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Figure 1.1: Example of the to be researched
interface segregation.

1 Introduction

Advanced thin film applications require precise control over the thin film
structure, composition and the interfaces. The segregation of solute atoms
to the surface and interfaces of a functional layer can affect the multilayer’s
functional properties. Therefore understanding and, ultimately, control over
the segregation process is highly desirable for the development of such struc-
tures and its applications. One can imagine that the segregation can be used
to passivate interfaces in thin films and 3D nano-structures, by analogy with
e.g. metallurgy where the grain-boundary segregation causes passivation of a
grain boundary and prevents formation of large crystalline grains.

Until now these segregation effects in nano-meter thin films to buried inter-
faces have not been the subject of extensive research and the details of these
processes remain relatively unknown. In this thesis a research on segrega-
tion to buried interfaces of thin film structures is presented. We have made a
first step in understanding which material parameters are important for the
segregation process in thin films under annealing conditions. This is done
by iterating different transition metal combinations in a bi-layer thin film
system and studying the behavior of the different material combinations. The
material parameters that are of interest in this research are the atomic radius,
crystal structure and the surface energy. A schematic example of the thin film
systems and the segregation that is the subject of this research is shown in
Figure 1.1. The thin film is composed of 2 layers, respectively a bottom layer
composed of a solute element and a matrix element and top layer consisting
of only one material. Annealing is used to stimulate the segregation process
by bringing the system to more mobile state. In this configuration the solute
atoms are able, either to remain in the same layer, segregate on one ore more
interfaces or diffuse through the entire stack. The final state of the bi-layer
after annealing will be cumulative representation of solute mobility in the
system and thermodynamics balance.

A combination of grazing incidence X-ray reflectively (GIXR) measurements
with X-ray standing wave fluorescence (XSW-XRF) measurements is used to
reconstruct the thin film structures and its atomic depth distributions. This
reconstruction is employed to map the changes in atomic distributions before
and after the annealing and with sub-nanometer sensitivity, enough for the
quantification of potential interface segregation.

To confirm the validity of combined GIXR and XSW structure reconstructions,
a Bayesian inference is applied to obtain a stringent confidence bounds on
the individual reconstruction parameters. To obtain the posterior distribution
used in the Bayesian inference Hamiltonian Monte Carlo methods are used
and compared in performance to conventional MCMC methods to test its
efficacy. Additionally a transmission electron microscopy (TEM) study is
done on 2 samples to verify the accuracy of the thin film reconstructions
experimentally.

For predicting grain boundary segregation, a semi-empirical thermodynami-
cal model was proposed for metal-metal systems in the pioneering work of
Miedema et al.[1] Here the surface energy and compound formation enthalpy
are considered as critical parameters that determine segregation effects in bulk
layers. A similar model depending on surface energies and atomic radii was
applied for predicting surface segregation on top of solid alloys [2]. This model
was later extended in [3] for the analysis of grain boundary segregation in
poly-crystalline alloys. Most of recent research into interfacial segregation was
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in the field of grain boundaries [4] [5]. Some research has been done for layered
systems [6]. A model that predicts formation enthalpies of segregation in thin
solid metal films has been proposed by [7] and will be tested for applicability
in the solid layer nanometer thin film regime.

To generate an X-ray standing wave in a thin film structure, two oppositely
travelling waves of comparable intensity should interfere. This condition can
be fulfilled, for example, if the incidence beam and reflected are of comparable
intensity. For the generation of standing waves previously 2 methods have
been used with success, the waveguide method and the use of a periodic mul-
tilayer. The waveguide method has been tried with success in a synchrotron
environment [8] but has not yet been successfully deployed in a thin-film labo-
ratory. The multilayer method has already been used in a similar environment
[9] but has too many limitations for the current research.

Currently most reconstructions with a large number of degrees of freedom
assume a single solution from a data set of measurements [10]. Previously
Bayesian inference methods have been applied to GIXR, XSW and related
X-ray measurement data to obtain a solutions sets of possible solutions that fit
the data, parametrized by 8 degrees of freedom [11]. The usage of multiple
data sets in this analysis has shown to reduce the number of solutions that fit to
the measured data and therefore decreased the in the width of the confidence
interval on individual parameters. With parametrizations that allow for signif-
icantly more degrees of freedom, e.g. 50-70, a classical Metropolis-Hastings
MCMC (Monte-Carlo Markov Chain) may not show convergence within ac-
ceptable time due to the quadratic time scaling per degree freedom [12]. A
different promising sample method, the Hamiltonian Monte Carlo method has
previously been successfully implemented in Bayesian inference applications
on high-dimensional parameter spaces [13] and in optimal situations scales
in the power of 5

4 in time with the number of degrees of freedom [12] and
therefore shows potential in the applicability in reconstruction of thin film
structures using a free form parametrization.

Research steps

Below the research steps I made are listed, in each step the related educa-
tion track, namely applied physics (AP) or applied mathematics (AM), is
indicated.

I The selection of a set of transition metals for which the material param-
eters can be isolated to understand their role in interface segregation.
(AP)

I Designing a thin film structure that is stable during the annealing and is
suitable for XRR-XSW characterization with optimal sensitivity to the
segregation process. (AP)

I The adaptation of the free-form parametrization approach [10] for auto-
matic analysis of GIXR-XSW data specifically optimized for the segrega-
tion study in thin films. (AP)

I Adaptation of the Hamiltonian Monte Carlo method to the analysis of
hybrid X-ray measurements data. (AM)

I Obtaining an accurate approximation of the posterior of reconstructions
of GIXR and XSW measurement data to obtain the confidence intervals
of the individual reconstruction parameters. (AM)
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Figure 1.2: Example of the to be measured
structure.

Methodology

Material Selection A material selection of individual transition metals is
made to efficiently investigate the possible parameters important in the quan-
tification of the segregation process. The selection is made in a way that the 3
parameters of investigation, Atomic Radius, Crystal Structure and Surface En-
ergy, are isolated to study the influence of the individual material parameters
on the segregation.

Structure Design Thicknesses of the waveguide layers and the to be stud-
ied bi-layer system in the thin film structure will be optimized in terms of
discerning power to differentiate the fluorescence radiation coming from the
different interfaces. The waveguide layers are made of Tungsten due to its
high optical contrast and its relatively high X

V
optical constant ratio for the

Cu-KU wavelength.

The optimized sample structure is a bi-layer thinfilm system of pure transitions
metals of which the bottom layer has been enriched with a dopant material
that is the subject of the segregation research. The layers thicknesses are
of the order of ∼ 15 nm for the top layer and ∼ 10nm for the bottom layer.
This bi-layer system deposited between a waveguide consisting of a thick
bottom waveguide layer ( ∼40nm) and thin top waveguide layer( ∼5nm). The
design of the structure with the designated labels for the layers and interfaces
that will be used trough out this thesis is shown in Figure 1.2. To verify the
practical applicability of the layer optimizations, three samples have been
deposited for which the dopant material is individually pre-depositioned to
the three expected segregation sites (T,M,B Figure 1.2 ) successfully verifying
the discerning power of the waveguide system in practice.

Multiple bi-layer material combinations have been deposited with waveguide
to study the behavior of the interface segregation under annealing condi-
tions for the different transition metal combinations. For 2 thin films showing
significant segregation a Transmission Electron Miscroscopy (TEM) study
was done, verifying the results obtained from the GIXR-XSW measurement
reconstructions.

Reconstruction Previously sample reconstructions from GIXR and XSW
measurements have been done by formulating an inverse problem with a
forward map calculating the resulting GIXR and XSW signals from a proposed
parametrized structure. A parameter estimation of a set of structure parameters
is done by optimizing a forward map with a general optimization method to
find the parametrization of the reconstruction that best satisfies the measured
GIXR and XSW signals. This method infers a single solution to the data.
However due to the ill-posedness of this inverse problem, even with the help of
regularization methods these sample reconstructions have not always shown
to be unique [10]. The uncertainty in the reconstruction parameters is seen
as one of the main criticisms of the usage of the independent reconstructions
from the GIXR and XSW measurements.

To address this ill-posedness, A Bayesian inference is used to obtain the con-
fidence intervals on the parameters of the reconstruction methodology. The
sample space of the possible parametrizations of the reconstructions that fit
the GIXR and XSW measurements is obtained by exploring the parameter
space using different Monte-Carlo Markov Chain (MCMC) methods. Due to
the high-dimensional nature of the problem (>50 parameters) a conventional
Metropolis-Hastings with a transition kernel based on a probability distribu-
tion can in practice lead to a low convergence rate. Therefore Hamiltonian
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Monte Carlo (HMC) methods are implemented, which are more suitable for
Bayesian inference applications in higher dimensions since contrary to the
conventional Metropolis-Hastings the convergence rate is less dependent on
the number of dimensions in the problem. To confirm the performance of the
HMC implementation, the HMC implementation is compared to a conven-
tional Metropolis-Hastings implementation and has shown significantly faster
convergence.

Thesis Overview

In Chapter 2 the theoretical framework is introduced that is necessary to un-
derstand the upcoming chapters. First the physical aspects of the segregation
are introduced. Following an introduction into the metrological techniques
that are used. The chapter follows with a introduction in Bayesian inference,
inverse problems and the used MCMC methods. In the end a small example of
a MCMC is given to further help the reader understand the Bayesian inference
and MCMC methodology.

In Chapter 3 the experimental aspects are discussed. First the technical details
of the sample selection and sample manufacturing are discussed. The chapter
end with a description of the experimental and data acquisition part of the
GIXR and XSW measurements.

In Chapter 4 first the free-form structure parametrization is introduced follow-
ing the definitions in [10] and the calculations used to calculate a the resulting
GIXR and XSW signal from said parametrization. Using these descriptions
the forward map of the inverse problem is defined that calculates a loss func-
tion based on the mismatch of the resulting GIXR and XSW signals form a
proposed structure paramterization and the actual measured GIXR and XSW
measurements. Afterwards the Bayesian inference framework is introduced
and the details of the MCMC implementations are discussed. The Chapter
ends with the implementation of the derivatives that are used in the HMC
algorithm.

In Chapter 5 The results are presented. In section 5.1 the thermal stability of
the waveguide is presented, in Section 5.2 the confirmation of the sensitivity to
the different interfaces using the pre-depositioned test samples is presented. In
section 5.3 the stability and efficacy of the HMC applied to the reconstruction
methodology is presented. In section 5.4 the reconstruction validity is shown
using a TEM microscopy study. In Section 5.5 athe efficacy of the addition of
the XSW measurements is presented. In 5.6 the performance of the different
MCMC methods is discussed and in Section 5.7 all analyzed transition metal
combinations, the segregation enthalpy, the depence on the different atomic
parameters and the discovered threshold behavior following the predictions
in [7] is presented.
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This chapter contains the theoretical background required to understand the
research presented in this thesis. First the physical aspects are discussed,
the second part of the chapter is dedicated to the mathematical framework
necessary to understand the details of the reconstruction methodology.

2.1 Segregation

Surface Segregation Surface segregation is the enrichment of a surface by
an element that segregates from the inside the structure to the surface. This
happens when it is more energetically favourable for a certain element to
be on the surface due to differences in elemental surface energies. Normally
segregation does not occur at ambient temperatures but structures have to
be exposed to annealing conditions for the atoms in the structure to achieve
mobility to reach an equilibrium state.

Interfacial Segregation Interfacial segregation is a physical process where
interfaces between thin-layers or grain boundaries become enriched with a
certain element due to equilibrium processes striving for a more energetically
favourable state. The behavior of this segregation process in thin films is not
well understood and not a lot of literature is yet available on this topic. These
processes generally do not occur or occur very slowly at room temperature,
therefore an annealing process is often used to achieve this equilibrium.

Equation 2.1

Expression Miedema’s proposed interface
segregation of sergeant of atom type A
present in a matrix of atom type B to
the interface of a directly neighbouring
a layer of atom type C:

Δ
B46A�

� |� = Δ�
B46A

1 + Δ� B46A2 + Δ� B46A3
(2.1)

Where � B46A1 accounts for the change in
enthalpy caused by the change in neigh-
bours for segrgant atom A and is given
by:

Δ�
B46A

1 = − 1
3
� B>;
�8=�

Where −� B>;
�8=�

is the mixing enthalpy of
metal A in B as in [1], which is the en-
ergy difference in joule per unit of mass
to when creating the compound alloy A-B
from the pure metals A and B.

�
B46A

2 and � B46A3 account for the change
in enthalpy due to replacing atoms of ma-
terial B with material A in the interface be-
tween layer B and C and are respectively
given by:

Δ�
B46A

2 = 1.33 ·10−8 (W2ℎ4<�� − W2ℎ4<�� )+
2
3
�

Δ�
B46A

3 = 1.33 ·10−8 ·0.15(W0
�
− W0

�)+
2
3
�

Where W2ℎ4<
��

= 2.5 · 10−9� B>;
�8=�

/+
2
3
�

and W0
"

is the surface energy of solid M
at ) = 0◦ 

With surface segregation certain parameters of the materials (i.e. surface energy
per <2) can be used to formulate a model to predict the tendency of a certain
compound material to exhibit surface segregation. This has been done in the
past with an coincidence of 80% [14]. Previous models based on the interface
segregation have been proposed, one of them by Gerkema and Miedema [7]
who has made, with success, empirical models predicting mixing and alloying
of metals and surface segregation. Their prediction on interface segregation
is shown in Equation 2.1 but has not been tested in the thin film regime.
The model calculates the difference in total enthalpy in the system when an
atom A from matrix B moves to a neighbouring interface between the layer
made of matrix element B and some neighbouring layer of element C. The
model parameters are based on alloying enthalpies of bi-metal alloys and
the individual surface energies of the metals. The metal alloying enthalpies
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are based on an empirical model containing electron densities, atomic radii
and surface energies. When the total enthalpy is negative, segregation is
expected to be energetically favourable and predicted to occur when mobility
is achieved.

2.2 Metrology

In this section the 2 measurement methods, the Grazing Incendence X-ray
Reflectivity and X-ray Standing Wave Fluorescence technique, that are in com-
bination used to reconstruct the thin film structures of interest are discussed.

Grazing Incendence X-ray Reflectivity (GIXR)

GIXR is a metrology method used for obtaining information on the index
of refraction of a structure in the depth direction. This method is frequently
used to characterize thin film samples uniform in the lateral directions. A
beam of X-rays of a single wavelength is directed at a sample and the specular
reflection at different angles is measured. The reflected intensity is used to
characterize certain properties of the sample ranging from layer and interface
thicknesses, densities. Even a complex reconstruction of the index of refraction
profile in the depth direction can be obtained from the a GIXR curve.

Index of refraction For light in the X-ray spectrum, a complex number is
used to describe the index of refraction, its expression is shown in Equation
2.2. With a transition from air or vacuum to a more dense material the index
of refraction generally goes down for wavelengths in the X-ray spectrum.

Equation 2.2

Expression of the index of refraction often
used in the X-ray regime:

= = 1 − X − 8V (2.2)

with real positive parameters X (disper-
sion description) and V (absorption de-
scription) and 8 denoting the complex
unit.

Scattering Vector In the GIXR curve, each angle corresponds to a length that
is studied and the reflected intensity of the specular reflection is proportional
to the absolute value of the Fourier component of that respective length in
the perpendicular direction in the optical density profile of the sample. This
length is called the scattering vector and its expression is shown in Equation
2.3.

Equation 2.3

Scattering vector & with quantity inverse
length:

& =
4c sin(\)

_
(2.3) The GIXR measurements perceive the inverse space in the z direction. The

resolution is limited by the largest scattering vector that is measured, there-
fore the resolution is determined by the largest angle that is measured. From
the scattering vector a resolution criteria can be calculated that signifies the
smallest length that a measurement is sensitive to which is described by equa-
tion 2.4 [10]. This resolution criteria (Equation 2.4) will be used throughout
the research since it is the optimal discretization length in modelling thin
film structures to account for computational efficiency while being able to
accurately describe all aspects of the measurement data.

Equation 2.4

Relation of the angular range that is mea-
sured to spatially limited resolution that
can be perceived:

�<8= =
_

4 sin (\<0G )
(2.4)

Missing Phase Information The GIXR measurements are done with a clas-
sical X-ray tube and is a non-coherent scattering method which only measures
the amplitude of the reflection. Therefore obtaining the phase information
during these measurements is not possible. This is known as the missing phase
information problem which is a general weakness of the GIXR method [10]. A
direct reconstruction of a measurement from the GIXR method is therefore not
possible and generally only basic information on the thicknesses and densities
are obtained from a GIXR curve.
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X-ray Standing Wave Fluorescence (XSW-XRF)

The XSW-XRF technique is used to obtain an atomic element-wise sensitive
location dependent signal from a structure. To form a standing wave in the
structure, a strong reflection is required to create a pair of up- and down-
travelling waves. If no dedicated structure is designed to allow for a strong
Bragg condition technique method is limited to the total external reflection
regime. Multiple other methods are in existence to satisfy the Bragg condition
to yield additional angles with different standing wave spatial excitation
patterns. By directing monocromatic X-rays at these specific angles one can
induce a standing wave with a specific spacial excitation pattern in a structure.
The fluorescence emittance of a respective photon energy is proportional to the
atomic concentration multiplied by the location specific excitation intensity. A
fluorescence signal dependent on this excitation pattern will be emitted from
the individual atoms in structure by the general inelastic scattering pathways.
Since every atom of a distinct element emits a unique set of wavelengths of
fluorescent photons, this signal can be distinguished for every element and
is location sensitive due to the specific excitation patterns. By measuring the
structure for a set of angles, multiple ’snapshots’ can be taken of a thin film
structure to aid in the reconstruction.

Multilayer XSW generation By creating a periodic multilayer structure with
a high reflectively, a standing wave with a wavelength equal to a multiple
of the multilayer period of the sample (Equation 2.5) can be induced in a
structure by directing X-rays at the different Bragg angles. By depositing a
sample on top of this multilayer this excitation pattern can be induced with a
variable phase in a to be analyzed structure. An example of such an excitation
pattern that is induced by this method is shown in Figure 2.1.

Figure 2.1: XSW excitation pattern induced by a multilayer.

Equation 2.5

Equation expressing the bragg angles:

\= = arcsin
= ∗ _
2 ∗ 3 (2.5)

Where 3 the multilayer period.

Equation 2.6

Expression of the wavelength of the in-
duced standing wave in the waveguide
structure

_ =
2!
=

(2.6)

Where ! is the interior width of the
waveguide and n is the order of the wave
mode.

Waveguide XSW generation Another method for generating a localized
electromagnetic field distribution is by creating a thin film that is surrounded
by a waveguide structure as seen in Figure 2.2. By directing X-rays at spe-
cific angles one can excite different waveguide modes that satisfy the bragg
condition between the waveguide layers. These excitation patterns have a
wavelength that follow Equation 2.6. This allows for a more detailled depth
reconstruction of the different elements since different regions of the structure
can be separately probed. An example of a waveguide structure and excitation
pattern for different incidence angles of the incoming X-rays with resulting
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fluorescence signals is shown in Figure 2.2 with on the right side the resulting
relative angular fluorescence signal coming from the different depth positions
indicated on the left side.

Figure 2.2: Angular dependent 1D excitation pattern induced by directing X-rays at different angles
into the waveguide structure with the resulting relative angular fluorescence emmitances from the
different depth positions on the right side.

2.3 Inverse Problems

Inverse problems are a class problems in which we try to explain a set of
observations by calculating the causal factors that produced these observations.
This kind of problem statement is frequently used when a direct calculation
of the parameters of interest from a measurement or an experiment is not
possible. [15]

Equation 2.7

The forward map of model 5 is defined
as:

y = 5 (x) (2.7)

Where y is the modeled observation
caused by parameters x.

Forward map The forward map 5 is defined as the model replicating the ex-
periment, yielding the calculated observables y from a set of input parameters
x, in mathematical terms this is shown in Equation 2.7. The model 5 is made
to replicate reality as accurate as possible. A perfect forward map with input x
would yield the observables y0 that in reality would be caused by x0 = x.

The inverse problem is defined as the inverse of the forward problem. Instead
of calculating the parameters x0 directly from the observables y0, a search is
done to a set of parameters x0 that were the cause of y0. The goal is thus to
find a parameter set x that when argumented in the forward map, yields the
set of observations y0.Equation 2.8

Loss Function & is defined as:

& (x) = 6 ( 5 (x) , y0) (2.8)

Where x is the proposed set of parame-
ters and y0 are the set of measured ob-
servables. Often for 6 the mean squared
error between measurement and 5 (G) is
taken yielding:

& (x) = 1
2
· | ( 5 (x) − y0) ◦ ( 5 (x) − y0) |

Where ◦ is the element wise multiplica-
tion (Hadamard product) and 2 a vector
of similar dimension containing the esti-
mated modeling error and measurement
error.

Loss function In practice however the construction of the forward map
is not always easy and will never exactly replicate reality in a perfect way.
This can either be due to modeling imperfections or measurement errors.
Therefore a loss function, shown in Equation 2.8, is defined that yields a
value depending on the agreement between the measurement y0 and the
’model’ 5 (x). With the loss function an optimization process can be used
to find a single solution x based on the criteria of the smallest mismatch
between measurement and simulation. This method however does not always
yield xo exactly. The distance of the found x and the actual cause x0 can be
small or large depending on a the performance of the optimization routine or
non-convexity and complexity of the loss function leading to a multi-modal
solution space.
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Ill-posedness Very often inverse problems suffer from ill-posedness, which
is defined in [16] as a problem in which one or more of the following conditions
is violated.

I There is a solution
I The solution is unique
I The solution depends continuously on the data

Regularization To address the difficulties of the ill-posedness and non-
convexity of the loss function a regularization can be applied, which often is a
punishment term of the form of a function of x. This punishment term can help
limit the number of solutions by assigning non-acceptable loss function values
to unrealistic solutions. Also it can help flatten the loss function landscape and
thereby easing the optimization of the loss function.

Relation to the GIXR and XSW-XRF Methods A direct reconstruction of the
sample structure from a GIXR measurement is not possible due the missing
phase information. To obtain more information on the structure than just the
densities and thicknesses, a parameter estimation can be done by formulating
a parametrization of the structure and creating a model that calculates the
measurement that this proposed structure would yield. By formulating an
inverse optimization problem with this forward map from the proposed struc-
ture parameterization to a measured signal, an optical constant profile can be
found from the parameters of the paramterization that fits the measurement
data. This can in practice however lead to multiple- but often non-physical
solutions to a single measurement curve[10].

By extending the GIXR method with the X-ray standing wave fluorescence
(XSW-XRF) technique and simultaneously satisfying both data sets this weak-
ness is addressed since the latter technique is very much sensitive to the phase
of the induced standing waves, potentially restricting the set of acceptable
solutions.

2.4 Bayesian Inference

Equation 2.9

Expression of the posterior Distribution:

c∗ (G) = c (G |H0) =
c (G) c (H0 |G)

c (H0)
(2.9)

Where H0 is the measured data, c∗ (G) is
the posterior distribution and c (G) is the
prior distribution.

Instead of inferring a single solution, another way of approaching an inverse
problem is determining how likely a proposed solution x is given a mea-
surement y0. In mathematical terms this is expressed in Equation 2.9 (Bayes
Formula). With Bayesian inference one does not specifically determine one
solution from given information y0 but infers a probability distribution by
assigning a conditional probability to each parameter set x that could have
been the source of the information y0. [17]

The prior distribution c(G) contains the all prior available knowledge on x

which limits the possible range of x and thereby suppress the non-uniqueness.
This can be a regularization term or any other information that narrows down
the possible regions without excluding any potential values of x that could
have been the source of y0. The posterior distribution is the likelihood given
information y0 its source was indeed x. Obtaining this distribution is the goal
of the inference and in theory it contains all the information on x (means,
uncertainties, correlation etc) with the given the measurement y0.

Equation 2.10

Expression of the target distribution:

Π (3G) = /−14−* (G) 3G (2.10)

Where / is the Normalisation factor.

For the application on inverse problems a likelihood function c(H |G) takes
the function of the forward map and is defined by assigning a probability to
every possible value of H given a target G. A target distribution often used in
inverse problems is shown in Equation 2.10. [17] The exact value of Z is not
required to be known but is defined as the integral of 4* (G) over all values of
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Figure 2.3: Visualisation of the typical set inte-
gral.

x. Here* (G) is a mapping* : R3 → R and represents a loss function between
the forward map from G to H and the actual measured information H0 and is
generally tuned to the problem at hand.

Equation 2.11 & 2.12

maximum a posterori estimator:

G"�% = argG max c∗ (G) (2.11)

Conditional Mean:

G�" = E 〈G |H0 〉 =
∫ ∞

−∞
Gc∗ (G)3G

(2.12)
Estimators Since the complete posterior visualisation and analysis is often
impossible due to the high number of dimensions, estimators can be calculated
which contain more concise information on the posterior. The measure G"�%

in Equation 2.11 [17] gives the most likely parametrization of x given a certain
measurement H0, which is essentially the same parametrization that is searched
for using a general optimization method looking for the G that results in the
lowest value of the loss function. G�" , described in Equation 2.12 [17], is the
mean of probability distribution of G given a measurement H0, and just as with
normal expectation values does not necessarily represent a probable value
itself.

Equation 2.13

The symmetric Baysian credibility set is
defined as �: (�) = [0, 1] satisfying:∫ 0

−∞
c: (G: )3G: =

∫ ∞

1

c: (G: )3G: =
�

200
(2.13)

Where c: (G: ) is the marginal posterior
density of the k-th parameter.

Confidence Intervals A measure exploiting the whole set of probable values
of G that can be calculated using the posterior distribution is the symmetric
Baysian credibility set. This set contains the marginal values of x that lie within
the �% confidence interval of the marginal distribution of G: . The expression
of this set is given in Equation 2.13 [17]. This measure yields a confidence
interval of the individual parameters G: within a chosen percentage �.

2.5 Monte Carlo Markov Chains (MCMC)

Equation 2.14

�̃# =
1
#

#∑
8=1

� (-8) (2.14)

The challenging part of the Bayesian inference is in obtaining an accurate
approximation of the posterior distribution. Multiple methods exist to obtain
the posterior with all methods having as the limiting factor time. As is ex-
pected, most of these methods scale super-linearly in time with the number of
dimensions that are explored. The MCMC is a Monte Carlo method that can
be used to obtain a sequence of samples that converge to a target probability
distribution � (G) where G ∈ R3 from which direct sampling is unfeasible.

In a MCMC a chain of sequential samples is drawn using a transition kernel
that is only dependent on the previous sample that was accepted (Markov
Property). By determining a starting point -0 and successively proposing
samples that are either rejected or accepted and then appended to the chain,
a chain of samples is accumulated. This process is shown in Algorithm 2.16
for the specific case of the Metropolis-Hastings algorithm. If the samples
are drawn in a way that leaves chain invariant to the target distribution
invariant, meaning that the sampled Markov chain is distributed according to
the target distribution � (G), an accurate approximation of � (G) can be obtained
by averaging the samples in the chain. This is expressed in Equation 2.14. The
invariance to the target distribution is ensured when the sampled posterior
distribution together with the transition probability K forms a non-periodic,
reversible ergodic Markov chain that satisfies the detailed balance equation
which is shown in Equation 2.15.

Equation 2.15

The detailed balance equation:

c∗ (G) (G, H) = c∗ (H) (H, G) (2.15)

Where K is defined as:

 (G, H) = Φ(H |G)U(H |G)

Where Φ(H |G) is the proposal distribu-
tion at sample G to proposal H and
U(H |G) its acceptance probability.

Typical Set The size of a spherical (hyper-)volume element scales with its
radius to the power of the dimension of the space (See the red line in Figure
2.3). Therefore when exploring high-dimensional spaces with associated prob-
ability measures, the thin neighbourhood around a high-probability point G0
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generally has a larger integration volume contribution than the neighbour-
hood containing point itself. For volume fractions far away from these points
of high probability the contribution from the likelihood term (See the blue line
in Figure 2.3), which scales with a negative exponent, becomes so small that
these regions also do not pose a significant contribution to the probability dis-
tribution integral. In Figure 2.3 the integral contribution, which is the product
of the volume of shell at radius A times the likelihood, is shown in yellow. This
thin neighbourhood around the high-probability modes that dominates the
integral is called the typical set and in practice is the only region that needs
to be explored since the rest of the parameter space of G does not pose an
important contribution in high dimensions.

Algorithm 2.16

(Step 0: Generate -̃0)
Step 1: Draw proposal -̃=+1 with
Φ(-̃=+1 |-̃=) .
Step 2: Accept -̃=+1 with probability U.

Where alpha is defined as:

U(-̃=+1 |-̃=) =

min{1,
c∗ (-̃=+1)Φ(-̃= |-̃=+1)
c∗ (-̃=)Φ(-̃=+1 |-̃=)

} (2.16)

With this acceptance probability c∗ (G)
satisfies the detailed balance equation
from Equation 2.15:

c∗ (G) (G, H)
= c∗ (G)Φ(H |G)U(H |G)

= c∗ (G)Φ(H |G)
c∗ (H)Φ(G |H)
c∗ (G)Φ(H |G)

= c∗ (H)Φ(G |H)
w.l.o.g U(G |H) = 1 since it is

assumed that U(H |G) <= 1

= c∗ (H)Φ(G |H)U(G |H)
= c∗ (H) (H, G) (2.17)

Metropolis-Hastings A commonly used MCMC algorithm is the Metropolis-
Hastings algorithm which follows a very simple procedure shown in Algo-
rithm 2.16. Generating a starting point -̃0 can be done by e.g. taking an
arbitrary - that satisfies the boundary conditions. This can however lead to a
long burn-in time, which is the time needed for the chain to reach equilibrium,
which should be ignored in the posterior approximation. One can also find a
starting point by a local optimization algorithm to reduce this burn-in time
since this point will be closer to the typical set. Starting from -0 random sam-
ples are drawn from a probability distribution Φ( -̃=+1 | -̃=). Since the proposal
-=+1 depends only on -= the generated chain has the Markov properties. Once
a proposal has been made a specific accept/reject probability U is used that
keeps the chain of accepted samples invariant to the target distribution by
satisfying the detailed balance equation. (See Equation 2.17)

Equation 2.18

The convergence behavior of a Monte-
Carlo Markov chain depending on the

number of samples #
∞−→ can be ex-

pressed using the central limit theorem:

(6̃# − 6 (G))
d−→N(0,

f (� )2
#

) (2.18)

Where N is the number of samples, 6 (G)
is a real valued function with finite vari-
ance and f is:

f (6)2 = f0 (6)2+

2
∑
8>1

cov(6 (-1) , 6 (-8))

Where chain is assumed to be at station-
ary.

Often used distributions for the proposals are of the form Φ( -̃=+1 | -̃=) =
N( -̃=,f2) where f is tuned depending on the problem at hand. A larger
f reduces the correlation between the samples and therefore leads to a faster
convergence and more efficient exploration of the typical set. But if the param-
eter space of � (-) is high-dimensional or has a complex probability landscape
many proposals have to be generated before a region of high-probability is
found therefore greatly increasing the time needed to generate an accepted
sample.

Convergence rate The accuracy of the MCMC can be estimated under ideal
behavior with Equation 2.18 [18], which is equivalent to the central limit
theorem. This Equaution implies that the standard deviation of the difference
between an approximated measure 6̃ of G and the actual 6(-) goes down with
the inverse square root of the number of effective uncorrelated samples of
which the approximation consists of.

2.6 Hamiltonian Monte Carlo (HMC)

The HMC is a special type of Metropolis-Hastings sampling method that
does not rely on random guesses or random walks to explore the parameter
space but finds a direction to samples of similar likelihood by using the
derivatives of the vector field of the loss function* (G). This is done with the
help of an auxiliary randomly generated vector and a deterministic integration
process evolving the system over time using the derivatives for determining
the proposal direction.

The idea is to treat the parameters G as a spatial position, start in a low point in
the potential energy landscape shaped by the loss function* (G) and introduce
an auxiliary momentum parameter set (of similar dimension) that acts like
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a small kick of added momentum with a comparable energy to the current
position. From this point a path can be traced to a new point in the mechanical
phase space of similar probability by evolving the system from Equation 2.19
over time for a duration of _. This mechanical phase space is a construct
in which all states of G and ? are represented and have a unique position,
similarly to normal space in which only G is represented. When a new point
has been reached after integrating for time _ the marginal parameter set ? is
discarded and G_ either declined or accepted added to the chain of samples
depending on the acceptance criteria.

The advantage of the HMC over the Metropolis-Hastings is clearly visible in
high-dimensional spaces. The acceptance rate of random sampled proposals
exponentially decreases with the number of dimensions while for the HMC
the gradient of the loss function is exploited to be almost guaranteed an
accepted sample is found on the first try. The second advantage of the HMC is
the inherent directionality of the added momentum parameters in which the
integration time can be increased to de-correlate successive samples. Where
the distance between two consecutive samples in the Metropolis-Hastings
chain is limited by the acceptance probability and complexity of the parameter
space leading to random walk behavior with very small step-sizes, the HMC
integration time can in be chosen to sample points having much larger distance
and less correlation. The expected distance traveled by a random walk is
the square root of the number of samples while for the HMC a path can be
traced efficiently through space where each successive step can be made in a
correlated direction [19].

Equation 2.19

Expression of the Hamiltonian:

� (G, ?) =* (G) +) (?)

=* (G) + 1
2
?)"−1 ? (2.19)

Where* (G) is the potential energy(often
the loss function of an inverse problem),
T is the kinetic Energy ,G and ? ∈ R3

are the corresponding position and mo-
mentum vectors, M is a positive definite
matrix ∈ R3G3 and d is the number of
degrees freedom.

Where the system � (G, ?) satisfies the
Hamiltonian conditions (2.20 and 2.21) de-
fined as: [18]

3

3C

[
G

?

]
= �−1∇� = �−1


X�
3x

X�
3p

 (2.20)

Where J is defined as:

� =

[
03G3 −�3G3
�3G3 03G3

]
(2.21)

For the Equations of motion:

3

3C
G = "−1 ? &

3

3C
? = −∇* (G)

(2.22)
For these conditions (2.20 and 2.21) and
Equations of motion (2.22) the Hamilto-
nian value is conserved:

3�

3C
= ∇��−1 3

3C

[
G

?

]
= ∇��−1∇� = 0

Hamiltonian mechanics First a vector ? ∈ R3 containing random numbers
is generated that complements the parameter set of interest x ∈ R3 . With the
(G, ?) parameter pair a Hamiltonian system is created with the phase space of
the position vector x and momentum vector p that fulfills the general criteria
for a Hamiltonian system shown in Equation 2.19. New samples along the
chain can be generated by evolving the Hamiltonian vector field, containing
the potential energy term and the kinetic energy term, over time.

The mass matrix M in Equation 2.19 is a positive definite matrices and can
be chosen based on the specific structure of the problem to give a weight
to certain parameters. This weight acts like a natural mass and parameters
with a higher mass will require more energy to change their momentum.* (G)
is the potential energy and contains the function on which the parameter
space will be explored. (i.e. the a loss function between a measurement and
simulation.) An arbitrary starting point for x can be found by using a simple
local optimization or by drawing a random vector that satisfies the boundary
conditions of the prior.

The Hamiltonian has 4 properties that are key to keeping the sampled Markov
chain invariant to the target distribution:

I Conservation of the energy. (under flow q: � ◦ qC = �)
I Symplectic flow. (By definition, see Equation 2.25)
I Reversibility. (� (G, ?) = � (G,−?))
I Preservation of the 3G · 3? phase space volume. (direct consequence of

symplectic flow)

Equations 2.23 & 2.24

The invariant preserved probability mea-
sure of the Hamiltonian:

` (G, ?) = 4
V� (G,?)

/
(2.23)

For a Hamiltonian of the form in Equation
2.19 this equation becomes the Boltzmann-
Gibbs distribution:

` (G, ?) =

(2c)−
3
2 | det(" ) |4−

V
2 ?
) "−1? ·

4V� (G,?)

/
3G3? (2.24)

Where Z is a normalization constant and
V as the inverse of the temperature T.

Implying that for each t:

` (G, ?)) = ` (� (G, ?) ◦ qC )

The last property is in practice the most important one. This property ensures
the invariance of the sampled Markov chain to the target distribution. Because
due to the volume preservation of 3G · 3?, the probability measure in Equation
2.23 is preserved by the flow of the Hamiltonian system. Meaning that the
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volume occupied by a certain element 3G · 3? in phase space by this measure
is preserved when integrated over time.

Since the integration generally is done numerically, to ensure that these proper-
ties are conserved and not too large truncation errors are accumulated during
the successive steps, a careful consideration of the integrators should be done.
Different integrators exist that conserve several of these properties [18] but no
numerical integrator conserves all of these properties simultaneously. There-
fore in practice the best choice of numerical integrator is one that conserves
the 3 bottom properties, which is the symplectic integrator. A symplectic inte-
grator is defined as any integrator which for the determinant of the jacobian of
its mapping is one, meaning the volume element in phase space of the canocial
coordinates G and ? between different times is conserved [18]. Mathematically
this means that for each integration step its mapping satisfies the condition
shown in Equation 2.25.

Depending on the step-size a ’shadow’ Hamiltonian is followed when inte-
grating with a symplectic update scheme which diverges from the original
Hamiltonian energy-wise with O(ℎ=) given an integrator of order =. Integrat-
ing this way multiple successive steps can be made sequentially without
diverging into low-probability regions of significant higher energy (which
have negligible contribution to the actual target distribution).

Equation 2.25

A mapping Φ is symplectic or canonical
if at each point (@, ?) ∈ R23 :

Φ
′ (G, ?)) �Φ′ (G, ?)) = � (2.25)

Where Φ
′ (G, ?) is the Jacobian matrix of

Φ.)

Algorithm 2.26

Verlet scheme: (q (?)1
2
◦ q (G)1 ◦ q (?)1

2
) ,

Where q (G)B is defined as the flow of x
over time period s following the equations
of motion (Equation 2.22).

?
=+ 1

2
= q

(?)
1
2
(G= , ?=) = ?= +

ℎ

2
� (G=)

G=+1 = q
(G)
1
2
(G= , ?

=+ 1
2
) = G= +ℎ"−1 ?

=+ 1
2

?=+1 = q
(?)
1
2
(G=+1, ?

=+ 1
2
)

= ?
=+ 1

2
+ ℎ

2
� (G=+1) (2.26)

Where � (@=) is −Δ* (@) following from
the equations of motion. (Equation 2.22).

The most commonly used integrator for the HMC is the Verlet velocity inte-
grator. This is a splitted symmetric explicit integrator in which the position/-
momentum parameters are splitted and updated in separated steps using
the intermediate obtained available results. This is possible (At the cost of
an extra truncation error) since the equations of motion are separated in two
Hamiltonian systems of variables for which the flow can be evaluated indi-
vidually (See Equation 2.22). The update scheme of this integrator is shown
in Algorithm 2.26 with its symplecticness shown in Example 2.27. Due to its
palindromic structure the reversibility property of the Hamiltonian is also
conserved. The advantage of the Verlet scheme is although it is a second order
scheme the gradient only has to be calculated once, since the gradient from
the previous step can be reused for the evaluation of ?

=+ 1
2
. In practice the

Verlet scheme generally has shown the best performance in terms of truncation
error versus time spend per step in HMC sampling [18]. Its complement, the
position Verlet scheme (q (G)1

2
◦ q (?)1 ◦ q (G)1

2
) is also commonly used and their

individual performance can be problem dependent.

Example 2.27

By substitution direct expressions can be
found:

?=+1 = ?= −
ℎ

2
(* (G=)

+* (G= + ℎ"−1 (?= −
ℎ

2
* (G=))))

G=+1 = G= + ℎ"−1 (?= −
ℎ

2
* (G=))

Substituting Equation 2.25 for the 2 di-
mensional case:

G=+1
G=

?=+1
?=
− G=+1
?=

?=+1
G=

= (1 − ℎ
2
)2 − ℎ ( ℎ

3

4
− ℎ) = 1 (2.27)

Acceptance In Algorithm 2.28 the most simple form of the Hamiltonian
Monte Carlo is outlined. In absence of truncation errors, because the energy
of the system is not altered during integration and space phase volume is
conserved in the proposals (G0, ?0) ←− (G_, ?_), is the chain invariant to the
Gibbs-Boltzmann distribution since every step leads to an equally probable
state. Therefore a chain sampled using this algorithm is also invariant to the
marginal � (G) which is independently distributed from the momentum pa-
rameters. Since it is impossible to chose a numerical integrator that conserves
both the energy and the phase space of the Hamiltonian, a correction has to be
made for the bias that is induced due to the truncation errors. When using a
symplectic integrator, the phase space is preserved, only leaving the need to
correct for the energy error between the samples. This correction is exactly the
classic Metropolis-Hastings correction, but instead correcting for the difference
in likelihood, the correction is applied to the energy difference between the
steps.
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Figure 2.4: Contour lines of the energy land-
scape of Equation 2.29 that is used in the ex-
ample of the MCMC.

By tuning the acceptance rate U to the energy error, this method can be re-
duced to a well understood Metropolis-Hastings chain with a particular way
of proposing samples. Because of the reversibility properties and the preserved
probability measure in Equation 2.24, the proposal distribution Φ( -̃ |.̃ ) is iden-
tical in both directions. Therefore the acceptance rate of the proposal (G_,?_)
from algorithm 2.16 reduces to the natural exponent of the negative difference
in the Hamiltonian energy between the sequential samples that occurs due
to the accumulation of truncation errors in the numerical integration (See
Algorithm 2.28).

Multiple variations have been proposed that in specific cases allow for a
faster exploration of the target distribution. e.g. One can use a variable _
as the integration time. Other variations have been proposed where in the
last couple of steps of the numerical integrator the @ and ? combination of
the lowest energy is chosen to increase the acceptance probability. Also a
dynamic step-size can be used to increase the exploration speed for highly
non-convex energy landscapes in which the curvature varies from region to
region, although this modification can break the invariance of the chain but in
practice can result in a faster useful exploration. [18]

Algorithm 2.28

Let _ be the time duration parameter,
which determines the integration time
between successive samples.
Step 1: Draw a d-dimensional vector
from the distribution chosen for p.
Step 2: Evolve the Hamiltonian over time
for a duration of _ starting from (@0, ?0)
Step 3: Accept proposal (G_, ?_) with
probability U.

U = min{1,
c∗ (-̃_)Φ(-̃0 |-̃_)
c∗ (-̃0)Φ(-̃_ |-̃=)

}

= min{1,
` (-̃_)
` (-̃0)

}

= min{1, 4V (� (G0,?0 )−� (G_ ,?_ ) ) }
(2.28)

Where ` is taken from Equation 2.24.

Theoretical Comparison of Metropolis-Hastings to the HMC The HMC in
theory should converge faster than conventional Monte Carlo methods since
it does not suffer so much from the random walk phenomena and the curse
of dimensionality in finding a direction for a proposed next step, leading to
a faster exploration of the typical space. In practice the costliest part of the
HMC is the calculation of the derivative ∇* (G). Since target distributions that
are approximated in these problems almost always have a high dimension-
ality (3 � 1), an efficient gradient calculation is not always possible and can
cost several forward evaluations. When calculating the gradient with a finite
difference for every dimension of G, every step will be 3 times as expensive.

The parameter space of interest that will be explored is high-dimensional and
for the conventional guess and check Metropolis-Hastings in theory to reach
a specified error margin has a computational cost scaling as O(32) [12]. For
the HMC chain this scales as O(3

5
4 ) [12], if the derivatives are calculated for

each direction individually by evaluating the loss function, the performance
of both methods is on paper very comparable so a smart implementation of
obtaining the derivatives of the loss function* (G) is critical.

2.7 MC Example

A small example will be given for the 2D case of the MCMC techniques that
will be applied to the thin film inverse problem to provide an introduction to
the detailed implementation to the different methods.

Energy Function The example potential energy function in given in Equa-
tion 2.29. Designed to be a semi-challenging energy landscape with multiple
minima for the MCMC to explore and is shown in Figure 2.4.

Equation 2.29

Potential energy function of example:

� (G, H) = ( 200000
1 + G2 + H2 )

0.12

+ (0.003(G8 + H8) − 10(G2 + H2))0.3

(2.29)

Metropolis-Hastings Using a proposal distribution of the form of Equation
2.30 and an acceptance probability following Equation 2.31 with a f = 1 and
) = 1

10 . The random walk Guess and Check metropolis-Hastings after roughly
700 steps (1000 proposed samples) is only able to properly reconstruct the
part of the energy functional close to the starting point and leaves parts of the
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high-probability areas unexplored. The sampling process for the Metropolis-
Hastings chain is shown in Figure 2.5

Figure 2.5: The path and samples tracked with the Metropolis-Hastings algorithm for 1000 proposed
steps.

Equations 2.30 & 2.31

Proposal distribution:

Π (-̃=+1 |-̃=) =N(-̃=+1 − -̃= , f) (2.30)

Acceptance probability:

U = min{4
−� (G1,H1 )+� (G0,H0 )

) , 1}
(2.31)

Settings 2.33

h: 0.2
Steps per Sample: 20
Integration time: 4

? = N(0, 1) (2.32)
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HMC The HMC paths are are as expected following a single direction bent
by the energy landscape thereby overcoming the random walk behavior be-
tween the intermediate time steps in the same sample. There is a significant
visible improvement in de-correlating the intermediate sample. The cost is, of
course, that only 50 accepted samples can be drawn while at the same time the
using the Guess and check method 700+ accepted samples can be drawn. The
sampling process for the Hamiltonian Monte Carlo chain is shown in Figure
2.6

Figure 2.6: The path and samples tracked with the HMC algorithm for 50 accepted samples.

One can imagine, when increasing the numbers of dimensions and minima,
the HMC becomes more and more preferable to use when exploring parameter
spaces.





Figure 3.1: Schematic illustration of the to
be deposited standardized structure. Though-
out this thesis the notation in terms of
materials for these samples will be ’Pri-
mary’/’Secondary’/’Ternary’. In the example
of Table 3.2 this reduces to Cr/Sc/Co
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In this chapter the experimental aspects are introduced. First the sample
design and engineering is discussed and afterwards the data acquisition is
discussed.

3.1 Sample Design

In the design of the samples it has to be taken in to account that only 4
material mounts are present in the deposition machine. The waveguide only
takes up a single material slot in the ADC machine used for the depositions, in
comparison with the multilayer excitation methods, which requires 2 materials
to be deposited for manufacturing. The waveguide also in theory allows for
more different orthogonal components in the resulting signals due to the
availability of multiple wavelength excitation patterns from a single structure.
Also the waveguide structure is expected to be more resistant to annealing
treatments. Therefore the waveguide is chosen as the XSW excitation method
of choice. The basic sample design is schematically presented in Figure 3.1. The
dimensions of the different layers are optimized to obtain the best experimental
performance in terms of discerning power and thermal resistance.

Layer dimensions The criteria to take into account for determining the op-
timal layer dimensions are thermal stability, layer grotwh behavior and the
change in the emitted XSW signal when the dopant element changes in distri-
bution (segregation). e.g. if the layers are too thin they might not grow properly
or partly intermix when they are annealed. The as deposited structure should
clearly resemble 2 separate layers, of which one is enriched with a dopant, to
keep the conditions of the experiment in line with the research goals.

Material Choice The material combinations in this research are chosen based
on multiple criteria. The primary goal is to isolate a set of fundamental atomic
parameters to investigate whether they play an important role in the tendency
for a system to exhibit interfacial segregation. The 3 main parameters of
investigation are:

I Atomic Radius
I Crystal Structure
I Surface Energy
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Figure 3.3: Simulated signal of a Cr/Fe/Co
simulated structure where 15% of the dopant
material has segregated to the bottom after
annealing.

The materials should also be chosen in a way that the layers grow properly as
will be explained in the engineering paragraph below.

Engineering limitations The deposition apparatus is limited to 4 magnetrons
and we also have a waveguide material which occupies a slot, the selection
is very limited. A suitable material combination of 3 materials is defined as a
dopant (Primary), a matrix material (Secondary) and the Ternary material for
the top layerm, satisfying: when the matrix material and the ternary material
are interchanged, only 1 of these fundamental parameters changes with re-
spect to the dopant matrix combination. Once deposition apparatus has had a
bakeout it is very easy just to deposit any structure combination of the inserted
materials, therefore when a material selection has been made all remaining
combinations will be deposited regardless of the criteria. To refer to the sam-
ples with the specific materials, the notation Primary/Secondary/Ternary will
be used. For the Cr/Sc/Co sample, an example of this parameter isolation the
Atomic radius is shown in Figure 3.2.

Figure 3.2: A table showing the process of isolating material parameters. In this case atomic radius is
varied while keeping the other parameters roughly similar.

The structure feasibility also has to be taken into account. Since the structures
are assumed to be 1D grown thin films the layers must exhibit nearly ideal
growth. To achieve this some materials cannot be deposited on one another. By
depositing materials with a very high surface energy on a low surface energy
material, 2D or 3D growth can occur which is unfavourable.

To be able to take into account these material combinations and cross checking
them with availability of the materials in the laboratory and feasibility of
the deposition(i.e. some materials will not grow properly when grown on a
materials with low surface energy.). A MATLAB program was developed to
incorporate all criteria to be able to make an educated choice of materials to
allow for an efficient research method. The following criteria were put into the
selection program.

I Per material combination 1 parameter of interest should be isolated.
(Atomic Radius, Crystal Structure and Surface Energy)

I All elements should emit simultaneously measurable and discernible
Fluorescence signals excitable with the Cu-KU radiation used in the
laboratory and being measurable in an ambient enviroment.

I The materials should be selected in a way that only 1D growth occurs.
I A target should available in the laboratory for deposition of that material.

Regarding layer thicknesses, the signal that will be measured from the interface
can be drowned out by the signal from the dopant that is left in the as deposited
layer so we can only measure the segregation when a substantial relative
change has taken place in the distribution of the dopant. If the layers are too
thick the relative change due to the segregation is not large enough to change
the fluorescence signal substantially to be measured since only a very small
(mono)layer is expected to from between the interface. Therefore the dopant
concentration should be as low as possible and the layers sufficiently thin.

The bottom waveguide layer should be as thick as possible since the function
is to reflect as much of the incoming X-rays as possible. A problem was that
Tungsten tended to become rough when grown thick. Simulations showed
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Figure 3.4: A picture of the ADC Deposition
machine that was used to deposit these sam-
ples.

that more than 40nm did not contribute to significantly more reflection while
still being decently flat when grown on silicon.

The top waveguide layer was subject to a trade-off between the reflectance
from the inside to the potential of the x-rays to penetrate trough the layer
below the critical angle. Simulations show than a thickness of 5-6nm led to the
highest contrast depending on the density of the layers inside the waveguide.
A growing width of 6 nm was found to yield the optimal results since in
practice a layer rarely has a sub-angstrom interface width.

All samples used in this research follow the optimized criteria proposed above.
A 6nm top layer of tungsten, A 15nm ternary layer of material C , a 10nm
layer of matrix material B(95%) and dopand Material A(5%) and a 40nm
layer of Tungsten. An illustration of the system is is shown in Figure 3.1. A
non symmetric layer system of 10nm and 15nm was determined, looking at
the excitation pattern in a waveguide it is obvious that this leads to better
discerning power between the different potential segregation sites.

To put this in numbers if we start out with concentration of 5% dopant in a layer
of 10nm and the interface become enriched with 50% of the dopant (taking
the atomic radius to be 150pm) about 15% of the dopant will have segregated.
This leads to a substantial relative change in the atomic distribution which in
the simulations lead to a discernable difference in angular fluorescence signal
as shown in Figure 3.3.

The criteria for which the sample structure is optimized are as follows:

I Maximize sensitivity to dopant movement.
I Inducing a unique XSW signal for all potential segregation sites.
I Thermally stable thin-film structure under the annealing condition.
I Consisting of at maximum of 4 different elements.
I Having clear separated layers that survive the annealing process.

Segregation to interfaces and layers No segregation trough or mixing with
the Tungsten is expected to be observed due to the thermal stability of the
material. In the case that this does happen this will be very observable since the
density will change drastically and the fluorescence signal from any material
passing trough or in the tungsten will no longer be suppressed below the
critical angle of the incident X-rays and therefore be very different from any
signal coming from within the waveguide. In practice there are 3 potential
interfaces and 2 solid layers of interest. The terminology used to refer to
these layers and interfaces is introduced in Ffigure 3.1. The material specific
Samples are referred to as Primary/Secondary/Ternary. (i.e. (V/Sc/Nb).). An
illustrations of the different dimensions and the segregation process is give in
Figure 3.6.

3.2 Depositions

All depositions were performed using the Advanced Deposition Coater in the
XUV depositions laboratory. Only magnetron depositions were done to manu-
facture the samples. A bakeout was done after every material sequence which
required opening the machine. A picture of the ADC deposition machine that
was used is shown in Figure 3.4.
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Figure 3.5: Steel tube in which the samples are
annealed in a vacuum atmosphere.

Figure 3.7: Sample holder that is put in the
Tube.

Figure 3.8: Furnace in where the Sample tube
is placed to heat up.

Co-Depositions To create an alloyed layer with a dopant element co-deposition
is used. This is a process 2 magnetrons are simultaneously ignited during the
sputtering process, resulting in a deposition of a mixed layer on the struc-
ture.

To control the concentration ratio between the 2 materials that are deposed the
power output to the individual magnetrons is varied.The target concentration
is around 5% but anything between 3% and 7% would be acceptable. The
accuracy needed for the concentrations is not extremely high since we do not
yet know what the optimal concentration is for the interface segregation and
observation thereof. Also the XSW method is not very sensitive to the absolute
concentration but more sensitive to the spacial relative distribution of the
element in the layered structure. To calibrate the system, a single magnetron
deposition with both magetrons is done to determine its deposition speed at a
certain angle.

3.3 Annealing

The annealing setup that is used is a thin tube vacuum chamber as shown
in Figure 3.5), which for temperature control in turn is placed in a furnace
which is shown in Figure3.8. In the tube a sample holder is placed on which
the samples are mounted as shown in Figure 3.7, thermocouples are mounted
to backside of the sample-holder to monitor the temperature. After testing
it was concluded the insulation of the thermocouples started to break down
when raising the temperature of the system above 400 degrees. Since also
segregation started to be observed from 300-350 degrees onward the tempera-
ture of 400 degrees was established as the annealing temperature. Multiple
segregation rounds have been ran for different time scales and the optimum
was established for 24 hours. This length of time did not yet lead to structural
changes in the waveguide but did show significant segregation for a part of
the samples. Longer annealing times led to a measurable breakdown of the
waveguide structure but not leading to significantly more segregation.

Figure 3.6: An illustration of the Standardized sample used in this research with the materials
assigned.
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3.4 Metrology

GIXR The GIXR measurements are performed using the Malvern Panalytical
Empyrean X-ray diffractometer with a Cu-K U source with a wavelength of
1.5406 . For all measurements a hybrid monochromator was used. The XRR
measurements were done using steps sizes of 0.03 for angles less than 1.5◦

and 0.05 for angles more than 1.5◦. The accumulation time that was used was
a minimum of 1 second per point and up to 10 seconds to have a minimum
statistic of 100 counts(1-10 seconds per point). Before measuring a standard
alignment procedure is done.

XSW-Fluorescence To capture the X-ray fluorescence signals, the diffrac-
tometer was custom equipped with an Amptek Energy dispersive XR-100SDD
Silicon Drift Detector. All measurements were performed with the 4xGe 220
monochromator or hybrid-monochromator. Fluorescence energies between
100 eV and 10 Kev were measured and processed. The excitation and GIXR
beam that is used is Cu-k alpha radiation with an energy of 8.047 keV.

To get the angular dependent fluorescence yield, an angular range from 0.2 up
to 1 degrees was measured with an angular step of 0.005 degrees To accumulate
sufficient number of fluorescent photons the accumulation time is between
1 to 6 minutes per angular step depending on the materials that were used.
This difference is due to the different type of atoms shells and the overlapping
energies. Capturing significant photons for K lines takes significantly less
time than for example L lines; The minimal number of accumulated counts
per measurement per angle is 1000 but depending on the overlap with other
peaks of comparable energy 10000 or more can be needed to make a good de-
convolution and fit. All samples are measured both before and after annealing.
The measurements after annealing are done in the same week as the annealing
to minimize any non-related effects that might happen after annealing due to
the potential structure degradation induced by the annealing.

3.5 Fitting Fluorescence Spectra

An example of a measured fluorescence spectrum from a single angle is shown
below in Figure 3.9. The obtained fluorescence spectra are fitted using PyMca.
This is a Open-Source software package provided by the ESRF institude in
Grenoble [20].

Figure 3.9: A fluorescence spectrum with fit from a sample of a Lanthanum and Silicon multilayer.



22 3 Experimental Methods

To fit the spectra a fitting configuration has been written with details as escape
peaks, resolution and other setup parameters to tweak the fitting procedure
to the measurement data. When such a configuration has been written for a
certain sample, all angular scans measurements can be batch fitted with an
automated script. Corrections can be made for secondary excitations, escape
peaks, tails and matrix effects which can affect the fundamental ratio’s between
peaks of the same element.

The spectrum in Figure 3.9 is fitted easily due to the large separation between
the peaks and high photon count. In some cases the materials have overlapping
fluorescence spectra which can complicate the fitting procedure. In Figure 3.10
an example is given of such a spectrum with fit. In this case more attention has
to be taken to properly extract the information of the photons coming from
the different periodic elements.

Figure 3.10: A fluorescence spectrum with fit from a sample as deposited as (Si wafer/40nm W/10nm
Ti in Zr/15nm Nb/6nm W)

The main challenge is to get a significant signal from the dopant material which
is present with a concentration of about 5% in a 10 nm layer. This translates to
a layer of half a nanometer of material to detect using these non-destructive
methods. For example for a Ti dopant: in the the spectrum in Figure 3.10 )
the titanium peaks are at 4.5 Kev and 5 Kev (channel 450 and 500) which
are properly detectable at 1k counts for the highest peak. Great care has to be
applied in choosing materials so that all elements can be properly discerned.

Every angular fluorescence measurement consists of 150+ of these scans for
a set of different angles. the measurement procedure and fitting is atomized
using matlab, powershell and PyMca since it is too time consuming to do this
manually for re-ocurring measurements.

The measurements from the GIXR and XSW are from 2 different measurement
systems that have been coupled. Matlab, powershell and C++ programs has
been written which is able to process all measurement data automatically by
coupling the timestamps to the correct angles and coupling the GIXR and
XSW measurements of the same sample. Also a batch measurement feature
was developed allowing to measure multiple samples overnight in which the
program can isolate the measurements of the different samples.

Using the PyMca command line feature and the timestamps of the measure-
ments all data is automatically ordered and the fluorescence spectra fitted and
combined. Missing measurements, which sometimes happens when an error
in the accumulation occurs are automatically skipped and ignored. The end
result is a GIXR curve and the per element angular XSW curves.



Figure 4.1: Discretized structure with index
labels that is used throughout the research to
accurately model thin films in the computer.
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In this chapter the computational implementation is introduced. First the
forward map (loss function) is defined using the Abeles matrix formalism
(Section 4.1) to calculate a resulting GIXR and XSW signal from a discretized
structure, then the free form parametrization method is introduced (Section 4.2)
to map physical structures into these discretized structures that serve as the
input for the forward map. With the forward map in Section 4.3 the problem
statement is given. In Sections 4.4 and 4.5 respectively the Hamiltonian Monte
Carlo and Metropolis-Hastings implementations are discussed and in Section
4.6 the calculation of the derivatives of the loss function used in the HMC are
given.

4.1 Formulating the forward map

Sublayers To accurately represent a thinfilm structures in the computer, the
thin films that are simulated are discretized into uniform sublayers. Each
sublayers discretization width in the z direction follows the resolution criteria
proposed in Equation 2.4. Each sublayers properties are uniform thoughout
this discrete space and therefore changes only occur at the boundaries of these
sublayers. The structure is considered to be uniform in the lateral directions.
An illustration of a stack of discretized sublayers representing a thin film is
given in Figure 4.1.

GIXR Curve Calculation

A resulting reflectively curve from a proposed sublayer structure can be calcu-
lated effectively using the abeles matrix formalism [21]. The formalism relies
of the multiplication of a set of matrices, each matrix representing the transfer
trough a sublayer (refraction and propagation). The matrix representing a sin-
gle sublayer is shown is Equation 4.1. The variables of this equation are shown
in Variables Equation 4.1 and are dependent on the the angle of incidence, the
optical constants and the width of the respective sublayers.

"8,\ =

(
cos(:0 · @8,\ · �8)

9
@8,\

sin(:0 · @8,\ · �8)
9 · @8,\ · sin(:0 · @8,\ · �8) cos(:0 · @8,\ · �8)

)
(4.1)

Variables Equation 4.1

:0 =
2c
_

@8,\ =
√
n8 − n0 ∗ cos \2

Where 8 is the i-th sublayer counted from
the top, �8 is the thickness of the i-th sub-
layer, \ is the angle of incidence, 9 is the
complex unit and n8 is the permitivity of
sublayer 8 calculated as:

n8 = (X8 + 9V8)2

Where X8 and V8 are the optical constants
of sublayer 8.
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Figure 4.2: A visual explanation of the P vector
with material stack of K = 4.

Figure 4.3: Parametrization assignment of ma-
terial sequence of the as as deposited samples
with  = 6.

Each angle \ and sublayer 8 with width �8 has a unique assigned matrix, for
each angle a string of matrices is calculated to get an expression of the up (E)
and down going wave (F) in the structure of that specific angle as shown in
Equation 4.2. Where �= is the unit vector 41 since at the bottom of the structure
it is assumed only a down travelling wave is present.

[
�0,\
�0,\

]
= "1,\ ∗"2,\ ..."8−1,\ ∗"8 ∗"8+1,\ ...... ∗"# ,\ ∗ �# (4.2)

The reflectively constant AC ℎ4C0 at the top of the structure and the resulting
absolute reflectively can be calculated using Equation set 4.3 below:

A\ =

√
(n0)

sin(\)
�0,\

�0,\
& '\ =

1 − A\
1 + A\

(4.3)

Equation 4.4

The electric field intensity in sublayer i at
angle \ is given by:

�8,\ =
|�8,\ |2

�\
(4.4)

Where the 0 index represents the upper
part of the air interface and C is given by:

�\ = |
�0,\ +

√
n0
�0,\

sin(\ )
2n0

|

And where
[
�8,\
�8,\

]
is given by:[

�8,\
�8,\

]
= "8 ∗"8+1,\ ... ∗"# ,\ ∗ �#

Angular Fluorescence Yield Calculations

The angular fluorescence signal from the proposed structure can be calculated
by taking the dotproduct of the calculated electric field intensity �8,\ for each
separate angle with the concentration of the respective materials in those
sublayers. To get a description of the electric field in the structure at every
depth position, the structure is further discretized in set of sublayers of 1 .
This is done to take into account a gradual absorption and excitation of the
electric field throughout the structure to get an accurate representation of the
excitation pattern that will induce the fluorescence radiation that is measured
from the structure. The electric field intensity is calculated using Equation
4.4.

The result is a vector with the amplitude for the up traveling wave and down
traveling wave at every sublayer. By normalizing the electric field to the
outgoing component as seen in Equation 4.4, the electric field intensity is
obtained which will be used for the atomic profile reconstruction.

4.2 Free-Form Parametrization

Equation 4.5

Equation expressing the index of refrac-
tion in terms of parameter %.

=8 = =� + %8 mod 1(=� − =�) (4.5)

Where =� is the index of refraction at
_�D−:U for b%8 c (floor) and =� for d%8 e
(ceil).
The relation of =8 in terms of optical con-
stants X and V is given below:

= = 1 − X + 9V

Where 9 is the complex unit.

Parameter V With the discretization a parametrization of the structure can be
formulated in the following way. Assuming each deposited physical layer only
mixes with neighbouring layers, each deposited physical layer can be assigned
an integer number representing the material it is made of with its respective
material density. For example the material stack with an Air(: = 1) layer on top,
following Ruthenium(: = 2), Lanthanum(: = 3) on a Silicon(: = 4) substrate
(See Figure 4.2 for an illustration). The structure is divided into a number of
sub-layers following the minimum resolution criteria. Each individual sub-
layer is assigned a number representing the material mix in that sublayer[10].
An Example of parameters % and their material representation are shown
below:

I 1 −→ 100% Air/Vacuum
I 1.7 −→ 30% Air/Vacuum 70% Ruthenium
I 2.4 −→ 60% Ruthenium 40% Lanthanum
I 3.3 −→ 70% Lanthanum 30% Silicon
I 4 −→ 100% Silicon
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Figure 4.4: Parametrization assignment of the
material sequence of the as segregated sam-
ples.

Figure 4.5: Layer/Interface structure that is
used to effectively describe layered structures
in a free form model. Below is an example of
the parametrization matrix. The left column
contains the thickness of the segment and the
right column contains the parameterization %

with the interval of the acceptable parametrization values: % ∈ [1, 4].

The assigned number % between 1 and  ,  being the number of material
layers in the parametrization, corresponds to an index of refraction[10] shown
in Equation 4.5. Not only does this parametrization greatly reduce the number
of parameters in this optimization problem, it is also an efficient way of
keeping the ratios between X and V in line with the materials in the structure
and thereby accurately describing the absorbance.

Since the samples that will be analyzed contain compound layers existing of 2
materials we can assign a compound to a integer constant of the parametriza-
tion. This will allow for example the mixture more than 2 materials. The
parametrization stack used for samples not showing segregation behavior
is shown in figure 4.3. For example 3.5 represents a mixture of 50% Ternary,
47.5% Secondary and 2.5% Dopant. Using this parametrization an effective
description of the system can be found by optimizing a parametrized profile
of discretized sublayers.

Segregation Parametrization The only mixing neighbouring layers condi-
tion breaks down in the segregation experiments. (Segregation can occur to
non-neighbouring interfaces.) A different initial layer structure has to be de-
veloped to allow for this phenomenon. The main parametrization structure
that is used to describe the samples that show segregation is shown in Figure
4.4. By using this more complex layered model, every layer and interface is
allowed to contain all different material combinations present inside the layer
of interest.

Regularization

For the application of optimization and serving as the prior Bayesian infer-
ence a regularizing term is defined in the form of a stricter layer/interface
parametrization and a punishment term. The system of sublayers is divided
up into ( segments in which each segment is either a solid thick layer or an
interface between solid thick layers and is assumed to have a width of �B .
This regularized system is a stack of solid layers with in between every layer
an interface that is modeled to exist of a sequence of equally sized sublayers
following the earlier proposed resolution criteria. A structural illustration of
the layered system in terms of thicknesses and parameterization V is shown
in Figure 4.5 with also an example of a MATLAB cell containing a paramteri-
zation of this said structure. Each segment has a thickness(first column) and
the assigned parametrization V for each sublayer (second column).

To reduce the number of redundant solutions and to accelerate the process of
obtaining solution a regularization term is also included. In previous similar
methods Tichinov regularization was used[10]. A punishment term was in-
cluded proportional to the sum of the total difference squared between the pa-
rameters values of the adjacent sublayers. Due to the particular parametrized
layered structure a slightly different method was chosen where only the
negative finite difference between the sequential sublayers are included in
the punishment term for the regulatization. This is done not to punish the
large steps needed to describe the multicomponent interfaces present in these
parametrizations. The expression for the regularization is stated in 4.7. The
weight term in practice has a value proportional to the loss function value
of the measurement/theory mismatch. This is to make sure that it does not
dominate the optimization term but also is not negligible.
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Quantifying segregation

The depth resolution of the XSW signal is in the simulations about half a
nano-meter, the same amount of dopant material in a narrower region does
not lead to significant changes in the fluorescence signal and we are therefore
insensitive to changes on scales smaller than this and therefore also cannot
explicitly state the concentrations of dopant in the interface. Also the GIXR
and XSW methods are in the regime of low concentrations of dopant material
insensitive to the quantitative total amount of dopant present in the whole
structure. A measure of segregation has to be made that is invariant to changes
in this sub-nanometer regime and to the total quantitative amount of dopant
material. The measure that is developed and used is the Segregation Vector
(SegVector), which contains in the sequence [AirWaveguideInt(interface), Top-
Waveguide, TopInt, LOI1, MiddleInt, LOI2, BottomInt, BotWaveguide] the
relative fractions of dopant element present in the respective segments of the
structure (See Figure 3.1). For the fractions in the Middle Interface & Bottom
Interface the concentration present in LOI2 is first subtracted to correct the
background signal from the as deposited structure. Quantitatively interfaces
are of the order of 0-2nm depending on the proposed parametrization. A frac-
tion of 0.2 of the dopant element in an interface means a considerably higher
concentration( 5-10x) than a fraction of 0.5 a 12nm layer.

4.3 Problem Statement

To reconstruct the measured structure using the GIXR and XSW measurements
the forward map defined in Equation 4.6. The forward map is a function of
the difference between the measured data and the proposed parametrized
structure with parameters V, J and 1. The measurement error f takes into ac-
count the general Poisson statistics of incoming photons, Gaussian distributed
variance in the beam power and the slight uncertainty of incidence angle
determination. We have also introduced the fB of 0.002 which is the variance
of the beam intensity �0 during a 1 second measurement. With this fB the
loss function is defined as �;>BB = & + �' and can be minimized to find a
satisfactory parametrization. In practice this minimization reaches in to the
range of 50-200 where 50 is considered a near perfect fit (See appendix Figures
.1 and .2 for an example).

Equations 4.6 & 4.7

Expression of the forward map &:

& (%,�, d, �0, \' , \� ) =

1
#1

#1∑
==1

! (�0- ( 5 (%,�, d) , \') , H1, f)+

1
#2

#2∑
==1

#4∑
4=1

! (- (64 (%,�, d) , \� ) , H2,4 , f)

(4.6)

Where ! (.0,.1, f) is defined as:

! (.0,.1, f) = 1
f
· ( (.0 −.1) ◦ (.0 −.1))

Where ◦ is the element wise multiplica-
tion.

5 (V, J, 1) is the absolute simulated re-
flectivity curve X from in Equation 4.3
for all measured angles \ and structure
parameters V, J and 1.

64 (V, J, 1) are the normalized to
max(64 (V, J, 1)) simulated angular
XSW fluorescence signals from the
individual elements 4 calculated from
the structure parameters V, J and 1
according to Equation 4.4.

H1 and H2,4 are the respective GIXR and
XSW measurements, \' and \� are the
respective perceived beam divergences of
the GIXR and XSW measurements, �0 is
the modelled beam intensity of the X-ray
tube and X is a convolution with a Gaus-
sian defied as:

- (H, \) = (H ∗N(0, \))

#1 and #2 the number of measurement
points per respective dataset and #4 are
the number of elemental fluorescence sig-
nals measured and f is defined as:

f =
√
H0 + (fB ∗ H0)2

Where fB is the standard error and H8 is
the respective intensity of each measure-
ment point.

The regularization term�' is given by:

�' =,

#−1∑
==1

(%= − %=+1)21(%=+1 − %=)

(4.7)
Where V is parametrization vector of the
structure, W is a predetermined weight of
100 and 1 is the indicator function.

Additional fitting parameters Not only the parameter P and the thicknesses
�B of the layers and interfaces are free-fitting parameters in this forward map.
Also the density of the materials present in the layered system are fitting
parameters since it is unknown whether the materials behave identical to
their bulk behavior in thin layered system. Also the resolution of the beam
and its intensity are used as fitting parameters. The GIXR and XSW measure-
ments although having as source the same beam due to the slits used in the
GIXR measurement their perceived resolutions can differ and are therefore
separately modelled.

Bayesian Inference

For the estimation of the posterior and its measures the prior and the like-
lihood function for this problem statement are given by Equations 4.9 and
4.10 respectively. The prior contains the regularization punishment and is
independent on any information from measurement H. The likelihood function
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contains the forward map based on Equation 4.6. The constants C are empir-
ically determined to take into account the acceptable values of the objective
function and regularization term.

Optimization To obtain the parametrization that fits the measurement data
the best, G"�% , the most probable parametrization is used. multiple opti-
mization methods are used for minimizing �;>BB = &(%,�, d, �0, \' , \� ) +�' .
(Equivalent to maximizing c(G)c(H0 |G)). A general optimization round is run
sequentially until a satisfactory solution has been found. One optimization
round is defined a routine starting with a global search algorithm for 30 min-
utes (on a regular i5 desktop PC) and afterwards this solution is refined by
running a short local optimization algorithm.

Equation 4.8

� =, ∗
#−1∑
==1

1(%= < 1) ∗ (1 − %=)2

+ 1(%= >  ) ∗ (%= − )2 (4.8)

Where %= is parametrization vector of the
structure, W is a predetermined weight of
100 and 1 is the indicator function.

Bounds To keep the parametrization % within the bounds of [1, ] both in
the optimization and in sampling process, a punishment term is used to keep
the solutions within the bounds of allowed parametrization values using the
expression shown in Equation 4.8

Local Optimization For the local optimization the BOBYQA algorithm was
chosen from the NLopt optimization library [22], this algorithm seeks to
minimize the Frobenius norm of the change of the second order derivative
of the objective. To implement this algorithm the NLopt library for MATLAB
was used[23]. It was chosen since this algorithm showed the best performance
in optimizing structures of this kind.

Global Optimization For the Global optimization routine the ’Controlled
Random Search (CRS) with local mutation’[24] was used which is a random-
ized quasi simplex method. Also implemented using the NLopt libary for
Matlab.

Equations 4.9

x is defined as

G =
[
V J 1 �0 )

]
The prior c (G) is given by:

c (G) = 4−�A (G)/� (4.9)

The likelihood function c (H0 |G) is given
by

c (H0 |G) = 4−& (G)/� (4.10)

Where C is 20 for the combined GIXR &
XSW data sets and 10 the case for one of
the single datasets. The total Loss function
can now be defined as:

* (G) = & (G)�A (G) (4.11)

Confidence Intervals Using Equation 2.13 the symmetric Baysian credibility
set can be calculated and is used for the calculation of the confidence bounds
for the parameters of interest after a complete posterior estimation has been
obtained.

Gaussian Fitting Procedure

Up to now the dopant distribution is assumed to have a very limited local-
izations in terms of the distribution. It is assumed to be uniform in the layers
and only complete freedom has been given in the interfaces of the thinfilm
parametrization. To confirm the correctness of these assumptions, another way
of interpreting the fluorescence signal of the dopant material is developed by
doing an independent analysis where more freedom is given to the possible
distributions. By first fitting the measurements without the dopant XSW signal,
a structure can be found which resembles the measured structure, since the
effect of the dopant on the index of refraction is negligible and obviously has
no effect on the XSW measurements of the other materials.

To interpret the dopant XSW signal a solution single solution is proposed in the
form of Gaussian peaks resembling the dopant distribution. These Gaussian
peaks can be extended by allowing a flat top peak to better imitate a layer
containing a uniform concentration of the dopant. The position, flattop-width
and height are chosen as the fitting parameters. A single peak can act as the
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distribution in a certain layer by imitating its width and interface. To also
allow for the description of more complex segregation multiple peaks are
allowed simultaneously where the same fitting parameters are used except for
the flattop which is 0 for the extra peaks. The standard deviation is taken to
be 5 to resemble roughness of the layers and interfaces. This is kept constant
since it does not considerable change the resulting fluorescence signal but
over-complicates the analysis of the results.

4.4 Hamiltonian Monte Carlo Implementation

Non-linearity For the mass matrix the general consensus is to take the co-
variance matrix of the different parameters. This however due to the non-
lineary in the problem at hand does not make much sense since most parame-
ters do not have a consistent co-variance over prior range and the derivative
shows large differences even within steps made in the same sample.

Step-Size ℎ The step-size h used in the integration scheme determines the
size of the time step taken in the individual steps.

Stability For 1 dimensional datasets the stability for the verlet scheme is
under the condition that ℎ < 2. However for datasets having more dimensions
this condition only serves as an absolute upper bound and the stability con-
dition is often much stronger scaling with the number of parameters in the
problem and the curvature of the potential energy landscape [18].

Mass-Matrix The Mass-Matrix " acts as the weight of the individual phase
space parameter pairs. By taking the naive approach and using the identity
matrix the step-size will be limited to the curvature caused by the most in-
fluential parameter in the phase space. (changing the thicknesses of the solid
layers represent a larger change than the composition.) To optimize the sam-
pling a different weight can be given to parameters to couple the curvature of
the individual directions of x to p to make the per step distance travelled in
parameter space larger without sacrificing the stability.

Emphasis Vector All parameters of x in the parametrization are assigned an
emphasis-value forming the emphasis vector. These values are empirically
determined to maximize the stable step-size in the Monte Carlo sampler and
are highly correlated to the average second order derivatives of x in the high-
probability regions. These values are used to construct the mass-matrix for
this problem. The mass matrix is shown in Equation 4.12.

Equation 4.12

Mass Matrix M is defined as:

" = diag
[
+% +� +d +A

]
(4.12)

Where:

+% =
J

3
4

30

+� =
J

3
4

15

+d =

√
1

3
+A =

[ 1
3

1
3

1
3

]

Heuristic 4.13

A step is considered stable when the fol-
lowing conditions are met:
Condition 1: Δ�G ∗ Δ�? < 0
Condition 2: Δ� < 0.02�=
Where Δ is the difference between the
steps n & n+1.

(4.13)

Stability measure A measure to determine the stability of the integrator is
necessary to determine the step-size for the time integration. The Heuristic
4.13 uses the energies calculated in the stepping process and therefore does not
lead to a more costly evaluation of the integration. This heuristic proved very
effective in practise for determining the stability of the integration process and
is used throughout the sampling.

Algorithm 4.14

If Stable: multiply ℎ by 1.1
If Unstable : divide ℎ by 1.1 ∗ (2

Where ( is the number of successive un-
stable steps made.

(4.14)
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Dynamic step-size The curvature of the energy landscape of the position
parameter in the Hamiltonian very different from region to region. Having
constant ℎ, the step-size will be limited to the maximum curvature regions in
this Hamiltonian. Since a heuristic can be used to determine if a step diverges
too far from the actual Hamiltonian a dynamic ℎ can be implemented. Using
Algorithm 4.14 for the dynamically sized ℎ the sampling can be drastically
sped up since the regions of lower curvature can be explored much faster.
Stable values of h have found to be ranging in the interval [10−3, 10−5].

Acceptance rate and Temperature The optimal acceptance rate for the fastest
convergence to the target distribution empirically has been found to be around
60-70%[19]. To achieve this a temperature of ) = 1

V
= 2 has been established in

the tempering of the acceptance rate U.

Algorithm 4.15

The Direction Ratio (�' is defined as:

(�' =
Δ-<

Δ-∗<
(4.15)

Where Δ-< is defined as:

Δ-< =
1
#
| (G< − G0) · (G< − G0) |

− 1
#
| (G<−1 − G0) · (G<−1 − G0) |

And Δ-∗< is defined as.

Δ-∗< =
1
#
| (G< − G<−1) · (G< − G<−1) |

Where # is the number of parameters in
the problem and < is the m-th step in the
time integration _.

Determining the proper integration time In the case of a 1D convex system,
an obvious choice would be to integrate along time until the momentum
direction has turned c

2 . Currently in literature is not yet a definite agreement
on the optimal integration time for higher dimensional problems. There have
been several ideas, like the No-U turn sampler that assumes almost convex
energy levels and samples until half on this energy level has been explored.
For the problem at hand the energy levels are not convex and therefore it
is chosen to use a measure of direction shown in Equation 4.15. (�' gives
the ratio of the fraction current step that is in the direction of the sum of
directions of the previous steps. When (�' becomes smaller then 0.1 it means
that 90% of direction is no longer in the direction of the momentum generation.
Therefore this is a good point to propose an end point since from this point
intermediate information might be lost when not adding the point to the chain
while continuing does not increase the de-correlation more than generating
a new set of momentum values. This is a similar approach to the No-U turn
sampler criteria, only here the value of (�' can be averaged over 5 steps to
counteract the effects of the high frequency curvature and the cut-off value
can be tuned to the problem at hand.

Momentum Generation The momentum generation is an important param-
eter that can be tuned to customize the behavior of the samples in the chain.
Since the total energy of the Hamiltonian is constant or very slowly changing
due to accumulating truncation errors. The energy of the generated momen-
tum vector gives the user a customization to what possible potential energies
are accessible to the chain. In relation to the typical space, this tell the sampler
how far away from the high-probability singularities it is supposed to sample.
It defines initial kick and so the extra energy that the system has available
serves as the maximum that the position parameter can take in terms of its
potential energy in that integration time. In the grand scheme, of course no
limit exists, since at the end of an integration time the potential energy pa-
rameter can be higher than at the beginning and the generation of the new
momentum in the next round the momentum energy will be reset again. The
momentum sampling is tuned that its momentum parameters have an energy
of 50. In practice it was found that higher values lead to considerable time
wasted in sampling regions of low probability. Important is that the momen-
tum value is not too low so that a good mixing is achieved for the Markov
chain. If the energy of the momentum generation is significantly less than
the expected different in energy between the states of interest, it can take a
significant number of samples to travel between these states, possibly slowing
down the exploration.



30 4 Computational Modelling

4.5 Metropolis-Hastings

A classical Metropolis-Hastings guess and check Monte Carlo Markov chain is
be implemented to compare the performance of the Hamiltonian Monte Carlo
method to.

Equation 4.14

Proposal distribution used for the
Metropolis-Hastings algorithm.

Π (-̃=+1 |-̃=) =N(-̃= , f2) (4.16)

Where f is defined as:

f2 =

[
+% +� +d +A

]
1000 ∗

√
(

Where S is the number of previously suc-
cessive declined samples.

Proposal Distribution The proposal distribution Π( -̃=+1 | -̃=) is shown in
Equation 4.16. Because of the curvature in the loss functions landscape is
highly variable a dynamic f is chosen since after some trial runs this showed
the most consistent performance.

Acceptance For the Metropolis Hastings a temperature of 1 degree is chosen.
This is lower than for the HMC since the a proposal in not necessarily made to
a direction of similar or higher likelihood. The temperature was determined
empirically by raising the temperature until the MCMC starts to sample
outside of accepted error margin. The acceptance for the Metropolis-Hastings
of sample G=+1 from sample G= is shown in equation 4.17.

Equation 4.17

U(G= , G=+1) = 4 (�;>BB (G= )−�;>BB (G=+1 ) )
1
)

(4.17)

4.6 Derivatives for the HMC implementation

In the Hamiltonian Monte Carlo sampler the derivatives with respect to the
all parameters of the loss function is used to evolve the Hamiltonian over time.
For parameters as resolution and beam intensity these derivatives are trivial
and are therefore assumed to be known from the loss function definition in
Equation 4.6 and are omitted from the text. The calculation of the derivatives
of 5 and 6 with respect to all indexed parameters are shown below. The
vectorized MATLAB implementations are shown in the Appendix in Section
.4.

GIXR curve derivatives ( 5 (%8 ,�B , d: ))

The gradient of the absolute reflectively (Equation 4.3) with respect to the
parameters of interest (%8 ,�B and d: ) is computed by using the chain and the
product rule.Equation 4.18

3'\

3@8,\
=
m'\

mA\
( mA\
m�\

m�\

m@8,\
+ mA\
m�\

m�\

m@8,\
)

(4.18)

Equation 4.19

mA\

m�\
=
−√n0

sin(\)
�\

�2
\

mA\

m�\
=
−√n0

sin(\)
1
�\

m'\

mA\
= 2 ·Real

(
1 − A\
1 + A\

·
(
−2

(1 + A\ )2

)+)
(4.19)

Derivative with respect to @8,\ The term 3'\
3@8,\

is calculated first since this

term is present in both the derivatives 3'\
3%8

(Equation 4.24) and 3'\
3d:

(Equation

4.27). The derivative 3'\
3@8,\

expressed in Equation 4.18 using partial derivatives
of the known expressions from Section 4.1.

The derived expressions for the partial derivatives with respect to �\ , �\ and
A\ of equation 4.18 are shown in Equation 4.19 and derivatives of �\ and �\
with respect to @8,\ are shown in Equation 4.20.

m

[
�\

�\

]
m@8,\

= "1,\ ∗"2,\ ..."8−1,\ ∗
m"8,\

m@8,\
∗"8+1,\ ...... ∗"# ,\ ∗ �# (4.20)

With m"8
m@

as shown in Equation 4.21 below:
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m"8

m@8,\
=

(
−:0�8 sin(:0@8,\�8)

9:0�8
@8,\

cos(:0@8,\�8) −
9 sin(:0@8,\�8)

@2
8,\

8:0�8@8,\ cos(:0@8,\�8) + 9 sin(:0@8,\�8) −:0�8 sin(:0@8,\�8)

)
(4.21)

The structure of this derivative can be exploited to quickly calculate the value
of this derivative for every direction @8,\ . By calculating all matrices "8,\ and
its derivative with respect to q, a simple loop can be used to calculate the whole
derivative by first calculating the strings "1→=,\ = "1,\ ∗ "2,\ ... ∗ "=,\ &
"=−># ,\ = "=,\ ∗"=+1,\ ... ∗"#−1,\ ∗"# ,\ sequentially. Now the derivative
in each direction can be calculated with Equation 4.23. The cost of computing
the derivative in each direction using this methodology is 3 times that of
the evaluation of the loss function once. Which is much more efficient in
comparison to treating each direction individually which would lead to a
quadratic scaling cost with respect to the number of sublayers.

Equation 4.22

m@8,\

m%8
=
@8,\ (%8 , d: ) + @8,\ (%8 + 3%, d: )

3%8
(4.22)

Where dP is the finite difference step size

m

[
�\

�\

]
m@8,\

= "1→(=−1) ,\ ∗
m"8,\
m@8,\

∗"(=+1)→# ,\ (4.23)

Derivative with respect to %8 The derivative 3'\
3%8

expressed in partial deriva-
tives of the known expressions from Section 4.1 is shown in Equation 4.24.

Equation 4.24

3'\

3%8
=
3'\

3@8,\

m@8,\
m%8

(4.24)

m@8,\
m%8

is evaluated using a finite difference method (Equation 4.22) since the
finite difference evaluation is accurate and fast so analytically deriving this
does not yield any considerable benefit in term of accuracy or speed. On the in-
teger values of %8 the derivative shows a discontinuity, in practice however the
value of %8 is never exactly integer therefore this has not posed any issues. Equation 4.25

3'\

3d:

∑
∀8 |%8∈(:−1,:+1)

3'\

3@8,\

m@8,\

md:
(4.25)

In which the sum runs over all sublayers
that have a value of P that is affected by a
change in density of material k.

Derivative with respect to density d: The derivative 3'\
3d:

expressed in par-
tial derivatives of the known expressions from Section 4.1 is shown in Equation
4.25. The first 5 partial derivatives in this expression are the same expression
as the ones calculated for Equation 4.24. m@8,\

m%8
is for the same reasons as before

evaluated using a finite difference method and is shown in (Equation 4.26).

A change in the density of a material � assigned a number : changes all
sublayers assigned a parameter P in the interval (: − 1, : + 1). Therefore all the
separate derivatives towards @ in each affected sublayer have to be summed
to obtain the derivative with respect to the change in d: .

Equation 4.26

m@8,\

md:
=
@8,\ (%8 , d: ) + @ (%8 , d: + 3d))

3d
(4.26)

Where 3d is the finite difference step size.

Derivative with respect to thickness �B The derivative 3'\
3�B

expressed in
partial derivatives of the known expressions from Section 4.1 is shown in
Equation 4.27. The expressions of the partial derivatives with respect to �\ ,
�\ and A\ of equation 4.18 are shown in Equation 4.19 and derivatives of �
and � with respect to �B are shown in Equation 4.28.

Equation 4.27

3'\

3�B
=

∑
8∈B

3'\

3�8
(4.27)

Where �8 is the thickness of the sublayer
8 which has a thickness of �( divided by
the number of sublayers present in seg-
ment B.
3'\
3�8

is given by:

3'\

3�8
=
m'\

mA\
( mA\
m�\

m�\

m�8
+ mA\
m�\

m�\

m�8
)

m

[
�\

�\

]
m�8

= "1,\ ∗"2..."8−1,\ ∗
m"8,\

m�8
∗"8+1,\ ...... ∗"# ,\ ∗ �# (4.28)
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With matrix system m"8
m�

is shown in 4.29

m"8

m�8
=

(
−:0 · @8,\ · sin(:0 · @8,\ · �8) :0 · 9 · cos(:0 · @8,\ · �8)
:0 · 9 · @2 · cos(:0 · @8,\ · �8) −:0 · @8,\ · sin(:0 · @8,\ · �8)

)
(4.29)

The same trick as in Equation 4.23 that be applied here to reuse the calculated
strings of matrices.

Since some segments are compromised of multiple lamella, all separate deriva-
tives towards these lamella have to be summed to obtain the derivative to-
wards the change of length of this segment.

XSW signal derivatives (64 (%8 ,�B , d: ))

In constrast to the reflectivity where only the absolute value at the top of the
structure is of interest, the XSW calculations require the knowledge of the
absolute value of the derivate of the electric field intensity from Equation 4.4
at every depth point 8. Due to the nature of the fine discretization of the XSW
calculations, a finite difference approach will lead to faster evaluation speed
of the derivative. This is because to before the calculations of the electric field
intensity are done, the sublayers are locked onto a finer grid of 1 Å sublayers
to get a better approximation of the resulting XSW signal that is coming from
the sample by better modelling the absorption. Due to this refinement process,
calculating the analytical derivative would lead to a longer calculation time
since for each refined sublayer a separate string of calculations has to be done
to calculate the analytical expression of the partial derivative towards each
individual sublayer in this new refined grid of sublayers. Not each of these
separate derivatives is needed since one parameter %8 and �8 now maps to
multiple sublayers. By using finite differences only one string of matrices has
to be perturbed per parameter %8 and �8 , instead of each individual sublayer
individually.

Since the wavefield calculation is calculated from bottom to top, the calculation
of the derivative only differs from the unperturbed state starting from the
lowest sublayer that is affected by the perturbation. Therefore for sublayers
beneath the finite difference pertubation, the unpertubed values can be used
which can later be re-normalized. In order speed up the process first the
unperturbed wavefield is calculated as shown in Algorithm 1.

Algorithm 1: Wavefield

1 "=,1:\ ← ∀=, \ from Equation (4.1);
2 �# ,1:\ ← repmat( [1, 0], #\ )′;
3 for =← # to 1 do
4 �= [1] ← "=,1:\ [1, 1] · �=+1 [1] +"=,1:\ [1, 2] · �=+1 [2];
5 �= [2] ← "=,1:\ [2, 1] · �=+1 [1] +"=,1:\ [2, 2] · �=+1 [2];
6 �0

1:# ,1:\ ← |�[1]1:# ,1:\ |2;

7 /\ ← |
(
�(1)1,\ +

√
n0
�(2)1,\
sin \

)
1
n0
|;

8 ,=,\ ← �1,1:=.//\ ;

Using Algorithm 2 the derivatives in the directions of V, J and 1 can be
calculated by substituting any of the parameters for K. The MATLAB imple-
mentation can be seen in the Appendix in Section .4.
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Algorithm 2: Wavefield Derivatives

1 for : ← 1 to  do
2 "̃=,1:\ ← ∀=, \ from (4.1) with perturbation 3: ;
3 �̃# ,1:\ ← repmat( [1, 0], #\ );
4 #∗ ← max(=) |= ∈ perturbation ;
5 for =← #∗ to 1 do
6 if = ∈ perturbation then
7 �̃= [1] ← "̃=,1:\ [1, 1] · �̃=+1 [1] + "̃=,1:\ [1, 2] · �̃=+1 [2];
8 �̃= [2] ← "̃=,1:\ [2, 1] · �̃=+1 [1] + "̃=,1:\ [2, 2] · �̃=+1 [2];
9 else

10 �̃= [1] ← "=,1:\ [1, 1] · �̃=+1 [1] +"=,1:\ [1, 2] · �̃=+1 [2];
11 �̃= [2] ← "=,1:\ [2, 1] · �̃=+1 [1] +"=,1:\ [2, 2] · �̃=+1 [2];

12 �̃1:# ,1:\ ← [| �̃[1]1:#̃ ,1:\ |
2; �

#̃+1:# ,1:\ ];

13 /̃\ ← |
(
�̃[1]1,1:\ +

√
n0
�̃[2]1,1:\

sin \

)
1
n0
|;

14 ,̃1:# ,1:\ ,: ← �̃1:# ,1:\ .//d1:\ ;

Now one has to follow again the summation procedure from the GIXR deriva-
tives to sum the derivatives of the individual perturbations that relates to one
of the parameters.

With the perturbed wavefield intensity ,̃1:# ,1:\ ,: the perturbed XSW signal
can be calculated by multiplying with the perturbed atomic distribution of the
respective materials.

Using the vectorized and optimized derivatives, the evaluation of the gradient
is in the order of a tenth of a second for the samples that were deposited for this
thesis. Although this is about 5x the cost of a normal forward iteration of the
forward map, the dimension of G is >50 meaning a performance improvement
of about 1 order of magnitude has been made by optimizing the derivatives.





Figure 5.1: Close up TEM image of the
V/Sc/Nb Sample
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In Section 5.1 the thermal stability of the waveguide is presented and the
reconstruction results are discussed. In Section 5.2 the discerning power of the
XSW signal from the different interfaces is presented. In Section 5.3 the stability
and applicability of the HMC methodology to the thin-film reconstructions
is discussed. In section 5.4 the verification of the results with a TEM study
is presented. In section 5.5 the efficacy of the addition of the XSW data is
shown. In Section 5.6 the comparison between the different MCMC methods is
presented. The chapter ends with Section 5.7 in which the segregation behavior
is shown to follow some of Miedema’s predictions.

5.1 Waveguide Performance

Thermal stability The thermal stability and the data-analysis aspects of the
waveguide sample design described in section 3.1 were tested on the waveg-
uide with the Vanadium dopant, Scandium solvent and Niobium Ternary
layer. (denoted as V/Sc/Nb system). This waveguide structure is coated and
annealed for 24 hours at 400 ◦C. The reconstruction of GIXR & XSW data
collected from the pristine and annealed samples are shown in Figure 5.2.
(reconstructions obtained according to G"�% from Equation 2.11 ).

Figure 5.2: Optical constant profiles before and after annealing @�D − :U reconstructed from the
GIXR & XSW measurements on the V/Sc/Nb Sample.
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Figure 5.3: Spatial HAADF spectrum accumu-
lated from the V/Sc/Nb Sample

These reconstructions show very minor structural changes in the optical con-
stant profile. The top layer of the waveguide seems to be minimally oxidized
and therefore does not compromise the function of the waveguide.

The TEM and HAADF images of this V/Sc/Nb sample after annealing can be
seen in Figures 5.1 & 5.3. This data is in good agreement with GIXR and XSW
analysis. The layers are properly grown and the interfaces are sharp (1.5 <nm).
Some oxidation is visible on the top. This oxidation is likely the result of aging
after the annealing process since these TEM images were taken 4 months after
depositions and these oxidation hills did not shown up in the GIXR & XSW
analysis.

Reconstruction For all measured samples reconstructions parametrized ac-
cording to section 4.2 resulting from the combined GIXR and XSW analysis are
found. The reconstructions are simultaneously in good agreement with both
respective measurement sets. The GIXR fit of the annealed V/Sc/Nb sample
reconstruction is shown in Figure 5.4. The fitting process of the annealed sam-
ple yields almost exactly the as deposited thin film system and only minimal
roughness is observed on the top layer.

Figure 5.4: GIXR measurement fit of the the annealed V/Sc/Nb Sample.

The fitting quality of the XSW signal can be seen in Figure 5.5 including the
resulting atomic profiles. The increase of the concentration of V on interfaces
between the Scandium layer and Tungsten layer (depth - 400 Andstrom in
Figure 5.5) and the interface between Sc and Nb (depth - 300 Angstroms in
Figure 5.5) is the indication of preferential segregation of Vanadium to these
interfaces.
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Figure 5.7: Measured and simulated signal of
the 3 different samples and their respective
reconstructions

Figure 5.5: XSW measurement fit of the the annealed V/Sc/Nb Sample for the 3 different layer
elements. On the bottom in the different color the respective atomic profiles are shown.

5.2 Sensitivity to the different interfaces

To demonstrate the sensitivity of XSW technique combined with the waveg-
uide design to the 3 potential segregation sites (Top,Middle,Bottom), a set of
samples with Chromium as dopant, Iron the matrix material and Co as ternary
material was deposited and analyzed for each respective segregation site.

In Figure 5.6 on the the left side, the measured angular-dependent XSW signal
for each of the samples is shown and compared. Each different deposition
location expresses a unique signature in the XSW measurements. The signals
are not interchangeable and cannot be linearly superimposed to obtain the
other respective signals.

Figure 5.6: Comparison of the measured Cr fluorescence signal of the 3 samples where Cr has been
pre-depositioned to the designated interfaces. On the left the resulting reconstructed Cr profiles are
present and on the right side the respective measured angular fluorescence signals are shown.

Comparison of different signals After the reconstruction of the XSW &
GIXR measurements the Chromium distribution are found in the respective
interfaces to the designed positions. The reconstructed Chromium depth pro-
files resulting from the XSW measurements are shown on the right side in
Figure 5.6. All profile reconstructions are almost identical to the as deposited
structure indicating a strong sensitivity to the the different interfaces. The
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Table 5.1: Technical details of the HMC imple-
mentation, for the details on each parameter
refer to Section 4.4

Parameter Average
ℎ 0.0006
Δ-BC4? 0.0015
CBC4?

1
3 sec

(�( 90
Δ-(0<?;4 0.05
CB0<?;4 30 sec

agreement between the simulated signals and the measured signals is shown
in Figure 5.7.

The measured GIXR curves are shown on the right side in Figure 5.8 with the
respective reconstructions of the optical constant profile X on the left side. The
reconstructions of the measured samples are optically nearly identical, which
is expected from the very similar measured GIXR curves. Implying that the
difference in the fluorescence signal is clearly a consequence of the different
Chromium distributions in the waveguide structure.

Figure 5.8: On the left the reconstructed X profiles are shown for all samples and on the right side
the respective measured GIXR curves for each test sample are shown.

5.3 HMC Implementation

Complementary to the -<0? value obtained from the optimization procedure,
the HMC sampler discussed in Section 4.4 is used to obtain a chain of sam-
ples with fitting parametrizations invariant to the distribution distribution
by the likelihood of loss function discussed in Section 4.3. The chain of sam-
ples is used to obtain confidence bounds on the individual parametrization
parameters.

To test the performance of the HMC sampler, again the V/Sc/Nb structure
is analysed. This is because of this structure also a Transmission Electron
Microscopy measurement is done with which the results can be verified.
This is discussed in the next section. The HMC chain quickly converges to a
equilibrium state from a point drawn from the prior as can be seen in Figure
5.29. In equilibrium the HMC is it is sampling at a loss function value of in the
range of the likelihood of the -<0? value and likelihood indicating a efficient
exploration of the typical space. A snapshot of the loss function value of the
sampled chain over time in equilibrium is shown in Figure 5.9.

Figure 5.9: Objective value of the loss function for an interval of 3000+ samples in equilibrium
sampling.

The truncation error in stable steps averages at a less than half of a percent of
the potential energy (loss function) value indicating a stable integration of the
equations of motion. For a temperature of ) = 2 the optimal acceptance rate of
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70% is achieved. In Table 5.1 the average value of the the technical parameters
are shown. Δ-BC4? is the average distance travelled in in parameter space per
step. CBC4? is the time is takes per step. (�( are the number of successive steps
made in a correlated direction (steps per sample). Δ-(0<?;4 is the average
distance between each successive sample and CB0<?;4 is the time it takes to
sample and accept such a sample.

In practice proving the convergence of a MCMC in finite time is not a tractable
computation, hence the use of the Markov Chain. To obtain some measure
of convergence, the HMC chain has been run from 3 different random initial
conditions. In Figure 5.10 the average relative width of the confidence intervals
in the stationary regime for different samples sizes averaged over different
regions in the sampled markov chain for the different important parameters is
shown. For the calculation the average relative confidence interval width for
the different layer and interfaces. From an average of about 1500 samples all the
chains seems to have obtained the same confidence intervals in comparison to
the complete set of samples of all 3 chains that have sampled for 5000+ sample.
This indicates good mixing is achieved and a good posterior estimation is
made after 1500 samples.

Figure 5.10: Average relative width of the 95% confidence interval in comparison to the complete
chain confidence interval width for the different parameters.

As an example of the posterior, the resulting parameters from the analysis for
the segregation are shown in a pyramid posterior plot in Figure 5.11. Using
Equation 2.13 the confidence intervals of the individual parameters can be
calculated and are shown in the diagonal entries. The off-diagonal entries
show the inter-parameter correlations between pairs of parameters.

Figure 5.11: Pyramid plot showing the segregation vector for the individual samples. Legend in
shown on the side with the color indicating the individual sample loss function values.
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Figure 5.12: Close up TEM image of the
Cr/Fe/Co Sample

Figure 5.13: Spatial HAADF spectrum accu-
mulated from the Cr/Fe/Co Sample

5.4 TEM comparison

One of the main challenges of the XSW-GIXR method is not only to recon-
struct a structure that fits the measurement data but also to ensure that the
reconstruction accurately represents the actual measured structure instead of
a structure that yields a similar measurement. To address this, 2 structures
which showed complex dopant distributions in its reconstruction have been
characterized using TEM,EDX and EELS and thereby will be used as an experi-
mental based study of the reliablity of GIXR-XSW for the designed waveguide
samples.

Sample Cr/Fe/Co

The Cr/Fe/Co sample was chosen since it showed very explicit segregation
behavior after annealing. Figure 5.14 shows that the initial qualitative XSW sig-
nals for the dopant and the matrix layers before annealing are overlaping and
differ greatly after annealing. From this was concluded that the co-deposition
was indeed successful in making dopant and matrix atoms distributions over-
lap and having the dopant segregate after annealing.

Figure 5.14: Above the measured angular fluorescence signals are shown from the Cr/Fe/Co sample
before annealing, on the bottom the measurements after annealing are shown.

In Figures 5.15 , 5.16 and 5.17 a comparison of the reconstruction of the atomic
distribution for Chromium, Iron and Cobalt respectively for the different mea-
surement methods is shown. The reconstruction of the Chromium distribution
with the GIXR & XSW analysis is in agreement with the EDX and EELS distri-
butions. The small ( 1%) concentration of Chromium visible between -300 and
-200 detected by the XSW method is below the sensitivity of the EDS and the
EELS. Later we will discuss the significance of this low concentration "tail" for
XSW data. The HMC sampling analysis in Table 5.2 shows that no solutions
exist for which the bottom layer contains no significant amount of Chromium
concluding that about 30% of the dopant is left in the bottom layer. Also the
resulting relative portions of chromium in the interfaces obtained from the
different measurement methods is consistent.
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Table 5.2: Segregation vector from the HMC
sampler on the Cr segregation.

Layer Mean Best 95% CI
TopInt 0.347 0.357 0.389 - 0.307
TopLOI 0 0 0 - 0
MidInt 0.002 0 0.021 - 0
BotLOI 0.297 0.305 0.395 - 0.177
BotInt 0.349 0.337 0.426 - 0.290

Table 5.3: Layer purity after annealing of de-
posited material, results from the HMC sam-
pler on the Cr Sample.

Layer Mean Best 95% CI
TopLOI 0.587 0.652 0.711 - 0.455
BotLOI 0.569 0.506 0.722 - 0.387

Figure 5.15: Comparison of the different Cr distributions found using XSW, EDS and EELS.

The intermixing of the Iron and Cobalt layers, though unexpected, confirmed
by all measuring methods. Also a gradient in this mixture is perceived by
all measurement reconstructions. There is small difference in the continuity
of the distribution in the XSW analysis resulting from the limited forms the
distribution can take due to the layer constraints and regularization. Table 5.3
contains the inferred confidence intervals from the HMC sampler of the layer
purity of the as deposited materials for the 2 inner layers, also indicating that
no probable solutions exist without the intermixing of LOI1 and LOI2.

Figure 5.16: Comparison of the different Fe distributions found using XSW, EDS and EELS.

Also the gradient of the Cobalt distribution opposite to the Iron is perceived
by the GIXR-XSW reconstruction.
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Figure 5.18: Close up TEM image of the
V/Sc/Nb Sample

Figure 5.17: Comparison of the different Co distributions found using XSW, EDS and EELS.

Sample V/Sc/Nb

For the same reasons as with the Cr/Fe/Co sample the V/Sc/Nb was chosen
to be analyzed to confirm the reconstruction of the XSW & GIXR measurements.
The measured XSW signals of V/Sc/Nb are shown in Figure 5.19.

Figure 5.19: Measured XSW signals overlapped for different elements before and after of the
V/Sc/Nb Sample

In Figures 5.20 , 5.21 & 5.22 the comparison of the reconstruction of the differ-
ent atomic distributions for the different measurement methods are shown
respectively for Vanadium, Scandium and Niobium. Again for the dopant
material, Vanadium, the fractions and the location of the dopant present in the
interfaces is in agreement for all measurement reconstructions. The dopant
material left in the bottom layer is also confirmed by all methods. Also HMC
sampling analysis for which the segregation results are presented in Table 5.4
shows that no solutions exist for different dopant locations. There is however
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Table 5.4: Segregation results from the HMC
sampler on the V segregation.

Layer Mean Best 95% CI
TopInt 0.013 0.014 0.022-0
TopLOI 0.000 0 0-0
MidInt 0.175 0.148 0.255-0.119
BotLOI 0.634 0.660 0.756-0.946
BotInt 0.178 0.177 0.253-0.113

Table 5.5: Layer purity after annealing of de-
posited material, results from the HMC sam-
pler on the V Sample.

Layer Mean Best 95% CI
TopLOI 0.99 1.00 1 - 0.98
BotLOI 1.00 1.00 1 - 1

a slight uncertainty in the relative fractions of dopant material in the different
segments in the reconstruction.

Figure 5.20: Comparison of the different V distributions found using XSW, EDS and EELS.

The Scandium distribution is isolated to the location where it was originally
deposited. The Scandium presence in the waveguide of the EELS is an artifact
of the overlapping peaks in analysis, this is further explained in the Appendix
.2. In Table 5.5 the resulting layer purity’s with respect to the as deposited
structure from the HMC sampler are shown. No solutions exists for intermixed
systems and only a slight uncertainty of 2.4% is present in the top layer of
interest.

Figure 5.21: Comparison of the different Sc distributions found using XSW, EDS and EELS.

The Niobium layer is also still intact and the distribution is isolated to the
top layer of interest. Again the presence of the Niobium in the waveguide
indicated by the EELS profile is caused by the overlapping Fluorescence lines
which is explained in detail in the appendix section .2. Again the no solutions
exist for an intermixed top layer of interest as seen in Table 5.5.
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Figure 5.22: Comparison of the different Nb distributions found using XSW, EDS and EELS.

Gaussian Fits

The Gaussian fitting procedure (Described in Section 4.3) results in an almost
identical distribution as the free-form parametrization distributions (Figures
5.23 for Cr/Fe/Co & 5.24 for V/Sc/Nb) , confirming the assumptions made
on the distribution shape and location of potential segregation sites.

Figure 5.23: Resulting distribution Cr, obtained with the Gaussian fitting procedure (Cr/Fe/Co
Sample). On the left side the measurement and resulting fit is shown of the XSW Measurement.

Figure 5.24: Resulting distribution of V, obtained with the Gaussian fitting procedure (V/Sc/Nb
Sample). On the left side the measurement and resulting fit is shown of the XSW Measurement
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Table 5.6: Thickness of the combined dataset.

Layer Mean Best 95%
TopWG 65.72 66.74 68.45-63.64
TopLOI 175.5 176.2 191.8-170.0
BotLOI 117.6 115.6 120.3-115.3
BotWG 382.4 383.9 383.6-381.2
BothLOI 293.2 291.7 307.2-287.8

Table 5.7: X of the combined dataset (∗105)

Layer Mean Best 95%
TopWG 4.516 4.502 4.549-4.493
TopLOI 2.393 2.394 2.404-2.385
BotLOI 9.236 0.932 0.962-0.877
BotWG 4.556 4.559 4.583-4.527

Table 5.8: Thickness of the GIXR dataset

Layer Mean Best 95%
TopWG 64.33 65.41 73.19-59.42
TopLOI 179.4 172.3 200.3-167.1
BotLOI 119.5 116.9 124.3-116.6
BotWG 383.57 382.6 384.2-380.9
BothLOI 299.4 289.2 321.6-286.6

Table 5.9: X of the GIXR dataset (∗105)

Layer Mean Best 95%
TopWG 4.229 4.449 4.483-4.537
TopLOI 2.391 2.396 2.429-2.360
BotLOI 0.937 0.942 1.012-0.818
BotWG 4.565 4.577 4.606-4.520

5.5 Efficacy of the XSW measurements

To evaluate the effect of XSW data on the accuracy of the thin film analysis we
have calculated the confidence intervals of thin film reconstructions obtained
from XRR-only, XSW-only and combined XRR-XSW analysis sampled with
the HMC sampler. The GIXR reconstructions are known to be prone to multi-
modalities and corridors of acceptable reconstructions and the addition of
extra data sets has known to reduce the number of acceptable solutions.

The XSW-only dataset is generally not used on its own since it is expected
not to yield stringent results on but as additional information is can be used
to narrow down the confidence intervals by restricting the number of accept-
able solutions. In Figures 5.25 & 5.26 respectively the relative size of the 95%
confidence intervals of the layer X and layer widths for the V/Sc/Nb Sample
are shown. The sampled parameters and the 95% confidence intervals for the
combined data set are shown in Tables 5.6 and 5.7. For the GIXR data set this
is shown in Tables 5.9 and 5.8. The figure 5.25 shows that the accuracy of the
determination of the layers optical constant can be significantly increased by
adding the XSW measurements to the GIXR measurements. Also the layer
thickness reconstruction benefits from the addition of the XSW data-set, al-
though not as much.

Figure 5.25: Relative width of the 95% confidence intervals in percentages of the layer X from
different datasets resulting from the HMC sampling of the V/Sc/Nb Sample.

Figure 5.26: Relative width of the 95% confidence intervals in percentages of the layer thickness
from different datasets resulting from the HMC sampling of the V/Sc/Nb Sample.

Both of the pyramid plots of the posterior of all structural parameters are
shown below in the Figures 5.27 and 5.28. While the combined data set poste-
rior shows inferences of convex shape and no or linear correlations between
parameter pairs, the GIXR only data set shows strong non-convex inferences,
some multi-modalities and also complex correlations are visible. Indicating
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the XSW data set is effective at eliminating the modes that are not of interest
and severely restricting the solution space.

Figure 5.27: Pyramid plot showing the structural parameters for the individual samples for the GIXR-XSW data.

Figure 5.28: Pyramid plot showing the structural parameters for the individual samples for the GIXR data.
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5.6 MCMC performance comparison

For both the HMC and Metropolis-Hastings, a long round of sampling has
been done to sample 10000+ samples of the V/Sc/Nb annealed sample mea-
surement data set to make a performance comparison. The Figure 5.29 shows
the comparison of the burn in period between the Metropolis-Hastings sam-
pling and the HMC sampling from an identical starting point. According to
Figure 5.29 it is clear that the classic style Metropolis-Hastings burn in period
in practice is much longer, even to the point that after 5 hours the loss function
equilibrium sampling value was still more then 5 times higher than at which
the HMC was sampling. The HMC was sampling at the objective value that is
comparable to the -"�% that is reached when using the deterministic opti-
mization methodology, meaning the samples where of comparable likelihood
as the most likely found parametrization.

After observing that the burn in phase had been stabilized at a level that was
considered outside the acceptable range of the loss functions value, the f
of the proposal distribution of the Metropolis-Hastings was divided by 4 to
improve the acceptance rate by making smaller steps and therefore increasing
the probability to step towards an acceptable probability. The result, starting
from the black arrow in Figure 5.29 was a very slow down sloping trend which
would not within considerable time reach the preferred sampling loss function
value. Reducing the temperature further only slowed down the acceptance
rate without going down in objective value faster.

Figure 5.29: On the left is the behavior of the burn in period is shown visible, on the right side a
zoom is shown when the f of the HM proposal distribution is cut 4.

At this point it was decided to restart the sampling in the highest probability re-
gion already found by the HMC sampler. After restarting in a high-probability
region, the Metropolis-Hastings chain manages to stay sampling at the pre-
ferred value as seen in Figure 5.30. Any increase in temperature or f did lead
again to divergence from this region.

Once in equilibrium, The behavior of the different sampling methods is very
different. The number of Metropolis-Hastings samples per unit of time is much
higher than the HMC since the HMC samples are more expensive. In turn
the correlation between successive samples for the HMC chain is much lower.
In Table 5.10 different behavioral specifications are shown of the 2 different
sampling methods. Δ-BC4? is the average distance travelled in in parameter
space per step. CBC4? is the time is takes per step. (�( are the number of
successive steps made in a correlated direction (steps per sample). Δ-(0<?;4
is the distance between each successive samples and CB0<?;4 is the average
time it takes to sample and accept such a sample.
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Table 5.10: Comparison Metropolis-Hastings
to HMC

- M-H HMC
Δ-BC4? 0.002 0.0015
CBC4? 1 sec 1

3 sec
(�( 1 90
Δ-(0<?;4 0.002 0.05
CB0<?;4 1 sec 30 sec

Table 5.11: Comparison Metropolis-Hastings
to HMC

- M-H HMC
2
∑
8>1 (-1, -8) 1.5 7.8 · 10−3

# 6.1 · 104 3.0 · 103√
f (� )2
#

5.0 · 10−3 1.6 · 10−3

Where # is the number of samples
sampled after 24 hours on a modern
desktop PC (Intel i7-2600K) .

Figure 5.30: Comparison of the Objective value of the loss function of the samples versus the sample
time for both MCMC methods.

Although the Δ-BC4? for the HMC method and Metropolis-Hastings is very
comparable, the acceptance rate for the M-H is not very high ( 1

20 ), which for
the HMC is around 70%. Leading to an average 3 times more time needed for
a single step travelled using the M-H. The most important difference however
is that for the HMC per sample on average 50 steps are made in a similar
direction, thereby overcoming the random walk behavior, leading to much
larger distances in parameter space in successive samples, in turn leading to a
much smaller auto-correlation in the sample chain.

Figure 5.31: Comparison of parameter range that is sampled during identical time periods of the
width of the top layer of the waveguide on top and the segregation vector value of the bottom
interface on bottom, for V/Sc/Nb Sample, for both MCMC methods.Equation 5.1

Expected time to travel an abitrary dis-
tance 3 by random walk:

∼ ( 3

Δ-(0<?;4
)2CB0<?;4 (5.1)

In Figure 5.31 the thickness of the top layer of interest and the segregation
vector value of the bottom interface as an example are plotted during the
sampling for the 2 different sampling methods. The dotted lines are on the
level of the maximum and minimum of the value of the designated parameter
that has been sampled for the respective method. The neighbouring values
of the HMC samples are clearly less correlated and within comparable time
a much greater part of the parameter space is explored as can be seen from
the extreme values that have been explored. Using a random walk analogy we
can compare the expected time to travel an arbitrary distance 3 from a starting
point expressed in Equation 5.1. Using the values from Table 5.10 the ratio of
expected time to travel a distance 3 is 31.125 in favour of the HMC method,
explaining the lack of explored values by the MCMC chain in the same time.

To use Equation 2.18, first the chain should enter the stationary regime where
{-8} becomes independent of 8 to get an accurate measure of the averages
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and variances of the distribution. For the HMC sampler this condition is
reached after 5000 seconds (about 150 samples), seeing that that no correlation
is present between previous points at this distance. From Figure 5.31 one
can see that the normal Metropolis-Hastings sampler is not able to explore
some regions that the HMC is able to explore, indicating that even after 60000
seconds stationary is likely not achieved.

From the values shown in Figure 5.31 that are explored by both samplers, it
is clear that the normal Metropolis-Hastings chain is not able to explore the
parameter space of acceptable values as effectively as the HMC sampler is. The
term

∑
8>1 (-1, -8) will be significantly larger for the Metropolis-Hastings sam-

pler than for the HMC since also the correlation between successive samples
is visibly much larger.

To use Equation 2.18, a stationary state of the Markov chain should be used.
Using the Metropolis-Hastings chain as an input will only yield a upper bound
on the convergence since this chain after 60k samples is not yet stationary.
Assuming that stationary is archived for the metropolis-Hastings sampler, the
convergence comparison can be calculated. Using as measure the segregation
vector to the bottom interface (shown in the bottom of Figure 5.31), the con-
vergences are calculated and shown in Table 5.11. The term f0 (�) = 8.7 · 10−5,
calculated using the HMC values for both chains show negligible contribution
to the f(�) term. The variance of the the difference between the 2 methods for
a sample time of 24 hours on a regular modern consumer PC shows a factor of
10 difference in the variance of the converging distribution, indicating a much
faster convergence for the HMC chain.
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5.7 Material dependent segregation behavior analysis

All material combinations that have been succesfully deposited and annealed
are shown in Table 5.12. The materials are listed as Pri(dopant), Sec(matrix)
and Ter(neighbouring top layer). In the standard notation this is noted as
Pri/Sec/Ter. In the column SegVec the observed interface segregation behavior
after the annealing is shown. A label B(Bottom), M(Middle), T(Top) is given
to the samples showing significant segregation to this respective interface.
Significant segregation is defined as at least a segregated fraction of 0.05 of the
total dopant material present in the structure.

In the Table 5.12 the material parameters of interest are listed and labeled by
R(atomic radius), S(Surface energy) and C(crystal structure). Displayed in the
column Δ%0A , a plus or minus is added to indicate the difference between the
dopant value of the parameter and the matrix value. The individual parameter
isolation did not yield any predictive power for the occurance of interface
segregation.

Miedema’s value for the enthalpy prediction (Equation 2.1) of the interface
segregation is shown in column �B46A

� =C4A 5 024
of Table 5.12 for the different inter-

faces. For the middle interface the material labels are defined as Pri/Sec/Ter =
A/B/C. For the bottom interface C is changed with the waveguide material
Tungsten. The model however is not formulated for the top interface since this
involves the segregation to a non-neighbouring interface. To correct for this
the �B46A1 is replaced with �B>;

�8=�
to correct for the movement of atom A to the

non-neighbouring interface and �
B46A

2 and �
B46A

3 are taken for the interface
between the Ternary material and the waveguide material. (Respectively B
and C in Equation 2.1)

Table 5.12: Table showing the individual segre-
gation behavior of the samples after annealing.

Lab Pri Sec Ter SegVec Δ%0A �
B46A

) >?
�
B46A

"83
�
B46A

�>C

A Cr Ag Cu T,B -R,C,+S -95.2 -18.1 -87.7
B Ti Zr Nb M,B -R,-S -10.6 -8.13 -8.01
C Ti Sc Nb M -R,+S -38.7 -34.5 -40.9
D Cr Fe Co T,B -9.07 -4.51 -3.58
E Fe Cr Co - 0.366 7.21 -4.75
F Co Cr Fe - C 7.51 7.09 -2.11
G Cr Co Fe T,B C 9.79 3.68 2.17
H Co Fe Cr - C -19.4 -2.14 -6.2
I Fe Co Cr - C -8.42 5.96 -3.07
J Sc V Nb - +R,C,-S 34.5 0.313 -20
K V Sc Nb M,B -R,C,+S -25.3 -29.6 -25.8
L V Nb Sc - -S 1.48 2.95 4.35
M Sc Nb V M +R,C,-S -50.5 -27.2 -21.1
N Pd Co Fe T,B C -34 -7.1 -14.8
O Pd Fe Co T,B C -11.5 0.584 -13
P Fe Pd Co - C 10.1 6.82 7.48
Q Co Fe Pd - C -2.83 7.22 -6.2
R Fe Co Pd - C -5.94 0.666 -3.07
S Co Pd Ti B C -61.1 40 2.05
T Ti Co Pd M +R -64.8 -50.8 20.5
U Ti Hf Ru B -S -136 -2.63 -11.7
V Ti Ru Hf - -S 161 126 52.2
W Ru Ti Hf - +S 30.4 5.5 50.3
X Ru Hf Ti - -R 57.6 25.1 63

In Figure 5.32 the total dopant fraction segregated to the bottom interface
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is shown versus Miedema’s interface segregation enthalpy to this respective
interface. A clear threshold behavior is visible in which the segregation tends to
occur at a negative enthalpy. The enthalpy prediction however does not seem
to hold any predictive power over the total fraction of segregated material and
even samples are present with negative enthalpy for which no segregation
occurs. The samples S and G both suffer from intermixing of the top and
bottom layer of interest that happened during the annealing process, possibly
changing the segregation enthalpy explaining the segregation while having a
slightly positive enthalpy .

Figure 5.32: Segregation intensity versus the segregation enthalpy of the top interface for the dopant
as segregant.

In Figure 5.33 the total segregated dopant fraction to the middle interface
for the different materials is shown versus Miedema’s interface segregation
enthalpy to this respective interface. Again a clear threshold behavior is visible.
The absence of segregation in samples N,D and H can be explained by the ab-
sence of an Co/Fe interface due to the intermixing of the top and bottom layer
of interest that happened during the annealing process. The segregation for
A is probably suppressed by the segregation to the Top and bottom interface
since these sites are much more energetically favourable.

Figure 5.33: Segregation intensity versus the segregation enthalpy of the top interface for the dopant
as segregant.
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The segregation fraction of the dopant for the different materials to the top
interface shown in Figure 5.34. The predicted value for this segregation site
are not as well behaved as for the middle and bottom interface, very likely
due to the rough approximation to the to different scenario that this model is
not applicable to.

Figure 5.34: Segregation intensity versus the segregation enthalpy of the top interface for the dopant
as segregant.
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6.1 Wavegudes and X-ray standing waves for the analysis of
interfacial segregation

The application of the waveguide for the generation of the standing wave has
proven to be a powerful tool in the analysis of the atomic depth profiles in thin
films. The X-ray standing wave, generated inside the waveguide effectively
modulates the fluorescence yield from even distributions of single atomic
percentages. Alternatively, these kind of reconstructions were mostly limited
to more expensive, destructive and time consuming methods like electron
microscopy or sputter-depth profile photo-electron spectroscopy.

The often noted disadvantage of the results obtained from the GIXR and
XSW measurements is the absence of any stringent measure of uniqueness
and tolerance on the individual parameters. This unique combination of the
free-form parametrization combined with a Bayesian inference allows for a
very stringent analysis into these previously ambiguous uncertainties of the
reconstruction parameters.

From the Bayesian inference analysis, the addition of the XSW measurements
has shown not only to be beneficial in the reconstruction of (low-concentration)
atomic distributions but also the decreases the uncertainty in the in the recon-
struction parameters of the layer thicknesses and densities.

The Hamiltonian Monte Carlo sampler converges notably faster than the
classical-style guess-and-check Metropolis-Hastings sampler. An accurate
parameter inference can be calculated within a couple of hours on a modern
consumer style desktop PC. Such speed increase can facilitate a wider adoption
in GIXR and XSW metrology in thin film RD departments.

No direct correlations or connections could be found in the single parameter
isolation. A found threshold-dependence of the segregation process on the
thermodynamic parameters of atoms in thin films was found on the predic-
tions made in [7] (see Section 5.7). Because the annealing temperature of 400
◦C was determined by the limitations of the equipment in the laboratory, it is
not ensured complete mobility is archived for all samples, possibly explaining
some of the anomalies in Section 5.7.

6.2 Limitations

Although the TEM measurements confirmed the resulting reconstructions and
agree with the inferred probabilities one can never be sure to have explored
the complete space of possible solutions present in the posterior since this ob-
jective is intractable in practice and not explored multi-modalities can always
be present. Although theoretically the inferred confidence intervals on the
reconstruction only serve as a lower bound, we have shown both with the sen-
sitivity analysis in Section 5.2, the interval comparisons of multiple sampled
chains and the TEM measurements in Section 5.4 that in practice the results
agree completely with the as deposited sample structures and standardized
measuring techniques.
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One more limitation of the current implementation of the XSW method is the
lack of quantitative power in characterization of atomic concentrations. Only
the relative distribution profile of the different atoms present in the thin film
can is obtained. Potentially as the XRF measuremens that are performed during
the XSW experiment have gain quantitative sensitivity, the absolute atomic
concentrations can be obtained by the calibration the XRF measurements
against thin-film samples.

Even though the results have shown the location of segregated layers can be
obtained with the sub-nanometer accuracy, there is a significant uncertainty
from the inference in the quantitative fractions of dopant in the interfaces and
layer of about 10% of the total fraction. This is an inherent limitation of the
measurement techniques and could possibly be addressed by adding more
data sets measured at different wavelengths.

6.3 Recommendations

The presence of multi-modalities in the results of X-ray-interference-based
techniques poses an issue for the widespread adaptation of these methods.
Although for the reconstructions and the inference of the parameters tolerances
of the specific samples in this thesis show no issues identifying non-physical
solutions. An interesting and useful extension of this research could be into
the independent applicability of GIXR and XSW measurement reconstructions
to a more generalized set of samples.

At the moment there was no requirement for a thorough quantitative analysis.
In the future, to broaden the application and increase the usage of the devel-
oped reconstruction methods, a quantitative analysis can be included on the
concentrations of atoms present at every depth position. This should be done
by making a model that effectively calculates the shape of the excitation beam
in the macro level of the sample and takes into account the cross sections of
the different elements and the potential secondary excitation effects.

The time duration of the sampling of the posterior at the moment can still be
hindrance in the adoption for routine reconstruction calculations that require
instant results. Therefore a logical next step would be to improve the Hamilto-
nian Monte Carlo convergence by further optimizing computation cost of the
derivatives. One approach could be to parallelize the calculations and use a
multi-core CPU.

Currently the XSW data acquisition is focused on the accurate reconstruction
thin films made of transition metals and operates best for chemical elements
with periodic numbers between 16 and 65. This is due to the ambient atmo-
sphere in which is measured and the Cu-kU radiation that is used for the
excitation. To broaden the applications to, for example biological films, also a
sensitivity in the lighter elements should be enabled. For this a step has to be
made to an in-vacuum implementation.

At the moment the segregation behavior in thin films is still a relatively un-
explored area of research. The clear threshold behavior that has been found
following the predictions made in [7] could potentially be used as a rough
predictor when to expect segregation in nano-meter thin films but the enthalpy
predictions do not show to have good predictive power in the magnitude of
segregation. Follow-up research should be guided towards the explanation of
the magnitude of the segragation behavior.
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6.4 Conclusion

The heat-induced segregation inside nano-meter thin films was characterized
for 24 material combinations. The trends of segregation of various elements
in various bi-layer system was characterized from the analysis of the atomic
profiles of low concentration dopant atoms before and after annealing of
the bi-layer system. The atomic profiles of the doping-atoms were obtained
using the combined analysis of angular dependent X-ray fluorescence (the
X-ray standing wave technique) and Grazing incidence X-ray reflectively
measurements. The segregation that was observed in the different material
combinations shows a clear threshold behavior following the predictions on
formation enthalpy of segregation in layered systems done in [7].

An optimized waveguide structure has been designed to create an X-ray
standing wave inside the thin films structure for this analysis. The special
requirements such as optimal sensitivity to segregation of doping atoms to
interfaces and the heat resistance of waveguide layers and bi-layer up to 400C
were taken into account during the designing process. The free-form thin film
parametrization was used for the analysis of the GIXR-XSW measurements.
The accuracy of the GIXR-XSW analysis was tested experimentally by the com-
parison of the reconstructions from the X-ray measurements atomic profiles to
the results of Transmission electron microscopy energy dispersive X-ray and
electron energy loss spectroscopy images. This confirmed the correctness of
the reconstructions to a sub nano-meter accuracy in the determination of the
segregation depth for all segregation positions.

A Bayesian inference was applied to the free-form parametrization recon-
structions sampled using Hamiltonian Monte Carlo methods. From the in-
ferred probabilities the confidence intervals of the individual reconstruction
parameters could effectively calculated thereby tackling ambiguity of the
reconstruction uncertainty that has long been the main hindrance in the inde-
pentent usage for complete thin film reconstuctions using only the GIXR-XSW
measurements. Hamiltonian Monte Carlo methods have been successfully
implemented to the free form reconstruction methodology and can effectively
sample the posterior of possible reconstructions from the given hybrid GIXR
and XSW data set. Due to the higher acceptance rate and lower correlation
between successive samples, the convergence has shown to be notably faster
in sampling of the posterior than classical guess and check methods.

Using the sampled posterior obtained with the Bayesian inference framework
with and without the addition of the XSW dataset, it is concluded that the
XSW dataset is not only beneficial for the reconstruction of dopant distri-
butions and other atomic distributions but also reduces the uncertainty in
the reconstruction of the optical constants and thicknesses of the individual
layers.
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.1 Appendix: Pre-Segregated depositions test samples

Bottom Position

In the figure below the measurements and the fits of the Fluorescence can be
seen for the different elements for the bottom position sample. The proposed
fit with the Chrome being located on the bottom position clearly exhibits all
features of the measured fluorescence signal.

Figure .1: The Fluorescence Fit of the optimized structure of the to the bottom position depositioned
Cr/Fe/Co sample.

Also the GIXR measurement can be explained by the fit that has been pro-
posed.

Figure .2: The GIXR Fit of the optimized structure of the to the bottom position depositioned
Cr/Fe/Co sample.
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Middle Position

Also for the middle position both the fluoresence and the GIXR measurements
can be clearly described by the as deposited structure with the Chrome being
isolated in the middle position.

Figure .3: The Fluorescence Fit of the optimized structure of the to the middle position depositioned
Cr/Fe/Co sample.

Figure .4: The GIXR Fit of the optimized structure of the to the middle position depositioned
Cr/Fe/Co sample.

Top Position

The same holds true for the top position.
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Figure .5: The Fluorescence Fit of the optimized structure of the to the top position depositioned
Cr/Fe/Co sample.

Figure .6: The GIXR Fit of the optimized structure of the to the Top position depositioned Cr/Fe/Co
sample.

.2 Appendix: TEM data analysis of the Cr/Fe/Co & V/Sc/Nb
Samples

GIXR & XSW

The sample analysis of XSW GIXR before annealing shows the measurements
can easily be explained by the as deposited structure. The GIXR fit accurately
described all thicknesses and densities of the layers as expected.
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Figure .7: GIXR fit before Annealing of Cr/Fe/Co Sample.

Also the XSW signals are accurately described by the as deposited fitted
structure.

Figure .8: XSW fit before Annealing of Cr/Fe/Co Sample.

After annealing it seems that the Fe and Co layers have become intermixed.
The GIXR percieves no more density differences between the layers and the
XSW signal seems to indicate intermixing aswell due to the more overlapping
signals for Fe and Co. The Cr XSW signal seems to indicate a complex segrega-
tion behavior which can be explained by segregation to both interfaces with
with Tungsten.
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Figure .9: GIXR fit after Annealing of Cr/Fe/Co Sample.

Figure .10: Fluorescence fit after Annealing of Cr/Fe/Co Sample.

Both before and after annealing a structure can be found which accurately
describe the measurements of these samples before and after annealing.

TEM,EDX EELS

Since the TEM analysis resources are very limited only the sample after anneal-
ing was chosen to be analysed. The sample before annlealing did not show any
unexpected results varying from the as deposited structure and is therefore
assumed to be correctly described.

From the TEM image it is visible that after annealing the Co and Fe layers
have merged. The waveguide layers seems to be intact with some oxidation
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Figure .11: Close up TEM image of the
Cr/Fe/Co Sample

Figure .12: At a distance TEM image of the
Cr/Fe/Co Sample

Figure .13: spatial HAADF spectrum accumu-
lated from the Cr/Fe/Co Sample

on the top which is only scarcely observed on the sample. There is some low
frequency roughness which is known to occur when making these samples.
When looking at the details, a small interface can be observed between the W
and the inner layers which could be the proposed Cr segregation.

From the TEM and HAADF it can be seen that the structural integrity of the
waveguide is maintained and all the layers have the widths that also the XRR
analysis reconstructed.
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The HAADF analysis shows that the waveguide structure only is compromised
of Tungsten and in the middle layers no tungsten is present, confirming the
waveguides structural integrity.

Figure .14: Elemental analysis of the top waveguide layer of the structure

Figure .15: Elemental analysis of the bottom waveguide layer of the structure

In both interfaces neighbouring the Tungsten waveguide Chrome is present
in higher concentrations than any other place in the structure indicating seg-
regation to these interfaces of the Chrome dopant. The concentration on the
bottom interface seems to be a bit higher than on the bottom, but is also seems
to be a bit broader.

Figure .16: Elemental analysis of the top interface of the structure

Whether Chrome is still present in the bottom layer of interest is inconclusive
from this analysis since the expected concentration is is equal to the sensitivity
of the HAADF machine. It also seems some oxidation has occured to the
Fe/Co compound layer that has formed due to the annealing.

The EELS analysis confirms the results found with the HAADF methods. The
Tungsten waveguide structure is uncompromised with minor oxidation on
the top. Using IELS also the oxidation of the middle layer is confirmed. Also
the intermixing of the Fe and Co is again visible using EELS.
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Figure .17: Elemental analysis of the bottom interface of the structure

Figure .18: Elemental analysis of the layer of interest of the structure

Figure .19: EELS analysis of the annealed Cr/Fe/Co sample.

The EDS analysis shows similar results. The Si and C and part of the Cr signal
are both caused by the overlap of their fluorescence peaks.



.2 Appendix: TEM data analysis of the Cr/Fe/Co & V/Sc/Nb Samples 67

Figure .23: Fitquality of GIXR measurements.

Figure .20: EDS analysis of the annealed Cr/Fe/Co sample.

Figure .21: Resulting depth profiles of the different elements resulting from the EDS analysis of the
annealed Cr/Fe/Co sample.

Figure .22: EELS peak extraction deconvolution for the Cr/Fe/Co Sample.

Sample V/Sc/Nb

Also a good fit of these structures was found leading it to be an ideal candidate
to test the robustness of this method of analysis.

H
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GIXR & XSW

The sample analysis of XSW GIXR before annealing shows the measurements
can easily be explained by the as deposited structure. The GIXR fit accurately
described all thicknesses and densities of the layers as expected.

Figure .24: GIXR fit before Annealing of V/Sc/Nb Sample.

Also the XSW signals are accurately described by the as deposited fitted
structure.

Figure .25: XSW fit before Annealing of V/Sc/Nb Sample.

After annealing it seems that the Fe and Co layers have become intermixed.
The GIXR percieves no more density differences between the layers and the
XSW signal seems to indicate intermixing aswell due to the more overlapping
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signals for Fe and Co. The Cr XSW signal seems to indicate a complex segrega-
tion behavior which can be explained by segregation to both interfaces with
with Tungsten.

Figure .26: GIXR fit after Annealing of V/Sc/Nb Sample.

Figure .27: Fluorescence fit after Annealing of V/Sc/Nb Sample.

Both before and after annealing a structure can be found which accurately
describe the measurements of these samples before and after annealing.

TEM,EDX EELS

From the TEM image it is visible the Sc and Nb layers still seem to be separate
systems. The wave guide layers seems to be almost intact. In some places
oxidation took place and a small hill emerged on the surface with a prominence
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Figure .28: Close up TEM image of the
V/Sc/Nb Sample

Figure .29: At a distance TEM image of the
V/Sc/Nb Sample

Figure .30: spatial HAADF spectrum accumu-
lated from the V/Sc/Nb Sample

of about 6nm. Since the samples have been annealed and measured 4 months
before the TEM analysis took place, this oxidation could have happened in the
meantime . There is some low frequency roughness which is known to occur
when making these samples although it is less than is present on the Cr/Fe/Co
sample. When looking at the details, a small interface can be observed between
the bottom and middle interface the by the XSW proposed V segregation.

From the TEM and HAADF it can be seen that the structural integrity of the
waveguide is maintained and all the layers have the widths that also the XRR
analysis reconstructed.
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The HAADF analysis shows that the waveguide structure only is compromised
of Tungsten and in the middle layers no tungsten is present. The EDS confirms
that the small hills are indeed Tungsten Oxide. Since the waveguide did not
show signs of disintegration right after annealing on the GIXR it is assumed
this formation happend after annealing. To confirm wether these have formed
during annealing or after annealing a remeasurement can be done to test this
hypothesis.

Figure .31: Elemental analysis of the top waveguide layer of the structure of the V/Sc/Nb sample.

The EDS also indicates no intermixing has occured between the layers of
interest. Both the Nb and Sc layers do not show any sign of intermixing.
The EDS indicates that still in the Sc layer the co-deposited Vanadium is still
present. No Vanadium is present in the Nb layer of the system.

As seem in the XSW fit, the segregation seems to have occurred to the middle
and bottom interface with a small preference for the bottom interface. This
is concluded since the intensity of the Vanadium signal is a multitude larger
than it is in the Sc layer.

The EELS analysis confirms the results found with the HAADF-EDS meth-
ods. The Tungsten waveguide structure is partly compromised with locally
significant oxidation on the top. Using EELS also the oxidation the Scandium
scandium layer is seen. The EELS also confirms no intermixing of the layers.
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Figure .32: Elemental analysis of the top interface of the structure of the V/Sc/Nb sample.

Figure .33: Elemental analysis of the bottom waveguide layer of the structure of the V/Sc/Nb sample.

Figure .34: Resulting profiles of the EELS analysis of the annealed V/Sc/Nb sample.
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Figure .35: RAW images of EELS analysis of the annealed V/Sc/Nb sample.

The EDS analysis shows similar results. The same patterns of segregation are
seen and again no intermixing of Sc and Nb are observed. The oxidation of Sc
is visible but for the other layers the background is too high to perceive any
grade of oxidation. The Si and C and part of the Cr signal are both caused by
the overlap of their fluorescence peaks and background.

Figure .36: EDS analysis of the annealed V/Sc/Nb sample.

Figure .37: Resulting depth profiles of the different elements resulting from the EDS analysis of the
annealed Cr/Fe/Co sample.
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.3 Greater Table

PriMat SecMat TerMat Seg CrystalStruc AtomicR SurfaceE HB46)01;4

Cr Ag Cu T,B BCC FCC FCC 1.28 1.44 1.28 1.2 0.828 0.944 -2.75 -18.9 -88.3
Ti Zr Nb B HCP HCP BCC 1.47 1.6 1.46 1.42 1.63 1.85 -1.13 -2.81 6.12
Ti Sc Nb HCP HCP BCC 1.47 1.62 1.46 1.42 1.09 1.85 -3.14 -32 -29.7
Cr Fe Co T,B BCC BCC HCP 1.28 1.26 1.25 1.2 1.28 1.27 0.192 -3.34 3.12
Fe Cr Co - BCC BCC HCP 1.26 1.28 1.25 1.28 1.2 1.27 1.17 7.23 0.764
Co Cr Fe - HCP BCC BCC 1.25 1.28 1.26 1.27 1.2 1.28 1.9 7.1 3.07
Cr Co Fe T,B BCC HCP BCC 1.28 1.25 1.26 1.2 1.27 1.28 2.07 4.85 8.88
Co Fe Cr - HCP BCC BCC 1.25 1.26 1.28 1.27 1.28 1.2 0.24 -3.21 -0.908
Fe Co Cr - BCC HCP BCC 1.26 1.25 1.28 1.28 1.27 1.2 2.5 4.72 2.42
Sc V Nb - HCP BCC BCC 1.62 1.34 1.46 1.09 1.52 1.85 3.07 15.6 2.61
V Sc Nb M,B BCC HCP BCC 1.34 1.62 1.46 1.52 1.09 1.85 -3.67 -35.1 -22
V Nb Sc - BCC BCC HCP 1.34 1.46 1.62 1.52 1.85 1.09 3.57 -12.4 11.6
Sc Nb V M HCP BCC BCC 1.62 1.46 1.34 1.09 1.85 1.52 0.414 -12.8 -1.41
Pd Co Fe T,B FCC HCP BCC 1.37 1.25 1.26 1.23 1.27 1.28 -2.19 -3.3 -4.83
Pd Fe Co T,B FCC BCC HCP 1.37 1.26 1.25 1.23 1.28 1.27 -0.641 4.8 -2.44
Fe Pd Co - BCC FCC HCP 1.26 1.37 1.25 1.28 1.23 1.27 2.35 6.63 13.9
Co Fe Pd - HCP BCC FCC 1.25 1.26 1.37 1.27 1.28 1.23 1.26 4.16 -0.908
Fe Co Pd - BCC HCP FCC 1.26 1.25 1.37 1.28 1.27 1.23 1.32 -2.65 2.42
Co Pd Ti B HCP FCC HCP 1.25 1.37 1.47 1.27 1.23 1.42 -4.39 53.2 8.81
Ti Co Pd - HCP HCP FCC 1.47 1.25 1.37 1.42 1.27 1.23 -9.7 -42.3 36.5
Ti Co Pd - HCP HCP FCC 1.47 1.25 1.37 1.42 1.27 1.23 -9.7 -42.3 36.5
Ti Hf Ru B HCP HCP HCP 1.47 1.59 1.34 1.42 1.71 1.75 -10.5 17.8 1.68
Ti Ru Hf - HCP HCP HCP 1.47 1.34 1.59 1.42 1.75 1.71 7.28 122 64.6
Ru Ti Hf - HCP HCP HCP 1.34 1.47 1.59 1.75 1.42 1.71 -2.36 -6.85 51
Ru Hf Ti - HCP HCP HCP 1.34 1.59 1.47 1.75 1.71 1.42 0.353 6.45 59.5



.4 Derivatives Matlab Implementation 75

.4 Derivatives Matlab Implementation

GIXR Derivative Function

1 for n=Nz:-1:1

2 A1(n,:) = c11(n,:).*A1(n+1,:) + c12(n,:).*A2(n+1,:);

3 A2(n,:) = c21(n,:).*A1(n+1,:) + c22(n,:).*A2(n+1,:);

4 end

5

6 for n=1:1:Nz

7 RM11(n+1,:) = RM11(n,:).*c11(n,:)+RM12(n,:).*c21(n,:);

8 RM21(n+1,:) = RM21(n,:).*c11(n,:)+RM22(n,:).*c21(n,:);

9 RM12(n+1,:) = RM11(n,:).*c12(n,:)+RM12(n,:).*c22(n,:);

10 RM22(n+1,:) = RM21(n,:).*c12(n,:)+RM22(n,:).*c22(n,:);

11 end

12

13 for n=2:1:Nz-1

14 A1temp = cd11(n,:).*A1(n+1,:) + cd12(n,:).*A2(n+1,:);

15 A2temp = cd21(n,:).*A1(n+1,:) + cd22(n,:).*A2(n+1,:);

16

17 A1D(n+1,:) = RM11(n,:).*A1temp + RM12(n,:).*A2temp;

18 A2D(n+1,:) = RM21(n,:).*A1temp + RM22(n,:).*A2temp;

19 end

20

21 for n=2:1:Nz-1

22 A1temp = cdd11(n,:).*A1(n+1,:) + cdd12(n,:).*A2(n+1,:);

23 A2temp = cdd21(n,:).*A1(n+1,:) + cdd22(n,:).*A2(n+1,:);

24

25 A1Dd(n+1,:) = RM11(n,:).*A1temp + RM12(n,:).*A2temp;

26 A2Dd(n+1,:) = RM21(n,:).*A1temp + RM22(n,:).*A2temp;

27 end

28

29 ro = (sqrt(epsilon(1))./(sin(theta’))).*A2(1,:)./A1(1,:);

30 R = ((abs((1-ro)./(1+ro))).^2);

31

32 dA1_dq = A1D(3:end,:);

33 dA2_dq = A2D(3:end,:);

34 dA1_dd = A1Dd(3:end,:);

35 dA2_dd = A2Dd(3:end,:);

36

37 qDn = sqrt(epsilonDn-epsilon(1)*cos(theta’).^2);

38

39 dq_dp = (qDn-q)./dp;

40

41 dr_dA1 = -(sqrt(epsilon(1))./(sin(theta’))).*(A2(1,:)./ (A1(1,:).^2) );

42 dr_dA2 = (sqrt(epsilon(1))./(sin(theta’))).*( 1./A1(1,:) );

43 dr_dq = (dr_dA1.*dA1_dq + dr_dA2.*dA2_dq);

44 dr_dp = dr_dq.* dq_dp(2:end-1,:);%.*dq_dp

45 dr_dd = (dr_dA1.*dA1_dd(:,:) + dr_dA2.*dA2_dd(:,:));%.*dq_dp

46

47 j=0;

48 for e = 1:length(BasicMat)

49 if BasicMat(e).FitDensity == 1

50 j = j+1;

51 epsilonPn=( real(dNPkArray(:,j)) +1i*imag(dNPkArray(:,j)) ).^2; % Permittivit

52 qPn = sqrt(epsilonPn-epsilon(1)*cos(theta’).^2);

53 dq_dP = (qPn-q)./dp;

54 dr_dP(j,:) = sum(dr_dq.*dq_dP(2:end-1,:),1);%*BasicMat(e).Density;

55 end

56 end

57

58 nn = 1;

59 for dd = 1:size(FitMatrix,1)

60 next = length(FitMatrix{dd,2});

61 dd_dL = FitMatrix{dd,1}/(next);

62 dr_dD(dd,:) = sum( dr_dd(nn:nn+next-1,:),1 );%*dd_dL;

63 nn = nn + next;

64 end
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XSW Derivative Function

1 for n=Nz:-1:1

2 A1(n,:) = c11(n,:).*A1(n+1,:) + c12(n,:).*A2(n+1,:);

3 A2(n,:) = c21(n,:).*A1(n+1,:) + c22(n,:).*A2(n+1,:);

4 end

5

6 R = [];

7 absAp2 = (abs( A1(1:end-1,:) ) ).^2;

8 f = abs( ( A1(1,:) + sqrt(epsilon(1)).*A2(1,:)./sin(theta’)) / 2*epsilon(1) ) ;

9

10 WF(:,:) = absAp2./(f.^2);

11

12 j=0;

13 for e = 1:length(BasicMat)

14 if BasicMat(e).FitDensity == 1

15 j = j+1;

16 AOI = find((dNPkArray(:,j)-Structure(:,2))~=0, 1, ’last’ );

17 AOI2 = find((dNPkArray(:,j)-Structure(:,2))~=0, 1, ’first’ );

18 if isempty(AOI)==0

19 epsilonPn=( real(dNPkArray(AOI2:AOI,j)) + 1i*imag(dNPkArray(AOI2:AOI,j)) ).^2;

20 qPn = sqrt(epsilonPn-epsilon(1)*cos(theta’).^2);

21 A1P(AOI+1,:) = A1(AOI+1,:);

22 A2P(AOI+1,:) = A2(AOI+1,:);

23 PhidPn=K0*qPn(:,:).*Ld(AOI2:AOI);

24 CosPhidPn=cos(PhidPn(:,:));

25 SinPhidPn=sin(PhidPn(:,:));

26 p11=CosPhidPn(:,:);

27 p22=CosPhidPn(:,:);

28 p12=(1i./(qPn)).*SinPhidPn(:,:);

29 p21=1i.*(qPn).*SinPhidPn(:,:);

30 for n = AOI:-1:1

31 if n >= AOI2

32 m = n-AOI2+1;

33 A1P(n,:) = p11(m,:).*A1P(n+1,:) + p12(m,:).*A2P(n+1,:);

34 A2P(n,:) = p21(m,:).*A1P(n+1,:) + p22(m,:).*A2P(n+1,:);

35 else

36 A1P(n,:) = c11(n,:).*A1P(n+1,:) + c12(n,:).*A2P(n+1,:);

37 A2P(n,:) = c21(n,:).*A1P(n+1,:) + c22(n,:).*A2P(n+1,:);

38 end

39 end

40 WFPn(1:end-1,:,j) = [(abs( A1P(1:AOI,:) ) ).^2;absAp2(AOI+1:end-1,:)]./( ( abs( (A1P(1,:) + sqrt(

epsilon(1)).*A2P(1,:)./sin(theta’)) / 2*epsilon(1) ) ).^2 );

41 else

42 WFPn(:,:,j) = WF(:,:);

43 end

44

45 end

46 end

47

48 for n = Nn-1:-1:2

49 A1N(MazeList(n)+1,:) = A1(MazeList(n)+1,:);

50 A2N(MazeList(n)+1,:) = A2(MazeList(n)+1,:);

51 for m = MazeList(n):-1:1

52 if m >= MazeList(n-1)+1

53 A1N(m,:) = d11(m,:).*A1N(m+1,:) + d12(m,:).*A2N(m+1,:);

54 A2N(m,:) = d21(m,:).*A1N(m+1,:) + d22(m,:).*A2N(m+1,:);

55 else

56 A1N(m,:) = c11(m,:).*A1N(m+1,:) + c12(m,:).*A2N(m+1,:);

57 A2N(m,:) = c21(m,:).*A1N(m+1,:) + c22(m,:).*A2N(m+1,:);

58 end

59 end

60 WFDn (1:end-1,:,n-1) = [(abs( A1N(1:MazeList(n),:) ) ).^2;absAp2(MazeList(n)+1:end-1,:)]./( ( abs( (A1N

(1,:) + sqrt(epsilon(1)).*A2N(1,:)./sin(theta’)) / 2*epsilon(1) ) ).^2 );

61 end

62

63 DL=0;

64 for n = size(FitMatrix,1):-1:1

65 D_Bot = Nn-DL-1;
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66 DL = DL + size(FitMatrix{n,2},2);

67 D_Top = Nn-1-DL;

68 A1D(MazeList(D_Bot)+1,:) = A1(MazeList(D_Bot)+1,:);

69 A2D(MazeList(D_Bot)+1,:) = A2(MazeList(D_Bot)+1,:);

70 for m = MazeList(D_Bot):-1:1

71 if m >= MazeList(D_Top)+1

72 A1D(m,:) = dd11(m,:).*A1D(m+1,:) + dd12(m,:).*A2D(m+1,:);

73 A2D(m,:) = dd21(m,:).*A1D(m+1,:) + dd22(m,:).*A2D(m+1,:);

74 else

75 A1D(m,:) = c11(m,:).*A1D(m+1,:) + c12(m,:).*A2D(m+1,:);

76 A2D(m,:) = c21(m,:).*A1D(m+1,:) + c22(m,:).*A2D(m+1,:);

77 end

78 end

79 WFdDn(1:end-1,:,n) = [(abs( A1D(1:MazeList(D_Bot),:) ) ).^2;absAp2(MazeList(D_Bot)+1:end-1,:)]./( ( abs( (

A1D(1,:) + sqrt(epsilon(1)).*A2D(1,:)./sin(theta’)) / 2*epsilon(1) ) ).^2 );

80 end
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