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Summary

Globally, 34.7 per 100,000 inhabitants suffer from out-of-hospital cardiac arrest (OHCA) each
year, of which approximately 30% presents with a cardiac rhythm of ventricular fibrillation (VF).
Less than 20% survives; the only available therapy is defibrillation, aimed at achieving a return
of spontaneous circulation. The most frequent underlying cause of VF is acute myocardial in-
farction (AMI). In-field identification of AMI could individualise resuscitation care and improve
survival.

The paddle electrocardiogram (ECG) recorded by the defibrillator provides unique, patient-
specific information in an early phase of the arrest. Quantified using ventricular fibrillation
waveform characteristics, the VF-waveform on the ECG can be analysed in real-time. Research
suggests that VF-morphology is affected by old myocardial infarction (OMI) and even more
by AMI. Studies have therefore focused on detecting OMI as a surrogate for AMI. A proof-of-
concept machine learning study applying waveform analysis on 12-lead ECGs of VF induced for
implantable cardioverter-defibrillator testing showed that lead II could identify OMI and that
detection improved when twelve leads were used. This method lacked an optimisation of input
features and did not combine specific leads.

The first aim of this thesis was to investigate the effect of established feature selection meth-
ods on the ability of support vector machines to discriminate between patients with (n=137)
and without (n=105) OMI. Models of lead II, twelve leads and lead II + V1 reached an area
under the curve (AUC) of 0.58, 0.83 and 0.76 respectively. The results showed that feature
selection and additional leads improved the detection of OMI. The main limitation was that VF
was induced electrically, indicating that these methods require validation in the out-of-hospital
setting with spontaneous VF and AMI.

The second aim was to assess the performances of similar models based on the paddle ECG
in a real-world OHCA cohort to discriminate between patients with (n=62) and without (n=40)
AMI. Models based on a single VF segment of the resuscitation reached AUCs of 0.74 and 0.72.
A model including both segments had an AUC of 0.76. Incorporating the evolution of the VF-
waveform over time and including organisation-related measures led to an acceptable detection
of AMI using the paddle ECG.

Concluding, this thesis demonstrated that selecting relevant features of multiple ECG leads
and segments improves the detection of myocardial infarction. Clinical implementation of multi-
lead models that detect AMI during the arrest is the next step to facilitate individualised OHCA
treatment and improve survival.
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Samenvatting

Wereldwijd zijn er elk jaar 34.7 gevallen van een hartstilstand buiten het ziekenhuis per 100.000
inwoners, waarvan ongeveer 30% het hartritme ventrikelfibrilleren (VF) heeft. Minder dan 20%
overleeft het; de enige beschikbare behandeling is defibrillatie, met als doel om de spontane
circulatie te herstellen. De meest voorkomende onderliggende oorzaak van VF is een acuut
hartinfarct (AHI). Het ter plaatse herkennen van een AHI zou de reanimatiezorg kunnen indi-
vidualiseren en de overleving verbeteren.

Het defibrillator elektrocardiogram (ECG) biedt unieke, patiënt-specifieke informatie in de
vroege fase van de hartstilstand. De golfvorm van het VF op het ECG kan worden gekwan-
tificeerd met VF-golfvorm karakteristieken die live kunnen worden geanalyseerd. Onderzoek
heeft aangetoond dat zowel een oud hartinfarct (OHI) als een AHI de VF-morfologie verandert.
Studies hebben zich daarom in het verleden gericht op het herkennen van OHI als surrogaat
voor AHI. Een proof-of-concept studie heeft met machine learning aangetoond dat VF-golfvorm
analyse van afleiding II van het 12-afleidingen ECG een OHI kon detecteren en dat de detectie
beter werd met het gebruik van twaalf afleidingen. Het VF werd hierbij elektrisch opgewekt
tijdens het testen van implanteerbare cardioverter-defibrillatoren. Bij deze machine learning
methode werd de invoer niet geoptimaliseerd en werden specifieke combinaties van afleidingen
niet onderzocht.

Het eerste doel van deze thesis was om te onderzoeken wat het effect is van veelgebruikte
invoerselectiemethoden op het vermogen van support vector machines om patiënten met OHI
(n=137) te onderscheiden van patiënten zonder OHI (n=105). Modellen van afleiding II, twaalf
afleidingen en afleidingen II + V1 behaalden een oppervlakte onder de receiver operating char-
acteristic van respectievelijk 0,58, 0,83 en 0,76. De resultaten lieten zien dat invoerselectie en
het gebruik van extra afleidingen de detectie van OHI verbeterden. De hoofdlimitatie was dat
VF elektrisch werd opgewekt, waardoor er validatie nodig is buiten het ziekenhuis aan de hand
van spontaan VF en AHI.

Het tweede doel was om te onderzoeken wat het vermogen is van soortgelijke modellen om
patiënten met AHI (n=62) te onderscheiden van patiënten zonder AHI (n=40), op basis van
het defibrillator ECG in een cohort van patiënten met een hartstilstand buiten het ziekenhuis.
Modellen op basis van één VF segment uit de reanimatie behaalden een oppervlakte onder de
receiver operating characteristic van 0,74 en 0,72. Een model op basis van beide segmenten
behaalde een oppervlakte onder de receiver operating characteristic van 0,76. Het meenemen
van de VF-golfvorm veranderingen door de tijd en het toevoegen van organisatie-gerelateerde
maten zorgde voor acceptabele detectie van AHI aan de hand van het defibrillator ECG.

Concluderend, in deze thesis is aangetoond dat het selecteren van relevante variabelen uit
meerdere ECG afleidingen en segmenten de detectie van hartinfarcten verbetert. Klinische im-
plementatie van modellen met meerdere afleidingen die AHI detecteren tijdens een hartstilstand
buiten het ziekenhuis is de volgende stap om reanimatiezorg te individualiseren en overleving
te verbeteren.
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1|Introduction

The global incidence rate of out-of-hospital cardiac arrest (OHCA) treated by the emergency
medical services is estimated to be 34.7 per 100.000 person-years1,2. Nearly 30% of OHCA
patients presents a cardiac rhythm of ventricular fibrillation (VF), of which 17.3% survives to
hospital discharge, more than twice as much as the survival of patients with other rhythms1,2.
Early cardiopulmonary resuscitation (CPR) at the scene of the arrest and use of automated exter-
nal defibrillators are the cornerstone of cardiac arrest care and main contributors of favourable
outcome2–6. A resuscitation attempt is currently protocolised and aimed at achieving a return of
spontaneous circulation (ROSC)7. An individualised approach of treating patients before ROSC
is achieved is therefore uncommon, yet it might for some patients improve survival chances.

The most frequent underlying cause of OHCA is acute myocardial infarction (AMI), as my-
ocardial ischaemia induces phenomena that may initiate and perpetuate VF7–13. Eliminating
ischaemia by means of intervention therefore seems important when attempting to terminate
the arrhythmia and prevent its recurrence. Novel treatment pathways have been proposed for
patients without ROSC using mechanical CPR devices and extracorporeal life support. Early
transportation and intervention according to this method have recently shown to improve sur-
vival in patients with AMI as the underlying cause of refractory VF10. A method to effectively
treat OHCA patients with AMI thus seems available. In-field identification of patients that may
benefit from such an aggressive treatment strategy remains a challenge, however.

The paddle electrocardiogram (ECG) of the defibrillator provides unique, patient-specific
information in an early phase of the arrest. The waveform on the ECG may be quantified
using ventricular fibrillation waveform characteristics (VFWC). Animal studies suggest that VF-
morphology is affected by old myocardial infarction (OMI) and even more by AMI. In both cases,
presence of myocardial infarction (MI) was associated to lower amplitude and frequency char-
acteristics14–18. In humans, similar VF-waveform changes have been described in presence of
OMI and AMI19–22. Because of this similarity, OMI has previously been used as a surrogate when
investigating the mechanism by which AMI affects the VF-waveform. VF-waveform analysis thus
offers a way to detect AMI that is worth exploring. Chapter 3 presents a literature overview on
the current status and future perspectives of VF-waveform analysis for the detection of AMI.

A study on 12-lead ECGs of VF obtained while testing implantable cardioverter-defibrillators
has shown that MI-related waveform changes occur predominantly in the leads directed at the
location of the MI21. Using multiple leads to register these local waveform changes might there-
fore improve the detection of MI. A recent proof-of-concept study used machine learning models
to demonstrate that VFWC of twelve leads as input features could detect OMI more accurately
than VFWC of a single lead23. The study lacked an optimised feature selection process and did
not investigate models based on a combination of a few selected leads. The study in chapter 4
therefore aimed to investigate the effect of established feature selection methods on the ability
of multi-lead machine learning models to detect OMI.

It is unknown whether the results described in the aforementioned proof-of-concept study
on electrically induced VF in patients with OMI can be translated to the OHCA setting of spon-
taneous VF in patients with AMI. The study in chapter 5 therefore focused on identification of
patients with AMI as the underlying cause of OHCA using the VF-waveform. The aim was to
identify predictors and to assess the discriminative ability for detection of AMI using a machine
learning approach similar to the method used in chapter 4.

Altogether, this thesis aimed to investigate and optimise machine learning methods for the
detection of MI using VF-waveform analysis. This will pave the way for future implementa-
tion of a smart defibrillator that can detect AMI as the underlying cause of OHCA to facilitate
individualised treatment strategies and improve survival chances.



2 Ventricular fibrillation waveform analysis for detection of acute myocardial infarction

References

[1] Jocelyn Berdowski, Robert A. Berg, Jan G P Tijssen, and Rudolph W. Koster. “Global incidences of out-of-
hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies”. In: Resuscitation 81.11
(Nov. 2010), pp. 1479–1487. ISSN: 03009572. DOI: 10.1016/j.resuscitation.2010.08.006.

[2] Comilla Sasson, Mary A.M. Rogers, Jason Dahl, and Arthur L. Kellermann. “Predictors of survival from out-
of-hospital cardiac arrest a systematic review and meta-analysis”. In: Circulation: Cardiovascular Quality and
Outcomes 3.1 (Jan. 2010), pp. 63–81. ISSN: 19417713. DOI: 10.1161/CIRCOUTCOMES.109.889576.

[3] Reinier A. Waalewijn, Marië A. Nijpels, Jan G. Tijssen, and Rudolph W. Koster. “Prevention of deterioration of
ventricular fibrillation by basic life support during out-of-hospital cardiac arrest”. In: Resuscitation 54.1 (July
2002), pp. 31–36. ISSN: 03009572. DOI: 10.1016/S0300-9572(02)00047-3.

[4] I. G. Stiell et al. “Modifiable factors associated with improved cardiac arrest survival in a multicenter basic
life support/defibrillation system: OPALS study phase I results”. In: Annals of Emergency Medicine 33.1 (Jan.
1999), pp. 44–50. ISSN: 01960644. DOI: 10.1016/S0196-0644(99)70415-4.

[5] Ingela Hasselqvist-Ax et al. “Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest”. In: New
England Journal of Medicine 372.24 (June 2015), pp. 2307–2315. ISSN: 15334406. DOI: 10.1056/NEJMoa1405796.

[6] J. Nas et al. “Changes in automated external defibrillator use and survival after out-of-hospital cardiac arrest
in the Nijmegen area”. In: Netherlands Heart Journal 26.12 (Dec. 2018), pp. 600–605. ISSN: 18766250. DOI:
10.1007/s12471-018-1162-9.

[7] Jasmeet Soar et al. “European Resuscitation Council Guidelines for Resuscitation 2015 Section 3. Adult ad-
vanced life support on behalf of the Adult advanced life support section Collaborators 1”. In: Resuscitation 95
(2015), pp. 100–147. DOI: 10.1016/j.resuscitation.2015.07.016.

[8] Robert J. Myerburg and Agustin Castellanos. “Cardiac Arrest and Sudden Cardiac Death”. In: Braunwald’s
Heart Disease: A Textbook of Cardiovascular Medicine. Ed. by Robert O. Bonow, Douglas L. Mann, Douglas P.
Zipes, and Peter Libby. 9th ed. Elsevier Saunders, 2012. Chap. 41, pp. 845–884. DOI: 10.1016/b978-1-4377-
0398-6.00041-x.

[9] Guillaume Debaty et al. Prognostic factors for extracorporeal cardiopulmonary resuscitation recipients following
out-of-hospital refractory cardiac arrest. A systematic review and meta-analysis. Mar. 2017. DOI: 10.1016/j.
resuscitation.2016.12.011.

[10] Demetris Yannopoulos et al. “Coronary Artery Disease in Patients With Out-of-Hospital Refractory Ventricular
Fibrillation Cardiac Arrest”. In: Journal of the American College of Cardiology 70.9 (Aug. 2017), pp. 1109–
1117. ISSN: 15583597. DOI: 10.1016/j.jacc.2017.06.059.

[11] José M. Di Diego and Charles Antzelevitch. “Ischemic ventricular arrhythmias: Experimental models and their
clinical relevance”. In: Heart Rhythm 8.12 (Dec. 2011), pp. 1963–1968. ISSN: 15563871. DOI: 10.1016/j.
hrthm.2011.06.036.

[12] K. Ramaswamy and M. H. Hamdan. “Ischemia, metabolic disturbances, and arrhythmogenesis: Mechanisms
and management”. In: Critical Care Medicine 28.10 SUPPL. (Oct. 2000), N151–7. ISSN: 00903493. DOI: 10.
1097/00003246-200010001-00007.

[13] R E Klabunde. Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins/Wolters Kluwer, 2003,
p. 243. ISBN: 1451113846.

[14] Julia H. Indik, Richard L. Donnerstein, Robert A. Berg, Ronald W. Hilwig, Marc D. Berg, and Karl B. Kern.
“Ventricular fibrillation frequency characteristics are altered in acute myocardial infarction”. In: Critical Care
Medicine 35.4 (Apr. 2007), pp. 1133–1138. ISSN: 00903493. DOI: 10.1097/01.CCM.0000259540.52062.99.

[15] Julia H. Indik et al. “The influence of myocardial substrate on ventricular fibrillation waveform: A swine
model of acute and postmyocardial infarction”. In: Critical Care Medicine 36.7 (July 2008), pp. 2136–2142.
ISSN: 15300293. DOI: 10.1097/CCM.0b013e31817d798c.

[16] Julia H. Indik et al. “Predictors of resuscitation outcome in a swine model of VF cardiac arrest: A comparison
of VF duration, presence of acute myocardial infarction and VF waveform”. In: Resuscitation 80.12 (Dec.
2009), pp. 1420–1423. ISSN: 03009572. DOI: 10.1016/j.resuscitation.2009.08.023.

[17] Julia H. Indik et al. “Predictors of resuscitation in a swine model of ischemic and nonischemic ventricular
fibrillation cardiac arrest: Superiority of amplitude spectral area and slope to predict a return of spontaneous
circulation when resuscitation efforts are prolonged”. In: Critical Care Medicine 38.12 (Dec. 2010), pp. 2352–
2357. ISSN: 15300293. DOI: 10.1097/CCM.0b013e3181fa01ee.

[18] Julia H. Indik, Daniel Allen, Michael Gura, Christian Dameff, Ronald W. Hilwig, and Karl B. Kern. “Utility of the
ventricular fibrillation waveform to predict a return of spontaneous circulation and distinguish acute from post
myocardial infarction or normal swine in ventricular fibrillation cardiac arrest”. In: Circulation: Arrhythmia
and Electrophysiology 4.3 (June 2011), pp. 337–343. ISSN: 19413149. DOI: 10.1161/CIRCEP.110.960419.

https://doi.org/10.1016/j.resuscitation.2010.08.006
https://doi.org/10.1161/CIRCOUTCOMES.109.889576
https://doi.org/10.1016/S0300-9572(02)00047-3
https://doi.org/10.1016/S0196-0644(99)70415-4
https://doi.org/10.1056/NEJMoa1405796
https://doi.org/10.1007/s12471-018-1162-9
https://doi.org/10.1016/j.resuscitation.2015.07.016
https://doi.org/10.1016/b978-1-4377-0398-6.00041-x
https://doi.org/10.1016/b978-1-4377-0398-6.00041-x
https://doi.org/10.1016/j.resuscitation.2016.12.011
https://doi.org/10.1016/j.resuscitation.2016.12.011
https://doi.org/10.1016/j.jacc.2017.06.059
https://doi.org/10.1016/j.hrthm.2011.06.036
https://doi.org/10.1016/j.hrthm.2011.06.036
https://doi.org/10.1097/00003246-200010001-00007
https://doi.org/10.1097/00003246-200010001-00007
https://doi.org/10.1097/01.CCM.0000259540.52062.99
https://doi.org/10.1097/CCM.0b013e31817d798c
https://doi.org/10.1016/j.resuscitation.2009.08.023
https://doi.org/10.1097/CCM.0b013e3181fa01ee
https://doi.org/10.1161/CIRCEP.110.960419


Chapter 1 3

[19] Theresa M. Olasveengen, Trygve Eftestøl, Kenneth Gundersen, Lars Wik, and Kjetil Sunde. “Acute ischemic
heart disease alters ventricular fibrillation waveform characteristics in out-of hospital cardiac arrest”. In:
Resuscitation 80.4 (Apr. 2009), pp. 412–417. ISSN: 03009572. DOI: 10.1016/j.resuscitation.2009.01.
012.

[20] Judith L. Bonnes et al. “Characteristics of ventricular fibrillation in relation to cardiac aetiology and shock suc-
cess: A waveform analysis study in ICD-patients”. In: Resuscitation 86 (Jan. 2015), pp. 95–99. ISSN: 18731570.
DOI: 10.1016/j.resuscitation.2014.10.003.

[21] Judith L. Bonnes et al. “Ventricular fibrillation waveform characteristics differ according to the presence of
a previous myocardial infarction: A surface ECG study in ICD-patients”. In: Resuscitation 96 (Nov. 2015),
pp. 239–245. ISSN: 18731570. DOI: 10.1016/j.resuscitation.2015.08.014.

[22] Michiel Hulleman et al. “Predictive value of amplitude spectrum area of ventricular fibrillation waveform in
patients with acute or previous myocardial infarction in out-of-hospital cardiac arrest”. In: Resuscitation 120
(Nov. 2017), pp. 125–131. ISSN: 18731570. DOI: 10.1016/j.resuscitation.2017.08.219.

[23] Jos Thannhauser et al. “Computerized analysis of the ventricular fibrillation waveform allows identification
of myocardial infarction: a proof-of-concept study for smart defibrillator applications in cardiac arrest”. In:
Journal of the American Heart Association (2020).

https://doi.org/10.1016/j.resuscitation.2009.01.012
https://doi.org/10.1016/j.resuscitation.2009.01.012
https://doi.org/10.1016/j.resuscitation.2014.10.003
https://doi.org/10.1016/j.resuscitation.2015.08.014
https://doi.org/10.1016/j.resuscitation.2017.08.219


4



5

2|Background

2.1 Clinical background

2.1.1 Sudden cardiac arrest, coronary artery disease and ventricular fibrillation

The term sudden cardiac death (SCD) is used to describe a natural death from cardiac cause,
heralded by an abrupt loss of consciousness within one hour of the onset of an acute change in
cardiovascular status1. Severe atherosclerosis of the coronary arteries is known to be the most
common cause of SCD or sudden cardiac arrest (SCA) when not fatal; for approximately half of
the patients it is the first manifestation of the disease2,3. Numerous reviews have estimated this
disease to be present in 70-80% of SCD victims3–6. Early evidence for this was found in autopsy
studies7–10. Later studies that included clinical evaluation of SCA survivors further affirmed this
estimation11–13. Although the underlying disease is the same, it is interchangeably referred to in
literature as coronary artery disease (CAD), coronary heart disease and ischaemic heart disease;
here the term CAD will be used.

SCA may present itself as a tachyarrhythmia or bradyarrhythmia. The former includes pulse-
less ventricular tachycardia (VT) and ventricular fibrillation (VF). SCAs that occur as a result of
myocardial ischaemia due to CAD most commonly present as tachyarrhythmias1,14,15. The per-
centage of out-of-hospital cardiac arrest (OHCA) patients with a rhythm of VF upon arrival of
the emergency medical services is approximately 30%16. This includes both initial VF rhythms
and VTs that have deteriorated into VF. In a significant portion of patients, OHCA is therefore
thought to be related to CAD.

The pathophysiological changes caused by CAD-related myocardial ischaemia result in elec-
trical instability which can trigger these lethal arrhythmias. These mechanisms will be elabo-
rated upon in section 2.1.2. As the rhythmic electrical activity is lost, the coordinated myocardial
contraction stops. This results in a loss of pumping function and haemodynamic collapse that
will ultimately lead to death without adequate treatment in the form of defibrillation17,18.

2.1.2 Acute myocardial ischaemia and ventricular fibrillation

Electrical activation of the myocardium occurs through the propagation of action potentials
(APs) caused by consecutive ionic currents across the cell membrane. Regulation of adequate
intracellular and extracellular ion concentrations is needed in order to establish rhythmic AP
generation. This is a complex process, involving different ion channels that are influenced by a
range of factors.18–20

Acute ischaemia induces changes in both the intracellular and extracellular environment
that evolve over the course of the ischaemia. Among other things it leads to a rise of the
extracellular K+ concentration, depolarising the membrane potential. This partially inactivates
the Na+ channels that are responsible for the rapid upstroke of the AP, thereby suppressing
the excitability of myocytes and slowing the AP propagation. These are two examples of the
multitude of changes caused by ischaemia, each affecting the shape and duration of APs and
subsequently their ability to propagate through the myocardium. Figure 2.1 displays typical
changes that occur to the ventricular myocyte AP as a result of ischaemia. Altogether, these
AP changes caused by myocardial ischaemia increase the likelihood of events that may trigger
tachyarrhythmias such as VF.14,21–24

The two major mechanisms of VF initiation are reentry excitation and presence of extrasys-
toles; both may be the result of myocardial ischaemia14. As a consequence of ischaemia, tissue
may become less excitable or inexcitable, splitting the wavefront of an approaching AP into two
pathways. Ischaemia might furthermore cause a unidirectional block to occur in either of the



6 Ventricular fibrillation waveform analysis for detection of acute myocardial infarction

Figure 2.1: A schematic depiction of the slowing of the upstroke, amplitude decrease and shortening
of the ventricular action potential and depolarisation of the membrane potential as a result of
ischaemia. Adapted from "Regulation of ion channels and arrhythmias in the ischemic heart", J.G.
Akar, 2007, Journal of Electrocardiology, 40.22

pathways, as well as alter the conduction velocity. If the conduction around the inexcitable
region is slow enough, reentry excitation may occur. This might start out as VT, but may degen-
erate into VF.14,17,18,21

Extrasystoles may occur due to early or delayed afterdepolarisations or abnormal automatic-
ity. Early afterdepolarisation can occur when the AP duration is prolonged and Ca2+ channels
reactivate during the repolarisation phase. This increases the membrane potential to its firing
threshold and generates a new AP prematurely. High intracellular Ca2+ levels may furthermore
lead to a transient inward current, evoking an AP via a process called delayed afterdepolarisa-
tion.24–26 Abnormal automaticity occurs when otherwise non-pacemaker cells such as ventric-
ular cells begin depolarising automatically, creating extrasystoles. In case of ischaemia, this is
usually caused by currents of injury which will be elaborated upon in section 2.1.4. When ab-
normal automaticity causes repetitive fast depolarisation, it might overdrive the automaticity of
the sinoatrial node, thereby inducing arrhythmia.

Thus, electrical instability due to myocardial ischaemia related changes may give rise to
phenomena that induce tachyarrhythmias such as VF.14,21,24,27,28

2.1.3 The basics of electrocardiography

An important diagnostic tool in cardiology is the electrocardiogram (ECG). Surface electrodes
measure the compound electrical activity produced by all myocytes during the cardiac cycle.
Clinical ECGs are normally recorded using ten electrodes: four limb electrodes placed on each
wrist and foot and six thorax electrodes placed on the anterior and left lateral side of the thorax.
These electrodes can be used to compute the potential difference in twelve directions. Each
direction is called a lead, from which the term 12-lead ECG is derived.

The potential at the right wrist, left wrist and left foot are called vA, vB and vC respectively,
with the right foot electrode being the reference. These produce the frontal leads I, II, and III,
as is shown in figure 2.2.18 They are derived in the following way:

I = vB − vA (2.1)

II = vC − vA (2.2)

III = vC − vB (2.3)
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The three augmented frontal leads aVR, aVL and aVF are described by:

aVR = vA −
1

2
(vB + vC) = −1

2
(I + II) (2.4)

aVL = vB −
1

2
(vA + vC) =

1

2
(I− III) (2.5)

aVF = vC −
1

2
(vA + vB) =

1

2
(II + III) (2.6)

These six leads divide the frontal plane into twelve 30◦ segments; each lead pointing in one
direction or the opposite way. Figure 2.3 shows the six frontal leads with their respective an-
gle.18,29,30

Figure 2.2: The six frontal ECG leads. Adapted from Medical Physiology (p. 516), W. Boron and E.
Boulpaep, 2012.18

Figure 2.3: A) Directions of the six frontal leads. B) The angle of the leads. Adapted from Medical
Physiology (p. 517), W. Boron and E. Boulpaep, 2012.18
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In order to evaluate the electrical activity in a plane other than the frontal plane, the six
thorax electrodes are used to compute the six precordial leads V1, V2, V3, V4, V5 and V6 that
lie in the transverse plane. They represent the potential difference between one of the thorax
electrodes (vi) and the electrical average of the three limb electrodes:

Vi = vi −
1

3
(vA + vB + vC) (2.7)

with i ∈ {1, 2, ..., 6}. Figure 2.4 shows the location of the six thorax electrodes and the precordial
leads in the transverse plane that are derived from them.18,29–31

Figure 2.4: The locations of the six precordial electrodes and leads derived from them. Adapted from
Medical Physiology (p. 516), W. Boron and E. Boulpaep, 2012.18

2.1.4 The electrocardiogram of sine rhythm

The normal heart

The 12-lead ECG is one of the most common diagnostic tools in cardiology as it is cheap, quick to
make and can provide a lot of information about a patient’s cardiac status. Arrhythmias can be
recognised by investigating the underlying rhythm and other abnormalities can be traced back
to a specific myocardial region by looking at the phase of the cardiac cycle and the leads in which
they occur. The cardiac cycle is the result of the consecutive depolarisation and repolarisation
of the myocardium as the AP travels along the conduction pathways. Figure 2.5 schematically
visualises these conduction pathways18. The cardiac cycle of a normal heart is composed of
several phases. The P wave occurs first, the Q, R and S waves which make up the QRS complex
follow and the T wave marks the end of the cycle. Figure 2.6 shows the cardiac cycle of a normal
heart.18,29,30

P wave

The cardiac cycle starts with activation by the pacemaker cells of the sinoatrial node, located
in the superior posterolateral wall of the right atrium. The atria depolarise as the AP travels
through the internodal pathways to the atrioventricular node. The atrial depolarisation is rep-
resented on the ECG by the P wave. The AP is delayed shortly by the atrioventricular node
and then travels on through the fast-conducting Purkinje fibres in the bundle of His which splits
into the left and right bundle branches. As the propagation through this part of the conduction
system does not depolarise myocardial tissue, an electrical silence is visible on the ECG between
the P wave and QRS complex, which is termed the PR segment. The P wave and PR segment
together compose the PR interval which normally lasts between 0.12 and 0.20 second.18,19,29,30
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Figure 2.5: The conduction pathways mapped onto a cross-section of the long heart axis. SA: sinoa-
trial, AV: atrioventricular. Adapted from Medical Physiology (p. 505), W. Boron and E. Boulpaep,
2012.18

QRS complex

As the Purkinje fibres of the bundle branches split into smaller bundles, they ultimately be-
come continuous with the ventricular muscle fibres. Ventricular depolarisation starts once the
AP reaches these fibres. The large number of depolarising cells results in a peak of electrical
activity represented by the QRS complex on the ECG. The depolarisation front moves from the
ventricular septum along the endocardial surface and finally spreads through the muscle to the
outside of the heart. Because the depolarisation occurs in a successive way, the electrical vec-
tor changes direction over time. This causes the QRS complex to consist of multiple waves in
opposite directions instead of a single large wave. The exact configuration of the QRS complex
depends on the direction in which it is viewed and is therefore different for each ECG lead. The
QRS complex normally has a duration of less than 0.10 second. Conduction is considered to
be delayed when the QRS complex lasts longer than 0.12 second. The J-point occurs directly
after the QRS complex and represents the electrical baseline, since the entire ventricular mass
is depolarised at that instant.18–20,29,30

T wave

Repolarisation of the ventricles begins shortly after they have been depolarised. It begins with
the outer ventricular surface that was the last to depolarise; the endocardial areas repolarise
last. Ventricular repolarisation is visible as the T wave on the ECG. The QT interval spans from
the beginning of the QRS complex to the end of the T wave and is influenced by the heart rate.
Its corrected version, the QTc interval, is derived by dividing the QT interval by the square root
of the heart rate. A normal QTc interval is shorter than 0.45 or 0.46 second for men and women
respectively. Once repolarisation has finished, the normal cardiac cycle is complete and will start
over.18–20,29,30
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Figure 2.6: The waves and intervals of a normal electrocardiogram. Adapted from Braunwald’s
Heart Disease: A Textbook of Cardiovascular Medicine, chapter 13, (p. 132), D. Mirvis, and A.
Goldberger, 2012.30

U wave

A U wave is usually not present in the normal ECG. Since figure 2.6 shows a U wave it is
addressed anyway for the sake of completeness. The origin of the U wave is uncertain, though
several theories exist30,32. The electromechanical hypothesis is that it is caused by stretch-
induced delayed afterdepolarisations occurring as a result of ventricular wall distension during
rapid filling32. Other theories suggest that it is caused by electrical potential gradients within
the ventricular myocardium or between the myocardium and the His-Purkinje system30.

The ischaemic heart

The electrophysiological changes caused by acute ischaemia can be monitored with the ECG,
making it an important diagnostic tool. The most common cause of acute ischaemia in CAD pa-
tients is coronary occlusion by a thrombus after atherosclerotic plaque disruption. If this leads
to SCA, the defibrillator ECG advises whether or not defibrillation is required by distinguishing
between bradyarrhythmia and tachyarrhythmia. In most cases however, acute myocardial is-
chaemia does not lead to SCA but rather leads to the clinical presentation of acute coronary syn-
drome (ACS). The ECG plays an important role in differentiating between the three types of ACS
known as unstable angina, ST-elevation myocardial infarction (STEMI) and non-ST-elevation
myocardial infarction (NSTEMI).33–35

The effect of acute ischaemia on the normal electrocardiogram

The least severe type of ACS occurs when the ischaemia is reversible and of short duration such
that no myocardial necrosis occurs; it is referred to as unstable angina. Longer lasting ischaemia
causes tissue necrosis known as myocardial infarction (MI), which is accompanied by the release
of the cardiac biomarker troponin34. Elevation of the ST-segment on the ECG is used to further
categorise acute myocardial infarction (AMI) into STEMI or NSTEMI.

A NSTEMI tends to occur when the coronary artery is not fully occluded. The ischaemia may
therefore be short-lived or affect only a small area. A STEMI is generally a more severe MI that
lasts longer and affects a larger myocardial volume; it is often caused by complete and persistent
coronary occlusions.33–38 The ECG-based distinction between STEMI and NSTEMI is relevant
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because of a difference in treatment strategy. Current European and American guidelines both
recommend to perform immediate coronary angiography (CAG) and percutaneous coronary
intervention (PCI) in case of a STEMI when ischaemic symptoms have been present for less than
twelve hours39,40. A NSTEMI does not require equally aggressive treatment, as immediate CAG
and PCI were not found to be superior to delayed CAG and PCI in terms of 90 day survival41.

This illustrates the diagnostic value of the ECG in the setting of ACS when an organised
rhythm is present. Numerous changes besides ST-segment elevation may occur in the ischaemic
ECG, usually in a sequential manner.

Hyperacute T waves

The first electrocardiographic sign of acute ischaemia is usually the presence of tall, hyperacute T
waves. The T wave describes ventricular repolarisation; hyperacute T waves are thought to arise
as a result of slow repolarisation of ischaemic areas. Other pathologies may show hyperacute T
waves as well, so in the absence of other clinical evidence they are not specific for myocardial
ischaemia. Hyperacute T waves may occur as soon as two minutes after the onset of ischaemia
and often evolve into ST-segment deviations after approximately thirty minutes.42,43

ST-segment deviation

Appearing twenty minutes to several hours after onset of ischaemia, deviation of the ST-segment
is usually the first noticed ECG sign in the emergency department. ST-segment deviation is the
result of a current of injury. The formation of this current can be explained by two theories;
there is no scientific consensus on which theory is correct. Both types, the diastolic and systolic
current of injury, arise because of an electrical potential gradient between ischaemic and healthy
tissue.20,30,42

The diastolic current can be explained by a potential gradient caused by the inability of is-
chaemic tissue to maintain polarisation. This potential difference disappears together with the
current immediately after cardiac depolarisation, which corresponds to the the J-point on the
normal ECG, as shown in figure 2.618,20,30,42. The current reappears once the myocardium repo-
larises, indicated by the TP-interval on the ECG. A potential difference between depolarisation
(the J-point) and repolarisation (the TP-interval) therefore indicates the presence of a diastolic
current of injury. With the TP-interval as electrical baseline, the current manifests as a depres-
sion or elevation of the J-point and ST-segment relative to this interval. As the current flows
away from the ischaemic zone, the ECG lead pointing towards this zone will show the negative
of this current. The TP-interval in this lead will therefore be negative compared to the J-point,
which characterises as ST-elevation. Conversely, the ECG lead follows the current when it points
away from the ischaemic zone. This makes the TP-interval positive compared to the J-point and
the ECG will therefore exhibit ST-depression.18,20,30,42

The systolic current of injury is thought to arise because of a potential gradient between the
ischaemic and healthy tissue during systole. This gradient occurs because of altered depolarisa-
tion in ischaemic tissue caused by changes in AP shape and duration. It results in current flow
towards the ischaemic area, which causes primary ST-elevation in the ECG leads pointing in this
direction.30,42

Both the diastolic and systolic current theories explain how ischaemia may cause ST-elevation
and reciprocal ST-depression and in which ECG leads these phenomena occur. In contrast to
these theories, leads aimed towards an area of ischaemia may show ST-depression rather than
ST-elevation, which is suspicious for NSTEMI. This may occur when the ischaemia is subendocar-
dial rather than transmural, resulting in a current of injury flowing in the opposite direction.30

An example ECG of STEMI is shown in figure 2.7. It illustrates how a large anterolateral AMI
may show ST-elevation in leads I, aVL and V1-V6 pointing anteriorly and laterally. Additionally,
leads pointing in the opposite direction such as III, aVR and aVF may display reciprocal ST-
depression.30
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Figure 2.7: Acute anterolateral myocardial infarction, showing ST-elevation in anterolateral leads
I, aVL and V1-V6 and reciprocal ST-depression in III, aVR and aVF. Adapted from Braunwald’s Heart
Disease: A Textbook of Cardiovascular Medicine, chapter 13, (p. 149-158), D. Mirvis, and A.
Goldberger, 2012.30

Pathologic Q wave formation

An ECG of AMI may develop abnormal or pathologic Q waves within minutes to several hours
after the onset of ischaemia. Appearing in the direction of the infarction, pathologic Q waves
represent an electrical silence as necrotic myocardium is no longer able to propagate APs. Ther-
apy aimed at coronary reperfusion may still be of benefit for the patient once pathologic Q waves
appear, since some of the ischaemic tissue may be salvageable. Q waves caused by small MIs
may disappear over time as the size of myocardial scar reduces. Extensive MIs will result in
permanent Q waves.30,42,43

T wave inversion

Inversion of the T wave is one of the latest signs of an evolving MI and may be seen hours to days
after onset. Similar to hyperacute T waves in the first phase of MI, T wave inversion is caused
by alterations of ventricular repolarisation. The repolarisation vector will flip as epicardial re-
polarisation delays, now moving from endocardium to epicardium instead of the opposite way.
T wave inversion indicates the MI is transmural since the compromised area must include the
epicardium. They may remain inverted permanently or may revert after a few months, which is
indicative of good myocardial recovery with higher left ventricular ejection fractions.30,42–44

ST-segment normalisation

ST-segment deviations are usually the longest lasting electrocardiographic changes of a STEMI
and will begin to normalise approximately twelve hours after onset. The potential gradient
between the ischaemic and healthy tissue that caused the current of injury decreases as the is-
chaemic tissue necroses and loses electrical activity. ST-elevation diminishes gradually, which
may take approximately two weeks for inferior MIs but much longer for anterior MIs. ST-
elevation may normalise after successful reperfusion therapy. This is generally a good prognostic
sign, indicating that the myocardial microcirculation is restored properly.42,43
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2.2 Technical background

2.2.1 Quantifying the ventricular fibrillation waveform

During VF, the rhythmic electrical activity that coordinates myocardial contraction becomes dis-
organised. This results in a loss of pumping function and haemodynamic collapse. Since the
1980s, many different ventricular fibrillation waveform characteristics (VFWC) have been in-
troduced as a means to objectify the seemingly chaotic and unstructured waveform45,46. These
VFWC may describe signal properties in the time or frequency domain, or may describe the
organisation of the signal. Here, an overview is presented of how the VFWC used in this the-
sis were computed. The formulas include numbers and indexing based on the data analysed
in chapter 4 to clarify the computational steps. The VFWC analysed in chapter 5 were com-
puted using the same formulas but with different indexing, appropriate for the data. First, an
explanation is given of how the data were acquired.

Data acquisition

Electrically induced ventricular fibrillation

The VF analysed in chapter 4 was recorded during implantable cardioverter-defibrillator testing
with a 12-lead surface ECG using the BARD R© LabSystem

TM
Pro (Lowell, MA, USA) with a sam-

pling frequency (fs) of 1000 Hz and a 16 bit A/D converter. Approximately thirty seconds were
recorded, including a period before VF induction and after VF termination.

The data were analysed using MATLAB R© (version 2020a, MathWorks R©, Natick, MA, USA).
The 4.1-second segment of VF prior to first shock delivery was selected manually and pre-
processed with a fourth order Butterworth bandpass filter with cut-off frequencies of 1 and
48 Hz. Visually identified artefacts were removed and replaced by linear interpolation. This
resulted in the time domain signal xn with n ∈ {1, 2, ..., N} and a number of samples N = 4096.

An overview of the VFWC computed from these time domain signals is presented below.
Seventeen regular VFWC were computed of all twelve leads, amounting to 12∗17 = 204 regular
VFWC. Furthermore, the differences between the VFWC of each lead and the corresponding
VFWC of lead V1 were computed, resulting in an additional 11 ∗ 17 = 187 features named the
∆V1 VFWC. As such, a total of 204 + 187 = 391 VFWC was acquired per patient.

Spontaneous ventricular fibrillation

The VF analysed in chapter 5 was recorded during OHCA with the paddles of a LIFEPAK 12
defibrillator (Physio-Control, Redmond, WA, USA) with an fs of 125 Hz.

The data were analysed using MATLAB R© (version 2020a, MathWorks R©, Natick, MA, USA).
The data were pre-processed with a fourth order Butterworth bandpass filter with cut-off fre-
quencies of 1 and 48 Hz. A graphical user interface was developed to review each ECG and
select a three-second segment of VF without chest compressions before the first, and if avail-
able, the second defibrillation shock. This resulted in one or two time domain signals xn with
n ∈ {1, 2, ..., N} and a number of samples N = 375.

Seventeen VFWC were computed from each time domain signal. Additionally, the differences
between the VFWC of the two segments were computed, resulting in seventeen extra VFWC.
Patients with a two or more defibrillation shocks therefore had a total of 3∗17 = 51 VFWC while
patients with one shock had 17.
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Time domain characteristics

Mean absolute amplitude (mV)

The mean absolute amplitude (MAA) is acquired by taking the mean of the absolute values of
the segment:

MAA =
1

N

N∑
i=1

|xi|. (2.8)

Median slope (mVs-1)

The median slope (MS) is acquired by computing the difference between subsequent samples in
the VF segment. The absolute value of this difference vector is then taken and multiplied by the
sampling frequency. The median of the resulting vector is the MS:

MS = median(|xi − xi−1| · fs) (2.9)

for 2 ≤ i ≤ 4096.

Frequency domain characteristics

To acquire the frequency domain characteristics, the time domain signal is transformed into the
frequency domain by fast Fourier transform (FFT) without windowing. This results in a vector
of N = 4096 coefficients x̂0, x̂1, ..., x̂N−1. The absolute values of the first N/2 + 1 = 2049 indices
that correspond to the positive frequencies fi = i · fs/N with i ∈ {0, 1, ..., N/2} are kept. Since
the frequencies between 2 and 48 Hz are of interest, only indices 9 ≤ i ≤ 196 so that 2 < fi < 48
Hz are used to compute the frequency characteristics. The total area of the amplitude spectrum
within this frequency range is approximated via trapezoidal integration:

Areatotal = ∆f(

196∑
i=9

|x̂i|2 −
|x̂9|2 + |x̂196|2

2
), [Areatotal] = mV 2 (2.10)

where ∆f = fs/N is the frequency step size. This factor was falsely assumed to be equal to 1 in
this thesis and was therefore omitted in calculations. This resulted in an overestimation of the
total area by a factor of approximately four since the frequency step size was fs/N = 1000/4096.
Since the area was only used for the computation of the median frequency, as will be explained
in the next paragraph, this mistake did not have any consequences.

Median frequency (Hz)

The median frequency (FM) is the smallest frequency fk for which the area of the partial spec-
trum it encloses between boundaries 2 Hz and fk is more than 50% of the total area. Here,
fk = k · fs/N and k ∈ {9, 10, ..., 196}, and the partial spectrum area is approximated by trape-
zoidal integration:

Areapartial = ∆f(
k∑
i=9

|x̂i|2 −
|x̂9|2 + |x̂k|2

2
), [Areapartial] = mV 2. (2.11)

Dominant frequency (Hz)

The dominant frequency (FD) is the frequency fi for which |x̂2i | is maximal, with 9 ≤ i ≤ 196.
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Amplitude spectrum area (mVHz)

The amplitude spectrum area (AMSA) is the normalised sum of the absolute values of the fre-
quencies multiplied by the corresponding Fourier coefficients:

AMSA =
1

N/2 + 1

196∑
i=9

|x̂i ∗ fi|. (2.12)

Low frequency AMSA (mVHz)

The low frequency AMSA (AMSAlf) is the AMSA computed for frequencies 2 < fi < 12 Hz,
meaning 9 ≤ i ≤ 49.

High frequency AMSA (mVHz)

The high frequency AMSA (AMSAhf) is the AMSA computed for frequencies 12 < fi < 48 Hz,
meaning 50 ≤ i ≤ 196.

AMSA ratio

The AMSA ratio is the ratio between high and low frequency AMSA:

AMSAratio =
AMSAhf
AMSAlf

. (2.13)

Power spectrum area (mV2Hz)

The power spectral density (PSD) is a measure of the power present in the signal per unit of
frequency. It is estimated by: PSDi ≈ βi|x̂i|2 with i ∈ {0, 1, ..., N/2} and

βi =


2

1

fsN
i ∈ {1, 2, ..., N/2− 1},

1

fsN
i = 0 or i = N/2.

The power spectrum area (PSA) is derived from the PSD estimate as follows:

PSA =
fs
N

196∑
i=9

|PSDi · fi|. (2.14)

Organisation characteristics

Bandwidth (Hz)

Similar to how the median frequency is derived, the frequencies fk for which the partial spec-
trum areas are 25% and 75% of the total spectrum area are computed. The difference between
these frequencies is the bandwidth (BW).

Envelope characteristics

The fluctuation of the time domain signal is quantified using four VFWC describing the shape
of the upper envelope of the VF. The original, unfiltered VF segment is passed through a fourth
order low pass Butterworth filter with a cut-off frequency of 20 Hz to remove noise. It is then
normalised so that the amount of fluctuation can be compared in an equivalent manner between
different patients. Next, the upper envelope of the segment is computed using the MATLAB R©

function envelope. Envelope calls the findpeaks function which finds local maxima in the VF
segment constrained by a minimal peak height of 0 and a minimal peak prominence of 0.5.
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Furthermore, a minimal distance between two peaks is ensured to be 2/3 of the dominant fre-
quency, defined earlier. The envelope function then connects the peaks using linear interpolation
to construct the upper envelope of the VF segment.

The settings for linear interpolation and each of the findpeaks arguments were optimised
iteratively by visually assessing the goodness of the envelope fit. In this process, the 12-lead
VF recordings of thirty patients were inspected using different settings, resulting in the final
combination mentioned here.

Four new VFWC have been created to describe the fluctuation of the upper envelope en
with n ∈ {1, 2, ..., N} and the number of samples N = 4096. The mean of the upper envelope
(flucmean) and variance of the upper envelope (flucvar) are defined as:

flucmean =
1

N

N∑
i=1

ei, [flucmean] = mV, (2.15)

flucvar =
1

N

N∑
i=1

[ei − µ]2, [flucvar] = mV 2 (2.16)

with µ the average value as defined by flucmean. The root-mean-square of the upper envelope
derivative (flucrms) and mean absolute amplitude of the upper envelope derivative (flucmaa)
describe how the upper envelope changes over time. They quantify this change using the time
derivative e′n:

e′n =
en − en−1

Ts
(2.17)

for 2 ≤ n ≤ 4096 and with time step Ts = 1/fs. In this thesis, a mistake was made in defining this
derivative. 2Ts was used for the denominator rather than Ts. The magnitude of the derivative
was therefore a factor 2 smaller as well as the magnitudes of the flucrms and flucmaa which were
computed by taking the root-mean-square and the mean absolute amplitude of the derivative:

flucrms =

√√√√ 1

N − 1

N−1∑
i=1

[e′i]
2, [flucrms] = mV s−1, (2.18)

flucmaa =
1

N − 1

N−1∑
i=1

|e′i|, [flucmaa] = mV s−1. (2.19)

Organisation index

The organisation index (OI) describes the ratio between the power of the dominant frequency
and its harmonics combined and the total power given by the PSD estimate. The power of the
dominant frequency and its harmonics is defined as the area of the PSD estimate around the
peak with a bandwidth such that the border frequencies have an amplitude as large as 25% of
the peak itself.

Figure 2.8 shows an example of how the OI is computed. The first and highest peak of the
spectrum is the dominant frequency. The subsequent peaks represent its harmonics. The dark
coloured regions represent the areas around the peaks. The borders of the shaded areas are
those frequencies for which the amplitude is less than 25% of the peak amplitude. The ratio
between the sum of the shaded areas and the total area of the spectrum is the OI.

Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was first described by Peng et al. and offers a way to
analyse long-range correlations within a time series48,49. In contrast to conventional time or
frequency domain analysis, this method is well-suited to analyse non-stationary data such as the
ECG.
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Figure 2.8: Power spectrum density estimate of a segment of ventricular fibrillation. The organ-
isation index is defined as the ratio between the shaded area and the total area of the spectrum.
DF: dominant frequency. Adapted from "Computerized analysis of the ventricular fibrillation wave-
form allows identification of myocardial infarction: a proof-of-concept study for smart defibrillator
applications in cardiac arrest", by J. Thannhauser et al, 2020, Journal of the American Heart Asso-
ciation.47

DFA is performed according to the following steps and illustrated by figure 2.9. The offset
is corrected by subtracting the mean from the original time domain signal xn after which it is
integrated by taking the cumulative sum:

yn =
N∑
i=1

[xi − xmean] (2.20)

where xi is the ith sample of xn, xmean its mean, yn the integrated signal and N the signal
length in samples. This is shown in the upper three panels (0), (1) and (2) of figure 2.9.
Then, the integrated signal yn is divided into equally sized boxes of sample length b, with b ∈
{21, 22, ..., 212}. A least-squares line is fit to the data in each box to compute the local trend zn.
The detrended signal is then created by subtracting the local trend from the integrated signal yn.
The local trend in each box and the corresponding detrended signal is shown twice in the lower
panels (3) and (4) of figure 2.9, for two different box sizes. The fluctuation F as a function of
box size b is calculated by taking the root-mean-square of the detrended signal:

F (b) =

√√√√ 1

N

N∑
i=1

[yn − zn]2. (2.21)

The fluctuation F (b) is plotted against b using logarithmic axes, as can be seen in panel (5) of
figure 2.9. The DFA scaling exponent α is the slope of the trend line estimated using linear
regression. Two trend lines can be used instead of one to ensure a better fit. This study uses DFA
scaling exponent 1 (DFAα1) and DFA scaling exponent 2 (DFAα2) as VFWC. Each α represents
the DFA on a different time scale. DFAα1 was created using small box sizes and therefore
describes the DFA on a short time scale between 0.002 and 0.064 seconds. DFAα2 was created
using large box sizes and covers the larger time scale between 0.128 and 4.096 seconds.

In general, the larger the value of α, the smoother the original signal. Hence, a small value
for α indicates that the signal fluctuates a lot while a large value suggests a smooth signal.48,49
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Figure 2.9: The steps used in detrended fluctuation analysis. (0) The original signal over time. (1)
The original signal minus its mean. (2) The integrated signal. (3) The integrated signal divided
into equally sized boxes and their local trends. (4) The integrated signal minus the local trends,
creating the detrended signal. (3) and (4) are shown twice for two different box sizes. (5) The
fluctuation of the detrended signal as a function of box size on logarithmic scales, quantified by
the scaling exponents α1 and α2. DFA: detrended fluctuation analysis, RMS: root-mean-square.
Adapted from "Computerized analysis of the ventricular fibrillation waveform allows identification
of myocardial infarction: a proof-of-concept study for smart defibrillator applications in cardiac
arrest", by J. Thannhauser et al, 2020, Journal of the American Heart Association.47
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2.2.2 Analysing the ventricular fibrillation waveform

Using the aforementioned VFWC, the VF-waveform has been analysed for many different pur-
poses over the last years46. It has been associated to several clinical outcomes and has been able
to predict some as well, such as shock success50–58. Another relevant application is the use of
VFWC to diagnose underlying diseases. Of particular importance for this thesis is the influence
of old myocardial infarction (OMI) and AMI on the VF-waveform. This effect has been described
numerously; an overview of these studies is given in the following section. The succeeding sec-
tions will elaborate on two prediction methods applied in this thesis for the detection of MI
using VFWC.

The influence of myocardial infarction on the ventricular fibrillation waveform

Provided that an organised rhythm is present, QRS-T segment changes on the ECG allow for the
identification of a STEMI and in some cases a NSTEMI. The absence of this segment during VF
complicates the recognition of AMI. Hence, alternative methods of identifying AMI on the ECG
during VF are required.

Analysis of the VF-waveform seems to offer possibilities. Several studies on animals and
humans have suggested that MI alters VFWC. AMI induced in swine models by inserting a steel
plug in one of the coronary arteries resulted in decreased amplitude and frequency character-
istics of the subsequently induced VF59,60. Similarly, human studies showed that AMSA was
reduced in patients with AMI61,62. An OMI seems to affect VFWC in a similar way. The VFWC
in OMI swine were not altered as much as in AMI swine, but similar trends were described63,64.
Supporting these findings, human studies comparing patients with OMI to patients without MI
showed significant decreases in VFWC such as the MAA, MS, FM, FD and AMSA47,65,66. Table
2.1 shows an overview of animal and human studies that investigated VFWC changes caused by
MI.



20 Ventricular fibrillation waveform analysis for detection of acute myocardial infarction

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
an

im
al

an
d

hu
m

an
st

ud
ie

s
on

th
e

in
flu

en
ce

of
ol

d
or

ac
ut

e
m

yo
ca

rd
ia

li
nf

ar
ct

io
n

on
th

e
ve

nt
ri

cu
la

r
fib

ri
lla

ti
on

w
av

ef
or

m
.

Th
e

ar
ro

w
s

be
hi

nd
th

e
w

av
ef

or
m

ch
ar

ac
te

ri
st

ic
s

in
di

ca
te

th
e

ef
fe

ct
of

m
yo

ca
rd

ia
li

nf
ar

ct
io

n.

A
u

th
or

Ye
ar

St
u

dy
po

pu
la

ti
on

C
on

tr
ol

s
O

ld
M

I
A

cu
te

M
I

An
im

al
st

ud
ie

s
In

di
k

et
al

.67
20

06
19

ra
ts

N
o

M
I

A
M

P,
FM

&
FD
↓

BW
↑

-
In

di
k

et
al

.59
20

07
27

sw
in

e
N

o
M

I
-

Fm
ea

n,
FM

,F
D

&
BW
↓

In
di

k
et

al
.63

20
08

37
sw

in
e

N
o

M
I

Fm
ea

n,
FM

,F
D

&
BW
↓

Fm
ea

n,
FM

,F
D

&
BW
↓

In
di

k
et

al
.60

20
09

60
sw

in
e

N
o

M
I

-
M

S
&

A
M

SA
↓

In
di

k
et

al
.68

20
10

20
sw

in
e

N
o

M
I

-
M

S
&

A
M

SA
↓

In
di

k
et

al
.64

20
11

30
sw

in
e

N
o

M
I

N
o

si
gn

ifi
ca

nt
di

ff
er

en
ce

s
M

S
&

A
M

SA
↓

M
cG

ov
er

n
et

al
.69

20
15

48
sw

in
e

N
o

M
I

-
A

M
SA
↓

H
um

an
st

ud
ie

s
Sa

nc
he

z-
M

un
oz

et
al

.70
20

08
61

in
du

ce
d

V
F

N
o

co
nt

ro
ls

Fr
eq

ue
nc

y
ch

an
ge

s
at

M
I

lo
ca

ti
on

-
O

la
sv

ee
ng

en
et

al
.61

20
09

10
1

O
H

V
F

N
o

M
I

-
M

S
&

A
M

SA
↓

B
on

ne
s

et
al

.65
20

15
18

6
in

du
ce

d
V

F
N

o
M

I
FD

&
O

I
↓

-
B

on
ne

s
et

al
.66

20
15

19
0

in
du

ce
d

V
F

N
o

M
I

M
A

A
,F

M
,F

D
&

A
M

SA
↓

BW
↑

-
H

id
an

o
et

al
.71

20
16

43
0

O
H

V
F

N
o

M
I

-
N

o
si

gn
ifi

ca
nt

di
ff

er
en

ce
s

H
ul

le
m

an
et

al
.62

20
17

71
6

O
H

V
F

N
o

M
I

N
o

si
gn

ifi
ca

nt
di

ff
er

en
ce

s
A

M
SA
↓

Th
an

nh
au

se
r

et
al

.47
20

20
20

6
in

du
ce

d
V

F
N

o
M

I
M

A
A

,M
S,

A
M

SA
,P

SA
&

O
I
↓

-
AM

P:
am

pl
it

ud
e,

AM
SA

:
am

pl
it

ud
e

sp
ec

tr
um

ar
ea

,
BW

:
ba

nd
w

id
th

,
FD

:
do

m
in

an
t

fr
eq

ue
nc

y,
FM

:
m

ed
ia

n
fr

eq
ue

nc
y,

Fm
ea

n:
m

ea
n

fr
eq

ue
nc

y,
M

AA
:

m
ea

n
ab

so
lu

te
am

pl
it

ud
e,

M
I:

m
yo

ca
rd

ia
l

in
fa

rc
ti

on
,

M
S:

m
ed

ia
n

sl
op

e,
O

H
VF

:
ou

t-
of

-h
os

pi
ta

l
ve

nt
ri

cu
la

r
fib

ri
lla

ti
on

O
I:

or
ga

ni
sa

ti
on

in
de

x,
PS

A
:

po
w

er
sp

ec
tr

um
ar

ea
,V

F:
ve

nt
ri

cu
la

r
fib

ri
lla

ti
on

.



Chapter 2 21

Multivariate logistic regression

The main principle

Multivariate logistic regression (MVR) is a traditional statistical method that uses multiple vari-
ables to create a regression model that predicts categorical outcomes. Continuous outcomes can
be estimated by linear regression. Categorical outcomes require logistic regression, the most
common form being binary logistic regression which distinguishes between two outcomes that
are coded 0 and 1.

Logistic regression estimates the probability of an outcome Y ∈ {0, 1} occurring given p
predictor variables X1, X2, ..., Xp according to the expression:

P (Y ) =
1

1 + e−(b0+b1X1+b2X2+...+bpXp)
(2.22)

where P (Y ) is an abbreviation of the probability P (Y = 1|X), with e the base of the natural
logarithm, b0 a constant and bi the regression coefficient of the corresponding predictor variable
Xi with i ∈ {1, 2, ..., p}. This is a logarithmic transformation of the linear regression equation. It
allows the non-linear relationship between predictor variables and a categorical outcome to be
expressed in a linear way.

The regression coefficients bi are fitted to minimise the log-likelihood (LL) of the model:

LL =
N∑
i=1

[Yiln(P (Yi)) + (1− Yi)ln(1− P (Yi))] (2.23)

with N the number of cases and ln the natural logarithm. This measure quantifies how close a
predicted outcome P (Yi) is compared to the actual outcome Yi, summed for all N cases. The
closer a predicted value is to the actual outcome, the smaller the LL and the more accurate the
regression model. The LL is often multiplied by −2 so it approximates a χ2 distribution.72–75

Variable entry

Multivariate regression implies that multiple predictor variables are used to construct the model.
All available variables are included when using the forced entry method. A stepwise entry
method includes only a selection of variables. The forward stepwise method based on the like-
lihood ratio is used in this thesis and will be explained next.

The regression model begins with the constant b0 and without any predictor variables. Then
a stepwise process begins that adds a variable to the model in each step. Roa’s efficient score
statistic is computed for all variables that are not in the model at the beginning of each step.
This statistic resembles the likelihood ratio statistic but is less intensive to compute. A large
score statistic indicates that adding the variable to the model will increase its performance;
the variable with the largest score statistic and a p-value of <0.1 is added to the model. This
results in a decrease of the model’s -2LL, approximately the size of the Roa’s score statistic of
that variable, indicating that the model has become more accurate. The step ends by evaluating
the contribution of the already included variables. The difference between the original model
and the models in which one of the variables is removed is quantified by the likelihood ratio.
The statistical significance of this ratio can be retrieved from the χ2 distribution. If there is no
significant difference at a p-value of <0.1 between the model with and the model without the
variable, that specific variable is removed. Then the next step begins and the process is repeated
until no more variables are added or removed.72,73

The forward stepwise method of variable entry is an example of a wrapper type of feature se-
lection, where the performance of models with different input features is compared to determine
the best combination76,77.
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Interpretation of the model

When stepwise variable inclusion has finished, the final model is acquired. The model is defined
by a series of parameters for each of the included predictor variables.

The regression coefficients bi and constant b0 of equation (2.22) determine the role of each
predictor variable in that equation. The standard error SE of the constant and each regression
coefficient is computed as well, from which the Z0 statistic can be computed:

Z0 =
b

SE
(2.24)

with b representing a regression coefficient bi or constant b0. This statistic follows an asymptotic
standard-normal distribution under most circumstances78. The Wald statistic is then defined as
its square:

Wald = Z2
0 . (2.25)

The square of a normal distribution has a χ2 distribution with one degree of freedom78. There-
fore, the significance of the corresponding predictor variable can be computed. Variables usually
contribute significantly when they have been included in a stepwise fashion.

Besides the regression coefficient itself, exp(b) and its 95% confidence interval are computed
as well. This represents the odds ratio of the predictor variable which gives it a meaningful
interpretation. A unit increase of the variable means the odds of the outcome occurring are mul-
tiplied by the odds ratio. An odds ratio <1 therefore represents a negative correlation between
the variable and the outcome whereas an odds ratio >1 indicates a positive correlation.72

Support vector machine

A support vector machine (SVM) is a binary classification technique that was developed mostly
in the 1990s79. An SVM relies on using a hyperplane to divide the feature space of observations
into two. The classification of an unseen test observation follows from the side of the hyperplane
on which it resides. Details on how the hyperplane is defined, how it acts as a classifier and how
it generalises to the concept of the SVM are explained in the following section.

Hyperplane

An n× p matrix X of n observations with p features can be described in a p-dimensional feature
space. Each observation xi = (xi1, xi2, ..., xip) has a class yi ∈ {−1, 1}. For instance, X might
be a 20 × 2 matrix. It then contains 20 observations with 2 features such as age and weight,
of which some observations belong to the class of patients with an MI (y = 1) while others
belong to the class of patients without an MI (y = −1). This data set can be described in a
2-dimensional plane, as is depicted in figure 2.10. The 1-dimensional line that divides the plane
into two separated spaces can be considered a hyperplane.

More generally, a hyperplane is defined as a (p− 1)-dimensional subset of the p-dimensional
feature space described by the equation:

β0 + β1x1 + β2x2 + ...+ βpxp = 0. (2.26)

If the equation holds for a point x = (x1, x2, ..., xp) it means that this point is located on the
hyperplane. If a point x is located on either side of the hyperplane, the left side of equation
(2.26) will be less or greater than 0, depending on the side of the hyperplane on which the point
resides. A hyperplane that completely separates the observations in X according to their class
labels y is called a separating hyperplane.
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Figure 2.10: 2-dimensional scatter plot of a data set with 20 observations and the two features age
and weight. The hyperplane is a 1-dimensional line that completely separating the two classes ’No
MI’ and ’MI’.

This means that

β0 + β1xi1 + β2xi2 + ...+ βpxip > 0, if yi = 1, (2.27)

β0 + β1xi1 + β2xi2 + ...+ βpxip < 0, if yi = −1. (2.28)

This can alternatively be written as

yi(βx
T
i + β0) > 0 (2.29)

for all i = 1, 2, ..., n, with xi the ith row vector of X and β = (β1, β2, ..., βp). The separating
hyperplane can then be used as a classifying function f(x):

f(x) = βxT + β0. (2.30)

A positive outcome means the test observation x belongs to the positive class y = 1; a negative
outcome means it belongs to the negative class y = −1.74,75

Maximal margin classifier

For data sets such as the one shown in figure 2.10, infinitely many hyperplanes can be defined
that completely separate the two classes. The optimal hyperplane is the one with the largest
perpendicular distance, or margin M , to the nearest observations. A classifier based on the
optimal hyperplane is therefore called the maximal margin classifier (MMC).

Maximising M is an optimisation problem defined by:

max
β,β0

M

subject to
1

‖β‖
yi(βx

T
i + β0) ≥M

(2.31)

with i = 1, 2, ..., n. The factor 1/‖β‖ ensures that the distance of an observation to the hyper-
plane is expressed by the left side of the inequality. Any positively scaled multiples of β0 and β
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satisfy equation (2.31), so they can be chosen such that‖β‖ = 1/M . Rephrasing the optimisation
problem as a minimisation of ‖β‖ rather than a maximisation of M :

min
β,β0

1

2
‖β‖2

subject to yi(βxTi + β0) ≥ 1

(2.32)

with i = 1, 2, ..., n. Multiplying ‖β‖ by 1/2 and squaring it is done for convenience as it makes
the problem easier to solve. The problem can be solved by quadratic programming; this will
not be explained here. The solution will give values for β and β0 that define the optimal hyper-
plane.74,75,80

Support vector classifier

In most real-world applications, classes cannot be separated completely so an MMC does not
work. Even if a separating hyperplane can be found, it might result in overfitting of the training
data and thus yield a low accuracy for test data. An extension to the MMC is the support
vector classifier (SVC). It allows some training observations to be classified incorrectly so the
hyperplane can separate the rest of the observations with a larger margin. The observations
that are on the margin or on the wrong side of the margin thereby define the position of the
hyperplane. These are known as the support vectors.

The corresponding optimisation is similar to the MMC problem but with added terms:

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

εi

subject to εi ≥ 0, yi(βx
T
i + β0) ≥ 1− εi,

(2.33)

with i = 1, 2, ..., n. The slack variables ε = (ε1, ε2, ..., εn) are introduced to allow observations
to be misclassified. Correct classification of observation xi is quantified by εi = 0, classification
on the wrong side of the margin by 0 < εi < 1 and classification on the wrong side of the
hyperplane by εi > 1. C is non-negative parameter that dictates to what extent misclassification
is allowed. It is called the cost or the box constraint. As such, a high value of C allows for few
misclassifications and a narrow margin. For the limit C → ∞ the classifier becomes an MMC.
A low value of C results in more misclassifications and a wider margin. The SVC will therefore
have a lower accuracy on training data but will generalise better to unseen data.74,75,80,81

Support vector machine

The SVC generally performs better than the MMC as it allows a soft margin. As it is a linear
classifier, its application is limited to linearly separable data sets, however. Non-linear data sets
cannot be separated properly with a linear classifier. A solution to this problem is enlarging
the original feature space by introducing polynomial terms of xi such as x2i1, x

2
i2, ..., x

2
ip, or even

higher orders. The hyperplane of the classifier will be linear in the enlarged feature space but
non-linear in the original feature space, which allows for boundaries that fit the data in a better
way. An SVC with this extension is called an SVM.

The solution β̂ of the SVC optimisation problem given by equation (2.33) can be expressed
in the following way:

β̂ =

N∑
i=1

α̂iyixi (2.34)

with 0 < α̂i < C75,80,81. Using equation (2.34), the solution f̂(x) of the classifying function
given by equation (2.30) can be written as

f̂(x) =
∑
i∈S

α̂iyixix
T + β̂0 (2.35)
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in which β̂0 is the optimised value for β0 and collection S contains the indices i with α̂i > 0.
These indices represent the support vectors and as such they are the only observations needed
to define the classifying function f̂(x). Leaving out the other observations decreases the compu-
tational cost which makes SVMs attractive.

A more general notation can be acquired by replacing xixT by a kernel function K(x, xi):

f̂(x) =
∑
i∈S

α̂iyiK(x, xi) + β̂0. (2.36)

When the kernel function is the inner product such as in equation (2.35), the classifying function
is the linear SVC. An SVM can have other kernel functions as well. Popular alternative kernel
functions are the polynomial function K(x, xi) = (1 + xix

T )d with d ≥ 2 or the radial basis
function K(x, xi) = exp(−γ‖x−xi‖2) also known as the Gaussian. Such alternatives extend the
functionality of the SVM to classification of non-linear data.74,75,80,81

2.2.3 Support vector machine for the detection of myocardial infarction

Model creation

VF-waveform analysis using an SVM was performed using the function fitcsvm in MATLAB R©

(version 2020a, MathWorks R©, Natick, MA, USA). This function creates an SVM model based on
the n× p predictor matrix, the n× 1 outcome vector with class labels and a set of hyperparam-
eters. These hyperparameters include the box constraint C and kernel function K(x, xi). For
Gaussian kernel functions the kernel scale can be chosen; for polynomial kernel functions the
polynomial order can be chosen. Additionally, the option to standardise the predictor matrix
is given. Finally, the misclassification cost can be altered so that false-positive predictions are
penalised heavier or lighter than false-negative predictions.

Quantifying model performance

The performance of the SVM can be quantified using the function crossval. This returns the
predictions and validation scores based on k-fold cross-validation which was for this thesis set
to k = 5. The validation scores and true class labels of the observations can then be entered into
the function perfcurve, which creates a receiver operating characteristic (ROC)-curve. For this
thesis, an additional input argument ’NBoot’ = 1000 was used to perform bootstrapping in order
to compute the 95% confidence interval of the ROC-curve. The area under the curve (AUC) was
used as a measure of model performance, as well as the sensitivity at the level of 80% specificity.

Hyperparameter optimisation

The hyperparameters of the SVM can be optimised automatically via the fitcsvm function which
uses a Bayesian optimisation algorithm. The algorithm attempts to minimise the five-fold cross-
validation loss by varying all aforementioned hyperparameters except for the misclassification
cost. A maximum of 250 iterations was used to find the optimum for this thesis. Since Bayesian
optimisation is not reproducible, the above optimisation procedure was repeated ten times for
each SVM to evaluate the variation in the proposed hyperparameters between optimisation at-
tempts. The set of hyperparameters that reached the highest AUC was considered optimal. This
final combination was then used to train and cross-validate six SVMs with false-positive misclas-
sification costs of 1, 2.5, 5, 10, 15 and 20 respectively, keeping the false-negative cost at 1. The
misclassification cost that resulted in the highest AUC was chosen.

In this way, each set of input features led to a unique combination of hyperparameters and
a misclassification cost. These settings were used to create the SVMs described in chapters 4
and 5. An overview of the steps of the hyperparameter optimisation procedure is given in figure
2.11.
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Figure 2.11: Overview of the hyperparameter optimisation procedure. AUC: area under the curve,
SVM: support vector machine.
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Abstract

Out-of-hospital cardiac arrest (OHCA) is a major healthcare problem and still has a low survival
rate despite improvements over the past years. The defibrillator electrocardiogram (ECG) en-
ables waveform analysis of ventricular fibrillation (VF), the most commonly found shockable
rhythm. This offers an early, easily obtainable tool to gain insight into patient-specific infor-
mation. Multiple applications of VF-waveform analysis have been reported, such as predicting
defibrillation success. An application that requires further research is diagnosis of the disease un-
derlying the arrhythmia. Diagnosis of acute myocardial infarction (AMI) is particularly relevant
as it is the major cause of VF. Animal studies have already shown that AMI can be detected us-
ing the VF-waveform. Human studies have reported associations between the VF-waveform and
AMI as well, but no evidence currently exists that AMI can be detected from the VF-waveform
in the OHCA setting. This application may require a multi-lead ECG approach, as VF-waveform
analysis of 12-lead ECGs acquired during implantable cardioverter-defibrillator testing suggests.
Predictive models based on these data can help find the optimal lead combination needed to
detect AMI during VF. This gives direction to further research to move towards clinical imple-
mentation of a multi-electrode defibrillator.
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3.1 Current status

Out-of-hospital cardiac arrest (OHCA) is a major healthcare problem. It occurs frequently in
the Netherlands with an annual incidence rate of about 37 per 100,000 inhabitants and yields
a high mortality of approximately 77%1. OHCA can be regarded a complex and unique medical
emergency, of which outcomes strongly rely on community factors in the first phase, such as
arrest recognition, bystander cardiopulmonary resuscitation (CPR), activation of the emergency
medical services and availability of automated external defibrillators. Adequate treatment by
medical professionals in the subsequent phase consists of high-quality CPR, defibrillation, hos-
pital transportation, treatment of the underlying cause and post-arrest care. Technological ad-
vances have optimised these factors over the past years which has led to a steady increase in
OHCA survival1–3.

The current treatment for OHCA is protocolised and lacks an approach optimised for the
individual patient. The paddle electrocardiogram (ECG) obtained by the defibrillator is one of
the few available tools during OHCA and can provide patient-specific information. With use of
the paddle ECG, defibrillators can distinguish non-shockable from shockable cardiac rhythms
and apply defibrillatory shocks in case of the latter4. Besides the defibrillator’s therapeutic use,
the paddle ECG has been investigated for its diagnostic value. Especially in case of ventricular
fibrillation (VF), which is the shockable rhythm most commonly found in OHCA patients, the
VF-waveform provides an early, easily obtainable tool to provide patient-specific information
and has been the subject of study since the 1980s5–7. This paper provides an overview of the
current knowledge on the VF-waveform and an outlook on how VF-waveform analysis may be
used in the future to facilitate patient-tailored resuscitative strategies during OHCA.

3.2 The possibilities of the paddle electrocardiogram

One of the earliest analyses of the VF-waveform was in the 1980s when Weaver et al. described
how the amplitude of the VF is associated to arrest duration and chance of survival8. Similarly,
Brown et al. reported associations between the median frequency of VF in swine and arrest du-
ration, which they later used to predict downtime in other swine9,10. Additionally, they reported
a decrease in the median frequency of human VF as arrest duration increased10. More research
on the VF-waveform followed, showing that the amplitude can predict the conversion to a stable
rhythm, hospital admission, hospital discharge and survival11,12.

New ventricular fibrillation waveform characteristics (VFWC) have been introduced over
the years along with new applications7. Predicting defibrillation shock success is one of the
most studied uses of the VF-waveform13. Strohmenger et al. reported associations between
frequency-related VFWC in swine and shock success14. Later studies found that shock success
can be predicted using the VF-waveform as well15–18. Povoas et al. achieved this by using
the amplitude spectrum area (AMSA), a new measure quantifying the area of the amplitude
spectrum derived by fast Fourier transform of the ECG signal17. Strohmenger et al. continued
their work in humans and found associations similar to those found in swine19. In recent years,
Ristagno et al. have conducted retrospective studies and were able to predict shock success in
humans using the AMSA20–22. Their current randomised controlled trial investigates whether
real-time AMSA analysis during CPR can predict defibrillation success and optimise defibrillation
timing23. This illustrates that VF-waveform analysis is ready for application in the resuscitation
setting and may thereby optimise treatment strategy.

Another relevant application for VFWC that is gaining interest is identification of the ar-
rhythmic cause. Detecting acute myocardial infarction (AMI) is of particular interest since it is
a frequent initiator of VF24. Given that a severe AMI can often be recognised on a sinus rhythm
ECG, it is presumable that AMI alters the VF-waveform as well25.

Animal studies performed by Indik et al. have indeed found associations between decreases
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in VFWC such as AMSA and presence of AMI or old myocardial infarction (OMI)26–28. Further-
more, Sherman et al. showed that frequency-related VFWC were lower in ischaemic swine than
in swine with electrically induced VF29. Later work by Indik et al. showed that the AMSA and
slope of porcine VF can predict a return of spontaneous circulation and presence of AMI30–32.

Extending these findings to humans, Olasveengen et al., Bonnes et al. and Hulleman et
al. associated decreases in AMSA and median slope to presence of AMI or OMI33–35. These
associations suggest that real-time VF-waveform analysis may be used to detect AMI during out-
of-hospital ventricular fibrillation (OHVF). This is relevant as it may alter treatment strategy.
Early coronary angiography and percutaneous coronary intervention are associated with better
survival in OHCA patients with a restored rhythm36–41. This suggests that OHVF patients with
AMI whose rhythm has not been restored will benefit from cardiac catheterisation as well. Re-
cent advances such as mechanical CPR and extracorporeal life support allow for transport and
cardiac catheterisation of patients without a perfusing rhythm. Yannopoulos et al. have shown
that such an aggressive treatment strategy may benefit coronary artery disease patients with re-
fractory VF42. Early diagnosis of AMI during OHVF may therefore guide therapy and save lives
of patients who would otherwise have a small chance of survival.

3.3 The added value of the 12-lead electrocardiogram

So far, no prospective studies have been conducted that use the VF-waveform to detect AMI
during OHVF. However, Thannhauser et al. were able to detect OMI using VFWC recorded in
the setting of implantable cardioverter-defibrillator (ICD) testing43. These results propose that
AMI can be detected using VFWC as well, since Indik et al. showed that the VF-waveform is
altered by AMI and OMI in the same way28.

Noteworthy is that Thannhauser et al. had access to 12-lead ECGs of VF rather than the
single paddle ECG lead. Defibrillation testing during ICD implantation offers a unique setting to
acquire 12-lead ECGs of VF, which could never happen in regular clinical practice. These data
have led to several insights other than detecting myocardial infarction. Bonnes et al. reported
that the left ventricular mass and diameter affect the VF-waveform44. Furthermore, they showed
that the decreases in VFWC caused by OMI only occurred in the ECG leads aimed at the infarcted
site34. These findings suggest that the VF-waveform is patient-specific and that the severity and
location of underlying diseases play a role in the shaping of the VF-waveform.

An electrocardiographic description of the entire heart is therefore needed to reliably detect
an underlying disease such as AMI. Diagnosis of an anterior AMI during sinus rhythm with a
12-lead ECG requires inspection of the anterior leads. It is therefore likely that diagnosis of an
anterior AMI during VF requires inspection of an anterior lead as well. Since the paddle ECG is
limited to one direction, a multi-lead ECG seems necessary to detect all AMIs during VF.

Thannhauser et al. therefore used the VF-waveform of 12-lead ECGs as input for a support
vector machine (SVM) to detect OMIs43. An SVM with the AMSA of all twelve leads was com-
pared to the AMSA of lead II alone, which can be considered a surrogate for the paddle ECG.
The 12-lead model was superior in detecting OMI, strengthening the hypothesis that a multi-
lead ECG can improve AMI detection during OHVF. Another interesting finding of this study was
that the discriminative ability of the 12-lead model was lower when multiple VFWC were used
rather than the AMSA alone. This suggests that a selection of input features for the SVM yields
better results than bluntly using all available VFWC.

3.4 The potential of a multi-electrode defibrillator patch

Presumably, a multi-lead ECG can detect AMI more accurately than the single lead of the paddle
ECG. However, clinical implementation is a long way off. The necessary protocol adaptations
require extensive testing to investigate the best way of acquiring a multi-lead ECG.
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Extra electrodes besides the two defibrillator pads are needed to obtain a multi-lead ECG.
A 12-lead ECG requires the time-consuming placement of ten electrodes, making it unfit for
the resuscitation setting. A minimal number of extra electrodes is therefore desirable, which
means that only certain leads can be obtained. These could be some of the twelve regular
leads but could include other leads as well, derived from non-conventional electrode placement.
A single patch containing multiple electrodes offers an attractive solution as the resuscitation
setting demands quick and easy placement of the extra electrodes. Even if such a patch is
developed, the question remains what the optimal number and position of additional electrodes
is for detecting AMI. Furthermore, the limited possibilities to adapt resuscitation protocols need
to be taken into consideration.

Analysis of 12-lead ECGs of VF acquired during ICD testing may help answer what the opti-
mal number and locations of additional electrodes is. Using such data in their proof-of-concept
study, Thannhauser et al. have demonstrated that basic use of an SVM can already detect an
OMI with an area under the receiver operating characteristic curve of 0.7543. Optimisation
of the SVM hyperparameters and substantiated selection of input features may improve this.
Comparing the SVM performance to that of traditional multivariate logistic regression models is
essential to establish whether an SVM approach is of added value at all.

Analysis using both traditional statistical methods and machine learning approaches may
propose an optimal method to detect OMIs using multi-lead VFWC based on the 12-lead con-
figuration. This gives direction to further research on non-conventional electrode placement,
moving towards the goal of a multi-electrode defibrillator patch to diagnose AMI during OHVF.

3.5 Conclusion

The VF-waveform contains useful information that can optimise treatment strategy of OHCA. An
ongoing trial on predicting shock success proves that real-time VF-waveform analysis to guide
therapy is feasible. Diagnosing AMI is another relevant application that deserves attention.
Recent results suggest that a multi-electrode ECG may facilitate this. Further research is needed
to find the optimal configuration of a multi-electrode defibrillator patch for diagnosing AMI
during OHVF.
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Abstract

Background: Out-of-hospital cardiac arrest has meagre survival rates despite improvements in
resuscitative care. Detection of acute myocardial infarction (MI) by ventricular fibrillation (VF)-
waveform analysis may facilitate individualised treatment strategies. In follow-up on previous
machine learning studies, optimisation of input features in terms of electrocardiogram (ECG)
leads and VF-waveform characteristics (VFWC) is needed. This study aimed to investigate the
effect of feature selection on the performance of machine learning models detecting old MI.

Methods: Adult patients were included from a prospective observational registry of implantable
cardioverter-defibrillator implantations (June 2010 - July 2017). Sets were created with 17, 391
and 51 VFWC from lead II, all twelve leads and lead II + V1 respectively. These sets were used
as input features for models discriminating between patients with and without old MI. Feature
selection was applied to reduce the number of VFWC in each set, after which reduced models
were created. Model performance was assessed by receiver operating characteristic analysis.

Results: Of the 242 included patients, 137 had an old MI. Patients with MI were older and more
often male. The models based on lead II, all twelve leads and lead II + V1 reached an area under
the curve (AUC) of 0.61, 0.78 and 0.71 respectively before feature selection. Feature selection
reduced the number of VFWC to 3, 10 and 5 and the resulting models reached AUCs of 0.58,
0.83 and 0.76 respectively.

Conclusions: Machine learning models for the detection of old MI based on multiple ECG leads
for which feature selection was applied reached numerically higher AUCs than the models for
which no feature selection was performed. Optimised models with input features selected from
two leads reached acceptable discriminative ability. The optimisation methods presented in this
study are promising and should be investigated in the out-of-hospital setting for the detection
of acute MI.
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4.1 Introduction

Out-of-hospital cardiac arrest (OHCA) is a major healthcare problem. In the Netherlands, the
incidence rate of out-of-hospital resuscitation is approximately 37 per 100,000 inhabitants, of
which only 23% survives to hospital discharge1. The current treatment of OHCA by the emer-
gency medical services is protocolised and does not take the underlying disease of the individual
patient into account. In case of ventricular fibrillation (VF), the most common shockable rhythm,
the most frequent underlying cause is acute myocardial infarction (AMI)2–4. A recent study
showed that novel, aggressive treatment strategies using mechanical cardiopulmonary resusci-
tation and extracorporeal life support may facilitate transport and intervention of AMI patients
with refractory VF, increasing the chance of successful resuscitation4. In-field identification of
AMI during OHCA may therefore save lives.

The paddle electrocardiogram (ECG) of the defibrillator is an early, easily obtainable tool
that can provide patient-specific information. Its current use is limited to distinguishing non-
shockable from shockable rhythms so that defibrillatory shocks can be applied as needed. More
useful information can be obtained by analysing the VF-waveform5. It has been used to predict
defibrillation shock success and good neurological outcome in OHCA6,7. An ongoing randomised
controlled trial uses VF-waveform analysis to guide defibrillation and shows that real-time anal-
ysis is feasible8. Furthermore, the VF-waveform may hold information about underlying disease
of the heart9,10. As such, it may offer a way to detect the cause of the arrest.

Animal studies have shown that the VF-waveform, quantified by ventricular fibrillation wave-
form characteristics (VFWC), is affected by AMI11–15. Similar associations have been reported
in humans in case of old myocardial infarction (OMI), which is the rationale behind the use of
OMI as a surrogate for AMI in VF-waveform studies9,12,16–18. A recent proof-of-concept study on
waveform analysis of VF induced for implantable cardioverter-defibrillator (ICD) testing showed
that OMI could be detected using machine learning models19. Notably, models based on twelve
ECG leads could detect OMI more accurately than models based on lead II alone. Moreover, a
model based on the amplitude spectrum area (AMSA) alone led to better results than a model
created using all available VFWC, suggesting that feature selection is beneficial.

In follow-up on the aforementioned proof-of-concept study, optimisation of input features
might improve the performance of diagnostic models detecting OMI. The aim of this thesis was
therefore to investigate the effect of established feature selection methods and hyperparameter
optimisation on the ability of multi-lead machine learning models to distinguish patients with
OMI from patients without OMI.

4.2 Methods

4.2.1 Study population

The study population was derived from a prospective observational registry of first ICD or car-
diac resynchronisation therapy-defibrillator (CRT-D) implantations with defibrillation testing
performed at the Radboud University Medical Center (Radboudumc). Adult patients (age ≥
18) who received an ICD or CRT-D in the period between June 2010 and July 2017 were in-
cluded. Exclusion criteria were congenital heart disease and absence of an analysable 12-lead
ECG recording of the induced VF.

4.2.2 Data acquisition

Clinical characteristics

Clinical characteristics and the patient’s medical history were obtained from their medical records.
Data were obtained independently by at least two researchers to ensure inter-observer validity.
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A third reviewer checked in case of disagreement.

Ventricular fibrillation waveform characteristics

After the implantation procedure, VF was induced by T-wave shock, direct current pulses or 50
Hz burst pacing to assess if the device could adequately sense the arrhythmia and terminate
it by means of defibrillation. The approximately thirty-second period before, during and after
the induced VF was recorded with a 12-lead surface ECG using the BARD R© LabSystem

TM
Pro

(Lowell, MA, USA) with a sampling frequency of 1000 Hz and a 16 bit A/D converter.
The data were analysed using MATLAB R© (version 2020a, MathWorks R©, Natick, MA, USA).

The 4.1-second segment (4096 samples) of VF prior to first shock delivery was selected manually
and pre-processed with a fourth order Butterworth bandpass filter with cut-off frequencies of 1
and 48 Hz. Visually identified artefacts were removed and replaced by linear interpolation. The
VFWC of the segment were computed for all twelve leads; a total of 391 VFWC were computed
per patient. An overview and mathematical description of each of the VFWC can be found in
subsection 2.2.1.

Study groups

Patients were divided into two groups based on whether or not they had an OMI. Reports in
their medical charts were evaluated for presence of an OMI, using the third universal definition
of myocardial infarction (MI) by the European Society of Cardiology20.

4.2.3 Descriptive analysis

Clinical and VF-waveform characteristics were compared between the two study groups. Contin-
uous variables were reported as median [Q1-Q3] and categorical variables as number (percent-
age). Continuous variables were analysed using Mann-Whitney U tests and categorical variables
using Fisher’s Exact Test. A p-value of <0.05 was considered significant. All statistical analy-
ses were performed with IBM SPSS R© Statistics software (IBM Corp. Released 2017. IBM SPSS
Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp).

4.2.4 Predictive analysis

Set composition

Eight sets of VFWC were composed, each including a different combination of VFWC of different
ECG leads. Figure 4.1 shows how the eight sets 1A-8A were composed.

First, a selection of leads was made: lead II (sets 1A and 2A), all twelve leads (sets 3A
through 6A) or lead II + lead V1 (sets 7A and 8A). Lead II alone was studied because it re-
sembles the defibrillator lead. All twelve leads together were studied to evaluate all available
information combined. The combination of leads II and V1 was used to investigate the potential
of a selection of leads and followed the preliminary research presented in appendix A.1.

The first four sets 1A-4A contained only regular VFWC. The last four sets 5A-8A contained
both regular and ∆V1 VFWC. Therefore, sets 1A and 2A contained only regular VFWC of lead
II. Sets 3A and 4A contained only regular VFWC of all twelve leads. Sets 5A and 6A contained
both regular and ∆V1 VFWC of all twelve leads. Sets 7A and 8A contained both regular and
∆V1 VFWC of leads II and V1.

The final distinction within these pairs followed Mann-Whitney U tests that compared the
VFWC between the patients with and without OMI. The even-numbered sets included only those
VFWC with a p-value of <0.1. The odd-numbered sets were not subjected to this filter type of
feature selection and also contained VFWC with larger p-values.
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Figure 4.1: Composition of sets 1A-8A. VFWC: ventricular fibrillation waveform characteristics.

Prediction models

The eight sets were used as input features for models detecting OMI. Both a traditional statistical
approach of multivariate logistic regression (MVR) and a machine learning approach with a
support vector machine (SVM) was used. An overview of how the sets were used as input
features for the different models can be seen in figure 4.2.

Sets 1A through 8A were used as input for eight MVR models as well as eight SVM A models.
Only a selection of the VFWC in each set A was included in the MVR model, since a forward
stepwise method was used to enter variables. This wrapper type of feature selection resulted in
eight new sets named 1B through 8B, which formed the input for another eight SVM B models.
The hyperparameters of each of the sixteen SVMs were optimised according to the algorithm
explained in subsection 2.2.3. Moreover, all SVMs were subjected to five-fold cross-validation
before their performance was evaluated.

The effect of feature selection was studied for the lead II models, the 12-lead models and
the lead II + V1 models, with specific focus on the SVMs of sets 1, 5 and 7. The set 7B SVM was
studied in more detail to evaluate the potential of an SVM with a selection of VFWC from two
leads.

The SVM A models of the three sets were compared to the corresponding SVM B models
to investigate the effect of the wrapper type feature selection of using fewer, more relevant
input features rather than using all of them. The comparison between the SVM B models of
the three sets and the corresponding MVR models was made to evaluate the added value of
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machine learning over a traditional statistical method. The wrapper type of feature selection was
expected to be of more influence on model performance than the filter type. The comparison
between the odd-numbered and even-numbered models to study the effect of the filter type
selection was therefore exploratory.

Figure 4.2: Overview of the prediction models and the performance measures. AUC: area under the
curve, MVR: multivariate logistic regression, SVM: support vector machine.

Outcome measures

Two outcome measures were used to assess the discriminative ability of the twenty-four models,
with a specific focus on the set 1, 5 and 7 SVMs: the area under the curve (AUC) of the receiver
operating characteristic (ROC) and the sensitivity.

For the MVR models, the 95% confidence interval of the AUC was acquired from a non-
parametric estimation of the standard error of the AUC. The confidence interval of the AUC of
the SVMs was computed using a bootstrap procedure with 1000 replicas.

The sensitivity was measured at a level of 80% specificity. A high specificity for detecting
MI is desirable for future use during a resuscitation. In this setting, unnecessary transport of
false-positive AMI patients is more detrimental than refraining from transport of false-negative
AMI patients. A threshold with a high specificity was therefore used to measure the sensitivity.
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4.2.5 Subgroup analysis

In order to explore which clinical factors were associated to the classification by an SVM created
with only VFWC as input features, a subgroup analysis was performed using the set 7B SVM.
The patients were divided into tertiles based on their classification score, a measure of the like-
lihood of having OMI. The three subgroups thereby represented low, intermediate and high risk
patients. Baseline characteristics related to cardiac mass or function that could be of influence
on the VF-waveform were compared between the subgroups.

Continuous variables were reported as median [Q1-Q3] and compared using Kruskal-Wallis
tests. In case of significant differences, pairwise comparisons with Bonferroni correction were
performed. Categorical variables were reported as number (percentage) and compared using
the Mantel-Haenszel test for linear-by-linear association. A p-value of <0.05 was considered
significant.

4.3 Results

4.3.1 Study population

A total of 378 patients who underwent an ICD or CRT-D implantation between June 2010 and
July 2017 were registered. A 12-lead ECG of the period around the induced VF was captured in
250 patients, of which 8 could not be analysed due to artefacts. Figure 4.3 shows an example
ECG of lead II. In total, 242 patients were analysed, of which 105 (43.4%) did not have an OMI
and 137 (56.6%) did. Figure 4.4 shows a flowchart with the amounts of patients registered and
analysed.

4.3.2 Descriptive analysis

Clinical characteristics

The median age of the 242 patients was 64.0 years [55.0-72.0] and 185 (76.4%) were male.
Compared to the patients without OMI, the patients with OMI were older (67.0 vs. 59.0 years,
p<0.001) and a larger proportion of them was male (82.5% vs. 68.6%, p=0.014). Out of
the 137 patients with OMI, 52 (38.0%) had an anterior MI, 67 (48.9%) had an inferior MI,
10 (7.3%) had both and the MI location was unknown for the last 8 patients (5.8%). Patients
in the OMI group received antiplatelet and cholesterol reducer medication more often than
patients without OMI (p<0.001 for both). Table 4.1 shows all baseline characteristics of the
study population.

Ventricular fibrillation waveform characteristics

Mann-Whitney U tests were performed to investigate differences in VFWC of all leads between
the groups of patients with and without OMI. Appendix A.2 contains tables A.3 and A.4 that
show the p-values of all 391 VFWC and table A.5 summarises their contents.

The VFWC with the most pronounced differences between the groups were the mean abso-
lute amplitude, median slope, AMSA and power spectrum area, as well as their ∆V1 variants.
Most VFWC were decreased in case of OMI.
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Figure 4.3: A lead II electrocardiogram of ventricular fibrillation acquired during defibrillation
testing. Initially, sinus rhythm is present. Then ventricular pacing starts and a direct current shock
is applied. This is induces ventricular fibrillation which is terminated by a defibrillation shock after
which sinus rhythm returns. SR: sinus rhythm, VF: ventricular fibrillation, VP: ventricular pacing.

Figure 4.4: Flowchart of the patient inclusion process. CRT-D: cardiac resynchronisation therapy-
defibrillator, ECG: electrocardiogram, ICD: implantable cardioverter-defibrillator, OMI: old myocar-
dial infarction, VF: ventricular fibrillation.



48 Ventricular fibrillation waveform analysis for detection of acute myocardial infarction

4.3.3 Predictive analysis

Set composition

The number of VFWC in each of the sets 1A-8A as determined by figure 4.1 can be seen in
figure 4.5. The wrapper type of feature selection of forward stepwise entry by MVR reduced
the number of VFWC to compose sets 1B-8B. Sets 1A, 5A and 7A with 17, 391 and 51 VFWC
respectively were reduced to sets 1B, 5B and 7B containing 3, 10 and 5 VFWC. An overview of
the VFWC in each set can be found in appendix A.3.

Prediction models

The sets were used to create twenty-four prediction models in total, eight models of MVR, SVM
A and SVM B each. The optimised hyperparameters of the SVM A and SVM B models can be
found in table A.7 in appendix A.4. Figure 4.6 shows the areas under the ROC-curves of the
twenty-four prediction models. The 95% confidence interval is depicted using error bars. Figure
4.7 shows the sensitivities of the models measured at the level of 80% specificity.

Lead II models

The lead II models reached AUCs around 0.6 and sensitivities around 0.3. The SVMs of sets 1A
and 1B achieved AUCs of 0.61 and 0.58 with sensitivities of 0.26 and 0.24 respectively.

12-lead models

The set 3 and 4 models based on twelve leads without ∆V1 VFWC reached AUCs just below 0.8;
sensitivities around 0.6 were observed. The set 5 and 6 models of twelve leads with ∆V1 VFWC
had AUCs just above 0.8 and sensitivities just above 0.65. The set 5A and 5B SVMs had AUCs of
0.78 and 0.83 respectively. The corresponding sensitivities were 0.66 and 0.68.

Lead II + V1 models

The models with VFWC from leads II and V1 had AUCs around 0.75 and sensitivities just above
0.5. The set 7A SVM had an AUC of 0.71 and a sensitivity of 0.53. The ROC-curve of the set 7B
SVM is shown in figure 4.8. This model reached an AUC of 0.76 and a sensitivity of 0.55.

Figure 4.5: Overview of the number of ventricular fibrillation waveform characteristics in sets 1A-
8A and 1B-8B. The forward stepwise entry method of multivariate logistic regression was used to
create subselections of sets A that composed sets B. MVR: multivariate logistic regression.
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Table 4.1: Baseline characteristics of the study population. Continuous variables are medians [Q1-
Q3], categorical variables are n (%). Significant p-values are printed in bold.

All patients No OMI OMI p-value
n=242 n=105 n=137

Age (years) 64.0 [55.0-72.0] 59.0 [48.0-68.0] 67.0 [61.0-74.0] <0.001
Male gender 185 (76.4) 72 (68.6) 113 (82.5) 0.014
OMI 137 (56.6) 0 (0) 137 (100) -

Anterior 52 (21.5) - 52 (38.0) -
Inferior 67 (27.7) - 67 (48.9) -
Both 10 (4.1) - 10 (7.3) -
Unknown 8 (3.3) - 8 (5.8) -

BMI (kg/m2) 26.2 [23.9-29.0] 25.6 [23.0-28.8] 26.6 [24.5-29.1] 0.039
Hypertension 100 (41.5) 37 (35.2) 63 (46.3) 0.088
Diabetes mellitus 53 (22.0) 18 (17.1) 35 (25.7) 0.119
Atrial fibrillation 70 (28.9) 28 (26.7) 42 (30.7) 0.568
Primary prevention 152 (62.8) 72 (68.6) 80 (58.4) 0.110
CRT-D 67 (27.7) 35 (33.3) 32 (23.4) 0.051
QRS duration (ms) 118 [100-140] 120 [101-150] 116 [99-136] 0.372
LVEF (%) 35.0 [28.0-45.3] 35.0 [27.0-46.0] 35.0 [28.0-45.0] 0.730
LVIDd index (cm/m2) 3.00 [2.70-3.30] 3.00 [2.69-3.26] 3.00 [2.70-3.30] 0.996
LV dilation 40 (17.9) 18 (19.1) 22 (17.1) 0.726
LV mass index (g/m2) 113.0 [91.1-134.1] 113.8 [87.0-136.0] 111.1 [95.0-132.7] 0.919
Creatinine (µmol/L) 85 [72-104] 85 [71-101] 87 [74-106] 0.348
Beta blocker 217 (90.0) 91 (86.7) 126 (92.6) 0.135
ACEI or ARB 204 (84.6) 84 (80.0) 120 (88.2) 0.104
Aldosteron antagonist 96 (39.8) 40 (38.1) 56 (41.2) 0.691
Diuretics 117 (48.5) 48 (45.7) 69 (50.7) 0.516
Antiplatelet 143 (59.3) 38 (36.2) 105 (77.2) <0.001
Anticoagulation 98 (40.7) 40 (38.1) 58 (42.6) 0.510
Cholesterol reducer 163 (67.6) 43 (41.0) 120 (88.2) <0.001
Amiodarone 30 (12.4) 10 (9.5) 20 (14.7) 0.245

ACEI: angiotension converting enzyme inhibitor, ARB: angiotensin receptor blocker, BMI: body mass
index, CRT-D: cardiac resynchronisation therapy-defibrillator, LV: left ventricular, LVEF: left ven-
tricular ejection fraction, LVIDd: left ventricular internal diastolic diameter, OMI: old myocardial
infarction.

4.3.4 Subgroup analysis

The classification scores of the set 7B SVM are shown in figure 4.9 and were used to create
subgroups. The baseline characteristics of the three subgroups are shown in table 4.2. The
weight of the patients was different between the three groups (p<0.008). Low risk patients
had lower weights than high risk patients (p<0.003). Furthermore, diuretics use showed a
linear trend between the subgroups (p<0.011). Higher classification scores were accompanied
by more diuretics use.
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Figure 4.8: Receiver operating characteristic curve of the set 7B support vector machine with VFWC
of leads II and V1. The green shaded area represents the 95% confidence interval of the area under
the curve, which is presented in the upper-left corner as AUC [lower bound - upper bound]. Point
P represents the working point set at a specificity of 80% and displays the corresponding sensitivity
and accuracy. AMSA: amplitude spectrum area, AUC: area under the curve, BW: bandwidth, FM:
median frequency, ROC: receiver operating characteristic, SVM: support vector machine, VFWC:
ventricular fibrillation waveform characteristics.
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Figure 4.9: The classification scores of the set 7B support vector machine shown for the two study
groups of patients without (’o’) and with old myocardial infarction (’x’). All patients were divided
into tertiles based on their classification scores which led to three subgroups. The threshold between
the low risk and intermediate risk subgroups is at -1.30; the threshold between the intermediate
risk and high risk subgroups is at -0.68. OMI: old myocardial infarction.

Table 4.2: Baseline characteristics of the subgroups based on tertiles of the classification scores
of the set 7B support vector machine. The threshold between the low risk and intermediate risk
subgroups is at -1.30; the threshold between the intermediate risk and high risk subgroups is at
-0.68. Continuous variables are medians [Q1-Q3], categorical variables are n (%). Significant
p-values are printed in bold. Significant post-hoc test results are indicated by an asterisk (*).

Low risk Intermediate risk High risk p-value
Demographics
Age (years) 62.0 [55.0-70.0] 65.0 [51.0-74.0] 67.0 [58.0-72.0] 0.064
Weight (kg) 75 [66-87]* 82 [71-90] 83 [74-91]* 0.008
Hypertension 29 (36.7) 35 (44.9) 35 (44.3) 0.376
Diabetes mellitus 11 (13.9) 22 (28.2) 20 (25.3) 0.105
Primary prevention 49 (62.0) 45 (57.0) 55 (69.6) 0.366
LV mass related
LV mass index (g/m2) 118.8 [84.6-136.6] 113.0 [97.6-134.2] 110.5 [90.1-132.0] 0.937
LV mass index (cat.) 0.525

Low mass 24 (37.5) 20 (28.6) 23 (33.8)
Medium mass 15 (23.4) 25 (35.7) 27 (39.7)
High mass 25 (39.1) 25 (35.7) 18 (26.5)

Heart failure related
QRS duration (ms) 116 [99-148] 112 [98-130] 125 [102-152] 0.142
LVEF (%) 35 [28-50] 35 [28-48] 33 [27-41] 0.105
CRT-D 21 (26.6) 20 (25.3) 25 (31.6) 0.536
LV dilation 15 (21.1) 11 (15.3) 14 (18.7) 0.750
ACEI or ARB 62 (78.5) 68 (86.1) 69 (88.5) 0.100
Diuretics 32 (40.5) 35 (44.3) 48 (61.5) 0.011
Antiarrhytmic drugs
Beta blocker 71 (89.9) 69 (87.3) 73 (93.6) 0.504
Amiodarone 9 (11.4) 11 (13.9) 10 (12.8) 0.812
ACEI: angiotensin converting enzyme inhibitor, ARB: angiotensin receptor blocker, CRT-D: cardiac
resynchronisation therapy-defibrillator, LV: left ventricular, LVEF: left ventricular ejection fraction.
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4.4 Discussion

4.4.1 Main findings

In this study, the effect of feature optimisation on the performance of multi-lead machine learn-
ing models was studied. SVMs with as input VFWC of lead II, all twelve leads and leads II + V1
reached AUCs of 0.61, 0.78 and 0.71 respectively before feature selection was applied. Feature
selection reduced the number of VFWC from 17 to 3, from 391 to 10 and from 51 to 5. The
models based on these reduced sets of input features reached AUCs of 0.58, 0.83 and 0.76.
Overall, the 12-lead models reached the highest AUCs and sensitivities, followed by the lead II
+ V1 models and the lead II models. Moreover, the SVM B models reached numerically higher
AUCs and sensitivities than the corresponding SVM A models. The highest AUCs and sensitivities
were observed for the MVR type models.

Since the 12-lead models were created with the most data, it is not surprising that these
models reached the highest outcomes. Interestingly, the SVM B based on leads II and V1 reached
an AUC of 0.76, which can be considered acceptable21. This AUC was closer to the AUCs of
the 12-lead models than those of the lead II models. This suggests that not all twelve leads
contributed evenly to the discriminative ability of those models. Presumably, relatively unique
and uncorrelated information is offered by leads II and V1 because of their nearly orthogonal
configuration within the patient. This could explain why the addition of lead V1 resulted in
models with markedly higher AUCs. It demonstrates that using multiple leads is a sensible way
of gaining more insight into the underlying disease.

Notably, the SVM B models reached higher AUCs than their SVM A counterparts. Since all
SVMs were subjected to an optimisation of hyperparameters, this contrast is likely attributable to
differences in input features. The wrapper method of forward stepwise variable entry therefore
appeared to be effective. Applying the filter method prior to the wrapper method seemed to
remove valuable information as the even-numbered models reached lower outcomes than the
odd-numbered variants.

The observed AUCs of the MVR models were higher than those of the SVM models. A
possible explanation for this is that the SVM models were subjected to five-fold cross-validation
whereas the MVR models were not cross-validated. The MVR models might therefore have
been overfitted and might have produced worse results when unseen test data had been used
to evaluate the performance. In order to estimate the size of this effect, the SVMs were once
recreated without cross-validation; these models have not been reported here. The models
reached AUCs markedly higher than those of the cross-validated SVMs and MVR models. The
performance of the MVR models observed in this study is therefore likely overestimated. Further
research with cross-validated MVR models is required to confirm this hypothesis.

4.4.2 Comparison to previous studies

The relationship between MI presence and the VF-waveform has been described numerously
before. Early work in swine models showed that OMI and AMI change the VF-waveform in a
similar way11–15. Human studies have demonstrated that AMI alters VFWC in the setting of
OHCA as well17,18. The data used in the current study show similar changes of the VF-waveform
caused by OMI and have been reported before9,10.

This study exploited these VF-waveform changes to produce models for the detection of
OMI. It is thereby a follow-up on the earlier proof-of-concept study on VF-waveform analysis of
12-lead ECGs with a machine learning approach19. In comparison, the current study employed
a more thorough method for the optimisation of SVM hyperparameters and included models
with new lead combinations. In addition, this study focused on the effect of established feature
selection methods on model performance22,23. The approach of applying univariate analysis to
identify potential predictors for a multivariate model is considered a filter method. This was
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done in the current study by using the p-values of Mann-Whitney U tests on VFWC to compose
the even-numbered sets of input features. The forward stepwise method for variable entry
utilised by MVR could be considered a wrapper method, comparing the performance of models
with different input features to determine the best combination. The employed methods of
feature selections resulted in a lead II + V1 model with an AUC comparable to those of the
12-lead models described in the proof-of-concept study. These methods of feature selection thus
appeared to be effective.

4.4.3 Implications

The results of this study are in line with the findings of the proof-of-concept study mentioned
earlier on detection of OMI using machine learning analysis of the VF-waveform19. The current
study has shown that fine-tuning of the SVM hyperparameters and input features might improve
the discriminative ability of the models. A wrapper method such as forward stepwise variable
entry appears to be an effective way of removing redundant variables. Combining multiple fea-
ture selection methods may result in an excessive removal of predictor variables and a decrease
of performance, however.

Similar to the proof-of-concept study, the ability of the models to detect OMI was better
when using multiple ECG leads19. Given that the waveform changes imposed by OMI and AMI
are similar, multi-lead models may facilitate AMI detection in the OHCA setting. Developing
such models is a future prospect, however, as clinical trials are required to obtain multi-lead
out-of-hospital VF data. Moreover, this study and previous work have shown that single lead
models can detect OMI as well19. A first step would therefore be to translate the methods of
this study to the out-of-hospital setting with the paddle ECG being the only available lead. This
would give insight into the potential of diagnostic machine learning models for in-field detection
of AMI and could warrant future research on the development and implementation of a multi-
lead defibrillator ECG.

Furthermore, the subgroup analysis of this study has given insight into how an SVM with
only VF-waveform based input features discriminates between patients with and without OMI.
Nearly none of the clinical factors was different between the subgroups based on the SVM clas-
sification scores. This implies that the information in the VF-waveform is different from the
information given by these clinical characteristics. This offers possibilities, as adding clinical
factors to the model, such as age or gender, will supply unique information that might improve
its discriminative ability.

4.4.4 Limitations

A limitation of the current study is that VF was induced electrically. Differences in waveform
characteristics have been known to exist between electrically induced VF and spontaneous
VF24–26. Moreover, this study attempted to detect OMI whereas the OHCA setting requires a
method to detect AMI. This questions the generalisability of the current approach to the out-
of-hospital setting with spontaneous VF caused by AMI. However, animal and human studies
have suggested that the VF-waveform changes imposed by OMI are more abundant in case of
AMI12,15,18,27. This suggests that the machine learning approach of VF-waveform analysis for
the detection of OMI may perform better in the OHCA setting for the detection of AMI.

Moreover, in the current study only the initial phase of VF was analysed. The data did
therefore not contain information about how the VF-waveform evolves over time. This lack of
temporal information may have limited the performance of the models presented here. This
means, however, that the current results may underestimate the performance of future in-field
models that will have the possibility to analyse the VF-waveform over time. Detection of AMI
in the out-of-hospital setting might therefore in the future be more accurate than this study in
experimental setting suggests.
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Considering that machine learning approaches are most suitable for large data sets, the small
amount of patients in this study poses another limitation. Nonetheless, the SVMs reached accept-
able discriminative abilities based on the AUCs. Future research with a larger study population
might improve the accuracy of the models.

4.4.5 Conclusion

This study has demonstrated that feature selection and optimisation of hyperparameters might
improve the performance of multi-lead machine learning models for the detection of OMI. Op-
timised models with input features selected from two leads reached acceptable discriminative
abilities, performing on par with models based on twelve leads described in earlier work. These
results are promising and warrant exploration of multi-lead models in clinical trials. Further
research should investigate the effect of the proposed optimisation process on models detecting
AMI in the setting of OHCA.
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Abstract

Background: Out-of-hospital ventricular fibrillation (VF) has dismal survival rates despite im-
provements in resuscitative care. Detection of acute myocardial infarction (AMI) by VF-waveform
analysis may facilitate patient-tailored treatment strategies. This study aimed to identify pre-
dictors and assess the discriminative ability of machine learning models for the detection of AMI.

Methods: Adult patients with non-traumatic out-of-hospital VF transported to the Radboud
University Medical Center were included (November 2005 - January 2011). VF-waveform char-
acteristics (VFWC) were computed for the last three seconds before the first and second defibril-
lation shock. Selections of VFWC from the first, second, or both segments combined were used
as input for models discriminating between patients with and without AMI. Model performance
was assessed by receiver operating characteristic analysis.

Results: A total of 102 patients was included, of which 62 had an AMI. The VFWC amplitude
spectrum area, detrended fluctuation analysis α2, median slope and flucvar were predictors for
AMI. Models with VFWC of the first and second VF segment as input features had an area under
the curve (AUC) of 0.74 and 0.72 respectively. Models with VFWC of both segments combined
reached an AUC of 0.76.

Conclusions: Amplitude and organisation-related VFWC were predictors for AMI. Machine
learning models with selections of VFWC had acceptable discriminative ability for detecting
AMI. The proposed machine learning approach is promising and may facilitate an individualised
treatment strategy by identifying patients with AMI during out-of-hospital VF.
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5.1 Introduction

Ventricular fibrillation (VF) is the presenting cardiac rhythm in about 30% of all out-of-hospital
cardiac arrest (OHCA) and carries dismal survival despite improvements in the chain of care1,2.
Various initiatives have been taken over the last years that have increased the rate of lay person
cardiopulmonary resuscitation (CPR) and automated external defibrillator (AED) use, yet there
still is room for improvement3,4.

In the quest towards patient-tailored therapeutic options, early recognition and treatment of
the underlying arrest cause have been suggested5,6. Recent case series demonstrated a potential
benefit of early transportation and intervention in patients with refractory VF, in case the un-
derlying cause was acute myocardial infarction (AMI)7. However, diagnosis of AMI is currently
restricted to patients in whom return of spontaneous circulation (ROSC) is achieved, precluding
early aetiology-driven resuscitative interventions8,9. A more timely diagnosis of a reversible ar-
rest cause such as an AMI, may pave the way for individualised treatment strategies, potentially
improving outcomes.

A possible way for in-field identification of AMI patients may be by analysing the VF-waveform
of the defibrillator electrocardiogram (ECG). Animal and human studies have demonstrated that
both old myocardial infarction (OMI) and AMI affect morphological characteristics of the VF-
waveform10–13. A recent human study on induced VF showed that a machine learning diagnostic
approach with VF-waveform information as input enables detection of an OMI14. The study pre-
sented in chapter 4 of this thesis demonstrated that optimisation of input features improved the
performance of those models. Although VF-morphology may differ between electrically induced
and spontaneous VF, these studies showed the promising potential of VF-waveform analysis for
diagnostic purposes15,16.

As of yet, it is unknown whether the aforementioned results for detecting OMI in induced VF
and optimisation of input features apply for early, in-field detection of AMI and spontaneous VF.
It is also unknown which ventricular fibrillation waveform characteristics (VFWC) are essential
for such discriminative models. Therefore, this study focused on identification of patients with
an AMI as the underlying cause of OHCA in a real-world cohort using the VF-waveform. The aim
was to identify predictors and to assess the discriminative ability of machine learning models
for the detection of AMI using optimised input features.

5.2 Methods

5.2.1 Study population

All consecutive OHCA patients resuscitated between November 2005 and January 2011 by the
emergency medical services (EMS) of region Gelderland-Zuid (The Netherlands) were regis-
tered. Adult patients (age ≥ 18) with VF as the first observed rhythm who were transported
to the Radboud University Medical Center (Radboudumc) in Nijmegen were eligible for inclu-
sion. Exclusion criteria were traumatic OHCA, a defibrillation shock delivered by an AED or
implantable cardioverter-defibrillator (ICD) before EMS arrival, prematurely stopped resuscita-
tion, absence of an analysable ECG recording and lack of clinical information to determine the
arrest aetiology.

5.2.2 Data acquisition

Clinical characteristics

Demographic, clinical and arrest characteristics according to the 2004 Utstein-style definitions
were collected using EMS and hospital records17. ECG tracings were recorded during resuscita-
tion using the paddles of a LIFEPAK 12 defibrillator (Physio-Control, Redmond, WA, USA) with
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a sampling frequency of 125 Hz. Biphasic shocks were delivered manually at energy levels of
200-360-360 Joule.

Ventricular fibrillation waveform characteristics

ECG recordings were pre-processed with a fourth order Butterworth bandpass filter with cut-off
frequencies of 1 and 48 Hz. A graphical user interface developed in MATLAB R© (version 2020a,
MathWorks R©, Natick, MA, USA) was used to review each ECG and select periods of VF without
chest compressions.

Two segments were derived from these periods, each with a duration of three seconds (375
samples): the last segment before the first defibrillation shock (VF1) and if availble the last
segment before the second defibrillation shock (VF2). Both VF1 and VF2 had to occur within
a maximum of thirty seconds before the shock. Patients who received only one defibrillation
shock did not have a VF2 segment.

Seventeen VFWC were computed for both segments to quantify the VF-waveform. Details
on the computation of the VFWC can be found in subsection 2.2.1. Additionally, the differences
between the VFWC of VF1 and VF2 (∆1,2) were computed, resulting in seventeen extra VFWC.
Patients with two or more defibrillation shocks therefore had a total of 51 VFWC while patients
with one shock had 17.

Study groups

Patients were divided into two groups based on whether or not they had an AMI at the time
of resuscitation. Only patients for whom it was nearly certain that the AMI was the underlying
cause of the arrest were included in the AMI group in order to avoid false-positives. For this
study, AMI was therefore defined as presence of myocardial infarction according to the third
universal definition, as well as presence of an acute coronary occlusion according to either of
the following two criteria18. The first criterion was new ST-segment elevation of ≥0.1 mV on a
post-arrest ECG with organised rhythm. A higher cut-off was applied for leads V2 and V3: ≥0.15
mV for women and ≥0.2 mV or ≥0.25 mV for men older or younger than 40 years old respec-
tively. The second criterion was an intracoronary thrombus or acute occlusion identified by an
experienced interventional cardiologist on an acute coronary angiography or by a pathologist
on autopsy.

5.2.3 Descriptive analysis

Clinical and VF-waveform characteristics were compared between the two study groups. Con-
tinuous variables were reported as median [Q1-Q3] and categorical variables as number (per-
centage). Continuous variables were compared using Mann-Whitney U tests and categorical
variables using Fisher’s Exact Test. A p-value of <0.05 was considered significant.

Additionally, the median and [Q1-Q3] of some commonly used VFWC were reported side
by side for the current study population as well as the study population described in chapter
4. The waveform characteristics of this population described VF induced electrically during ICD
implantation procedures. They were reported in this study to demonstrate waveform differences
between electrically induced VF and spontaneous VF caused by ischaemia.

All statistical analyses were performed with IBM SPSS R© Statistics software (IBM Corp. Re-
leased 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp).



62 Ventricular fibrillation waveform analysis for detection of acute myocardial infarction

5.2.4 Predictive analysis

Set composition

Six sets of VFWC were composed, each including a different combination of VFWC of different
VF segments. Figure 5.1 shows how the six sets 1A through 6A were composed.

First, a selection of segments was made: VF1 alone (sets 1A and 2A), VF2 alone (sets

3A and 4A) or VF1 + VF2 + ∆1,2 combined (sets 5A and 6A). The two segments alone were
studied to assess the value of the VF-waveform at the two different moments. The segments and
their differences combined were studied to investigate if combining information about different
phases of the resuscitation would improve discriminative ability.

The distinction between the two sets within the three pairs was based on Mann-Whitney U
tests that compared the VFWC between the patients with and without AMI. The even-numbered
sets included only those VFWC with a p-value of <0.1. The odd-numbered sets contained VFWC
with larger p-values as well.

Figure 5.1: Composition of sets 1A-6A. VF1: the last segment before the first defibrillation shock,
VF2: the last segment before the second defibrillation shock, VFWC: ventricular fibrillation wave-
form characteristics, ∆1,2: the differences between the ventricular fibrillation waveform character-
istics of VF1 and VF2.
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Prediction models

The six sets A were used as input features for six support vector machine (SVM) A models and six
multivariate logistic regression (MVR) models. The wrapper type feature selection of forward
stepwise entry reduced the number of variables included in the MVR models. The included
variables composed the six sets B, which were used as input for the corresponding six SVM B
models. The hyperparameters of the twelve SVMs were optimised according to the algorithm
explained in subsection 2.2.3. Figure 5.2 shows an overview of how the sets were used as input
features for the different models. The SVMs were subjected to five-fold cross-validation.

The results of the study presented in chapter 4 suggested that a wrapper type of feature
selection applied on an SVM produces the most accurate models. The performances of the odd-
numbered SVM B models were therefore considered the main results. The set 1B, 3B and 5B
SVMs were evaluated to study the performance of models created from different VF segments.
The other models were created from an exploratory perspective to investigate if the optimal
method of feature selection proposed in chapter 4 applied to data of an OHCA cohort as well.

Figure 5.2: Overview of the prediction methods and the performance measures. AUC: area under
the curve, MVR: multivariate logistic regression, SVM: support vector machine.
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Outcome measures

Two outcome measures were used to assess the discriminative ability of each of the models: the
area under the curve (AUC) of the receiver operating characteristic (ROC)-curve and the sen-
sitivity at the level of 80% specificity. The rationale behind using these two outcome measures
was the same as in chapter 4.

5.3 Results

5.3.1 Study population

In the period between November 2005 and January 2011, 253 patients were eligible for inclu-
sion of which 151 were excluded for various reasons. Of the 102 included patients, 40 (39.2%)
did not have an AMI and 62 (60.8%) did. Figure 5.3 shows an overview of the amount of
patients in each stage of inclusion.

The VF2 segment could be determined for 72 (70.6%) of the included patients as they re-
ceived two or more defibrillation shocks during resuscitation. Figure 5.4 shows two phases of
the defibrillator ECG of one of the included patients recorded during OHCA.

Figure 5.3: Flowchart of the patient inclusion process. AED: automated external defibrillator, AMI:
acute myocardial infarction, ECG: electrocardiogram, ICD: implantable cardioverter-defibrillator,
OHCA: out-of-hospital cardiac arrest, VF: ventricular fibrillation.

5.3.2 Descriptive analysis

Clinical characteristics

The median age of the 102 patients was 61.5 years [51.0-71.3] and 73 (71.6%) were male.
The patients with AMI were younger and a larger proportion was male compared to the pa-
tients without AMI, but the differences were not significant. No differences existed in the arrest
characteristics except for the response time, which was shorter for patients without AMI (7.0
vs. 8.0 minutes, p=0.038). Regarding outcome, patients without AMI more often had ROSC
upon arrival at the emergency department (90.0% vs. 72.6%, p=0.045). Survival to hospital
discharge was similar for the two groups. Table 5.1 shows all the baseline characteristics of the
study population.
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Figure 5.4: Example electrocardiogram recorded during out-of-hospital ventricular fibrillation. The
upper panel shows the initial thirty seconds of the resuscitation with the last segment before the first
shock (VF1) marked in red. The lower panel shows the recording three minutes into the resuscitation
with the last segment before the second shock (VF2) in red.

Table 5.1: Baseline characteristics of the study population. Continuous variables are medians [Q1-
Q3], categorical variables are n (%). Significant p-values are printed in bold.

All patients No AMI AMI p-value
n=102 n=40 n=62

Patient characteristics
Age (years) 61.5 [51.0-71.3] 62.0 [53.5-71.8] 60.5 [49.0-71.3] 0.641
Male gender 73 (71.6) 26 (65.0) 47 (75.8) 0.266
Arrest characteristics
Public location arrest 44 (43.1) 17 (42.5) 27 (43.5) 1.000
Witnessed arrest 86 (86.9) 33 (84.6) 53 (88.3) 0.762

Bystander 84 (84.8) 33 (84.6) 51 (85.0) 1.000
EMS 2 (2.0) 0 (0.0) 2 (3.3) 0.518

Bystander CPR 66 (66.7) 25 (64.1) 41 (68.3) 0.669
Response time (minutes) 8.0 [6.0-10.0] 7.0 [5.0-9.0] 8.0 [6.0-10.8] 0.038
Number of EMS shocks 3.0 [1.0-6] 2.5 [1.0-4.0] 3.0 [1.0-6.0] 0.272
Amiodarone 64 (65.3) 21 (55.3) 43 (71.7) 0.128
Adrenaline 79 (79.8) 30 (76.9) 49 (81.7) 0.614
Outcome characteristics
ROSC at arrival ED 81 (79.4) 36 (90.0) 45 (72.6) 0.045
Survival to discharge 49 (48.0) 21 (52.5) 28 (45.2) 0.544

AMI: acute myocardial infarction, CPR: cardiopulmonary resuscitation, ED: emergency department,
EMS: emergency medical services, ROSC: return of spontaneous circulation.
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Ventricular fibrillation waveform characteristics

Mann-Whitney U tests were performed to investigate the differences of the VF1, VF2 and the ∆1,2

VFWC between the groups of patients with and without AMI. Table 5.2 shows the corresponding
p-values.

VFWC with differences between the groups for both the VF segments were the mean absolute
amplitude (p≤0.024), median slope (p≤0.013), amplitude spectrum area (AMSA) (p≤0.011)
and power spectrum area (p≤0.039).

VFWC observed in this study are reported in table 5.3 alongside the VFWC of the study pop-
ulation described in chapter 4, obtained from electrically induced VF. Differences were observed
between the two types of VF (p=0.002 for AMSA, p<0.001 for the other VFWC). Both the am-
plitude and frequency-related characteristics were higher for the electrically induced VF; the
AMSA was lower. Furthermore, electrically induced VF had a smaller bandwidth and a larger
organisation index and detrended fluctuation analysis (DFA) scaling exponents.

5.3.3 Predictive analysis

Set composition

The amount of VFWC in each of the sets 1A-6A as determined by figure 5.1 can be seen in figure
5.5. The forward stepwise entry method of MVR reduced the number of VFWC to compose
sets 1B-6B. These sets contained one or two VFWC. A more elaborate description of the set
compositions is given in appendix A.5.

Prediction models

Eighteen sets were created, six models of MVR, SVM A and SVM B each. The optimised hyper-
parameters of the SVMs can be found in table A.9 in A.6. Figure 5.6 shows the areas under the
ROC-curves with the 95% confidence intervals depicted using error bars. Figure 5.7 shows the
sensitivities of the models at the level of 80% specificity.

The set 1B SVM based on the AMSA and DFAα2 of the VF1 segment had an AUC and sensi-
tivity of 0.74 and 0.58 respectively. The SVM of set 3B with the median slope of segment VF2 as
input feature had an AUC of 0.72 and a sensitivity of 0.40. The SVM of set 5B with the flucvar
of the VF1 segment and the median slope of the VF2 segment as input features reached an AUC
of 0.76 and a sensitivity of 0.55.

Figure 5.5: Overview of the number of ventricular fibrillation waveform characteristics in sets 1A-
6A and 1B-6B. The forward stepwise entry method of multivariate logistic regression was used to
create subselections of sets A that compose sets B. MVR: multivariate logistic regression.
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Table 5.2: The p-values of Mann-Whitney U tests of the ventricular fibrillation waveform charac-
teristics between the groups with and without acute myocardial infarction. Green cells indicate
p-values <0.05, yellow cells indicate p-values <0.1. Underlined values indicate that the waveform
characteristic was larger for the group with acute myocardial infarction.

VF1 VF2 ∆1,2

MAA 0.016 0.024 0.386
MS 0.013 0.004 0.349
FM 0.062 0.175 0.687
FD 0.052 0.228 0.608
BW 0.631 0.037 0.088
AMSA 0.006 0.011 0.940
AMSAlf 0.011 0.028 0.821
AMSAhf 0.005 0.007 0.875
AMSAratio 0.967 0.688 0.785
PSA 0.008 0.039 0.529
flucmean 0.151 0.053 0.966
flucvar 0.184 0.850 0.422
flucrms 0.025 0.570 0.259
flucmaa 0.044 0.530 0.526
OI 0.060 0.399 0.070
DFAα1 0.033 0.207 0.839
DFAα2 0.219 0.838 0.885
Total p<0.1 12 8 2

AMSA: amplitude spectrum area, AMSAhf: AMSA high frequencies, AMSAlf: AMSA low frequen-
cies, BW: bandwidth, DFA: detrended fluctuation analysis, FD: dominant frequency, FM: median
frequency, MAA: mean absolute amplitude, MS: median slope, OI: organisation index, PSA: power
spectrum area, VF1: the last segment before the first defibrillation shock, VF2: the last segment be-
fore the second defibrillation shock, ∆1,2: the differences between the ventricular fibrillation wave-
form characteristics of VF1 and VF2.

Table 5.3: Medians and [Q1-Q3] of a selection of ventricular fibrillation waveform characteristics.
The OHCA column contains waveform characteristics of the last segment before the first defibrilla-
tion shock measured during out-of-hospital cardiac arrest in the study population described in the
current study. The ICD column contains waveform characteristics of lead II of ventricular fibrilla-
tion induced electrically during implantable cardioverter-defibrillator testing in the study population
described in chapter 4. Significant p-values are printed in bold.

OHCA ICD p-value
Mean absolute amplitude 0.12 [0.10-0.16] 0.15 [0.11-0.24] <0.001
Median slope 3.05 [1.83-4.88] 4.65 [3.52-7.10] <0.001
Dominant frequency 4.39 [2.93-6.35] 5.13 [4.88-5.62] <0.001
Bandwidth 2.20 [1.46-2.99] 0.49 [0.24-0.73] <0.001
Amplitude spectrum area 14.23 [9.70-20.80] 11.28 [9.06-16.01] 0.002
Power spectrum area 0.06 [0.02-0.16] 0.18 [0.10-0.42] <0.001
Organisation index 0.47 [0.34-0.63] 0.69 [0.55-0.78] <0.001
Detrended fluctuation analysis α1 1.39 [1.26-1.49] 1.97 [1.95-1.98] <0.001
Detrended fluctuation analysis α2 0.07 [0.05-0.10] 0.26 [0.22-0.31] <0.001

ICD: implantable cardioverter-defibrillator, OHCA: out-of-hospital cardiac arrest.
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5.4 Discussion

5.4.1 Main findings

The aim of this study was to identify predictors and to assess the discriminative ability of ma-
chine learning models for detecting AMI using optimised input features from different segments
of the resuscitation. The VFWC that were predictors in the SVM B models were the AMSA,
DFAα2, median slope and flucvar. The SVM models created using VFWC of the first and second
VF segment reached an AUC of 0.74 and 0.72 respectively. The model with input features from
both segments combined had an AUC of 0.76. All three models had a discriminative ability that
can be considered acceptable19. Considering the other models, the highest AUCs were reached
when VFWC of both segments were used.

Combining input features from different phases of the resuscitation seemed to result in mod-
els with the best ability to discriminate between patients with and without AMI. This is under-
standable, as these models were created with more information than the single segment models.
This finding suggests that there was a difference between the two patient groups in the way the
VF-waveform evolved over time. While the amplitude-related measures were consistently lower
in patients with AMI, the organisation-related measures evolved differently for the two groups.
The VF of patients without AMI underwent a decrease in bandwidth over time, indicating an in-
crease of signal organisation. Conversely, the organisation index of patients with AMI decreased
over time, indicating a decrease of signal organisation. The signal organisation thus seemed to
decrease in case of AMI, while it increased in absence of AMI.

One factor that may have overestimated the discriminative abilities of the current models
is that the response time was higher for the patients with AMI. Previous research has shown
that amplitude-related VFWC, such as AMSA, decrease over the course of the arrest13. This
suggests that the lower amplitude-related VFWC observed in the AMI group may partially have
been caused by the longer response time, rather than by presence of AMI alone. Since it is
unlikely that a longer response time in itself increased the likelihood of AMI, response time was
not considered to be a confounder and its effect was assumed to be limited. Nonetheless, the
discriminative abilities of the current models might have been overestimated and might have
been worse if equal response times had been observed for the two study groups.

The comparison between the waveform characteristics of spontaneous VF recorded in the
OHCA setting and electrically induced VF obtained during ICD testing showed clear differences.
Both amplitude and frequency-related measures were smaller during OHCA. This could have
been caused by the acute nature of the myocardial infarctions, which are known to have a
stronger effect on the VF-waveform than OMIs10,13. The longer time period between the onset
and recording of VF in the OHCA cohort could have caused smaller amplitude and frequency
measures as well. Surprisingly, the AMSA was higher for these patients, while it is a combined
amplitude-frequency measure. Inspection of the power spectra showed that spontaneous VF
indeed had a lower dominant frequency, but also had a higher bandwidth. This increased dis-
persion of power over the frequency range presumably amounted to a higher AMSA. On the
same note, the higher bandwidth in the OHCA group was accompanied by a lower organisation
index, as compared to the ICD group. Besides lower amplitude and frequency measures, sponta-
neous VF therefore also appeared to have a lower degree of signal organisation than electrically
induced VF.

5.4.2 Comparison to previous studies

Analysing changes in the VF-waveform to detect AMI has been described before. Swine studies
showed that the AMSA and median slope are decreased in case of AMI10,20,21. Human studies
found similar results, suggesting that VF-waveform analysis may be used to detect AMI during
OHCA12,13. This study extended these findings and showed that the AMSA and median slope in
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addition to other VFWC may be used to detect AMI with an acceptable accuracy.
The use of a machine learning approach to detect AMI is relatively new. A proof-of-concept

study on electrically induced VF acquired during ICD testing first demonstrated this practice for
the detection of OMI14. The study reported in chapter 4 of this thesis improved the method
by performing an optimisation of input features. The current study applied the same machine
learning approach on a real-world OHCA cohort with spontaneous VF. The AUCs that were
achieved are similar to those described in the earlier studies on the detection of OMI. Those
studies used models based on VFWC of two or even twelve leads, however. In contrast, the
models in the current study were created with input features from the defibrillator ECG lead
alone.

The similar performance achieved with a single ECG lead instead of multiple leads may be
explained by the relevance of the organisation-related VFWC for the detection of AMI. These
waveform measures played a more important role in the OHCA setting for differentiating be-
tween patients with and without AMI than in the experimental setting for the detection of OMI.
This increased variety of predictors may have led to similar model performances, despite the
fact that all input features originated from a single ECG lead.

5.4.3 Implications

This study has demonstrated that analysing the out-of-hospital VF-waveform over time improves
the ability of a model to detect AMI. Gathering these data from the first possible moment in a
resuscitation is therefore key, once in-field VF-waveform analysis becomes available.

Furthermore, organisation-related measures seemed to play a role in distinguishing between
patients with and without AMI. The discriminative value of these VFWC was not apparent in
earlier studies on the detection of OMI in electrically induced VF. The differences observed in this
study between these VFWC measured in spontaneous and electrically induced VF might explain
why the discriminative role is limited to the OHCA setting; organisation-related measures might
therefore be more valuable than previously thought. An in-field application for AMI detection
would likely benefit from a wide range of VFWC and include these measures besides the more
commonly used measures, such as AMSA.

The amplitude and frequency-related VFWC were found to be different between the spon-
taneous and electrically induced VF as well. These differences prevent a direct translation of
earlier results found in the experimental setting to the out-of-hospital setting. Future research
on in-field identification of AMI should therefore be based on out-of-hospital data.

A further improvement of the AMI detection method may be facilitated by analysis of multi-
ple ECG leads. A previous study has shown that multi-lead VF-waveform analysis improves the
detection of OMI14. This method has only been applied in an experimental setting; the effect of
a multi-lead approach in the OHCA setting is still unknown and should be investigated. Multi-
lead machine learning models might detect AMI more accurately than the models presented in
this study. Since such models require data, a first step would be to set up a prospective registry
to systematically record out-of-hospital VF data in multiple leads.

5.4.4 Limitations

One limitation of this study is that selection bias may have occurred in the inclusion of pa-
tients. Only patients that were transported to the hospital were included as patients for whom
resuscitation was terminated did not meet the eligibility criteria. The included patients might
have constituted a more homogeneous sample than the study population they represented. The
generalisability of the current results to the entire out-of-hospital population might therefore be
questioned.

Furthermore, the number of included patients was relatively small for machine learning
purposes. The best performing models were created with even a smaller number as the VF2
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segment was not recorded for all patients. The amount of predictor variables for the SVM
A models was therefore likely to be too large, following the one in ten rule22,23. This might
have caused overfitting, which questions the discriminative ability on unseen test data. Cross-
validation was applied to prevent this, however. In addition, the MVR and SVM B models
were composed of only one or two predictor variables. The results might therefore still be
representative.

Another limitation of this study is that only the VF1 and VF2 segments were analysed, which
were both recorded in the early phase of the resuscitation. Using additional VF segments
recorded later in the resuscitation would provide extra information and possibly increase model
performance. This would introduce bias, however, as long duration resuscitation attempts that
usually have poor outcomes would be overrepresented. The current combination of VF segments
before the first and second defibrillation shock might therefore represent the OHCA population
more accurately.

5.4.5 Conclusion

This study found that both amplitude and organisation-related VFWC were predictors for AMI in
the OHCA setting. Machine learning models based on optimised sets of these VFWC were able
to detect AMI with acceptable discriminative ability. Combining VFWC recorded in different
phases of the resuscitation seemed to improve detection. Further research should investigate
the discriminative ability of multi-lead models in the out-of-hospital setting. Implementation of
a multi-lead machine learning model in clinical practice may in the future facilitate early, in-field
identification of AMI during OHCA.
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6|General discussion

In search of individualised out-of-hospital cardiac arrest (OHCA) care to improve survival, this
thesis investigated machine learning methods for the detection of acute myocardial infarction
(AMI) as the underlying cause of the arrest using ventricular fibrillation (VF)-waveform analysis.

The study presented in chapter 4 focused on detection of old myocardial infarction (OMI)
in patients with VF induced electrically in the setting of implantable cardioverter-defibrillator
testing. The VF-waveform changes caused by OMI were studied here using twelve electrocar-
diogram (ECG) leads and were considered a surrogate for the VF-waveform changes imposed
by AMI. The aim was to investigate the effect of established feature selection methods on the
discriminative ability of machine learning models for the detection of OMI. Selections of ven-
tricular fibrillation waveform characteristics (VFWC) of lead II, all twelve leads or lead II +
V1 were used as input features for support vector machine models. These models reached an
area under the curve (AUC) of 0.58, 0.83 and 0.76 respectively. This study has demonstrated
that feature selection and use of multiple ECG leads improved the discriminative ability of the
machine learning models. Interestingly, the model based on leads II and V1 was able to reach
acceptable discrimination between patients with and without OMI with an AUC of 0.76. This
is comparable to the performance of 12-lead models created using the same data described in
the aforementioned proof-of-concept study. These promising results indicate that an optimised
model based on two leads may have diagnostic value in clinical practice and requires explo-
ration. The main limitation of this study was that VF was induced electrically, questioning the
generalisability to the OHCA setting where VF arises spontaneously.

The study reported in chapter 5 therefore investigated the VF-waveform in an OHCA cohort
of which some patients had AMI. The aim was to find predictors and to assess the discriminative
ability of machine learning models for the detection of AMI. Amplitude and organisation-related
VFWC were found to be predictors of AMI. Support vector machine models were created using
selections of VFWC from a single VF segment or a combination of two segments. The single
segment models reached AUCs of 0.74 and 0.72 and the model with VFWC of both segments had
an AUC of 0.76. Thus, acceptable discrimination between patients with and without AMI was
achieved with models based on the defibrillator ECG alone. Especially the models based on both
segments performed well, as they incorporated the evolution of the VF-waveform over time.
The results have shown that optimisation of input features is beneficial in the out-of-hospital
setting as well. Because of the added discriminative value of the organisation-related VFWC in
the out-of-hospital setting, the performances of the single lead models were comparable to those
of the 12-lead models described in the earlier proof-of-concept study and to those of the lead II
+ V1 models reported in chapter 4. This suggests that the potential of VF-waveform analysis is
larger for detecting AMI in spontaneous VF than for detecting OMI in electrically induced VF.
In conjunction with the results of chapter 4, this implies that machine learning models with
optimised input features of multiple ECG leads may facilitate accurate in-field detection of AMI
during OHCA.

Altogether, this thesis has shown that VF-waveform analysis for the detection of AMI in the
OHCA setting using machine learning is promising. Feature selection, use of organisation-related
VFWC and analysing the VF-waveform over time improves the discriminative ability of these
models. Using multiple ECG leads to record the VF-waveform seems to have the most poten-
tial to improve the detection of AMI. Further research should focus on setting up a prospective
OHCA registry to systematically record multi-lead ECGs of VF. This will enable optimisation of
the machine learning models so they can be evaluated in clinical practice. This paves the way
for clinical implementation of a smart, multi-lead defibrillator with in-field AMI detection capa-
bilities that enables individualised OHCA treatment strategies and improves survival chances.
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Appendices

A.1 Multivariate logistic regression for selection of the two leads
used in sets 7 and 8 for the detection of old myocardial infarc-
tion

A.1.1 Introduction

Ventricular fibrillation (VF)-waveform analysis of multiple electrocardiogram (ECG) leads may
improve detection of old myocardial infarction (OMI)1,2. Chapter 4 of this thesis aimed to
investigate the effect of feature selection methods on the ability of multi-lead machine learning
models to detect OMI. The preliminary research presented in this appendix using multivariate
logistic regression (MVR) was conducted to investigate which combination of two leads would
be worth exploring more thoroughly in chapter 4.

A.1.2 Methods

Information about the study population can be found in chapter 4, details on the data acquisition
and computation of the ventricular fibrillation waveform characteristics (VFWC) can be found
in subsection 2.2.1 and the mathematical background of MVR is given in subsection 2.2.2.

Numerous MVR models based on different lead combinations were created to gain insight
in which of the twelve leads play a role in distinguishing between patients with and without
OMI. Single models of each lead alone were created first and were named models 1 through 12.
Models 13 through 25 were created to investigate combinations of leads. Lead II was included
in these models since it resembles the paddle ECG; the best performing limb lead was used as
well. One of the precordial leads V1, V3, V5 or V6 was added so that leads covering the entire
thorax were included in the combined models. The best performing model with lead II was
elaborated on, since it has the most potential for application in clinical practice.

The forward stepwise method based on the likelihood ratio statistic was used to enter VFWC
into the models. A p-value of <0.1 was used as a threshold for entry or removal of variables.
Model performance was assessed using the classification accuracy at a cut-off level of 0.5. All
statistical analyses were performed with IBM SPSS R© Statistics software (IBM Corp. Released
2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp).

A.1.3 Results

Table A.1 shows an overview of the lead combinations used to create the models and the ac-
curacies of these models. The lead aVR model reached the highest accuracy of the limb lead
models. The lead V6 model reached the highest accuracy of the precordial lead models. For the
combined models, the highest accuracy was reached by leads aVR and V1.

The model with leads II and V1 performed equivalently and was investigated in more detail.
The parameters of the model are shown in table A.2. All three included variables contributed
significantly to the model (p ≤ 0.001). The V1 bandwidth and V1 amplitude spectrum area
(AMSA) showed odds ratios (exp(b)) greater than one. Conversely, the lead II low frequency
AMSA (AMSAlf) had an odds ratio of less than one.
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Table A.1: Overview of the lead combinations and the number of ventricular fibrillation waveform
characteristics of the multivariate logistic regression models and their accuracies at a cut-off level of
0.5. Accuracies are displayed as a percentage.

Model no. Limb lead Precordial lead no. of VFWC Accuracy
Limb lead models

1 I - 2 60.3
2 II - 1 60.2
3 III - 1 58.3
4 aVR - 1 63.2
5 aVL - 2 57.9
6 aVF - 1 58.7

Precordial lead models
7 - V1 3 63.7
8 - V2 1 64.0
9 - V3 4 65.3

10 - V4 1 60.6
11 - V5 2 62.3
12 - V6 1 66.4

Combined models
13 II & aVR - 1 63.1
14 II V1 3 69.0
15 II V3 6 64.8
16 II V5 3 67.4
17 II V6 1 66.0
18 aVR V1 3 70.0
19 aVR V3 5 66.5
20 aVR V5 3 64.8
21 aVR V6 1 66.4
22 II & aVR V1 3 69.5
23 II & aVR V3 6 67.0
24 II & aVR V5 3 67.4
25 II & aVR V6 1 66.4

VFWC: ventricular fibrillation waveform characteristics.

Table A.2: Parameters of the multivariate logistic regression model with ventricular fibrillation
waveform characteristics of leads II and V1.

b SE Wald df p-value exp(b) [95% CI]
V1 bandwidth 0.844 0.262 10.415 1 0.001 2.327 [1.393-3.886]
II AMSAlf -0.253 0.056 20.290 1 <0.001 0.776 [0.695-0.867]
V1 AMSA 0.138 0.034 16.208 1 <0.001 1.148 [1.073-1.227]
Constant (b0) -0.203 0.451 0.202 1 0.653 0.817

AMSA: amplitude spectrum area, AMSAlf: low frequency AMSA, b: constant b0 or regression coeffi-
cient bi, CI: confidence interval, df: degrees of freedom, SE: standard error of b.
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A.1.4 Discussion

The model with leads aVR and V1 reached the highest accuracy. The model with leads II and V1
performed equivalently, making it an interesting combination since it would be easier to achieve
in clinical practice. The combination of the three variables included in this model appeared
to have the most discriminative value for the detection of OMI. With odds ratios greater than
one, an increase of the V1 bandwidth and V1 AMSA would mean a higher likelihood of the
patient having an OMI. Oppositely, an increase of lead II AMSAlf would mean a decrease of the
likelihood of having an OMI.

It is surprising that the combination of leads II and V1 delivered one of the best models:
among the single lead models, lead aVR seemed to perform better than lead II and lead V6
reached a higher accuracy than lead V1. Apparently, combining leads II and V1 supplied more
unique and uncorrelated information about the presence of OMI than the other leads alone or
combined. This might be caused by the near orthogonality of the two leads within the patient.

A limitation of the current approach is that the models were assessed only at a cut-off level
of 0.5. Possibly, other lead combinations would have performed better when another threshold
had been used. The models could have been analysed more thoroughly by evaluating the entire
receiver operating characteristic curve.

Furthermore, the differences in accuracies of the models were only a few percent. These
minor differences might not fully substantiate the decision to continue further work with the
combination of leads II and V1. However, the three best performing models all included lead V1.
Since lead II resembles the paddle ECG, adding lead V1 seems sensible.

Concluding, the combination of leads II and V1 produced an MVR model with reasonable ac-
curacy for the detection of OMI. This lead combination will be used in further research reported
in chapter 4 of this thesis.
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A.2 Mann-Whitney U test results of ventricular fibrillation wave-
form characteristics of electrocardiograms acquired during im-
plantable cardioverter-defibrillator testing

Tables A.3 and A.4 contain the p-values of the Mann-Whitney U test performed for all VFWC
between the groups with and without an OMI. Table A.5 summarises these findings and shows
the amount of VFWC with a significant difference between the two groups. The left half for a
p-value of <0.05; the right half for a p-value of <0.1. The p-value of <0.1 is presented besides
the conventional p-value of <0.05 since this level of significance was used to determine the
composition of the even-numbered sets A.
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Table A.5: The amount of ventricular fibrillation waveform characteristics with a significant differ-
ence between the groups with and without old myocardial infarction per lead, for the significance
levels of p<0.05 and p <0.1.

p<0.05 p<0.1
Regular ∆V1 Total Regular ∆V1 Total

(n = 17) (n = 17) (n = 34) (n = 17) (n = 17) (n = 34)
I 3 8 11 6 8 14
II 6 7 13 6 8 14
III 3 7 10 5 8 13
aVR 6 6 12 10 6 16
aVL 2 4 6 4 7 11
aVF 5 8 13 6 8 14
V1 5 - 5 6 - 6
V2 4 5 9 7 6 13
V3 8 7 15 11 7 18
V4 7 7 14 8 7 15
V5 8 6 14 10 6 16
V6 10 6 16 11 9 20
Total 67 71 138 90 80 170
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A.3 Ventricular fibrillation waveform characteristics in sets 1B-8B
of electrocardiograms acquired during implantable cardioverter-
defibrillator testing

Table A.6 shows an overview of the VFWC in sets 1B through 8B of ECGs acquired during
implantable cardioverter-defibrillator testing. These sets of input features were used to detect
OMI using support vector machines (SVMs).

As is described in chapter 4, the stepwise entry method for MVR resulted in the composition
of sets 1B through 8B. Chapter 2 covers how the stepwise entry method works. The method used
in chapter 4 was slightly expanded with regard to the removal of variables in order to prevent
overfitting. These extra steps are explained in the following section.

A.3.1 Rationale

Overfitting may occur when the number of input variables for MVR is too large. Even when a
stepwise entry method is used, the amount of included variables may exceed the one in ten rule.
This is a rule of thumb which states that a maximum of one predictor variable can be used per
ten events to prevent overfitting3,4. In this thesis, one patient of the smallest of the two groups is
considered an event. Since the smallest group, the group with no OMI, contains approximately
100 patients, the one in ten rule dictates that a maximum of ten predictor variables should be
used in MVR to minimise the risk of overfitting.

A.3.2 Method

Sets 3A, 5A and 6A contained a large amount of input variables: 204, 391 and 170 respectively.
This likely contributed to a number of variables in the initial sets 3B, 5B and 6B exceeding
the one in ten rule: 16, 28 and 14 respectively. Three new MVR models were created using
these selections of variables. The stepwise entry method once again proposed subsets, thereby
reducing the number of included variables. These reduced numbers of variables were used
to create new models yet again and this process was repeated until no more variables were
removed. The new sets 3B, 5B and 6B contained a smaller number of variables: 13, 20 and
11 respectively. Nonetheless, these amounts still exceeded the one in ten rule that imposed a
maximum of ten predictor variables to minimise the risk of overfitting. Therefore, the final sets
3B, 5B and 6B were obtained by including only the first ten variables that were added during
stepwise inclusion. As such, the final sets B contained a maximum of ten predictor variables.
Table A.6 gives an overview of the variables included in each of the sets 1B through 8B.
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A.5 Ventricular fibrillation waveform characteristics in sets 1B-6B
of electrocardiograms acquired during out-of-hospital cardiac
arrest

Table A.8 shows an overview of the VFWC in sets 1B through 6B of ECGs acquired during out-
of-hospital cardiac arrest. These sets of input features were used to detect acute myocardial
infarction using SVMs.

Table A.8: The ventricular fibrillation waveform characteristics in sets 1B-6B of electrocardiograms
acquired during out-of-hospital cardiac arrest, in order of inclusion. These sets were used for detect-
ing acute myocardial infarction.

1B (n = 2) 2B (n = 1) 3B (n = 1) 4B (n = 1) 5B (n = 2) 6B (n = 2)
1 VF1, AMSA VF1, AMSA VF2, MS VF2, MS VF2, MS VF2, MS
2 VF1, DFAα2 VF1, flucvar ∆1,2, BW

AMSA: amplitude spectrum area, BW: bandwidth, DFA: detrended fluctuation analysis, MS: median
slope, VF1: the last segment before the first defibrillation shock, VF2: the last segment before the
second defibrillation shock, ∆1,2: the differences between the waveform characteristics of segments
VF1 and VF2.



88 Ventricular fibrillation waveform analysis for detection of acute myocardial infarction

A
.6

O
pt

im
is

ed
hy

pe
rp

ar
am

et
er

s
of

su
pp

or
t

ve
ct

or
m

ac
hi

n
es

fo
r

de
te

ct
in

g
ac

u
te

m
yo

ca
rd

ia
li

n
fa

rc
ti

on

Ta
bl

e
A.

9:
O

pt
im

is
ed

hy
pe

rp
ar

am
et

er
s

of
th

e
tw

el
ve

su
pp

or
t

ve
ct

or
m

ac
hi

ne
s

fo
r

de
te

ct
in

g
ac

ut
e

m
yo

ca
rd

ia
li

nf
ar

ct
io

n.

SV
M

A
Se

t
no

.
of

V
FW

C
M

in
.

ob
je

ct
iv

e
B

ox
co

ns
tr

ai
nt

Ke
rn

el
sc

al
e

Ke
rn

el
fu

nc
ti

on
Po

ly
no

m
ia

lo
rd

er
St

an
da

rd
is

at
io

n
Fa

ls
e-

po
si

ti
ve

co
st

1A
17

0.
36

63
0.

04
7

-
Li

ne
ar

-
Tr

ue
1

2A
12

0.
29

70
6.

89
7

-
Po

ly
no

m
ia

l
2

Fa
ls

e
5

3A
17

0.
27

27
0.

28
2

-
Li

ne
ar

-
Tr

ue
1

4A
8

0.
24

24
52

5.
83

2
1.

24
7

G
au

ss
ia

n
-

Tr
ue

5
5A

51
0.

21
54

0.
00

5
-

Po
ly

no
m

ia
l

2
Tr

ue
2.

5
6A

22
0.

26
15

1.
60

5
3.

25
7

G
au

ss
ia

n
-

Tr
ue

20
SV

M
B

1B
2

0.
28

43
41

1.
53

3
14

.4
30

G
au

ss
ia

n
-

Fa
ls

e
10

1B
1

0.
28

43
53

.3
84

1.
60

3
G

au
ss

ia
n

-
Tr

ue
10

3B
1

0.
30

56
19

5.
99

7
-

Po
ly

no
m

ia
l

3
Fa

ls
e

2.
5

4B
1

0.
30

56
19

5.
99

7
-

Po
ly

no
m

ia
l

3
Fa

ls
e

2.
5

5B
2

0.
25

35
0.

58
5

-
Po

ly
no

m
ia

l
3

Tr
ue

1
6B

2
0.

20
83

0.
00

5
-

Po
ly

no
m

ia
l

4
Fa

ls
e

1
SV

M
:s

up
po

rt
ve

ct
or

m
ac

hi
ne

,V
FW

C:
ve

nt
ri

cu
la

r
fib

ri
lla

ti
on

w
av

ef
or

m
ch

ar
ac

te
ri

st
ic

s.



Appendices 89

References

[1] Judith L. Bonnes et al. “Ventricular fibrillation waveform characteristics differ according to the presence of
a previous myocardial infarction: A surface ECG study in ICD-patients”. In: Resuscitation 96 (Nov. 2015),
pp. 239–245. ISSN: 18731570. DOI: 10.1016/j.resuscitation.2015.08.014.

[2] Jos Thannhauser et al. “Computerized analysis of the ventricular fibrillation waveform allows identification
of myocardial infarction: a proof-of-concept study for smart defibrillator applications in cardiac arrest”. In:
Journal of the American Heart Association (2020).

[3] Frank E. Harrell, Kerry L. Lee, and Daniel B. Mark. “Multivariable prognostic models: Issues in developing
models, evaluating assumptions and adequacy, and measuring and reducing errors”. In: Statistics in Medicine
15.4 (Feb. 1996), pp. 361–387. ISSN: 02776715. DOI: 10.1002/(SICI)1097-0258(19960229)15:4<361::
AID-SIM168>3.0.CO;2-4.

[4] Peter Peduzzi, John Concato, Elizabeth Kemper, Theodore R. Holford, and Alvan R. Feinstem. “A simulation
study of the number of events per variable in logistic regression analysis”. In: Journal of Clinical Epidemiology
49.12 (Dec. 1996), pp. 1373–1379. ISSN: 08954356. DOI: 10.1016/S0895-4356(96)00236-3.

https://doi.org/10.1016/j.resuscitation.2015.08.014
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1016/S0895-4356(96)00236-3

	Acknowledgements
	Summary
	Contents
	List of abbreviations
	List of figures
	List of tables
	Introduction
	Background
	Clinical background
	Technical background

	Introducing the multi-electrode defibrillator patch: A novel approach to diagnose a myocardial infarction during ventricular fibrillation cardiac arrest
	Current status
	The possibilities of the paddle electrocardiogram
	The added value of the 12-lead electrocardiogram
	The potential of a multi-electrode defibrillator patch
	Conclusion

	Detecting myocardial infarction using ventricular fibrillation waveform analysis: A multi-lead machine learning approach
	Introduction
	Methods
	Results
	Discussion

	A machine learning approach for detection of acute myocardial infarction in out-of-hospital cardiac arrest using ventricular fibrillation waveform analysis
	Introduction
	Methods
	Results
	Discussion

	General discussion
	Appendices
	Multivariate logistic regression for selection of the two leads used in sets 7 and 8 for the detection of old myocardial infarction
	Mann-Whitney U test results of ventricular fibrillation waveform characteristics of electrocardiograms acquired during implantable cardioverter-defibrillator testing
	Ventricular fibrillation waveform characteristics in sets 1B-8B of electrocardiograms acquired during implantable cardioverter-defibrillator testing
	Optimised hyperparameters of support vector machines for detecting old myocardial infarction
	Ventricular fibrillation waveform characteristics in sets 1B-6B of electrocardiograms acquired during out-of-hospital cardiac arrest
	Optimised hyperparameters of support vector machines for detecting acute myocardial infarction


