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ABSTRACT 

Hyperspectral remote sensing data offers great advantages in crop monitoring. To this end, hyperspectral 

vegetation indices have been developed to extract bio physical and biochemical parameters from plants. 

Although some indices have been designed to minimise soil background effects, problem still exist 

because algorithms use the entire pixel and do not discriminate for mixtures at sub pixel scales. Remote 

sensing signals, in a farm field may include vegetation, soil and shadow components or other types of 

vegetation, all of which lead to inaccuracies in vegetation indices used for estimating crop parameters. 

This study focuses mainly on developing a MRF based super resolution analysis for predicting canopy 

reflectance in farm field from UAV hyperspectral image (1m) at a high resolution. For the setup in this 

study, prior knowledge of the field was incorporated in defining the SR image grid. A thorough analysis of 

the intersection of pixels in the coarse and fine images was performed based on analysis of the footprint 

polygons. The relationship between the two images was established. SA was employed to find the 

minimum energy solution that corresponds to optimal SR image. 

Experiment with parameter optimisation shows that smoothness parameter value of 0.7, initial 

temperature of 3, and updating schedule of 0.97 produced a reflectance image of canopy with high 

accuracy. The SR canopy reflectance image was compared to canopy spectral measurement from the field. 

Result shows a RMSE of 0.04. Further this study examines relationship between indices (e.g. NDRE, Chl 

red edge, REP, TCARI) computed from super resolution image and insitu measurement. By comparing 

their coefficients of determination  strong relationship were found (REP 0.84, TCARI, CLrededge 0.87, 

and TCARI/OSAVI 0.91). Others gave weak relation (NDRE 0.41, CIgreen 0.55, and OSAVI 0.06)  
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1. INTRODUCTION 

1.1. Motivation and problem statement 

The increase in food demand and energy as a result of the growing world population is a major challenge 

facing the agricultural sector (Liu et al., 2010). To produce enough yields to feed the world population, 

both the increase of economic returns and the reduction of input as well as protection of the environment 

have led the agricultural sector to develop a new generation of sustainable agricultural systems. Precision 

agriculture (PA) is a management strategy to optimize agriculture production. It uses information 

technology to bring together data from multiple data sources, for making decisions on crop production 

and crop growth aspects (National Research Council, 1997). In general, PA combines several technologies 

such as variable rate technologies (VRT), global positioning system (GPS), geographical information 

systems (GIS) and remote sensing (RS) to assist farmers in visualizing, analysing and managing the 

variability in crop yield and performance on site specific manner. Remote sensing technologies have been 

used in PA applications for instance, to identify the types of crops, examine variability in crop 

performance and management (Bala and Islam, 2009), determine crop status and response to pest and  

diseases (Hatfield and Prueger, 2010). 

Timely assessment of crop growth conditions and early monitoring on every stage of growth is essential to 

increase agricultural productivity (Liu et al., 2010). The most important and major limiting factor for crop 

growth and productivity is chlorophyll content which is indirectly related to nitrogen content (Haboudane 

et al., 2002). Thus, there is a need for timely assessment of crop status in order to optimize yield and 

quality (Wu et al., 2007). Remote sensing methods have proven to be effective in estimating nitrogen and 

other crop growth-status indicators (Clevers and Kooistra, 2012). Most importantly, multispectral high 

resolution images allow for computation of vegetation indices (VIs) based on their broad spectral bands in 

evaluating biophysical properties such as leaf area index (LAI), Nitrogen content, crop canopy cover and 

Chlorophyll content at the field scale (Cetin et al., 2005; Jain et al., 2007; Lelong et al., 1998). Studies have 

shown that broad band multispectral data are inadequate for the remote sensing of vegetation biochemical 

properties and that narrow band (high spectral resolution; usually a bandwidth of 10 nm or less) 

hyperspectral data are required (Broge and Mortensen, 2002; Haboudane  et al., 2004). 

Unmanned Aerial Vehicles (UAVs) have proven to provide a flexible intermediate observation platform 

between satellite and manned aircraft that could improve continuous aspect of data acquisition at a local 

scale. Recent studies have highlighted the benefit of UAVs for small scale crop mapping and monitoring 

(Berni et al., 2009; Rango et al., 2009). A hyperspectral sensor on board a UAV can provide the required 
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narrow spectral band and high spatial resolution for site-specific nutrient management. Hyperspectral 

remote sensing data have the potential to detect more variations on vegetation than multispectral data, 

because these sensors use narrow spectral channels of less than 10 nm (Stagakis et al., 2010). The large 

division of channels allows for a selection of bands that provides the greatest contribution of data help in 

providing better identification of crops and exploitation of intra-field variation (homogenous fields), 

thereby providing improvement on crop management practices. 

The continuously growing availability of hyperspectral imagery, recording hundreds of images 

corresponding to different wavelength channels, has opened new possibilities in the field of image analysis 

and classification (Landgrebe, 2005). In particular, hard classification algorithms have shown remarkable 

performance when dealing with pure pixels (Melgani and Bruzzone, 2004). In high resolution images, 

however, the spatial frequency of specific land cover classes may result in a large number of mixed pixels 

(Aplin and Atkinson, 2001). Thus, hard classification methods may not be appropriate for identifying and 

classifying farm fields. Sub-pixel classification like spectral unmixing are found to be more appropriate in 

classifying mixed pixels (Hu et al., 1999). The result of sub-pixel classification is a set of fraction images, 

each describing the proportion of a particular land cover class within a pixel. 

Super resolution mapping (SRM) has been used as a method of classification, that considers the spatial 

distribution of class proportions within pixels (Atkinson, 1997). It generates maps of a finer resolution 

than that of the input image. SRM methods include Hopfield neural networks (Tatem et al., 2001), linear 

optimization methods (Verhoeye and De Wulf, 2002), genetic algorithms (Mertens et al., 2003), and 

Markov random fields (Kasetkasem et al., 2005; Poudyal, 2013). These techniques except Markov random 

field (MRF) depend upon the availability of an accurate sup-pixel classification. MRF is a contextual and 

probabilistic method that has been applied for the various image processing tasks such as image 

classification, segmentation and change detection (Tso and Mather, 2001).  

1.2. Research identification 

Poudyal (2013) explored the possibilities of MRF based SRM as a contextual classifier for identification of 

row crop structure for a potato field from VHR WorldView-2 image of 2 m resolution. Findings from the 

study proved that SRM with high emphasis on spatial contextual information from prior model and 

spectral information from imagery was able to detect row structure prominently even for relatively 

complex scenes with high mixed pixels. SRM result was further integrated with NDVI to account for 

spatial variation in crop status within the field. However, this study was made for relatively small area that 

contains small variation in NDVI values and validation of results was limited. To examine variability in the 

field, multi-spectral images are subjected to limitations of spectral resolution compared to hyperspectral 

images of narrow bands. In the site-specific nutrient management, NDVI has been found to saturate at 
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higher vegetation indices and invariable at low densities (Haboudane  et al., 2004). Hence, there is need to 

explore other vegetation indices to characterize the variation in plants within the field. 

Recent studies have demonstrated the usefulness of vegetation indices (VIs) derived from spectral 

reflectance of images in estimating crop biophysical and biochemical parameters such as leaf area index, 

biomass, leaf chlorophyll content and Nitrogen, (Clevers and Kooistra, 2012; Hatfield and Prueger, 2010; 

Navarro-Cerrillo et al., 2014). Problems with VIs remain, however, because algorithms use the entire pixel 

and do not discriminate for mixtures at sub-pixel scales. Remote sensing signals, in a farm field may 

include vegetation, soil and shadow components or other types of vegetation (e.g. weeds), all of which 

lead to inaccuracies in vegetation indices used for estimating crop parameters.  

The idea is that the current study could provide farmers with valuable information to allow estimation of 

crop yield potential, exploration of spatial variability in plant health and to make decisions on proper 

nutrient management. 

1.2.1. Research objectives 

The aim of this research is to explore the possibility of retrieving crop parameters from hyperspectral 

image using MRF based super resolution analysis.  

It includes the following sub- objectives: 

 Estimate reflectance of canopy from the hyperspectral image using MRF and super resolution 

analysis. 

 Derive hyperspectral vegetation indices (HVIs) that are sensitive to chlorophyll content as 

reported in literature.  

 Investigate relationship between HVIs derived from in situ measurement and hyperspectral 

image. 

1.2.2. Research questions 

 Is it possible to predict canopy reflectance using MRF and super resolution analysis? 

 What are the optimal parameter settings to obtain the best result? 

 How can the results of super resolution be validated? 

 Is there any relationship between HVIs derived from field measurement and super resolution 

image? 
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2. LITERATURE REVIEW 

In this chapter, a review of the literature relevant to this thesis is given. The first section refers to broader 

research context of hyperspectral vegetation indices in the context of precision agriculture. Other areas 

covered are spectral unmixing for class area proportion estimation, super resolution mapping and Markov 

random field based super resolution mapping. 

2.1. Hyperspectral vegetation indices (HVIs) 

Spectral vegetation indices are mathematical combinations of different spectral bands mostly in the visible 

and near infrared regions of the electromagnetic spectrum. They are designed to enhance the vegetation 

signal while minimizing the error associated with atmospheric conditions, soil background effects, sensor 

geometry and solar illumination (Quintano et al., 2012).Though they can be computed for both 

multispectral and hyperspectral data, hyperspectral vegetation indices (HVIs) have a wider range than 

multispectral data and they offer a greater opportunity in finding the right index to predict specific 

biophysical or biochemical variable. Huete (1988) concluded that a strong relationship with crop 

characteristics is located in specific narrow bands in the longer wavelength portion of the red, in the 

shorter wavelength portion of green, in one particular section of the near-infrared, and in the moisture 

sensitive NIR. The study recommended 12 narrow bands in the 350 nm to 1050 nm range of the 

spectrum for optimum estimation of agricultural crop biochemical and biophysical properties. 

The usefulness of the vegetation indices to assess crop status is different depending on the wavebands 

used for its derivation. This implies that for monitoring various properties of crops, different vegetation 

indices are required. To date, several indices have been developed in terms of their sensitivity to 

biophysical and biochemical properties such as LAI, Nitrogen content, canopy cover and Chlorophyll 

content. NDVI being a commonly used index related to the physical properties of vegetation canopy, 

LAI, percent crop cover, vegetation condition and biomass tends to saturate under high canopy coverage 

(Li Miao et al 2009). To overcome this, vegetation indices developed in the point of maximum slope in 

vegetation reflectance spectra (between wavelengths of 680-750nm) called Red-edge position have become 

promising (Clevers, 1989). 

Gitelson et al. (2006) introduced the Modified Chlorophyll Absorption Reflectance Index (MCARI) to 

reduce the combined effect of non-photosynthetic parts and soil background. Haboudane et al. (2002) 

found that non photosynthetic elements still have effect on vegetation signal at low chlorophyll 

concentrations and proposed the Transformed Chlorophyll Absorption Reflectance Index (TCARI). 

Huete (1988) introduced the Soil Adjusted Vegetation Indices (SAVI) in the soil-line vegetation indices to 

account for the optical soil properties on the plant canopy. Other modifications include the Transformed 
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Soil Adjusted Vegetation Index (TSAVI), and Optimized Soil Adjusted Vegetation Index OSAVI 

(Rondeaux et al., 1996). 

For the purpose of this research, hyperspectral spectral indices (Table 2.1) recommended in Clevers and 

Kooistra (2012) for determining chlorophyll content of the leaf were derived from both Cropscan spectral 

reflectance measurement and the hyperspectral data cube. 

Index Name Formula References 

REP Red edge position  

 

(Guyot and Baret, 
1988) 

TCARI Transformed 
chlorophyll absorption 
in reflectance index 

3[  -0.2  
( )] 

(Haboudane et al., 
2002) 

OSAVI Optimized Soil-Adjusted 
Vegetation Index 

 (Rondeaux et al., 
1996) 

TCARI
/OSAV
I 

TCARI with Optimized 
Soil-Adjusted 
Vegetation Index 

3[(R700 -R670)-0.2 (R700 - R550) (R700/R670)]/ 
1.16(R800 - R670) /(R800+R670+0.16) 

(Haboudane et al., 
2002) 

CIred edge Chlorophyll Red Edge 
 

(Gitelson et al., 
2006) 

CIgreen Chlorophyll Green  
 

(Gitelson et al., 
2006) 

NDRE Normalized Difference 
Red Edge Index 

 (Eitel et al., 2010) 

Table 2.1: Vegetation indices evaluated in this study. Modified from:(Clevers and Kooistra, 2012) 

2.2. Spectral Unmixing for class area estimation 

A variety of methods is available to classify mixed pixels. Usually these methods estimate the fraction of 

each class in one pixel (Foody and Mathur, 2006). Spectral unmixing is a method by which the measured 

spectrum of mixed pixels is decomposed into a collection of constituent spectra, or endmembers, and a 

set of corresponding abundances that indicate the proportion of each endmember is present in the pixel 

(Keshava, 2003). The linear mixing model assumes that each ground cover only produces a single radiance 

and that the mixed spectrum is a linear combination of endmembers spectra (Zhu, 2005). The mixed 

model is defined by (Keshava, 2003): 

 

Where  is the spectral value of the actual image at pixel  K is the total number of classes 

(endmembers), is the  endmember (i.e. is a  vector, where  is the total number of bands),  is 
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the proportion of class  at pixel  and  is the error term. The class compositions must satisfy the 

following constraint: 

 

Details on the mathematical concept of this technique are discussed in chapter 4 of this study. 

 
Singular Value Decomposition (SVD) for Linear Unmixing 
A Singular Value Decomposition (SVD) is a well-known Eigen analysis method of decomposing a matrix. 

For an arbitrary matrix   , the SVD of the matrix equals: 

 

Where  is a  identical matrix,  is a  diagonal matrix having non negative real numbers on 

the diagonal and (the transpose of ) is a  unitary matrix. The diagonal entries of  are referred 

to as the singular values of . 

For pixel unmixing, Herries et al. (1996), used the SVD successfully in conjunction with key-vector 

analysis to extract end-member information from multispectral data with accuracies of 95%.  

2.3. Super resolution mapping  

Super resolution mapping is a technique that produces maps of a finer resolution than that of the input 

image. SRM considers the spatial distribution of class proportions within pixels. Tatem et al. (2001) 

applied Hopfield neural network algorithm as an energy minimization tool for fuzzy classification, 

presenting the spatial distribution of classes between pixels for simulated imagery. In Tatem et al. (2003), 

this algorithm was applied on Landsat TM data, their results showing that SRM with Hopfield neural 

networks produced higher accuracy compared to the other techniques using proportion image alone. They 

concluded that Hopfield neural network is a useful tool for identifying land cover from images at subpixel 

scale. 

A linear optimization technique for sub-pixel mapping was proposed in Verhoeye and De Wulf (2002). In 

their study, coarse resolution images were used. If the main assumption on spatial dependency holds, 

however, the technique can also be applied on different resolutions. The algorithm had a restriction on 

spatial dependency and it was not able to locate the objects that are smaller than a pixel. Mertens et al. 

(2003) advanced the work of Verhoeye and De Wulf (2002) and developed a genetic algorithm in SRM to 

locate sub-pixels. Though finding many parameters from the algorithm was a major advantage of the 

approach, results showed a higher accuracy than a traditional, hard classification. 

In most of those algorithms accuracy of SRM depends upon the accuracy of classification method and 

spatial dependency between pixels was used only after finding fraction of each class (Kasetkasem et al., 

2005). 
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2.4. Super resolution mapping and Markov random field 

The ability of MRF models to account for the spatial dependence between the classes proportions of the 

neighboring pixels, in an accurate way, has been used to refine the results from a sub pixel classification 

(Li, 2009). Kasetkasem et al. (2005) used Markov random field based approach to generate super 

resolution land cover maps using IKONOS MSS and Landsat ETM+ images. The study shows that MRF 

models are well suited to represent the spatial dependence within and between neighboring pixels. They 

concluded that accuracy of land cover mapping is significantly improved by this method.  

Neher and Srivastava (2005) used the Bayesian MRF framework to label the terrain using hyperspectral 

images. They stated that hyperspectral images point to non-Gaussian statistics of pixels values and 

proposed a probability model that captures non-Gaussian statistics of hyperspectral images, and used 

them in automated classification of terrain sites. There result demonstrated an improvement in labelling 

performance over the more conventional multivariate Gaussian model. Tso and Olsen (2005) improved 

contextual information based on MRF and multi-scale fuzzy line process for classification of IKONOS 

panchromatic and multi-spectral images. Their results presented success in generating the patch-wise 

classification patterns with increased accuracy  

Hailu (2006), studied the suitability of Markov Random Field for land cover mapping. The neighborhood 

size was modified with respect to the scale factor and the other modification was on the Gibbs potential 

parameter estimations (Kasetkasem et al., 2005). The study concluded that with appropriate parameters 

settings, reasonable accuracy results can be attained even for classes with low separability. This makes it a 

highly potential method for the land cover mapping. 

Tolpekin and Stein (2009) studied the effect of class separability on the accuracy of SRM. Their study 

introduced smoothness parameter to control the balance between likelihood and prior in the posterior 

energy function. It was reported that the optimal value of smoothness parameter depends on class 

separability and scale factor. They concluded that SRM with optimal smoothness parameter produces 

more accurate estimates of class area proportion as compared to those obtained with linear spectral 

unmixing.  

Ardila et al. (2011) proposed a contextual and probabilistic method for detection of tree crowns in urban 

areas using a MRF based SRM approach in very high resolution images. They achieved acceptable result 

for detecting tree crowns in residential area of the Netherlands and they revealed that the method 

outperforms tree crown identification results obtained with maximum likelihood, support vector machines 

and SRM approaches.  

Poudyal (2013) explored the possibilities of MRF based SRM for identification of row crop structure for a 

potato field from VHR satellite image. Findings from the study proved that SRM with high emphasis on 
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spatial contextual information from prior model and spectral information from imagery is able to detect 

row structure prominently even for relatively complex scenes with high mixed pixels and that higher 

accuracy can be achieved in row detection with an anisotropic prior window and with a slower simulated 

annealing. 
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3. STUDY AREA AND DATA PREPARATION 

This chapter presents a brief description of the study area, field measurement, remote sensing data and 

their pre-processing. Section 3.1 describes the study area, while 3.2 and 3.3 describes the field data 

measurements and the UAV mapping system, respectively. All data used in this research are provided by 

the laboratory of Geo-information science and Remote Sensing Wageningen University, the Netherlands. 

3.1. Study area 

The study area is an agricultural parcel of potato crop located 51° 19’ 04.55” N and 5° 10’ 11.29” E close 

to the village of Reusel in the province of Noord-Brabant, in the southern Netherlands. In the field, plots 

of 30 by 30m were prepared and supplied with four levels (0, 25, 45 and 70 kg h-1) of Nitrogen (N) 

fertilization including three replicates. Figure 1 presents an overview of the experimental plots with four 

levels of N fertilization. 

 
Figure 3.1: Overview of the experimental field. 
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3.2. Field Data  

Crop parameters were measured on selected rows in the 12 experimental plots. For these measurements, 

each plot was divided into two; one left and one right from the tractor path and four rows per plot (i.e. 

two rows on each side) were selected. The crop parameters that were measured over the growing season 

were leaf chlorophyll content and leaf area index (LAI). The handheld Minolta SPAD-502 chlorophyll 

meter was used to measure the chlorophyll status per row for all plots (24 measurements per plot). In each 

plot, four rows were measured (rows 3 and 10 left and right to driving path) and for every row, six plants 

(Figure 3.2) and for every plant three leaves to characterize variability within the plots. Each reading per 

plant was the average result of the three-leaf chlorophyll readings (18 readings per row). The plant canopy 

analyser (LAI- 2000) was used to measure LAI same rows in the experimental plots. Each SPAD 

measurement per plant was used as input into data analysis. The shapefiles of the plots and blocks 

(representing each treatment levels) which have been provided in geographic lat/long coordinate system 

were made available for this study. 

 
Figure 3.2: Plot construction indicating points of field measurements 

A Cropscan Multispectral radiometer (MSR16R), i.e. a 16-band radiometer measuring simultaneously the reflected 

and incoming radiation in 16 narrow spectral bands (10nm) was used to obtain the spectral reflectance of potato 
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canopy. Reflectance is measured by means of a 28 field-of-view (FOV) aperture and incoming radiation using a 

cosine-corrected sphere. Calibration is performed by pointing the 28 FOV apertures towards the sun using an opal 

glass. Using this calibration, spectral reflectance is derived. Table A 3.1 shows the specification of the instrument as 

described in (Clevers and Kooistra, 2012) . In each plot, the same four rows were selected and six measurements per 

row were made. 

3.3. UAV mapping system 

Imaging data were collected with multispectral and hyperspectral sensors fitted to an Octocopter UAV 

system (Aerialtronics Altura AT8) which can carry payload up to 2kg. A detailed description on payload, 

camera geometric calibration, image radiometric calibration and processing chain developed for the 

mapping system is provided in (Suomalainen et al., 2013). The mapping system was used to acquire 

imagery over the experimental field for four days over the growing season: June 6, June 14, July 5 and July 

17, 2013. For every day, two flights were made, one covering the six southern plots of the experiment and 

one covering the upper six plots of the experiment (Figure3.1). For this research, an RGB Orthophoto 

(1m and 0.025m spatial resolutions) and a hyperspectral image (1m spatial resolution, a spectral range of 

450-950nm at 5nm band width containing 101 bands) both acquired on the 5th of July are used. The 

0.025m RGB Orthophoto in this thesis is henceforth referred to as the Very High Resolution (VHR) 

image. Subsets from the images are shown in Figure 3.3. 

   

Figure 3.3: Subsets of (a) VHR image; (b) 1m Orthophoto; (c) 1m hyperspectral image of a plot in the field. 

3.4. Data pre-processing 

All images are provided in UTM zone 31 north spheroids and WGS 1984 datum thus, no referencing is 

required. Since the images are acquired using different sensors, the registration or co-registration between 

these images is crucial to this study. Registration is the process of geometrically aligning two or more sets 

of images. Firstly, to ensure conformity between the vector files and the images, the vector files were 

projected from geographic lat/long coordinate system to UTM zone 31N with WGS84 spheroid and 

datum system.  

A B C 
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3.4.1. Co-registration of Hyperspectral image 

All images are provided in UTM zone 31N spheroid and WGS 1984 datum, thus, no referencing was 

done. Since the two orthoimage of different resolutions (Figure 3.3) are produced from the same data 

source as described in (Suomalainen et al., 2013), they perfectly align together. A substantial shift of 4 m 

and rotation of 3º were observed between the hypercube and the orthoimages. To correct for this, 

resampling was not considered to be the proper choice since it involves spectral averaging that yield pixels 

with possible loss of information which may have adverse effect on the methodology in this study. 

Subsets were made from all images corresponding to blocks (containing three plots) as described in 

Section 3.2. Taking the VHR image as the base, tractor paths in each of the plots visible in both the 

hypercube and orthophoto were digitized. The coordinates of the hypercube pixels was rotated through an 

angle of 3º formed by the intersection of these lines. Out of the three plots in the block, plot H was found 

to have a perfect alignment with the orthomosaic (Figure 3.4), whereas plots D and L have a deviation of 

0.75 and 0.8 m. respectively. 

 

Figure 3.4: Hyperspectral image of plot H align on the VRH image after co-registration. 

3.5. Software 

In this study, different softwares were used for applying the proposed methodology. Envi 5.0 was used for 

extracting training sets from the VHR image. Erdas imagine 2013 was used to digitize tractor paths used in 

co-registration. All the major implementations of the techniques discussed were carried out using the R 
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programming language and environment for statistical computing version 3.0.2 software. R is open-source 

software which can be used for the statistical computing and visualization. 
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4. METHODOLOGY  

This chapter gives an overview of the method used in achieving the stated objectives. In each section, the 

concepts are explained followed by its application to this study. The general methodology of this research 

is divided into two steps. The first step (Figure 4.1) depicts the Super resolution image restoration (SRIR) 

technique to produce reflectance image of canopy. The second step (Figure 4.2) investigates relationships 

between hyperspectral vegetation indices computed from the reflectance image obtained from MRF based 

SRIR and field measurement from Crop scan. 

Hyperspectral
image Orthophoto

Image subset

Co registration
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Hyperspectral

image
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Maximum likelihood
classification
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unmixing
Classified Map
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Figure 4.1: Schematic representation of MRF based SRIR for producing reflectance canopy image. 
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Figure 4.2: Workflow of investigating relationship between VIs derived from super resolution image and field measurement.  

4.1. Class area proportions and Spectral unmixing 

Hyperspectral images have high spectral information which increases the capability to detect and 

differentiate various land cover classes; however, the existence of mixed pixels at any spatial resolution 

poses a major challenge when using the conventional hard classification technique. Linear spectral 

unmixing is a technique designed to address the problem of mixed pixels making it possible to classify 

features smaller than a pixel. The linear mixture model (LMM) assumes that the signal received at the 

sensor is a linear combination of proportion of individual surface components present in a particular pixel 

(Zhu, 2005). Mathematically, the LMM is defined as: 

 

Where:  = proportion of class k in pixel i 

  = reflectance of class k in band b 

  = error term for band b 

  = measured reflectance of at spectral band b  

  = the number of classes 

Optimized
SR image
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The sum of all class proportions for every pixel should be equal to 1, so: 

 

To derive proportion of individual classes, the procedure for unmixing generally involves three stages; 

dimension reduction, endmember determination and inversion of the LMM (Keshava, 2003). 

Considering the resolution of the hyperspectral image (1 m) used in this study, applying standard training 

procedure (i.e. finding pure pixels) is not possible owing to the absence of pure pixels. It is a common 

approach to use a fine spatial resolution image to estimate the class area proportion (Adams and Gillespie, 

2006). In addition, if classes are highly separable, the use of likelihood functions as estimators of mixing is 

valid (Schowengerdt, 1996).  

In this study, maximum likelihood classification (MLC) result of the VHR image was used for training the 

hyperspectral image since the two images have been spatially registered (see Section 3.4.1). By identifying 

the overlapping pixels, the proportions of the components in the hyperspectral image are computed. The 

LMM is then modified to estimate the mean spectral reflectance of the components (canopy and soil) in the 

hyperspectral image. Based on the assumption of LMM, for every pixel in all spectral bands, a set of linear 

equations (7) is established and solved by singular value decomposition technique (SVD).  

4.2. MRF based super resolution image restoration 

The purpose of this method is to predict the reflectance of canopy from the observed coarse resolution 

hyperspectral image at a higher resolution. 

4.2.1. Mathematical concepts of Super resolution 

Let  be a coarse resolution hyperspectral image that contains  spectral bands. The pixel locations are 

denoted as  where  is pixels matrix with size . The spatial resolution of the image is 

denoted by  hence every pixel  is assumed to correspond with a square area on the ground of size . 

Result of super resolution is an image  at a finer spatial resolution  such that . The pixel locations 

are denoted as  where  is a set of pixels with size . The relationship between  and  can 

be expressed schematically in Figure 4.1. 
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Figure 4.3: Footprints of pixels  and  showing relationship between fine and coarse resolution images 

In this study, the relationship between the super resolution image  and coarse resolution image  is 

modelled as: 

 

Where   

The expression  is chosen as weight such that: 

         (9) 

4.2.2. Setting up the super resolution grid 

Based on preliminary knowledge of the field structure (i.e. distance between rows is 75 cm) the cell size of 

the output super resolution (SR) image was defined as 0.75 × 0.75 m. The grid of the SR image was 

rotated with respect to the grid of the coarse input image by 3º to align with row direction (see Figure 3.3a 

for row orientation) in the field.  

The link between the pixels of the SR grid and input image pixels were established using geographic 

coordinates. To achieve this, spatial polygon footprints of the coarse image was used such that centres of 

SR image pixels fall inside the footprints. The output of the initial SR image  contains isolated pixels 

which should be optimised considering spatial dependence.  

4.3. MRF and Gibbs random field 

This section provides the theoretical background of Markov random field; it’s equivalence with Gibbs and 

implementation in this current study. 

Consider a set of random variables  defined on the set  where  

are set of pixels DN values. The family  is called a random field. 
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To model image  as a MRF, it must satisfy the following properties: 

 Positivity:  when this condition is satisfied, the joint probability  of any random 

field is uniquely determined by its local conditional probabilities. 

 Markovianity:  i.e. the labelling of the central pixel is only dependent on 

its neighboring pixels. In the context of classification it implies that same land cover class is more 

likely to occur in nearest region than isolated pixels. 

 Homogeneity:  is same for all sites   

Where;  represent all pixels in the set  excluding the central pixel  and  denotes the neighbour 

of pixel .  

The posterior probability for pixels of image  given the observed image  can be specified by means of a 

posterior energy function: 

       (10) 

Where  is normalizing constant and  is a constant termed temperature,  is the posterior energy 

function of image  given the observed image . We can say that maximizing  is equivalent to 

minimizing the energy function which can be formulated as: 

 

Where  is the potential function regarding clique . A clique is a subset of a neighbourhood system, 

where all pairs of site are mutual neighbours. It can be single site, pair of sites or triple of neighbouring 

sites. In this study pair-wise clique was used. 

Prior Energy 

Assuming image  has MRF properties, the prior energy is modelled as sum of pair-site interaction as 

follows: 

 

Here,  is the local contribution of prior energy from pixel ,  is the prior energy 

function of image ,  is the neighbourhood system,  denotes the contributing weight from 
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pixel  to prior energy and  is the interaction between neighbouring pixels such that 

 is small for similar pixels and otherwise for dissimilar pixels. The weight  is modelled as: 

     (13) 

The parameter   is the weight multiplier and it controls the overall magnitude of the 

weights. is utilised as an anisotropic expression that depends only on distance  between 

pixels  and . It is given by: 

         (14) 

 is a normalisation constant chosen such that  for non-boundary pixels 

The complete neighbourhood is defined as a set of all pixels inside a rectangular window (Figure 4.1) 

excluding the center pixel  with window sizes  and  being the length of the rectangular 

sides.  

 

 

 

 

 

 

 

 

 

 

To predict the pixel value  that corresponds to minimum energy solution, different neighbourhood 

window sizes were tested. The number of maximum neighbourhood system is given by: 

       (15) 

Where  and  are window sizes along the row and across the row of pixel  respectively. To ensure 

prominent row structure in the image, anisotropic property of MRF was considered for assigning weight 

 

Figure 4.4: Neighbourhood system of pixel used in this study
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to pixels in the neighbourhood. Throughout this study,  is fixed at a value 1 corresponding to window 

size 1 to limit the number of neighbouring pixels across the row to be considered during predicting of 

pixel value. 

Conditional energy function 

Based on the relation defined in Equation 8, we define the conditional energy function of image  given 

image  as: 

 

Where:   

Posterior Energy 

By combining equation 12 and 16, the global energy  can be defined by: 

       (17) 

The smoothness parameter  controls the contributions from the likelihood and prior models. It takes 

value between 0 and 1. If  is set to 1, it implies the likelihood model is completely ignored and minimum 

posterior energy is obtained for images where all pixels are assigned same value. 

Prediction of pixel values in image  is performed by minimizing this energy function to get the optimal 

solution maximum a posteriori (MAP): 

       (16) 

The solution of the above equation requires specially designed approach. Normally, an iterative approach 

is used because the estimation of each pixel has an effect on those assigned to its neighbours (Li, 2009). In 

order to solve the equation, simulated annealing (SA) algorithm was adopted. It is brief explained in the 

Section 4.4. 

4.4. Simulated annealing algorithm 

Simulated annealing (SA) is a stochastic iterative algorithm for global optimization problem. It includes the 

annealing parameters (i.e. initial temperature  and updating temperature ) which control the 

process. The algorithm starts at high temperature and slowly cools down to an ordered stage based on a 
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carefully defined cooling schedule. In this study the cooling schedule is expressed by  T is 

the next temperature value depending on the next iteration. The process is repeated until the system 

becomes frozen (i.e. T→0), implying that pixels stop updating. High temperature refers to the state when 

large number of pixels has different values showing high randomness which increases probability of a 

pixel being replaced by new value. As the optimization continues, the algorithm tries to find the global 

minimum. 

4.5. Accuracy asssessment 

Accuracy assessment is done by evaluating the result against the reference data which was generated from 

the VHR image. In this context, accuracy refers to the level of agreement between the result and the 

reference data. In other words, how far the super resolution image is able to capture prominent features 

e.g. tractor driving path and missing plants in the field.  

Error matrix from which accuracy measures such as producer accuracy, user accuracy and overall accuracy 

was derived. Producer accuracy is a measure of omission error and is obtained by dividing number of 

correctly classified pixels in each class by the total number of pixels in that class. User accuracy is a 

measure of commission error. It denotes the probability that a pixel labelled as a certain cover class in the 

image really belongs to that class. The overall accuracy is the number of correctly classified pixels divided 

by the total number of pixels checked. 

To validate the super resolution image, prominent features in the field e.g. tractor driving paths and 

missing plants were identified in the VRH image and compared to result from the super resolution 

analysis using this accuracy measures described above.  

Experiments to determine optimal MRF parameter values were performed by determining their 

correspondence with the accuracy measures. The reproducibility of the result was evaluated by performing 

10 experiments for each parameter and computing the mean accuracy, energy and iteration.  

The predicted reflectance from the optimised super resolution result was compared to canopy reflectance 

measure from the field. For this comparison, average values of canopy reflectance of rows measured in the 

field were used. 

4.6. Relatioship between HVIs derived from field measurement and SR image 

The vegetation indices highlighted in Table 2.1 were calculated from the SR image and field data. To 

investigate relationship between these indices, average value of four rows from which measurement were 

made in the field were computed from the SR image. These indices were further analysed in linear 

regression model to identify any possible relationship. 
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5. RESULTS 

5.1. Class area proportion estimation 

Two classes were considered in this study (canopy and soil). Figure 5.1 show the estimated mean reflectance 

from unmixing compared to reflectance measurement in the field.  

 
   (a)       (b) 

Figure 5.1: Mean reflectance of canopy derived from hyperspectral image before (a) and after correction (b) to field measurement. Sign 1-4 

represent mean Canopy reflectance measured from four rows in the field. 

From Figure 5.1(a), it can be observed that there is bias in the estimation of mean canopy reflectance 

which may be attributed to the procedure of maximum likelihood classification of the VHR image or 

overlap between canopy and interlocking of plants between the rows. Based on this observation, 

correction was applied by reducing proportion of canopy by 0.8 in the image. Figure 5.2 shows the 

agreement between the mean canopy reflectance and the field data. 

5.2. Experimental results from MRF based super resolution image restoration 

As explained in Section 4.3, assigning pixel values in the initial SR image was performed randomly 

therefore, it is expected to have many isolated pixels and optimisation is required. For the optimisation 

process, it is essential that appropriate value of MRF parameters is used. These parameters include 

neighborhood size ( ), smoothing parameter ( ), weight multiplier ( ) and annealing parameters (  

and  ). Therefore, several experiments were performed in search of optimal parameter values and the 
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quality of the results in terms of achieving minimum energy solution for predicting canopy reflectance  in 

the plot were evaluated using accuracy measures described in Section 4.5. For each investigated parameter, 

10 repetitive experiments were performed for same settings. We compute the mean and standard 

deviation of energy and accuracy values to evaluate the reproducibility of result. In the following 

subsections we present result of experiments performed and observations made from the result. 

5.3. Initial temperature 
The aim of this experiment is to identify the optimal initial temperature  that corresponds to minimum 

energy solution. Each experiment was repeated for 10 times for  values of 0.01, 0.1, 0, 1, 2, 3, 4 and 10 

for fixed values of other parameters ( ). The 

summary of the result for this experiment showing the mean minimum energy and standard deviation is 

presented in Figure 5.2. For the purpose of display, only the results of  values in the range between 0.01 

and 10 are shown. 

 

  (a)        (b) 

Figure 5.2: Mean minimum energy and standard deviation for different  values 

From Figure 5.2 (a), it can be observed that values close to  0 give higher energies and there is a clear 

minimum at . The standard deviation presented in Figure 5.2 (b) shows the variation of the 

minimum energy found at different values of initial temperatures. Again,  have the least standard 

deviation. Although the minimum energy observed at  is not much less than the rest, it is a 

preferred choice because it has the lowest mean and standard deviation. 
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5.4. Experimental results on updating schedule 
In this experiment we search for a value of temperature update  where optimum super resolution 

result can be achieved. Like the experiment for , different values of  (0.1, 0.5, 0.8, 0.9, 0.95, 0.97 

and 0.99) were considered while other parameters are fixed with  taking a value of 3 as determined from 

experiment in Section 5.3. Figure 5.3 shows the plot of the mean minimum energy and standard deviation 

achieved for 10 experiments at different values of . 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.3: Mean minimum energy and standard deviation for different  values 

The above figure shows similar trend in minimum energy and standard deviation for all values of  

used in the experiment.  0.99 have the least variation in energy values obtained for the 10 

experiments. These energy values however, are high as compared to  0.97. Therefore, 

 is considered to be suited for implementation purpose.  

5.5. Neighbourhood window size determination 
As discussed in Section 4.2, two different types of windows (  and  ) were used in this study to 

ensure prediction of pixel values and to maintain the row structure of the field in the resulting image. 

These two different windows combined together define the number of maximum neighbourhood system 

as depicted in Equation 9. This experiment aims at finding optimal  that corresponds to high quality 

result. To choose appropriate window size, quality of results from seven different windows of sizes 1, 2, 3, 

4, 5, 6 and 7 were evaluated. In this experiment, the parameters were set to  = 0.7,  3,  0.97 

and  -0.25. To evaluate the reproducibility of the result, each experiment was repeated for 10 times 

for same parameter settings. The optimised super resolution images for window sizes 5, 2 and 4 are shown 

in Figure 5.4 

(a) (b) 
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Figure 5.4: Optimised SR image for size (a)5; (b) 2 and (c) 4.The green rectangles in the images represent the tractor driving 

path. (d) Overall accuracy for different values of window sizes. 

The accuracy gives the quality of the result while the standard deviation which is displayed using the error 

bar shows variation in the results. Observation from Figure 5.4d shows high OA for window size 2 

however, visual inspection of the resulting image show some pixels along the driving path. Also, there is 

(c) 

(a) 

(d) 

(b) 
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high variation in the results obtained from the 10 repetitive experiments suggesting that results are not 

reproducible. On the other hand, for window size 4 show better results compared to window size 2. For 

window size 5, visual inspection of resulting images from the 10 experiments show comparable results, 

this is also confirmed by the minimum deviation from the mean OA as by the error bar in the OA plot. 

To aid the choice of appropriate window size, we also inspect the plot of the user accuracy (UA) and 

producer accuracy (PA) as show in Figure 5.5.  

 

   (a)        (b) 

Figure 5.5: User accuracy (a) and producer accuracy (b) for different values of window sizes 

In Figure 5.5a, we observe decreasing trend in deviation from the mean UA for the entire window sizes 

with window size 5 having the minimum. The deviation from mean PA observed in Figure 5.5b for 

window size 5 can be compared to those observed from OA and UA, this could be another indication of 

high quality result. Base on the observations made so far from the optimised image and the accuracy plots, 

window size of 5 is chosen as appropriate. 

5.6. Experimental result on weight multiplier 
This parameter  is introduced in this study to control the overall magnitude of contributing weight 

from each neighbouring pixels to prior energy (see Section 4.4). The weight given to each neighbouring 

pixel is computed using Equation (13). Considering the importance of this parameter to the prior, it is 

therefore necessary to investigate its optimal value corresponding to high quality result. For this 

experiment, a wider range of values from -0.5 to 0.5 was investigated. Results are presented in the Figure 

5.6. 
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Figure 5.6: Optimised SR image for weight multiplier (a) -0.25; (b) -0.2 and (c) -0.3 showing tractor driving path and missing plant 
along the row; (d) summary overall accuracy for different values of weight multiplier for 10 experiments.  

From the accuracy plot, we notice that the maximum OA is achieved for  but that the 

optimized image (Figure 5.5c) did not capture the missing plant and driving path compare to 

 with close OA. This further confirms variation in the result as depicted by the error bar in OA 

plot. For , results are similar but base on visual inspection  tends to be 

smooth, hence this value is selected in this study.  

(a) (b) 

(c) 
(d) 
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5.7. Optimal smoothness parameter estimation 
The smoothness parameter  controls the relation between the values prior and likelihood energy (see 

equation 15). This experiment was performed for several values of  (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 

0.75, 0.8, 0.85, 0.9, 0.95 and 0.99) with initial temperature , ,  and 

.  

 

 

 

Figure 5.7: Optimised SR image for smoothness parameter  (a) 0.90; (b) 0.8 and (c) 0.7 showing tractor driving path and 

missing plant along the row; (d) summary overall accuracy for different values of  for 10 experiments 

 

(c) (d) 

(a) (b) 
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Observation from Figure 5.7d shows that the optimal value for high quality SR result is within the range 

from 0.6 to 0.8. As we move close to 1 over smoothing occurs in the result indicating that the likelihood is 

ignored (see equation 16) and only the prior is considered in predicting the pixel values of the image. The 

observation is confirmed by Figure 5.6b and 5.6d. For this reason 0.7 was chosen to be optimal value for 

the smoothness parameter. This experiment concludes the optimisation of SRM parameters. 

5.8. Validating predicted reflectance from super resolution result. 

After optimisation of all parameters, the predicted reflectance values of canopy from the optimized SR 

image were extracted along the rows from which field measurement was taken (Section 3.2). For 

comparison with field measurement, an average reflectance value of canopy per row was used. Figure 5.8 

present the result of comparison from seven bands. These bands were selected because of they are 

common to both field and imagining sensors.  

 
Figure 5.8:  Comparison between canopy reflectance measured from the field and predicted reflectance from SR image in bands common to 

both sensing device.  

From Figure 5.8, a strong linear relation is observed between the predicted and measured values. The root 

mean square of the predicted compared to the measured values is 0.04 equivalent to 4% of predicted 

values. This gives an indication that result is suitable for further analysis. 



SUPER RESOLUTION MAPPING OF UAV IMAGES OF FARM FIELDS 
 

36 

5.9. Relationship between hypespectral vegetation indices derived from field measurement and SR 
image 

One of the objectives of this study is to relate in situ measurement to hyperspectral derived parameters. 

The relationship between VIs derived from spectral reflectance measurement of canopy from the field and 

SR image were investigated. The relationship between the indices is presented in Figure B.1 Appendix B. 

The summary result is presented in Table 5.1.  

 

INDEX  RMSE 

NDRE 0.41 0.01 

REP 0.84 0.33 

CL red edge 0.87 0.99 

CL green 0.55 2.03 

TCARI 0.72 0.07 

OSAVI 0.06 0.02 

TCARI/OSAVI 0.91 0.08 

Table 5.1: Summary of relationship between Vegetation indices derived from SR image and in situ measurement. 

From Table 5.1, high relation is expected from the indices because in the field measurement with 

Cropscan, the effect of soil background is minimized. Another reason why a high relation could be 

expected is the comparable pixel size of SR image (0.75 m2) and Cropscan of 0.6 m2.  
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6. DISCUSSION 

In this study, MRF based super resolution image restoration was developed and implemented on coarse 

hyperspectral image of farm field to obtain a high resolution reflectance image of vegetation. 

Two classes were defined and their area proportion of in the hyperspectral image was obtained by using 

MLC result of VHR image having obtained a match between the two images. Though not a straight 

forward process, the co-registration of the images was achieved geometrically to sub pixel level as 

explained in Section 3.4.1. Result from spectral unmixing shows a good agreement with field data as 

presented in Figure 5.1b. Based on result from unmixing soil contribution in the coarse image was 

subtracted resulting image is an image of canopy reflectance. 

For the setup in this study, prior knowledge of the field was incorporated in defining the SR image grid. A 

thorough analysis of the intersection of pixels in the coarse and fine images was performed based on 

analysis of the footprint polygons (see Figure4.1). The relationship between the two images was 

established as in equation 8. Using the relation established in Equation 8, the conditional energy function 

was formulated (see Equation14). SA was employed to find the minimum energy solution that 

corresponds to optimal SR image. 

Findings from the experimental result on initial temperature show that the resulting super resolution 

image is optimised at   (see Figure 5.2a) and this result is reproducible .This experimental finding is 

in agreement with previous studies on MRF. Findings also reveal that with slower temperature update, the 

probability of pixels being replaced by new value increased. Therefore, for optimal solution, simulated 

annealing should be done at a slow cooling rate. The optimal  value was found to be 0.97. Next, 

results on smoothness parameter indicate that larger value results in an image have same pixel values. For 

quality result, smoothness parameter values should be within the range 0.4 to 0.8. The optimal for  in this 

study is 0.7 

The relationships observed between indices computed from SR image and in situ measurement has 

opened up possibilities for employing MRF based super resolution image restoration technique in 

extracting plant information without the influence of soil background. The outcome of this study opens 

up opportunities for further application to different crops and different sizes of objects. It could be 

helpful for farmers who are limited with availability of high spatial resolution image for examining 

variability in crop properties.  

The time required for estimating parameters is a threat to this method. Better results are possible for 

simulated annealing with high cooling schedule but it is computational expensive.  
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7. CONCLUSION AND RECOMMENDATIONS 

The aim of this research is to explore the possibility of retrieving crop parameters from hyperspectral 

image using MRF based super resolution analysis to support precision agriculture. 

It includes the following sub- objectives: 

 Estimate reflectance of canopy from hyperspectral image using MRF and super resolution 

analysis. 

 Derive hyperspectral vegetation indices (HVIs) that are sensitive to chlorophyll content as 

reported in literature (Clevers and Kooistra, 2012). 

 Investigate relationship between HVIs derived from in situ measurement and hyperspectral 

image. 

Four research questions were formulated in achieving these objectives. Discussion of results was done in 

chapter 6. This chapter aims to draw conclusion by providing answers to the research questions. 

Furthermore, recommendations are made for further research. 

7.1. Conclusion 

This sub section addresses the research questions and corresponding answers. 

 Is it possible to predict canopy reflectance using MRF and super resolution analysis? 

From findings in this study, it was found that for slower simulated annealing, optimal canopy reflectance 

image can be obtained. 

 What are the optimal parameter settings to obtain the best super resolution result? 

From the experiments conducted on parameters, the following values , , 

,  and  were found to be optimal. 

 How can the result of super resolution analysis be validated? 

Validation of the SR image was done by comparing it with VHR image with accuracy measures. Predicted 

canopy reflectance was compared to measurement from the field. 

 Is there any relationship between VIs derived from field measurement and super resolution 

image? 

Result of comparison showed that there is a strong relationship between indices computed from the SR 

image and the field. This is an indication that the method implemented in deriving the reflectance image is 

promising.  

7.2. Recommendation 

Accurate retrieving of crop parameters to support precision agriculture requires discrimination of mixtures 

at sub pixel scales. In this study, MRF based super resolution image restoration was developed and 
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implemented. The method produced reflectance image of canopy at a high resolution. Result was validated 

with field data.  

In summary there are also some other priorities to be addressed by further research: 
 

 For energy minimisation, Simulated annealing algorithm was used this study, this algorithm is 

computational expensive hence other optimisation methods for instance graph cut and belief 

propagation (Li, 2009; Tappen and Freeman, 2003) should be investigated. 

 This method could further be extended to cover different levels of Nitrogen application in the 

plot. 
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APPENDIX A 

Data preparation  
 

Spectral band position (nm) Band width (nm) 

490 7.3 

530 8.5 

550 9.2 

570 9.7 

670 11 

700 12 

710 12 

740 13 

750 13 

780 11 

870 12 

940 13 

950 13 

1000 15 

1050 15 

1650 200 

Table A.0.1: Specifications of Cropscan Multispectral radiometer. Source :(Clevers and Kooistra, 2012) 

  



 

45 

APPENDIX B 

Relationship between Vegetation indices derived from super resolution image and field 
measurement. 
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Figure B.0.1: Relationship between indices computed from the image and field data. 


