was achieved in the study by Baral, (2011) in
a sub-tropical forest in Nepal using Geo-Eye imagery. Singh, (2014) obtained similar result (R? =0.78) to
our study while modelling carbon stock of Sal (Shorea robusta) using WorldView-2 in Doon Valley, India.
The result obtained by Sumarah (2014) was lower than the result achieved in this study due to the low
segmentation accuracy according to the author’s discussion.

The coefficient of determination of the validated non-linear model was 0.84. This means that the model
explained 84% of predicted carbon. Improved R? of model validation is in agreement with the
segmentation accuracy and higher number of observations was used. However the model introduced
29.3% of etror (RMSE= 29.3%).
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5.5.3.  Modelling Carbon from Height and CPA

Multiple regression was applied using height from TLS and CPA from the image as explanatory variables
to develop a model and estimate carbon stock of individual trees in the sample plots. Both explanatory
variables were highly correlated to observed carbon and variance inflation factor (VIF) was less than 10
with no existing multi collinearity between them. Multiple regression model was preferred to get the
improved prediction of carbon (Ketterings et al., 2001) as well as higher coefficient of determination
(Cairns et al., 2003; Brown, 2002) from combined effect of two explanatory variables than one. The log
transformed data was used to develop the multiplicative model.

The resulting coefficient of determination of the model validation was 0.87 with RMSE 26.6% indicating
how accurately carbon can be estimated from the model. Higher output of the model validation was a
combined effect of height and CPA which can enhance least variability between observed and predicted
carbon. The result is higher as compare to the study by Nguyet, (2012) who developed multiple regression
model for Shorea robusta with R? 0.68 validation accuracy using CPA and height derived from GeoEye
image and Airborne Lidar respectively. It is also lower than a species specific model developed for Shorea
robusta by Karna (2012) who obtained a coefficient of determination of 0.94. On the other hand, the study
assessed whether including tree height improves model accuracy or not. Rutishauser et al. (2013) achieved
R? of 0.96 with tree height included in the plot wise biomass estimation using the generic allometric
equation developed by Chave et al. (2005).

Therefore from our study it can be concluded that applying multiple regression using height form TLS
and CPA from image predicted more accurately than CPA only. However height from TLS is operational
for plot-wise inventory only. Thus the non-linear model developed using CPA was used to map carbon
stock of the study area. For possible solutions to accurate estimates of carbon for the whole study area, a
combination of Airborne Lidar derived height and TLS derived accurate tree position is suggested.

5.6. Carbon Stock Estimation

The amount of above ground biomass in the study area was estimated to be 393.82 Mg ha'! that is, 185 Mg
ha-! of carbon stock. Our study estimated an amount comparable to that which is found in the study by
Laumonier et al. (2010) in hill Dipterocarp old growth tropical rain forest of south and central Sumatra. They
found a range of 135-240 Mg ha'! of carbon stock with a mean of 180 Mg ha-! using a generic allomeric
equation by Brown (1997). On the other hand, Dirocco (2012) estimated 146 Mg ha! of carbon in a very
close site of Temenger forest reserve which is poorer than our study. The result of this study is within
estimated range of above ground biomass in tropical rain forest of Asia which is 120-680 Mg ha!(IPCC,
2006). One should keep in mind however, that the environmental condition of the study area, the
allometric equation used and methods applied could result in variations of the estimates.

5.7.  Source of Errors and Uncertainities

Errors can be propagated during data collection, processing and analysis (Wang et al., 2005). In this study
mostly error related to segmentation, an allometric equation used and point cloud data influenced the
developed model hence, the carbon map.

5.7.1.  Errors Related To Image Segmentation

Time difference

The image was acquired in February 2013 and filed data were collected during September 2014. Tree
crown may grow during the time lag and appear different resulting variation in estimated and measured
crown as stated by Song et al. (2010).
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Viewing angel

Quality of satellite image is subjected to several uncontrolled factors which induces misinterpretation.
Among these; viewing angel of the sensor and sun angle plays a key role in top view projection of canopy
area as in real situation. In an ideal situation where the sun should be over-head (0" with reference to
Zenith or 900 with reference to the hotizon) and the sensor looks down straight vertically (nadir view),
thus providing the true representation of tree crowns. Higher off-nadir view and low sun elevation angle
results in slanted projection of objects causing misinterpretation and errors.Viewing angle of the image in
this study was 22.30° off-nadir which can considerably distort the appearance of circular tree crown as
elongated i.e. different from the reality. In addition to this, sun angle during image acquisition (74.800),
affects the precision of segmentation by increasing amount of shadow detected by the sensor. Similar
effects of off-nadir viewing angel and topography was discussed in the study by Song et al. (2010). Figure
48 shows overview of tree crown under three different perspective of sun angle and view angle.

N1
t

Figure 48: Tree crown from three different views (Li et al., 2008)

Forest conditions

In the photo-synthetically active forest of the study area, a high density of understory and proximity of
crowns was observed during field work limiting the algorithm to separate individual crowns as mentioned
by Erikson (2011) and Bunting & Lucas (20006). Figure 49 shows the dense and overlapping condition of
the forest in the study area.

Figure 49: Dense and overlapping condition of forest in the study area (WorldView-2 image).

5.7.2.  Allometric Equation

Using an allometirc equation avoids destructive method of forest inventories as it relates the biomass
/catbon of trees to easily measurable variables. The existing allomettic equations vary with forest type.
Some are local and species specific whilst in complex forests, mostly in tropics the equations are more
generic in nature (Brown, 1997). The generic equation developed by Chave et al. (2005) was used in this
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study. Generic allometric equations used are categorized as ecological regions (e.g. wet, dry, moist),
consider numerous trees with range of variability in diameter which improves precision of the equations
and are less biased (IPCC, 2007). However, generic equations may not represent the true biomass of trees.
For equations not developed for specific sites, particularly @ and & parameters vaty across sites. Therefore,

variation in these variables could be source of uncertainty in biomass estimation (Ketterings et al., 2001).

5.7.3.  Errors Related To Sensor and Form, Nature of Scanned Objects

Laser scanners detect objects by measuring laser beam reflected back from the surface of an object. The
strength and amount of returned back signals is influenced by reflective ability of objects’ surface (Cosarca
et al., 2009) and other factors such as distance from the sensor. As the distance (vertical and horizontal)
between scanner and target object increase the quality and density of points decrease (Hopkinson et al.,
2004) In this case, the amount and strength of reflected signals in dark plots (very dense canopy cover) or

distant objects were weak. This in return was affecting the precision of point measurements in some trees.

In some cases temperature of the scanner may exceed the external temperature due to internal heating of
the sensor components (internal factor) in addition to sunlight (external factor). These factors could be the
cause of distortion (noise) of point cloud data in few plots as explained by Cosarca et al. (2009). The study
applied four scans to get enough coverage of tress from different positions. However, there existed some
part of trees covered from less than four scan positions. These resulted in missing information and
uncertainties such as unclear edged of the stem, indefinite tree height particularly with trees far from the
centre and other scan positions. To avoid such uncertainties reducing the radius of the plot or increase the
number of scans is suggested.

5.8. Limitations of the Research

1. Even though the research applied ESP tool to determine suitable scale parameter, the trial and error way
of discovering the appropriate scale was also done which takes time and hardly finds the right scale of
multi-resolution segmentation.

2. Point cloud data processing is time consuming.

3. Because of its weight the terrestrial laser scanner was not easily manageable to carry and operate in the
steep slopes of the study area.

4. If airborne lidar data would have been available, the study could apply multiple regressions of height
and CPA with improved model accuracy to estimate carbon stock of the whole study area.

4.'TLS can provide 3-D measurement of forest parameters efficiently. However, automatic extraction of

point cloud data was an algorithmic challenge.
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6. CONCLUSION AND RECOMMENDATIONS

6.1. Conclusion

In this study a method was developed with a combined data from terrestrial laser scanner and high
resolution satellite image to estimate catbon stock in tropical rain forest of Malaysia, Royal Belum State
Park as a case study. The regression model developed with DBH and height from TLS and crown
projection area from very high resolution satellite image using object base image segmentation was the
main technique of the study. There was a non-linear relationship between independent variables (CPA,
DBH, height) of estimating carbon stock and dependent variable (carbon). Cortelation coefficients were
0.91(R2=0.80), 0.96 (R2=0.92) and 0.80 (R2=0.74) for CPA-carbon, DBH-carbon, height-carbon
respectively. The relationships between these three independent variables of modelling carbon stock
(CPA, DBH, height) and dependent variable (carbon) were highly significant at 95% confidence level
(P<0.001). A total of 637,119.87Mg carbon was estimated in the study area with an average of 185Mg C
per hectare with a model accuracy of 84% and RMSE 29.3%. Thus the study found the technique to be
promising and made the following conclusions to address the research questions:

How accurately CPA can be segmented from VHRS image?

Segmentation accuracy was evaluated using one to one matching of reference and segmented polygons and
measure of goodness of fit (D-value). The resulted accuracy of segmentation using 1:1 and D-value was
72% and 68% respectively. The average achieved accuracy of this study was 70%.

Is there a significant difference between DBH and height derived from TLS and manual field
measurement?

DBH derived from TLS and measured from field were highly correlated as the coefficient of
determination was 0.96. Similarly the relationships of height measured from field and derived from TLS
was also with R? of 0.75. The statistical F-test and t-test was performed. F-test and t-test indicated that
there is no significant difference at 95% confidence level between mean of DBH and height
measurements from TLS and field since the t- calculated was greater than t-critical. Therefore, the null
hypothesis was rejected.

Is there a significant difference between DBH and height estimated from CPA and manual field
measurement?

The study found weak correlation between DBH and height estimated from CPA and corresponding field
measurements. The result of the t-test indicated that there is significant difference between estimated and
field measured DBH and height since the t-calculated was smaller than t-critical. Therefore the null
hypothesis is rejected.

Is there a (at 95% confidence level) significant relationship between DBH, height measured from
TLS and CPA segmented from VHRS images?

Data obtained from TLS and high resolution image were correlated. The correlation coefficient of DBH-
CPA and CPA-height was 0.88 (R2=0.79) and 0.81(R2=0.68) respectively. Test of Pearson correlation
coefficient indicated that the relationships were highly significant (P<0.001). Therefore, the study found
the relationship between DBH-CPA and Height-CPA as significant at 95% confidence level.
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6.2. Recomendations

Even though it takes time, increasing number of scan could improve level and quality of scanned
point cloud data and avoided missing tress.

Despite the difficulties, it is possible to acquire information such as DBH from TLS point cloud
data however capturing absolute tree height can result in variability of measurement due to the

dense branching with layers of canopy in tropical rainforest.
3. More research is needed to derive advanced forest parameters.
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LIST OF APPENDICES

Appendix 1: Histogram of CPA from image for the observations used for modelling carbon stock.
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Appendix 2: Collinearity test of CPA and height used for multiple regression model

Coefficients®

Collinearity Statistics
Model Tolerance VIF
1 TLS_height .316 3.167
CPA .316 3.167

a. Dependent Variable: Carbon
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Appendix 3: Histogram of 586 DBH observations measured manually in field
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Appendix 4: Histogram of 586 height observations measured manually in field
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Appendix 5: Field data collection sheet used for the study

Plot No.: Date: Time: Name of Recordet:

Reference Point: Bearing: Distance:

Slope (%0): Aspect: FCD Class No.  Average:
Centre Position: X-Coordinate: Y-Coordinate: Z-coord.:

Scan Positions: 1.

S. X- Y- Z-coord DBH Height (m) CD(m) Species Remarks

Coord coord (cm)
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Appendix 6: TLS metadata used to collect details of every scan position in every plot

Plot details coordinates Scan details
Plot. Slope | FCD | Scan. X y Form | resolution | Date | Time | Scan Remark
no no position
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Appendix 7: Slope correction table used in field
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Source: Y.A. Hussin (2001) from lecture note

Radius{m)

13.97
14.00
14.04
1407
14.10
14.14
14.17
14.21
14.24
14.28
1431
14.35
14.38
14.42
14.45
14.49
14.52
14.56
14.60
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14.67
1471
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1497
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15.15
15.19

72



Appendix 8: whole image segmented in eCognition software.

Appendix 9: Pearson correlation test of Field and TLS measurements

Correlations test of Field and TLS DBH

fdbh tdbh
fdbh Pearson Correlation 1 961"
Sig. (2-tailed) .000
N 586 586
tdbh Pearson Correlation 961" 1
Sig. (2-tailed) .000
N 586 586

**_ Correlation is significant at the 0.01 level (2-tailed).
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Correlations test of Field and TLS height

fheight theight

fheight  Pearson Correlation 1 859"

Sig. (2-tailed) .000

N 586 586

theight ~ Pearson Correlation 859" 1
Sig. (2-tailed) .000

N 586 586

**_ Correlation is significant at the 0.01 level (2-tailed).

Appendix 10: Photos of the field work and study area
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