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Summary

Soft robotic endoscopes have the potential to play an instrumental role in minimally invasive
surgery, which reduces the patients’ recovery time and discomfort compared to open surgery.
However, control of these manipulators is challenging due to the computational cost of accu-
rate models. Reinforcement learning can alleviate the need for such models by directly learning
a policy instead. Unfortunately, model-free reinforcement learning techniques suffer from high
sample complexity, limiting their practical use. This work aims to outline an end-to-end pro-
cess to develop a practically viable reinforcement learning controller based on the soft actor-
critic algorithm by reducing its sample complexity. A tendon-driven continuum manipulator
is fabricated and then modelled using a non-linear autoregressive exogenous neural network.
This model is used to generate a student policy that imitates expert behaviour as well as the
policy of a model-free agent trained in simulation. The simulated agent’s policy and the stu-
dent policy are used to initialise a model-free learner, with the intent of reducing the sample
complexity by allowing the agent to focus on fine-tuning an already competent policy. The
effectiveness of these methods is evaluated by comparing the performance as a function of
learning time with that of an agent that was trained without any prior knowledge. Results indi-
cate that while the endoscope is able to learn a reaching task, the sparsity of information about
the state-space in the student policy and the model inaccuracies used to develop the simulated
agent lead to performances that were similar or worse for a given number of training steps.
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1 Introduction

Many fields of research draw inspiration from nature. From something as simple as plants
sticking to clothing inspiring the invention of Velcro (Stephens, 2007), to improving the aero-
dynamics of a bullet train based on the kingfisher bird (Kobayashi, 2005). Inspired by nature, a
new field of robotics has emerged in the past decades. This branch is called soft-robotics and is
characterised by the use of highly compliant materials. The use of these materials has allowed
a number of nature inspired soft robots to be created, such as a robotic elephant trunk (Rolf
and Steil, 2014) or a soft robotic earthworm (Chatterjee et al., 2018). The inherit compliance
of soft manipulators makes them suitable to interact with unknown environments in which
their rigid counterpart could potentially cause damage, making them useful in medical appli-
cations (Bhagat et al., 2019).

One of the medical applications where the compliance of a soft manipulator is desirable is en-
doscopy. Endoscopy is an often used form of minimally invasive surgery (MIS) or natural orifice
transluminal endoscopic surgery (NOTES). During endoscopic interventions, the endoscope,
of which an example can be seen in figure 1.1, is inserted inside of a human. Since this envi-
ronment is not (fully) known and is dynamic in nature, the compliance of the soft manipulator
makes the interaction between the robot and the human safer than with the use of traditional
rigid manipulators. Another benefit of soft manipulators is that they can navigate around or-
gans. This flexibility allows the target location to be reached through a small incision in the
body, whereas open surgery could be required when using rigid manipulators. This is one of
the reasons that lead to MIS and NOTES gradually replacing the need for open surgery, reduc-
ing the adverse effects such as patient trauma and decreases the patient’s recovery time (Gifari
et al., 2019).

Figure 1.1: Prototype soft manipulator inspired by the octopus arm used for MIS on a beating
heart (Wang et al., 2017).

1.1 Problem context

While having an infinite amount of degrees of freedom makes soft continuum manipulators
useful in a number of medical tasks, it gives rise to problems in terms of controllability due to
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the complexity involved in modelling the system. Different techniques can be used to create a
model of soft robotic links, with the most popular ones being the piece-wise constant curvature
approximation and Cosserat beam theory (Renda et al., 2017).

The piece-wise constant curvature model provides a way of modelling the statics of a contin-
uum manipulator by approximating it as (a series of) arcs with constant curvature. However,
this method is invalid under high external loading that leads to non-circular bending and is
unsuited for modelling the dynamic behaviour of the manipulator (Webster and Jones, 2010).
Being able to deal with external loads is important for the controller design as the environment
in which the manipulator will operate can exert varying loads on the manipulator. Models
based on the continuous Cosserat approach do remain valid under external load, but are com-
putationally demanding. This makes them unsuitable for real-time closed-loop control (Renda
et al., 2017), (Ho et al., 2018). Instead of solving an online computationally expensive opti-
misation problem, closed-loop control policies can be learned directly using reinforcement
learning.

Reinforcement learning can be split into two different branches: model-based and model-free
methods. Model-based reinforcement learning methods utilise or explicitly create a model of
the environment, which is then used to plan out which action to take. This is similar to how a
human would for example play the game of tic-tac-toe. Before making a move, a player often
envisions what the opposing player will do as a result of the move and evaluates the success
of the move based on this. Here, the player implicitly creates a model of the environment to
predict the outcome of a certain action. In model-free techniques, the effectiveness of a move
is evaluated based on experiences gained when previously making the same move (Gläscher
et al., 2010). If a certain move has resulted to losing the game in previously played games, the
player is less likely to perform that move the next time the same situation presents itself.

These two different ways of learning a policy have an impact on both the time it takes to learn
this policy as well as the quality of the policy. In general, the model-based learner has a lower
sample complexity, it requires fewer training steps, whereas the model-free learner has a higher
asymptotic performance (Gu et al., 2016). The main reason behind this is that the model-based
learner is limited by the quality of the model. The model-free learner is not bounded to a model,
but exploring the full space of possibilities is a time consuming process. While for some prob-
lems computational time might not be a limiting factor, it is often impractical or expensive
to train a model-free agent in a real-life setting. On the contrary, creating an accurate system
model can be challenging for dynamically complex problems, limiting the accuracy of the final
policy.

The complexity of creating accurate and computationally inexpensive models for soft manip-
ulators combined with the impracticality of model-free methods makes it such that real-time
dynamic control of this class of manipulators is still largely an open problem. The following
section aims to present the current state-of-the-art methods and how their shortcomings lead
to the work done in this thesis.

1.2 Related work

A number of different control methods have been developed for soft manipulators under quasi-
static conditions. Bieze et al. (2018) present a closed-loop controller based on a finite element
method model of their system. This controller was tested on a two section pneumatically
driven manipulator. Qi et al. (2016) shows a fuzzy based control method for a tendon-based
manipulator. The model used for the controller is based on the piece-wise constant curvature
model, making it suitable for only kinematic situations. Additionally, the controller is compu-
tationally complex, which would make it unsuited for real-time control. While control based
on the kinematics of the soft manipulator can seem to provide good control of the robot, this

Kasper Hendriks University of Twente
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form of control is not sufficient when interacting with an environment that can cause dynami-
cal situations to occur.

Instead of using a kinematic model, Falkenhahn et al. (2017) present a way to create a controller
based on the dynamical model of a soft bionic handling assistant. This is a three section soft
manipulator where each section is actuated using three air chambers. The dynamical model
of the assistant is created based on the Euler-Lagrangian formalism for a concentrated mass.
Based on this model, a cascaded control strategy is used to control the manipulator. In this
setup, the control for the air chambers is decoupled from that of the manipulator dynamics, as
the dynamics for the bellows is much faster than the dynamics of the manipulator. This model-
based controller was shown to achieve good results and was able to damp out an artificially
generated swing motion in real-time. However, during the experiments hardware limitations
were often reached which made it such that the inner loop pressure could not reach the desired
pressures, which lead to a larger end-effector error than predicted.

Even when a sufficiently accurate dynamical model is created, a high amount of sensory data
is required to be able to completely define the state of the robot. This is because the state is not
fully defined by actuator positions, as the robot’s shape is influenced as a result of interactions
with the environment. For this reason, different model-free control methods are developed.
The work done by Yip and Camarillo (2014) shows the implementation of a model-free control
method on a tendon-driven soft manipulator. The used method bases its ideas on control of
rigid robots, where the robot Jacobian is used to define actuator velocities based on desired
end-effector velocity. However, in the context of soft manipulators in a constrained environ-
ment, the Jacobian cannot fully be measured as a result of the infinite amount of degrees of
freedom. Instead, an initial Jacobian is estimated before starting the robot. During operation,
the actuator inputs are used to solve a minimisation problem to update the Jacobian based on
measurement data. This method was shown to be able to accurately track a reference in free
space, but showed a larger error when it was used in constrained environments. Additionally,
the controller was found to only be usable in static environments, which makes it unsuitable
for some medical interventions that pose a highly dynamic environment.

Reinforcement learning

Both the aforementioned model-based and model-free methods require solving online opti-
misation problems. While for small and relatively simple systems this can sometimes be done
in real-time, it is difficult to create real-time closed-loop control methods for more complex
systems. Instead, Thuruthel et al. (2019) propose to directly learn the closed-loop control pol-
icy using reinforcement learning. A two section pneumatic manipulator in which only the first
section is actuated is used for the experiments. The forward dynamics of this manipulator are
learned by giving a set of random motor inputs and measuring the resulting state. This data is
then used to train non-linear autoregressive network. Using these learned dynamics, optimi-
sation techniques can be used to find the control inputs required to drive the robot to a certain
state. Despite the computationally efficient model, this optimisation cannot be used in closed-
loop form. To obtained the closed-loop policy, a guided policy search combined with trajec-
tory optimisation is used in an iterative fashion, where the set of allowable trajectories changes
depending on the currently learned policy. Combing these methods allows a sufficiently well
performing closed-loop control policy to be developed in around two hours.

Another method for model-based reinforcement learning is to learn the inverse kinematics of
a specific task using programming by demonstration, as presented by Chen et al. (2016). Here,
a practitioner operates a single segment tendon-driven soft manipulator to perform a certain
task. From this data the inverse kinematics are estimated using Gaussian Mixture Models. To
make the model more robust, real-time adaptations to the learned dynamics are performed
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using a reinforcement learning algorithm. This procedure is used in simulation to perform two
tasks. The results of both these tasks were promising, but they have not been implemented on
an experimental setup.

Reducing sample complexity

To achieve a better performance, model-free reinforcement learning methods can be investi-
gated. However, model-free reinforcement learning methods suffer from a high sample com-
plexity, making them impractical to use. Therefore, different techniques are developed to try
and reduce the training time.

Satheeshbabu et al. (2019) present a model-free reinforcement learning technique that is used
to control a single section pneumatic soft continuum robot. Deep-Q learning together with
experience replay is used to reduce the training time associated with this high dimensional
problem and ensure that the policy does not control the system to a local minimum. Instead
of training the policy on the experimental setup, it is trained on a simulation based on the
Cosserat rod model. The resulting policy was tested in simulation as well as on the experi-
mental setup. The experiments on the setup were done with the policy in open-loop mode.
These experiments showed that the system was able to perform a reaching task even with an
unmodelled load on the end-effector. However, the error achieved on the experimental setup
was larger than that in simulation and improvements can be made by executing the policy in
closed-loop form.

Instead of learning a policy in simulation and then executing it on a real robot, another way to
reduce the learning time for a certain task is to have multiple agents learn at the same time. Gu
et al. (2016) describe a method to learn a certain task quicker in the case time is the limiting
factor. This method uses a number of agents that work together to learn a certain task. One of
these agents is the central learner that performs the policy updates. The other workers collect
data while adhering to the central policy and send this data back to the central learner. The
decentralisation of the policy updating makes it such that the worker robots can operate in
real-time, as no time has to be spent learning based on the gained experiences. This idea was
implemented on rigid serial manipulators, which learned how to open a door.

Apart from using simulation or multiple agents, research is done to find more sample efficient
model-free reinforcement learning algorithms. Haarnoja et al. (2018b) present a novel algo-
rithm called soft actor-critic that is designed to fulfil this goal. Unlike most reinforcement learn-
ing algorithms, this algorithm does not only try to maximise the cumulative reward, but also
the entropy. The combination of trying to maximise reward while being as random as possible
has the advantage that it brings structure to the exploration phase. The agent is incentivised
to widely explore the state-space, but will give up on regions that result in a poor reward. This
algorithm is run on various simulated benchmark environments and is shown to outperform
existing state-of-the-art algorithms in both performance as well as sample complexity.

Haarnoja et al. (2018c) uses a slightly modified version of the soft actor-critic algorithm to con-
trol the locomotion of the Minitaur, a four legged robot. After approximately two hours of train-
ing the agent has learned a policy with which it is able to walk. This policy is shown to generalise
well, allowing the robot to walk in unseen environments. The algorithm is also deployed to ma-
nipulate a robotic hand with nine degrees of freedom that needs to close a valve. Using purely
images as feedback the system is able to learn the task in roughly 20 hours. When feeding in
the valve positions directly this time was reduced to three hours, compared to the seven and a
half hours another state-of-the-art method needed.

Nagabandi et al. (2017) present a different approach to reducing the sample complexity. In this
approach, a model-free reinforcement learning agent is initialised with a model-based pol-
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icy. The model-based reinforcement learning method is used to learn a number of simulated
benchmark tasks to a sufficient degree. In some cases, the model-based method requires only
14% of the samples the model-free agent requires to reach the same performance. Initialising
the model-free agent with an already competent model makes it such that the agent can work
on fine-tuning its performance. This is advantageous when it comes to sample complexity. Ad-
ditionally, starting with a competent model can also reduce damage the experimental setup
could cause, e.g. a robot learning how to walk would fall over far less frequently.

1.3 Opportunity for research

Different methods have been employed to control a soft continuum manipulator. One class
of these methods is the static control, based on the kinematics of the manipulator. While this
can achieve satisfactory results in the case where the robot moves quasi-statically, interactions
with the environment and the inherit compliance of the robot are likely to cause dynamical
situations to occur, decreasing the performance achieved by the controller. This makes it such
that these controllers are not suitable to be deploying in a practical setting.

Another class of methods is the dynamical control of the manipulator. This can either be done
model-free or model-based. The model-based approaches face a number of challenges. Cre-
ating a model of a highly compliant manipulator is complex due to a number of non-linear
effects. Even when a sufficiently accurate model is created, high dimensional sensor data is
required to accurately define the state of the robot. Additionally, the state-of-the art models are
too computationally expensive to be used for real-time control. Model-free techniques have
also been used to control the manipulator, but these have only been shown to work in a static
environment, making them unsuited to be used in a practical environment.

Model-based reinforcement learning techniques have been employed to control a soft manipu-
lator. The computational complexity of using a model-based technique is circumvented by the
use of reinforcement learning techniques as these can be used to learn a control policy directly,
rather than having to solve an optimisation at every time step. A model-based reinforcement
learning method has been shown to be able to control a two section pneumatically actuated
soft manipulator using only two hours of learning time.

Control based on model-free reinforcement learning is mainly focused on decreasing the train-
ing time as this is a known limitation for practical implementation. However, in different sce-
narios it is shown that the model-free learner does achieve a higher performance than the
model-based learner, which is why there is still interest in this technique. While a number of
different techniques are shown to be effective in decreasing the sample complexity of model-
free learning techniques, little research has been done to combine these techniques with the
control a soft continuum manipulator.

This leads to the opportunity for research in this field. While model-free fine-tuning as well as
the soft actor-critic separately have been proven to be effective at reducing sample complexity,
the combination of the two has not been implemented on a tendon-driven endoscope. There-
fore, it is interesting to see whether these techniques can be used to achieve a practically viable
controller for a tendon-driven continuum manipulator.

1.4 Research question

One of the benefits of using model-free reinforcement learning techniques is that the complex
modelling of soft robotic manipulators can be skipped. While not needing a model of the
system might sound appealing, the model can be used to decrease the sample complexity of
the model-free agent to make it practically viable. The aim of this research is to work towards
a start-to-end process where both the time spent modelling the system as well as the time
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spent executing experiments on the system is minimised. While the framework provided for
this process is generally applicable to a wider variety of problems, it is applied to a single
segment tendon-driven continuum manipulator. Work towards this goal is done by answering
the research question:

How can model-based techniques be combined with model-free reinforcement learning to re-
duce the sample complexity of learning to control a single segment tendon-driven continuum
manipulator, while simultaneously keeping the time spent modelling the system at a minimum?

The following sub-questions are used to answer this research question:

How can a single segment tendon-driven continuum manipulator be modelled using a non-
linear autoregressive exogenous model for the purpose of initialising a model-free agent?

How can the model-free reinforcement learning algorithm soft actor-critic be used to control a
single segment tendon-driven continuum manipulator to move between points in its workspace?

To what degree is the sample complexity of a model-free reinforcement learning agent reduced
when initialised based on the obtained system model?

1.5 Approach and thesis structure

The rest of this thesis is structured to answer the aforementioned research questions.
Chapter 2 - Background contains the theoretical background of the rest of this work. This starts
with the theory on multilayer perceptron networks. This is then used to describe the non-
linear autoregressive exogenous (NARX) network, which uses a similar structure. Reinforce-
ment learning is discussed next, with the emphasis on deep reinforcement learning and the
soft actor-critic algorithm. Finally, the theory supporting the behaviour cloning algorithm is
explained.
Chapter 3 - Methods contains the methods used throughout this work. This chapter starts with
an explanation of the experimental setup and a (re)design of the endoscope. Afterwards, the
methodology used to create a system model is discussed. The methods used to create expert
demonstrations using this model, as well as the method used to train a policy using these
demonstrations is outlined next. The chapter concludes with the method used to train and
evaluate a model-free agent, both in simulation as well as on the experimental setup.
Chapter 4 - Results presents the results following the same structure of the previous chapter.
This starts with demonstrating the hysteresis effects resulting from redesigning the endoscope,
then shows the competence of the created model and finally demonstrates the performance of
the RL agent when initialised randomly or using the model-based methods.
Chapter 5 - Discussion gives an interpretation and discussion regarding the achieved results.
After this, a few points of improvements with respect to the acquisition of the results are dis-
cussed.
Chapter 6 - Conclusion presents and answer to the research question and concludes this thesis
with recommendations for future work.
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2 Background

This chapter provides the background information necessary to understand the used meth-
ods. This starts with a section on multilayer perceptron networks, as these are used in almost
every other part of the thesis. The second section builds on the theory of multilayer percep-
tron networks and shows how these can be used to form a non-linear autoregressive exoge-
nous (NARX) network. The third section gives a (brief) overview of reinforcement learning,
focussing on the soft actor-critic algorithm. The last section shows the concepts behind be-
haviour cloning, which forms the bridge between the created system model and model-free
reinforcement learning in the context of this research.

2.1 Multilayer perceptron

Neural networks are used throughout this work. This section provides the theory regarding
neural networks relevant to understanding the rest of this thesis. The content of this section is
based on the book Pattern recognition and machine learning by Bishop (2006).

A multilayer perceptron (MLP) provides a (non-linear) mapping between a vector of inputs and
outputs. The general architecture for such a network is shown in figure 2.1. This figure shows
three different types of layers: the input layer, the output layer and a variable number of hidden
layers. These layers consist of a number of nodes and are connected using weights, which are
represented as circles and links respectively. The two additional blue nodes connected to the
hidden layer and output layer are the biases for these layers that act as an offset, conceptually
similar to how b acts as an offset in y = ax +b.

Figure 2.1: Network architecture of a fully connected multilayer perceptron network (Bishop, 2006).

Finding how the input vector is mapped to the output is done by calculating the values of each
of the nodes in the network. The value of the j th node in the N th layer that is connected to D
nodes in previous layer can be calculated as:

z j = h

(
D∑

i=1
w (N )

j i xi +w (N )
j 0

)
(2.1)
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In this equation, h(·) is the activation function associated with neuron z j , w (N )
j i are the weights

associated to the i nodes in the previous layer and w (N )
j 0 is the connected bias node. This equa-

tion holds for every node in the network and can be chained together to find the value of any
node in the network.

This equation can also be written in matrix-vector form to obtain the vector Z ∈ R(M×1) that
contains the activations for the neurons in a layer. The activation function can be applied to
this vector in element wise fashion to determine the value of each neuron. Finding the values
of a vector of nodes Z that is connected with a vector of nodes X using weights W can be done
using:

Z =W X (2.2) z1
...

zm

=

 w10 · · · w1D
...

. . .
...

wM0 · · · wMD


 x0

...
xD

 (2.3)

Where Z ∈R(M×1), W ∈RM×(D+1) and X ∈R(D+1)×1.

2.1.1 Training a network

While it is shown how a network forms a mapping between the input and output, this map-
ping is unlikely to yield any meaningful results given a random set of weights. To use a neural
network in practice, the network has to be trained. Given a set of inputs and corresponding tar-
gets, the network is trained to minimise some error function that is dependent on the weights
of the network, E(w). Minimising this function is done iteratively, where each step is generally
divided in two parts.

The first parts is evaluating the gradient of the error with respect to the weights, ∇E(w). This
is most often done using some form of backpropagation. The backpropagation algorithm con-
sists of two passes through the network. During the forward pass the activations of all hidden
and output neurons is determined. Errors based on these activations are then propagated back
through the network to evaluate the gradient of the error function.

The second step is to use this gradient to update the network weights. One method to train the
weights of a neural network is stochastic gradient descent. In stochastic gradient descent, the
network weights are updated as:

w(t+1) = w(t ) −η∇En
(
w(t )) (2.4)

where η is the learning rate and En
(
w(t )

)
the error function evaluated for data point n. This

method updates the weights by ‘stepping’ in the direction where the gradient of the error func-
tion decreases steepest, driving the error function to a (local) minimum. While many different
training algorithms have been developed, these algorithms often utilise these two core con-
cepts.
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CHAPTER 2. BACKGROUND 9

2.2 NARX

System identification can be done using a NARX model. In this section, the theory behind the
NARX network is explained. The contents of this section are based on the work of Boussaada
et al. (2018).

A NARX network is a type of recurrent neural network that can be used for the prediction of
a non-linear time series, making it a useful tool for predicting non-linear system dynamics.
The network has two distinct modes of operation: series-parallel and parallel. A simplified
architecture of both networks is shown in the figure 2.2.

(a) (b)

Figure 2.2: Different network architectures of a NARX network (Boussaada et al., 2018). (a) Series-
parallel architecture. (b) Parallel architecture.

In this figure, the input to the network is denoted as x(t ), the output as y(t ) and the estimated
output as ŷ(t ). The TDL blocks signify tapped delay lines. Assuming these delay lines have
an input vt , the output is

{
vt−i , . . . , vt− j

}
, where i is the minimum delay and j the maximum

delay. The limits of these tapped delayed lines are problem specific hyperparameters. The dif-
ference between the two architectures is the role of the predicted output. In the series-parallel
configuration, the output is predicted based on a set of known input data and previous states
as:

ŷ(t +1) = F
(
x(t −dx,i ), x(t −dx,i −1), . . . , x(t −dx, j ),

y(t −dy,i ), y(t −dy,i −1), . . . , y(t −dy, j )
) (2.5)

Where dx,i and dx, j are the minimum and maximum input delay and dy,i and dy, j the mini-
mum and maximum output delay. This architecture is used to reduce the single-step prediction
error, as it uses both the true input and output data.

The parallel architecture uses its own predicted state in the prediction of the future states as:

ŷ(t +1) = F
(
x(t −dx,i ), x(t −dx,i −1), . . . , x(t −dx, j ),

ŷ(t −dy,i ), ŷ(t −dy,i −1), . . . , ŷ(t −dy, j )
) (2.6)

This makes the parallel architecture suitable for long-term time series prediction as the net-
work can, given a list of inputs, predict not only the output at the next step, but also at all future
steps for which input is available.

Training the network is done in two stages, each stage utilising the strengths of one of the out-
lined network architectures. First, the series-parallel network is trained utilising both input u
and state y data. After achieving a satisfactory performance, the network is closed, converted
to the parallel architecture, and trained further. This time, only the input data is required, as
the estimated states ŷ are fed back into the network for estimations of future states. When
deployed, only the parallel archetype is used given the unavailability of the states y .
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2.3 Reinforcement learning

This section provides the theoretical background behind reinforcement learning. After an in-
troduction to the important concepts, the focus is shifted to deep reinforcement learning tech-
niques, with the emphasis on the soft actor-critic algorithm. This section is based on the book
Reinforcement learning: An Introduction by Sutton and Barto (2018) and OpenAI Spinning up
by OpenAI (2018).

Reinforcement learning is a branch of machine learning where an agent learns how to act
through interaction with the environment. The agent interacts with the environment by taking
actions, which transition the agent to certain states and are associated with a certain reward.
This reward gives the quality of a state-action pair and is used as a basis for the agent to for-
mulate correct behaviour. The overall goal for the agent is to maximise the total reward it ac-
cumulates over an episode. The agent maximises this goal by developing a policy, which is a
mapping between the environment state and a corresponding action.

2.3.1 Environment interaction

The image in figure 2.3 shows the basic interaction between an agent and its environment.
The agent is able to take actions that are part of its action space, which can be either discrete
or continuous. An example of a discrete action space is an agent that needs to swing up a
pendulum but can only do so by applying maximum torque in either direction or no torque at
all. The continuous variant of this action space would allow the agent to also apply any torque
in between the two extrema. After applying action at , the state of the environment changes.
This change is fed back to the agent by means of a state st and a reward rt . The state provides
a description of the agent in its environment. To prove convergence, this state needs to obey
the Markov property. This means that the state transition probability is completely determined
by the current state and does not require information about previous states. The reward rt is
given to the agent as a result of its previous action. In practice, this reward is prescribed by a
(hand-engineered) reward function R(s, a, s′) which maps the current state, the current action
and state resulting from this action to a scalar value.

Figure 2.3: Agent-environment interaction (OpenAI, 2018).

2.3.2 Policy

In order to fulfil the goal of maximising cumulative rewards, the agent needs to learn how to
act in every possible situation. In other words, the agent needs to develop a policy π. This pol-
icy forms the mapping between the current state and the action the agent should take in that
state. In tabular Q-learning this policy is a look-up table, while in deep reinforcement learning
parametrised policies are used. These are policies which depend on a set of parameters θ, such
as, for example, a neural network that depends on a set of weights. Throughout the reinforce-
ment learning process, the goal is to adjust the parameters of the policy to be able to obtain a
maximum accumulated reward or return.
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When considering the class of episodic tasks, an episode or rollout is denoted by the letter τ.
The episode return is the sum of rewards gained throughout each step of the episode.

R(τ) =
T∑

t=0
rt (2.7)

Since the goal of the agent is to optimise this return, reinforcement learning algorithms of-
ten make use of discounting when calculating the expected future return. This is done using
a discount factor γ ∈ (0,1). While this formally helps with the convergence of the algorithm,
it also makes intuitive sense. Having a γ close to one makes it such that the agent takes fu-
ture expected rewards into account heavily, whereas a low γ leads to a greedy agent that only
cares about immediate reward without much consideration for its long term future. Adding the
discount factor changes the episode return to:

R(τ) =
T∑

t=0
γt rt (2.8)

The optimal policy is the policy that maximises the expected return when acting according to
that policy:

π∗ = argmax
π

Jπ (2.9)

Where (·)∗ denotes the optimal variant of a certain variable or function approximator and Jπ

denotes the expected return acting according to policy π.

2.3.3 Value functions

While equation 2.9 shows the formal definition of the optimal policy, it gives no way of acquir-
ing this policy. Finding the optimal policy is done by making use of value functions. Value
functions indicate how good (or bad) a certain state or state-action pair is.

The on-policy value function V π(s) describes the value of a state as the expected return if the
agent were to start in state s and act according to its current policy π.

V π(s) = E
τ∼π

[
R(τ)|s0 = s

]
(2.10)

The action-value function, or Q-function, is defined similarly. This function describes the value
of a certain state-action pair as the expected return given the agent starts in state s, takes action
a (which can be off-policy) and from then onwards acts according to its current policy:

Qπ(s, a) = E
τ∼π

[
R(τ)|s0 = s, a0 = a

]
(2.11)

Closely related to these functions are the optimal value function and optimal Q-function, which
are similar but assume the agent acts according to the optimal policy:

V ∗(s) = max
π

E
τ∼π

[
R(τ)|s0 = s

]
(2.12)

Q∗(s, a) = max
π

E
τ∼π

[
R(τ)|s0 = s, a0 = a

]
(2.13)
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These optimal value functions are related to one another by:

V ∗(s) = max
a

Q∗(s, a) (2.14)

The value functions can be used by the agent as a basis for developing its behaviour. The opti-
mal action-value function can be used to find the optimal action by taking the action that leads
to the highest expected return:

a∗ = argmax
a

Q∗(s, a) (2.15)

The four mentioned value functions follow the Bellman equations. These equations are used
throughout reinforcement learning as they help in finding the value of a certain state s when
the value of the next state s′ is known. This can be done by noting that the value of a state is
dependent on the reward the agent is likely to receive as a result of being in that state combined
with the value of the state you will transition into:

V ∗(s) = max
a

E
s′∼P

[
r (s, a)+γV ∗ (

s′
)]

(2.16)

where s′ ∼ P denotes that the resulting state s′ is sampled from a distribution P describing the
environment. While the obtained reward is R(s, a, s′), it is abbreviated to r (s, a) for compact-
ness.

Similarly, the Bellman equation for the optimal action-value function is found by noting that
the optimal Q-value of a state is the expected value of the received reward combined with the
expected Q-value as a result of the optimal future action.

Q∗(s, a) = E
s′∼P

[
r (s, a)+γmax

a′ Q∗ (
s′, a′)] (2.17)

2.3.4 Soft-actor critic

While this section has so far outlined the theory on which most reinforcement learning algo-
rithms are based, no way of practically implementing these ideas has been discussed. Many
different algorithms are developed that help implement reinforcement learning in a practi-
cal setting. This section aims to outline common ideas that are prevalent throughout most of
these algorithms, but focusses on showing the soft-actor critic (SAC) algorithm, as originally
published by Haarnoja et al. (2018b). While newer implementations of the SAC algorithm are
different than this version, the presented version is the one that is implemented in Stable Base-
lines (Hill et al., 2018) and is used throughout this research.

Soft-actor critic, is a deep reinforcement learning algorithm that allows the agent to develop
a stochastic policy in an off-policy way. A fundamental concept that is used when doing this
is the use of entropy regularisation. The entropy of a distribution gives a measure of the ran-
domness of that distribution. The entropy of a variable sampled from a uniform probability
distribution is highest, as the outcome is most difficult to predict. On the other hand, flipping
a heavily weighted coin is the example of a process with low entropy, as the outcome is usu-
ally unsurprising. Given a continuous random variable x sampled from a probability density
function P , the entropy is defined as:

H(x) = E
x∼P

[
− log

(
P (x)

)]
(2.18)
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While in many algorithms the optimal policy is the one that maximises the expected return, the
optimal policy when using entropy regularisation does not only maximise the expected return,
but also the entropy of the policy, such that:

π∗ = argmax
π

E
τ∈π

[ T∑
t=0

γt
(
R(st , at , st+1)+αH

(
π(·|st )

))]
(2.19)

The trade-off between maximising expected return and entropy is denoted by the parameter
α, the temperature parameter. The ‘regular’ reinforcement learning objective can be recovered
from this augmented form by setting the temperature equal to 0. Tuning this parameter is not
only task dependent, but the desired value can even change during training for one specific
task. This is a result of the policy evolving over time, changing the expected return throughout
a training session. This in turn changes the relative importance of maximising expected return
and entropy, possibly leading to adverse effects on the learning process. To prevent this, the
temperature coefficient can be automatically adjusted, as shown in (Haarnoja et al., 2018c).
The effect of properly weighing the importance of expected return and entropy of the policy is
that the agent will still quickly give up on parts of the state-space that yield little reward. Addi-
tionally, the promising parts of the state-space are broadly explored, by also taking suboptimal
paths every so often. This is shown to lead to an improved exploration, reducing the agent’s
overall sample complexity.

As the algorithm’s name suggests, the agent makes use of an actor-critic structure. This means
that the agent makes use of two structures: an actor and a critic. The actor dictates how the
agent should behave. The behaviour of the actor is influenced by the critic, which provides
feedback to the actor based on its behaviour. This structure is shown in figure 2.4.

Figure 2.4: General structure for actor-critic based methods (Morozs, 2019).

Solving a reinforcement learning problem using the actor-critic structure comes down to opti-
mising both the actor and the critic. For the actor to properly learn from its behaviour, the critic
has to be able to properly assess the quality of a certain action in a given state. This core idea
holds throughout all actor-critic based algorithms, but the precise form and implementation is
variable.

Critic networks

In soft actor-critic, the critic network is optimised using a replay buffer, D. The replay buffer
is a set of previous experiences of the agent. Whenever the agent takes an action, the state
transition tuple containing the initial state, the action, the resulting reward, the resulting state
and whether this state is terminal, is stored into the replay buffer. The size of the replay buffer
is problem dependent and often needs to be tuned. Whenever the replay buffer is too small,
only recently acquired data is used and the agent is likely to overfit. On the other hand, when
the buffer is too large there may be many transition tuples that were generated by a policy far
inferior to the current one, which can slow down learning. The fact that the SAC algorithm
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optimises networks based on this buffer makes it such that it is an off-policy algorithm, as the
transition tuples can be generated by an older version of the agent’s policy.

The critic is trained using two mean-square based loss functions. The first loss function is based
on the Q-value and uses equation 2.17 as a basis. The loss function gives an indication of how
close the Q-value function under network parameters φ is to satisfying the Bellman equation.
This loss function is defined as:

targetQ = r (s, a)+γ(1−d)V πθ
ψ

(
s′

)
(2.20)

LQ (φ,D) = E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)− targetQ

)2
]

(2.21)

A similar loss function is defined for the value function, this time using the Bellman equation
for the value function as in equation 2.16 as a basis:

targetV =Qφ(s, a)−α log
(
π(a|s)

)
(2.22)

LV (ψ,D) = E
(s,a,r,s′,d)∼D

[(
V πθ
ψ − targetV

)2
]

(2.23)

A problem that arises when updating the network parameters using equation 2.20 is that the
target is a function of the network parameters of the value function, ψ, which in turn is a func-
tion of the Q-value network φ. This can make the process of minimising these unstable. To
prevent this, a second network is created that is similar to the primary network approximat-
ing the value function. This target network changes more gradually than the primary network,
counteracting this instability. In the soft actor-critic algorithm Polyak averaging is used to up-
date the target network every time the primary network is updated. The update rule for this
is

ψtarget = ρψtarget + (1−ρ)ψ (2.24)

where ψtarget and ψ are the network parameters of the target network and the primary network
respectively and ρ is a hyperparameter determining the similarity with the previous iteration
of the target network parameters.

Another problem that occurs often is that the critic network tends to overestimate the actual
value function. This can lead to problems, as basing actions on an incorrect value function can
lead to undesired behaviour. In order to counter this, SAC uses two separate networks to ap-
proximate the Q-value function. The minimum of the two Q networks is used when determin-
ing the target in equation 2.22. Regressing to the smaller of the two Q-values helps preventing
overestimating the value function.

Actor network

The policy parameters θ are determined such that they maximise the value function at each
state. Since the value function is augmented with the entropy term, the policy should maximise
both the expected future returns as well as the expected future entropy:

max
π

E
a∼π

[
Qπ(s, a)−α log

(
π(a|s)

)]
(2.25)
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Ideally, equation 2.25 should be solved by performing gradient ascent with respect to the policy
parameters. However, the expectation over actions, Ea∼π, depends on the policy parameters.
This makes it often impossible to find the gradient of this expectation. To work around this
issue, the reparametrisation trick is used. This entails creating a function that allows the ex-
pectation over actions to be written as something that is independent of the policy parameters,
such that its gradient can be determined. In soft actor-critic, this is done using a squashed
Gaussian:

ãθ(s,ξ) = tanh
(
µθ(s)+σθ¯ξ

)
(2.26)

Where µθ and σθ are the mean and standard deviation of the Gaussian respectively and ξ ∼
N (0, I ). Using this, equation 2.25 can be rewritten to

max
π

E
ξ∼N

[
Qπ

(
s, ãθ(s,ξ)

)−α log
(
πθ

(
ãθ(s,ξ)|s))] (2.27)

for which the gradient of the expectation can be found because the expectations over the ac-
tions is now rewritten to something independent of policy parameters (Kingma and Welling,
2014).

On top of this, the Q-value used in equation 2.27 should be replaced with one of the critic
networks. In the case of SAC, the first Q-value network is used. This leads to the final update
rule to be used in gradient ascent:

max
θ

E
s∼D
ξ∼N

[
Qφ1 (s, ãθ)−α log

(
πθ(ãθ|s)

)]
(2.28)

While SAC learns a stochastic policy, Haarnoja et al. (2018b) shows that during evaluation better
results are achieved when using a deterministic variant of the policy. This deterministic variant
is achieved by taking the mean of the action distribution as predicted by the actor.

The pseudocode for the algorithm implemented in Stable Baselines is shown in algorithm 1.
The equations used to update the Q-value and value functions are approximated by sampling
transition tuples from the replay buffer.
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Pseudocode soft actor-critic algorithm

Initialise:
Emtpy replay buffer: D

Actor network: πθ
Critic networks: Qφ1 , Qφ2 , Vψ

Target value network: Vψtarget

while not converged do
Observe state s and select action a ∼πθ(·|s)
Execute a in the environment
Observe resulting state s′, reward r and done signal d
Store transition tuple (s, a,r, s′,d) into the replay buffer D

If s′ is terminal, reset the environment state

if time to update then
for each iteration do

Randomly sample a batch B of transitions tuples from the replay buffer

Update value function using one step of gradient descent:

∇ψ
1

|B |
∑
s∈B

1

2

(
Vψ (s)−min

i=1,2
Qπθ

i (s, ã)−α log
(
πθ(ã|s)

))2

(2.29)

Update the Q-functions using one step of gradient descent:

∇φi

1

|B |
∑

(s,s′,a)∈B

1

2

(
Qπθ
φi

(s, a)−
(
r (s, a)+γV πθ

(
s′

)))2
(2.30)

Update policy using one step of gradient ascent:

∇θ
1

|B |
∑
s∈B

(
Qπθ

1

(
s, ãθ(s)

)−α log
(
πθ(ãθ(s)|s)

))
(2.31)

Update target value network:

ψtarget = ρψtarget + (1−ρ)ψ (2.32)

end
end

end

Algorithm 1: Pseudocode for the soft actor-critic algorithm. Adapted from (OpenAI, 2018)
based on (Haarnoja et al., 2018b).
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2.4 Behaviour cloning

The sample complexity of a model-free learner can be decreased by initialising the agent with
prior knowledge about the task rather than having to learn it from the ground up (Nagabandi
et al., 2017). One way of giving the agent prior information is to use behaviour cloning. This
section outlines the theory for the specific behaviour cloning procedure used in this work.

During behaviour cloning, it is the goal for a student to clone the behaviour of an expert. To do
this, the expert executes a task on the environment recording all action and observations. The
goal of the student is to learn how to act in the same way as expert, by taking the same action
given the same observation. The actor network is trained to act similarly to the expert in the
context of an actor-critic architecture. Treating the actions as labels and the observations as in-
puts, this problem can be formulated as a supervised learning problem. The goal when doing
supervised learning is to minimise a defined loss function. This loss function gives a measure
of how different the policy of the student is compared to the behaviour of the expert. While
a number of different loss functions could be used (Pajarinen et al., 2018), the specific imple-
mentation used in this thesis minimises the mean square difference between the action shown
by the expert demonstrations and the action predicted by the policy. Assuming the student
network is parametrised using θ, the goal of behaviour cloned is defined as

argmin
θ

∑
(st ,at )∈D

(
at −a∗

t

)2 (2.33)

Where D is a dataset containing expert transitions and a∗
t the action predicted by the student

policy.
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3 Methods

This chapter provides an overview of the methods used to answer the research questions. The
first section shows a schematic diagram representing the general outline of the process. The
second section shows the experimental setup and its capabilities. The third section shows the
methods used to develop a system model using minimal modelling time. The fourth section
shows how this system model can be used to create a policy with the aim of reducing learning
times. The last section outlines the methods used for deploying the soft actor-critic algorithm
in simulation and on the experimental setup.

3.1 Approach

An overview of the entire end-to-end process demonstrated in this research is show in fig-
ure 3.1. This image shows three phases:

Figure 3.1: Overview of the end-to-end process.

Phase 1: Creating a system model
A system model is created using system identification. In this work, the system is modelled
using a NARX neural network trained with experimental data acquired using the setup.

Phase 2: Creating model-based policies
Policies are developed based on the created system model. This is done in two different ways.
The first method entails creating expert demonstrations by using non-linear optimisation to
find the optimal trajectory between points in the endoscope’s workspace. These demonstra-
tions can then be used in combination with behaviour cloning to develop a student policy that
mimics this behaviour. In the second method an agent is trained directly on the obtained sys-
tem model, resulting in a policy capable of fulfilling the desired task in simulation.

Phase 3: Fine-tuning the policy
Rather than initialising the model-free agent using random weights, the model-based policies
can be used to warm-start the agent. This allows the agent to focus on fine-tuning the obtained
policies rather than learning form zero knowledge, aiming to reduce the sample complexity.
The effectiveness of warm-starting the agent is evaluated by comparing the sample efficiency
of the different methods of initialisation with the sample efficiency of the agent when trained
without prior knowledge.
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3.2 Experimental setup

The experimental setup designed and constructed by Hoitzing (2020) is used as a basis for the
experiments throughout this research. This section aims to outline the already existing and
newly added features of this setup. The section concludes with a naming convention and setup
specific definitions.

3.2.1 System overview

The setup consists out of three main parts: a tendon-driven continuum manipulator, the en-
doscope, a construction to actuate and measure the tendons driving the endoscope and an
electromagnetic (EM) based position tracking system manufactured by NDI Medical, see ta-
ble 3.1 for the hardware specifics. Figure 3.2 shows an overview of the setup containing these
three elements.

Figure 3.2: Total system overview including the endoscope, driving mechanism and tabletop field gen-
erator that measures the endoscope’s tip position.

Endoscope

The main point of interest for this research is the endoscope. The endoscope is held in place
by a holder and actuated by four tendons, as shown in figure 3.3. Spacers are used to route
the tendons along the endoscope. These tendons terminate in a knot such that force can be
applied to the end of the endoscope, allowing control of the endoscope’s tip position.

Figure 3.3: Hollow endoscope with EM tracker routed through the backbone mounted on the setup.
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Hoitzing (2020) designed, fabricated and tested a 3D printed endoscope. The endoscope’s tip
position was sensed using two 5D EM probes attached to the endoscope using a mounting
piece. However, due to the fragile nature of these sensors in combination with the high accel-
eration motion used in this project, these sensors were deemed unsuitable. Instead, a single,
sturdier, 6D probe is used. This probe is used in conjunction with a tabletop field generator
that generates a varying electromagnetic field. The varying field induces currents in the tip of
the sensor that are used to determine the 6D pose of the sensor at a fixed frequency of 40 Hz,
see table 3.1 for the specific hardware.

The disadvantage of using this more robust sensor is that it has bulkier cable compared to the
two 5D probes. While the added weight should not inhibit an RL agent from developing an
adequate policy, the implications on the state transitions might. Mounting the sensor on the
endoscope’s tip using a mounting piece will leave the sensor’s wire hanging in the air. Violent
changes in direction or oscillatory behaviour of the endoscope will result in this cable moving.
Given its weight, this is likely to influence the dynamics of the endoscope in a chaotic manner.
This means that the state transition becomes partly dependent on the state of the cable, which
is hard to deduce from the available sensor data. This additional uncertainty is undesired as it
will slow down the learning process. To prevent this, the endoscope’s design is changed such
that the sensor’s cable can be routed through the backbone.

In contrast to the existing endoscope, a backbone with a sufficiently large hollow centre and an
outer diameter compatible with the rest of the setup cannot be 3D printed. Instead, pneumatic
tubing made from polyurethane was used. The outer diameter of the backbone is 6 mm and
the inner diameter is 4 mm. The diameter of the probe is 1.8 mm which makes it such that the
sensor can be removed and inserted easily. A connector piece is used to fix the sensor to the
end of the backbone, limiting all motion of the sensor with respect to the backbone.

The spacers were designed similarly to Hoitzing (2020), but were laser cut out of 2 mm thick
acrylic instead of being 3D printed. Due to the inability to 3D print the endoscope, these spac-
ers were manually attached to the backbone. A slit was made in the spacers to ensure the ori-
entation of each spacer is the same. The resulting endoscope is shown in figure 3.3.

Driving mechanism

Figure 3.4 shows a top-down view of the driving mechanism. The image shows four DC motors
that are used to move the tendons. These motors are equipped with quadrature encoders that
measure the shaft angle, which is converted to displacement of the tendons. The tension of the
tendons is measured using four load cells. These load cells use strain gauges to measure the
force with which the tendon pushes onto the pulley, allowing a measurement of the tension at a
rate of up to 80 Hz. The tension readings are amplified before being sent to the microcontroller.
The low level control is done on a microcontroller, which controls the motors via motor driver
breakout board and communicates with a laptop running the high level control using ROS.
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Figure 3.4: Top view of the endoscope’s actuation mechanism.

Control modes

The low level control of the setup can be done using one of two mechanisms at any given time:
control based on the tendon displacement as adapted from Hoitzing (2020) or based on the
tendon tension. The block diagrams for both low level control schemes are shown in figure 3.5.

(a) (b)

Figure 3.5: Low level control schemes used to control the setup. (a) Low level tendon displacement
control. (b) Low level tendon tension control.

The tendon displacement controller is the primary controller used to move the endoscope
around. This controller can quickly and accurately reach a desired setpoint. The tendon ten-
sion controller is used to reset the setup to its neutral state. This means that the tendon tension
is the same after each reset, but the endoscope’s position can differ as a result of effects such
as hysteresis. In the context of this thesis, resetting to an equal tendon tension is more impor-
tant than resetting to the same location. This is because the high level control maps tendon
displacement to endoscope position, which changes for varying initial tendon tension.

3.2.2 Setup specific definitions

Instead of presenting the actual value measured by the EM tracker, normalised coordinates are
used wherever possible. These coordinates are obtained by mapping the endoscope position
between a value of 0 and 1 using the extrema of the endoscope’s position, which are measured
as a result of the maximum tendon displacement of 8 mm in both the positive and negative
direction. On one hand, the goal is for the obtained results to be independent of the absolute
position. While there might be position dependent effects, expressing this dependency in the
coordinates of the EM tracker carries little physical meaning. On the other hand, the use of nor-
malised coordinates allows for better interpretation of variables such as the error signal as their
significance is better interpreted when compared to the size of the endoscope’s workspace.

While the model used throughout this report is data-driven and makes few assumptions about
the experimental setup, interpretation of the results benefits from a more thorough description
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of the system. Figure 3.6 shows the tip of the endoscope. The tendons exerting force on the tip
are named A through D. Throughout this research, these tendons are driven as antagonistic
pairs. This means that whenever tendon A is displaced with x, tendon D is displaced with −x.
This makes the system go from an overactuated system (four tendons and three-dimensional
positions), to an underactuated system. This choice is made because the setup can be adapted
to drive a two segment endoscope by making each motor drive a pair of tendons rather than
a single one. The demonstrated methods should also be applicable when controlling a two
segment endoscope in this way.

Figure 3.6 also shows the orientation of the EM tracker’s coordinate frame with respect to the
endoscope’s tip. While this orientation is in principle variable, the endoscope is kept on a fixed
location at the right side of the tabletop field generator throughout the experiments. Note that
only the orientation of the shown coordinate frame is accurately depicted as the origin of the
EM tracker’s coordinate frame is located at the centre of the field generator.

Figure 3.6: Tendon identifiers and their relative orientation with respect to the EM tracker’s frame.

Hardware

Table 3.1 shows an overview of the hardware used in the experimental setup.

Hardware Source

Tabletop field generator
NDI medical - Part number 090024
https://www.ndigital.com/medical/products/
aurora/

EM probe
NDI medical - Part number 610016
https://www.ndigital.com/medical/products/
tools-and-sensors/

Microcontroller
PJRC - Teensy 3.5.
https://www.pjrc.com/store/teensy35.html

Motor drivers
Adafruit - Part number DRV8871.
https://www.adafruit.com/product/3190

DC motor
Maxon - Part number DC-max B7A2257A0377
https://www.maxongroup.com/maxon/view/
category/motor

Load cells amplifier
SparkFun - Part number HX711
https://www.sparkfun.com/products/13879

Load cells
HTC-sensor - TAL220
http://www.htc-sensor.com/products/94.html

Table 3.1: Overview of the hardware used in the experimental setup.
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3.3 System identification

A model of the system is created with the goal of increasing the RL agent’s learning speed. The
process of creating this model, system identification, is outlined in this section. The system
identification procedure is divided in stages: data acquisition, data pre-processing and model
training.

3.3.1 Data acquisition

Data about the system is required to be able to train a NARX network. In this case, a set of
three-dimensional position measurements X = {x[1], . . . ,x[T ]} as a result of a four-dimensional
tendon displacements U = {∆L[0], . . . ,∆L[T −1]} is required. This data is acquired using the
control scheme shown in figure 3.7.

Figure 3.7: Block diagram of control architecture during system identification.

Input signal

One of the requirements when doing system identification is that the input signal used should
be sufficiently exciting. To find a suitable input signal, the step response of the system is exam-
ined. A Fourier transform of this input showed that the frequencies up to 5 Hz can reasonably
be expected to be excited during normal operation. Exciting these frequencies is done using
a square wave with varying amplitude. This type of signal is used because it most closely re-
sembles the input the reinforcement learning agent will be allowed to give. During normal
operation, the agent will directly send desired tendons displacements, ∆L to the lower level
controller. In the worst case, the input signal provided by the reinforcement learning controller
would thus resemble a square with varying amplitude. While in principle there are four degrees
of freedom due to the four available tendons, the system is controlled to move using only two
independent actuators, as explained in Section 3.2.2 - Setup specific definitions. An indepen-
dent sequence of square wave amplitudes is generated for both pairs.

The limits of the amplitude are empirically determined to a maximum of 8 mm, meaning that
each tendon can be displaced by a maximum of 8 mm in both the negative and positive direc-
tion. The amplitude of the square wave are sampled from a uniform distribution and change
every 10 position measurements, making it such that frequencies up to around 5 Hz are likely
to be excited. Using the block diagram as shown in figure 3.7, an identification sequence of
15 minutes, 36000 samples, as well as a verification sequence of 2 minutes, 4800 samples, are
executed on the experimental setup.
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3.3.2 Preparing data for training

Sensor data

The endoscope’s tip position is read at a frequency of 40 Hz using the EM tracker. Every time
a position measurement x is received, a new input ∆L is sent to the setup. Assuming that the
frequency with which the EM tracker publishes position data is stable, this results in a set of
positional data as a result of input data with a fixed ∆t between each sample. However, at
high levels of acceleration the EM tracker does not give accurate position readouts, returning
an invalid position instead. While the tracker can be set up to wait until a valid position is
found, this would yield to a sequence of states that is unevenly spaced in time. Since the NARX
network assumes a constant time difference between states, the invalid position measurements
are reconstructed in a post-processing step.

The system identification process is an open-loop process in the sense that the system be-
haviour is not dependent on position provided by the EM tracker. This makes it such that a
complete identification run can be done without rectifying any missing measurements. After
all samples have been collected, the invalid transformations are corrected based on the valid
measurements temporally surrounding it. This correction is based on a second order Taylor ex-
pansion where the derivatives are estimated using backward finite difference method. Rather
than determining a point based on only the past, information from the future, which is avail-
able since this is a post-processing step, can be added to yield a better result. Given a set of
correctly measured positions X = {

x[k −1],x[k −2],x[k +1]
}

the position of x[k] is found using:

x[k] = 2

5
x[k +1]+2x[k −1]− 1

2
x[k −2] (3.1)

Since equation 3.1 uses three known values to compute a single unknown value, this principle
can be extended to correct for three consecutively failed measurements, albeit at the cost of
a larger estimation error. The reconstruction method for two and three consecutively missing
points can be found in Appendix A - Reconstructing sensor data.

In the case a larger number of measurements fails consecutively, the missing positions are in-
terpolated using a second order polynomial based on the two successful measurements before
and the first successful measurement after the set of failed measurements.

Preprocessing data

In addition to post-processing the sensor data, both the input data and position data is pre-
processed before being used to train the NARX network. Both these sets of data are normalised
to a range from 0 to 1 using the extrema found in the training set. Instead of normalisation,
standardisation of the data was also tested. This is a pre-processing step in which the data is
transformed to have 0 mean and unit standard deviation. This showed little differences in per-
formance. Normalisation was chosen as the preferred method since the mean of the data was
prone to vary over time due to hysteresis effects, as will be discussed in Section 4.1 - Hysteresis.
Methods to reduce the dimensionality of the problem such as principle component analysis
and selecting features based on a correlation heatmap were tested but showed worse results.

3.3.3 NARX training

The system model is created using a NARX neural network. The set of NARX models is a sub-
set of the set of non-linear autoregressive moving average with exogenous inputs (NARMAX)
models. The set of NARMAX models is widely used in black-box system identification due to
its formulation covering a large set of non-linear systems (Rannen et al., 2016). Despite not
explicitly taking noise into account, like the NARMAX models, NARX models have been shown
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to sometimes perform equally well for some situations, while providing a simpler model struc-
ture (Acuna et al., 2012). Additionally, NARX models have been proven effective in modelling
non-linear systems and they are shown to be better at discovering long term behaviour than
regular recurrent neural networks (Diaconescu, 2008).

The advantage and disadvantage of a data-driven approach is the abstraction from the physi-
cal system. While the outlined method is applied to the setup shown in figure 3.2, little to no
information about the system is used in order to identify it. This makes it such that this method
could be applied to a wide variety of systems, requiring only little system specific fine-tuning.
However, the drawback of this approach is that little physical insight in the system is gained
performing this system identification. This makes picking suitable control algorithms or mak-
ing changes to the system based on desired dynamics more difficult.

NARX parameters

The system identification data is used to determine the input delays and feedback delays used
when training. The autocorrelation of the measured positions is used to determine the amount
of feedback delays, as this gives an indication how many previous states are relevant when
determining the next one. Similarly, the cross-correlation between the actuation and the mea-
sured position is used to find the amount of input delays that are relevant. The resulting plots
of autocorrelation of the x position as well as the cross-correlation between the x position and
tendon D are shown in figure 3.8.

(a) (b)

Figure 3.8: Autocorrelation and cross-correlation plots used to determine NARX parameters. (a) Au-
tocorrelation of the tip’s x position. (b) Cross-correlation between the x position and displacement of
tendon D.

Figure 3.8a, shows a wide peak around 0. For this reason, the feedback delays that are used are
1 through 10. While a larger range could have been considered based on the autocorrelation
plot, training was slowed down significantly or sometimes made impossible due to the larger
memory footprint.

The figure showing the cross-correlation, figure 3.8b, shows a peak at 11 samples delay in the
cross-correlation between the x position and tendon D. This indicates that the measured posi-
tion correlates most with the input 11 samples ago. Similar behaviour is observed when looking
at the cross-correlation between the other tendons and directions. For this reason, the input
delay was initially chosen to be between 8 and 12 samples. However, after performing sys-
tem identification the obtained results were better when changing to input delays between 1
through 10.
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3.3.4 Network architecture

The NARX network is constructed and trained using MATLAB. A simplified network architec-
ture is shown in figure 3.9. This figure shows only one node per input or output dimension to
prevent cluttering.

Figure 3.9: Simplified parallel NARX architecture. Adapted from (Kumar and Murugan, 2018).

As can be seen in figure 3.9, the network has an input layer that takes a two-dimensional input.
The input features physically represent the displacement of tendon A and B. The displacement
of tendon C and D are left out as these provide no new information and can be deduced from
the displacements for tendon A and B. The next layer is a hidden layer with 20 hidden neurons
that uses a rectified linear unit (ReLU) as the activation function. The layer after this is the
output layer that has a linear activation function and produces a three-dimensional position.
In principle the EM tracker’s orientation measurement could have been included in the output
vector. However, this proved to degrade the performance of the position estimation.

3.3.5 Training procedure

The training of the network is done in two stages. During the first stage, the network is used
in the series-parallel architecture. This training aims to minimise the single-step prediction
error. Training is done using Bayesian regularisation, which minimises the weighted sum of
the squared network weights and the squared error using Levenberg-Marquardt optimisation.
In addition to this weight regularisation, the network training is stopped early when a certain
performance is achieved or the gradient is too low. The combination of these methods aims to
counter the weights from becoming too large, which is often a sign of overfitting on the training
data, degrading the network’s ability to generalise.

In the second stage the network is closed, maintaining the weights found during training for
single-step prediction, and trained further. This training is meant to decrease the multi-step
prediction, which is required to simulate the endoscope dynamics. In the multi-step prediction
situation, training is done using Levenberg-Marquardt backpropagation with the data split up
into 70%, 15% and 15% training, validation and test set respectively. The data is not shuffled
when splitting, as this would remove the temporal correlation in the dataset. In addition to
early stopping, the network’s performance is also tested on a physically different validation set.
This is done to see if the network has overfit on some behaviour or offset that was specific to
the system identification run.
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3.3.6 Validation experiments

The network performance is validated after it has been trained. To do so, the network is given
a sequence of inputs for which the movement of the endoscope needs to be predicted. This
sequence of inputs is run on the setup during a separate validation experiment. This will give
insight on the network’s ability to predict the endoscope’s trajectory even when the endoscope
has been reset in between. In addition to predicting the validation sequence, a secondary val-
idation test is run where the network is used to predict a step response. This validation step
aims to give additional insight in the model accuracy.
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3.4 Behaviour cloning

The soft actor-critic algorithm is a model-free reinforcement learning algorithm, which means
that a model of the system is not required for the algorithm to work. However, the model cre-
ated in Section 3.3 - System identification can be used to initialise the model-free learner in an
attempt to reduce its learning time (Nagabandi et al., 2017). This section outlines the method
for generating the expert data and demonstrates how a policy is created that mimics this be-
haviour.

3.4.1 Generating expert trajectories

Expert demonstrations are a sequence of inputs that execute the given task sufficiently well.
The source of these expert trajectories can vary widely: from a human operating the system to
a proficient (PID) controller. In this case it is chosen to use a non-linear optimisation routine to
find the optimal trajectory. An advantage of this method is that the routine can be instructed to
minimise a cost function that is in accordance with the agent’s reward function. Additionally,
such an optimisation routine has the same data-driven nature as a NARX model. This makes
this method widely applicable without the need to develop a competent, system specific, con-
troller to acquire the expert demonstrations. The latter is especially useful in the case of soft
continuum manipulators, where controllers are difficult to develop given the unavailability or
complexity of the system model.

An important consideration when generating the expert trajectories is the information that is
to be transferred using the expert trajectories. In this case, the goal of the expert demonstra-
tions is to give the student a general idea of how to behave throughout the workspace. This
behaviour consists of two parts: moving from point A to B and standing still anywhere in the
workspace. Ideally, a large number of expert trajectories would be generated densely cover-
ing the entire workspace. However, this is practically not feasible due to the computational
resources this would cost. Instead, a number of points is chosen in the endoscope’s workspace
between which trajectories are going to be generated. In this case a trajectory is considered to
go from point A to point B as well as to go from point A to point A, the latter demonstrating
how to stand still. The points between which to generate trajectories are shown in figure 3.10a.
Ideally these points are spread through the entire workspace. Unfortunately, some iterations of
the NARX network were improperly defined at the edges of the workspace. This lead to heavy
oscillations for constant input at some locations in the workspace. This behaviour was non
physical, as retraining the network shifted or removed regions in which this phenomenon was
observed. To minimise the underlying model as a source of error for the generated trajectories,
the points were picked closer to the origin. The implication of this is that the student policy
cannot reasonably be expected to develop proper behaviour outside of the region spanned by
the chosen points. While for practical application of this method it should be ensured that the
points are spread through the entire workspace, the points used can serve as a proof of concept.

Kasper Hendriks University of Twente



CHAPTER 3. METHODS 29

(a) (b)

Figure 3.10: Steady-states as a result of different step inputs. (a) Front view showing predicted steady-
state position as a result of the displacement of tendon A and tendon B. (b) Side view. Gray surface
represents the measured data.

In order to generate the expert trajectories a cost function must be defined. Since the goal is
for these trajectories to help accelerate the learning of the student policy once it is deployed,
the cost function used for generating the expert trajectories should be in line with the reward
function used in the reinforcement learning algorithm. If this were to not be the case, the su-
pervised learning procedure to learn the expert behaviour would still work, but the generated
policy would not optimise the expected return when deployed in the reinforcement learning
environment.

The duration of a trajectory T , the control horizon, is set to 1 second. This duration allows the
endoscope to reach any desired location and get to a stand-still. The total cost of a trajectory
τi =

{
xi0 , . . . ,xiT

}
is the sum of the Euclidean distance between the endoscope’s tip position xt

and the goal position xd at each time during the trajectory:

L(τi ) =
T∑

t=0
‖xi t −xd‖ (3.2)

However, using this cost function will yield a single optimal trajectory between two points. Hav-
ing a larger set of trajectories between points is beneficial, as this increases the locations in
which the student is shown how to behave. A secondary term is added to the cost function to
accommodate this. This term tries to maximise the minimum distance between the already
existing trajectories, up to a limit α:

L(τi ) =
T∑

t=0
‖xi t −xd‖−min([eτ1 , . . . ,eτN ,α]),

where eτ j
:=

T∑
t=0

‖xi t −x jt ‖
(3.3)

This limit for α is empirically determined to be 1, with higher values leading to a wider spread
in trajectories and lower values leading to a more narrow distribution.
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The expert trajectories are generated using MATLAB’s fmincon() function running the ‘interior-
point’ algorithm. This function can be used to solve a constrained non-linear multivariable
function. The general form of these equations is (MathWorks, 2020):

argmin
x

f (x) s.t.



c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

l b ≤ x ≤ ub

(3.4)

Where A and Aeq are matrices, b and beq are vectors, lb and ub are the lower and upper bound
for x respectively and f (x), c(x) and ceq(x) are (non-linear) functions. For this case, the ma-
trices A, Aeq and vector b and beq are set to zero. The lower and upper bound are set at a
maximum of 8 mm tendon displacement in both the positive and negative direction. The func-
tion f (x) is the non-linear function as defined in equation 3.3. This function is used to generate
three trajectories between all possible combinations of the points shown in figure 3.10a, result-
ing in a total of 243 trajectories.

Some of the generated trajectories are tested on the experimental setup to investigate their
robustness against model inaccuracies. These trajectories are run five times to get insight on
their repeatability. Note that these are run in open-loop configuration, so the trajectory is not
recalculated based on the sensor information acquired during the rollout.

3.4.2 Behaviour cloning

The result of the generated expert trajectories is a set of inputs corresponding to a set of endo-
scope positions. However, for the agent to be able to develop a policy based on the expert data,
the data should be a combination of action and observations. To obtain observation-action
pairs from the optimal actions, the expert inputs are run on the modelled environment. This
environment is explained in detail in Section 3.5.1 - Gym environment. Executing the expert
actions on the environment yields the same trajectory the expert experienced, but ensures the
observations are in line with those defined by the gym environment. Having to deploy the ex-
pert trajectories on the RL environment could have been avoided if the MATLAB optimisation
routine was extended to yield the observations associated to the expert trajectory. However, it is
chosen to keep the reinforcement learning specific choices contained in the gym environment.

The set of action-observations pairs is used to train a policy using the supervised learning
scheme outlined in Section 2.4 - Behaviour cloning. The trained student policy is then executed
on the experimental setup to find its performance.
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3.5 Reinforcement learning

The high level control is done using reinforcement learning. The used methods are tested using
the model created in Section 3.3 - System identification and then executed on the experimental
setup. The agent’s policy is initialised using different methods to find the effects of the initiali-
sation on training time. The control scheme for the high level controller is shown in figure 3.11.

Figure 3.11: Block diagram of high level control architecture.

3.5.1 Gym environment

An implementation of the SAC algorithm shown in algorithm 1 is provided by Stable Base-
lines (Hill et al., 2018). Stable Baselines is written in Python and is a fork of OpenAI Baselines
that provides the implementation for several state-of-the-art deep reinforcement learning al-
gorithms. Within Stable Baselines, all deep reinforcement learning algorithms make use of gym
environments. Gym environments form an interface between the (simulated) dynamics and
the reinforcement learning algorithm. This separation allows for the comparison of different
algorithms or a multitude of training sessions of the same algorithm without any major changes
to the code. This section summarises the most important aspects of the gym environment used
throughout the reinforcement learning experiments.

Environment physics

The core of the gym environment is allowing the RL agent to step through time. To this end, the
NARX network obtained in section Section 3.3 - System identification is used. Using Python to
call MATLAB functions predicting the network’s output resulted in slow simulations. Instead,
the network parameters were exported and a Python function utilising these parameters in
matrix form as shown in equation 2.2 was used to predict the system state. This resulted in an
increase of speed by almost 100 times compared to the initial method, making training more
viable.

Observation space

The observation space defines what part of the system the agent is able to observe. While in
simulation there often are few hidden system parameters, in practice the observation space
is usually limited by available sensor data. Therefore, only data that would be available on
the experimental setup is chosen to be included in the observation space. At its basis, the
observation space is:

o[k] = [
x[k],u[k −1], ĝ[k],d [k]

]
(3.5)

where x is the endoscope’s position in Cartesian coordinates, u the agent’s previous action, ĝ
the unit vector pointing from the endoscope’s tip to the goal position and d the distance to the
goal.

Robotics and Mechatronics Kasper Hendriks



32
Towards reducing the sample complexity of a model-free reinforcement learning agent

controlling a single segment tendon-driven continuum manipulator

A more state invariant observation space can be achieved by leaving out the absolute position.
However, due to position dependent effects, such as stiction between the tendons and the spac-
ers, using only the direction to the goal provides the agent with insufficient information about
the environment.

The observation in equation 3.5 makes the system non-Markovian, as the future observation
is dependent on more than the current observation. To more closely approximate a Markov
decision process, the observation vector is augmented with previous observations. This allows
for approximations of for example velocity and acceleration (Haarnoja et al., 2018a), (Mnih
et al., 2013). Given the knowledge that the NARX network governing the endoscope’s behaviour
uses a maximum of 10 delayed states, the agent is given the past 10 observations to be the full
observation.

Reward function

The focus of this research is on showing a reduction in training time by initialising the policy
using the created model. This is why a simple reward function is chosen over an intricately
shaped one, despite the latter likely allowing for a decrease in sample complexity compared to
the former. The chosen reward function is:

R(x) =−‖x−xd‖ (3.6)

This reward function is monotonically increasing and has a maximum of zero when x = xd,
driving the system towards the desired state.

Integration with the setup

When deployed on the experimental setup, the environment dynamics are not governed by
the NARX network. Instead, the observations are based on sensor input. To accommodate for
this, the gym environment is changed such that the learning algorithm is synchronised with
the EM tracker’s readings. Directly after receiving a value, the algorithm publishes the action
determined based on the previous observation. The computation based on the received value
is done in the remaining time until the next value is received. While this makes it such that
the agent operates on a single step delay, this reduces the jitter caused by varying computation
times.

As mentioned in Section 3.3.2 - Sensor data, the sensor is not always able to publish a valid
measurement at a rate of 40 Hz. While the data could be reconstructed using a post-processing
step, a different method must be used for online reconstruction. Whenever a policy is executed
that is based on simulated data, the missing values are estimated using:

x[k +1] = x[k]+x[k]−x[k −1]+ 1

2

(
x[k]−2x[k −1]+x[k −2]

)
(3.7)

with the output being clipped between the maximum coordinates of the workspace. This
method is used despite the fact that the assumption of constant acceleration between steps
is violated. A safer alternative could be to use the previous data point rather than estimated
one using this method. However, the former method cannot be used because the simulated
policies can develop an I-like behaviour, increasing the magnitude of the output if the previous
action resulted in insufficient motion. When a policy is trained without being given any prior
knowledge, the EM tracker is set up to only return valid data points. Despite the resulting mea-
surements having a varying frequency in regions of high acceleration, this resulted in better
performance.
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3.5.2 Training

Two different policies are distinguished when training an agent: a local and a global policy. A
local policy allows the agent to from the neutral position to a single end position, whereas the
global policy allows the agent to go from any start position to any position in its workspace.

Training in simulation

For the agent to develop a global policy, the full workspace has to be explored. The training pro-
cedure is set up to facilitate this. When training a global policy, the start and goal locations are
randomly generated for every episode from the list of known state/action combinations shown
in figure 3.10a. The start and goal location are not necessarily a different location, meaning that
some episodes are focussed on learning how to stand still. Each episode has a fixed length of
200 samples, corresponding to five seconds of real time.

The policy’s performance is evaluated 100 times per training session. During evaluation, the
endoscope has to follow a predefined trajectory consisting out of 12 goal locations, which are
similar, but unequal, to the points used throughout training. This evaluation trajectory takes
a total of 60 seconds and is essentially a series of episodes chained together that form a path
throughout the entire workspace spanned by the points trained on.

While this reference trajectory gives insight in how well the agent can move through the
workspace, it is not going to be used in practice. A different reference trajectory is used to test
the practical usefulness of a learned policy. This trajectory uses the same points as the afore-
mentioned trajectory, but interpolates between the points using skew sines. This resembles
someone using for example a joystick to move the reference position.

3.5.3 Decreasing sample complexity using simulation

The effects of the different methods of initialisation are investigated by training a local policy
on the experimental setup. The training process is similar to training in simulation, albeit this
time without randomising a starting location and goal location for each episode and using the
adaptations to the gym environment outlined in Section 3.5.1 - Integration with the setup.

The agent is trained on the setup using three different methods of obtaining the initial policy.
The first method is the standard method, where the policy is initialised randomly. This method
forms a baseline for the learning speed and performance. The second method is using the
student policy acquired in Section 2.4 - Behaviour cloning. The hypothesis is that this method
allows the agent to reach a higher performance in the same number of training samples, as the
initial learning is sped up due to the observed expert demonstrations. The third method uses
the fully trained policy obtained in simulation. This method is expected to have a similar effect
to the method based on behaviour cloning, but should provide even better results because
the ideal behaviour is determined for an even larger part of the state-space. Even though the
latter method is theorised to be superior in term of performance to the former, the former
circumvents the need for extensive training sessions in simulation. Despite not being done
in this work, the expert trajectories could also be deployed on the experimental setup when
acquiring observations associated to the expert actions to reduce the model bias as suggested
by Thuruthel et al. (2019).

Two sets of experiments are done to verify whether the learning process can be sped up using
the created model. The first set of experiments aims to evaluate the performance of the policies
used to initialise the model-free agent. This is done by running both the student policy as well
as the simulated RL expert on the setup. During this experiment, both agent’s are given a single
goal location. This location is part of the set of points determined using the NARX network.
The disadvantage of this is that these points can be physically unreachable due the modelling
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errors in the network. However, the ability to reach these points gives an idea of how the robust
the created policies are against modelling errors.

In the second set of experiments the agent is initialised using the three described methods. A
local policy is then trained for each of these three methods for 300 episodes each with a length
of 200 steps. The agent’s performance is evaluated 13 times throughout the training session.
This is done by running an episode in which the deterministic version of the agent’s policy is
used to go to the goal location. The evolution and final performance of the agents that were
warm-started is compared to the baseline performance of the randomly initialised agent to
determine the effect of the different methods of initialisation on the sample complexity.

3.5.4 Global policy on the experimental setup

A global policy is trained on the experimental setup. This policy is trained without any prior
knowledge and serves as a proof of concept demonstrating the agent’s ability to control the
endoscope throughout the workspace. The method of training a global policy is similar to the
method used in simulation. However, instead of having a predefined series of start and goal
locations, this list is generated on the experimental setup at the start of a training session. This
is done by measuring the position resulting from a number of tendon displacements. These
inputs are chosen similarly to those shown in figure 3.10 to ensure a large coverage of the en-
doscope’s workspace. At the start of each episode, an initial tendon displacement and goal
position are generated from the created list. The evaluation trajectory is constructed out of this
same list, using skew sines to interpolate between the points. Since a three-dimensional eval-
uation trajectory can consist out of unreachable positions due to the method of constructing
the evaluation trajectory, only the x and z directions are used when rewarding the agent.

The agent is trained for 500 episodes each with a random start and goal location and a length
of 200 samples. The agent is evaluated 20 times over the course of its training.
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4 Results

This chapter shows the results achieved following the start-to-end process of creating a rein-
forcement learning controller. This includes the observed hysteresis and the performance of
the obtained model, the policies used to initialise the reinforcement learning controller and
the reinforcement learning controller when trained without prior knowledge.

4.1 Hysteresis

The main point of improvement for the redesigned endoscope was to make sure the sensor
could be routed through the backbone. However, the new material used to fabricate the en-
doscope showed memory-like effects. An experiment is performed to show these effects. In
this experiment, the endoscope is reset five times, then held in an upright, stressed, position.
After an hour in this position, the endoscope is reset another five times. The average resetting
position for the endoscope before and after this hour are shown in figure 4.1.

Figure 4.1: Effect of hysteresis present in the newly designed endoscope.
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4.2 NARX results

This section shows the performance of the methods shown in Section 3.3 - System identification.
This is done by first showing the error induced by the construction of the failed position mea-
surements, after which the performance of the NARX is evaluated.

4.2.1 Interpolation sensor data

The invalid sensor readouts are constructed following the procedure in Section 3.3.2 - Sensor
data. The performance of this post-processing step is determined by reconstructing a number
of data points out of a series successful measurements. These results are shown in figure 4.2.

(a) (b)

Figure 4.2: Performance of the sensor data construction in the post-processing step. (a) Set of successful
measurements in which a number of data points is reconstructed. (b) Error for the reconstructed data
points.
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4.2.2 NARX network

The network is tested on its ability to predict the endoscope’s tip position given a sequence of
tendon displacements. Figure 4.3 shows measured position and the predicted position using
both the series-parallel and parallel network architectures. These predictions are for a phys-
ically different run with data that was not used in the training of the network. Invalid sensor
readouts that were constructed in the post-processing step are marked. To ensure visibility of
the targets and predictions, figure 4.3 only shows the starting portion of the two minute valida-
tion run. The full run results are shown in figure B.1.

Figure 4.3: Performance of the NARX network using the single-step predictions, multi-step predictions
and targets. Top: prediction for x direction. Bottom: prediction error.
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The NARX network is also used to predict a step input. A comparison between the simulated
and measured step response is shown in figure 4.4.

Figure 4.4: Comparing the simulated and measured step response.
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4.3 Expert policies

This section shows the results achieved by the policies used to initialise the model-free agent.
The expert trajectories used to base the student policy on are first tested in simulation. The
resulting student policy is then evaluated on the experimental setup in both open-loop and
closed-loop mode. The expert RL agent is evaluated the same way, although the simulated
results are shown in Section 4.4 - Reinforcement learning.

4.3.1 Expert trajectories in simulation

Figure 4.5 shows three expert trajectories that have been generated between two points in the
endoscope’s workspace. These trajectories are obtained in simulation.

Figure 4.5: Generated expert trajectories between two points in the endoscope’s workspace.
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Expert trajectories on the experimental setup

An expert trajectory was executed on the experimental setup five times. This expert trajectory
was not recalculated based on observations and the sequence of inputs was thus the same for
every rollout. The resulting positions as well as the goal position is shown in 4.6.

Figure 4.6: One expert trajectory run on the experimental setup five times.
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The simulated RL expert is used to determine an expert trajectory between the two same points
as used in figure 4.6. The predetermined sequence of inputs was run on the experimental setup
for five runs. These results are shown in figure 4.7.

Figure 4.7: One RL agent generated trajectory run on the experimental setup five times.
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4.3.2 Initial policies

The behaviour cloning algorithm is used to create a student policy. An agent utilising this policy
in closed-loop mode is used to control the experimental setup. The resulting rollout is shown
in figure 4.8.

Figure 4.8: Performance of the student policy on the setup.
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The simulated RL expert is also used to initialise the model-free RL agent. The performance of
this agent is shown in figure 4.9.

Figure 4.9: Performance of the global RL expert policy on the setup.
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4.4 Reinforcement learning

This section shows the results of the reinforcement learning controller. The controller is first
shown to work in simulation, after which the results on the experimental setup are shown.
These results include training the agent from scratch as well as initialising it using the student
policy and RL expert’s policy. After showing the effects on the sample complexity, the perfor-
mance of an agent that has learned a global policy without any prior knowledge is shown.

4.4.1 Simulated RL expert

A global policy is trained in simulation. Figure 4.10 shows how the performance of the agent
evolves over time.

Figure 4.10: Performance of the simulated agent throughout a single training session.

The rollout with this highest return on the validation trajectory is shown in figure 4.11.

Figure 4.11: Performance of the rollout with the highest return on the validation trajectory. Top-left)
Trajectory data for the x-direction. Top-right) Trajectory data for the y-direction. Bottom-left) Trajectory
data for the z-direction. Bottom-right) L2 norm of difference between goal and endoscope’s tip position.
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The agent’s policy that lead to the highest return on the validation trajectory is used to track a
more practically relevant reference profile. Figure 4.11 shows the agent’s capability to follow a
trajectory that passes through the same points as the trajectory shown in figure 4.11, but this
time the trajectory between points is interpolated using skew sines.

Figure 4.12: Performance of the best rollout on the validation trajectory consisting interpolated with
skew sines. Top-left) Trajectory data for the x-direction. Top-right) Trajectory data for the y-direction.
Bottom-left) Trajectory data for the z-direction. Bottom-right) L2 norm of difference between goal and
endoscope’s tip position.

4.4.2 Different methods of initialisation

The performance of the randomly initialised agent is compared to that of the agent initialised
with the student policy and the one with the simulated RL expert. The evolution of the perfor-
mance over training time for all these three methods is shown in figure 4.13.

Figure 4.13: Comparing different methods of initialisation.
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The last rollout of the evaluation trajectory for each of the differently initialised agents is shown
in figure 4.14.

Figure 4.14: Comparing the policy performance after 300 episodes of training for different initialisation
methods.
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4.4.3 Learning without prior knowledge

An agent is trained without prior knowledge to judge its ability to reach a certain location in
space. The evolution of its performance is shown in figure 4.15 and the best rollout is shown in
figure 4.16.

Figure 4.15: Performance throughout a training session developing a local policy on the experimental
setup.

Figure 4.16: Performance of an agent following a local policy after training without any prior knowledge
for 500 episodes.
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A different agent is trained without any prior knowledge to develop a global policy. The training
results are shown in figure 4.17.

Figure 4.17: Results of training a global policy on the experimental setup. Top-left) Normalised x posi-
tion during evaluation. Top-right) Normalised z position during evaluation. Bottom-left) Error during
the evaluation trajectory. Bottom-right) Policy performance during training.
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5 Discussion

This chapter discusses the results obtained in Chapter 4 - Results. This is done by interpreting
the achieved results as well as giving a few points of improvement with respect to the acquisi-
tion of the shown data.

5.1 Interpretation of results

5.1.1 Endoscope design

Section 3.2.1 - System overview outlined the design and fabrication of the endoscope. The un-
derlying reason for changing the endoscope’s design was to decrease the number of training
steps needed by reducing the stochasticity of the system. Routing the sensor through the body
of the endoscope likely helped in this regard, but the endoscope’s design should be improved
on even further. As can be seen in figure 3.3, the spacers are not mounted perfectly perpen-
dicular to the endoscope’s body, which results in an increased likelihood of the tendon getting
stuck on the sharper edges of the holes through which it is routed. This affects the dynamics
of the endoscope in an unpredictable manner, which increases the sample complexity of the
agent.

As shown in figure 4.1, the system inhibits a memory-like effect, or hysteresis with a long time
constant. Holding the endoscope in an upright position changed its mechanical properties,
as resetting to a specific tension results in a different resting position after having been in the
upright position for a prolonged period of time. The delay lines of the NARX network do not
take sufficiently many samples into account to model this behaviour, meaning that this effect
remains unmodelled. However, assuming the endoscope has been in a resting position for a
sufficiently long time, this should have little effect on the system identification experiments.

A more important consequence of the hysteresis is its effect on the reinforcement learning
agent. When developing a local policy, the agent is around its goal position for long enough
to give rise to the hysteresis effects. This makes it that the optimal action varies over time,
increasing the learning time and potentially causing convergence issues.

5.1.2 System identification

Constructing sensor data

An error in the endoscope’s position is introduced as a result of having to reconstruct invalid
sensor readouts. Figure 4.2a shows that this error is mostly within 2 mm when using the method
based on the Taylor expansion. However, the error can be seen to increase when more than
three readouts are missing consecutively. While adding some noise can help a network gener-
alise, an error of 6 mm in a single direction is likely large enough to deteriorate the generalisa-
tion of the network and thus decrease the accuracy of the prediction position.

Validation trajectory

The results in figure 4.3 combined with those in figure B.1 show that the maximum prediction
error for multi-step prediction error is below 20% of the coordinate’s range. The prediction error
is largest when changing direction near the edges of the workspace, with the model showing a
tendency to overshoot the actual trajectory. The reason for this is likely to be a combination
of the quality and the quantity of the data regarding these regions. Due to the input signal
being centred around zero input, more data is available around the region close to the resting
position than there is around the limits of the workspace. Additionally, figure 4.3 shows that

Robotics and Mechatronics Kasper Hendriks



50
Towards reducing the sample complexity of a model-free reinforcement learning agent

controlling a single segment tendon-driven continuum manipulator

the sensor fails to output a valid reading more often when close to the edges of the workspace.
The combination of having a reduced quality and quantity of data makes training the network
harder in these regions, resulting in a larger error. However, because the average error per
direction is close to 0 and the error signal is bounded, the model can still be used to train a
reinforcement learning agent, although the resulting policies will need to be fine-tuned on the
experimental setup.

Figure 4.4 shows the simulated step response compared to the estimated step response. This
indicates the damping of the simulated system is higher than that of the physical system. This
is in line with the observations made about figure 4.3, where the network’s predicted position
does not change quickly enough when changing direction. A possible reason for this is that the
input signal used for system identification did not excite sufficiently high frequencies, meaning
that only slower, low frequency motion could be learned properly.

5.1.3 Initial policies

Expert trajectory in simulation

Figure 4.5 shows an example of three expert trajectories. This figure shows that the expert
reaches the final position within the allotted time and that the different rollouts trace a dif-
ferent path. While the expert reaches a steady-state position, it can be seen that it moves away
from this position near the end of the episode. The reason for this is that the solver is not given
sufficiently many iterations to fully converge. Therefore, some parts of the trajectory, espe-
cially visible at the end, are not optimal. While the number of iterations could be increased to
get closer to convergence, this will make it more likely that the optimiser seeks out improperly
defined regions of the NARX network and ‘abuse’ these where possible.

This phenomenon is experimentally demonstrated using figure 4.6 and 4.7. From these figures
it can be observed that the spread in final position is larger when running the expert trajectory
compared to the trajectory generated by the RL agent, though the former has more accurate
tracking in simulation. This indicates that the trajectory found by the reinforcement learning
agent is more robust to modelling errors and variations in the starting position. The reason for
this is that the objective of the reinforcement learning agent is to optimise a combination of the
expected return and expected entropy. This combination results in the agent preferring safer
but less rewarding regions of the state-space over regions that are highly rewarding but difficult
to traverse. Since the optimiser seeks out the optimal path, it is likely the found path requires a
precise set of inputs to go from A to B. While this path is a valid solution according to the NARX
network, this trajectory can abuse parts of the NARX that are ill-defined. This makes these tra-
jectories more difficult, or sometimes impossible, to execute on the experimental setup, giving
rise to the larger spread in the final position.

Simulated policies on the setup

Figure 4.8 gives an indication of the performance of the student policy when deployed on the
setup. While this behaviour shows the student policy has some basic understanding of how to
move towards the goal position, the overall performance is poor. The reason for this is likely the
method with which the policy was trained. During the generation of the expert trajectories an
effort was made to enforce spread between these trajectories. Despite this, the expert trajecto-
ries do not cover the workspace entirely, meaning that the state-space of the student policy is
largely unexplored. This translates to poor robustness against modelling errors as even a small
deviation from the predicted path cannot be compensated.

The performance of the simulated RL expert on the experimental setup can be seen in fig-
ure 4.9. This agent is more robust to modelling errors in the sense that a sensible action is
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available for a larger number of positions. Unfortunately, due to the identified system having
a larger damping than the physical system, the learned actions lead to oscillation around the
goal position when executed on the experimental setup.

5.1.4 Reinforcement learning

Global policy in simulation

Figure 4.11 and figure 4.12 show the ability of the simulated agent to follow the evaluation tra-
jectory in simulation. In the case of figure 4.11 the reference can be seen to be tracked well,
although there are some places where the agent has a small steady-state error. Overall, the per-
formance on this trajectory is rather good, especially given the intrinsic difficulty that comes
from tracing a sequence of steps.

A more practical trajectory is followed in figure 4.12. This figure shows that the x and z-direction
can track the reference trajectory well, albeit with small errors and sometimes oscillatory be-
haviour. It is possible that some of these imperfections could be improved on with further
training, but it can also be that this behaviour is caused by the method of interpolation be-
tween the points or the NARX network itself. The endoscope can be seen to deviate from the
reference trajectory in the y-direction around 10 and 20 seconds. This effect seems position
dependent and can be observed with other reference trajectories that pass through the same
points. One explanation for this behaviour is that the endoscope is physically unable to fol-
low the reference trajectory. To prevent this from happening, the interpolation method used
to generate the evaluation trajectory can be changed to generate trajectories that are part of
the endoscope’s workspace. Alternatively, the reference trajectory could be made to only exist
out of the x and z-direction. If similar effects are still observed after changing the evaluation
trajectory, the reason for the behaviour is likely to be as a result of the NARX network being
ill-defined at the edges of the endoscope’s workspace.

Training with different methods of initialisation

Figure 4.13 shows the performance throughout a training session when initialising the policy
in three different ways. This figure shows that initialisation using the simulated RL expert in-
creases the sample complexity, whereas initialising the agent with the student policy has little
effect. In the early stages of training the agent warm-started using the student policy does
seem to improve quicker than the agent trained from scratch. While this could suggest that the
method of initialisation indeed reduces the sample complexity, this effect is more likely to be
attributed to the fact that the initial evaluation of the agent initialised with the student policy
showed worse performance than the agent trained from scratch. After 10.000 steps both agents
reach their asymptotic performance and perform similarly. This is in line with the performance
observed for the student policy and the simulated RL expert, as shown in figure 4.6 and 4.7. Due
to the insufficiently well explored state-space, initialisation with the student policy has little ef-
fect on the training time because little information is transferred using this initialisation. On
the other hand, initialisation with the simulated RL expert transfers a well explored state-space,
but the transferred information is incorrect.

A rollout of each of the policies is shown in figure 4.14. Here, the performance of the policy
based on the simulated RL expert is poorest and shows oscillatory behaviour, in line with ear-
lier observations. While figure 4.13 suggests a similar performance of agent initialised using the
student policy and the agent initialised randomly, the shown behaviour is different. The ran-
domly initialised agent shows some ability to reach the target location, but fluctuates heavily.
The policy initialised with student policy shows different behaviour where the endoscope’s tip
barely moves, but has a steady-state position that is unequal to the goal position for the y and
z-direction. The difference is that this behaviour is not attributed to the method of initialisa-
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tion, but rather to chance. The reward function shown in equation 3.6 does not favour either
of these modes of behaviour as it is only concerned with the cumulative error. Therefore, the
order of the ability to move to a location and the ability to stand still can be learned at different
times. However, both policies should, given sufficient training time and a physically reachable
goal location, be able to develop a policy that is able to stand still at the correct location.

Training without prior knowledge

Instead of focussing on the different methods of initialisation, the performance of the model-
free agent trained without any prior knowledge is evaluated. The goal position used in fig-
ure 4.14 was generated using the NARX network and can thus be physically unreachable due
to the modelling errors. The goal location of the local policy trained without any prior knowl-
edge was selected using the experimental setup, ensuring that it was physically reachable. Fig-
ure 4.16 shows the rollout of an agent trained to go to this location. The evolution of this agent’s
performance over training time is shown in figure 4.15. The performance over training time has
a similar trend to that shown in figure 4.10, but can be seen to have a decrease in performance
at 64.000 steps. This moment was right after continuing the training session on a different day.
The reason for this decrease in performance is because the endoscope was left in its neutral
position overnight, ‘resetting’ the hysteresis effects resulting from trying to reach an upright
position during training. The final performance of the agent is reasonably accurate, with a
steady state error of less than 5 mm.

Figure 4.17 shows the performance of the agent acting according to a global policy. The agent is
able to follow the reference with moderate success, generally following the reference position,
but oscillating heavily. This oscillation is undesired and has to be removed before the controller
is of use for medical applications. Examining figure 4.17 suggests that the agent was not yet at
its asymptotic performance. Due to limited lab availability the agent could not be trained until
it reached its final performance. However, while the performance is expected to increase, it is
unlikely that the observed oscillations would be removed entirely. Depending on the desired
specifications of the final controller, the changes to the training process or way the RL based
controller is used have to be made.

5.2 Improvements

Repeating measurements

Due to limited availability of the experimental setup, many measurements were done only
once. However, since every training session in reinforcement learning differs, training the agent
once is insufficient to provide conclusive results. This is especially relevant when it comes to
showing the effects of initialisation with respect to the learning time, as randomly visiting the
correct states early on in the learning process can accelerate the learning significantly. To do a
proper analysis of the influence on the learning time, the same training session should be run
multiple times to determine with certainty that a method does or does not have an effect on
the training time. However, given the decisive degradation in performance due to initialisation
with the simulated RL expert and the sparsely explored state-space of the student policy, the
outlined methods are unlikely to prove effective.

Comparing initialisation methods

The current method of initialisation compares the performance of an agent based on a ran-
domly initialised policy to that of an agent based on a student policy. The problem with this is
that some of the difference between the performance of these two is attributed to the random
initialisation of each of these policies, as demonstrated by a varying performance when evalu-
ated before training. A better comparison would be to use the same seed to generate the initial
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policy as well as the basis for the student policy. This is less of a problem for the agent based
on the simulated RL expert as virtually the entire state-space gets changed, meaning that the
exact seed used in initialising the random policy only affects the learning time in simulation.

Another issue with the current comparison of initialisation methods is that the amount of
episodes between each performance evaluation is rather large. In figure 4.13 it can be seen that
a performance close to the asymptotic performance is reached after two evaluations. Decreas-
ing the total number of episodes or evaluating the agent more frequently in the early stages
could provide additional insight on the effectiveness of the initialisation, as these are likely to
be most prominent early in the training process.
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6 Conclusion

The aim of this work was to develop an end-to-end process where a system model is created
and used to decrease the sample complexity of a model-free agent using soft actor-critic con-
trolling a single segment tendon-driven continuum manipulator. A NARX neural network is
used to develop a system model that maps tendon displacement to endoscope position. This is
done using less than 20 minutes of measurements on the the experimental setup. The obtained
model was shown to give an unbiased estimate of the endoscope’s position with a maximum
error of 20% in any given direction.

The soft actor-critic algorithm was used to develop a reinforcement learning controller that
is able to move the endoscope to a specified location in space by determining the necessary
tendon displacements. A local policy is trained in two and a half hour of training time that is
able to move and maintain the endoscope’s tip position to within 5 mm of the desired location.
A global policy trained for the same duration is shown to be able to follow a trajectory through
the workspace but oscillates too heavily to be of practical use.

The obtained system model is used to generate expert demonstrations of the endoscope mov-
ing through its workspace. These demonstrations are used to train a student policy that is used
to warm-start the model-free agent. An agent that developed a global policy in simulation is
used for the same purpose. Unfortunately, both these methods showed ineffective in reduc-
ing the sample complexity whilst learning a local policy. While the presented method proved
ineffective in reducing the sample complexity, this work presents a step towards using rein-
forcement learning to control a tendon-driven continuum manipulator.
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6.1 Future work

Further work can be done in two different directions. The first direction is to maintain focus on
reducing the sample complexity of the model-free agent. If sample complexity is not a limiting
factor, the focus of further work could also be on increasing the performance of the global pol-
icy in order to achieve a controller with sufficient performance to control the endoscope in a
medical application.

While the achieved results show that the sample complexity is not reduced using the different
methods of initialisation, the idea behind these methods is shown to work in literature, as for
example in the work of Nagabandi et al. (2017). Therefore, the focus on improving the end-to-
end process should be on the system identification step. Further research could be done for
a more suitable input signal. The most promising avenue for this work would be to ensure a
larger range of frequencies is excited during the identification experiments. The frequency with
which the square wave changes could be changed, or a different type of input signal that sweeps
over a range of frequencies as suggested by Liu and Song (2015) could be used. Alternatively,
different methods of obtaining the system model, such as using Cosserat rod theory, could be
used. While these models are too slow to be used for real-time control, they can be used to
generate expert trajectories for the purpose of behaviour cloning.

The main source of improvement for the agent’s performance is likely to come from shaping
the reward function. This function currently does not explicitly penalise overshoot or oscilla-
tion. This is something that could be incorporated into the reward function by punishing the
agent for motion or actuator action. Additionally, if this method were to be extended to control
an endoscope with multiple segments, the reward function should be changed accordingly. A
change that could be made is giving a penalty for joint motion, which would prevent the first
link from moving unnecessarily, which is something that is not restricted by the current reward
function. Changing the reward function in this manner should increase the performance of the
agent, taking another step towards achieving a practically viable controller.
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1

A Reconstructing sensor data

In Section 3.3.2 - Sensor data the algorithm for reconstructing a single missing data point is
shown. This principle can be extended to correct for up to three consecutively failed mea-
surements. Assuming a set of successful position readouts X = {

x[k −2],x[k −1],x[k +3]
}
, the

following set of equations can be written:

x[k +1] = x[k]+x[k]+x[k −1]+ 1

2

(
x[k]−2x[k −1]+x[k −2]

)
(A.1)

x[k +2] = x[k +1]+x[k +1]+x[k]+ 1

2

(
x[k +1]−2x[k]+x[k −1]

)
(A.2)

x[k +3] = x[k +2]+x[k +2]+x[k +1]+ 1

2

(
x[k +2]−2x[k +1]+x[k]

)
(A.3)

This can be solved for the missing data X̄ = {
x[k],x[k +1],x[k +2]

}
as:

x[k] =−17

49
x[k −2]+ 58

49
x[k −1]+ 8

49
x[k +3] (A.4)

x[k +1] =−18

49
x[k −2]+ 47

49
x[k −1]+ 20

49
x[k +3] (A.5)

x[k +2] =−11

49
x[k −2]+ 26

49
x[k −1]+ 34

49
x[k +3] (A.6)

Similar steps can be followed to arrive at a set of equations in case there are three correct read-
ings X = {

x[k −2],x[k −1],x[k +2]
}

and the two missing ones X̄ = {
x[k],x[k +1]

}
are to be esti-

mated:

x[k] =− 5

17
x[k −2]+ 18

17
x[k −1]+ 4

17
x[k +2] (A.7)

x[k +1] =− 4

17
x[k −2]+ 11

17
x[k −1]+ 10

17
x[k +2] (A.8)

(A.9)
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B NARX validation

Figure B.1 shows multi-step prediction error achieved using the NARX network when predicting
the endoscope’s position through the complete validation trajectory.

Figure B.1: The multi-step prediction errors in each direction for the full validation run.

Kasper Hendriks University of Twente
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