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Figure 1: Action and group activity recognition in a soccer game.

ABSTRACT
Data and statistics are key to soccer analytics and have im-
portant roles in player evaluation and fan engagement. Au-
tomatic recognition of soccer events - such as passes and
corners - would ease the data gathering process, potentially
opening up the market for non-professional soccer analytics.
We propose a novel method for the automatic recognition
of soccer events from video. To the best of our knowledge,
it is the first method that infers both individual actions and
group activities simultaneously from soccer videos. Three
key contributions in the proposed method are (1) the use of
player-centric snippets as model input, (2) per-player feature
extraction with an I3D CNN - based on RGB video and optical
flow - and (3) the use of feature suppression and zero-padding
in graph attention networks for feature contextualisation. The
results show that the proposed method performs better than
an alternative state-of-the-art method, designed for action
and activity recognition in volleyball. Our method gains 98.7%
accuracy for the recognition of eight actions and 75.2% for
eleven activities.

1 INTRODUCTION
Professional sports and data have become inseparable, rang-
ing from simple monitor devices, such as heart rate sensors,
to Formula 1 racing cars that are fully packed with cameras
and other sensors. The data streams are analysed by profes-
sionals to gain insight in the performance of athletes and to
figure out how to do better than the opponents. For example,

researchers at soccer team Liverpool created a model that
automatically evaluates passes, shots and ball movements
of more than 100.000 players [65]. The system was used for
the acquisition of talented players and played a role in the
appointment of their new manager in 2015. The wide avail-
ability of team and player evaluation tools [60] suggest that
Liverpool is no exception in its dependence on data.
Data and statistics are commonly used in media as well,

such as websites or broadcast shows that report on sport
games. By the delivery of performance measures, these media
increase fan engagement [1]. Often, the data used is referred
to as match event logs. In soccer, one can think about the
number of goals in a season, the number of corners by one
team during a game or the number of successful passes by a
particular player.
Companies that gather the event logs, called Competi-

tion Information Providers (CIPs), capture the event mea-
surements by human annotation. Recently, Pappalardo et al.
[61] described the procedure of data collection during soccer
matches at CIP Wyscout. Although the annotation process is
optimised by specialised software and automatic data qual-
ity analysis, the process is mainly carried out by humans.
With the recent developments in computer vision and high-
resolution cameras, it is likely that more and more will be
invested in automated gathering of match event logs. This
would not only result in a cheaper way of match event log
gathering. Eventually, match data could be generated for am-
ateur and professional youth teams as well, creating a new
pool of customers for services that rely on soccer events.



1.1 Contributions
In this study, we present a novel method for the automatic
recognition of soccer events from video. To the best of our
knowledge, it is the first method that infers both individual ac-
tions and group activities simultaneously from soccer videos.
Besides, we have not seen other studies on event recognition
in videos captured by a one-perspective camera setup, that is
from one stationary perspective along the soccer field.

Three key contributions in the proposed method are (1) the
use of player-centric snippets as model input, (2) per-player
feature extraction with the two-stream I3D network [10] and
(3) the use of feature suppression and zero-padding in graph
attention networks (GATs) [82] for feature contextualisation.
The player snippets are obtained using an Aggregated Chan-
nel Features (ACF) person detector [25] and a virtual camera
that zooms in on each detected player, creating a standardised
video frame cut-out. Feature suppression is the ability of a
GAT to diminish large activations in a player embedding that
correlate to a wrongly identified action class.

The proposed method is designed upon the Actor Relation
Graph (ARG) [84] as baseline, a state-of-the-art method for
action and activity recognition in volleyball. We show that
the baseline is not directly applicable to soccer videos and
that the proposed method performs better. Furthermore, we
created the Soccer Dataset to train and evaluate our model.
The dataset is created for this study only, although we show
how one could construct a similar dataset.

1.2 Research questions
The described contributions give answers to (sub-)research
questions that were formulated at the start of this study. Our
main research question is:
RQ: “How to automatically recognise individual actions and
group activities in soccer videos that are captured from one
stationary perspective?”
Five sub-research questions were formulated, of which the
first four questions are preparatory towards experimentation
with the proposed method in RQ5. These are:
RQ1: “How to create a dataset for action and activity recogni-
tion in the soccer domain?”
RQ2: “Which soccer match events are relevant to be automati-
cally gathered?”
RQ3: “Is the Actor Relation Graph method, used for action and
activity recognition in volleyball, applicable to soccer?”
RQ4: “What are limitations to the Actor Relation Graphmethod
when applied to soccer videos?”
RQ5: “Does the proposed method, based on player-centric snip-
pets, I3D feature extraction, and graph attention networks with
feature suppression and zero-padding, result in more accurate
action and activity predictions than the Actor Relation Graph?”

2 RELATEDWORK
Research to the classification of soccer events can be divided
into two fields: event detection and human action recognition.
Work in both domains is discussed below, where we also
motivate the decision to select the ARG as our baseline.

2.1 Event detection
The automatic generation of match events in soccer games
has been researched for at least three decades, mainly un-
der the name of event detection [26][30][46][74]. The aim of
research in this field is to detect temporal boundaries of a
match event and classifying the cut-out sample accordingly.
Early methods rely on the detection of low-level features by
cinematic and object-based descriptors [26]. Cinematic fea-
tures, such as dominant colours and camera motion, are based
on general ways for television production teams to record
soccer events on camera. For example, a goal attempt is often
followed by a slow-motion shot of the event. Persons and
the ball are detected using object-descriptors, based on object
texture, shape and motion. For classification, the descriptors
are combined with rule-based methods [69] or probabilistic
models [36][85]. For the use of hand-crafted features and
rule-based classification, a priori knowledge about cinematic
rules and game play is essential. We consider these depen-
dencies undesirable as it limits the applicability of a model to
broadcasts only.
Methods that do not require a priori knowledge are often

based on deep learning. Jiang et al. [41] use a combination
of Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) to detect goals, goal attempts, cor-
ners and card events in soccer videos. Khan et al. [46] detect
corners, shoots, goal-attempts and penalty kicks using a 3D-
CNN. Not all methods try to classify events directly from
video frames. Zhang et al. [90] propose to detect events from
latent player embeddings and trajectories of the players and
the ball. Their method creates a player embedding using a
U-encoder on the pixels in the player’s bounding box. As the
embedding is in a reduced dimensionality, only characteristic
information about the player is preserved, which often re-
sults in good features for classification. Similarly, our method
creates latent player embeddings, but uses a CNN to do so.

2.2 Human action recognition
Spatio-temporally isolated actions are semantically categor-
ised in the research area of human action recognition. The
field can be separated into action recognition, which aims
to classify action samples of individuals independently, and
group activity recognition, which explores inter-human in-
teractions to find shared activities or to analyse individual
actions in context of other group members [78].
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2.2.1 Action recognition. State-of-the-art methods for ac-
tion recognition include deep learning architectures almost
without exception. Such architectures combine low-level fea-
ture extraction, mid-level descriptors and action classifica-
tion in one (end-to-end) trainable model. Three types of
deep learning networks are most relevant to action recogni-
tion: spatio-temporal, multiple-stream and hybrid networks.
Spatio-temporal networks, such as a 3D-CNN [40], search for
volumetric patterns at different scales of the input videos. An
extension thereof is the I3D CNN [10], which is a multiple-
stream network that creates action predictions from RGB
image frames as well as from optical flow. In a hybrid net-
work for action recognition, spatial and temporal models,
such as a CNN and an RNN, are combined subsequently [48].
Our method generates feature embeddings using I3D.

2.2.2 Group activity recognition. The use of hybrid net-
works is especially popular for the recognition of group ac-
tivities. In a first phase, a CNN extracts individual features
and creates a latent embedding per group member. Often,
the embedding has the form of a fixed-length vector. We will
refer to this phase as feature extraction. Thereafter, a different
network explores inter-human relations to update the em-
beddings accordingly. We will refer to this phase as feature
contextualisation as the independently created embeddings
are put into the context of the embeddings from all other
persons in the scene. RNNs with Long Short Term Memory
(LSTM) [53][75][77][78] and Graph Convolutional Networks
(GCNs) [37][84] are often used for the latter phase. Similar
two-phase approaches, referred to as bottom-up inference,
were explored before using Hidden Markov Models (HMMs)
[89], AND-OR graphs [4], hierarchical random fields [2] and
hierarchical RNNs [38][67][83]. Different from action recog-
nition is that many proposed methods make use of a graph
as representation for the group members and their interac-
tions [35][50][51][49][52][62][72][76]. A detailed overview
of publications on group activity recognition can be found in
Appendix I.

2.2.3 Actor Relation Graph as baseline. The ARG [84] is
a hybrid network that uses an Inception-V3 CNN [71] for fea-
ture extraction, uses GATs with self-attention [81] for feature
contextualisation, and predicts actions and activities from
videos simultaneously. From Table 1 can be observed that
the method reaches near state-of-the-art performance on the
Volleyball Dataset [38] and Collective Activity Dataset [17].
Because the ARG uses the intuitiveness of a graphical model,
it has an open-source implementation1 available (where the
top-3 methods on the Volleyball Dataset do not) and it gains
a good performance on the recognition of individual actions
as well, this method is selected as baseline for this study.

1https://github.com/wjchaoGit/Group-Activity-Recognition

Method Backbone V-G V-I CAD
HDRM [38] AlexNet 81.9% - 81.5%
CERN [67] VGG16 83.3% - 87.2%
stagNet [62] VGG16 89.3% 82.3% 89.1%
CCG-LSTM [72] ImageNet 89.3% - 93.0%
HRN [37] VGG19 89.5% - -
SSU [8] Inc-V3 90.6% 81.8% -
SRG [35] VGG16 91.4% - -
ST att. mech. [57] - 91.7% - -
ARG [84] Inc-V3 92.5% 83.0% 91.0%
CRM [6] I3D 93.0% - 85.8%
MLS-GAN [28] ResNet-50 93.0% - 91.7%
Actor-Transf. [29] HRNet + I3D 94.4% 85.9% 91.2%

Table 1: State-of-the-art methods, in multi-class accuracy
(MCA), on the Volleyball Dataset (V-G: group activities, V-I:
individual actions) and theCollectiveActivityDataset (CAD).

3 METHOD
The data pipeline in the proposed method is displayed in Fig-
ure 2. In short, the method pre-processes the data by generat-
ing player snippets using a virtual camera algorithm. Such an
algorithm synthesises frames from a raw video stream where
the camera virtually zooms and rotates, while normalising
for lens distortion [58]. Features are extracted from the player
snippets and optical flow images using an I3D CNN [10]. The
resulting player embeddings are updated using feature con-
textualisation with graph attention networks (GATs) [82] and
self-attention [81]. The model outputs an action label per
player and one shared activity label per sample.

3.1 Pre-processing
A soccer field is about forty times larger than a volleyball
field, meaning that the distance between a player and the
camera can become much larger, players become smaller
and more pixels in the video capture irrelevant background.
Therefore, the proposed method uses high resolution player
representations as model input in the form of player-centric
snippets.

To create player snippets, the position of each player must
be known in field coordinates such that a virtual camera algo-
rithm can zoom in on these positions. We denote these with
(𝑋,𝑌 ), where (0, 0) is the centre spot of the field. The player
coordinates are provided by the dataset and were obtained
using an ACF person detector [25]. A camera model is es-
sential, such that two-dimensional pixel coordinates can be
transformed into three-dimensional world coordinates. The
model is an approximation of the camera’s internal (e.g. focal
length, lens distortion) and external (e.g. translation, rota-
tion) parameters, calibrated with field dimensions in world
coordinates. With the camera model, a virtual camera zooms
in on position (𝑋𝑖 , 𝑌𝑖 , 𝑍 ) in a video frame. Then, the zoomed
image is cut-out from the original frame and resized to 224 ×
224 pixels, the standard resolution for I3D input, to create a
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Figure 2: Architecture of the proposed method.

snippet of player 𝑖 . Generally, Dutch males have a body length
around 1.8 meters. For the players to end up in the centre
of the snippets, with a bit more space under the player to
include the ball if present, we choose 𝑍 = 0.8m. An algorithm
is used that virtually moves the camera with three degrees of
freedom, increases the focal length to zoom in and normalises
for a curved horizon. The pitch and yaw of the virtual camera
are calculated using a player’s position relative to the camera.
The zoom parameter is a linear interpolation between two
values recorded at the player closest and furthest from the
camera, such that the pixel-height of all players is similar for
each recording.

An input sample consists ofmin(𝑁𝑑 , 𝑁 ) ×𝑇 player-centric
images, where 𝑁𝑑 is the number of detected persons, 𝑁 (= 23)
is the number of persons that we strive to detect (22 players
and one referee) and𝑇 is the number of temporal frames. We
experiment with various values for 𝑇 . It occurs that 𝑁𝑑 is
larger or smaller than 𝑁 , either due to detection errors or
game development. For example, a player could get a red card
or get injured, leaving the field. Therefore, we sort the players
on mean confidence of the person detector over all frames
in a sample, in descending order. If the number of detected
players 𝑁𝑑 is larger than 𝑁 , the first 𝑁 players are selected
to be processed. Players with a non-passive action label are
put first in order, such that those players are always selected
by the model (see Section 4 for an explanation of the class
labels). For 𝑁𝑑 < 𝑁 , we simply create 𝑁𝑑 player snippets. We
denote 𝑁𝑠 = min(𝑁𝑑 , 𝑁 ).

3.2 Feature extraction
Since the players are already separated from each other in
the pre-processing phase, Region of Interest (RoI) pooling is
not used in our pipeline. Where the baseline uses Inception-
V3 [71] for feature extraction, the proposed method uses a
two-stream I3D [10], because it appears to give better results
in group activity recognition [6][29] and the method gains
state-of-the-art performance on the UCF-101 dataset [70].

We use an open source implementation2 including model
parameters pre-trained on ImageNet [21] and Kinetics [43].
I3D uses three-dimensional kernels to create spatio-temporal
convolutions on RGB images and optical flow in separate
streams. Both streams use the full I3D network and provide
𝑑-dimensional player embeddings through 𝑑 logits. We use
𝑑 = 256 throughout this study. The outputs of the two streams
are added element-wise, in a late fusion fashion. For the RGB
stream, we input the player snippets as if they were a batch
of 𝑁𝑠 samples. Similarly, we input optical flow images that
are obtained from the snippets using the TV-L1 algorithm
[87]. The network returns one 𝑁𝑠 × 𝑑 feature matrix per
sample, where Inception-V3 would return a 𝑁𝑠 ×𝑑 ×𝑇 matrix.
This means that the temporal dimension is omitted from the
feature contextualisation phase, reducing its complexity.

The I3D model is trained without feature contextualisation
first. The model is trained in 20 epochs, with a batch size
of 1, learning rate 1 × 10−5 (5 × 10−6 starting from epoch
15), dropout probability of 0.3, no weight decay and using an
Adam optimiser [47]. For a fair comparison, the baseline is
always trained with the same hyper-parameters when applied
to soccer videos.

3.3 Feature contextualisation
State-of-the-art methods for group activity recognition have
shown that attention is a useful mechanism for contextual-
isation [29][57][84]. We will follow this approach and use
multi-head self-attention [81] in particular. Before the feature
embeddings are put into context, we apply layer normalisa-
tion over each embedding independently and ReLU activation
thereafter. Similar to the ARG, we construct 𝐻 GATs where
each graph contains 𝑁 vertices representing the normalised
feature embeddings. Per graph, features are exchanged be-
tween players depending on inter-player relationships using
self-attention, as in Equation 1. Thereafter, the collection of

2https://github.com/piergiaj/pytorch-i3d
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features is non-linearly transformed via a graph convolution
layer, as in Equation 2. The context features from all graphs
are combined using Equation 3, similar to the combination
function in the Transformer architecture [81]. As the ARG, the
Transformer and our approach use self-attention at the core
of the architecture, the methods display similarities. We spec-
ify when the original player embeddings 𝐸 are transformed
into query, key and value embeddings such that similarities
can be identified more easily. Also, we use 𝐻 = 64 for the
proposed method and the ARG baseline.

𝐸
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the collection of context features from graph ℎ. Weight ma-
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𝐾

∈ R𝑑×𝑑 and biases 𝑏 (ℎ)
𝑄
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𝐾

∈ R𝑑 linearly
transform the player embeddings to query and key embed-
dings. Distance-mask𝐷 ∈ [0, 1]𝑁×𝑁 prunes player-pairs from
the graph when they are located too far from each other.
𝐷𝑖, 𝑗 = 0 if the distance between player 𝑖 and 𝑗 is larger than
𝜇, and 𝐷𝑖, 𝑗 = 1 otherwise.

𝐸 (ℎ) = ReLU
(
LayerNorm

(
𝐸
(ℎ)
𝐴

𝑊
(ℎ)
𝑉

))
(2)

with 𝐸 (ℎ) the updated context features from graph ℎ and
weight matrix𝑊 (ℎ)

𝑉
that transforms the collection of features

to value embeddings.

𝐸 ′ = 𝐸 + Concat
(
𝐸 (1) , 𝐸 (2) , . . . , 𝐸 (𝐻 )

)
𝑊𝑂 (3)

with 𝐸 ′ the final feature embeddings before label predic-
tion, a residual connection to the original embeddings 𝐸 and
weight matrix𝑊𝑂 ∈ R𝐻×𝑑×𝑑 . The embeddings from𝐻 graphs
are concatenated and linearly transformed through𝑊𝑂 .

Where it was possible to process 𝑁𝑠 players per sample in
the previous phases, feature contextualisation requires pre-
cisely 𝑁 feature embeddings when using a batch size (BS)
larger than one. This is required, as the model processes fea-
ture matrices with dimensionality BS × 𝑁 × 𝑑 . Therefore,
zero-padding is used to fill in for the 𝑁 − 𝑁𝑠 missing play-
ers. The missing embeddings are 𝑑-dimensional vectors with
only zeros, such that these are ignored by the self-attention
mechanism and no features are exchanged with embeddings
of other players. They are used by the baseline ARG, when
applied to samples from the Collective Activity Dataset, and
by the Transformer architecture [81] as well. Although we
use BS=1 while training, the model benefits from larger batch
sizes during inference, speeding up the process.

The GATs are trained separately from the feature extraction
phase. When the models for feature contextualisation are
trained, all layers in the I3D model are frozen, resulting in
static player embeddings. Hyperparameters during training
of feature contextualisation are unchanged, except for the
number of iterations (40 instead of 20 epochs).

3.4 Predictions
The refined player representations 𝐸 ′ are grouped in a 𝑁 × 𝑑

feature matrix. Thereafter, two output streams predict the
action labels and activity label separately. Both classifications
are performed through a fully-connected layer and using a
softmax function. Cross entropy is used to calculate the action
and activity prediction losses. Note that in the activity stream,
amax pooling operation is applied to the featurematrix before
the fully connected layer, to obtain one 𝑑-dimensional vector.

4 THE SOCCER DATASET
A new dataset is constructed for this research that contains ac-
tions and activities from 280 minutes of soccer in four games.
Videos in the dataset are captured by a one-perspective cam-
era setup that records the full field. To be able to compare our
results with work from others, and to increase applicability
of the ARG as a baseline, we decided to make the new dataset
similar to the Volleyball Dataset. Both datasets include video
recordings from multiple games that are exclusively captured
by cameras positioned at the long side of the field. However,
where the videos in the Volleyball Dataset are recorded by a
moving camera, the soccer videos are stationary. Four cam-
eras that are located side-by-side, together capture the full
soccer field. Each camera records vertically, at 25 frames per
second (fps) and with a 2160 × 3840 resolution. The output
of the four cameras are combined in one video stream, as can
be seen in Figure 3.
Similar to the Volleyball Dataset, samples are selected by

human annotation. The time 𝑡0 of a relevant action or group
activity occurrence is noted and the associated frame 𝑓𝑡 is
recorded. To capture the temporal dimension, 25 subsequent
frames before and after 𝑡0 are stored. This means that every
sample includes 51 frames, from 𝑓𝑡−25 till 𝑓𝑡+25.

4.1 Player detections and tracks
It is common for group activity datasets to accompany the
raw videos with person bounding boxes. Our dataset offers
the locations of automatically detected players via bounding
boxes and field coordinates. Players on the field are detected
by an ACF detector [25] that outputs bounding boxes. The
detection method is based on the aggregation of ten chan-
nels (normalised gradient magnitude, histogram of oriented
gradients and LUV colours) applied to the original image,
the computation of feature pyramids and AdaBoost [27]. We
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Figure 3: Example frame of the raw video stream.

favoured the computationally cheap method over deep learn-
ing approaches, as the search space for persons is 2160 ×
3840 pixels. In an initial experiment, we concluded that these
detections are accurate enough to be used for action recogni-
tion (see Appendix II). Since the camera model is known and
calibrated with the soccer field dimensions, pixel coordinates
(𝑥 ,𝑦) can be converted to real-world coordinates (𝑋 ,𝑌 ,𝑍 ). Note
that 𝑍 is a pre-defined value as the camera has no access to
depth information. To obtain the field coordinates that our
method requires, the bottom-centre pixel in each player’s
bounding box is projected on the virtual plane with 𝑍 = 0.0m
that corresponds to the soccer field.
Using tracking software, detections of the same player

in multiple frames are linked in trajectories throughout the
video. For each player in every sample, 51 bounding boxes
and 51 field coordinates are stored. However, not all players
have detections over the full 51 frames. Therefore, the 51
frame trajectories are linearly interpolated first and linearly
extrapolated afterwards using the field coordinates of the
players. To increase accuracy, the coordinates are smoothed
before this step. Missing bounding boxes of a player get the
average dimensions of the found bounding boxes and are
placed above the inter- or extrapolated field coordinates.

4.2 Action and activity labels
The event labels are annotated in two taxonomies, with one
for actions and another for activities (see Appendix IV). La-
bels that we considered include all classes in the Soccer Player
Action Description Language (SPADL) [20]. SPADL is con-
structed to unify player action types in match event logs from
multiple CIPs into one framework. Six actions are added to
the set for players that are heading or jumping towards the
ball, or that are not reaching out to the ball. Also, we sup-
plemented the set with ten activity labels from the list of
match events provided by Wyscout (see Appendix V). The re-
sult is a label set of twenty-one actions and sixteen activities.
The definition of each label can be found in Tables 23 and 24
(Appendix VI).

To obtain the final set of labels used in this study, the
annotations were adapted in two ways. First, all players that
have an active (non-passive) action label, in frames where the
group activity label is a duel, get the action label in-duel. This
means that whenever a player performs an action during a
duel, the player is labelled with being in a duel rather than
with the specific action. When multiple players are in a duel,
it is likely that their bounding boxes overlap, which results in
two almost identical data representations. Second, a number
of action and activity labels occur only a few times, which
is likely to result in overfitting models. We have re-arranged
the set of labels by grouping action labels that occur less than
a hundred times and grouping activity labels that occur less
than ten times.

The resulting class labels and the number of instances are
given in Table 2. Samples annotated from three games are
included in the training set. The validation set consists of
samples from the second half of the third game, which are
excluded from the training set. The test set is formed by
annotations from the first half of a fourth game. This game is
played on a different soccer field and with another opponent
team than the other three games.

Action class # Instances Activity class # Instances
Train Validation Test Train Validation Test

Passive 59459 8710 11140 Duel (air) 59 10 11
Heading 70 6 15 Duel (loose ball) 221 26 32
Interception 67 11 17 Duel (ball possession) 468 53 85
Dribble 303 40 44 Play-freely 1541 231 255
Play-ball 1262 202 221 Free-kick 59 7 13
In-duel 1575 189 270 Kick-off 13 2 2
Throw-in 121 15 35 Goal-kick 41 9 9
Keeper 34 4 8 Corner 22 9 10

Throw-in 121 15 35
Whistle 74 9 12
Ball out-of-bounds 182 32 49

Total 62891 9177 11750 Total 2801 403 513
Table 2: Action and activity label sets in the Soccer Dataset with number of instances in training, validation and test set.
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5 EXPERIMENTS AND RESULTS
This section starts with the evaluation of the ARG as baseline
on the Soccer Dataset, revealing the domain gap towards
volleyball. In the remaining experiments, the expected benefit
of each contribution in the proposed method is explained and
evaluated. In each step, the results are compared with our
baseline.

When comparing the performance of the proposed method
with those from others, Multi-Class Accuracy (MCA) is used,
as this metric is generally reported in related work. How-
ever, as the Soccer Dataset is highly unbalanced, this metric
only would give a too optimistic view. Therefore, we calcu-
late a Matthew Correlation Coefficient (MCC) [59] per class
label, using Equation 4, and use this metric to evaluate all
intermediate optimisation steps. An MCC is independent of
class imbalance and weights precision and recall rather than
accuracy only [14][15]. The correlation value indicates the
agreement between the predicted and the ground-truth la-
bels. MCCs range from -1 (total disagreement) to 1 (perfect
agreement), where a score of 0 equals random predictions.
Our goal is to maximise the MCC for each class label, where
we value the predictability for all classes equally important.
To avoid reporting nineteen MCCs at every optimisation step,
we average the scores over all actions (eight classes) and all
activities (eleven classes). The result is two Mean Matthews
Correlation Coefficient (MMCC) scores. Importantly, the av-
erages are meta-scores meant to evaluate optimisations and
are difficult to interpret. Therefore, we frequently report the
individual MCCs as well.

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
, (4)

with the numbers of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) for each
class calculated from the confusion matrix.

Where standard deviations (±𝜎) are mentioned, the model is
trained and evaluated five times using different parameter ini-
tialisation. Standard deviations reported with † or ‡ are from
three and ten runs, respectively. All results until Section 5.5
are on samples from the validation set.

5.1 Baseline experiment
The baseline ARG has not yet been evaluated on soccer data
before. To measure the performance gap towards volleyball,
the ARG is applied, in its original structure, to the Volleyball
Dataset and the Soccer Dataset. When reproducing the results
on the Volleyball Dataset, we were able to obtain similar per-
formance scores as reported in the original paper [84]: 82.5%
and 92.3% MCA for actions and activities respectively (see
Table 3). When the baseline is applied to the Soccer Dataset,

(a) Sub-sampled (b) High resolution (c) High res. + norm.

Figure 4: Sample of a player located at the left goal line.

MCAs of 89.3% (actions) and 55.9% (activities) are obtained.
The high score for the actions can be explained by the large
imbalance in the dataset, where 94.9% of the player samples
have the passive action label. The baseline results in MMCCs
of 0.275 and 0.359 for action and activity predictions with
soccer videos, which is drastically lower than its performance
with volleyball videos.

Dataset Actions (±𝜎) Activities (±𝜎)
MCA MMCC MCA MMCC

Volleyball [84] 83.0% - 92.5% -
Volleyball (repr.) 82.5% 0.641 92.3% 0.915

Soccer 89.3% 0.275 55.9% 0.359
(±3.3) (±.030) (±4.0) (±.054)

Table 3: Performance of the baseline ARG, using Inception-
V3 as backbone, on the Volleyball Dataset (as reported in the
paper and reproduced) and on the Soccer Dataset.

5.2 Data pre-processing
In soccer, players can be positioned far from the camera due to
the large playing field. The baseline ARG uses full-field frames
as model input, sub-sampling the high resolution images to
a standard format of 720×1280 pixels. This causes soccer
players that are farthest from the camera to be represented
with very few pixels. In Figure 4 (a) it can be seen that for a
soccer player located at the goal line, its body pose is difficult
to recognise.
We hypothesised that the use of player-centric snippets

gives two benefits for action and activity recognition. The
snippets include high resolution representations of the play-
ers, while also normalising for the curved horizon present
at most field positions in our dataset. This can be seen in
Figure 4 (b) and (c). To evaluate the effect of both steps, an
Inception-V3 model is trained with the sub-sampled input
(full-field frames), with player snippets excluding horizon
normalisation and with player snippets including the normal-
isation.

In Table 4 it can be seen that using player snippets increases
the MMCC in action recognition from 0.163 to 0.264 and in
activity recognition from 0.364 to 0.437. Normalisation further
increases these scores to 0.358 (actions) and 0.616 (activities).
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Figure 5: MCCs for action (top) and activity (bottom) recognition, using Inception-V3 and I3D as backbone with different
temporal windows (in seconds). Snippets are sampled from these windows at 25 or 12.5 (*) frames per second.

This means that both steps are essential for our model to
generate good action and activity predictions. In all further
experiments, player snippets with normalisation are used as
model input (also for the baseline).

Input Norm. Actions (±𝜎) Activities (±𝜎)
Full-field ✕ 0.163 (±.007) 0.364 (±.040)
Snippets ✕ 0.264 (±.024) 0.437 (±.073)
Snippets ✓ 0.358 (±.023) 0.616 (±.028)

Table 4:MMCC scores of an Inception-V3 using the full-field
images (baseline) and player-centric snippets, with and with-
out normalisation.

5.3 Per-player feature extraction
During the previous experiment, the Inception-V3 network
was used to compress player representations into player em-
beddings. Here, we evaluate the benefit of using the I3D net-
work for player-level feature extraction over Inception-V3, as
is used by the baseline method.
Since the effectiveness of the feature extraction methods

can depend on the samples’ temporal boundaries, multiple
time windows are evaluated fromwhich input frames are sam-
pled. The window varies from a single frame [𝑡0] (with 𝑡0 the
moment of annotation) to [𝑡−0.48𝑠 , 𝑡0.48𝑠 ] (0.96 seconds).Where
Inception-V3 can make predictions from one static frame, I3D
requires a temporal dimensionality of at least nine subsequent

frames due to spatio-temporal pooling. For time windows
smaller than [𝑡−0.32𝑠 , 𝑡0.32𝑠 ], the frames are sampled at 25fps.
When using a larger time window, frames are sampled at
12.5fps because of GPU memory constraints when training
the I3D models. From [𝑡0], the window is enlarged with 0.08
seconds per step, at both ends of the annotated moment. One
exception has been made: the window [𝑡−0.32𝑠 , 𝑡0.32] (0.64 sec-
onds) has been replaced with [𝑡−0.32𝑠 , 𝑡0.28𝑠 ] (0.60 seconds),
such that frames could still be sampled at 25fps. The memory
limit also forced the batch size (BS) to be one at most. There-
fore, we trained both Inception-V3 and I3D with a BS of one
instead of four. This already increased the MMCCs from 0.358
to 0.519 for actions and from 0.616 to 0.669 for activities, at
the baseline’s original temporal window: [𝑡−0.16𝑠 , 𝑡0.16] (0.32
seconds).
The I3D network is usually trained with one stream pro-

cessing RGB images and another stream processing optical
flow images. To assess their effectiveness independently, both
streams are trained and evaluated separately at first. There-
after, a two-stream network is trained, processing RGB and
optical flow images simultaneously. Due to time restrictions,
the two-stream network is trained on two temporal windows
only.
The results can be seen in Figure 5. Inception-V3 is able

to recognise throw-in, passive and play-ball in very strong
agreement with the ground-truth labels (MCC ≥ 0.7) from
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temporally static samples (0.00 seconds). Using samples from
a 0.32 seconds window, Inception-V3 predicts in-duel in very
strong agreement as well. At the same temporal window, I3D
also recognises a dribblewith anMCC above 0.7 and improves
on the recognition of a heading. The MCCs for activity recog-
nition are often unstable, most likely due to small sample
sizes. For Inception-V3 and I3D, a throw-in, corner, play-freely,
ball out-of-bounds, goal-kick and kick-off can generally be
predicted with MCCs over 0.7. Interestingly, Inception-V3
shows a trend in which samples from larger temporal win-
dows result in better predictions.

The optimal temporal window for action recognition seems
to lay around 0.48 seconds (Table 5), where the optimal size
is less clear for activity recognition. I3D (RGB + Flow) per-
forms best in action recognition, with an MMCC of 0.658.
Inception-V3 at 0.96 seconds gives the highest MMCC for
activity recognition: 0.688. It would be possible to use two
separate networks for action recognition and activity recog-
nition. However, we argue that splitting the two does not triv-
ially result in similar individual performance scores, since the
two classification purposes might benefit from the multi-task
learning approach. As the I3D (RGB + Flow) at 0.48 seconds
obtains the highest cumulative MMCC, we continue to use
this backbone in further experiments (also for the baseline).

Backbone BS Actions (±𝜎) Activities (±𝜎)
Inception-V3 1 0.425 (±.043) 0.661 (±.051)
I3D RGB 1 0.583 0.607
I3D Flow 1 0.545 0.598
I3D RGB + Flow 1 0.658 (±.033†) 0.641 (±.031†)

Table 5: MMCC scores for action and activity recogni-
tion using player snippets sampled from temporal window
[𝑡−0.24𝑠 , 𝑡0.24𝑠 ] (0.48 seconds). (†) Standard deviation is from
three runs instead of five.

5.4 Feature contextualisation
A goal of feature contextualisation is the enforcement of
implicit biases that can be found in soccer games, improving
the model’s predictions. One of the most obvious biases in
soccer is that only one ball is present at all times. This means
that if someone is interacting with the ball while not being
involved in a duel, only that person can obtain an active
(non-passive) action label. All other players are very likely
to be passive. With the next experiment, we show that the
baseline’s approach to feature contextualisation is not able to
effectively enforce this implicit bias and that the model can
do so when enabling feature suppression.
A model that is not able to exploit the discussed bias is

expected to predict a large portion of passive players as active,
even though another player in the scene is also predicted to
be active. We call passive players that are wrongly classified

Figure 6: I3D creates player embedding 𝐸𝑖 for player 𝑖. Em-
bedding 𝐸𝐴,𝑖𝑊 is gained via self-attention and includes frac-
tions of features relating to other players’ embeddings. Only
positive values remain in 𝐸𝑖 after layer normalisation (LN)
and ReLU activation. Adding 𝐸𝑖 to 𝐸𝑖 causes feature accumu-
lation, while subtraction causes feature suppression.

false positives (FPs) and we consider only those FPs that are
involved in activities where only one player can interact with
the ball (e.g. play-freely, throw-in, goal-kick). While I3D causes
71 FPs without feature contextualisation, the ARG does not
improve on this, with 72 FPs on average. In scenes where
another player is recognised as active as well, I3D gives 50
FPs where the baseline ARG gives 53 FPs. It shows that the
baseline is not better at enforcing the implicit bias than I3D,
which makes the action predictions per player independently.

We hypothesised that the baseline ARG is not able to en-
force the bias due to the ReLU activation function in the
update function of the graph convolutional layer (see Equa-
tion 5). As ReLU activation clips negative values to zero, only
positive values can be collected. This means that when a
player embedding includes large positive values correlating
to an active label, the baseline cannot reduce these values.
Values in the player embeddings can only remain stable or
become higher. We refer to this effect as feature accumula-
tion. Equation 6 is an adapted update function in which the
collected features from other players are subtracted from the
original embedding. This causes the opposite effect wherein
features can only be reduced.We describe this effect as feature
suppression. The difference between the two can be observed
in Figure 6. The player in the centre of the snippet is wrongly
classified as play-ball by the baseline ARG. Feature suppres-
sion can help to reduce embedding activation correlating to
the play-ball action label.

𝐸 ′
𝑖 = 𝐸𝑖 +

𝐻∑
ℎ=1

ReLU
(
LayerNorm

(
𝐸
(ℎ)
𝐴,𝑖

𝑊
(ℎ)
𝑉

))
(5)
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𝐸 ′
𝑖 = 𝐸𝑖 −

𝐻∑
ℎ=1

ReLU
(
LayerNorm

(
𝐸
(ℎ)
𝐴,𝑖

𝑊
(ℎ)
𝑉

))
(6)

with 𝐸 ′
𝑖 the updated embedding and 𝐸𝑖 the original em-

bedding of player 𝑖 , with 𝐸
(ℎ)
𝐴,𝑖

a collection of features from
other players gained via self-attention and weight matrix
𝑊

(ℎ)
𝑉

∈ R𝑑×𝑑 in graph ℎ.

It is expected that enabling feature suppression reduces the
number of FPs. To test this hypothesis, two versions of the
ARG are evaluated: the baseline, that enables feature accumu-
lation only, and a model in which collected features in half of
the graphs are added (Equation 5) to the original embedding
while features from the other half are subtracted (Equation 6).
The latter model, ARG (a&s), thus enables feature accumula-
tion and suppression explicitly per graph.
Considering the results in Table 6, ARG (a&s) seems able

to discover the discussed implicit bias. The model provides 46
FPs on average, a reduction of 35% in comparisonwith I3D and
the baseline ARG. Importantly, ARG (a&s) only improves in
situations where at least two players on the field are classified
as active. This indicates that feature suppression indeed helps
the model to exploit the implicit bias.

# players on the field I3D ARG ARG (a&s)
classified as active (±𝜎) (±𝜎)
≥2 50 53 (±8) 21 (±4)
1 21 19 (±2) 24 (±3)
Total 71 72 (±6) 46 (±6)

Table 6:Number ofmisclassifications of passive players that
are recognised as active (false positives), in all activities ex-
cept duels.

5.4.1 Update function andpadding strategy. Where the
ARG (a&s) enables feature accumulation or suppression ex-
plicitly per graph, it might be beneficial to use an approach
where accumulation and suppression is enabled implicitly.
Therefore, two other models are evaluated with an adapted
update function. The ReLU activation in all graphs is removed
in the first.With this approach, the collection of features is not
clipped at zero for negative values. In the second approach,
all graphs use the original update function with ReLU activa-
tion. Instead of adding the feature collections from all graphs
element-wise, all collections are concatenated. Thereafter, the
long vector is reduced in dimensionality via a weight matrix
(as in Equation 3).

Aside from the update function, another architectural ele-
ment becomes relevant in relation to the discussed implicit
bias: the padding strategy for missing player detections. As
previously mentioned, the number of detected players 𝑁𝑑 is
not equal to𝑁 for all samples. To obtain𝑁 player embeddings,

the baseline ARG uses the duplication strategy, where player
embeddings of the top 𝑁 − 𝑁𝑑 players are duplicated in the
graph. Since we have put the active players on top of the list
with detected players, their embeddings are duplicated most.
It is expected that this padding strategy weakens the previ-
ously discussed implicit bias, as scenes occur in which two
embeddings have an active ground truth action label. There-
fore, we propose to use zero-padding, in which the missing
player embeddings are filled with zeros only. We evaluated
the discussed models with both padding strategies.
The results in Table 7 show that a ReLU activation in the

graph convolutional layer is important for improved activity
predictions. The two models that enable feature accumula-
tion and suppression, while retaining ReLU activation and
using zero-padding, obtain MMCCs around 0.69 and 0.67 for
action and activity recognition respectively. We propose to
use the concatenation layer, as this approach models feature
accumulation and suppression implicitly.

Update func. Pad. Actions (±𝜎) Activities (±𝜎)
Accumulation Dupl. 0.651 (±.008) 0.628 (±.039)
Accumulation Zero 0.669 (±.018) 0.607 (±.050)
No ReLU Dupl. 0.684 (±.022) 0.592 (±.039)
No ReLU Zero 0.702 (±.034) 0.592 (±.065)
Acc. & supp. Dupl. 0.691 (±.021) 0.612 (±.042)
Acc. & supp. Zero 0.699 (±.030) 0.670 (±.031)
Concatenation Dupl. 0.644 (±.020) 0.661 (±.023)
Concatenation Zero 0.687 (±.020‡) 0.676 (±.020‡)

Table 7:MMCCs various update functions with two padding
strategies. (‡) Standard deviation of the proposed method is
from ten instead of five runs.

5.4.2 Relative position encodings. Both the authors of
the ARG and the Actor-Transformer [29] reported that activ-
ity predictions improved when they added relative position
information to the model. The baseline ARG does so via the
distance-mask, pruning graph edges between players that
are physically too far from each other. Until now, we have
used the distance-mask with a threshold 𝜇 = 20.8 meters,
which is equal to 0.2 times the width of a soccer court. This is
similar to the baseline ARG that uses 𝜇 = 0.2 times the width
of the input frames. In our next experiment, we evaluate the
role of relative position information, i.e. the distance between
players, for action and activity recognition.

First, we assessed the effect of the distance-mask (DM) on
action and activity predictions. We experimented with five
distance thresholds, ranging from fully disconnected graphs
(0.5m) to complete graphs (128m). Note that the diameter of
a soccer court is 122 meters. In Figure 7, it can be seen that
varying 𝜇 does not largely influence the prediction scores.
TheMMCCs when using the baseline DM and a loose DM (see
Table 8) are very close, indicating that the DM is no essential
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Figure 7:MCC scores of action and activity predictions with various values for threshold 𝜇 in the distance-mask. Only player-
pairs with smaller distances can exchange features. Note that the diameter of a soccer field is 122m.

architectural element for feature contextualisation in soccer.
Interestingly, the results between the baseline DM and a strict
DM are close as well. This means that an architecture with no
feature exchange between different players can obtain com-
parable performance scores, indicating that the self-attention
mechanism is not as influential as expected.
Second, we evaluate relation-aware self-attention [66] to

inject relative position information into the attention mech-
anism. The approach is designed for natural language pro-
cessing and thus for position distances in integers, where
distances between players in soccer are continuous. Instead
of the learnable weight matrices per position, we use sinu-
soids [81] to encode player distances in 𝑑-dimensions. There-
after, we use weight matrices𝑊 𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑 to transform
the encodings to key and value matrices that can be applied
accordingly in the self-attention mechanism. The approach
is thus deterministic: player-pairs that are equally far from
each other obtain the same relative position encodings. This
approach performs equally well as the GATs with a baseline
DM (see Table 8). Even though it is not clear whether relative
position information improves action and activity recognition
in soccer, both approaches can be used without harming the
results.

Position encoding Actions (±𝜎) Activities (±𝜎)
Loose DM (𝜇=128m) 0.685 (±.009) 0.663 (±.015)
Baseline DM (𝜇=20.8m) 0.687 (±.020‡) 0.676 (±.020‡)
Strict DM (𝜇=0.5m) 0.676 (±.036) 0.657 (±.014)
Relation-aware self-at. 0.686 (±.014) 0.679 (±.015)

Table 8: Effects of relative position encodings for feature
contextualisation, with three distance thresholds 𝜇 in the
distance-mask (DM) and using relation-aware self-attention.

That position information does not clearly boost model perfor-
mance can be interpreted in three ways. First, player distances
might not contain relevant information about the performed
actions or activities. Second, the player-centric snippets might

already include the relevant position information. For exam-
ple, when a player is in duel with another, the players are
generally visible in the snippet of each other. Third, we did not
evaluate the right method for injecting position information
into the system.

5.4.3 Layer normalisation. We have seen that a model
without feature exchange between players (the strict DM)
gains a performance comparable to the proposed model (us-
ing the baseline DM). This indicates that the role of feature
exchange via self-attention is limited. Besides, it raises the
question why amodel without feature exchange still performs
better than the I3D model without feature contextualisation.
Aside from self-attention, there is one more mechanism in
which feature embeddings are contextualised with the em-
beddings of other players: via layer normalisation.
In a layer normalisation block, deep embeddings are nor-

malised per data sample by subtracting the mean of all fea-
tures in the embedding and by dividing each feature by its
standard deviation [7]. One bias and one gain parameter are
learned by the network such that embedding values can be
translated and scaled. Generally, the transformation is ap-
plied within one layer, right before activation. Importantly,
the implementation of the ARG includes layer normalisation
in the graph convolutional layer and is applied to all players
at once. Thus, the mean and standard deviation are calculated
over 𝑁 feature embeddings. In this way, the updated player
embedding of one is dependent on the embedding of another.
We assess the role of layer normalisation by the evalua-

tion of three models: with normalisation over all 𝑁 players,
with normalisation per player independently, and with no
layer normalisation at all. The results can be observed in Ta-
ble 9. The model where embeddings are normalised per player
obtains worse performance then the I3D model without fea-
ture contextualisation. When no normalisation is applied, the
model scores are similarly low for action recognition. It shows
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that layer normalisation is valuable in the exploration of inter-
player relationships and causes better action predictions in
samples from the Soccer Dataset.

Normalisation Actions (±𝜎) Activities (±𝜎)
Per 𝑁 players 0.687 (±.020‡) 0.676 (±.020‡)
Per individual player 0.602 (±.011) 0.647 (±.018)
No normalisation 0.611 (±.019) 0.666 (±.022)

Table 9: Effects of layer normalisation for feature contextu-
alisation.

5.5 Evaluation with an unseen game
Finally, we evaluated the original ARG, the proposed method
and two intermediate models on samples from a new game.
This test data is hold out during the development of the pro-
posed method. The two intermediate models get player snip-
pets as input and have Inception-V3 and I3D as backbone,
without feature contextualisation. Last, we evaluated the pro-
posed method trained with training and validation data.

The MCCs are reported per class in Table 10. It can be con-
cluded that the proposed elements for data pre-processing,
feature extraction and contextualisation help to obtain bet-
ter action and activity predictions overall. Compared to the
baseline ARG, the proposed method gains equal or better
performance for all classes in the Soccer Dataset. The pro-
posed method predicts samples from ten out of nineteen class
labels in very strong agreement with the ground-truth labels
(MCC ≥ 0.7).

For the comparison with related work and for easy inter-
pretation of the results, MCA and the accuracy per class are
reported as well. These can be observed in Table 11. In terms
of MCA, our method gains 98.7% and 75.2% accuracy in ac-
tion and activity recognition respectively. It indicates that the

method can successfully identify numerous soccer actions
and activities, and is able to generalise patterns to an unseen
soccer court and an unseen opponent team.

Last, we briefly investigated the wrongly classified players
by the proposed method and assessed whether most errors
would include players from the unseen opponent team in the
fourth game. On average, the model (trained with training
and validation data) misclassified 148 from the 11799 players.
From these, 51.58 percent (±1.74) were players from the home
team, present in all four games. Thus, the proposed model
classified the unseen team just as well as the home team.

5.6 Comparison with related work
To the best of our knowledge, our method is the first to as-
sign action labels to all detected players in soccer videos.
Nevertheless, we can compare our result for individual ac-
tion recognition with methods evaluated on the Volleyball
Dataset. Our MCA is 12.8% larger than the best reported accu-
racy (85.9%) [29], partly due to class imbalance in our dataset.
Since we have reproduced a state-of-the-art method on the
Volleyball Dataset, we can make a more fair comparison us-
ing MMCC as evaluation metric. For action recognition, our
method (0.623) gains an MMCC close to the ARG (0.641). The
methods are thus proportional to each other in performance,
while operating in different sport domains.

A comparison with related work for group activity recog-
nition in soccer videos, can be observed in Table 12. It can be
seen that our method is trained with a relatively large number
of activity classes. Also, our method cannot rely on cinematic
features in television broadcasts and does not combine video
streams from multiple camera positions around the soccer
field. Nevertheless, the maximum reduction in MCA is 20.3%.
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Baseline ARG .02 .00 .00 .01 -.01 .01 .02 .00 .005 .00 .00 -.01 .01 .00 .00 .00 .00 .00 .00 -.02 .000
Snippets .67 .25 .00 .34 .57 .61 .73 .28 .431 .20 .55 .23 .65 .17 .82 .55 .86 .75 .15 .65 .506
I3D .81 .34 .04 .52 .79 .69 .92 .33 .553 .46 .62 .27 .72 .42 .71 .55 .81 .82 .20 .68 .569
Proposed .91 .46 .03 .55 .83 .80 .94 .54 .632 .53 .58 .31 .72 .44 .68 .78 .80 .90 .23 .69 .605
Proposed* .96 .47 .00 .56 .84 .85 .85 .47 .623 .58 .59 .33 .74 .43 .76 .86 .81 .84 .28 .73 .632
# Instances 11140 15 17 44 221 27 35 8 11 32 85 255 13 2 9 10 35 12 49
Table 10: MCCs for the baseline ARG, player-centric snippets with Inception-V3, player-centric snippets with I3D, and the
proposed method, on samples from an unseen game. (*) Model is trained with the training and the validation set. In the last
row, the number of test instances per class is repeated.
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Table 11:Accuracies (in percentages) per class for the baseline ARG, player-centric snippets with Inception-V3, player-centric
snippets with I3D, and the proposed method. (*) Model is trained with the training and the validation set.

Moreover, if we group the three duel labels under one class
label, the proposed system predicts with 81.2% MCA, narrow-
ing the gap with state-of-the-art in soccer event recognition
from broadcast videos.

Reference Camera setup # Classes MCA
[74] (2014) Television broadcasts 7 82.0%
[41] (2016) Television broadcasts 4 89.1%
[46] (2018) Television broadcasts 4 94.5%
[80] (2020) Television broadcasts 4 95.5%
[77] (2017) Multiple-perspective 3 70.2%
Ours One-perspective 11 75.2%

Table 12: Comparisonwith othermethods for activity recog-
nition in soccer videos.

6 DISCUSSION
In this work, we have proposed a data pipeline for simulta-
neous action and activity recognition in soccer videos. With
the approach, match event logs can automatically be gath-
ered from video recordings on individual and group level.
The work could impact the full landscape of soccer data anal-
ysis with match event logs, from player evaluation to the
generation of sports visualisations. Currently, most work in
sports analysis is based on manually annotated event logs
that are generally only available for professional games. Au-
tomating the obtainment of match events could open up data
analysis solutions for a broad public, from amateur clubs to
youth teams at professional clubs. Unique is that the proposed
method is designed for stationary cameras that capture a full-
view of the soccer field from a single location. This means
that the system is applicable to affordable camera setups.

The current system, however, is not yet fully deployable for
practical use. The designed method is focused on recognition
rather than temporal detection of match events. All samples

in the Soccer Dataset are manually selected in time and it is
unclear how the method performs on arbitrary samples in
which the action or activity is not performed at the middle
frame. Moreover, the system requires a camera model, cali-
brated with the soccer field dimensions, for the virtual camera
algorithm producing the player-centric snippets. A camera
model is not always available and re-calibration is necessary
when the cameras are moved (e.g. due to a ball hitting one of
the cameras).

Another limiting factor is the small variation in games that
are included in the dataset. Although the proposed model
seems able to generalise to an unseen game, testing on one
game is not enough to verify that good performance can be
expected with many other unseen games. Importantly, the
game in the test set involves one team that was also present in
the three games used for training, while the skill level (young
professionals) was similar as well. Also, the test game did
not display deviating weather or lighting conditions and its
videos were recorded at the same training complex, using the
same camera setup, as those in the training set. The method’s
applicability to games with conditions deviating from these
remain uncertain. It is expected that generalisation would
increase when training onmore games that involve stretching
variation in the mentioned aspects. Positively, the test game
was played on a field with artificial grass where the other
games were played on regular grass, and the opponent team
was not involved in a training game (see Appendix VII for a
sample frame from each game).
Although the proposed method is able to recognise six

activity labels in very strong agreement with the ground-
truth labels (MCC ≥ 0.7), the dataset is very sparse for three
of these. The validation and test set each contain ten or less
examples for corners, goal kicks and kick offs. Therefore, it
is uncertain how reliable these MCCs are. Evaluation with
larger sample sizes is required to see if the results hold.
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The experiments were performed on a GPU with 11GB of
RAM. Due to the limited memory, the feature extraction and
feature contextualisation phases are trained separately. This is
a limitation for two reasons. First, a model that is trained end-
to-endmight result in better predictions, as weights in the I3D
network could be adapted for the exploration of inter-player
relations. Second, it is uncertain whether I3D would adapt
the player embeddings based on the implicit bias discussed
in Section 5.4, possibly removing the effectiveness of feature
suppression. Evaluation with an end-to-end trained model
would provide these insights.

Last, the Actor-Transformer [29] data pipeline is based on
I3D feature extraction and pose estimations. The authors re-
port to obtain slight action and activity recognition improve-
ments when using pose information of volleyball players.
Future work would include the experimentation with a pose
estimator in the soccer domain.

7 CONCLUSION
We conclude this study by answering the sub-research ques-
tions. These are repeated below, accompanied with conclu-
sions drawn from our experiments.
RQ1: “How to create a dataset for action and activity recogni-
tion in the soccer domain?”

We have shown how one could construct a soccer dataset that
is useful for action and activity recognition. Our approach is
unique in that it includes videos that capture the soccer field
from one stationary perspective. Multiple-perspective camera
setups, moving cameras or cinematic features, as often used
in related work, are not essential for good action and activity
predictions.
RQ2: “Which soccer match events are relevant to be automati-
cally gathered?”

The set of class labels consists of eight individual actions
and eleven group activities. Except for the passive class, only
match events that are generally published by Competition In-
formation Providers [20] are included, meaning that all labels
are relevant to the soccer community. Besides, we noticed
that two players in a duel can have different action labels,
but almost identical player representations. We proposed to
give these players the same in-duel action label for training
stability.
RQ3: “Is the Actor Relation Graph method, used for action and
activity recognition in volleyball, applicable to soccer?”

When the Actor Relation Graph (ARG) is applied to soccer
videos instead of volleyball, performance is diminished drasti-
cally in action and activity recognition. The baseline predicts
21.6% of the actions and 7.2% of the activities accurately on
samples from an unseen game. A different approach is neces-
sary to gain good model predictions.

RQ4: “What are limitations to the Actor Relation Graphmethod
when applied to soccer videos?”
Limitations of the baseline ARGwere found in three phases of
the data pipeline: data pre-processing, per-player feature ex-
traction and feature contextualisation. In the pre-processing
phase, the baseline sub-samples the raw frames, resulting in
player representations that are too small for proper action
and activity recognition. Also, a rotated horizon present at
most field locations is worsening the baseline performance.
In the feature extraction phase, the ARG uses Inception-V3
as backbone. The resulting feature embeddings are informa-
tive enough for very strong recognition (MCC ≥ 0.7) of four
actions and six activities from samples in the validation set.
However, the backbone does not generalise well to an un-
seen game, where only one action and three activities gain
MCCs above 0.7. In the feature contextualisation phase, we
found that the ARG lacks the ability to identify an implicit
bias present in soccer games. Last, we saw that the distance-
mask and the exchange of features via self-attention only play
marginal roles in feature contextualisation for soccer videos.
RQ5: “Does the proposed method, based on player-centric snip-
pets, I3D feature extraction, and graph attention networks with
feature suppression and zero-padding, result in more accurate
action and activity predictions than the Actor Relation Graph?”
We compared the proposed method with the baseline ARG
and saw that our model performs better on the Soccer Dataset.
The proposed approach recognises eight actions and eleven
activities with respectively 98.7% and 75.2% accuracy in sam-
ples from an unseen game. Moving to player-centric snippets
as model input resulted in the largest performance increase,
with overall accuracies of 93.4% for action and 70.6% for ac-
tivity recognition. In the feature extraction phase, we saw
that an I3D backbone generalises better to an unseen game
than Inception-V3. Using player snippets and I3D, three ac-
tions and four activities were recognised with MCCs above
0.7 on the test set. Furthermore, we have shown that feature
suppression in graph attention networks can help to identify
an implicit bias present in soccer games. With our approach,
the model was able to reduce the number of wrongly classi-
fied passive players with 58%, when at least two players were
recognised as interacting with the ball. Together with utilis-
ing zero-padding for missing player detections, this resulted
in better action and activity predictions.
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Appendix I. Overview of publications in group activity recognition (2001-2019)

Aim Performance
Year Ref. D T I G S K Method C-5 C-6 C-N NH V-I V-G
2001 [39] ✓ A Bayesian networks
2002 [19] ✓ Rule-based finite state automaton
2006 [89] ✓ Audio-visual features in a two-layer

HMM framework
2009 [17] ✓ Spatio-temporal local descriptor 65.9
2010 [12] ✓ Divisive clustering combined with rule

based recognition
[50] ✓ ✓ Learnable latent graph structure, SVM 79.1

for classification
[55] ✓ ✓ Asynchronous HMM

2011 [18] ✓ Random Forest classification, 3D 70.9 82.0
Markov Rand. Field localization

[51] ✓ Learnable latent graph structure, AC 79.7 78.5
descriptor, multiclass SVM

[64] ✓ Markov chain Monte Carlo based
probability distribution sampling

2012 [4] ✓ ✓ ✓ Three-layered AND-OR graph 83.6
(bottom-up, top-down inference)

[16] ✓ ✓ ✓ Iterative belief propagation, multiclass 79.1 83.0
SVM classifiers

[31] ✓ Coupled observation decomposed HMM,
trained with EM

[44] ✓ ✓ Action Context (AC) descriptor, SVM, 72.0
harmony normalization 85.8

[49] ✓ ✓ H Learnable latent graph structure, HOG, 80.5
structured SVM

[88] ✓ ✓ ✓ Rule based: event model tree
2013 [3] ✓ ✓ Spatio-temporal AND-OR graph, Monte 88.9 84.2

Carlo Tree Search
[54] ✓ Heat-maps from trajectories, heat-map

alignment, surface-fitting for classification
2014 [2] ✓ Hierarchical Random Field, bottom-up, 92.0 87.2

top-down inference, max-margin learning
[5] ✓ Learning latent constituents, multi-class 75.1 90.1

SVM
[13] ✓ A Noisy detector, HMM, logistic regression
[42] ✓ ✓ AC descriptor, SVM, fully connected 74.7 70.7

random fields
[76] ✓ ✓ Graph-based clustering, local group 78.8 80.8

activity descriptor, BoW features, SVM
2015 [23] ✓ ✓ CNN predictions (on scene, actions, poses), 80.6 84.7

message passing neural network
[32] ✓ ✓ Hidden conditional random fields-Boost 82.5 73.0
[33] ✓ ✓ Cardinality kernels applied to bags of 83.4

instances, kernel classifier
2016 [22] ✓ CNN predictions (on scene, actions), RNN 81.2 90.2 85.5

models relations, message passing
[38] ✓ ✓ Two-stage LSTM 81.5 81.9
[63] ✓ ✓ B ✓ Inception7-CNN feat. vectors, BLSTM

context feat., player attention
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Aim Performance
Year Ref. D T I G S K Method(s) C-5 C-6 C-N NH V-I V-G
2017 [8] ✓ ✓ ✓ V CNN detections, predictions and feat. map 82.4 89.9

per frame, Markov Rand. Field, RNN
[53] ✓ V Optical Flow, CNN feat. vectors and 86.1 66.9

LSTM caption per frame, LSTM classifier
[67] ✓ ✓ V Two-stage LSTM (instead of softmax, an 87.2 83.3

energy layer, maximizing confidence)
[75] ✓ ✓ I CNN feat. vectors (scene, actions), LSTM
[77] ✓ ✓ S CNN feat. vectors (actions) added with

meta-information (player, ball and camera
location, team), hierarchical LSTM

[83] ✓ CNN feat. vectors (image, optical flow), 89.4
three-level LSTM (person, group, scene)

2018 [9] ✓ ✓ V Structural RNN, modelling inter-person 76.7 83.5
relations

[28] ✓ V Multi-Level Sequence GAN (CNN feat. 91.7 93.0
vectors, LSTM, GFUs)

[37] ✓ ✓ V CNN feat. vectors, hierarchical relational 89.5
network

[52] ✓ ✓ ✓ ✓ Hypergraph construction, modelling inter- 92.4 94.3 89.3
person relations

[73] ✓ V ✓ Semantics-Preserving Teacher-Student 90.7
model (CNN, BLSTM), using attention

2019 [6] ✓ ✓ V Convolutional Relational Machine: I3D 85.8 93.0
feat. map per frame, pred. activity maps

[35] ✓ V Semantic Relation Graph, refined with 91.4
feature-distilling and relation-gating agents

[57] ✓ V Pose and RGB feat. extraction, two-stage 91.7
GRU network (pose and temp. attention)

[62] ✓ ✓ V stagNet: semantic graph, structural RNNs, 89.1 90.2 82.3 89.3
pose and spatial-temporal attention

[68] ✓ ✓ V Hierarchical Long Short-Term Concurrent 83.75 88.4
Memory

[72] ✓ V Coherence Constrained Graph LSTM, 93.0 89.3
temporal and spatial conf. gates, attention

[79] ✓ CNN feat. (scene, action, pose), RNN as 83.5
ST-group descriptor, prob. inference

[84] ✓ ✓ V ✓ Actor Relation Graph: CNN feat. (action), 91.0 83.1 92.6
multi-head graph attention network

Table 13: An (incomplete) overview of papers published with the goal of group activity recognition between 2001
and 2019. Aim of their method is noted: detection (D) and tracking (T) of people, classification of individual
actions (I) and group activities (G), (partly) designed for sport videos (S), and identification of the key actor. Sports
found are: American football (A), hockey (H), basketball (B), volleyball (V), ice-hockey (I) and soccer (S). Model
performances are given, when available, for the Collective Activity Dataset: the original set including 5 classes (C-
5) [17], the extended set including 6 classes (C-6) [18] and the new set (C-N) [16]; the Nursing Home Dataset [51];
and the Volleyball Dataset [38], on individual actions (V-I) and group activities (V-G). The scores are given inmulti-
class accuracy (MCA). For evaluation sets C-5 and V-G, the top-5 methods are in bold. The one best performing
method is in bold for the other sets.
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Appendix II. Initial experiment
In order to gain insight in the suitability of a new dataset to the research objective, an initial experiment is executed. The video
recordings in the new dataset are captured by a one-perspective camera setup, but have never been used for action or group
activity recognition before. The dataset consists of two parts: raw video footage that captures the full soccer field and player
detections. With this initial experiment, we want to confirm two hypotheses. First, that it is possible to accurately recognise a
particular individual action by processing the direct visual surroundings of a soccer player. Second, that it is possible to do so
using the automatic player detections. If both are confirmed, it means that it is reasonable to use this dataset for semantic
labelling and that no manual annotations of player detections are necessary to do so.
The remainder starts with the definition of individual ball possession as this is not trivial. The experiment works with

different definitions, such that the results are useful for different meanings of ball possession. It immediately demonstrates the
issues of capturing semantics between class boundaries. Afterwards, the setup of the experiment is discussed, including how
the dataset is used, which models to evaluate and how they are evaluated. Model design and results are discussed per model in
separate sections. Last, the results are compared in an overview.

1. Definitions
Since no official definition of individual ball possession could be found, three states have been labelled per player as to cover
most definitions: ‘near distance’ (N), ‘control over the ball’ (C) and ‘future possession’ (F). First, it is annotated whether the
distance between the player and the ball is such that the player is directly able to influence the trajectory of the ball, with a
maximum of one body movement, such as a jump, a step or a kick (N). Multiple players can be in this state simultaneously.
Secondly annotated is whether the player is in control of the ball (C). This state starts when the player touches the ball. From
then, the player is in control as long as the ball moves as a direct result of the contact between the player and the ball and
as long as the ball moves according to the player’s intentions. Note that this state does not depend on the distance to the
ball. Only one player can be in this state at a time. Last is annotated if the player will definitely gain control soon (F). In this
state, the trajectory of the ball and the player are such that it is clear that this player, and no other player, will become able
to influence the trajectory of the ball soon. Also this state does not depend on player-ball distance. Only one player can be
in this state simultaneously. These three states, together with four combinations are shown in Table 14. State N and C can
directly be used as proper definitions for individual ball possession. However, state F is not enough to describe a full definition.
Considering all possible combinations, it has been decided to consider N&C, C&F, (N&C)|F and N|C|F as proper definitions as
well. For a definition to be proper it has to serve a particular use, e.g. that it depends on ball-player distance or ball control, or
that it results in a maximum number of one player to be in ball possession at a time. For an extended overview of all possible
definitions and and explanation where they are proper definitions, see Table 21 (Appendix III).

Condition Definition: A player is in ball possession when he/she. . . >1 players
N . . . has a close distance to the ball. Yes
C . . . has control over the ball. No
F . . .will gain control over the ball undoubtedly and very soon. No
N&C . . . has a close distance to the ball and has control over it. No
C|F . . . has control over the ball, or will gain control very soon. Yes
(N&C)|F . . . has a close distance to the ball and has control over it, No

or will gain control very soon.
N|C|F . . . can (very soon) influence the ball trajectory or has already done so. Yes

Table 14: Definitions of individual ball possession, using three states ‘near distance’ (N), ‘control over the ball’ (C) and ‘future
possession’ (F), and two logical operators AND (&) and OR (|). The most right column shows if it is possible that multiple
players are in ball possession simultaneously under a definition. State F is considered not a proper definition of individual
ball possession. The other six are.

2. Experiment setup
During the experiment, three different models will be evaluated on their performance in ball-possession detection from
individual player samples. An overview of these models is given in Table 15. The first model is inspired by earlier work of Link
and Hoernig [56] and uses a threshold for the distance between the player and the ball to detect individual ball possession.
Input of the model is player and ball locations. During training, the model finds an optimal distance threshold to classify the
players correctly, using their distances to the ball. The second and third model depend on visual data around the players and do
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not depend on ball locations. Both models classify players as in ball possession or not, from RGB-pixels in the bounding boxes
around the players. The third model extends the approach of the second model with multitask learning. In this case, the model
does not only output a classification of the bounding box on individual ball possession. It also outputs a prediction on presence
of the ball in the image and pixel-coordinates of the location of the ball. So, the second model is performing classification
only, where the third model performs detection and localisation as well. We know that the location of the ball is important for
the detection of ball possession. Therefore, such a multi-task learning approach functions as an inductive bias from domain
knowledge that is expected to increase model performance.

To get an insight on the effect of using automatic ACF detections instead of ground-truth player detections, all models are
evaluated on both situations. Additionally, to increase the scientific usefulness of this experiment, the first model is evaluated
on automatic and ground-truth ball detections. Other methods for individual ball possession detection use a player-ball distance,
similar to model 1, and thus depends on ball detections [45][56]. Our hypothesis is that inaccurate player-ball distances, due to
incorrect ball detections, quickly drops the accuracy of the model.

Model input Player locations Ball location RGB-pixels
Detection type Manual Automatic Manual Automatic
Model 1.A (player-ball distance) X X
Model 1.B (player-ball distance) X X
Model 1.C (player-ball distance) X X
Model 1.D (player-ball distance) X X
Model 2.A (bounding box) X X
Model 2.B (bounding box) X X
Model 3.A (multitask learning) X (X) X
Model 3.B (multitask learning) X (X) X

Table 15: Three models are examined for individual ball possession in a binary classification setting: based on player-ball
distance (model 1), based on bounding boxes around players (model 2) and based on bounding boxes around players and
using multitask learning (model 3). Each model is evaluated on two or four test sets, that include manual (ground-truth) or
automatic detections of players and the ball. Note that model 2 depends on player detections only. Model 3 uses ground-truth
ball locations, but exclusively during training. Hence, the (X) notation.

2.1 Dataset
Before execution of the experiments, videos of three soccer matches were annotated with player positions, ball locations and
ball possession labels (N, C and F) for each annotated player. All videos have been captured from the same, static perspective at
the long side of the soccer field such that the full field was visible at all times. The set of two cameras is used because manual
ball detections were available for it, created by Van Dijk [24]. The ball locations were extended with annotations of player
bounding boxes and ball possession labels for three soccer matches. In total, 653 frames were annotated with 1832 players. To
reduce annotation time, while obtaining samples from all three matches, every fortieth frame from the original camera stream
was annotated, resulting in 653 frames. A period of 1.6 seconds is between each pair of consecutive annotated frames. The
set of players that was annotated per frame is not randomly picked, but is always a group closest to the ball. This group was
chosen since the amount of players that could be annotated was limited and since it is considered most interesting to assess
how the models perform on the most difficult samples. Per frame, two or more players were annotated. If a player was in
possession of the ball, for any of the three labels, it was always included in this group. Since a camera model was calculated
beforehand, all pixel coordinates could be ray casted to world coordinates. For each definition of individual ball possession,
a balanced set is created such that the amount of players in ball possession is equal to the amount of players that are not.
This resulted in a different set size for each definition: 964 (N), 670 (N&C), 806 (C), 980 (C|F), 844 ((N&C)|F) and 1060 (N|C|F)
samples.
The automatic detections of the players are obtained using an ACF detector on the video footage. The method outputs

player locations as well as bounding boxes around them. An ACF detector is used since player detections by this method were
already available for the dataset. Additionally, the method is reasonable to use in practice due to its quick detections, such that
video can be processed in real-time, and the ability to detect most players on the soccer field. Since the ACF detector makes
errors, the automatic bounding boxes do not always overlap with the ground-truth bounding boxes around the players of
interest. In Figure 8 it can be seen that for a minimal Intersection over Union (IoU) of 0.5, the ratio of manual annotations
that overlap with an automatic detection drops to 58.36%. For players in ball possession, following any definition, this ratio is
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Figure 8: Performance of the ACF detector on soccer players, at different restrictions on the minimal relative overlap (IoU)
between themanually annotated and the automatically detected bounding boxes. Performances are shown for two subsets: all
players and players in ball possession. For both subsets, the ratio of manual annotations that overlap with multiple automatic
detections is shown as well.

(a) Another player is detected (b) Multiple players are detected

Figure 9: Errors when matching ground-truth bounding boxes (blue) with ACF detected players (red).

49.13%. The labels of manually annotated players that have no overlaps cannot be assigned to an automatic detection. As a
result, the system will never be able to classify these players correctly and considered as not detected at all. Additionally, a
subset of the player annotations does overlap with incorrect ACF detections. As can be seen in Figure 9, these overlapping
detections can be detections of other players or an ambiguous detection including multiple players. In order to remove most
incorrect detections, only ACF detections with an IoU of 0.25 or higher are considered correct detections. This number is
chosen, since for lower values of IoU the ratio of incorrect detections is larger than that of correct detections. For each player,
its labels are assigned to an ACF detection if the overlap ratio between the manual and automatic bounding boxes is larger
than 0.25. If there are multiple overlaps, the labels are only assigned to the detection with the largest IoU. Eventually, this
resulted in a ratio of 77.07% of the data being matched to automatic detections. The other 22.93% is excluded from the dataset
for the models using the automatic player detections, since their labels cannot reliably be matched with the detections. Note
that this causes the performance scores to reflect only the situation in which a player is indeed detected by the ACF detector.

Besides player detections, automatic ball detections are required as well. These are obtained using Ball-I3D [24]. This model
creates 2D-histograms from the field coordinates of all players and predicts the ball location accordingly using an I3D-CNN
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(a) Original bounding box (b) Enlarged bounding box

Figure 10: Bounding boxes around players are enlarged as to include direct surroundings as well.

architecture. In order to create the 2D-histograms, the model uses the same ACF detections of players as before to obtain their
locations. Ball-I3D is chosen to provide the ball-location estimations since the model was designed using the same dataset.
Since there is a lack of benchmarks for ball detection in soccer videos, it is difficult to compare its performance to other
methods.

Both manually and automatically annotated bounding boxes are used by model 2 and 3. As to include the direct surrounding
of each individual player, the bounding boxes around the players are widened (see Figure 10). Twenty percent of the original
height is added to the bottom of the bounding box, which is generally the area around the feet. When a player is in ball
possession, it is likely that a ball is visible in this area. The bounding boxes are widened as well, such that the images become
square and the player is in the centre of the image. The images are squared since this is desired by the architecture of model 2
and 3.

For model 3, two additional labels are generated per player: presence of the ball in the image and pixel-location of the ball.
In order to generate these, manual (ground-truth) annotations of the ball are used. Whenever the ball pixel-coordinates are
within the boundaries of the widened player bounding box, the sample is positively labelled. Note that this does not mean that
the ball is visible; it can be occluded. Also, the pixel-coordinates of the ball are saved, relative to the bounding box coordinate
system. If the ball is present in the bounding box, its relative pixel-coordinates are between zero and one for both axes. If the
ball is outside the bounding box, these coordinates are negative or higher than one for at least one axis.

2.2 Performance metrics
The main performance metrics are accuracy, precision and recall. Players that are in ball possession are included in the positive
class, where all other players are in the negative class. For model 3, errors in the two other output variables are considered as
well: accuracy is used as the metric for ball detection where mean square error is the metric for localisation of the ball in the
bounding boxes.

3. Model 1: player-ball distance
Experiments with the first model have two aims. First, the model is used to assess the importance of the distance between a
player and the ball when detecting individual ball possession. The second aim is to assess the influence of automatic player
and ball detections on the performance of a model using a distance threshold for classification. This is important, since in most
situations, the locations of the ball and players are not known beforehand and manual annotation per frame is too labour
intensive.
Similar to the method of Link and Hoernig [56], an optimal threshold 𝑇𝑏 is found to define whether a player is in ball

possession. When a player is within this range to the ball, the player is classified as in possession by the model. Players further
away from the ball are negatively classified. Euclidean distance (in meters) is used to obtain the distance per player-ball pair. For
each definition of individual ball possession, an optimal threshold is found using a grid search. Thresholds between zero and
ten meters, in steps of one centimetres, are evaluated. The optimal threshold is the distance measure that results in the highest
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accuracy when classifying all players in a training set. This set includes 80% of the balanced data set including ground-truth
player and ball locations. The optimal thresholds are evaluated using four test sets, each with a different combination of
ground-truth (manual) and automatic detections of the players and the ball. Model 1.A is tested on the remaining 20% of the
set, since the first 80% is used for finding the optimal thresholds. Model 1.B-D are evaluated using 100% of the samples.
From the test sets, it is expected that model 1.A provides the best performance in classification. Since the mean Euclidean

error of the Ball-I3D estimations are 10.34 meters [24], it is expected that this error is too large to accurately use a player-ball
distance threshold for classification using this data. A smaller error is present in the ACF-detection locations, which differ on
average 1.62 meters from their ground-truth location. Although this is likely to cause a drop in performance, it is expected to
be less problematic than the ball estimation errors. Model 1.D is expected to perform worst, since the input is the furthest
away from reality compared to the other evaluation sets.

3.1 Results
The optimal values found for the distance threshold are given in Table 16, per definition. It can be seen that when the location
data is close to reality (model 1.A), performance scores are high, especially for definitions that depend on player-ball distance.
For example, model 1.A classifies 95.83% and 90.30% correctly using definitions N and N&C respectively. The definition that
does not depend directly on player-ball distance, C|F, result in the lowest classification accuracy of 78.57%. Optimal values for
𝑇𝑏 are found ranging from 1.96 to 2.13 meters. This makes sense since that is approximately the ratio in which a player is
directly able to influence the ball’s trajectory.

(a) Model 1.A: manual player and ball detections

Condition 𝑇𝑏 (m) Acc. Prec. Recall
N 2.13 95.83 94.90 96.88
C 2.04 87.65 89.61 85.19
N&C 1.99 90.30 86.49 95.52
C|F 2.04 78.57 83.33 71.43
(N&C)|F 1.96 86.90 93.06 79.76
N|C|F 2.15 87.80 95.28 79.53

(b) Model 1.B: manual player and autom. ball detec-
tions

Condition 𝑇𝑏 (m) Acc. Prec. Recall
N 2.13 51.04 60.00 6.22
C 2.04 50.37 54.29 4.71
N&C 1.99 51.34 66.67 5.37
C|F 2.04 50.92 63.64 4.29
(N&C)|F 1.96 50.83 60.61 4.74
N|C|F 2.15 51.65 72.34 5.35

(c) Model 1.C: autom. player and manual ball detec-
tions

Condition 𝑇𝑏 (m) Acc. Prec. Recall
N 2.13 84.34 88.67 78.74
C 2.04 76.57 83.40 66.34
N&C 1.99 84.76 88.69 79.67
C|F 2.04 71.83 80.92 57.14
(N&C)|F 1.96 76.43 84.02 65.29
N|C|F 2.15 77.38 90.34 61.31

(d) Model 1.D: autom. player and ball detections

Condition 𝑇𝑏 (m) Acc. Prec. Recall
N 2.13 51.44 69.23 5.17
C 2.04 49.34 41.67 3.30
N&C 1.99 50.61 58.82 4.07
C|F 2.04 50.13 52.17 3.23
(N&C)|F 1.96 50.32 55.00 3.50
N|C|F 2.15 50.53 56.41 4.65

Table 16: The optimal values for threshold𝑇𝑏 , for each definition and test set A-D, together with their performances in terms
of accuracy (%), precision (%) and recall (%).

It can be seen that errors in the automatic detections have a large impact on the performance of the model. Even when
all players are correctly located using the ground-truth, and the ball location is estimated using Ball-I3D (model 1.B), the
classification accuracies drop to 50.37-51.65% for any definition. Note that a random guess in this setting would saturate to
an accuracy of 50.00% for large numbers of predictions. Especially the recall rates are very low for this model (3.23-5.17%),
meaning that most players in ball possession are classified as players that are not. Higher values for𝑇𝑏 could increase the recall
scores. However, this will only slightly increase the accuracy of the model (up to 54.98% for definition N and a threshold of
6.40). Errors in player detections have less impact to the performance of the model. Model 1.C obtains classification accuracies
of 71.83-84.76%. Note that the 22.93% of the ground-truth bounding boxes that did not have an overlap ratio with any ACF
detection larger than 0.25 are not classified by the model and therefore not reflected upon by the performance scores. When
one wants to incorporate the not detected players and treat all of them as misclassifications, the accuracy scores of model 1.B
and 1.D can be multiplied with 0.7707. Model 1.D obtains a similar performance to model 1.B with classification accuracies of
49.34-51.44%. The experiment show that a player-ball distance threshold does perform well when ground-truth player and ball
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locations are known to the system. However, in most situations this will not be the case since manual annotation is expensive.
The error in ball-location estimations of the Ball-I3D are too large to retain good performance. The impact of the ACF player
detector is smaller, such that the model remains usable. However, these results do not reflect players that are not detected,
which happens for 22.93% of the players that are near the ball.

4. Model 2: bounding boxes
The second model uses visual inspection of player surroundings, instead of location data, to classify the players. Aim of the
experiment is to show the advantage of an RGB-based approach over the use of a distance-threshold, when player or ball
locations could not be obtained accurately.
Similar to model 1.B and 1.D, the location of the ball is not known to the system. In fact, this method does not depend

on its location. To assess the influence of an ACF player detector over ground-truth player locations, two sample sets are
evaluated: one using manual detections (model 2.A) and one with automatic detections (model 2.B) as input. Both versions
are trained using manual detections. The bounding boxes of the detected players are enlarged such that they include direct
surroundings, and are cut out of the full view images. Afterwards, the enlarged bounding boxes are classified by a CNN.
A ResNet-10 architecture is chosen to classify the images, since the model has a small amount of trainable parameters (∼5
million). This reduces the rate of overfitting when using a small dataset, which is the case for the 964 to 1060 available samples.
The ResNet architecture [34] is a standard CNN architecture for image classification.

Besides the decision for a small model, four other measures are used to be able to train on the small dataset. First a dropout-
layer (fraction of 0.2) is added right before the output-layer, to prevent the model from overfitting. Second, the size of each
dataset is doubled by horizontally flipping all images. These images are added after splitting the datasets in training and test
samples such that an original and flipped image pair is always in the same set. Third, it is observed that several runs with the
same data and hyper-parameters give variations in model performance. To get more stable results, the experiment is executed
using five-fold cross validation. Last, the model is pre-trained on ImageNet-1K [21] such that relevant feature maps that are
general to many image datasets are already learned. Especially the first layers include such feature maps, including Gabor
filters and color blobs [86]. Since the pre-trained model is trained to classify between 1000 classes, the model has 1000 output
nodes. These are replaced with two output nodes with softmax activation and binary cross entropy loss (see Equation 7). The
paragraph below demonstrates the benefit of pre-training in more detail. Furthermore, the models are trained for 80 epochs
with a batch size of 40 using stochastic gradient descent, with a learning rate of 1𝑒−4, and 0.7 momentum.

𝐵𝐶𝐸 (𝑌, 𝑃) = −
𝑁∑
𝑛=1

(𝑌 (𝑛) log(𝑃 (𝑛) ) + (1 − 𝑌 (𝑛) ) log(1 − 𝑃 (𝑛) )) (7)

with 𝐵𝐶𝐸 (𝑌, 𝑃) the binary cross entropy for ground-truth set 𝑌 and model predictions 𝑃 . The loss is calculated per batch, including 𝑁

samples. 𝑌 (𝑛) is the binary label for sample 𝑛, where 𝑃 (𝑛) is the corresponding probability output prediction from the model.

In Figure 11 can be seen what the effect is of pre-training and, additionally, ‘freezing’ different amounts of pre-trained layers
when fine-tuning the model on player bounding boxes. It is clear that initializing the weights with a pre-trained net prevents
the model from both slow learning and a lack to decrease the training loss drastically. When freezing four or five layers
the model is underfitting, resulting in slowly decreasing loss functions on the train and test set. The bottom-left subplot of
Figure 11 is zoomed in on the three best performing models, with zero to two frozen layers. It can be seen that freezing the first
two layers prevents the model from overfitting just enough to obtain proper results on the test set. That this model performs
best can also be seen in Table 17, with an accuracy of 73.23% after epoch 80. Therefore, it has been decided to execute further
experiments with this model. Note that the loss on the test set is lower than the loss on the training set during the first epochs,
which is likely to be caused by the dropout-layer: this layer is disabled during the test phase. This experiment is executed
using the previously mentioned measures and hyper-parameters, uses definition N for individual ball possession and receives
the ground-truth bounding boxes as input.

Number of frozen layers No PT 0 1 2 3 4 5
Accuracy (%) 57.56 70.10 70.78 73.23 69.21 68.33 62.03

Table 17: Acc. scores of the models evaluated in Figure 11 after epoch 80. Themost left model is not pre-trained at all (No PT).
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Figure 11: Loss functions on the train and test set for model 2.A, not pre-trained (blue) and pre-trained with fine-tuning using
different numbers of ‘frozen’ layers.

As can be seen in Figure 11, it is likely that a CNN is trainable to classify players correctly as in ball possession or not. It is
expected that visual cues, such as presence of the ball in the image, give the CNN relevant information such that it can classify
a large portion of the players correctly. However, this would mean that considering definitions of individual ball possession in
which near presence of the ball is not necessary, the model is likely to perform worse. Additionally, it is expected that the use
of automatic ACF detections for the bounding boxes will lower the performance of the model.

(a) Model 2.A: manual player detections

Condition Acc. Prec. Recall
N 73.23 73.35 73.02
C 65.43 66.47 62.83
N&C 67.43 66.97 68.87
C|F 66.00 66.24 65.78
(N&C)|F 66.55 67.02 65.48
N|C|F 69.27 69.48 68.97

(b) Model 2.B: autom. player detections

Condition Acc. Prec. Recall
N 69.40 71.07 68.62
C 64.49 65.30 66.69
N&C 65.76 69.48 61.49
C|F 65.22 66.92 63.36
(N&C)|F 61.94 64.03 61.84
N|C|F 65.10 66.19 64.52

Table 18: Performance scores for the RGB-based method that classifies individual players as in ball possession or not.

4.1 Results
Performance scores of the proposed RGB-based method can be found in Table 18. As expected, the model is performing best
for the near (N) definition, with an accuracy of 73.23%. Performances for the other definitions vary between 66.00% and 67.43%.
Although the model does not perform as well as model 1.A and 1.C, which scored 95.83% and 84.34% respectively, model 2 does
not depend on ball detections at all and still performs better than random guess. This indicates the presence of visual cues
for individual ball possession in the direct environment of the players. Model 2.B, which receives ACF player detections as
input during evaluation, performs less accurate with an average decrease of 2.67% in accuracy. These results can be visually
inspected in Figure 12. It can be seen that for all definitions of model 2 the accuracy function on the test set saturates around
epoch 80. Comparing the model to the first model, it obtains accuracies higher than model 1.B and 1.D, but lower than 1.C.
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Figure 12: Accuracies of the model using manually annotated player bounding boxes (model 2.A) and ACF player detections
(model 2.B) (up). Comparison between evaluation sets A and B, and the first model, using definition N (bottom).

5. Model 3: multitask learning
Multitask learning is widely used to boost performance of classifiers. By explicitly telling the model to predict aspects related
to the original task, all aspects are predicted using the same representation. The model is then forced to use the implicit bias
that is necessary to be used in predicting the labels of the new aspects [11]. In our case, it is desired to force an implicit bias
on the presence of the ball near a player with individual ball possession. Therefore, an evolved version of the CNN, used for
model 2, is created. In this version, the model does not only classify each player, but also predicts whether the ball is present in
the image and predicts the ball location in the image.

In order to enable the multitask model to predict the additional aspects, four output nodes are added to the output-layer. Two
of these are for classification with one node predicting the class ‘ball present in image’ and the other ‘no ball present in image’.
The other two nodes output the predicted horizontal and vertical location of the ball in the image. Additionally, a combined
loss function is created for optimisation of the model (see Equation 8). All terms in this loss function are weighted equally. It is
expected that the model is able to detect the ball accurately within the enlarged player bounding boxes and that this increases
the performance of the RGB-based method. Again, two evaluation sets are used: model 3.A is trained and evaluated using
manually annotations of players, while model 3.B uses ACF player detections.

𝐿 = 𝐵𝐶𝐸𝑝 (𝑌𝑝 , 𝑃𝑝 ) + 𝐵𝐶𝐸𝑣 (𝑌𝑣, 𝑃𝑣) +
𝑁∑
𝑛=1

𝑌
(𝑛)
𝑣

𝑁

𝑌 (𝑛)
𝑏

− 𝑌
(𝑛)
𝑏

2
2

(8)

with 𝐿 as the total loss function, used by the multitask model. The first two terms define binary cross entropy loss for predicting individual ball
possession (𝐵𝐶𝐸𝑝 ) and presence of the ball in the images (𝐵𝐶𝐸𝑣). The third term is the mean squared error (MSE) over a batch with 𝑌 (𝑛)

𝑏
as the

ground truth location of the ball in image 𝑛 and 𝑌 (𝑛)
𝑏

the corresponding prediction by the model. Adapted to the regular MSE function is that if
the ball is not present in an image, the squared error for that sample is set to zero.

5.1 Results
Performance scores of model 3 can be seen in Table 19. The overall accuracy performance has increased, with an average of
2.00%. For the models trained on ACF detections, the increase is larger, with an average of 3.37%. Overall, the model is able to
increase the accuracy score for ten out of twelve sets, with a largest increase of 6.14%. For this model, the influence of using
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automatic player detections instead of ground-truth bounding boxes is only small (average of 1.30%). Besides, the model is able
to detect whether the ball is present in an image with an average accuracy of 75.67%. In Figure 13, performance of model 3
can be inspected visually. Again, it is clear that the RGB-based method performs best for definition N. Model 3.A obtains the
highest accuracy scores of all RBG-based models and is getting closer to the performance of model 1.C.

(a) Model 3.A: manual player detections

Possession Ball
Condition Acc. Prec. Recall Acc.
N 75.94 77.15 74.06 78.59
N (FR1) 77.60 77.78 77.40 80.21
C 67.67 67.87 67.42 75.63
N&C 71.85 73.42 68.84 73.12
C|F 68.18 68.99 66.19 75.15
(N&C)|F 65.65 66.95 31.90 75.83
N|C|F 70.65 71.49 68.96 77.81

(b) Model 3.B: autom. player detections

Possession Ball
Condition Acc. Prec. Recall Acc.
N 74.38 77.97 70.34 78.26
N (FR1) 73.36 74.75 73.26 73.06
C 70.63 72.92 69.46 72.54
N&C 68.62 71.69 66.67 73.54
C|F 64.46 67.44 60.07 75.24
(N&C)|F 65.45 68.69 60.65 70.58
N|C|F 68.61 71.26 64.26 78.35

Table 19: Accuracy, precision and recall scores for the RGB-based method for all definitions, using multitask learning. Addi-
tionally, the accuracy scores for predicting presence of the ball in the images are given in the most left columns.

Figure 13: Accuracies of the model using manually annotated player bounding boxes (model 3.A) and ACF player detections
(model 3.B) on the test set of each definition (up). Comparison between both models and all other models, using definition N
(bottom).

6. Results overview and conclusion
Table 20 includes an overview of the accuracies of all three models when using different combinations of manual and automatic
detections as input. For clarity, only the results when using the N definition for individual ball possession are given. The ratio
between performance scores of the models is similar for the other definitions, although overall performance is generally lower.
In cases where ground-truth ball locations are available, the model that puts a threshold on the player-ball distance (model 1) is
dominant in accuracy. This is also the case when players are automatically detected, although performance decreases. However,
in cases where ground-truth ball locations are not available, and estimated using Ball-I3D, the RGB-based methods (model 2
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and 3) dominate. Since these models do not depend on ball locations, their performance does not change when ground-truth
ball locations are available or not. Note that model 3 still requires ground-truth ball locations for training.

Ball location
Player locations Manual Automatic

Manual
Model 1: 95.83
Model 2: 73.23
Model 3: 75.94

Model 1: 51.04
Model 2: 73.23
Model 3: 75.94

Automatic
Model 1: 84.34
Model 2: 69.40
Model 3: 74.38

Model 1: 51.44
Model 2: 69.40
Model 3: 74.38

Table 20: Comparison between the accuracies (%) of all three models for the definition N, using the four combinations of
input. Since model 2 and 3 do not depend on a ball location, their performances are the same for manual and automatic ball
detections.

It can be concluded that it is reasonable to use the video recordings to train our novel method on for semantic labelling. By
visual inspection of the player and its direct surroundings a deep network is able to extract semantic information, like ball
possession. Although the baseline model provides high accuracies for ground truth player and ball locations, it is not robust
against errors in the automatic detection of these. In contrast, the CNN based models are able to provide reasonable results for
automatic detections. This means that the ACF detections can be used in further experiments such that players do not have to
be manually annotated. However, it should be known that the detector is not perfect and is missing detections for 22.92% of
the players that are near the ball. Last, an inductive bias based on domain-knowledge such as multitask-learning (model 3), is
able to boost the performance of the classifier. This advocates for the use of more ways to force an inductive bias on the action
recognition algorithm to improve its prediction accuracy.
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Appendix III. List of possible definitions for individual ball possession

Condition Valid Explanation
N Yes If only player-ball distance is considered relevant.
C Yes If only ball control is considered relevant.
F No Future possession alone is not enough to cover a full definition.

N&C Yes If player-ball distance is considered relevant, but it is desired that only one
player is in ball possession at a time.

N&F No Describes only the short moment where the ball is close to the player, but
the player has not touched the ball yet. Not enough to cover a full definition.

C&F No Results in an empty set of positive samples.

N|C No Although such a definition would be possible, it does not follow a particular
use. Definition N&C or N|C|F would better suit.

N|F No The inclusion of very soon ball control (F) without considering actual
control (C) in the definition feels odd. Definition (N&C)|F or N|C|F
would better suit.

C|F Yes If ball control is relevant, but possession starts already when it is clear
that the player will gain control soon (e.g. a goal kick).

(N&C)|F Yes Similar to C|F, but ensures that at most one player is in possession at
a time.

(N&F)|C No That future possession only counts as possession when the ball is close to
the player feels odd. Definition C|F would better suit.

(C&F)|N No Is equivalent to N (C&F have no positive samples).

(N|C)&F No Is equivalent to N&F (C&F have no positive samples).
(N|F)&C No Is equivalent to N&C (C&F have no positive samples).
(C|F)&N No Extends N&C with N&F. That future possession only counts as possession

when the ball is close to the player feels odd. Definition (N&C)|F would
better suit.

N&C&F No Results in an empty set of positive samples.
N|C|F Yes Results in the most ‘loose’ definition, meant for one that is interested

in players with any (potential) influence on the ball, now or very soon.
Table 21: List of all possible combinations of the three labels for individual ball possession: near distance to the ball (N), in
ball control (C) and undoubted control in the near future (F). Variations are also considering the logical operators AND (&)
and OR (|). The validity as a definition for individual ball possession is assessed for each combination.
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Appendix IV. Class label taxonomies

(a) Taxonomy for individual actions.

(b) Taxonomy for group activities.

Figure 14: The action and activity labels are represented in two separate taxonomies. All labels marked with an asterisk (*)
can be found in the SPADL [20]
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Appendix V. Overview of match event logs provided by CIP Wyscout

Metadata Events Subevents Tags
Match ID Duel Air Goal
Match period Ground attacking Own goal
Time past (sec.) Ground defending Assist
Team name Ground loose ball Key pass
Player name Foul Foul Counter attack
Field position Hand Foot right/left

Late card Head/body
Out of game Direct/indirect
Protest Dangerous ball lost
Simulation Blocked
Time lost High/low
Violent Interception

Free kick Corner Clearance
Free kick Opportunity
Cross Feint
Shot Missed ball
Goal kick Free space right/left
Penalty Take on right/left
Throw in Sliding tackle

Goalkeeper leaving line - Anticipated/Anticipation
Interruption Ball out of the field Red/(second) yellow card

Whistle Goal position (3x3 grid)
Offside - Out position (8 options)
Others on the ball Acceleration Post position (8 options)

Clearance Through
Touch Fairplay

Pass Cross Lost/neutral/won
Hand Accurate/Inaccurate
Head
High
Launch
Simple
Smart

Save attempt Reflexes
Save attempt

Shot -
Table 22: List of annotated match event logs at Wyscout, corresponding to the dataset by Pappalardo et al. [61]. See also:
https://apidocs.wyscout.com/matches-wyid-events.
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Appendix VI. List of definitions from labels in the Soccer Action and Activity Dataset

Body part Sub-category Leaves Description
Head - Heading Touching the ball with the head

Jumping Reaching with the head towards the ball without touching it
Foot Defence Tackle Intercepting the ball from an opponent without gaining control

Foul Tackling without touching the ball, resulting in the opponent falling
Interception Gain ball control by intercepting the ball from an opponent

Attack Dribble Control the ball freely for at least 3 meters
(control ball) Take on Attempt to dribble past an opponent
Attack Pass Pass the ball over the ground
(play ball) Cross Pass the ball through the air in the penalty area of the opponent

Shot Shoot the ball towards the goal of the opponent (the goal may be missed)
Clearance Get the ball out of the defensive third in a hasty manner
Bad touch Touch the ball, but immediately loose control over it

None In duel* Loose Involved in a duel, while no team is in ball possession
Attack Involved in a duel, while you are in ball possession
Defence Involved in a duel, while the opponent is in ball possession

Non-duel Passive No interaction with the ball, not involved in a duel
Other Field player Throw-in Throw-in the ball with the hands

Goalkeeper Save Attempt to save a shot on goal
Claim Catch a cross
Punch Punch the ball to get it out of the defensive third
Pick-up Take the ball in the hands

Table 23: The taxonomy of the action labels, based on the SPADL [20].

Category Leaves Description
Duel* Air At least two players try to influence the trajectory of the ball with their head

Ground (Att/Def) At least two players are in a duel, where one player is in ball possession
Ground (Loose) At least two players are in a duel, where no player is in ball possession

Play freely Touch ball A player freely controls the ball
Proceed play Free kick (short) A player takes a free kick by passing the ball over the ground

Free kick (cross) A player takes a free kick by passing the ball through the air
Free kick (shot) A player takes a free kick by shooting the ball towards the goal area of the opponent
Kick off A player takes a kick off
Goal kick A player takes a goal kick
Penalty A player takes a penalty
Corner (short) A player takes a corner by not passing the ball towards the penalty area
Corner (cross) A player takes a corner by passing the ball towards the penalty area
Throw-in A player performing a throw-in

Interruption Whistle Inactive play, not because the ball is out of the field boundaries
Ball out of bounds Inactive play, because the ball is out of the field boundaries
Goal A goal is scored

Table 24: The taxonomy of the activity labels, based on the SPADL [20] and the match (sub)-events recorded by Wyscout.

* A duel is where at least two players from different teams are trying to influence the trajectory of the ball, or are trying to
gain/keep possession over the ball, or where one player is trying to slow-down its opponent with physicial contact between
the two.
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Appendix VII. Example frame from each game

(a) (b)

(c) (d)

Figure 15: The kick-off from all games in the training set (a-c) and the test set (d).
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