
Internship Australia 2017

Centre for Hypersonics

University of Queensland, Brisbane

Extension of the Eilmer4
Gas Package

Author:
C.W. Lerink

Supervisors:
Dr. R.J. Gollan

Prof. Dr. P.A. Jacobs

April 5, 2017

Abstract

Eilmer4 is the new compressible flow CFD solver developed within
the Centre for Hypersonics of the University of Queensland [10]. As
an open source solver Eilmer4 is constantly in development. For using
Eilmer4 in methane combustion test-cases. Combustion modelers and
other users involved in combustion research often make use of ther-
modynamic data from the GRI-Mech database. To make Eilmer4 a
suitable simulation code for methane-combustion test-cases, thermo-
dynamic data from GRI-Mech is implemented.

With a conversion file written in Lua, the thermodynamic data
from GRI-Mech is stored in multiple species Lua-files which are added
to the Eilmer4 gas library. To obtain a first impression of the success-
fulness of the conversion, Cp, T -plots are created and roughly analyzed.
To get more insight in behavior of the GRI-Mech species, several test
cases are used for validation.

The test cases selected all involve combustion of (stoichiometric)
methane-air mixtures. The advantage of these test-cases is a high re-
semblance of future application of Eilmer4 in methane combustion.
However, since chemical kinetics play a significant role during com-
bustion, reaction schemes are necessary which describe the chemistry.
As the DRM-19 uses GRI-Mech models [23] and existing trusted test
cases are available in Eilmer3, the DRM-19 reaction scheme is used
for validating Eilmer4 in the combustion test-cases. Furthermore, a
research of Yungster et al. [24] shows results of a test case where an
alternative reaction scheme is used (Yungster gas model). Both Yung-
ster and DRM-19 reaction schemes are created for Eilmer4.

The first test case that is used for validation is the fixed volume
reactor. Eilmer4 using DRM-19 and GRI-Mech species shows great
agreements with Eilmer3. Using Eilmer4 with the DRM-19 model for
the hypersonic Yungster test case also produces a convincing compari-
son. For correct application of the Yungster gas model in Eilmer4 more
adjustments to Eilmer4 are necessary. With the DRM-19 model the
application of Eilmer4 for methane-combustion test cases is validated.

1

Contents
1 Introduction 4

2 Addition of GRI-Mech to Eilmer4 6
2.1 Working with Eilmer4 . 6
2.2 The Eilmer4 Gas Package . 7
2.3 The Eilmer4 Programming Languages 7
2.4 Thermodynamic Databases in Eilmer 8
2.5 Conversion of the GRI-Mech species 12

3 Chemistry for the Extended Gas Package 17

4 Validation of the Extended Gas Package 19
4.1 Thermodynamic validation with DRM-19 20
4.2 Chemical validation with DRM-19 21
4.3 Chemistry Solver Eilmer4 . 22
4.4 Fixed Volume Reactor . 23
4.5 Yungster Test Case Non-reacting with DRM-19 25
4.6 Yungster Test Case Reacting with DRM-19 27
4.7 Yungster Test Case with Yungster Gas Model 30

5 Other Internship Experiences 32
5.1 Working with Linux . 32
5.2 The Centre for Hypersonics Laboratory Equipment 32
5.3 Seminars within the Centre for Hypersonics 34
5.4 New Competences and Impressions 35

6 Acknowledgements 37

A The GRI-Mech database 42

B Comparison Thermo Coefficients CEA and GRI-Mech 43

C Example of the species-format of Eilmer4 46

D The GRI-Mech Conversion File 48

E Result Species File 51

2

F Thermo Curves Gas Calculator 53

G Cp, T -Diagrams for GRI-Mech Species 54

H h, T -Diagrams for GRI-Mech Species 55

I Thermodynamic Enthalpy Calculator Lua 56

J Lua Thermo-Comparison Script 57

K Results Thermo-Comparison 59

L Reaction Rate Calculator Lua 60

M Lua Chemical-Comparison Script 61

N Results Kinetics-Comparison 63

O Fixed Volume Reactor Script 67

P Yungster Test Case Script 69

3

1 Introduction
Monday the 28th of November 2016, a Boeing 737 takes off at Schiphol,
Amsterdam to fly me to Heathrow Airport, London. My trip to Brisbane,
Australia had started and after a 30 hours flight via Hong Kong, Qantas’
A380’s wheels touched ground Down Under, on the 30th of November.

On the 5th of December my internship at the University of Queensland
(UQ) commenced. The University of Queensland was found in December
1909 and is one of Australia’s leading research and educational institutions.
The UQ is located in the capital of the state of Queensland, Brisbane [1].
The UQ covers three major campuses, where St. Lucia is the name of the
main campus which is set on a magnificent 114-hectare site bounded by the
Brisbane River, about seven kilometers from Brisbane CBD [2].

On the St. Lucia campus, the School of Mechanical and Mining Engi-
neering is located. Research in mechanical engineering is directed within a
number of area’s, where hypersonic aerodynamics has been a major research
activity over the last 20 years. Research in this area is captured within the
Centre for Hypersonics (CfH), which is led by Professor Richard Morgan.
The CfH’s main interest for research lies within SCRAM-jet propulsion [3].

SCRAM stands for Supersonic Combustion ram-jets, which makes it a
special case of ram-jet. Ram-jets are air-breathing jet-engines that, in com-
parison with conventional jet-engines, do not use a an axial compressor for
increasing pressure before combustion. In ram-jets, the supersonic (M > 1)
forward motion of the engine compresses air at the inlet to subsonic (M < 1),
after which the flow undergoes subsonic combustion and leaves the engines
in supersonic state (M > 1). The combustion section is where the scram-jet
deviates itself from conventional ram-jets. As the name already declares,
scram-jets operate via supersonic combustion (M > 1). As can be imagined,
this demands an even higher operating velocity for the scram-jet, as the flow
after compression is still supersonic. This concludes that scram-jets only op-
erate in an efficient way within hypersonic velocities (M > 5) [4].

Worth mentioning is that CfH’s HyShot team were the first ever to suc-
cessful operate a scram-jet flight. On July 30, 2002 a scram-jet was operated
at Mach 7.6 for six seconds. This flight was made possible by the experi-

4

ments executed in hypersonic conditions in the T4 shock tunnel at UQ’s St.
Lucia campus [5]. In March 2004, NASA’s X-43 became the world’s fastest
free-flying scram-jet driven aircraft with a velocity of 9.6 times the speed of
sound, recognized by the Guinness Book of Records. [6].

Within the CfH, research in hypersonic propulsion is conducted in two
ways, both experimentally and by computational fluid dynamics (CFD). To
conduct hypersonic experiments in an efficient way the UQ has created the
state-of-the-art X-labs, where the shock tunnels are located. Here, staff and
student can simulate hypersonic conditions for very short amounts of time.
The X3 Shock Tunnel is captured in Figure 1 [7].

Figure 1: The X3 Shock Tunnel at St. Lucia campus, UQ. Photo by C.W. Lerink
on 23-12-2016

With the shock tunnel facilities provided to validate CFD analysis, re-
search in CFD simulations is continuously expanded. The CfH plays a promi-
nent role in the development of the simulation code Eilmer, to improve CFD
analysis of compressible flows (CFCFD). After the first editions of Eilmer, the
Eilmer3 code is frequently used by students and staff to solve complex CFD
problems. With Eilmer4 being still in development by the CFCFD-group,
another optimized simulation code will be available soon [8].

5

2 Addition of GRI-Mech to Eilmer4
UQ’s new computational fluid dynamics code Eilmer4 is evolving rapidly.
Like it’s predecessor Eilmer3, Eilmer4 is intended to be an open-source code
that can be downloaded from the CFCFD portal [9]. The simulation code is
mainly written in both Lua and D programming languages. As the Eilmer4
code is still in development, the addition of several thermodynamic databases
is a requirement. But first, a deeper insight in, and understanding of the
Eilmer4 code is obtained in this chapter.

2.1 Working with Eilmer4

As mentioned before, Eilmer4 is available as a source code from [9], making
it an open source program. Eilmer4 is used for the numerical simulation of
transient compressible gas-flows in 2D or 3D. First, the preparation mode
is used to set a starting point for the simulation. An initial flow field (ini-
tial gas state), a database of simulation parameters (as time interval) and
a multiblock grid that defines the flow domain are defined, after which the
simulation computes a series of snapshots of the flow evolving. With the
post-processing mode the flow data of interest can be extracted and refor-
matted.

During the simulation the gas flow is evolved (Eulerian/Lagrangian) fol-
lowing the rules of gas dynamics inside the flow domain. The flow domain
consists of a mesh of finite-volume cells, where boundary conditions are ap-
plied, for instance at the walls (no-slip). Eilmer4 contains a mesh generator
that creates the block-structured mesh, and is able to work with flow de-
scriptions captured as boundary surfaces. The goal of Eilmer4 is to deal
with turbulence, where high-velocity gradients are presents, as are friction
effects and temperature gradients. Those effects mainly arise with the appli-
cation of chemical reactions that are present in i.e. the combustion section
of a scram-jet engine [10].

For familiarizing himself with the Eilmer4 simulation code the author has
worked through the Eilmer4 User’s Guide [10] provided by the supervisors.

6

2.2 The Eilmer4 Gas Package

As described at the end of section 2.1, Eilmer4 is capable of handling chem-
ical reactions and their (presumably large) influence on the compressible
flow. This is where thermodynamics and chemical behavior come in. The
thermodynamics and diffusion properties of gas-mixtures are calculated with
Eilmer4’s gas package, where thermodynamic and chemical databases are
used to express changes in for instance viscosity, enthalpy and thermody-
namic state.

More specific, the gas package is seen as a support tool for the Eilmer
simulation codes, and features gas models for ideal gases, mixtures of ther-
mally perfect gases and supercritical CO2 by calculation of thermodynamic
properties, diffusion coefficients and gas species properties.

As the gas package deals with chemical reactions where different species
are involved, it makes use of databases provided by NASA and other insti-
tutions. Those databases describe thermodynamic and chemical behavior
and are built up by an extended range of experiments. An example of a
database used is CEA, which is provided by NASA’s Glenn Research Center
and stands for Chemical Equilibrium with Applications (CEA). It describes
itself as follows: "CEA is a program which calculates chemical equilibrium
product concentrations from any set of reactants and determines thermody-
namic and transport properties for the product mixture" [12].

For instance, the database can be used via the ’Thermo Build’ option,
where one can choose a species and extract various thermodynamic behavior
among a certain temperature range.

For familiarizing himself with the Eilmer4 Gas Package the author has
worked through the Dlang gas Package User’s Guide [11] provided by the
supervisors.

2.3 The Eilmer4 Programming Languages

As mentioned before, Eilmer 4 is the improved version of Eilmer3. Eilmer3
is mainly built on basis of previous simulation codes written in C++. With
more viable alternative languages nowadays available, the writers decided

7

to rebuild the best parts of Eilmer3 into a new simulation code, Eilmer4.
The both open-source programming languages used are the D programming
language [13] coupled with the Lua writing language [14] to create the user
interface.

Lua Language
The Lua language is developed by the department of computer science of
PUC-Rio, Rio de Janeiro, Brazil. Lua is a free, small packaged and easily
embedded into applications. Moreover, Lua is denoted as a very fast per-
forming language and is used in many industry applications as Photoshop
as well as in games technology, f.i. Angry Birds. The latest version is Lua
5.3.3. and is easily downloaded [15].

D Language
The D systems programming language is maintained by the D Language
Foundation. It is considered as a convenient writable language, with C-like
syntax and static typing. Furthermore, it is known "to combine efficiency,
control and modeling power with safety and programmer productivity". Or-
ganizations from industry using D-lang are Facebook and eBay. The latest
version is D 2.072.2 and is easily downloaded [13].

For familiarizing himself with the Lua Programming Language the author
has worked roughly through the first edition of the Programming in Lua e-
book, available online for free [16].

2.4 Thermodynamic Databases in Eilmer

The gas package is written in both D language and in Lua. The gas-calc
program is executable with programs written in Lua which accompany the
library for inclusion in D-lang programs.

As an example for the gas-libraries used in Eilmer3 and Eilmer4, NASA’s
CEA was stated in Section 2.2. This data is gas-specific and captures the
properties of the gas species. However, besides CEA it is essential that the
Eilmer4 code will make use of other databases than only CEA by NASA.
The reason to be able to switch between different gas-databases is the fact
that Eilmer4 will be used for different simulation purposes. Developers of
Eilmer4 expect to have two groups of finite-rate chemistry users. The high-

8

gas-calc

temperature blunt body modelers will probably only be interested in data
from CEA, while for instance the combustion modelers might prefer the
database called GRI-Mech for some of their work. The reason behind this
is that verification or comparison of different test cases in this case is made
possible, as the same sources of thermodynamic or chemical data can be used
in building the gas model.

The GRI-Mech database [17] is overseen by the University of Berkeley,
California, and supported by the Gas Research Institute (GRI). The latest
release is the GRI-Mech 3.0 version. The difference with the CEA database
in provision of thermodynamic data can be explained by the build-up from
their databases.

Both databases have allocated their information on thermodynamic data
in 3 polynomials. This set of equations is stated in equation 1 [20].

Co
p

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + a7T

4

Ho

RT
= −a1T

−2 + a2T
−1 lnT + a3 + a4

T

2
+ a5

T 2

3
+ a6

T 3

4
+ a7

T 4

5
+

a8
T

So

R
= a1

T−2

2
− a2T

−1 + a3 lnT + a4T + a5
T 2

2
+ a6

T 3

3
+ a7

T 4

4
+ a9

(1)

The databases differentiate from each other in the way the coefficients
an are used. The CEA database defines all coefficients, n = 1, .., 9, in a
three layer temperature range, as the GRI-Mech database uses only seven
coefficients, n = 3, .., 9, in a two layer temperature range. Because in GRI-
Mech, a1 = a2 = 0, the first part of the equations is equal to zero. Another
observation is that CEA describes a larger temperature range in addition
to GRI-Mech (the temperature range is however different for every species,
still this is the general observation through the comparison of the databases).

To get an idea of how the data is delivered, one part of the database
for hydrogen, H2, is captured in Figure 2 and Figure 3 for both CEA and
GRI-Mech, respectively.

From Figure 2 it can be seen that the data of CEA is built in three
parts for the three temperature ranges: 200.000 < T1 < 1000.000 < T2 <
6000.000 < T3 < 20000.000, with T in Kelvin. In between the statement of
the temperature range (beginning of third line, sixth line and ninth line), are

9

Figure 2: Data with coefficients and temperature range for H2 from CEA [18]

Figure 3: Data with coefficients and temperature range for H2 from GRI-Mech
[19].

the nine a-coefficients (there are ten, however the eight digit is equal to zero),
that can be substituted in equation 1. Likewise can be seen for the GRI-Mech
database in Figure 3. Here, the two temperature ranges are denoted at the
end of the first line; 200.000 < TLTR < 1000.000 < THTR < 3500.000, with
T in Kelvin (and the LTR and HTR standing for lower and higher temper-
ature region, respectively). In lines two, three and four the a-coefficients are
stated, starting with the seven for the higher temperature region, followed
by a2 to a9 for the lower temperature region. Both databases are delivered
in .txt format.

In the previous example hydrogen is used to describe the difference be-
tween the way the databases capture the polynomial coefficients. This is
however not the only species available in the databases. Another big differ-
ence between GRI-Mech and CEA is the amount of species that is available.
Where GRI-Mech delivers only 52 species, CEA captures nearly all species
built from the periodic table, ions included [12]. As GRI-Mech will be the
database of our greatest interest, all 52 species are given in Table 1 for an
overview. Furthermore, the GRI-Mech template is given in Appendix A. In
Table 1 the species already available in Eilmer4 at the time writing are un-
derscored. Therefore, it is expected that those species will not be obtained
from GRI-Mech. However, section 2.5 will tell otherwise.

10

.txt

O O2 H H2 OH H2O HO2

H2O2 C CH CH2 CH2(S) CH3 CH4

CO CO2 HCO CH2OH CH3O CH3OH C2H
C2H2 C2H3 C2H4 C2H5 C2H6 CH2CO HCCO

HCCOH H2CN HCN HNO N NNH N2O
NH NH2 NH3 NO NO2 HCNO HOCN

HNCO NCO CN HCNN N2 AR C3H8

C3H7 CH3CHO CH2CHO

Table 1: All species available in GRI-Mech. Underlined are the species already
available in Eilmer4

To gain understanding in the way the coefficients are used by both CEA
and GRI-Mech the author built a small Lua-script. This script is also used to
get more convenient with the Lua programming language and the coefficients
en equations from the databases. This script is very simple and involved little
real programming. It can be found in Appendix B.

Comments are made in Lua by adding −− in front of the comment. On
the second line, a value for the gas constant is stated, and printed to the
terminal on line 5. Lines 7 to lines 12 define lower and upper temperature
range coefficient from GRI-Mech. On line 15, a temperature is defined. The
thermodynamic relations as in equation 1 are stated and used in line 18 to
line 29, where the results are printed to the terminal. The comments from
line 32 to line 38 represent the results that appeared in the terminal. From
lines 42 to 82 the same procedure is followed for the CEA database. In the
comments from line 84 to line 99 the data at the specified temperature is
compared, and small conclusions are drawn.

The result of the comparison is mainly that the two databases, although
delivering data in a different format, represent the same thermodynamic
values, as to be expected. However, the main reason for comparison is to
obtain understanding on how to read the databases, which was necessary for
building future conversion scripts.

11

Lua
Lua

2.5 Conversion of the GRI-Mech species

However the GRI-Mech database may seem outdated, it still provides data
for species that are not (yet) covered by the CEA database in Eilmer4. Fur-
thermore, making the GRI-Mech species available in Eilmer4 will provide
combustion modelers with their desired thermodynamic resource and en-
ables them to validate their combustion test-cases. Therefore, it is desired
that the Eilmer4 solver will provide the option that species can be selected
with their thermodynamic properties from different databases. This means
that all species from the GRI-Mech database have to be available in Eilmer4.
To do this, a conversion file is desired.

The goal of the conversion file is to convert the thermodynamic data from
GRI-Mech (see Appendix A) to a format that is readable by the source-code
of Eilmer4. As declared earlier, the Eilmer4 Gas Package is currently built
around the CEA database, and the gas_prep-program only knows how to
read data from CEA-formats. Therefore, the desired ability of the conver-
sion file is to deliver the data from GRI-Mech in a certain CEA-format that
is readable for the gas_prep, without losing it’s thermodynamic value from
GRI-Mech. An example of the format of CEA-data used by Eilmer4 is de-
noted in Appendix C, where the species HNO is used. This format is a
species.lua-file, and shows the template of what the output of the conver-
sion file should look like.

On the other hand, the GRI-Mech database in Appendix A is defined as
the input for the conversion file. However, there are some proceedings to be
done first. From [17] the data has first to be saved as the input file: the
text-file grimech.txt. Consequently, two important adjustments are made
that allow the conversion file to read the text properly and enables Eilmer4
to handle the data properly:

• The text CH2(S) is changed to CH2_S

• The text AR is changed to Ar

The two changes have to be performed manually and are necessary for correct
reading of the thermodynamic data. After saving the changes, the input file
is ready to be handled by the conversion file.

12

gas_prep
gas_prep
species.lua
grimech.txt
CH2(S)
CH2_S
AR
Ar

Now the input file is ready to go, it is important to consider the desired
output, see Appendix C. All species available in GRI-Mech (at this moment
all 52) have to be converted to those species.lua files. This implies that
the conversion file will write and save 52 separate .lua files. Looking at the
example file found in Eilmer4’s directory dgd/src/gas/species-database, the
following lay-out is recognized.

1. a name part: db.specie

2. the atomic constituents part: db.specie.atomicConstituents

3. the molar mass part: db.specie.M

4. the charge part: db.specie.charge

5. the value for gamma part: db.specie.gamma

6. the thermodynamic coefficients part: db.HNO.ceaThermoCoeffs

The first five properties are specie specific and are not delivered by GRI-
Mech, while only the sixth is. Therefore, there has been chosen to split the
output file in two parts: an A-file and B-file. Merging the specie-A.lua and
specie-B.lua file together later on, will eventually create the specie.lua
file.

The A-file consists of the first five information lines (name, atomic con-
stituents, molar mass, charge and gamma), and are manually built for every
52 species. This is done by copying the old specie files from Eilmer3, which
can be found in Eilmer3’s cfcfd3/lib/gas/species, and adjusting them to the
desired A-file format. These changes are all necessary for the Eilmer4 solver
code to read the specie files later on:

• Put .db in front of every part

• Changing the order of properties to the order of the six step list above

• Remove any comments

• Change atomic_constituents to atomicConstituents

• Delete other information the first five parts of the six step list above

13

species.lua
.lua
db.specie
db.specie.atomicConstituents
db.specie.M
db.specie.charge
db.specie.gamma
db.HNO.ceaThermoCoeffs
specie-A.lua
specie-B.lua
specie.lua
.db
atomic_constituents
atomicConstituents

• Save the file as a Lua A-file: specie-A.lua

The B-files are the files which have to deliver the sixth part with the
thermodynamic coefficients from GRI-Mech. Looking at the output file (Ap-
pendix C) again as an example, it is desired that the polynomial coefficients
are presented in the same way: a segmented list. Significant changes have
been made to the name and notes of this part, as this part now contains data
from GRI-Mech.

• db.specie.ceaThermoCoeffs is changed to db.specie.grimechThermoCoeffs

• add notes by adding a line notes=’datafromGRIMECH3.0’

This makes possible that the Eilmer4 source code ’knows’ that this data is
from GRI-Mech, and makes it possible for the user later on to select different
thermodynamic databases for their simulations. The notes make it clear for
the user that GRI-Mech data is present in their gas model.

Those changes have to be considered in making the conversion file. The
goal of the conversion file is to auto-generate B-files for all the species avail-
able in GRI-Mech. The conversion file itself will be written in Lua, as this is
the main language used for operating and determination of input for Eilmer4.
A final demand of the conversion file is that it is suitable for use in the future
when the GRI-Mech database is updated or expanded.

After experience in writing Lua is obtained, the conversion file is produced
for converting GRI-Mech data to CEA format (B-files): the B-files maker.
The final version of the file can be found in Appendix D. To ensure proper use
of the conversion file in the future, all instructions and necessary proceedings
that an user must be aware of are added in README.txt files. At the time of
writing the script, GRI-Mech database consisted of 52 species.

In Appendix D the conversion file grimech-bfiles-maker.lua is cap-
tured. As can be seen on line 5, a ’species’-table is defined with all species
available in GRI-Mech. On line 6, the number of species, nsp is stated, after
which the for-loop over all species is defined on line 8. This for loop will
run over the rest of the script 52 times, to create 52 times a specie-specific
B-file with output-name specie-B.lua (line 10). On line 24, the file with
the output-name is opened in write-to modus. All write-commands in the

14

specie-A.lua
db.specie.ceaThermoCoeffs
db.specie.grimechThermoCoeffs
notes = 'data from GRIMECH 3.0'
README.txt
grimech-bfiles-maker.lua
nsp
specie-B.lua

script will write to this file. In line 27, the input file grimech.txt is opened
in read modus, so that all data can be read in line 28. Consequently, in
line 31, the string to search the data with is defined. This is the name of
the species, which was declared by the for loop. After a small check in line
32, the position of the string will be stored in variables j and k on line 35.
Because the GRI-Mech database is built in a repeated pattern (Figure 3), an
new variable for k newk is created which indicates the end position of data
for the searched specie. In line 38 the data for this specie is saved as mydata.
This data is analyzed in line 41 by a pattern to find the right temperature
ranges, subsequently storing the right temperature per variable T0, T1 and
T2. After in line 44 the first two polynomial coefficients are declared zero (to
meet the difference in polynomials between CEA and GRI-Mech) in line 44,
the other coefficients, an, are defined by a matching digit-pattern. The lower
temperature is indicated with a normal a, as the upper temperature range
is indicated by capital A. With now the variables and temperatures defined,
the program continues with writing operations to state the coefficients per
temperature region, fulfilling the CEA-format. This is done in lines 49 to
86. The db.species.grimechThermoCoeffs is traceable at line 51, just as
the desired notes in line 52. At last, the writing file is closed in line 88, as
is the data file. As the for loop is ended in line 91, it will start running over
the remaining species in the ’species’-table.

Running the script from the Ubuntu terminal (see also Section 5.1) with
lua grimech-bfiles-maker.lua will result in 52 different b-files, one for ev-
ery species. The for-loop makes it possible to create 52 files in one run by
the command line. However, it is also possible to make single b-files. This
is an option when the block of commands, line 12 to line 21 is activated (by
removal of the ′ − −′). The main() function makes it possible to operate
from the terminal command line, where the name of the species has to be
given as input. In case an user want to make single b-files, an extra Lua-
script grimech-single-bfiles.lua is made, where the for-loop is removed
and replaced by the activated line 12-21 part.

At this point, a folder with 52 separate A-, and B-files is present, and the
possibility to generate the desired GRI-Mech species files in Lua arises. This
is done by operating from the terminal, for for instance CH2: cat CH2-A.lua
CH2-B.lua > CH2.lua. This makes the CH2.lua file where the B-file part
in pasted after the A-file part, creating a complete specie file. For conve-

15

grimech.txt
db.species.grimechThermoCoeffs
lua
grimech-bfiles-maker.lua
grimech-single-bfiles.lua
cat
CH2-A.lua
CH2-B.lua
>
CH2.lua
CH2.lua

nience, an allfiles.sh script is automatically generated by the Lua script
make-allfiles.lua. By running ./allfiles.sh from the command line the
A-, and B-files are converted to 52 species Lua-scripts by one command and
saved in a folder named ’species’. As an example of the result, the specie file
H.lua is captured in Appendix E.

With the species from GRI-Mech now available, they are copy-pasted to
the Eilmer4 species database directory dgd/src/gas/species-database. How-
ever, as mentioned earlier, there are 15 species from GRI-Mech that were
already available in Eilmer4. To still make this data available, the B-file-
part (so basically the coefficients section) is manually copy and pasted in
the existing Lua specie files for all 15 species. To be able to select between
different databases in the gas_prep phase, a line in the gas input files can be
added on the third line (after the species declaration):

• options = {database=’prefer-grimech’}

In this way, for all species in GRI-Mech, the thermodynamic data from GRI-
Mech is used. If there is no GRI-Mech data avaiable (in other words, the
desired species are not in GRI-Mech), the gas-prep program switches to CEA.
In this way, the gas model can be ’as GRI-Mech as possible’. After adding all
GRI-Mech specie information, the specieslist.txt in directory is manually
updated with the species names, chemical notations and filenames. Operat-
ing the makefile command from the terminal updates the directory and
makes the species available for simulation (on that working station). After
verification of the added GRI-Mech species, the species can be added to the
Eilmer4 online open-source directory [9], so that users all over the world can
access and work with thermodynamics from GRI-Mech. Getting the updates
for Eilmer4 and make install Eilmer4 from the command line will update
the directory /dgd-inst/.

The conversion scripts, A-files, B-files and other support files are delivered
to the supervisors. After verification of the GRI-Mech species files, they can
be added to the open-source code of Eilmer4, making them available for users
all over the world. Verification of the GRI-Mech data is covered in Chapter
4.

16

allfiles.sh
make-allfiles.lua
./allfiles.sh
H.lua
gas_prep
options
=
database='prefer-grimech'
specieslist.txt
makefile
make
install

3 Chemistry for the Extended Gas Package
The goal of the addition of GRI-Mech species to the library of Eilmer4 is to
provide users who run combustion simulations the option to select thermody-
namic data from GRI-Mech. Combustion testcases are often performed with
methane. The relatively abundance of methane on earth makes it an attrac-
tive fuel [22]. Therefore, to validate the GRI-Mech species, test cases which
involve the combustion of methane are selected. Together with combustion
arises the need for information on the chemical behavior of the species. As
basically two gas-models will be used for validation, for both of these gas-
models the reaction mechanisms have to be set. The two gas models are the
DRM-19 gas model [23] and the Yungster et al. gas model (Yungster gas
model) [24].

In june 2012, B. O’Flaherty researched the combustion of low-concentrated
methane-air mixtures [25]. During his work a numerical study has been
completed to the ignition delay of methane-air mixtures. For this com-
bustion the DRM19 gas model and reaction scheme were used in Eilmer3.
To make the DRM-19 available in Eilmer4, the files for gas preparation
gas_prep and chemical preparation prep_chem are obtained from Eilmer3’s
cfcfd/examples/eilmer3/2D/methane-reactor. The drm-19.lua reaction file
is hereafter translated to the desired format for prep_chem in Eilmer4. The
DRM-19 reaction mechanism for the combustion of methane consists of 22
species and 84 reactions. The species used in the DRM-19 model are not all
available in GRI-Mech. However, to be able to run the validation test cases
as ’GRI-Mech as possible’ the missing specie CH2O is added to the Eilmer4
gas library, converting the Eilmer3 format manually to an Eilmer4 format.
Furthermore, CHO and HCO are assumed to be the same species, as all
properties are similar. This file consists of thermodynamic data from CEA,
which is used by default as GRI-Mech is not avaiable. In the DRM-19 reac-
tion mechanism there are 8 out of 84 reactions that are pressure dependent.
Converting those to Eilmer4 need special treat, as some of the reactions were
not (yet) able to be handled by the Eilmer4 source code’s chemistry solver.

The paper of Yungster et al. focuses more on hypersonic application of
methane combustion. Yungster computed shock-induced combustion using
a detailed methane-air mechanism, with the reactions and species used cap-
tured in Table 2 on page 612 of [24]. This reaction scheme uses 21 species

17

gas_prep
prep_chem
drm-19.lua
prep_chem

and 52 reactions, of which 3 reactions are pressure dependent. This reaction
mechanism is built in a reaction mechanism Lua-file in Eilmer4 format.

At this point both the thermodynamical and the chemical tools for run-
ning methane-air combustion test cases are available in Eilmer4. This means
that verification of the GRI-Mech species by using them in different test-
cases is possible. This is done in Chapter 4.

The reaction mechanism files and gas input files of DRM-19 and Yungster
that are made for Eilmer4 simulations, have been manually built and delivered
to the supervisors.

18

4 Validation of the Extended Gas Package
At this point, the 52 new species have been added to the Eilmer4 gas library
and the Lua species files can be found in the updated Eilmer4 directory
dgd/src/gas/species-database. For a certified usable species database, it
is necessary to validate the new species on thermodynamic behavior. Fur-
thermore, since the goal is to obtain a working test case for the combus-
tion of methane, methane reaction schemes are built for Eilmer4 to cover
chemical behavior. To validate the new species and reaction schemes on con-
sistency and correct data, a comparison with an existing methane test-case
in Eilmer3 can give insights in causes of errors in the Eilmer4 database or
conversion. The comparison with Eilmer3 is desired, because Eilmer3 is vali-
dated. Furthermore, the Yungster gas model is not available in Eilmer3, but
the DRM-19 gas model however, is available. Therefore, the DRM-19 (ther-
mally perfect) gas model is used for comparison and validation. The idea
is that when results give a good comparison between Eilmer3 and Eilmer4,
the DRM-19 gas model can be used with GRI-Mech species in Eilmer4 for
different methane combustion test-cases. In a nutshell:

The goal is to compare thermal and chemical behavior during methane
combustion between Eilmer3 and Eilmer4 using the DRM-19 gas model. Pos-
sible causes of errors between the solvers are:

• Thermodynamic input (the conversion of the GRI-Mech database)

• Chemistry input (the converted reaction files for DRM-19)

• Chemistry integrator (the Eilmer4 chemistry solver)

All errors that would occur are useful, as those are mistakes in conversion
(thermodynamics and chemistry) or the Eilmer4 source code (chemistry inte-
grator). Since the Eilmer4 solver is still in development phase, solving those
errors will improve reliability of Eilmer4.

Within a chemical reaction, like the combustion of an air-methane mix-
ture, the concentration of the species varies over time. This is captured in
equation 2.

dY

dt
=

Nreac∑
j=1

ω̇i,j with ω̇i,j = f(kf , kb) (2)

19

Lua
dgd/src/gas/species-database

4.1 Thermodynamic validation with DRM-19

First, the thermodynamic behavior is analyzed. By making Cp, T -graphics
the species can be analyzed for continuity and differentiability. To make
the graphs, Eilmer4’s gas calculator is used. A small Lua program is built
from the examples in [11]. This Lua script is captured in Appendix F.
This program is used to obtain the thermodynamic data for all species not
available yet in Eilmer4. First, the gas is prepared with prep-gas by ob-
taining the gas model out of the input file. With the gas-calc and the
thermo-curves-for-species.lua-script in Appendix F the heat capacity
Cp and enthalpy h values for every temperature T are calculated, with steps
of dT = 50K (see line 25, Appendix F). With the function gnuplot the data
is subsequently plotted in an .eps-file. This file can be translated to a plot in
PDF format by ps2pdf. Diagrams with all non-available GRI-Mech species
(mainly carbons) are given for Cp and h in Appendix G and Appendix H,
respectively. As can be seen from the diagrams the graphs are all smooth.
Therefore, at first sight it can be concluded that the conversion of polyno-
mial coefficients was successful, but for a more detailed verification the values
should be compared with trusted data.

The graphs in the Appendices G and H are for a general impression on
the successfulness of the conversion of the GRI-Mech species. Detailed graphs
and data are provided digitally and are discussed with the supervisors, with
the outcome that comparison with trusted data is necessary.

The goal is to create a loop over all species to check the enthalpy values
at T = 2000K and patm = 101325Pa. The tests are performed with Eilmer3
(using certified CEA data) and Eilmer4 (using the GRI-Mech species). In
Eilmer3 a Python-script thermo-test.py is used (delivered by the supervi-
sors), in which the gas is updated via evaluation of the thermodynamic state
for the gas model. In Eilmer4, the DRM-19 gas model is used together with
the gas calculator gas-calc. The Lua-script for calculating the enthalpies
for all species in DRM-19 in captured in Appendix I. As can be seen, from
lines 7 to 12 the conditions of the test are defined. Hereafter, the gas model
is created and the thermodynamic state is updated in lines 14-19. Next an
output text-file is created where for all species in DRM-19 the enthalpy is
written to by the for loop in combination with the ’write’ command. As
the Eilmer3 Python script also delivers the enthalpy values in the same text

20

prep-gas
gas-calc
thermo-curves-for-species.lua
gnuplot
.eps
ps2pdf
thermo-test.py
gas-calc

format, a Lua-comparison script can be built to automatically give insight
in differences between Eilmer3 and Eilmer4.

The Lua comparison script ThermoComp.lua is captured in Appendix J.
In lines 1 to 7 the files with the enthalpy values per species is read. In line
17 the for loop is stated which will iterate over the species noted in line 13.
Within the loop the right data per species is traced and saved for enthalpy,
which happens in lines 34 and 35. In line 37 the difference is calculated with
a math statement, after which the error is analyzed with an if-statement in
lines 41-43, and the information is printed to the user. The result of this
comparison is stated in Appendix K. The results show differences between
Eilmer3 and Eilmer4. However, the order of magnitude of most enthalpy
values is of the order million, which means that the significant differences are
between 1-5%. The difference will be caused by a difference in the use of the
thermodynamic polynomials and their coefficients. For now, the difference is
considered acceptable and further validation is considered first.

4.2 Chemical validation with DRM-19

For the chemical validation the conversion of the reaction rates in Chapter 3
are checked. This will be done in the same way as the thermodynamic vali-
dation. The rates of chemical processes in physics are indicated by chemical
kinetics, which is why chemical validation is often considered as a kinetic
validation. For obtaining the reaction rates in Eilmer3 the chemical kinetic
system is captured in the Python-script kinetics-test.py. With this pro-
gram all rate constant values kb and kf (see also equation 2) for all 84 reac-
tions in DRM-19 are determined. This is done at the same conditions as the
thermodynamic validation, T = 2000K and patm = 101325Pa.

For Eilmer4 the script kinetics-test.lua is built to obtain the rate
constant values for the converted DRM-19 reaction scheme. In Appendix L
this script is captured. Until line 17 the script resembles the Lua script used
in the thermodynamic validation. Reading further, the reaction mechanism
is defined in lines 19-20. Hereafter, the output file is opened in write-mode,
and in line 25 the rate constants are evaluated. The for loop in lines 26-29
makes sure the rate constants are written to the output file for all reactions
in DRM-19. This script is ran from the terminal command line. As can be
seen, after the gas model is prepared, the chemical model (the reactions file)

21

ThermoComp.lua
kinetics-test.py
kinetics-test.lua

is prepared subsequently. Next, the gas calculator runs the script:

• prep-gas DRM19.inp DRM19-gas-model.lua

• prep-chem DRM19-gas-model.lua DRM19-reaction-scheme.lua DRM19-reac-file.
lua

• gas-calc kinetics-test.lua

The result is a plain text file with the rate constants for all reactions 1-84,
again in the same format as the Eilmer3 Python-script delivers. At this point,
the rate constants can be compared. This is done by the Lua-script called
ChemoComp.lua, and is denoted in Appendix M. In read the results from
Eilmer3 and Eilmer4 in the first seven lines. Then, in line 16, the for loop is
stated in which the reaction constants are traced and captured in a variables.
In lines 43 and 44 the mathematic operation to obtain the difference is done,
after which the if-statement from line 48 follows the same procedure as in
the thermodynamic comparison, in this case for both constants. The results
are again saved in a text file, which is given in Appendix N. As can be seen,
there are small differences for kf , while on the other hand the constants kb
are large amount for reactions 8 and 15. This is unexpected, as the DRM-19
Eilmer4 scripts is directly translated from Eilmer3. This implies that there
could be errors in the Eilmer4 chemistry solver.

4.3 Chemistry Solver Eilmer4

The chemistry solver in Eilmer 4 is built in D-lang and is still in development.
During first attempts of simulation of the test cases ’ignition delay’ and
the Yungster geometry [24] an error appeared whenever the combustion of
methane started. The error was obtained during the Eilmer4 run time: Hit
the minimum allowable timestep in chemistry update: dt= 1.0000e-15. After
this error was solved by tweaking the chemistry delay and flow-over-body-
length, there were also small errors found by the supervisor in the Eilmer4
source code for the chemistry solver.

As the Chemistry Solver in Eilmer4 is part of the source code, Rowan
Gollan took care of possible errors in this part.

22

prep-gas
DRM19.inp
DRM19-gas-model.lua
prep-chem
DRM19-gas-model.lua
DRM19-reaction-scheme.lua
DRM19-reac-file.lua
DRM19-reac-file.lua
gas-calc
kinetics-test.lua
ChemoComp.lua

4.4 Fixed Volume Reactor

After updating the Eilmer4 chemistry solver, the errors in the thermody-
namics and kinetics from section 4.2 and 4.3 need evaluation. A comment
is demanded on the workability of these errors, and whether they influence
the reliability of working with the GRI-Mech species and DRM-19 reaction
mechanism in Eilmer4. To get an insight the relatively simple fixed-volume-
reactor test case is used. As the name declares, this is a constant volume
reactor, in which the methane-mixture is combusted. The thermodynamic
conditions are set to T = 2000K and patm = 101325Pa, after which combus-
tion will occur. However, this will not occur instantly due to physical ignition
delay. The fixed volume reactor is a present test case in Eilmer3, used with
the DRM-19 gas model. This makes it well suitable for comparison with
Eilmer4 along with the GRI-Mech species and DRM-19 reaction mechanism.

The fixed volume reactor is programmed in the Lua-script fixed-volume-reactor,
which is captured in Appendix O. In this script a gas model is created which
is updated to the thermodynamic state (lines 19-27). Next, with two func-
tions the lay-out of written data is created. In line 49 the chemistry updater
is called, after which a time-step for the chemistry simulation is defined and
the chemical state is updated for all times (t < tend) while data is instantly
written to the output file. With gnuplot the data is plotted with Paraview,
and is represented by Figure 4.

23

fixed-volume-reactor
gnuplot

Figure 4: Diagram of the ignition delay of the fixed volume reactor test case

As seen from Figure 4, the Eilmer4 solution follows the Eilmer3 solution
very well. This result is therefore taken as evidence that the errors found in
the thermodynamical and chemical comparison can be justified by the fact
that GRI-Mech uses coefficients in a different way as Eilmer3’s CEA. At this
point, with the DRM-19 test case it is assumed that the GRI-Mech species
are verified. The next step is to run the DRM-19 gas model with GRI-Mech
species in another test case.

In the 1994 Yungster et al. paper [24] 2D test case a cylinder is placed
perpendicular to a hypersonic stoichiometric methane-air mixture flow (M =
6.61). This test-case will be used in Eilmer4 to run with the validated DRM-
19 test case. In the next chapters first the non-reacting case will be discussed,
after which the reacting test case will be issued. Eventually the goal is to run
the Yungster test case along with the used Yungster methane-air gas model
and reaction scheme as well.

24

4.5 Yungster Test Case Non-reacting with DRM-19

For building the Yungster test case a Lua-script from another test case is used
after modification. This is the Lehr test case. The modified script can be
found in Appendix P, and is named yungster-simulation-reactingLehr.
lua. This script is used for both the non-reacting and reacting case, with
for the non-reacting case the chemical operating left out. The basics of the
script will be explained here.

Following the script after the comments in Appendix P, on lines 21-22
the geometry of the cylinder is described. Next, the gas model is created
and updated with conditions similar to the Yungster test case in lines 26-30.
Hereafter, in lines 32-35, the stoichiometric mixture ratio is given and the
flow state is obtained. In lines 37 to lines 52 some important configuration
options are set. The body flow time is the time it takes for one particle
to fulfill the distance of one streamline through the domain. This time is
used (multiplied by 4) to delay the reactions to give the flow time to adapt
to the geometry (stationary conditions). Because the cylinder is symmetric,
the axis-symmetric option is turned to false. In the non-reacting case, the
config.reacting is also turned to false. The maximum simulation time is
set to twenty times the body flow time, as the maximum amount of steps
is set to 800000 (for the prevention of a possible never ending simulation).
For both cases, the shock-fitting option is not activated, as this is not (yet)
available in Eilmer4. On lines 55-61 the geometry of the domain is defined
and expressed as function of the radius, to ensure flexibility in varying the
radius for different test cases. In lines 63-67 the grid and surface of the geom-
etry is defined, after which in lines 69-72 the grid-blocks are given boundary
conditions. As can be seen, there are four blocks (2x2). The grid consists
of 64 times 64 cells (comparable with the Yungster test case). In lines 75-77
history points are created to be able to check the flow evolving over time.

25

yungster-simulation-reactingLehr.lua
yungster-simulation-reactingLehr.lua
false
config.reacting
false

Figure 5: Terminal command for running the
yungster-simulation-reactingLehr.lua script.

The script is ran from the terminal command line with the input as
stated in Figure 5. The running of the simulation takes approximately 60
minutes, using two CPU’s (this is for the reacting flow). With a successful
operation of the preparation, running and post-processing phases, the .pvd-
file can be analyzed with Paraview. In Figure 6 a first impression of the
temperature field is displayed. The bow shock can be clearly identified, as is
the temperature at the stagnation point, which approximates 2270K.

Figure 6: Non-reacting Yungster test case geometry with temperature field in K

26

yungster-simulation-reactingLehr.lua
.pvd

The goal of the simulation is to make a comparison for the non-reacting
case with the numerically determined results from Yungster, as seen in Figure
2, page 613 in [24]. In Figure 7 the dimensionless properties for pressure
and temperature from Eilmer4, using the DRM-19 gas model, is compared
for the Yungster test case. As this is the non-reacting case, the DRM-19
reaction mechanism is not used. Eilmer4 using the thermodynamic data from
GRI-Mech, it can be concluded that the two graphs are very similar. This
implies that the verification for the species used in DRM-19 are validated for
thermodynamic behavior once again.

Figure 7: Non-reacting Yungster et al. test case: dimensionless pressure (left) and
Dimensionless temperature (right) along stagnation streamline

4.6 Yungster Test Case Reacting with DRM-19

For the reacting case the Lua-script in Appendix P, is used with the reacting
lines activated. With the combustion of the methane-air mixture activated,
a combustion boundary layer will arise behind the shock. Simulations have
been done for three different configurations following Yungster, for 1 mm,

27

3mm and 7mm diameter configurations. The output of Eilmer4, using the
DRM-19 gas model and reaction mechanism is compared for the Yungster
test case with the Yungster et al. data from [24]. The dimensionless pressure
along stagnation streamline is displayed in Figure 8. For the 1mm and 3mm
diameter test case, the results are quite similar. The small difference between
the results is due to different gas and reaction models used, as for the Eilmer4
simulation the DRM-19 gas models and reaction schemes are used, where
Yungster et al. makes use of the Yungster gas model and accessory reaction
mechanism. In Figure 9 the results for the dimensionless temperature along
stagnation streamline are displayed.

Figure 8: Dimensionless pressure along stagnation streamline graphs of Eilmer4
simulations with DRM-19, compared with data from Yungster et al.[24]

28

Figure 9: Dimensionless temperature along stagnation streamline graphs of
Eilmer4 simulations with DRM-19, compared with data from Yungster et al.[24]

When analyzing Figure 9 it can be seen that for the 1 and 3 mm di-
ameter test case the reacting simulation follows the Yungster results for the
dimensionless temperature quite well. As the temperatures increase in the
combustion layer, the results start to deviate slightly, after the shock. Still,
this is considered as a convincing comparison with the Yungster et al. results,
as the difference in reaction model has to be taken into account.

As can be noticed from Figures 8 and 9 the Eilmer4 results are not in-
cluded for the 7mm diameter configuration. The reason behind this is that
the results received were falling back to the non-reacting case. A reason for

29

this could be that this configuration needs a different grid, as in this case a
larger shock layer arises that needs capturing. This is left for further research.

4.7 Yungster Test Case with Yungster Gas Model

In Figures 8 and 9 the results for the non-reacting case is plotted using the
Yungster Gas Model (GRI-Mech) and Yungster reaction mechanism. As can
be seen the black solid line shows high agreement with the dashed line, which
is the data from Yungster et al. This shows that for the 19 species used in
Yungster the thermodynamic properties of the gas model resembles the one
used in Yungster et al. computations.

Attempts have been done in using the Yungster reaction scheme along
with the Yungster gas model in the Yungster et al. test case in an Eilmer4
simulation. Unfortunately, this did not deliver the results as expected. In
Figure 10 the results with activated chemistry for the Eilmer4 Yungster con-
figuration with a rod of 3mm diameter are displayed. As can be seen, the
results start to deviate towards the non-reacting case.

Figure 10: Dimensionless temperature along stagnation streamline graphs of
Eilmer4 simulations with DRM-19, compared with data from Yungster et al.[24]

30

A possible reason for this might be that Eilmer4 is not (yet) capable
of reading the pressure dependent reaction rates of the Yungster reaction
mechanism in the right way. Therefore, before running more Eilmer4 simu-
lation with the Yungster reaction scheme, the focus will be on improving the
Eilmer4 chemistry updater.

All results of the test cases analyzed in previous sections are discussed
with the supervisors. At this point, more work needs to be done on Eilmer4
to make it suitable for handling the Yungster reaction scheme. After this, a
conclusion for validation can be drawn when results are obtained, in the same
way as for the test cases using DRM-19.

31

5 Other Internship Experiences
As an occupational trainee at the School of Mechanical and Mining Engi-
neering and the Centre for Hypersonics many other skills and knowledge is
obtained, besides the results described in previous chapters. In this section,
the author outlines some other new experience and knowledge that came
along during the internship.

5.1 Working with Linux

As being relatively new to the world of computer programming, the author
started with experience in MATLAB and some knowledge of C++ program-
ming, both on Windows. This was the first experience for the author to work
with a operating system different from Windows.

To be able to run and access the Eilmer3 and Eilmer4 packages, all stu-
dents and staff work with Linux based operating systems, called Ubuntu.
Ubuntu is an Linux distribution based on Debian and is developed by the
company Canonical [29]. Ubuntu, like Microsoft’s Windows, can be used as
operating system for desktops as well for servers, laptops and mobile devices.
It is knows as a fast and easy to handle system, with installing applications
and software very easily. The experience is that it is more convenient to
use as windows, and users operate the system often via the so-called Termi-
nal, where software can be started by commands as sudo or be downloaded
by commands as apt_get. In Ubuntu, the configuration and installation of
Eilmer3, Eilmer4 and Lua were relatively easy and fast.

5.2 The Centre for Hypersonics Laboratory Equipment

For experiments in hypersonic conditions the Centre for Hypersonics labora-
tory has a large collection of shock tunnels. The University of Queensland is
generally recognized for pioneering in the development of free-piston expan-
sion tubes (shock tunnels). In the X-lab the X-expansion tubes are located,
X2 and X3. In the basement of the Mansergh Shaw Building (Engineering)
the T4 shock tunnel is accommodated. The shock tunnels are all free-piston
driven. As an example of lay-out of the shock tunnels, a schematic overview

32

sudo
apt_get

of X2 is given in Figure 11, as well as a photographic image of X3 in Figure 1.

The X2 and X3 Expansion Tubes

Figure 11: Schematic overview of the X2 Expansion Tube [26]

The X-lab is located in the basement of the Hawken Engineering Build-
ing, where the two X-expansion tubes can be found. The X2 is an expansion
tube that has a test section diameter of 85 mm, which is larger than the
previous X1. X2 consists a compound piston that exists of an lighter outside
and heavier inside part, which results in the inner part creating a surplus
compression in a smaller diameter. The piston is located inside the launch
station in Figure 11, and is driven by the (nitrogen) gas at high pressure
in the reservoir. The compound piston moves through the first stage, after
which the inner part continues through the second stage. This drives a shock
through the gas in the shock tube, which consists of the tube with several
diaphragms that will burst and keep the shock in place. Finally, the shock
arrives at the test section where it passes the model, after which it is captured
in the dump tank. X2 is mainly used to measure shock stand-off distances
in re-entry conditions. With high-enthalpy gas the freestream Mach number
can increase to 7.3. The length of X2 is around 20 meters [26].

The big brother of X2 is the X3 shock tunnel, which has a test-section
diameter of 180 mm. Just like X2, the X3 also generates a strong shock wave
in a high temperature, rapidly compressed light gas (helium), by driving a
heavy piston with compressed air at is pressurized in the reservoir. While
the air test gas is accelerated through the shock tube and ruptures different
diaphragms, an unsteady shock-wave propagates in the other direction and
increases the stagnation pressure and enthalpy of the test gas [27].

33

The T4 Shock Tunnel The T4 Stalker Tube was first operated in 1987,
and seemed an success in experimental used, due to the fact that 10,000
’shots were fired’ by 2008. The T4 separates from the X-tunnels as T4 is
specifically used for research to performance of scram-jets. However, the
tunnel is also used for re-entry investigation, as for boundary layer transition
phenomena. T4 is 26 meter in length, and can be equipped with nozzles for
a Mach number range of 4 < M < 10. In Figure 12 the test section for
scram-jet geometries is denoted [28].

Figure 12: Picture of test section for scram-jet engine geometries [28]

The general observation is that the shock tunnels at UQ are operated in
a very different way that the supersonic wind tunnel at the University of
Twente. Where the supersonic wind tunnel does make use of a large pressure
difference, it does not contain the essential parts of the shock tunnels: the
diaphragms and the free-piston driver. And obviously, the dimensions are
also very different, as the UT supersonic tunnel’s test section is around 10-
20 mm and is below five meters in length.

5.3 Seminars within the Centre for Hypersonics

During the four month internship within the Centre for Hypersonics of the
University of Queensland (CfH) there have been several seminars given by
the staff and students. The policy is that every week one of all the people
involved in the CfH gives a presentation of one hour, after which there is
some room for questions from the audience. Besides that it stimulates the
interaction between research in the group, the seminars are also open for
external people. For instance, students who might be interested in a PhD

34

in hypersonics this is a great solution. Some seminars had a very informal
character, as other seminars were arranged as a final presentation of the
submitting of a PhD. The following seminars have been attended with great
interest during the period of 5-12-2016 to 05-04-2017:

• Presentation by Prof. Yunghwan Byun, Konkuk University, Seoul, Ko-
rea on Konkuk Aerospace Engineering research facilities and research.

• Seminar by Sholto Forbes, PhD student CfH on a multi-variable math-
ematical model for three stages to orbit optimization.

• Seminar by Christopher James, PhD student on the use of the X3 shock
tunnel to simulate conditions of entry in gas giants atmosphere.

• Seminar by Tristan Vanyai, PhD student CfH on thermal compression
in scram-jet combustion and their effect on trust generation.

• Final Seminar by Kevin Basore, PhD student CfH on scram-jet fuel-
injection configurations and their effect on combustion.

• Final Seminar by Juan R. Llobet, PhD student CfH on scram-jet inlet
geometry vortexes and their effect on fuel mixing.

• Final Seminar by Dawid Preller, PhD student CfH on the multidisci-
plinary design and optimization of pitch trimmed scram-jets.

• Final Seminar by Zachary Denman, PhD student CfH on carbon cavity
flame holders in scram-jet combustion.

• Final Seminar by Timothy Cullen, PhD student CfH non-intrusive mea-
surement for heat measurement on probes during shock tunnel opera-
tion.

5.4 New Competences and Impressions

During the four month internship new competences have been developed.
Learning new programming languages can be a challenge, but is very re-
warding when results and progress are noticed. Learning to work with Lua
did not only result in understanding the language, but contributed in think-
ing in the ’programming way’. Achieve the programming output as desired

35

by dividing the bigger task in smaller subtasks and solving them one by one
is something that came along with writing certain small Lua scripts, and
may contribute in daily life where large problems are to be solved.

Being a short-term part of the Centre for Hypersonics group at the UQ
contributed in new insight in research development as well. Obtaining a
glimpse of the development of the Eilmer4 solver was fascinating, as it han-
dles complicated flow and other physical phenomena. Working together with
the supervisors and PhD-students on this task was very challenging. Work-
ing with new operating systems as Ubuntu and with programs like Paraview
and the Engauge digitizer were new experiences that are likely to be usefully
applied in future work as well.

Working is a research group also gave new insights in life of a PhD-
student. At the University of Twente (master-)students are not as closely
involved in the research that is done by the research department. Socializ-
ing with PhD-students within the Centre for Hypersonics and attending the
weekly seminars gave a new insight in which way research is conducted, built
up and thought about. Great respect and recognition is deserved for them
working hard, late hours and contributing to science and engineering topics.

Another experience is the importance of communication with supervi-
sors. The connection between an occupational trainee or intern with his or
her supervisor is different from the relation between student and professor
or lecturer. However, for the sake of a successful completion of research or
assignment, it was learned that communication with supervisor is not only
essential, but also very helpful. This experience will be of great value dur-
ing future research as a graduation student and future employee or researcher.

Besides these experiences and competences, there was also the experience
of living in a foreign country. Traveling through and living in Australia and
New Zealand have been a mesmerizing experience. New people have been
met, new cultures like the Maori and Aboriginals have been discovered and
wonderful views of nature have left one speechless.

36

6 Acknowledgements
Brisbane, 5th of April 2017 - After four very interesting months my intern-
ship at the Centre for Hypersonics has come to an end. At the moment
of writing there are two interfering feelings. One is sadness to say goodbye
to the people involved in the CfH, the beautiful University of Queensland
campus and my pleasant life in Brisbane. The second feeling is one which is
focusing on the times ahead, a three week trip along Australia’s east coast
towards Darwin. But, those times ahead can not be enjoyed as much without
a few people to be gratefully thanked.

Thinking about the first week at the CfH, the description ’new expe-
rience’ would be an understatement. Although the office chairs and tables
down under are quite similar to those at home, the desktop operating systems
and programming language were undiscovered at that time. Working from a
terminal, ’banter’ in Lua and learning to simulate hypersonic flows in Eilmer
was quite challenging, but very satisfying along the way when mastered. For
this, I owe thanks to one person in general, which is my (direct) supervisor
Dr. Rowan Gollan. If there were gold medals for patience, helpfulness and
clear explanation they would all be rewarded to him. When the track we
were on or the programming goals were unclear for me, Rowan was always
there to calmly give direction. The pizza-afternoon and Aussie barbie at his
place during my last week were, besides tasteful, also very good company.
Then there is the ’neighboring’ neighbor, the Belgian PhD-student Jimmy-
John Hoste, who was the first one to have a joke with during the inductions,
and seated one chair down the office the remaining months. Besides being
a very helpful source using the Ubuntu terminal, Paraview and Eilmer, JJ
was more than great company during the one-week trip to New Zealand, our
adventures in and around Brisbane and our games of tennis on the UQ cam-
pus. The feeling arises that JJ will, by all means, not forget the Tongariro
Crossing, and Mt. Ngarahoe in particular, either.
Furthermore I would like to gratefully thank Prof. Peter Jacobs for ’hiring’
me as an occupational trainee and having faith in me in the first place. Also
I would like to send great thanks to Prof. Harry Hoeijmakers. Without your
effort and transcendent global network the dream to visit ’Straya would not
have come trough in the way it has.

Gratefully yours, Cor Lerink

37

38

References
[1] University Profile: The University of Queensland, website of UQ, http:

//www.uq.edu.au/about/university-profile

[2] University of Queensland: St. Lucia Campus, website of UQ, http://
www.uq.edu.au/about/st-lucia.

[3] About the Centre for Hypersonics, website of CfH, http://hypersonics.
mechmining.uq.edu.au/about.

[4] Scramjet Propulsion, NASA Glenn Research Centre, website NASA,
https://www.grc.nasa.gov/www/k-12/airplane/scramjet.html.

[5] About the HyShot Flight Program, UQ Centre for Hypersonics, website
CfH, http://hypersonics.mechmining.uq.edu.au/hyshot-about.

[6] Faster than a Speeding Bullet, NASA News, June 20, 2005, web-
site NASA, https://www.nasa.gov/home/hqnews/2005/jun/HQ_05_156_
X43A_Guinness.html.

[7] Facilities Centre for Hypersonics, website of CfH, http://hypersonics.
mechmining.uq.edu.au/facilities.

[8] The CFCFD code collection, Compressible Flow CFD documentation,
website CFCFD-group, http://cfcfd.mechmining.uq.edu.au/intro.
html.

[9] The Eilmer4 code source, Compressible Flow CFD Group, https://
bitbucket.org/cfcfd/dgd.

[10] Peter A. Jacobs and Rowan J. Gollan The User’s Guide to the The
Eilmer4 Flow Simulation Program, School of Mechanical and Mining En-
gineering, University of Queensland, September 2016.

[11] Peter A. Jacobs and Rowan J. Gollan The User’s Guide to the Dlang
gas Package, School of Mechanical and Mining Engineering, University
of Queensland, November 2015.

[12] NASA Chemical Equilibrium with Applications (CEA), NASA Glenn
Research Center, https://www.grc.nasa.gov/WWW/CEAWeb/.

39

http://www.uq.edu.au/about/university-profile
http://www.uq.edu.au/about/university-profile
http://www.uq.edu.au/about/st-lucia
http://www.uq.edu.au/about/st-lucia
http://hypersonics.mechmining.uq.edu.au/about
http://hypersonics.mechmining.uq.edu.au/about
https://www.grc.nasa.gov/www/k-12/airplane/scramjet.html
http://hypersonics.mechmining.uq.edu.au/hyshot-about
https://www.nasa.gov/home/hqnews/2005/jun/HQ_05_156_X43A_Guinness.html
https://www.nasa.gov/home/hqnews/2005/jun/HQ_05_156_X43A_Guinness.html
http://hypersonics.mechmining.uq.edu.au/facilities
http://hypersonics.mechmining.uq.edu.au/facilities
http://cfcfd.mechmining.uq.edu.au/intro.html
http://cfcfd.mechmining.uq.edu.au/intro.html
https://bitbucket.org/cfcfd/dgd
https://bitbucket.org/cfcfd/dgd
https://www.grc.nasa.gov/WWW/CEAWeb/

[13] D Systems Programming Language, D Language Foundation, http://
dlang.org/.

[14] Lua The Programming Language, PUC Rio, https://www.lua.org/.

[15] About Lua, PUC Rio, https://www.lua.org/about.html.

[16] Roberto Ierusalimschy Programming in Lua, Lua.org, ISBN 8590379817,
https://www.lua.org/pil/contents.html, December 2013.

[17] GRI-Mech, University of Berkeley, California, http://combustion.
berkeley.edu/gri-mech/index.html.

[18] Polynomial coefficients CEA https://cearun.grc.nasa.gov/
cgi-bin2/properties-3.pl

[19] Polynomial coefficients GRI-Mech http://combustion.berkeley.edu/
gri-mech/version30/files30/thermo30.dat.

[20] Stanford Gorden and Bonnie J. McBride Computer Program for Cal-
culation of Complex Chemical Equilibrium Compositions and Applica-
tions, NASA Reference Publication 1311, October 1994, https://www.
grc.nasa.gov/WWW/CEAWeb/RP-1311.pdf, page 19-20.

[21] GRI-Mech Polynomials http://combustion.berkeley.edu/gri-mech/
data/nasa_plnm.html.

[22] Wikipedia on Methane https://en.wikipedia.org/wiki/Methane.

[23] A. Kazakov and M. Frenklach The DRM-19 Gas Model, University of
California, Berkeley, CA 94720-1740, USA, http://www.me.berkeley.
edu/drm/

[24] S. Yungster and M. J. Rabinowitz Computation of Shock-Induced Com-
bustion Using a Detailed Methane-Air Mechanism, NASA Lewis Research
Center, Cleveland, Ohio 44135, Journal of Propulsion and Power, Vol. 10,
No. 5, Sept. - Oct. 1994

[25] B.T. O’Flaherty Reducing the Global Warming Potential of Coal Mine
Ventilation Air by Combustion in a Free Piston Engine, School of Me-
chanical and Mining Engineering, University of Queensland, June 2012

40

http://dlang.org/
http://dlang.org/
https://www.lua.org/
https://www.lua.org/about.html
https://www.lua.org/pil/contents.html
http://combustion.berkeley.edu/gri-mech/index.html
http://combustion.berkeley.edu/gri-mech/index.html
https://cearun.grc.nasa.gov/cgi-bin2/properties-3.pl
https://cearun.grc.nasa.gov/cgi-bin2/properties-3.pl
http://combustion.berkeley.edu/gri-mech/version30/files30/thermo30.dat
http://combustion.berkeley.edu/gri-mech/version30/files30/thermo30.dat
https://www.grc.nasa.gov/WWW/CEAWeb/RP-1311.pdf
https://www.grc.nasa.gov/WWW/CEAWeb/RP-1311.pdf
http://combustion.berkeley.edu/gri-mech/data/nasa_plnm.html
http://combustion.berkeley.edu/gri-mech/data/nasa_plnm.html
https://en.wikipedia.org/wiki/Methane
http://www.me.berkeley.edu/drm/
http://www.me.berkeley.edu/drm/

[26] X2 Expansion Tube Centre for Hypersonics, School of Mechanical En-
gineering, University of Queensland, http://hypersonics.mechmining.
uq.edu.au/x2.

[27] X3 Expansion Tube Centre for Hypersonics, School of Mechanical En-
gineering, University of Queensland, http://hypersonics.mechmining.
uq.edu.au/x3.

[28] T4 Shock Tunnel Centre for Hypersonics, School of Mechanical En-
gineering, University of Queensland, http://hypersonics.mechmining.
uq.edu.au/t4

[29] About Ubuntu, Canonical Ltd., https://www.ubuntu.com/about/
about-ubuntu

41

http://hypersonics.mechmining.uq.edu.au/x2
http://hypersonics.mechmining.uq.edu.au/x2
http://hypersonics.mechmining.uq.edu.au/x3
http://hypersonics.mechmining.uq.edu.au/x3
http://hypersonics.mechmining.uq.edu.au/t4
http://hypersonics.mechmining.uq.edu.au/t4
https://www.ubuntu.com/about/about-ubuntu
https://www.ubuntu.com/about/about-ubuntu

A The GRI-Mech database

THERMO
300.000 1000.000 5000.000

! GRI -Mech Version 3.0 Thermodynamics released 7/30/99
! NASA Polynomial format for CHEMKIN -II
! see README file for disclaimer
O L 1/90O 1 G 200.000 3500.000
1000.000 1
2.56942078E+00 -8.59741137E-05 4.19484589E -08 -1.00177799E-11 1.22833691E-15

2
2.92175791E+04 4.78433864E+00 3.16826710E+00 -3.27931884E-03 6.64306396E-06

3
-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00
4
O2 TPIS89O 2 G 200.000 3500.000
1000.000 1
3.28253784E+00 1.48308754E -03 -7.57966669E-07 2.09470555E -10 -2.16717794E-14

2
-1.08845772E+03 5.45323129E+00 3.78245636E+00 -2.99673416E-03 9.84730201E-06
3
.
.
[left out]
.
.
.
0.54041108E+01 0.11723059E -01 -0.42263137E-05 0.68372451E -09 -0.40984863E-13

2
-0.22593122E+05 -0.34807917E+01 0.47294595E+01 -0.31932858E-02 0.47534921E-04
3
-0.57458611E-07 0.21931112E -10 -0.21572878E+05 0.41030159E+01
4
CH2CHO SAND86O 1H 3C 2 G 300.000 5000.000
1000.000 1
0.05975670E+02 0.08130591E -01 -0.02743624E-04 0.04070304E -08 -0.02176017E-12

2
0.04903218E+04 -0.05045251E+02 0.03409062E+02 0.10738574E-01 0.01891492E-04

3
-0.07158583E-07 0.02867385E-10 0.15214766E+04 0.09558290E+02
4
END

42

B Comparison Thermo Coefficients CEA and
GRI-Mech

1 --program properties of O2 by GRI -Mech
2 R = 1.9872036 --cal_th .K.mol
3 --R = 8.31451/14.0067000e-3;
4 -- 1 cal_th = *4.18400 J
5 print("R = ",R)
6

7 -- These below are O2’s LTR values
8 a1 = 3.78245636E+00; a2 = -2.99673416E-03; a3 = 9.84730201E-06;
9 a4 = -9.68129509E-09; a5 = 3.24372837E-12; a6 = -1.06394356E+03; a7 = 3.65767573E+00;

10 --These below are O2’s HTR values
11 --a1 = 3.28253784E+00; a2 = 1.48308754E-03; a3 = -7.57966669E-07;
12 --a4 = 2.09470555E-10; a5 = -2.16717794E-14; a6 = -1.08845772E+03; a7 = 5.45323129E+00;
13

14 -- State temperature input?
15 T = 300 --K
16

17 -- Used thermodynamic relations
18 CpoverR = a1 + a2*T + a3*T^2 + a4*T^3 + a5*T^4;
19 print(" CpoverR = ",CpoverR)
20 Cp = CpoverR*R
21 print("Cp =",Cp) --> matches with GRI -Mech
22

23 SoverR = a1*math.log(T) + a2*T + a3*T^2/2 + a4*T^3/3 + a5*T^4/4 + a7
24 S=SoverR*R
25 print("S =",S) --> matches with GRI -Mech
26

27 HoverRT = a1 + a2*T/2 + a3*T^2/3 + a4*T^3/4 + a5*T^4/5 + a6/T
28 H = HoverRT*R*T
29 print("H =",H)
30

31

32 --RESULT verification with GRI -Mech at T = 300K.
33 --uqclerin@uqclerin -OptiPlex -990:~/ Test Envi$ lua O2testGRIM.lua
34 --R = 1.9872036
35 --CpoverR = 3.534572525267
36 --Cp = 7.0239152466717 --> matches! in cal/molK
37 --S = 49.075044657146 --> matches! in cal/molK
38 --H = 12.992055590927 --> no, it’s actually delta -Hf
39

40 --Matches the test with CEA that is currently used by Eilmer?

43

41

42 --program properties of O2 by CEA NASA
43 R = 1.9872036*4.18400 --cal_th .K .mol
44 --R = 8.31451/14.0067000e-3;
45 -- 1 cal_th = 4.18400 J
46 print("R = ",R)
47

48 -- O2’s values for T_lower = 200.0, T_upper = 1000.0 in calories. CEA
49 aa0 = -3.425563420e+04;
50 aa1 = 4.847000970e+02;
51 aa2 = 1.119010961e+00;
52 aa3 = 4.293889240e-03;
53 aa4 = -6.836300520e-07;
54 aa5 = -2.023372700e-09;
55 aa6 = 1.039040018e-12;
56 aa7 = -3.391454870e+03;
57 aa8 = 1.849699470e+01;
58

59 -- State temperature input?
60 T = 300 --K
61

62 -- Used thermodynamic relations on CEA
63 cp_on_R = aa0/(T*T) + aa1/T + aa2 + aa3*T + aa4*T*T + aa5*T*T*T + aa6*T*T*T*T;
64 print(" cp_on_R = ",cp_on_R)
65 cp = cp_on_R*R
66 print("cp =",cp)
67

68 s_on_R = -aa0 /(2*T*T) - aa1/T + aa2*math.log(T) + aa3*T + aa4*T*T/2 + aa5*T*T*T/3 + aa6*T*T*T*T/4 + aa8;
69 s=s_on_R*R
70 print("s =",s)
71

72 h_on_RT = -aa0/(T*T) + aa1/T * math.log(T) + aa2 + aa3*T/2 + aa4*T*T/3 + aa5*T*T*T/4 + aa6*T*T*T*T/5 + aa7/T;
73 h = h_on_RT*R*T
74 print("h =",h)
75

76 --RESULT verification with some link on CEA on O2 data of enthalpy , pressure coef , and s at T = 300K.
77 --uqclerin@uqclerin -OptiPlex -990:~/ Test Envi$ lua O2testCEA.lua
78 --R = 1.9872036
79 --cp_on_R = 3.534485021788
80 --cp = 7.0237413594432
81 --s = 49.075044169637
82 --h = 12.991886894774
83

84 --In Joule: compared with CEA own data
85 --R = 8.3144598624

44

86 --cp_on_R = 3.534485021788
87 --cp = 29.387333847911 --> matches quite good (due to conv cal --> J)
88 --s = 205.32998480576 --> matches quite good
89 --h = 54.358054767736 --> matches
90

91 --CONCLUSION: does this matches with CEA that is currently used by Eilmer?
92 --ANSWER: pretty good
93 --CEA at T = 300K.
94 --uqclerin@uqclerin -OptiPlex -990:~/ Test Envi$ lua O2testCEA.lua
95 --R = 1.9872036
96 --cp_on_R = 3.534485021788
97 --cp = 7.0237413594432
98 --s = 49.075044169637
99 --h = 12.991886894774

45

C Example of the species-format of Eilmer4

1 db.HNO = {}
2 db.HNO.atomicConstituents = {H=1,N=1,O=1}
3 db.HNO.M = {
4 value = 31.01404e-3,
5 units = ’kg/mol ’,
6 description = ’molecular mass ’,
7 reference = ’CEA2:: thermo.inp ’
8 }
9 db.HNO.charge = 0

10 db.HNO.gamma = {
11 value = 1.325,
12 units = ’non -dimensional ’,
13 description = ’ratio of specific heats at...
14 ... room temperature (= Cp/(Cp - R))’,
15 reference = ’using Cp evaluated from CEA2 ...
16 ... coefficients at T=300.0 K’
17 }
18 db.HNO.ceaThermoCoeffs = {
19 nsegments = 2,
20 segment0 = {
21 T_lower = 200.0,
22 T_upper = 1000.0 ,
23 coeffs = {
24 -6.854764860e+04,
25 9.551627200e+02,
26 -6.000720210e-01,
27 7.995176750e-03,
28 -6.547079160e-07,
29 -3.670513400e-09,
30 1.783392519e-12,
31 6.435351260e+03,
32 3.048166179e+01,
33 }
34 },
35 segment1 = {
36 T_lower = 1000.0 ,
37 T_upper = 6000.0 ,
38 coeffs = {
39 -5.795614980e+06,
40 1.945457427e+04,
41 -2.152568374e+01,
42 1.797428992e-02,

46

43 -4.976040670e-06,
44 6.397924170e-10,
45 -3.142619368e-14,
46 -1.104192372e+05,
47 1.818650338e+02,
48 }
49 }
50 }

47

D The GRI-Mech Conversion File

1 #!/usr/bin/env dgd -lua
2 -- FOR MAKING ALL B-FILES
3 -- Cor W. Lerink
4

5 species = {’O’, ’O2’, ’H’, ’H2’, ’OH’, ’H2O ’, ’HO2 ’, ’H2O2 ’, ’C’, ’CH’, ’CH2 ’, ’CH2_S ’, ’CH3 ’, ’CH4 ’, ’CO’, ’CO2 ’, ’HCO ’, ’CH2OH ’, ’CH3O ’, ’CH3OH ’, ’C2H ’, ’C2H2 ’, ’C2H3 ’, ’C2H4 ’, ’C2H5 ’, ’C2H6 ’, ’CH2CO ’, ’HCCO ’, ’HCCOH ’, ’H2CN ’, ’HCN ’, ’HNO ’, ’N’, ’NNH ’, ’N2O ’, ’NH’, ’NH2 ’, ’NH3 ’, ’NO’, ’NO2 ’, ’HCNO ’, ’HOCN ’, ’HNCO ’, ’NCO ’, ’CN’, ’HCNN ’, ’N2’, ’Ar’, ’C3H8 ’, ’C3H7 ’, ’CH3CHO ’, ’CH2CHO ’}
6 nsp = 52
7

8 for i=1,nsp do
9 sp = species[i]

10 outname = string.format ("%s-B.lua",sp)
11

12 --1) Give the opportunity for user to operate from the terminal command line
13 --function main()
14 -- sp = arg[1] --input: species
15 -- outputFile = outname -- arg[2] --input: output file name
16 --print("You defined ", #arg , " number of arguments .")
17 --print(" Species Name: ",sp)
18 --print(" Output File Name:", outputFile)
19 --end
20

21 --main()
22

23 --2) open write -to file with output file name
24 f = io.open(outname , "w")
25

26 --3) Open the thermodata in read mode and read all lines:
27 data = io.input(" grimech.txt","r")
28 alldata = io.read ("*all")
29

30 --4) Search for the right data via species name
31 search = string.format ("\n%s ",sp)
32 print("This is the used term for searching data check: ",search) --CHECK IN TERMINAL
33

34 --5) Find the position of the species in i,j and select the used data
35 j, k = string.find(alldata , search)
36 --(Position species begins at i+1 (because of the "\n" four rows are 324 characters (each line 81 characters , new line is 1)
37 newk = j+324
38 mydata = string.sub(alldata , j, newk)
39

40 --6) read temperature ranges
41 local T0, T2, T1 = mydata:match(" (%d+%.%d+)%s+(%d+%.%d+)%s+(%d+%.%d+) ")
42

48

43 --7) read thermo coefficients
44 a0 = 0.00000000E+00; a1 = 0.00000000E+00; A0 = 0.00000000E+00; A1 = 0.00000000E+00; --to use GRIM in CEA Template
45 local A2, A3, A4, A5, A6, A7, A8, a2, a3, a4, a5, a6, a7, a8 = mydata:match ("(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+).+(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+).+(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)(.%d%.%d+%E.%d+)")
46

47 --8) write to files
48 -- Every species in GRI -Mech uses 2 temperature segments
49 local nsegments = 2
50 local ncoefficients = 9
51 f:write(string.format ("db.%s.grimechThermoCoeffs = {\n", sp))
52 f:write(string.format (" notes = ’data from GRIMECH 3.0’,\n"))
53 f:write(string.format (" nsegments = %d, \n", nsegments))
54 seg = "segment "..0
55 f:write(string.format (" segment%d ={\n",0))
56 f:write(string.format (" T_lower = %.1f,\n", T0))
57 f:write(string.format (" T_upper = %.1f,\n", T1))
58 f:write(" coeffs = {\n")
59 f:write(string.format (" %s,\n",a0))
60 f:write(string.format (" %s,\n",a1))
61 f:write(string.format (" %s,\n",a2))
62 f:write(string.format (" %s,\n",a3))
63 f:write(string.format (" %s,\n",a4))
64 f:write(string.format (" %s,\n",a5))
65 f:write(string.format (" %s,\n",a6))
66 f:write(string.format (" %s,\n",a7))
67 f:write(string.format (" %s,\n",a8))
68 f:write(" }\n")
69 f:write(" },\n")
70 seg = "segment "..1
71 f:write(string.format (" segment%d = {\n",1))
72 f:write(string.format (" T_lower = %.1f,\n", T1))
73 f:write(string.format (" T_upper = %.1f,\n", T2))
74 f:write(" coeffs = {\n")
75 f:write(string.format (" %s,\n",A0))
76 f:write(string.format (" %s,\n",A1))
77 f:write(string.format (" %s,\n",A2))
78 f:write(string.format (" %s,\n",A3))
79 f:write(string.format (" %s,\n",A4))
80 f:write(string.format (" %s,\n",A5))
81 f:write(string.format (" %s,\n",A6))
82 f:write(string.format (" %s,\n",A7))
83 f:write(string.format (" %s,\n",A8))
84 f:write(" }\n")
85 f:write(" }\n")
86 f:write ("}\n")
87

49

88 f:close()
89 data:close()
90

91 end

50

E Result Species File

1 db.H = {}
2 db.H.atomicConstituents = {H=1,}
3 db.H.charge = 0
4 db.H.M = {
5 value = 1.0079400e-03,
6 units = ’kg/mol ’,
7 description = ’molecular mass ’,
8 reference = ’molecular weight from CEA2 ’
9 }

10 db.H.gamma = {
11 value = 1.6667e+00,
12 units = ’non -dimensional ’,
13 description = ’ratio of specific heats at 300.0K’,
14 reference = ’evaluated using Cp/(Cp - R) from Chemkin -II coefficients ’
15 }
16 db.H.grimechThermoCoeffs = {
17 notes = ’data from GRIMECH 3.0’,
18 nsegments = 2,
19 segment0 ={
20 T_lower = 200.0,
21 T_upper = 1000.0 ,
22 coeffs = {
23 0,
24 0,
25 2.50000000E+00,
26 7.05332819E-13,
27 -1.99591964E-15,
28 2.30081632E-18,
29 -9.27732332E-22,
30 2.54736599E+04,
31 -4.46682853E-01,
32 }
33 },
34 segment1 = {
35 T_lower = 1000.0 ,
36 T_upper = 3500.0 ,
37 coeffs = {
38 0,
39 0,
40 2.50000001E+00,
41 -2.30842973E-11,
42 1.61561948E-14,

51

43 -4.73515235E-18,
44 4.98197357E-22,
45 2.54736599E+04,
46 -4.46682914E-01,
47 }
48 }
49 }

52

F Thermo Curves Gas Calculator

1 -- A script to output Cp and h for species over temperature range 200--5000 K.
2 --
3 -- Author: C.W. Lerink
4 -- Date: 2017 -01 -30
5 --
6 -- To run this script:
7 -- $ prep -gas CH4.inp CH4 -gas -model.lua
8 -- $ gas -calc thermo -curves -for -CH4.lua
9 --

10

11 gasModelFile = ’CH4 -gas -model.lua ’
12 gmodel = GasModel:new{gasModelFile}
13

14 Q = GasState:new{gmodel}
15 Q.p = 1.0e5 -- Pa
16 Q.massf = {CH4 =1.0}
17

18 outputFile = ’CH4 -thermo.dat ’
19 print(" Opening file for writing: ", outputFile)
20 f = assert(io.open(outputFile , "w"))
21 f:write ("# 1:T[K] 2:Cp[J/kg/K] 3:h[J/kg]\n")
22

23 Tlow = 200.0
24 Thigh = 5000.0
25 dT = 50.0
26

27 for T=Tlow ,Thigh ,dT do
28 Q.T = T
29 gmodel:updateThermoFromPT(Q)
30 Cp = gmodel:Cp(Q)
31 h = gmodel:enthalpy(Q)
32 f:write(string.format (" %12.6e %12.6e %12.6e\n", T, Cp, h))
33 end
34

35 f:close()
36 print("File closed. Done .")

53

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

8.00E+03

Graph All Species

Cp values as function of T(K)

c n2o

nco nh

nh2. nh3.

nnh h2cn

hcnn hcno

hco hcco

hccoh hnco

hocn hcn

ch2_s ch2cho

ch2co ch2oh

ch3. ch3cho

ch3o ch3oh

ch4. cn

co ch

ch2. c2h2

c2h3 c2h4

c2h5 c2h6

c3h7 c3h8

c2h

Temperature (K)

C
p

 in
 k

J.
kg

 K

G Cp, T -Diagrams for GRI-Mech Species

54

-2.00E+07

-1.00E+07

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

Graph of all Species

h values as a function of Temperature (K)

c c2h2

c2h3 c2h4

c2h5 c2h6

c3h7 c3h8

ch ch2.

ch2_s ch2cho

ch2co ch2oh

ch3. ch3cho

ch3o ch3oh

ch4. cn

co h2cn

hcn hcnn

hcno hco

hcco hccoh

hnco hcon

n2o nco

nh nh2.

nh3. nnh

c2h

Temperature (K)

E
n

th
a

lp
y

h
 (

kJ
/k

g
.K

)

H h, T -Diagrams for GRI-Mech Species

55

I Thermodynamic Enthalpy Calculator Lua

1 -- CWL DRM19 in Eilmer4 (.Lua)
2 -- Compute enthalpies of each species as a test against eilmer3.
3

4 spFile = "DRM19 -gas -model.lua"
5 outFile = "DRM19 -enthalpy -values.dat"
6

7 --Condition of Check
8 p0 = 101.325 e3 --Pa
9 T0 = 2000 --K

10 total = 1+2+7.52
11 molef = {CH4=1/total , O2=2/total , N2 =7.52/ total}
12 print(" Initial gas state: p = ", p0, "T =", T0)
13

14 gm = GasModel:new{spFile}
15 Q = gm:createGasState ()
16 Q.T = T0
17 Q.p = p0
18 Q.massf = gm:molef2massf(molef)
19 gm:updateThermoFromPT(Q) --Now updated thermodynamic state from begin p,T
20

21 nsp = gm:nSpecies ()
22

23 f = assert(io.open(outFile , "w"))
24

25 f:write ("# speciesName \t h,J/kg\n")
26

27 for isp=0,nsp -1 do
28 spName = gm:speciesName(isp)
29

30 h = gm:enthalpy(Q, isp)
31 f:write(string.format ("%s \t\t % 12.6e\n", spName , h))
32 end
33

34 f:close()

56

J Lua Thermo-Comparison Script

1 --1) Open the data on enthalpy in read mode and read all lines:
2 dataE3 = io.input("enthalpy -values -drm19 -EILMER3.dat","r")
3 alldataE3 = io.read ("*all")
4

5 dataE4 = io.input("DRM19 -enthalpy -values.dat","r")
6 alldataE4 = io.read ("*all")
7

8 --Check:
9 --print(alldataE3)

10 --print(alldataE4)
11

12 species = {’H2’, ’H’, ’O’, ’O2’, ’OH’, ’H2O ’, ’HO2 ’, ’CH2 ’, ’CH2_S ’, ’CH3 ’, ’CH4 ’, ’CO’, ’CO2 ’, ’CHO ’, ’CH2O ’, ’CH3O ’, ’C2H4 ’, ’C2H5 ’, ’C2H6 ’, ’N2’, ’Ar ’}
13 nsp = 21
14 --check print(species [1])
15

16 for i = 1,nsp do
17 --i = 19
18

19 specie = string.format(species[i])
20 search = string.format ("\n%s ",specie)
21 --check print(search)
22

23 i,j = string.find(alldataE3 , search)
24 k,l = string.find(alldataE4 , search)
25 --check print(i,j,k,l)
26 newj = j+17
27 newl = l+17
28

29 line3 = string.sub(alldataE3 , i, newj)
30 line4 = string.sub(alldataE4 , k, newl)
31 --print(line3)
32

33 he3 = line3:match (".%d%.%d+e.%d+")
34 he4 = line4:match (".%d%.%d+e.%d+")
35 --check print(he3 ,he4)
36 x = math.abs(he3 -he4)
37 --check print(x)
38 seterror = 1e-3
39

40 if x < seterror then do print("CHECK , ",specie ," is all good") end
41 else print("ERROR , ",specie ," is NOT good , error = ",x)
42 end

57

43

44 end
45 print ("\n Set error was ",seterror)

58

K Results Thermo-Comparison

1 ERROR , H2 is NOT good , error = 4230
2 ERROR , H is NOT good , error = 400
3 ERROR , O is NOT good , error = 60
4 ERROR , O2 is NOT good , error = 133
5 ERROR , OH is NOT good , error = 121584
6 ERROR , H2O is NOT good , error = 343
7 ERROR , HO2 is NOT good , error = 16416
8 ERROR , CH2 is NOT good , error = 34660
9 CHECK , CH2_S is all good

10 ERROR , CH3 is NOT good , error = 16180
11 CHECK , CH4 is all good
12 CHECK , CO is all good
13 ERROR , CO2 is NOT good , error = 78
14 CHECK , CHO is all good
15 CHECK , CH2O is all good
16 CHECK , CH3O is all good
17 CHECK , C2H4 is all good
18 CHECK , C2H5 is all good
19 CHECK , C2H6 is all good
20 ERROR , N2 is NOT good , error = 154
21 CHECK , Ar is all good
22

23 Set error was 0.001

59

L Reaction Rate Calculator Lua

1 --C.W. Lerink
2

3 spFile = "DRM19 -gas -model.lua"
4 reacFile = "DRM19 -reac -file.lua"
5 outFile = "DRM19 -rate -constant -values.dat"
6

7 --Condition of Check
8 p0 = 101.325 e3 --Pa
9 T0 = 2000 --K

10 total = 1+2+7.52
11 molef = {CH4=1/total , O2=2/total , N2 =7.52/ total}
12 print(" Initial gas state: p = ", p0, "T =", T0)
13

14 gm = GasModel:new{spFile}
15 Q = gm:createGasState ()
16 Q.T = T0
17 Q.p = p0
18 Q.massf = gm:molef2massf(molef)
19 gm:updateThermoFromPT(Q) --Now updated thermodynamic state from begin p,T
20

21 rmech = ReactionMechanism:new{filename=reacFile , gasmodel=gm}
22 nReac = rmech:nReactions ()
23

24 f = assert(io.open(outFile , "w"))
25 f:write("reac no. k_f \t\t k_b\n")
26

27 rmech:evalRateConstants(Q)
28 for i=0,nReac -1 do
29 f:write(string.format ("%d \t %12.6e \t %12.6e\n",
30 i+1, rmech:k_f(i), rmech:k_b(i)))
31 end
32

33 f:close()

60

M Lua Chemical-Comparison Script

1 -- C.W. Lerink
2 --1) Open the data on enthalpy in read mode and read all lines:
3 dataE3 = io.input("rate -constant -values -drm19 -EILMER3.dat","r")
4 alldataE3 = io.read ("*all")
5

6 dataE4 = io.input("DRM19 -rate -constant -values.dat","r")
7 alldataE4 = io.read ("*all")
8

9 --Check:
10 --print(alldataE3)
11 --print(alldataE4)
12

13 nsr = 84
14

15

16 for i = 1,nsr do
17 -- i = 1
18 -- print("For reaction ",i) gets messy
19

20 search = string.format ("\n%s ",i)
21

22

23 a,j = string.find(alldataE3 , search)
24 k,l = string.find(alldataE4 , search)
25 --print(a,j,k,l)
26 newj = j+30
27 newl = l+30
28 --print(newj , newl)
29

30 line3 = string.sub(alldataE3 , j, newj)
31 line4 = string.sub(alldataE4 , l, newl)
32 --print(line3 ,line4)
33 poskf1 = 4
34 poskf2 = poskf1 + 11
35 poskb1 = poskf2 + 4
36 poskb2 = poskb1 + 11
37

38 kfe3 = string.sub(line3 , poskf1 , poskf2)
39 kbe3 = string.sub(line3 , poskb1 , poskb2)
40 kfe4 = string.sub(line4 , poskf1 , poskf2)
41 kbe4 = string.sub(line4 , poskb1 , poskb2)
42

61

43 xkf = math.abs(kfe3 -kfe4)
44 xkb = math.abs(kbe3 -kbe4)
45 --print(xkf ,xkb)
46 seterror = 1e-3
47

48 if xkf < seterror and xkb < seterror
49 then do print("CHECK , reaction ",i," is all good") end
50 else print("ERROR , reaction ",i," is NOT good , error kf = ",xkf ," and error kb = ",xkb)
51 end
52

53 end
54 print ("\ nSet error was ",seterror)
55 print ("\ nThis data is created using position searching ")

62

N Results Kinetics-Comparison

1 CHECK , reaction 1 is all good
2 ERROR , reaction 2 is NOT good , error kf = 58
and error kb = 37

3 CHECK , reaction 3 is all good
4 ERROR , reaction 4 is NOT good , error kf = 0
and error kb = 0.00939068

5 CHECK , reaction 5 is all good
6 ERROR , reaction 6 is NOT good , error kf = 0
and error kb = 0.5968

7 ERROR , reaction 7 is NOT good , error kf = 120
and error kb = 5168.1

8 ERROR , reaction 8 is NOT good , error kf = 0.0012000000000398
and error kb = 1358662999.9985

9 CHECK , reaction 9 is all good
10 ERROR , reaction 10 is NOT good , error kf = 0

and error kb = 8524285999.9904
11 ERROR , reaction 11 is NOT good , error kf = 80

and error kb = 0.049999999999272
12 ERROR , reaction 12 is NOT good , error kf = 10

and error kb = 4.4121
13 ERROR , reaction 13 is NOT good , error kf = 0

and error kb = 0.0050906
14 ERROR , reaction 14 is NOT good , error kf = 360

and error kb = 1.6000000000058
15 ERROR , reaction 15 is NOT good , error kf = 0.00097000000000058

and error kb = 26308499999970
16 ERROR , reaction 16 is NOT good , error kf = 0.23200000000088

and error kb = 92
17 CHECK , reaction 17 is all good
18 CHECK , reaction 18 is all good
19 CHECK , reaction 19 is all good
20 CHECK , reaction 20 is all good
21 CHECK , reaction 21 is all good
22 ERROR , reaction 22 is NOT good , error kf = 43

and error kb = 166
23 CHECK , reaction 23 is all good
24 CHECK , reaction 24 is all good
25 CHECK , reaction 25 is all good
26 CHECK , reaction 26 is all good
27 CHECK , reaction 27 is all good
28 ERROR , reaction 28 is NOT good , error kf = 30

and error kb = 9.0000000000146e-05

63

29 ERROR , reaction 29 is NOT good , error kf = 100
and error kb = 0.00070000000005166

30 ERROR , reaction 30 is NOT good , error kf = 0.60000000003492
and error kb = 1.320835

31 ERROR , reaction 31 is NOT good , error kf = 4
and error kb = 5.99

32 ERROR , reaction 32 is NOT good , error kf = 143
and error kb = 7357.1

33 ERROR , reaction 33 is NOT good , error kf = 0.039999999997235
and error kb = 0.0005000000000166

34 CHECK , reaction 34 is all good
35 ERROR , reaction 35 is NOT good , error kf = 0.0033000000000243

and error kb = 80
36 ERROR , reaction 36 is NOT good , error kf = 130

and error kb = 0.15000000000146
37 ERROR , reaction 37 is NOT good , error kf = 0

and error kb = 423.27
38 ERROR , reaction 38 is NOT good , error kf = 0.47999999999593

and error kb = 39
39 ERROR , reaction 39 is NOT good , error kf = 6.5999999999767

and error kb = 0.016000000000076
40 ERROR , reaction 40 is NOT good , error kf = 330

and error kb = 2.2999999999884
41 ERROR , reaction 41 is NOT good , error kf = 6.3200000000017e-09

and error kb = 0.093299999999999
42 ERROR , reaction 42 is NOT good , error kf = 41

and error kb = 4.7000000000698
43 ERROR , reaction 43 is NOT good , error kf = 15

and error kb = 2.5999999999767
44 ERROR , reaction 44 is NOT good , error kf = 20

and error kb = 9.9999999996214e-06
45 ERROR , reaction 45 is NOT good , error kf = 0

and error kb = 3.18402
46 CHECK , reaction 46 is all good
47 ERROR , reaction 47 is NOT good , error kf = 21

and error kb = 31828.8
48 ERROR , reaction 48 is NOT good , error kf = 0

and error kb = 689170
49 ERROR , reaction 49 is NOT good , error kf = 38

and error kb = 754.02
50 ERROR , reaction 50 is NOT good , error kf = 0.099999999976717

and error kb = 2.4408899999973e+17
51 CHECK , reaction 51 is all good
52 ERROR , reaction 52 is NOT good , error kf = 20

and error kb = 0.0019999999999527

64

53 ERROR , reaction 53 is NOT good , error kf = 30
and error kb = 0.020000000000437

54 CHECK , reaction 54 is all good
55 ERROR , reaction 55 is NOT good , error kf = 0

and error kb = 0.86515
56 ERROR , reaction 56 is NOT good , error kf = 0

and error kb = 2466.4
57 ERROR , reaction 57 is NOT good , error kf = 12.799999999988

and error kb = 1290648999998.6
58 ERROR , reaction 58 is NOT good , error kf = 18

and error kb = 0.00405808
59 ERROR , reaction 59 is NOT good , error kf = 3.2000000000116

and error kb = 64431.3
60 ERROR , reaction 60 is NOT good , error kf = 0

and error kb = 353.482
61 ERROR , reaction 61 is NOT good , error kf = 14

and error kb = 11010.86
62 ERROR , reaction 62 is NOT good , error kf = 10

and error kb = 91381.4
63 ERROR , reaction 63 is NOT good , error kf = 7

and error kb = 54828.8
64 CHECK , reaction 64 is all good
65 CHECK , reaction 65 is all good
66 ERROR , reaction 66 is NOT good , error kf = 0

and error kb = 66037
67 ERROR , reaction 67 is NOT good , error kf = 0

and error kb = 212549
68 ERROR , reaction 68 is NOT good , error kf = 10

and error kb = 0.47916
69 ERROR , reaction 69 is NOT good , error kf = 20

and error kb = 1759.5
70 ERROR , reaction 70 is NOT good , error kf = 0

and error kb = 63764.8
71 ERROR , reaction 71 is NOT good , error kf = 0

and error kb = 49594.9
72 ERROR , reaction 72 is NOT good , error kf = 0

and error kb = 1.2182019999986
73 ERROR , reaction 73 is NOT good , error kf = 0.75

and error kb = 1271470
74 ERROR , reaction 74 is NOT good , error kf = 0.046000000000276

and error kb = 0.000102734
75 ERROR , reaction 75 is NOT good , error kf = 2.2999999999884

and error kb = 5566.3
76 ERROR , reaction 76 is NOT good , error kf = 10.79999999993

and error kb = 4132000

65

77 ERROR , reaction 77 is NOT good , error kf = 0
and error kb = 0.0076171

78 ERROR , reaction 78 is NOT good , error kf = 12
and error kb = 494.09

79 ERROR , reaction 79 is NOT good , error kf = 3.5
and error kb = 503.14

80 ERROR , reaction 80 is NOT good , error kf = 370
and error kb = 0.021399999999971

81 ERROR , reaction 81 is NOT good , error kf = 30
and error kb = 0.0017900000000139

82 ERROR , reaction 82 is NOT good , error kf = 3
and error kb = 0.0010000000002037

83 ERROR , reaction 83 is NOT good , error kf = 70
and error kb = 0.01299999999992

84 ERROR , reaction 84 is NOT good , error kf = 1.7000000000116
and error kb = 0.11999999999898

85

86 Set error was 0.001
87

88 This data is created using position searching

66

O Fixed Volume Reactor Script

1 -- Author: Rowan J. Gollan
2 -- Date: 2017 -03 -23
3 --
4 -- A simple fixed -volume reactor.
5 --
6 -- This script is designed to run with the gas -calc program
7 -- that comes as part of the dgd collection. To run this and
8 -- capture the output in a data file , do:
9 --

10 -- > gas -calc fixed -volume -reactor.lua > output.dat
11 --
12 -- This script is a conversion of Peter Jacobs ’
13 -- fixed_volume_reactor.py that is part of the cfcfd3
14 -- code collection. That script is, in turn , a cut -down
15 -- version of Brendan O’Flaherty ’s master program for
16 -- testing many versions of the chemical reactor.
17 --
18

19 gmodel = GasModel:new{’drm19 -gas -model.lua ’}
20 Q = gmodel:createGasState ()
21 total = 1+2+7.52
22 molef = {CH4=1/total , O2=2/total , N2 =7.52/ total}
23 Q.T = 2000.0 -- K
24 Q.p = 101.325 e3 -- Pa
25 Q.massf = gmodel:molef2massf(molef)
26 gmodel:updateThermoFromPT(Q)
27 nsp = gmodel:nSpecies ()
28

29 function writeHeader ()
30 str = "# t, T_0 , p_0 , T, p, rho"
31 for isp=0,nsp -1 do
32 str = str..", ".. gmodel:speciesName(isp)
33 end
34 print(str)
35 return
36 end
37

38 function writeData(t)
39 str = string.format ("%.5e %.5e %.5e %.5e %.5e %.12e ",
40 t, Q.T, Q.p, Q.T, Q.p, Q.rho)
41 molef = gmodel:massf2molef(Q)
42 for isp=0,nsp -1 do

67

43 str = str.. string.format (" %.12e", molef[gmodel:speciesName(isp)])
44 end
45 print(str)
46 return
47 end
48

49 chem = ChemistryUpdate:new{filename=’drm19.lua ’, gasmodel=gmodel}
50

51 tEnd = 4.0e-4
52 dtChem = -1.0
53 dt = tEnd /2000
54 t = 0.0
55

56 writeHeader ()
57 writeData(t)
58

59 while t < tEnd do
60 dtChem = chem:updateState(Q, dt, dtChem , gmodel)
61 gmodel:updateThermoFromRHOE(Q)
62 t = t + dt
63 writeData(t)
64 end
65

66 print ("# Done .")

68

P Yungster Test Case Script

1 -- Author: Rowan J. Gollan (modified by Cor. W. Lerink)
2 -- Date: 2016 -01 -27
3 --
4 -- This script is used to setup a simlulation of Lehr ’s
5 -- hemispherical projectile fired into a detonable gas.
6 --
7 -- Reference:
8 -- Lehr , H. (1972)
9 -- Acta Astronautica , 17, pp.589--597

10 --
11 -- History:
12 -- 2017 -02 -23 : CWL updated it for Yungster Test Case
13 -- 2016 -01 -27 : RJG updated for eilmerD Lua input
14 -- 2015 -03 -15 : RJG re-worked eilmer3 example for M = 3.55
15 -- 2010 -02 -27 : PJ adapted for eilmer3
16 -- bits taken from sphere -heat -transfer and
17 -- mbcns2/lehr_sphere
18 --
19

20 config.title = "2D cylinder in an M=6.61 reacting flow"
21 D = 1e-3 --m
22 R = D/2 --nose radis , metres
23

24 -- free stream conditions
25 -- taken from Table 1, Entry 5
26 nsp , nmodes , gmodel = setGasModel(’DRM19 -gas -model.lua ’)
27 p_inf = 51000 -- Pa
28 M_inf = 6.61 -- m/s (M=6.61)
29 T_inf = 295 -- K
30 u_inf = 2330.0 --m/s
31 -- Stoichometric combustion of CH4: 1 CH4 + 2 O2 + 7.52 N2 (total 10.52) --> complete combustion (still in reacting flow)
32 molef_inf = {CH4 =0.095 , O2=0.19, N2 =0.715}
33 massf_inf = gmodel:molef2massf(molef_inf)
34 inflow = FlowState:new{p=p_inf , T=T_inf , velx=u_inf , massf=massf_inf}
35 initial = FlowState:new{p=p_inf/5, T=T_inf , velx=0, massf=massf_inf}
36

37 -- Now set some configuration options (no shock fitting (yet))
38 body_flow_time = R/u_inf
39 ni = 64; nj = 64
40 config.axisymmetric = false -- from true --> false (2D)
41 config.reacting = true
42 config.reactions_file = ’drm19 -reac -file.lua ’ --or ’methane -air -reaction -mechanism -yungster.lua ’

69

43 config.reaction_time_delay = 4 * body_flow_time --from 4 --> 1
44 config.flux_calculator = ’adaptive ’
45 config.gasdynamic_update_scheme = "predictor -corrector"
46 -- config.grid_motion = "shock_fitting"
47 -- config.shock_fitting_delay = 2 * body_flow_time
48 config.max_time = 20 * body_flow_time -- allow time to establish
49 config.max_step = 800000
50 config.dt_init = 1.0e-10
51 config.cfl_value = 0.4
52 config.dt_plot = config.max_time /50.0
53

54 -- Set up the geometry for defining the grid
55 a = Vector3:new{x=0.0, y=0.0}
56 b = Vector3:new{x=-R, y=0.0}
57 c = Vector3:new{x=0.0, y=R}
58 d = { Vector3:new{x=-2*R, y=0.0},
59 Vector3:new{x=-2*R, y=R},
60 Vector3:new{x=-R, y=2.5*R},
61 Vector3:new{x=0.0, y=4*R} }
62 -- Set up surface and grid
63 psurf = makePatch{north=Line:new{p0=d[#d], p1=c},
64 east=Arc:new{p0=b, p1=c, centre=a},
65 south=Line:new{p0=d[1], p1=b},
66 west=Bezier:new{points=d}}
67 grid = StructuredGrid:new{psurface=psurf , niv=ni+1, njv=nj+1}
68 -- Set up block as SBlockArray
69 blk = SBlockArray{grid=grid , fillCondition=inflow , label=’blk ’,
70 bcList ={west=InFlowBC_Supersonic:new{flowCondition=inflow},
71 north=OutFlowBC_Simple:new{}},
72 nib=2, njb=2}
73

74 -- Add some history points.
75 setHistoryPoint{x=b.x, y=b.y}
76 setHistoryPoint{x=c.x, y=c.y}
77 config.dt_history = 1.0e-8

70

	Introduction
	Addition of GRI-Mech to Eilmer4
	Working with Eilmer4
	The Eilmer4 Gas Package
	The Eilmer4 Programming Languages
	Thermodynamic Databases in Eilmer
	Conversion of the GRI-Mech species

	Chemistry for the Extended Gas Package
	Validation of the Extended Gas Package
	Thermodynamic validation with DRM-19
	Chemical validation with DRM-19
	Chemistry Solver Eilmer4
	Fixed Volume Reactor
	Yungster Test Case Non-reacting with DRM-19
	Yungster Test Case Reacting with DRM-19
	Yungster Test Case with Yungster Gas Model

	Other Internship Experiences
	Working with Linux
	The Centre for Hypersonics Laboratory Equipment
	Seminars within the Centre for Hypersonics
	New Competences and Impressions

	Acknowledgements
	The GRI-Mech database
	Comparison Thermo Coefficients CEA and GRI-Mech
	Example of the species-format of Eilmer4
	The GRI-Mech Conversion File
	Result Species File
	Thermo Curves Gas Calculator
	Cp,T-Diagrams for GRI-Mech Species
	h,T-Diagrams for GRI-Mech Species
	Thermodynamic Enthalpy Calculator Lua
	Lua Thermo-Comparison Script
	Results Thermo-Comparison
	Reaction Rate Calculator Lua
	Lua Chemical-Comparison Script
	Results Kinetics-Comparison
	Fixed Volume Reactor Script
	Yungster Test Case Script

