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ABSTRACT 

Earthquakes are one of the most devastating natural hazardous events affecting in a global scale and with 
no warning. That makes the study of earthquakes a topic of worldwide interest. Due to its impact, the 
study of different phenomenon able to warn for the present of future seismic activity have been developed 
through the years. A phenomena considerer in literature for preceding seismic events, is the anomalous 
rise of ground temperature. However, are so many factors involving this phenomena that is still 
challenging the link of anomalous increase in the ground temperature and the presence of a future 
earthquake.  
The present study was developed with the aim  of verify the presence of anomalies in the Thermal 
Infrared emissions from areas covering ten seismic events previously reported for having the presence of 
anomalies prior their occurrence. The events where previously reported by Saraf et al., 2008 using Land 
Surface Temperature maps with NOAA-AVHRR observations. Saraf et al., 2008 documented to observe a 
dual anomalous peak in the temperature for seismic events with magnitud below 6 and a single peak for 
events with magnitude 6 or above. However, the findings leave questions regarding the extent of the time 
series used for observation and the spatial characteristics of the found anomalies. Saraf et al., 2008 used a 
short time series which was decreasing due to cloud coverage and meteorological effect in the images. 
Aiming to overcome those limitations, the present study was carried out applying an existing methodology 
fomerly developed by ITC team. Khan, 2010, Buzzo, 2012, Pavlidou, 2013 documented a more 
sophisticated and unbiased methodology which uses a cloud masking and a pixel normalization technique 
in the attempt ro remove the cloud coverture and neutralize the meteorological effect in the images. The 
existing methodology works with hypertemporal data which allows a time series analysis with more 
statistical relevance.  
When comparing results from the present study with previously reported by Saraf et al., 2008, the large 
discrepancy show a more critical view in time and space of the presence of anomalies from the results of 
the present study. The use of a larger time series for observation show to discard as anomalous some of 
the findings made using a short time series. 
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1. INTRODUCTION 

Earthquakes; one of the most devastating natural hazardous events from which we are exposed to suffer 
any time in different zones all around the world. Knowing that, their prediction has become a topic of 
scientific interest. The mechanisms and processes behind the build-up of an earthquake are so complex, 
that so far give a sceptic overview of the topic. While some scientist claim the prediction of an earthquake 
as impossible, others report the observation of phenomenon able to warn for future seismic activity, the 
so called “earthquake precursors”. This is the case of anomalies observed in the remotely sensed thermal 
infrared (TIR) emissions which have been documented since Gorny et al., 1988 (Saraf et al., 2008). Some 
of the research suggesting as well the connection between anomalous TIR emissions and the presence of 
seismic activity studied earthquakes in e.q. China, Greece, India, Iran, Italy, Japan, Mexico, Russia and 
Turkey (Tronin et al., 2002, Saraf and Choudhury, 2005, Tramutoli et al., 2005, Ouzounov et al., 2006, 
Yao and Qiang, 2012). They reported the occurrence of the anomalies from few hours up to more than 
ten years before the main shock and spatially located at distances from several hundred up to thousand 
kilometres from the epicentre. There are two type of processes that could explain the presence of thermal 
anomalies due to seismic activity: atmospheric processes and Land Surface Temperature (LST) rise (Saraf 
et al., 2009). Some of the mechanism involving such processes are: (a) increase in air ionization due to 
changes in the air humidity and temperature (Pulinets et al., 2006), (b) light emissions due to positive holes 
charge during rock deformation by seismic activity, and (c) combined effects of soil moisture and gas 
concentration (Salman et al., 1992). Although, several limitations and short comings have been identified 
in the documented methodologies when reporting TIR anomalous emissions prior seismic activity. 
Sometimes, a proper definition of anomaly is missing, the meteorological effects in the images are not 
accounted for defining an anomaly and the amount of data use for observation is restricted, which makes 
a statistical interpretation difficult. 
For that matter, a methodology which assess the definition of anomaly in the TIR emissions has been 
recently developed (Khan, 2010, Buzzo, 2012, Pavlidou, 2013). Such methodology, monitors the remotely 
sensed TIR emissions of a study area using long time series and its analysis is statistically supported. 
This research aimed to verify in an unbiased way, the existence of previously documented anomalies in the TIR 
emissions of ten different earthquakes occurred in Iran ( 

Table 1-1. Seismic events where the presence of anomalies was previously reported by Saraf et al. (2008).) 
.Such anomalies were reported by Saraf et al. (2008), however, several limitations and short comings (i.e. 
missing observations due to cloud coverage or meteorological effect in the images) are identifiable in the 
methodology. In order to overcome such limitations, this research applied the existing methodology 
(Khan, 2010, Buzzo, 2012, Pavlidou, 2013) aiming to prove the reliability of using a longer time-series for 
observation and a cloud masking technic which attempts to remove the cloud cover in the TIR datasets 
(Khan, 2010, Buzzo, 2012) and helps to maintain the length of the time series for observation. 
Saraf et al. (2008) claimed the findings after a visual analysis of LST maps made out of NOAA-AVHRR 
observations. They reported the appearance of anomalous dual and single peaks prior four moderate 
(>5Mw) and six strong (>6Mw) seismic events respectively. According to Saraf et al. (2008), “a detailed 
analysis was done to know the approximate time of appearance of a thermal anomaly (in terms of days), 
intensity of thermal rise and its spatial extent”. However, when reporting anomalous peaks in the datasets, 
the results leave questions regarding the spatial aspects (i.e. the extent size and location) of the anomaly 
appearance. Saraf et al. (2008) based their analysis in short time series using NOAA-AVHRR datasets, 
which sensor provides 4 day and night time daily images per satellite, those with 1.1km resolution. The 
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observations were limited to around a fortnight before and a fortnight after each event and there is a gap 
of LST maps in the time series. Even though NOAA-AVHRR have been documented to be useful for 
anomaly detection in the TIR prior seismic activity (Tronin et al., 2002, Saraf and Choudhury, 2005, 
Ouzounov et al., 2006), results to be in disadvantage with other sensors in the matter of monitoring TIR 
emissions as earthquakes precursors, such is the case of the first and second generation of Meteosat (MFG 
and MSG). Knowing that, this research was carried out using an existing methodology which was 
developed to work with such type of data (Khan, 2010, Buzzo, 2012, Pavlidou, 2013). The present study  
used Meteosat-5 datasets. Such geostationary satellite, provides images with a 30 minutes time gap. This 
allows a larger time series for monitoring fluctuations in the TIR. In the case of Saraf et al. (2008), the 
used time series was not equal for all the events. In some of the reported cases, the time series got shorter 
due to missing observations. Some of them where useless due to cloud cover, either the day of the main 
shock (i.e. Kerman earthquake) or over the “anomalous region” (i.e. Changureh-Avaj earthquake). In 
order to overcome this limitation, the existing methodology uses a cloud masking technique which helps 
to maintain the length of the time series and increase the statistical support of the analysis. 
 

Table 1-1. Seismic events where the presence of anomalies was previously reported by Saraf et al. (2008). 

Event 
no. 

Earthquake 

Origin Location 
Magnitude Mw 

USGS 
Depth 

Km Date 
Time 
UTC 

Lat° N Long° E 

1 Changureh-Avaj Jun 22nd, 2002 02:58 35.63 49.05 6.5 10 

2 Jahron Jul 10th, 2003 17:40 28.35 54.17 5.8 10 
3 Kerman Aug 21st, 2003 04:02 29.05 59.77 5.9 20 
4 Bam Dec 26th, 2003 01:56 29.00 58.34 6.6 10 
5 Firozabad-Kajoor May 28th, 2004 12:38 36.29 52.59 6.3 28 

6 Zarand Feb 22nd, 2005 02:25 30.75 56.82 6.4 14 
7 Qeshm Nov 27th, 2005 10:22 26.77 55.86 6.0 10 
8 Faryab Feb 28th, 2006 07:31 28.12 56.87 6.0 18 
9 Fin Mar 25th, 2006 07:28 27.57 55.69 5.9 18 

10 Persian Gulf Jun 28th, 2006 21:02 26.82 55.90 5.8 10 

1.1. Remotely sensed thermal infrared data 
The earth’s surface temperature can be estimated with Thermal remote sensing measurements. Such 
technique, allows to determinate the amount of emitted electromagnetic radiation due to heat on the 
surface (emissions in the infrared region of the spectrum from 3-5μm and 8-14μm are measured). For that 
reason, thermal remote sensing does not depend on sunlight and can be done either day or night time. 
However, this technique is limited by the atmospheric absorption due to moisture content in the 
atmosphere. For that, the imagery should be calibrated according the sensor specifications, no matter what 
application the data will get.  
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Table 1-2, list the most used sensors for land and sea surface temperatures and related applications 
(Kuenzer et al., 2013). 
Exist a large variety of satellites acquiring thermal infrared imagery for different applications i.e. 
climatology and evaporation, land surface temperature retrieval (LST) and earthquake precursors to name 
some. TIR imagery from FY-2 (Yao and Qiang, 2012) , NOAA-AVHRR (Saraf and Choudhury, 2005), 
MODIS (Saraf et al., 2009) to name some, have been documented to be useful for earthquake precursors 
analysis. Also, recent studies have been documented the use of the first and the second generation of 
Meteosat (MFG and MSG respectively) for study TIR emissions prior seismic activity (Khan, 2010, 
Buzzo, 2012, Pavlidou, 2013). This due to MFG and MSG geostationary orbits and hyper temporal 
resolution providing images every 30 and 15 minutes respectively. 
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Table 1-2. List of typical Thermal Infrared (TIR) sensors used for land and sea surface temperatures and 
their characteristics. (Taken from Kuenzer et al., 2013) 
  

Sensor Spatial resolution Revisit Swath width Platform/satellite Agency Launch year 

ETM+ 60 m 16 d 185 km Landsat 7 

USGS, NASA 

1999 

TM 120 m 16 d 185 km Landsat 5 1984 

TIRS 90 m 16 d 185 km Landsat 8 (LDCM) 2013 

ASTER 160 m 4-16 d 60 km Terra NASA 1999 

IRMSS 80 m 26 d 120 km CBERS-1, 2, 2b 

CRESDA, INPE 

1999-2003, 2003, 2007-2010 

IRSCAM 250 m 26 d 120 km CBERS-3 and 4, 4b 2012, 2014, 2016 

MERSI 300 m 1 d 2800 km FY-3A, FY-3B NRSCC, CAST, NSM a.o. 2008, 2010 

InfraredCam 351 m 31 d 720 km HJ-1B CRESDA, CAST, NRSCC 2008 

NIRST 370 m <1-2 d 182-1,060 km Auarius NASA, CONAE 2011 

BIRD 356 m 10 d 190 km BIRD 
DLR 

2001-2004 

TET-1 1.6 km 10 d 180 km TET-1 2012 

VIIRS 14 km <1 d 3,000 km 
Suomi NPP 

 
NASA/NOAA 

2011 

CrIS 20 km <1 d 2,200 km 2011 

CERES 1 km <1 d 3,00 km 2011 

IIR 1 km 16 d 64 km CALIPSO CNES 2006 

MODIS 1 km 4 per day 2,330 km Terra, Aqua NASA 1999, 2002 

ATSR-2 1 km 3 d 512 km ERS-2 ESA, UKSA, CSIRO 1995-2011 

AATSR 1 km 35 d 500 km Envisat ESA, UKSA 2002-2012 

AVHRR/1 1.1 km <1 d 2,600 km TIROS-N, NOAA 6, 8, 10 

NOAA 

 

1978-1986 

AVHRR/2 1.1 km <1 d 3,000 km NOAA 9, 10, 11, 12, 13, 14 1984-2005 

AVHRR/3 1.1 km <1 d 3,000 km NOAA 15-19, Metop A, B NOAA, AUMETSAT 1998, 2000, 2002, 2005, 2006, 2012 

MSG/SEVIRI 1-3 km <1 d Full earth disk Meteosat-8/9/10 ESA/EUMETSAT 2002, 2005, 2012 

MVIRI 5 km <1 d Full earth disk Meteosat-3/4/5/6/7 EUMETSAT, ESA 1988, 1989, 1991, 1993, 1997 

MSU-MR 1 km Ev. 30 min 3,000 km Meteir 3 M and –M N1 ROSHYDROMET a. o. 2001, 2009 

MSU-GS 4 km 37 d Full earth disk Elektro-L N1 ROSHYDROMET a. o. 

JMA 

2011 

IMAGER 4 km Geost. <1d Full earth disk MTSAT-1, 2, 3 1999, 2006, 2013 

MVISR 1.1 km Geost. <1d 3,200 km FY-1C, 1D CMA, NRSCC 1999, 2002 

IVISSR 5 km 3-4 d Full earth disk FY-2C, 2D, 2E, 2F NRSCC, CAST, NSMC 2004, 2006, 2008, 2012 

VHRR 8 km 1 d Full earth disk Insat-2A, B, E, -3A ISRO 1992, 1993, 19999, 2003 

IASI 25 km Ev. 30 min 2,052 km MetOP-A/B CNES, AUMETSAT 2006, 2012 

HIRS/3 20.3 29 d 2,240 km NOAA 15, 16, 17 NOAA 1998, 20000, 2002 

HIRS/4 20.3 km <1 d 2,240 km NOAA 18/19, MetOp A/B NOAA, EUMETSAT 2005, 2006, 2009, 2012 

ScaRab 40 km 1 d 2,200 km Meteor-3, resurs-01, Megha Tropiques CNES 1994, 1998, 2011 
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1.2. Existing methodology 
The existing methodology first put forward by Khan (2010) and further developed by Buzzo (2012), was 
carried out using a package named “SHAKY” (previously developed by ITC team). Such package consists 
in a sequence of programs coded in IDL environment. Following, the description of the programs in 
order of execution. 

1.2.1. Import 
RAW data contains pixels values (DN) of thermal infrared captures. To convert DN to brightness 
temperature (BT) values in Kelvin, a sub-routine from the “SHAKY” package was used. Such program 
reads RAW images (.TIF files) and check for non-valid images (i.e. images with different dimension) and 
missing captions in the datasets. The sub-routine not only convert to BT values, but also calibrates the 
images for possible measuring errors or atmospheric absorption by moisture content. Calibration is 
important since wrong radiance values can change the statistics of the observations and by consequence 
distort the results. The calibration is done according the sensor specifications and calibration files are 
accessible through the EUMETSAT web portal1. The sub-routine makes a stack of the images and 
produces a Band Sequential (.bsq) image file than can be read using ENVI2 software. 

1.3. Cloud masking 
An important fact to take in consideration when dealing with thermal imagery, is the coverture of clouds 
in the images. Cloud detection is important since the thermal infrared emission does not penetrate them. 
From there, areas with cloud coverage will show temperatures from the top of the cloud and not the 
actual temperature of the observed surface. Knowing this, images that contain pixels covered by clouds 
won’t be useful for observation, will influence the statistics of the analysis and distort the results.  

a Relative-Absolute Mask (RAM) 
Khan (2010) recently developed an algorithm which takes into consideration the temperature variations 
and the extreme weather conditions, both expected to naturally occur in any study area. Such algorithm 
takes two steps approach;  

– Daily temperature variation range (Relative mask). 
A dynamic threshold was used knowing the climatological variations and weather patterns 
possibly due to different geomorphological features within the area. From the statistics of the data, 
a cut-off is set by 95% of the maximum observed temperature value minus the natural variation 
within the study area, this cut-off removes all similar or lower values in the scene. 

– Minimum recorded temperature (Absolute mask). 
The lowest recorded temperature taken from the historical records for the study area is set as 
static threshold, masking all temperatures below that value as cloud covered. 

After the Relative-Absolute Mask (Khan, 2010), the data still contains the effect of light cloud coverage. 
To overcome this limitation, some options have been developed, such is the case of Buzzo (2012) which 
tested a polynomial-fit (PF) mask assuming that removes cloud coverage from the scene. 

b Polynomial Fit (PF) mask 
By definition, a polynomial fit regression models the relationship between two variables. Buzzo (2012) 
applied a polynomial regression in a year of MFG data. According the PF mask description, a yearly trend 
curve of temperature values can be described with a fourth degree polynomial model. The model then 
calculates a minimum threshold to discard low values due to e.g. clouds. A fit is calculated on a year of 

                                                      
1 EUMETSAT Data Center. http://www.eumetsat.int/website/home/Data/Products/Calibration/index.html  
2 Environment for Visualizing Images (ENVI). http://www.exelisvis.com/   
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pixel values fluctuations. All values below the mean of the differences between the fit and the values lower 
than the fit, are masked as clouds. 
Buzzo (2012) documented the performance of the PF mask applied to the imported data and after 
applying the RAMask (Khan, 2010).  

1.3.2. Anomaly detection 

a Pixel normalization 
After masking the clouds, there is still the need to neutralize the (a) meteorological and the (b) 
surface/subsurface effect in the images. In the matter of point (a) the effect is due to different weather 
conditions according e.g. different topography, different geomorphological settings. In the case of (b), the 
composition of the surface or the subsurface strongly influences the BT values for pixels for example on a 
coastal line due to wetness. Knowing that, a pixel normalization technique inherited from previous 
researches (Khan, 2010, Pavlidou, 2013) was applied to the data. A square ring of pixels is set by the user 
in order to divide each pixel value over the average value of the square ring. The size of the square ring 
must to be carefully chosen in the assumption that is close enough that all pixels inside have similar 
weather conditions. For example, when within the scene is encountered a coastal line, the pixel 
normalization could be a limitation for the pixels over the sea if the size of the square ring is too big. If 
that is the case, all pixels over the sea will be normalized with pixels from the land (which temperature is 
considerable unstable) and not with pixels from the sea (which temperature is more stable than the 
temperature in land).  

b Anomaly flagging 
After pixel normalization, the mean and the standard deviation of the statistical values are calculated for 
each pixel for the whole time series. A fixed threshold is set by the mean plus two standard deviations.  
Then, all pixels above the threshold are flagged as anomalous (Khan, 2010, Buzzo, 2012, Pavlidou, 2013). 
Following the anomaly flagging, an anomaly count is performed (Khan, 2010, Buzzo, 2012, Pavlidou, 
2013). Knowing that an anomaly will probably appear and stay for few days prior the earthquake, the 
number of anomalous pixels in a time lapse window within the time series can be added up. (i.e. a number 
of days window will be moving through the entire time series, incident anomalies will be counted for 
multiple days.) 
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1.4. Research objectives 

1.4.1. Main Objective 
Apply time series analysis to the thermal infrared satellite data in order to verify the claimed appearance of 
anomalous peaks linked to seismic activity in ten different earthquakes. 

1.4.2. Specific objectives 
i. Application of existing methodology to verify the presence of claimed thermal anomalies. Apply 

the methodology earlier proposed by Khan (2010) and further developed by Pavlidou (2013) in 
order to overcome the limitations found in other researches (i.e. short time series, no correction 
for weather conditions, no cloud masking, no hyper temporal analysis, no relation with the 
geographical location) and validate the shape, size and timing of anomalous peaks. 

ii. Test of existing methodology for different seismic event. Test the developed methodology 
(Pavlidou, 2013) on 10 earthquakes with different magnitudes, depths, focal mechanism and 
geomorphological features. 

1.5. Research Questions 
About specific objective i;  
Underlying processes 

 Does addressing meteorological effects using a longer time-series gives a different view on the 
presence of thermal anomalies? 

Timing 
 Where in time, anomalous peaks appear in the TIR datasets? 
 How does a thermal anomaly look like in the TIR datasets? What is the difference between the 

appearance of single and dual peaks? When do they appear? 
 What is the time extent of the anomaly appearance? 

 
Spatial aspects 

 How do anomalies appear in space? In dependence of which factors: 
1. Depth, 
2. magnitude 
3. focal mechanism 
4. and geomorphological features 

anomalies are located and spatially extending? 
 What is the spatial relation between the epicenter and the appearance of the anomaly? 

 
About specific objective ii;  

 Do we always observe thermal anomalies prior to earthquakes? For which factor: 
1. Depth, 
2. magnitude, 
3. focal mechanism, 
4. and geomorphological features 

do we observe occurrence of thermal anomalies? What are the thresholds?  
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2. METHODOLOGY 

The methodological steps followed for the assessment of the objectives of the present study are 
summarized in the flowchart below. 
 

Data adquisition

Evaluation of existing cloud 
masking technique

Cloud removal analysis

Statistical improvement 
of the technique

Anomaly detection scheme

Pixel normalization

Anomaly flagging

Anomaly analysis

Description of anomaly 
in space, shape and 
time of appearance

Relation of the anomaly 
appearance with 

underlying processes

Application of improved cloud 
masking technique to different 

earthquakes

Evaluation of new cloud 
masking technique

Cloud removal analysis

Potential improvements

Mask for water bodies

 
Figure 2.1. Flowchart of the methodological steps followed in the present study 
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The data processing was done in four steps; 
1) Data acquisition; 
2) Application of improved cloud masking technique to ten different earthquakes; 
3) Anomaly detection; 
4) Anomaly analysis. 

A composition of subroutines running in IDL environment was used to perform the existent 
methodological steps (Khan, 2010, Buzzo, 2012). For exploring, visualization and manipulation of the data, 
ENVI software was used. 

2.1. Datasets 
This research was carried out using massive amounts of Meteosat-5 (MFG) data, knowing that, the 
expected time for processing was large. For ordering, the study area was divided in three different datasets. 
The extent of the datasets was done thinking of having enough pixels surrounding the earthquakes, this to 
perform the pixel normalization technique (see 1.3.2.a). Dataset 1 (shown in red in the image below) and 
dataset 2 (shown in green in the image below) are overlapping. This decision was made thinking about 
testing the performance of the existing methodology (see 0) and to compare results after processing 
datasets with different spatial extent. The length of the time series in years, was decided according the 
years where the earthquakes covered by each dataset occurred. For dataset 1 (See  
 
Table 2-1) a total of 5 years of images with 1,600,539,600 points was used. For dataset 2 (See  
 
Table 2-1), 4 years of data was used with 644,105,280 points. A total of 431,762,880 points from 4 years of 
data was used for dataset 3 (See  
 
Table 2-1). 
 

 
Figure 2.2. Delimitation and coverture of datasets used for the present study. Dataset 1, 2 and 3 are shown in red, 

green and yellow respectively. Google earth caption. 
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All data was ordered via the European Organization for the Exploitation of Meteorological Satellite 
(EUMETSAT) web portal3 and received via email. 
Basic information regarding general characteristics of each earthquake such as date, geographical location, 
depth and focal mechanism was obtained via the USGS4 and the IIEES5  web portals. 
 
Table 2-1. Characteristics of datasets for ordering.  

Dataset Earthquakes covered Time length (years) 
Spatial extent 

(pixels) 
Spatial extent 

(km) 

1 
Kerman 

2002-2006 151x121 755x605 Bam 
Zarand 

  
Faryab 

2003-2006 101x91 
505x455 

 

Fin 

2 
Jahron 

Queshm 
Persian Gulf 

3 
Changureh-Avaj 

2001-2004 101x61 505x305 
Firozabad-Kajoor 

2.2. Import 
The import of the images for each dataset, was carried out using the import program from the “SHAKY” 
package (see 1.2.1). Each dataset was processed separately, starting from dataset 1 (see 2.1) for time 
management and comparison of the results from previous works (see 0) with the present research. The 
import program was modified to perform the calibration correspondent to the years of observations for 
the Meteosat-5 (see 1.1). The product after running the import program, was a .bsq file stack of the images 
with BT converted values for each dataset. Such file can be read using ENVI software. 

2.3. Cloud masking  
As described in the Introduction of the present study, the coverture of clouds in the images results to be a 
limitation for a statistical analysis when monitoring for anomalies in the TIR emissions as earthquake 
precursors. For that, after the import of each dataset, the following program from the “SHAKY” package 
mask some pixels with low values as clouds (see 1.3.a and 1.3.b). After trying the cloud masking options 
from the existing methodology (see 1.3), the outputs showed light cloud coverture. To overcome such 
results, a modification of the algorithm was proposed for this study. (To see modifications of the code, go 
to Appendix)   

2.3.1. Polynomial-Fit iterative method 
After trying the PF mask as proposed by Buzzo (2012), some low values due to light cloud coverage were 
still recognised when exploring the data. For that reason, an iterative method of the PF mask was applied 
to the imported data. This approach was proposed aiming to remove the remaining clouds and increase 
the statistical relevance of the methodology.  

                                                      
3 EUMETSAT Data Centre. http://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html 
4 USGS National Earthquake Information Center. http://earthquake.usgs.gov/earthquakes/eqarchives/epic/ 
5 International Institute of Earthquake Engineering and Seismology. http://www.iiees.ac.ir/iiees/English/index_e.asp 
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2.3.2. Anomaly detection 

a Pixel normalization 
A square ring of 12 pixels was set for applying the pixel normalization to the three datasets. For dataset 2 
and 3 (see 2.1), pixels correspondent to the Persian gulf and the Caspian sea respectively were masked 
before applying the pixel normalization. 

b Anomaly flagging 
This methodological step is done with the last program in the sequence of the “SHAKY” package. As 
output, a single image for each dataset was created. Such image contains the maximum count of values 
flagged as anomalous within a 7 day timestamp (see 1.3.2.b). The timestamp works as a moving window 
3.5 days centred. The 7 day timestamp was decided after the time reported for the anomaly appearance in 
previous works. (Saraf et al., 2008).  
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3. RESULTS 

3.1. Methodology review and technical considerations 
Working with such amount of data revealed the computational and time demand of the processes. Some 
technical problems such as insufficient memory for processing data where encountered during the 
different methodological steps. 
Images showing the results from each step of the applied methodology will be shown in the following 
section. Also evidence of the corresponding improvements in the different methodological steps can be 
seen below. 

3.1.1. Import 
The import of the images for each dataset was done sequentially, ordering images according time of 
caption. Not a number (NaN) values were used in the stack for missing observations. The performance of 
the import for dataset 2 and 3 ran without technical issues. Although, for dataset 1 the import had to be 
done by year due to the large amount of data and insufficient memory for processing. Since the PFmask is 
based in a time series of a year and the pixel normalization works with a square ring in space on a single 
time slice (see 1.3.aand 1.3.2.a), the yearly import of dataset 1 result irrelevant. However, anomaly flagging 
works with a moving window in time. For that, the five years of data for dataset 1, were merged after the 
pixel normalization. 

3.1.2. Polynomial-Fit iterative method 
The following figures show a comparison of the PF mask (as proposed by Buzzo, 2012) and the 
Polynomial-fit iter ative method.  
For comparison of results, pixel (66,82)6 previously documented as anomalous (Khan, 2010, Buzzo, 2012, 
Pavlidou, 2013) is shown in the images below. For better visibility of the results, some time series graphs 
show two weeks subset of the whole time series. Images below show the imported data (See Figure 3.1a), 
the PF mask (See Figure 3.1b),  as proposed by Buzzo (2012) and the performance of the Polynomial-Fit 
iterative method (See Figure 3.1c-d). 
Observation from 16:00 hrs Dec 19 2003 was chosen to show results of the cloud masking technique. 
This due to the amount of cloud coverture in the images and being within the period where the findings 
for the Bam earthquake have been reported (Saraf et al., 2008). 
Two iterations of the PF mask are shown in figure 3.1c. From the caption is possible to see the increment 
in the cloud removal. However, Figure 3.1c shows poor delineation of the edges of the clouds. This 
indicates that there was still an improvement needed. For that, a third iteration of the PF (figure 3.1d) was 
tested. It is possible to identify the increase in the cloud removal, however, from exploring the time series 
for pixel (66,82), a considerable loss of data was identifiable (i.e. mainly nights were removed). For the 
assessment of the results, the analysis of the polynomial-fit iterative method was based on time series plots 
(see Figure 3.2a-d).  For supporting the analysis, a digital animation from the transit of masked clouds over 
the time series (i.e. animation of a series of images as in Figure 3.1a-d) was used. 

                                                      
6 Different pixel coordinates from previous reports due to different extent of the dataset. 
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Figure 3.1a-d. Observation on 16:00-19-12-2003. Pixel (66,82) is indicated in yellow. Removed 
clouds are shown in red. (a) Image showing imported data, no further processing. (b) Output from 
applying the PF mask as proposed by Buzzo (2012). (c) Output from applying two iterations of the 
PF mask. (d) Output from applying three iterations of the PF mask. Green arrows point (c-d) to 
clouds with visible poor delimitation in the edges. 

 
The following graphs show one year of radiant temperature for pixel (66,82). Low values are mainly due to 
light coverage in the images. In other cases, very low values are due to the measure of the top of a cloud 
(Figure 3.2a). For visualization and comparison of results after applying the polynomial-fit iterative 
method, following graphs show time slot for figure 3.1a-d.  

a b 

c d 
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Figure 3.2a-d. Time series for pixel (66,82). Vertical red line indicates the observation time (16:00-19-12-2003) for 
figures (3.1a-d). Lines in black shown the statistics of the imported data (a). Red row points a very low value possible 
due to an error from the satellite. For comparison of the results, an overlay of the PF mask and the Polynomial-fit 
iterative method is shown (a-d). Lines in blue correspond to the PF applied to the data as proposed by Buzzo 
(Buzzo). Lines in magenta correspond to the output from applying a second iteration of the PF mask. Lines in green 
correspond to the output from applying a third iteration of the PF mask. 

 
After exploring the graphs, a second iteration of the PF mask resulted to suits better for the present study. 
In comparison with a third iteration of the PF mask (Figure 3.2b), a second iteration removes less data 
(night observations) when the polynomial curve is fitted (Figure 3.2a). Even though a coverture of light 
clouds will still remain in the images. 

a b 

c d



 

21 

3.1.3. Pixel normalization 
After applying two iterations of the PF mask (Polynomial-fit iterative method) to the data, the images still 
contain the meteorological and surface/subsurface effect (see 1.3.2.a). Figures below show the output 
graphs after applying the pixel normalization technique to the data. Looking at the findings previously 
reported (Pavlidou, 2013), a square ring of 12 pixels was used for this methodological step. Part of dataset 
2 and dataset 3 contain pixels (see Figure 2.2) correspondent to the Persian Gulf and the Caspian sea 
respectively. For the matter of the 
surface/subsurface effect (see 1.3.2.a), 
pixels correspondent to the Persian 
Gulf and the Caspian sea were masked 
before the pixel normalization. The 
mask was build using ENVI software 
and based on the maximum and 
minimum pixel value for the coverture 
of sea in the images. The values were 
taken from a winter clouds-free night 
observation. 
When looking at the outputs, some 
daily patterns were identified in some of 
the observations (time of appearance 
according the season). Such patterns are 
due to light morning fog, appearing 
between 07:00 and 09:00 hours in late winter observations (see Figure 3.3).                                                                       
                                                                                                 
 

 
Figure 3.3. Statistics of pixel (66,82) after pixel normalization. Graph 
show daily morning patterns due to fog between 07:00 and 09:00 hrs. 
Red arrow pointing to a couple of the patterns. Blue arrow indicated 
a very low value due to the normalization of foggy/cloudy pixels. 
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3.1.4. Anomaly flagging 
Anomalies were flagged in each dataset and counted with a moving window of 7 days, all occurring 
anomalies were added up for the whole time series in each case.  
For the present study, images corrected for missing values over the whole time series were used for the 
visual analysis of the observations and presenting results. For all figures, all discussed pixels and epicentres 
were oversized 3x3 for better visualization of the results. 

a Dataset 1 
Saraf et al. (2008) reported anomalies for 
the Kerman, Bam, Zarand, Faryab and Fin 
earthquakes using three different LST 
images with different extent each. To be 
consistent with the spatial extent of the area 
for observation surrounding each seismic 
event, one large dataset was used for the 
present study. For matter of visualization 
and spatial location, Figure 3.4 shows 
radiant temperature at the moment of the 
Bam earthquake. Epicentres of seismic 
events covered by the dataset were plotted 
on top for spatial location. In the figure, the 
seismic events are sequentially numbered 
according time of occurrence (e.g. 1. 
Kerman; 2. Bam; 3. Zarand; 4. Faryab; 5. 
Fin).  
The absolute maximum count of anomalies, 
was 187 for the whole time series. 
 
 

 

Figure 3.4. 02:00-26-12-2003 observation from dataset 1 (see 
2.1) after correcting for missing values. Pixels in yellow 
correspond to earthquake epicentres: (1) Kerman; (2) Bam; (3) 
Zarand; (4) Faryab; (5) Fin. Pixel size exaggerated by 3x3 for 
better visualization.  

2 1 

3 

4 

5 
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Bam earthquake (01:56 UTC, December 26th, 2003). 

Saraf et al. (2008) reported a rise in the LST several days before the Bam earthquake. According their 
observations “the first anomaly appeared on Dec 21st, 2003, the rise in temperature started on Dec 22nd, 
2003 and attained the peak on Dec 24th, 2003”. Saraf et al. (2008) described a pattern extending around 30 
km in N-S and to around 20km in the E-W direction from the Bam epicentre.  
Figure 3.5a-g. show a time series subset of the results of the present study regarding the Bam earthquake. 
Figures show the observations from four weeks before and a week after the earthquake. The epicentre for 
the Kerman earthquake was plotted in the image due to its closeness in time and space to the Bam 
earthquake. Also pixel (68,86) was plotted in the image for having 160 anomalies count for the whole time 
series. The maximum count for pixel (68,86) for the whole time series, appears on 19 Dec 2003. Figure 
3.5a-c show scattered areas with values between 18 and 45 counts on 26 Nov 2003, 07 Dec 2003 and 14 
Dec 2003. By 21 Dec 2003, and area with higher count of flagged anomalies appeared (Figure 3.5d). On the 
observation for that day is possible to identify an area with pixels counting between 93 and 149 flagged 
anomalies (e.g. between 50 and 79% of the absolute maximum count for the whole time series). The area 
is found at approximately 35km away from the Bam epicentre and has and approximate area of 1,200km2. 
A smaller area with values between 149 and 187 counts is also visible on the observation for that day. The 
small area is found at approximately 40km away from the epicentre with an approximate area of 25km2. 
On 22 Dec 2003 (Figure 3.5e), the area with 93-148 counts got smaller with approximately 90km2. Also the 
number of pixels with higher count disappeared. On 24 Dec 2004, the anomalous area is still visible, 
however with values between 18 and 46 counts for the majority of the contained pixels (Figure 3.5f). The 
area is found at approximately 30km away from the epicentre and with an approximate area of 1,900km2. 
By the time of the earthquake (Figure 3.5g), the high anomaly count exponentially decreased. In the 
observation for 26 Dec 2003, scattered areas with counts between 18 and 45 are identifiable. On 
observations after the earthquake, the low anomaly count remains on the observations (figures no shown 
in this paper) 
Figure 3.6a-b show the graphs of the anomaly count for pixel (68,86). Figure 3.6a shows the anomaly count 
for the whole time series, there is possible to see that the highest count is 160. Figure 3.6b shows a year of 
the time series, there is more evident to visualize that pixel (68,86) attained its maximum count on 19 Dec 
2003. 
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 Figure 3.5a-g. Images showing observations at 
02:00hrs. In yellow the Bam and Kerman 
epicentre. Pixel (68,86) shown in red. Pixels in 
blue count 80-100% of the absolute maximum 
anomaly count for the whole time series. Pixels in 
magenta count 50-79%. Pixels in green count 30-
49%. Pixels in orange count 25-29%. Pixels in 
cyan count the 10-24%. 
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Figure 3.6a-b. Graphs showing anomaly count for pixel (68,86). (a) Anomaly count over the whole time series. (b) 
Anomaly count for year 2003. Peak with the maximum count (on 19 Dec 2003), is pointed with a black arrow. Red 
line indicates the time of occurrence for the Bam earthquake (Dec 26th, 2003. 01:56hrs (UTC)). 
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For the matter of comparision with previosly reported findings, the following figures show results from 
Saraf et al. (2008). Figure 3.7 shows the observation from the day the anomalous area was reported to rise 
and attained its peak (Figure 3.7a and b respectively). The anomalous area is shown in red. However, no 
further description of the anomalous area in matter of covered area or distance from the epicentre was 
provided. From Figure 3.7a is possible to observe a very large area at a large distance from the epicentre. 
From Figure 3.7b, the anomalous area results even bigger and this time the area covers also the epicentre. 
 

  

Figure 3.7a-b. Observations taken from Saraf et al. (2008) reported results for the 
Bam earthquake using LST maps. The epicentre of the earthquake is represented 
by a star in both images. Areas with higher temperature are coloured in red. 
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Kerman earthquake (04:02 UTC, August 21st, 2003) 

In the case of the Kerman earthquake, Saraf et al. (2008) reported a dual peak looking at a short time 
series. The first peak on 11 Aug 2003 and a second on 15 Aug 2003. Even though, LST maps were 
produced for those dates, no further information about the anomalous area on the maps was provided. 
For the present study, Figure 3.8a-g show observations within a period of four weeks before and a week 
after the earthquake. For all figures, epicentres from the Bam and the Kerman earthquakes were plotted 
due to closeness in space and time of occurrence. Also pixel (118,69) was plotted on the images, such pixel 
shows its maximum counts over the whole time series starting on 24 Jul 2003 (a month before the 
earthquake). 
On 24 Jul 2003 an area with anomaly count between 18 and 45 (e.g. 10-24% of the absolute maximum 
count for the whole time series) at approximate 70km away from the epicentre is found (Figure 3.8a). On 
the same observation, are found two smaller areas with counts between 46-55 (show in orange on the 
figure) and 56-92 (shown in green on the figure) respectively. Both areas get considerable reduced by 30 
July 2003 (Figure 3.8b) and they increased again by 03 Aug 2003 (Figure 3.8c).  By 11 Aug 2003 and 15 Aug 
2003 not anomalous areas were identifiable on the observations (Figure 3.8d-e), e.g. all pixels in the area 
count less then 18 flagged anomalies which is less than the 10% of the absolute maximum value for the 
whole time series. By the time of the earthquake, an area with anomaly count between 18 and 45 appeared 
at approximately 110km distance away from the epicentre (Figure 3.8f). 
Looking at the graphs of the anomaly count for pixel (118,69) over the whole time series, the figures show 
a peak with 95 counts on 24 Jul 2003 (Figure 3.9b), a month before the earthquake. The peak decreased, 
however still shows higher counts comparing counts for the whole time series (Figure 3.9a). On 30 Jul 
2003 the peak attained its maximum of 99 counts over the whole time series. That is between the 50 and 
the 79% of the absolute maximum value for the whole time series. 
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 Figure 3.8a-e. Images showing observations at 
04:00hrs. In yellow the Kerman and Bam 
epicentre oversized by 3x3 for better visualization. 
Pixel (118,69) shown in red. Pixels in magenta 
count 50-79% of the absolute maximum anomaly 
count for the whole time series. Pixels in green 
count 30-49%. Pixels in orange count 25-29%. 
Pixels in cyan count the 10-24%. 

Jul 24, 2003 

a 

Jul 30, 2003 

b 

c 

Aug 3, 2003 Aug 11, 2003 

d 

e 

Aug 15, 2003 

Bam 

Kerman 

Bam 

Kerman 

Bam 

Kerman 

Bam 

Kerman 

Aug 21, 2003 

f 

Bam 

Kerman 

Bam 

Kerman 

Bam 

Kerman 

e 

Aug 28, 2003 



 

29 

 

 

 
Figure 3.9a-b. Graphs showing anomaly count for pixel (118,69). (a) Anomaly count over the whole time series. (b) 
Anomaly count for year 2003. Peak with the maximum count over the whole time series, is pointed with a black 
arrow. Red line indicates the time of occurrence for the Kerman earthquake (Aug 21st, 2003. 04:02hrs (UTC)). 
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For comparison with previously reported findings, following figures show results from Saraf et al. (2008). 
Figure 3.10a shows the observation from the day the dual peak was reported to appear for the first time. 
On 15 Aug 2003 (Figure 3.10b) was reported to appear again. However, no further information about the 
appearance of an anomalous area or its spatial location was provided. Coloured in red are the areas 
recognised by Saraf et al. (2008) with hottest temperatures and the epicentre is shown with a symbol star. 
For this case, also the lack of LST maps was reported due to cloud coverage in the images. 
 

  

Figure 3.10a-b. Observations taken from Saraf et al. (2008) reported results for the Kerman earthquake using 
LST maps. The epicentre of the earthquake is represented by a star in both images. Areas with higher 
temperature are coloured in red. 
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Zarand earthquake (02:25 UTC, February 22nd, 2005) 

Saraf et al. (2008) reported an increasing anomalous area at about 75km diameter from the epicentre on 16 
Feb 2005. Such area was reported to increase till 21 Feb 2005. However, no further description of the 
anomalous area or found peaks was provided.  
For the present study, a visual analysis of the observations and comparison with the graphs of the anomaly 
count for possible anomalous pixels near the epicentre was done. Following figures show observations 
from four weeks before and a week after the earthquake.  
Figure 3.11a-b show observations from 28 Jan 2005 and 07 Feb 2005 respectively. In both images is 
possible to identify small areas with anomaly count between 18 and 45 flagged anomalies. Such areas 
appeared at approximately 55 and 25km respectively distance away from the epicentre (areas coloured in 
cyan on the figure). In the period between 16 Feb 2005 and 21 Feb 2005, a clear increment on areas 
covered by pixels counting 10-24% of the absolute maximum anomaly count for the whole time series is 
identifiable (Figure 3.11c-e). Now the areas are found at approximately 80km diameter from the epicentre. 
By the day of the earthquake (Figure 3.11d), the areas got smaller but still remain at approximate 35km 
distance away from the epicentre. On 28 Feb 2005 (a week after the earthquake), an exponential increment 
of areas with anomaly count between 18 and 46 anomalies flagged is identifiable (Figure 3.11g). By this 
date, also areas with anomalies with 25-29% and 30-49% of the absolute maximum anomaly count for the 
whole time series are identifiable.  
The visual analysis did not show anomalies possible linked to seismic activity, but normal patterns due to 
small rise in the temperature of the area were identifiable from the animated time series. 
Also Figure 3.12 shows the anomaly count for pixel (46,46) over the whole time series. For the case of the 
Zarand earthquake, pixel with anomalies possible link to seismic activity were no identifiable.  
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 Figure 3.11a-g. Images showing observations at 
02:30hrs. In yellow Zarand epicentre, pixel (46,46). 
Pixels in magenta count 50-79% of the absolute 
maximum anomaly count for the whole time series. 
Pixels in green count 30-49%. Pixels in orange 
count 25-29%. Pixels in cyan count the 10-24%. 
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Figure 3.12. Graph showing the anomaly count for the Zarand epicentre, pixel (46,46). Yearly occurring 
patterns are identifiable through the whole time series. Red line indicates the time for the Zarand 
earthquake (Feb 22nd, 2005. 02:25 (UTC)). 
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For comparison with previously reported finding in the matter of the Zarand earthquake, the following 
figures show the findings reported by Saraf et al. (2008). From Figure 3.13a, is possible to identify a small 
area that seems to increase by 19 Feb 2005 (Figure 3.13b), 20 Feb 2005 (Figure 3.13c) and till 21 Feb 2005 
(Figure 3.13d). However, no further description for the found anomalous area was provided. 
 

  

  

Figure 3.13a-d. Observations taken from Saraf et al. (2008) reported results for the Zarand 
earthquake using LST maps. The epicentre of the earthquake is represented by a star in both 
images. Areas with higher temperature are coloured in red. 

a b 
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b Dataset 2 
For dataset 2, pixels over the coastline 
were normalized with pixels of NaN 
values (i.e. masked pixels due to 
coverture of water bodies e.g. Persian 
Gulf). Pixels with anomaly count >100 
are found near the Jahron, Qeshm and 
Persian Gulf earthquakes (see Table 1-1 
and Figure 2.2), this can be explain by the 
normalization with the NaN values. 
Figure 3.14 shows observation at the 
time when the Jahron earthquake 
occurred. For matter of visualization and 
spatial location, epicentres for all 
earthquakes covered by dataset 2 (Table 
1-1) were plotted on the figure.  
For the present study, images already 
corrected for missing values were used 
for the visual analysis of the 
observations. The maximum anomaly 
count for dataset 2 for the whole time 
series is 157 flagged anomalies. 
 
 

 

 

Jahron (17:40 UTC, July 10th, 2003) 

Saraf et al. (2008) reported a dual peak prior seismic events with magnitude bellow 6. In the case of the 
Jahron earthquake, the magnitude reported by the USGS was 5.8. For the present study and according 
Saraf et al. (2008) observations using a short time series, a dual peak was expected prior the earthquake but 
using a much longer time series. For the Jahron earthquake,  Saraf et al. (2008) did not provide description 
of the findings. 
Images bellow show observations from a month before and two weeks after the event. Observations for 7 
and 14 June 2003 (Figure 3.15a-b) do not show anomaly count for pixels surrounding the Jahron 
earthquake. By 21 June 2003 (Figure 3.1c)scattered areas appeared with anomaly count between 15 and 38 
flagged anomalies for the whole time series i.e. 10-24% of the absolute maximum anomaly count for the 
whole time series. One of the anomalous area covered the epicentre with an approximate area of 2,250 
km2. For 28 Jun 2003 (Figure 3.1d) the anomalous area are not visible anymore. Again by 07 Jul 2003 
(Figure 3.1e) scattered anomalous areas are found with 15-38 counts. The clossest area is found at 
approximately 20km distance away from the epicenter. By 10 Jul 2003 (Figure 3.1f) areas with 15-38 
counts potentially increased and small areas with 39-46 and 47-77 counts are identifiable near the 
epicentre. On the observation for 21 Jul 2003 all anomalous areas decreased in size. For that day, 
anoumalous areas found near the epicentre are not visible anymore. 

 

Figure 3.14. Image showing observation from dataset 2 
when the Jahron earthquake occurred. Image already 
corrected for missing values for the whole time series. Pixels 
in yellow correspond to earthquake epicentres: (1) Jahron; 
(2) Qeshm; (3) Faryab; (4) Fin; (5) Persian Gulf. Pixel size 
exaggerated by 3x3 for better visualization 
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Figure 3.15a-g. Images showing observations at 
17:30hrs. In yellow Jahron epicentre, pixel (35,43). 
In red pixel (17,35). Pixels in green count 30-49% 
of the absolute maximum anomaly count for the 
whole time series. Pixels in orange count 25-29%. 
Pixels in cyan count the 10-24%.. 
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Qeshm (10:22 UTC, November 27th, 2005) 

Saraf et al. (2008) reported a single peak prior seismic events with magnitude equal or above 6. In the case 
of the Qeshm earthquake, the magnitude reported by the USGS was 6. For the Qeshm earthquake,  Saraf 
et al. (2008) did not provide further description of their findings. For the present study and according 
Saraf et al. (2008) observations using a short time series, a single anomalous peak was expected prior the 
earthquake but using a much larger time series. For processing, the coverture of the Persian Gulf was 
previously masked using NaN values. When comparing with images corrected for missing values, all 
anomalous pixels recognized in images without correction, are not visible anymore. Since the visual 
analysis did not present anomalous observations, figures for the Qeshm are not following presented. 
  

Faryab (07:31 UTC, February 28th, 2006) 

For the Faryab earthquake Saraf et al. (2008) did not provide description of the findings. However, they 
documented to find single peaks in the data for earthquakes with magnitude above 6. Such is the case of 
the Faryab earthquake with magnitude 6 reported by the USGS. For the present study, anomalous pixels 
were not identifiable for the Faryab earthquake. 
Figure 3.16a-g. show observations from three weeks before and one week after the earthquake. On 07 Feb 
2006 (Figure 3.16a) large areas with 15-38 anomaly count are identifiable surrounding the Faryab 
epicentre. Also small areas with 47-125 counts are seen neighbouring the coastal line of the Persian Gulf 
in the observation for 07 Feb 2006. On 14 Feb 2006 (Figure 3.16b) areas with 15-38 anomaly count 
remain on the observation but with a significant decrease on their extension. On 19-21 Feb 2006 (Figure 
3.16c-e), areas with 47-125 anomaly count are recognizable again neighbouring the costal line of the 
Persian Gulf and surrounded by areas with 15-38 anomaly count. On 21 Feb 2006 (Figure 3.16e) a small 
area with count between 126-157 flagged anomalies is found. The area is located at approximately 15km 
away from the epicentre with an approximate area of 100km2. By the time of the earthquake (Figure 3.16f) 
all anomalous areas considerable decreased in size. However, areas with 39-77 are identifiable 
neighbouring the coastal line of the Persian Gulf. By 07 March 2006 (Figure 3.16g) very small areas with 
15-38 anomaly count are identifiable surrounding the Fin earthquake which occurred on 25 March 2006. 
On the observation for that day, anomalous areas observed neighbouring the coastal line in previous days 
are not appearing anymore. 
In the present study, pixels possible linked to seismic activity were not identifiable for the case of the 
Faryab earthquake.  
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Figure 3.16a-g. Images showing observations at 
07:30 hrs. In yellow the epicentre for the Fin and 
Faryab earthquakes due to their proximity in time 
and space. Pixels in blue count 80-100% of the 
absolute maximum anomaly count for the whole 
time series. Pixels in magenta count 50-79%. 
Pixels in green count 30-49%. Pixels in orange 
count 25-29%. Pixels in cyan count the 10-24%. 
Dashed yellow line, delineates part of the coast 
for the Persian Gulf. 
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Fin (07:28 UTC, March 25th, 2006) 

For the Fin earthquake, Saraf et al. (2008) did not documented a description of their findings. The Fin 
earthquake was reported by the USGS with a magnitude 5.9. For the present study, results did not show 
anomalous areas. All anomaly counts were below 15 counts (e.g. <10% count of the absolute maximum 
value for the whole time series for the entire dataset).  
Following figures show observations from a month before and two weeks after the earthquake.  
On 25 Feb 2006 (Figure 3.17a), a large area is identifiable with values between 15 and 38 anomalies count 
for the whole time series. By 07 Mar 2006 (Figure 3.17b), the area considerable decreased in size. On 25 
and 28 March 2006 (Figure 3.17c-d) scattered areas appear again with values between 15 and 38 anomalies 
count for the whole time series. By 07 Apr 2006 (Figure 3.17g), areas similar to the observed on 25 Feb 
2006 are recognizable in the image. 
In the present study, anomalous pixels or areas possible link to the presence of seismic activity, were not 
identify for the case of the Fin earthquake. 
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 Figure 3.17a-g. Images showing observations at 
07:30 hrs. In yellow the epicentre for the Fin and 
Faryab earthquakes due to their proximity in time 
and space. Pixels in blue count 80-100% of the 
absolute maximum anomaly count for the whole 
time series. Pixels in magenta count 50-79%. 
Pixels in green count 30-49%. Pixels in orange 
count 25-29%. Pixels in cyan count the 10-24%. 
Dashed yellow line, delineates part of the coast for 
the Persian Gulf. 
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Persian Gulf (21:02 UTC, June 28th, 2006) 

Saraf et al. (2008) reported a dual anomalous peak prior seismic events with magnitude below 6. In the 
case of the Persian Gulf earthquake, the magnitude reported by the USGS was 5.8. For the present study 
and according Saraf et al. (2008) observations using a short time series, a dual anomalous peak was 
expected prior the earthquake but using a much larger time series. For the Persian Gul earthquake,  Saraf 
et al. (2008) did not provide further description of their observations. For processing, the coverture of the 
Persian Gulf was previously masked using NaN values (Same case as the Qeshm earthquake). When 
comparing with images corrected for missing values, all anomalous pixels are not visible anymore. Since 
the results did not show anomalous areas or pixels possible to link to the Persian Gulf earthquake, figures 
showing the observations were excluded from the present study. 
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c Dataset 3 
In dataset 3, a small north-east part of the dataset correspond to the Caspian Sea south coast. Before 
processing, all pixels correspondent to the Caspian sea were masked with NaN values.    
For matter of visualization and spatial 
location, Figure 3.18 shows observation 
from the Changureh-Avaj earthquake. 
Epicentres for earthquakes covered by 
dataset where plotted on the figure for their 
spatial localization.   
The maximum anomaly count in the image 
for the whole time series is 122 counts. 
For the present study, images already 
corrected for missing values were used for 
the visual analysis of the observations. 
 
 

 
 
 

 

 Figure 3.18. Image showing observation from dataset 3 when the 
Changureh-Avaj earthquake occurred. Image already corrected for 
missing values for the whole time series. Pixels in yellow 
correspond to earthquake epicentres: (1) Changureh-Avaj; (2) 
Firozabad-Kajoor. Pixel size exaggerated by 3x3 for better 
visualization 
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Changureh-Avaj (02:58 UTC, June 22nd, 2002) 

Saraf et al. (2008) documented an anomalous area that started developing on 15 Jun 2002 for the 
Changureh-Avaj earthquake. Such anomaly, reached its maximum on 20 Jun 2002. In the report, they 
described the extent of the anomalous area with 164,000 km2, however no further information was 
provided.  
Following images show results from a month before and two weeks after the earthquake. Figure 3.19a-d 
show areas with anomaly count between 12 and 29 flagged anomalies in observations from 22 May 2002 
to 15 Jun 2002. By 20 Jun 2002 (Figure 3.19e) the anomalous area exponentially decreased in size. The area 
is found at approximately 105km distance away from the epicentre with an approximate area of 975km2. 
By 28 Jun 2002 the area exponentially increased again (Figure 3.19f) and decreased again by 07 Jul 2002. 
In the case of the Changureh-Avaj earthquake, anomalous areas or pixels suggesting future seismic activity 
were not found. 
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 Figure 3.19a-g. Images showing observations at 
07:30 hrs. In yellow the epicentre for the 
Changureh-Avaj earthquake (36,31). Pixels in 
green count 30-49% of the absolute maximum 
anomaly count for the whole time series. Pixels in 
orange count 25-29%. Pixels in cyan count the 
10-24%. Dashed yellow line, delineates part of the 
coast for the Caspian sea. 
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For comparison results previously reported by Saraf et al. (2008), following images show their reported 
findings. Figure 3.20a shows observation on 15 Jun 2002 from where the appearance of an anomalous 
area was reported by Saraf et al. (2008). Such anomalous area was reported to attain its maximum on 20 
Jun 2002 (Figure 3.20b). The area was reported with 164,000km2, however no further information was 
provided. From Figure 3.20a-b, is possible to assume the describe area reported as anomalous is coloured 
in red. 
 

  

Figure 3.20a-b. Observations taken from Saraf et al. (2008) reported results for the Changureh-Avaj 
earthquake using LST maps. The epicentre of the earthquake is represented by a star in both images. 
Areas with higher temperature are coloured in red 

a b 
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Firozabad-Kajoor (12:38 UTC, May 28th, 2004) 
For the Firozabad-Kajoor earthquake, Saraf et al. (2008) did not describe any anomalous area in the 
observations. However, they did reported a single anomalous peak for seismic event with magnitude 
aboce 6. In the case of the Firozabad-Kajoor earthquake, the USGS reported a magnitude 6.3 for the 
event.  
Following figures show observations from a month before and two weeks after the Firozabad-Kajoor 
earthquake. On 28 Apr 2004 and 27 May 2004, Figure 3.21a-b show spread areas with majority of pixels 
with count between 10 and 24% of the absolute maximum anomaly count for the whole time series. 
Smaller areas with 30-49%, 50-79% and 80-100% are also identifiable in the figures. By 14 May, 21 May 
and 28 May (Figure 3.21c-e) areas with 30-49% count still remain in majority. On 07 Jun 2004 (Figure 3.21f), 
a week after the earthquake, those areas exponentially decreased in size and by 14 Jun 2004 (Figure 3.21g) 
are visible again.  
The results for the present study did not show any anomalous area in the observations or peak in the time 
series. Areas with high anomaly count were found far from the epicentre i.e. approximately 100km 
distance away.  
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 Figure 3.21a-g. Images showing observations at 
12:30 hrs. In yellow the epicentre for the 
Firozabad-Kajoor earthquake (78,20). Pixels in 
magenta count 50-79%of the absolute 
maximum anomaly count for the whole time 
series. Pixels in green count 30-49%. Pixels in 
orange count 25-29%. Pixels in cyan count the 
10-24%. Dashed yellow line, delineates part of 
the coast for the Caspian sea. 
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4. DISCUSSION 

The present study aimed to verify the presence of anomalies in the TIR emissions prior to ten earthquakes 
in Iran. These seismic events were previously documented for showing anomalies prior their occurrence. 
All studied seismic events have different characteristics (i.e. different magnitude, depth, time of 
occurrence, geomorphological settings) and were originally studied by Saraf et al. (2008) using different 
length of time series for observation. The visual analysis was carried out using LST maps made of NOAA-
AVHRR imagery which provides 4 daily images. The use of NOAA-AVHRR datasets gives already a short 
time series for observation and the coverture of clouds and meteorological effect in the images make even 
shorter time series. For that matter, the present study was carried out using an existing methodology 
which applies a cloud masking technique based on the statistics of the datasets. Such methodology 
overcomes the meteorological and surface/subsurface effect in the data and affecting the results. Also, the 
existing methodology is applicable to MFG and MSG imagery. With this characteristics, the existing 
methodology allowed the present study to use and maintain a longer time series for observation i.e. 
2,676,407,760 points were used for observation. 
The key components of the present study were the different view of the anomalies after addressing (a) 
cloud coverture, (b) meteorological effect on the images and (c) the use of a longer time series for 
observation. 
The review of the cloud masking technique, showed some important issues to consider for anomaly 
detection. For example, the existing technique underlined the presence of considerable amount of cloud 
coverage after it was applied to the data. However, even after the improvements of the technique, the 
cloud mask failed to detect all clouds edges and the data showed to still contain a light coverture of clouds. 
This is a very important factor to consider for further research since this light coverture of clouds affects 
the data after normalization. For that, future efforts should be focused on for example, growing region 
algorithm for the matter of a better delimitation of the clouds. Also, a challenging part will be to monitor 
the track of the light clouds and identify their pattern e.g. due to morning fog that will last for a couple of 
hours.  
All study earthquakes were clustered in three different datasets. For the performance of the pixel 
normalization technique, the Fin and Faryab earthquakes were both clustered in dataset 1 and 2 (see 
Figure 2.2). This compare results from using datasets with different areas for observation for each 
earthquake. However after applying the normalization to the data, the results showed the effect on the 
edges of the images for both cases, for that, observations described in the results section are from using 
dataset 2 in both cases. For the case of the Fin earthquake, normalization with pixels covering water 
content (results for such observations are not described in the present study) showed areas with high 
anomaly count over the coastal line for the Persian Gulf. Such effects result to be important concerning 
the anomaly detection. No masking water content on the images affects the statistics in the matter of 
choosing thresholds for anomaly flagging. Then this will results in high anomaly count over a costal line. 
Overall, the present study focused in the view of anomalies in the TIR emissions. Results showed that a 
very important factor to consider for anomaly detection, is the length of the time series for observation. 
This study maintained the length of the time series for observation. When comparing with findings 
previously made by Saraf et al. (2008), the use of a longer time series for observation in the present study, 
discard some of the previously reported anomalies. Saraf et al. (2008) just provided a description for the 
Changureh-Avaj, Kerman, Bam and Zarand earthquake. In the case of the Changureh-Avaj earthquake, 
results from the present study show that the use of a longer time series and the compensation for missing 
values give a better view to the presence of an anomaly. In this case, what can be look as an anomalous 
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area possible linked to seismic activity using a short time series, the use of a longer time series shows a 
normal occurring pattern.  
For the case of the Kerman earthquake, Saraf et al. (2008) provided limited description about their 
findings. However when comparing with the results from the present study, both show different dates for 
the anomaly appearance. In results from the present study, the maximum anomaly appeared 24 Jul 2003 (a 
month before the earthquake). The peak decreased between 25 Jul and 29 Jul 2003 and increase again with 
a high anomaly count for 30 Jul 2003. This result is completely different from the one reported for Saraf 
et al. (2008) where they documented the appearance of a peak on 11 Aug 2003 which attained its 
maximum anomaly on 15 Aug 2003. For this case, is again evident the importance of using a longer time 
series which gives a more critical view of its presence. 
For the Bam earthquake, Saraf et al. (2008) provided more information about their findings. However, in 
comparison with the results from the present study, the extent of the reported anomalies results to be 
smaller than the reported from Saraf et al. (2008) which from the images appears to be spreading over a 
very large area.  
In the case of the Zarand earthquake, when comparing with results from the present study, the use of a 
longer time series results to be better for detection. Since looking at a larger amount of observations, 
findings that appear to be anomalous in a short period of time will be discard as anomalous comparing 
with more observations over time. This also will help the recognition of occurring patterns through a 
certain period of time. 
In conclusion, the present study proved the importance of the length of the time series use for the analysis 
of the TIR emissions as earthquake precursors. Overall, the results showed to give a better view in space 
and time of the identify anomalies. Also, the present study showed the efficiency of addressing the 
meteorological effect and cloud coverage in the images, both influencing the results.  
Furthermore, the present study lead to improvements in the performance of the existing methodology 
recognizing its actual limitations. 
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APPENDIX I 

Shaky package 
 Program for import 

pro complete_import_met5, ev 
   
  compile_opt idl2 
   
 
  title = 'complete_import_met5' 
   
  ; select meteosat tiff files 
  file_dir=dialog_pickfile(/read,/directory,/must_exist) 
  file_names=file_search(file_dir,'*.tif') 
   
  ;check error 
  if (file_names[0]) eq '' then begin 
  print, 'error filename' 
  return 
  endif 
   
  ; query first input file 
  ok = query_tiff(file_names[0],tif_info,geotiff=geotiff) 
  ;help, geotiff 
  if (Pulinets et al.) eq 0 then begin 
  print, 'error tiff' 
  return 
  endif 
   
    ; define data dimensions 
  ns = tif_info.dimensions[0] 
  nl = tif_info.dimensions[1] 
  nel = n_elements(file_names) 
   
   
  ; create array for bandnames (date strings) 
  b_names = strarr(Tramutoli et al.) 
  
  ;create arrays for all years and their day numbers, months and their day numbers, days, hours, 
minutes 
  all_years = lonarr(Tramutoli et al.) 
  yr_days=lonarr(Tramutoli et al.) 
  mon = lonarr(Tramutoli et al.) 
  m_days=lonarr(Tramutoli et al.) 
  dd = lonarr(Tramutoli et al.) 
  hh = lonarr(Tramutoli et al.) 
  minutes = lonarr(Tramutoli et al.) 
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  ;(A)create a b_names array with elements=names of files i, only as date, imported either from 
mfg or from msg 
  for i = 0, nel-1 do begin 
    file_name = file_names[i] 
    ; add filename datestring to bandnames array 
      file_name = file_basename(file_name,'.tif')  
        ;if IR108 exists in whichever file, then make bandname array following mfg procedure, else 
msg 
        image_source='IR108' 
        if STRCMP(image_source, file_name , 5 ) then begin   
          b_names[i] = strmid(file_name,strpos(file_name,'-',/reverse_search)+1)  
          hourly_images=2    
        endif else begin 
          b_names[i] = (strsplit(file_name,'_',/extract))[0]+'00'  
          hourly_images=4 
        endelse 
   endfor      
        ;sort the resulting b_names array 
        b_names=b_names[sort(b_names)] 
 
 
   ;(B)split the name further to extract year, month, day, hour, minutes sorted arrays//create 
sorted array of unique years 
          for j=0, nel-1 do begin 
          b_name=b_names[j] 
          ;extract year string 
          year_string=strmid(b_name, 0, 4) 
          ;convert year string to long and store it in all_years array 
          all_years[j]= long(year_string) 
          ;create all months array 
          mon[j]=long(strmid(b_name, 4, 2)) 
          ;create all days array 
          dd[j]=long(strmid(b_name, 6, 2)) 
          ;create all hours array 
          hh[j]=long(strmid(b_name, 8, 2)) 
          ;create all_months array 
          minutes[j]=long(strmid(b_name, 10, 2)) 
        endfor   
    
   ;create array holding sorted, unique values of years 
   years= all_years[uniq(all_years)] 
    
   
     
          ;(C)calculate nr of days in year and total expected images in the batch 
          ;WARNING: the expected nr of images is calculated based on the goal of making 
COMPLETE YEAR BATCHES.  
          ;this program won't just fill the gaps from the first to the last image  
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           nr_images=0 
           a= where (years ne 0, count)  
          for k=0, count-1 do begin 
            days_in_year=365 
              
             if ((years[k] mod 4 eq 0) && (years[k] mod 100 ne 0)) then days_in_year=366 
             if ((years[k] mod 4 eq 0) && (years[k] mod 100 eq 0) && (years[k] mod 400 eq 0)) then 
days_in_year=366 
 
            ;calculate nr of images expected, depending on image source 
            nr_images=nr_images+days_in_year*24*hourly_images  
            endfor 
   
  print, 'nr_images=', nr_images 
 
 
  ;(D) create input array, all values NaNs, seperate array for names 
  data_array = make_array(ns,nl,nr_images, /float, value= !values.f_nan) 
   
;(E)fill in the input array with the existing images where they exist 
    
  ;calculate the name components of the first expected image 
     expected_min=00 
     expected_hr=00 
     expected_dd=01 
     expected_mm=01 
     expected_yr=years[0] 
 
 
;creat bname NaN string array to hold the names of the existing bands in the place where they're 
written  
bnames= make_array(nr_images, /string, value= string(0)) 
  
;position counter 
w=0 
 
;image loop 
for y=0, nel-1 do begin  
   
jump: print, 'next position=', w 
 
if (w le nr_images-1) then begin 
  
 print, expected_yr, expected_mm, expected_dd, expected_hr, expected_min    
  
;calculate differences 
dmin= minutes[y]-expected_min 
dhrs= hh[y]-expected_hr 
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ddays= dd[y]-expected_dd 
dmon= mon[y]-expected_mm 
dyr= all_years[y]-expected_yr 
 
print, dyr,dmon,ddays, dhrs, dmin 
        
;calculate d=maximum days of expected month for subsequent calculations  
     case expected_mm of 
      01:d=31 
      02:d=28 
      03:d=31 
      04:d=30  
      05:d=31  
      06:d=30  
      07:d=31 
      08:d=31 
      09:d=30 
      10:d=31 
      11:d=30 
      12:d=31 
    endcase 
 
days_of_exp_year=365 
if ((expected_yr mod 4 eq 0) && (expected_yr mod 100 ne 0)) then days_of_exp_year=366 
if ((expected_yr mod 4 eq 0) && (expected_yr mod 100 eq 0) && (expected_yr mod 400 eq 0)) 
then days_of_exp_year=366   
 
if ((days_of_exp_year eq 366) && (expected_mm eq 02)) then d=29 
 
 
      
;calculate subsequent expected image name components         
            
     if ((hourly_images eq 2) && (expected_min eq 00)) then expected_min=30 else begin 
       if ((hourly_images eq 2) && (expected_min ne 00)) then begin   
        expected_min= 00  
          if (expected_hr ne 23) then (expected_hr=expected_hr+1) else begin       
            expected_hr= 00  
              if (expected_dd ne d) then (expected_dd=expected_dd+1) else begin        
                expected_dd=1  
                if (expected_mm ne 12) then expected_mm=expected_mm+1 else begin 
                expected_mm=1  
                expected_yr= expected_yr+1 
                endelse 
             endelse       
         endelse 
       endif       
     endelse 
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     if (hourly_images eq 4) && (expected_min ne 45) then expected_min=expected_min+15 else 
begin     
      if ((hourly_images eq 4) && (expected_min eq 45)) then begin  
       expected_min= 00   
        if (expected_hr ne 23) then expected_hr=expected_hr+1 else begin       
          expected_hr= 00 
            if (expected_dd ne d) then expected_dd=expected_dd+1 else begin          
              expected_dd=1 
              if (expected_mm ne 12) then expected_mm=expected_mm+1 else begin 
              expected_mm=1 
              expected_yr= expected_yr+1 
              endelse 
            endelse       
        endelse 
       endif  
     endelse 
        
     
 print, expected_yr, expected_mm, expected_dd, expected_hr, expected_min     
      
      
;if image y matches the expected then write it in position w of stack  
;and go to check another image (exit position w for loop) 
;else repeat loop (let w=w+1) calculating subsequent expected till you find the position w  
;where image y components match the expected ones 
 
  if ((dyr eq 0) && (dmon eq 0) &&(ddays eq 0) && (dhrs eq 0) && (dmin eq 0)) eq 0 then begin 
  w=w+1 
  goto, jump 
  endif 
 
   if ((dyr eq 0) && (dmon eq 0) &&(ddays eq 0) && (dhrs eq 0) && (dmin eq 0)) eq 1 then begin 
   data_array[*,*,w]=read_tiff(file_names[y]) ;suddenly gives error: "array subscript for data_array 
must have same size as source expression" 
   bnames[w]=b_names[y] 
   w=w+1 
   endif  
 
endif 
 
endfor  ; back to y 
 
 
print, 'loading done' 
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; ;(F) if mfg perform the calibration  
 
if hourly_images eq 2 then begin 
   
  ;first make array of only existing images  
  data=fltarr(ns, nl, nel) 
 
   
  ;write the array of existing images 
f=0 
for e=0, nr_images-1 do begin 
    if f le (nel-1) then begin 
      if (bnames[e] ne 0) then begin 
      data[*,*,f]=data_array[*,*,e] 
      f=f+1 
      endif     
    endif 
endfor; back to e, i.e. change stack position  
 
  
 
   
  ;calibrate the array of existing images 
    ; get meteosat 5 calibration data 
    org_calibration = hw_shaky_caldata_mfg() 
     
    ; create empty array for calibration data  
    ; to be resampled to selected dates 
    res_calibration = fltarr(2,nel)   
 
    imgdates = float(strmid(b_names,0,12)) 
    caldates = org_calibration[0,*] 
      
    starting = where(caldates ge imgdates[0],starting_exist) 
    if starting_exist ge 0 && starting[0] ne 0 then starting = starting[0]-1 else starting = 0 
    ending   = where(caldates le imgdates[nel-1],ending_exist) 
    if ending_exist ge 0 then ending = (reverse(ending))[0]+1 else ending = n_elements(caldates)-1 
     
    ; loop through calibration dates 
    for i = starting, ending-1 do begin 
      ; check where image data is greater or equal to a calibration date 
      index = where(imgdates ge caldates[i],count) 
    
      ; in case a match is found... 
      if (count gt 0) then begin 
        ;print, imgdates[index[0],index[-1]], caldates[i] this used not to be semicoloned 
        ; ...add the calibration date to the resampled calibration array 
        res_calibration[*,index] = rebin(org_calibration[[1,2],i],2,count) 
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      endif 
    endfor 
 
    print, 'resampling done' 
 
    ; convert to radiance 
    data = data - transpose(rebin(reform(res_calibration[1,*]),nel,ns,nl),[1,2,0]) 
    data = data * transpose(rebin(reform(res_calibration[0,*]),nel,ns,nl),[1,2,0]) 
        
    print, 'calibration done' 
     
      ; convert to brightness temperature 
      A =  6.7348 
      B = -1272.2 
      ;BT = B / (alog(radiance) - A)   
       
      data = alog(data) 
      data = B / (data - A) 
       
      print, 'conversion done'   
   
   
   
  ;return the calibrated images in their correct place in the stack 
  
v=0 ;image counter 
 
; z position in data_array loop 
  for z=0, nr_images-1 do begin 
   if v le (nel-1) then begin 
    if b_names[v] eq bnames[z] then begin 
    data_array[*,*,z]=data[*,*,v] 
    v=v+1 ;check next image of small stack 
    endif 
   endif 
  endfor ;back to z, i.e. check next big stack position  
 
       
 
endif 
 
 
 
;write the output file, whether mfg or msg 
;remember to change the names :-P   
  openw,unit, 'name', /get_lun 
  writeu, unit, data_array 
  free_lun, unit 
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  map_info = 'None' 
  envi_setup_head, $ 
    fname = 'name', $ 
    descrip = descrip, $ 
    ns = tif_info.dimensions[0], $ 
    nl = tif_info.dimensions[1], $ 
    nb = nr_images, $ 
    bbl = ok, $ 
    data_type = 4, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write  
 
  print, 'import complete' 
 
  end 
 

 Program for Polynomial Fit mask (also used for Polynomial Fit iterative method) 
pro mask_polyfit, ev 
   
  compile_opt idl2 
   
; INPUT 
  envi_open_file,/no_realize,r_fid=fid 
  if fid eq -1 then return 
  ; query input image 
  
envi_file_query,fid,dims=dims,ns=ns,nl=nl,nb=nb,bnames=bnames,fname=fname,data_type=da
ta_type 
  pos = lindgen(nb) 
  ns = dims[2]-dims[1]+1 
  nl = dims[4]-dims[3]+1 
   
  ; create input array 
  input = fltarr(nl,nb,ns) 
   
;   loop through image lines 
  for l= 0,nl-1 do begin 
    ; get a line out of the image and add to input array 
    input[l,*,*] = envi_get_slice(fid=fid,line=l,pos=pos,/bip) 
  endfor 
    
    ; close input file 
    envi_file_mng, id=fid, /remove 
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    ; transpose input data to bsq [ns,nl,nb] 
    input = transpose(input,[2,0,1]) 
     
    polyfitThreshold = fltarr(ns,nl,nb) 
     
 ;PROCESSING 
  
 ;this has to be adjusted to the band naming of each dataset 
 ; for Bam column-removed subset:  
 ;fnames=strmid(bnames, 16,14) 
 ; for van: 
 fnames=string(bnames) 
  
 ;rescale the time-axis to a [0.01, nr_of_bands] range. Needs the scale_vector.pro and fpufix.pro 
 x = scale_vector(findgen(nb), 0.01, nb) 
  
 for i = 0,ns-1 do begin 
   for j = 0,nl-1 do begin 
      
     y = input[i,j,*] 
     ;y = reform(y, nb) 
      
     mask_nan = where(y gt 0, count) 
     if count gt 0 then p = poly_fit(x[mask_nan],y[mask_nan],4) 
     y_fit = poly(x,p) 
      
     ;;Giovanni threshold 
     mask_low = where(y lt y_fit, count) 
     if count gt 0 then c = median(y_fit[mask_low]-y[mask_low]) 
     polyfitThreshold[i,j,*] = y_fit-c 
      
     ;;other possible threshold(s):  
;     mask_low = where(y lt y_fit, count) 
;     if count gt 0 then thr=mean(y_fit[mask_low]-y[mask_low])+ 2*stddev(y_fit[mask_low]-
y[mask_low])    
;     polyfitThreshold[i,j,*] = y_fit-thr 
     ;etc 
      
      
     ;;possible to replace poly_fit with robust_polyfit,  
     ;;also needs robust_polyfit.pro, rob_checkfit.pro, robust_sigma.pro and med.pro 
   endfor 
 
endfor 
 
 
     mask_temp = where(input lt polyfitThreshold, count) 
     if count gt 0 then input[mask_temp] = !values.f_nan 
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; OUTPUT 
;change the names 
openw,unit, 'name.bsq', /get_lun 
writeu, unit, input 
free_lun, unit 
descrip = 'poly-masked data' 
map_info = 'poly-masked data' 
envi_setup_head, fname = 'name.bsq', descrip = descrip, ns = ns, nl = nl, nb = nb, $ 
data_type = 4, interleave = 0, bnames = bnames, wavelength_units = 5, map_info = map_info, $ 
/write 
 
print, 'done' 

 
 Program for pixel normalization 

pro kernel_calc, ev 
   
  compile_opt idl2 
   
 
  title = 'Kernel_calc' 
   
  ;; INPUT 
   
  envi_open_file,/no_realize,r_fid=fid 
  if fid eq -1 then return 
 
  ; query input image 
  envi_file_query,fid,dims=dims,ns=ns,nl=nl,nb=nb,$ 
    bnames=bnames,data_type = data_type, fname=fname 
  pos = lindgen(nb) 
  ns = dims[2]-dims[1]+1 
  nl = dims[4]-dims[3]+1  
 
;ns=8 
;nl=6 
;nb=3 
 
  ; create input array 
  maskedfile = fltarr(nl,nb,ns) 
    
  ; loop through image lines 
  for l= 0,nl-1 do begin 
    ; get a line out of the image 
    ; and add to input array 
    maskedfile[l,*,*] = envi_get_slice(fid=fid,line=l,pos=pos,/bip) 
  endfor 
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print, 'loaded data' 
   
   ; close input file 
   envi_file_mng, id=fid, /remove  
   
   ; transpose input data to bsq [ns,nl,nb] 
  maskedfile = transpose(maskedfile,[2,0,1]) 
     
  ; create input array 
  testarray = fltarr(ns,nl) 
     
  ; loop to load images, and fill data arrays  
  for b = 0, nb-1 do begin 
   
       
      testarray[*,*] = (maskedfile[*,*,b]) 
      
;testing with a model array 
;create array 
   
;testarray= fltarr(8,6) 
;testarray[*,0]=[1,0,1,!values.f_nan, !values.f_nan, 1,2,1] 
;testarray[*,1]=[0,2,1,0,0,!values.f_nan, 1,2] 
;testarray[*,2]=[!values.f_nan, !values.f_nan, !values.f_nan, 0, !values.f_nan, !values.f_nan, 
!values.f_nan, !values.f_nan] 
;testarray[*,3]=[2,2,1,1, !values.f_nan, 1, 1, !values.f_nan] 
;testarray[*,4]=[0,1,0,2,!values.f_nan, 1, 2, !values.f_nan] 
;testarray[*,5]=[1,2,1,0,!values.f_nan,!values.f_nan,!values.f_nan,!values.f_nan] 
 
;set kernelsize 
ks= 12 
   
;  ; create kernel for normalization 
;  kernel = replicate(1b,kernelsize*2+1,kernelsize*2+1) 
;  kernel[1:kernelsize*2-1,1:kernelsize*2-1] = 0 
;   
;  
; max_kernel_pixel_nr=where(kernel ne 0, count) 
; print, count 
  
;calculate expected max nr of pixels in the kernel 
;kernel_pixels=4*(2*kernelsize+1)-4   
 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 ;number of existing kernel pixels 
;cs= 6 ;centerpixel sample 
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;cl= 4 ;centerpixel line 
 
;ns=8 
;nl=6 
  
;create output file to store normalized pixel values 
output=fltarr(ns, nl)  
 
for cl=0, nl-1 do begin 
for cs=0, ns-1 do begin 
  
;general kernel scheme 
if ((cs ge ks) && (cs le (ns-1-ks)) && (cl ge ks) && (cl le (nl-1-ks))) then begin 
 
;left side 
for j= cl-ks, cl+ks do begin 
   
    if testarray[cs-ks, j] eq testarray[cs-ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs-ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs-ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs-ks, j] 
        testarray[cs-ks, j]=!values.f_nan 
        endelse 
 
;right side 
   
    if testarray[cs+ks, j] eq testarray[cs+ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs+ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs+ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs+ks, j] 
        testarray[cs+ks, j]=!values.f_nan 
        endelse 
 
endfor 
 
;upper part 
for i= cs-(ks-1), cs+(ks-1) do begin 
   
    if testarray[i, cl-ks] eq testarray[i, cl-ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl-ks] 
     endif else begin 
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        NaN_count=NaN_count+1 
        testarray[i, cl-ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl-ks] 
        testarray[i, cl-ks]=!values.f_nan 
        endelse 
 
 
;lower part 
   
    if testarray[i, cl+ks] eq testarray[i, cl+ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl+ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl+ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl+ks] 
        testarray[i, cl+ks]=!values.f_nan 
        endelse 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
 
endif 
 
;left middle part of margin 
if ((cs lt ks) && (cl ge ks) && (cl le (nl-1-ks))) then begin 
 
;right side 
for j= cl-ks, cl+ks do begin 
  
    if testarray[cs+ks, j] eq testarray[cs+ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs+ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs+ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs+ks, j] 
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        testarray[cs+ks, j]=!values.f_nan 
        endelse 
 
endfor 
 
;upper part 
for i= 0, cs+(ks-1) do begin 
   
    if testarray[i, cl-ks] eq testarray[i, cl-ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl-ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl-ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl-ks] 
        testarray[i, cl-ks]=!values.f_nan 
        endelse 
 
 
;lower part 
   
    if testarray[i, cl+ks] eq testarray[i, cl+ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl+ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl+ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl+ks] 
        testarray[i, cl+ks]=!values.f_nan 
        endelse 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
endif 
 
; right middle margin 
if ((cs gt (ns-1-ks)) && (cl ge ks) && (cl le (nl-1-ks))) then begin 
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;left side 
for j= cl-ks, cl+ks do begin 
   
    if testarray[cs-ks, j] eq testarray[cs-ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs-ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs-ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs-ks, j] 
        testarray[cs-ks, j]=!values.f_nan 
        endelse 
 
endfor 
 
;upper part 
for i= cs-(ks-1), ns-1 do begin 
   
    if testarray[i, cl-ks] eq testarray[i, cl-ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl-ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl-ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl-ks] 
        testarray[i, cl-ks]=!values.f_nan 
        endelse 
 
 
;lower part 
   
    if testarray[i, cl+ks] eq testarray[i, cl+ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl+ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl+ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl+ks] 
        testarray[i, cl+ks]=!values.f_nan 
        endelse 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
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;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
endif 
 
;upper middle margin 
if ((cs ge ks) && (cs le (ns-1-ks)) && (cl lt ks)) then begin 
 
;left side 
for j= 0, cl+ks do begin 
   
    if testarray[cs-ks, j] eq testarray[cs-ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs-ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs-ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs-ks, j] 
        testarray[cs-ks, j]=!values.f_nan 
        endelse 
 
;right side 
   
    if testarray[cs+ks, j] eq testarray[cs+ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs+ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs+ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs+ks, j] 
        testarray[cs+ks, j]=!values.f_nan 
        endelse 
 
endfor 
 
;lower part 
for i= cs-(ks-1), cs+(ks-1) do begin 
       
    if testarray[i, cl+ks] eq testarray[i, cl+ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl+ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl+ks]=0  
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        kernelvalue=kernelvalue+testarray[i, cl+ks] 
        testarray[i, cl+ks]=!values.f_nan 
        endelse 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
endif 
 
;lower middle margin 
if ((cs ge ks) && (cs le (ns-1-ks)) && (cl gt (nl-1-ks))) then begin 
 
;left side 
for j= cl-(ks-1), nl-1 do begin 
   
    if testarray[cs-ks, j] eq testarray[cs-ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs-ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs-ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs-ks, j] 
        testarray[cs-ks, j]=!values.f_nan 
        endelse 
 
;right side 
   
    if testarray[cs+ks, j] eq testarray[cs+ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs+ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs+ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs+ks, j] 
        testarray[cs+ks, j]=!values.f_nan 
        endelse 
 
endfor 
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;upper part 
for i= cs-ks, cs+ks do begin 
   
    if testarray[i, cl-ks] eq testarray[i, cl-ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl-ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl-ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl-ks] 
        testarray[i, cl-ks]=!values.f_nan 
        endelse 
 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
endif 
 
; up left corner 
if ((cs lt ks) && (cl lt ks)) then begin 
 
;right side 
for j= 0, cl+ks do begin 
   
    if testarray[cs+ks, j] eq testarray[cs+ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs+ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs+ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs+ks, j] 
        testarray[cs+ks, j]=!values.f_nan 
        endelse 
 
endfor 
 



 

69 

;lower part 
for i= 0, cs+(ks-1) do begin 
   
    if testarray[i, cl+ks] eq testarray[i, cl+ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl+ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl+ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl+ks] 
        testarray[i, cl+ks]=!values.f_nan 
        endelse 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
 
endif 
 
;low left corner 
if ((cs lt ks) && (cl gt (nl-1-ks))) then begin 
 
;right side 
for j= cl-ks, nl-1 do begin 
     
    if testarray[cs+ks, j] eq testarray[cs+ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs+ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs+ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs+ks, j] 
        testarray[cs+ks, j]=!values.f_nan 
        endelse 
 
endfor 
 
;upper part 
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for i= 0, cs+(ks-1) do begin 
   
    if testarray[i, cl-ks] eq testarray[i, cl-ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl-ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl-ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl-ks] 
        testarray[i, cl-ks]=!values.f_nan 
        endelse 
 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
endif 
 
;upper right corner 
if ((cs gt (ns-1-ks)) && (cl lt ks)) then begin 
 
;left side 
for j= 0, cl+ks do begin 
   
    if testarray[cs-ks, j] eq testarray[cs-ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs-ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs-ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs-ks, j] 
        testarray[cs-ks, j]=!values.f_nan 
        endelse 
endfor 
 
;lower part 
for i= cs-(ks-1),ns-1 do begin 
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     if testarray[i, cl+ks] eq testarray[i, cl+ks] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl+ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl+ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl+ks] 
        testarray[i, cl+ks]=!values.f_nan 
        endelse 
 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
endif 
 
;low right corner 
if ((cs gt (ns-1-ks)) && (cl gt (nl-1-ks))) then begin 
 
;left side 
for j= cl-ks, nl-1 do begin 
   
    if testarray[cs-ks, j] eq testarray[cs-ks, j] then begin 
     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[cs-ks, j] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[cs-ks, j]=0  
        kernelvalue=kernelvalue+testarray[cs-ks, j] 
        testarray[cs-ks, j]=!values.f_nan 
        endelse 
 
endfor 
 
;upper part 
for i= cs-(ks-1), ns-1 do begin 
   
    if testarray[i, cl-ks] eq testarray[i, cl-ks] then begin 
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     kp_count=kp_count+1 
     kernelvalue=kernelvalue+testarray[i, cl-ks] 
     endif else begin 
        NaN_count=NaN_count+1 
        testarray[i, cl-ks]=0  
        kernelvalue=kernelvalue+testarray[i, cl-ks] 
        testarray[i, cl-ks]=!values.f_nan 
        endelse 
 
endfor 
 
if kp_count eq 0 then kernel= !values.f_nan else kernel= kernelvalue/kp_count 
if kernel eq 0 then output[cs,cl]= !values.f_nan else output[cs,cl]= testarray[cs,cl]/kernel 
 
;print, 'kernelvalue=', kernelvalue 
;print, 'nan=', NaN_count 
;print, 'kernel pixels=', kp_count 
;print, 'kernel=', kernel 
 
kernelvalue=0 
NaN_count=0 
kp_count=0 
 
 
endif 
 
endfor 
endfor 
 
maskedfile[*,*,b]=output[*,*] 
 
endfor 
 
;print, maskedfile[*,*,0] 
;print, maskedfile[*,*,1] 
;print, maskedfile[*,*,2] 
 
;; OUTPUT 
 
  ; output to regular file 
  openw,unit, 'name.bsq' , /get_lun 
  writeu, unit, maskedfile 
  free_lun, unit 
   
  descrip = 'test stack normalized data' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = 'name.bsq', $ 
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    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 4, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
 
print, 'normalization done' 
   
 
end   

 
 Program for anomaly flagging and anomaly count 

;+ 
; hw_shaky_filt, v20110328.01 
;- 
 
pro hw_shaky_filt, ev 
   
  compile_opt idl2 
   
  catch, theerror 
  if theerror ne 0 then begin 
    catch, /cancel 
    message = [!error_state.msg] 
    void = dialog_message(message, /center, /error) 
    return 
  endif 
   
  title = 'Shaky' 
   
  ;; INPUT 
   
  envi_open_file,/no_realize,r_fid=fid 
  if fid eq -1 then return 
 
  ; query input image 
  envi_file_query,fid,dims=dims,ns=ns,nl=nl,nb=nb,$ 
    bnames=bnames,data_type=data_type,fname=fname 
  pos = lindgen(nb) 
  ns = dims[2]-dims[1]+1 
  nl = dims[4]-dims[3]+1  
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  ; create input array 
  input = fltarr(nl,nb,ns) 
    
  ; loop through image lines 
  for l= 0,nl-1 do begin 
 
    ; get a line out of the image 
    ; and add to input array 
    input[l,*,*] = envi_get_slice(fid=fid,line=l,pos=pos,/bip) 
   
  endfor 
  
 print, 'loaded data' 
  
  ; close input file 
  envi_file_mng, id=fid, /remove 
   
   
  ; transpose input data to bsq [ns,nl,nb] 
  input = transpose(input,[2,0,1]) 
   
  ;;  GUI 
 
  ; create default output names 
  fname = file_basename(fname) 
  ext   = strpos(fname,'.',/reverse_offset,/reverse_search) 
  fname = strmid(fname,0,ext) 
  if fname eq '' then fname='shaky' 
  out_file = fname+'_filt' 
   
  ; dirty dirty... should be done better 
;  case fix( (double(bnames[1]) - double(bnames[0])) ) of  
;     1500 : hourly = 4 
;     3000 : hourly = 2 
;    10000 : hourly = 1 
;    20000 : hourly = 0.5 
;    else  : hourly = 1 
;  endcase  
  
 ; number of images recorded every hour  
 hourly=2 
      
  ; start gui 
  base0 = widget_auto_base(title=title) 
 
  base1 = widget_base(base0,/column,/frame,/grid_layout)   
  base2 = widget_base(base1,/row) 
  void = widget_sslider(base2,title='kernel size (days)',$ 
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    max=14,min=1,value=5,uvalue='tempksize',/auto) 
     
  base1 = widget_base(base0,/column,/frame,/grid_layout)   
  base2 = widget_base(base1,/row) 
  void = widget_sslider(base2,title='Kernel radius (px)',$ 
    max=10,min=1,value=2,uvalue='spatksize',/auto) 
  
  base1 = widget_base(base0,/column,/frame,/grid_layout) 
  base2 = widget_base(base1,/column) 
  void  = widget_outf(base2, prompt = 'Output basename', $ 
    default=out_file,uvalue = 'out_name', /auto) 
  set = auto_wid_mng(base0) 
   
  if set.accept eq 0 then return 
 
 
  ;; TEMPORAL FILTERING 
   
 
  ; define temporal kernel 
  kernel  = intarr(set.tempksize*24*hourly) + 1  
   
  ;reform input image to 2D 
  input   = reform(input,ns*nl,nb,/overwrite) 
   
  ; flag valid (non-margin) and invalid (margin) pixels 
  totfin  = total(finite(input),2,/double) 
  valid   = where(totfin gt 0,nvalid) 
  invalid = where(totfin eq 0,ninvalid) 
  totfin  = 0b 
   
 ;HERE added output 5 finite and removed spatial filtering 
  ; define output arrays 
  output1 = bytarr(ns*nl,nb) ; flagged pixels 
  output2 = intarr(ns*nl,nb) ; time convolution 
  output5 = intarr(ns*nl,nb) ; finite counter in time 
 
 
  ; loop through all pixels that do not belong to margin 
  for i = 0L, nvalid-1 do begin 
   
      ;extract tixel (spectrum through time) 
      tixel = reform(input[valid[i],*]) 
       
      ; flag values greater than mean + 2 stdev 
      mom = moment(tixel,maxmoment=2,/nan) 
      tixel = tixel gt (mom[0]+2*sqrt(mom[1])) 
      ;tixel = tixel gt (mean(tixel,/nan)+2*stddev(tixel,/nan)) 
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      ; save flags to output array 
      output1[valid[i],*] = byte(tixel) 
       
      ; save temporal kernel convolution to output array 
      output2[valid[i],*] = convol(tixel,kernel,invalid=0,missing=0) 
  
 ;HERE IS ADDITIONAL FINITE DEFINITION      
      ; save finite temporal kernel convolution to output array 
      output5[valid[i],*] = convol(finite(tixel),kernel,invalid=0,missing=0) 
   
  endfor 
   
  ; loose variable to save memory 
  input = 0b 
   
  ;reform output image back to 3D 
  output1 = reform(output1,ns,nl,nb,/overwrite) 
  output2 = reform(output2,ns,nl,nb,/overwrite) 
  output5 = reform(output5,ns,nl,nb,/overwrite) 
   
print, 'temporal filtering done' 
 
;HERE is the additional product of max flagged counts 
;all spatial filtering is discarded 
  tempmax=max(output2, dimension=3)  
 
  ;; OUTPUT 
 
  ; output to image 
  openw,unit, set.out_name+'_flag.bsq', /get_lun 
  writeu, unit, output1 
  free_lun, unit 
   
  descrip = 'Shaky - anomaly flagged data' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = set.out_name+'_flag.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 1, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
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  ; output to image 
  openw,unit, set.out_name+'_temp.bsq', /get_lun 
  writeu, unit, output2 
  free_lun, unit 
   
  descrip = 'Shaky - temporally filtered data' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = set.out_name+'_temp.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 2, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
 
     
      ; output to regular image 
  openw,unit, set.out_name+'_finitetemp.bsq', /get_lun 
  writeu, unit, output5 
  free_lun, unit 
   
  descrip = 'Shaky - temporal finite pixels' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = set.out_name+'_finitetemp.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 2, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
     
     
  openw,unit, set.out_name+'_tempmax.bsq', /get_lun 
  writeu, unit, tempmax 
  free_lun, unit 
   
  descrip = 'Shaky - max temp data' 
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  map_info = 'None' 
  envi_setup_head, $ 
    fname = set.out_name+'_tempmax.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = 1, $ 
    data_type = 2, $ 
    interleave = 0, $ 
 ;   bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
 
print, 'filtering done' 
 

 Program for correction for missing values 
pro correction, ev 
   
  compile_opt idl2 
   
  catch, theerror 
  if theerror ne 0 then begin 
    catch, /cancel 
    message = [!error_state.msg] 
    void = dialog_message(message, /center, /error) 
    return 
  endif 
   
  title = 'Shaky' 
   
  ;; INPUT 
   
  envi_open_file,/no_realize,r_fid=fid 
  if fid eq -1 then return 
 
  ; query input image 
  envi_file_query,fid,dims=dims,ns=ns,nl=nl,nb=nb,$ 
    bnames=bnames,data_type=data_type,fname=fname 
  pos = lindgen(nb) 
  ns = dims[2]-dims[1]+1 
  nl = dims[4]-dims[3]+1  
 
   
  ; create input array 
  input = fltarr(nl,nb,ns) 
    
  ; loop through image lines 
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  for l= 0,nl-1 do begin 
 
    ; get a line out of the image 
    ; and add to input array 
    input[l,*,*] = envi_get_slice(fid=fid,line=l,pos=pos,/bip) 
   
  endfor 
  
 print, 'loaded data' 
  
  ; close input file 
  envi_file_mng, id=fid, /remove 
   
   
  ; transpose input data to bsq [ns,nl,nb] 
  input = transpose(input,[2,0,1]) 
   
  ;nr of observations in temporal window 
  obs=336 
   
  ;create 2D image with the mean+2sd threshold  
  tixel=fltarr(1,nb) 
  t=fltarr(ns,nl) 
   
  for j=0,nl-1 do begin 
  for k=0,ns-1 do begin 
  tixel=input[k,j,*] 
  mom = moment(tixel,maxmoment=2,/nan) 
  t[k,j]=mom[0]+2*sqrt(mom[1]) 
  print, t[k,j] 
  endfor 
  endfor 
   
  ;flagging 
  for i=0, nb-1 do begin 
  for j=0,nl-1 do begin 
  for k=0,ns-1 do begin 
  if input[k,j,i] eq input [k,j,i] then begin 
;  print, 'inp=',input[k,j,i] 
  if input[k,j,i] ge t[k,j] then input[k,j,i]=1 else input[k,j,i]=0 
;  print, 'input=', input[k,j,i] 
  endif else begin 
  input[k,j,i]=!values.f_nan 
  endelse 
  endfor 
  endfor 
  endfor 
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print, 'done flagging' 
 
  ;counting flags and finite   
  peaks=fltarr(ns,nl,nb) 
  finites=fltarr(ns,nl,nb) 
 
  for i=0,335 do begin 
  input[*,*,i]=0 
  endfor 
  for i=336, nb-1 do begin 
  for j=0,nl-1 do begin 
  for k=0,ns-1 do begin 
  array=(input[k,j,i-336:i]) 
  peaks[k,j,i]=total(array,/NAN) 
;  print, 'peaks=',peaks[k,j,i] 
  fin=where(finite(array), count)  
  finites[k,j,i]=count 
;  print, 'fins=', finites[k,j,i] 
  endfor 
  endfor 
  endfor 
 
print, 'done counting' 
 
  ; correcting for data availability 
  corrected=fltarr(ns,nl,nb) 
  for i=0, nb-1 do begin 
  for j=0,nl-1 do begin 
  for k=0,ns-1 do begin 
  corrected[k,j,i]=peaks[k,j,i]/(finites[k,j,i]/337) 
  endfor 
  endfor 
  endfor 
   
  ;calculating max 
  tempmax=max(peaks, dimension=3) 
   
   ;; OUTPUT 
 
  ; output to image 
  openw,unit, 'name.bsq', /get_lun 
  writeu, unit, peaks 
  free_lun, unit 
   
  descrip = 'Shaky - temporally filtered data' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = 'name.bsq', $ 
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    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 4, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
 
     
      ; output to regular image 
  openw,unit, 'name.bsq', /get_lun 
  writeu, unit, finites 
  free_lun, unit 
   
  descrip = 'Shaky - temporal finite pixels' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = 'name.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 4, $ 
    interleave = 0, $ 
    bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
     
  ; output to regular image 
  openw,unit, 'name.bsq', /get_lun 
  writeu, unit, corrected 
  free_lun, unit 
   
  descrip = 'Shaky - peaks corrected for data availability' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = 'name.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = nb, $ 
    data_type = 4, $ 
    interleave = 0, $ 
    bnames = bnames, $  
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    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
     
  openw,unit, 'name.bsq', /get_lun 
  writeu, unit, tempmax 
  free_lun, unit 
   
  descrip = 'Shaky - max temp data' 
  map_info = 'None' 
  envi_setup_head, $ 
    fname = 'name.bsq', $ 
    descrip = descrip, $ 
    ns = ns, $ 
    nl = nl, $ 
    nb = 1, $ 
    data_type = 4, $ 
    interleave = 0, $ 
 ;   bnames = bnames, $  
    wavelength_units = 5, $ 
    map_info = map_info, $ 
    /write 
 
print, 'filtering done' 
 
end 
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