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ABSTRACT 

 
Urban areas do have a mixed environment of land cover. classification using traditional techniques like 
ground survey, aerial photography are time-consuming, costly and limited.  In recent years,  sensors  have  
continually been launched and very-high resolution images relevant to sustainable development of urban 
land-use are increasingly being captured. This has resulted in increased multispectral data with broader 
spectral bands, higher radiometric and temporal resolution and high spatial resolution. High spatial 
resolution imagery, however, brings in a new challenge of spectral response of individual trees being 
influenced by variation in canopy illumination, the surrounding and background effects. This is a challenge 
in classification of tree species using ordinary pixel based classification (e.g. maximum likelihood 
classification). This study investigated the classification of urban tree species using maximum likelihood 
classification and support vector machine on the WorldView-2 satellite image using object and pixels in 
both methods.  Object and pixel based analysis was used in both classification methods.  MLC performed 
better than SVM in both object and pixel based calssification. MLC pixel based overall accuracy  was 
66.93% with Kappa of  0.54 and 51.24% with Kappa of 0.36 for SVM pixel based. MLC object based 
overall accuracy was 71.17%  with Kappa of 0.66 and 44.62% with Kappa of 0.31 for SVM object based 
analysis. Even though MLC perfoms better than SVM, the accuracy is still low compared to generally 
accepted accuracy. This indicates that both methods are still not satisfactory techniques of classifying high 
resolution images for Delft city. MLC, however, has been used for many years in image classification. It is 
straightforward and does not require extreme expert skills to apply. MLC algorithm can be found in most 
of the remote sensing application software. Examples of this software are ERDAS, ENVI and ILWIS 
(open source) among others. This makes MLC an easy available method for classification.   MLC pixel 
based classification is effective in classifying medium and large trees (e.g. Plantanus Spp. and Fagus Spp.). 
MLC relies on mean and covariance of samples hence calculation of covariance matrix in small tree 
crowns (> 10 pixels) could not be determined. Class separability using J-M distance measure and NDVI 
mean and variation evaluation were the same. This gives the  possibilty of use of NDVI in separating tree 
species.  SVM does not operate based on data distribution making it applicable to any type of data (i.e. 
normal or non-normal distribution. Its performance relies on kernel parameters. In this study, C value of 5 
and value 5 for  δ were used.  Experimenting on optimum parameters values of C and δ  can give 
satisfactory classification results. Though the study area is in The Netherlands, classification of tree species 
using MLC and SVM brings up possibilities to apply the same approach in other urban areas and to other 
species.   
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1. INTRODUCTION  

1.1. Background  
Remote sensing provides useful information to assist challenges in environmental, hydrological, ecological, 
agricultural and development aspects. Satellite imagery has the reflectance information of the Earth’s 
surface within the electromagnetic spectrum. Remote sensing classification techniques help to assign a 
class to specific reflectance information in a  pixel. Mixed pixel, however, is one of the major  problems  
encountered when extracting that information from the image (Ling et al., 2013).  Successful classification 
is dependent on heterogeneity of a pixel, pixel size and class variance.  Some common land cover classes 
are vegetation,  built up areas, water bodies, desert, soil and bare ground. The same classes mentioned do 
have sub-classes, for example, vegetation  can be sub-divided into various vegetation types of forests, 
grassland and cropfields. To classify the said classes, human beings can use visual interpretation 
techniques like the human-knowledge, patterns, size, association and colors on the image. Visual 
interpretation techniques are time-consuming, prone to human error and costly over large areas. 
Supervised classification is a common classification method where the user selects training samples 
(Kuckartz, 2007). Unsupervised classification uses the algorithm to define which pixel belongs to which 
class based on the feature space.   
 
Classification methods can be grouped into either hard or soft classification. In hard classifications 
methods,  each pixel belongs to the class it most closely resembles. Hard classifications examples are 
Iterative Self Organized Data Analysis and Transfer Algorithm (ISODATA), centroid (e.g. K-means),  
maximum likelihood methods. It is easier to do hard classification of homogenous areas (e.g. pure 
croplands, pure waterbodies). Hard classification, however, is dependent on spatial scale and variance of 
the classes. In soft classification each pixel can belong to more than one class and has membership grades 
for each class. Moreover, it takes into concideration the heterogeneous (mixed) nature of the real world. 
Soft classification methods include the linear mixture modeling and fuzzy classification.  
 
In many applications (e.g. maximum likelihood), datasets could be described as normally distributed. In 
reality, however, the data in some cases may not be normally distributed. This calls for non-parametric 
classification technique.  The commonly non-parametric mehods are parallepiped, minimum distance, 
neural networks among others. Support Vector machine (SVM) is one of the emerging non-parametric 
technique. SVM is a supervised non-parametric learning kernel based. SVM makes differenciation of 
classes based on decision boundary, i.e. hyper-plane.  
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1.2. Motivation and problem statement 
Urban forests play a major role in cities and towns  in improving air quality and climate protection, energy 
saving, recreation and human connection with nature (McPherson, 2006). Trees reduce carbon-dioxide in 
the atmosphere through assimilation (Myeong et al., 2006). Information of tree species location and 
distribution is important for sustainable trees management and helps in giving knowledge pertaining to 
functioning of the forested ecosystems. The health and diversity of trees species in urban forests is 
important. Moreover, tree diseases and pests cause tree health problems and eventually death (Boyd et al., 
2013). Abiotic factors like the un-favorable soil properties, moisture and temperature extremes,  chemical 
toxicity, physical injuries reduces plant health,  cause decay. Guarding against disasters like Dutch elm 
disease that destroyed many elm trees in the 1960s and 70s (Tomlinson & Potter, 2010) is important. 
Practices of fertilization, mulching, watering, pruning to get certain landscapes and  thinning influences 
growth of trees. The urban authority monitors and manages urban forests. There is a need to plan the 
costs to replace the sick or dead trees. It also assist to “put the right tree in the right place” (Santamour Jr, 
2004). As a result, it is vital to map tree species in urban areas with the help of remote sensing imagery.   
 
Urban areas do have a mixed environment of land cover (e.g. grass, gardens, scrublands, and impervious 
areas) and continuously changing infrastructure. The urban environment is also characterized by 
heterogeneous mosaics of small features made up of materials with different physical properties (Mathieu 
et al., 2007).  Urban trees inventory is necessary to identify tree location, to gain information about species 
and their spatial distributions. This information can be collected using traditional techniques for example 
ground survey and aerial photography. However, ground survey techniques (for example GPS survey) are 
time-consuming, costly and limited, especially when one has to work over large areas. Aerial photography, 
visual map interpretation are similarly slow and expensive, especially when it has to be done for large scale 
mapping which translate to detailed over small areas (Suárez et al., 2005). In addition, a field survey is 
limited to accessible areas like public places; it is not easy in some cases to collect tree information in 
private properties and dangerous or inaccessible areas.  
 
In recent years,  sensors  have  continually been launched and very-high resolution images relevant to 
sustainable development of urban land-use are increasingly being captured (Kong et al., 2006). This has 
resulted in increased multispectral data with broader spectral bands, higher radiometric and temporal 
resolution and high spatial resolution (Blaschke, 2010). High spatial resolution imagery, however, brings in 
a new challenge of spectral response of individual trees being influenced by variation in canopy 
illumination, the surrounding and background effects (Quackenbush, 2000). This is a challenge in 
classification of tree species using ordinary pixel based classification (e.g. maximum likelihood 
classification). Moreover, these data are only information sources and requires data processing, analysis 
and information extraction to get useful information. In tree crown classification, tree structural 
characteristics, for example; height, crown shape, crown diameter and canopy cover are considered. A tree 
crown, however, may not occupy a whole pixel and in some cases can partially occupy more than one 
pixel leading to mixed pixels. Accordingly, high spatial resolution of data does not fully solve capturing of 
trees since in reality in geographical space; trees do not exactly fit in a pixel. Thus it reduces the accuracy 
when using conventional pixel-based classifications.  
 
The aim of the present study is to classify urban tree species using high resolution image, Worldview-2. 
Apart from Red band, WorldView-2 has additional Red-Edge spectral band which is considered sensitive 
in plant studies. The Red-Edge band (680 nm to 750 nm) is the transition between the minimum and 
maximum reflectance. Worlview-1 has panchromatic (black and white) at 0.50 m resolution imagery and 
QuickBird has the standard four spectral bands (red, blue, green and near infrared). The unique bands 
with spectral resolution helps in feature extraction and classification methods in support land-cover 
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mapping, in particular urban areas mapping. This will facilitate better planning and monitoring of urban 
forests and other green areas within cities. To achieve this, maximum likelihood classification and support 
vector machine approaches were applied to determine the suitability of the 8-band Worldview-2. In 
addition, the object based and pixels based classification was done on the urban tree species and accuracy 
evaluated.  

1.3. Research identification 
The main objective of this research was to classify urban tree species using object and pixel based using 
maximum likelihood classification and support vector machine on the WorldView-2 satellite image.  
 

1.3.1. Research objectives 
The following are the specific objectives:  

i. To detect urban tree species on the Worldview-2 multispectral image.    
ii. To determine the accuracy of application of Maximum Likelihood Classification (MLC) pixels 

analysis and tree objects analysis on Worldview-2 multispectral image in urban tree species 
classification 

iii. To determine the accuracy of Support Vector Machine (SVM) pixel in classifying tree species 
iv. To determine if Worldview-2 Normalized Difference Vegetation Index (NDVI) can be used to 

separate the tree species  

1.3.2. Research questions 
i. Which tree species can be successfully detected and separated from other species?  
ii. Can MLC object and pixel based analysis classify tree species?  
iii. Can SVM pixels analysis and tree objects analysis classify tree species successfully?  
iv. Can Worldview-2 Normalized Difference Vegetation Index (NDVI) be used to detect different 

tree species?  

1.4. Innovation aimed at 
This research aimed at examining the suitability of 8-band Worldview-2 multispectral image in urban tree 
species classification. The pixels and tree objects were separately as applied as training samples on the 
image. Class separability was done using J-M distance and NDVI mean and standard deviation to how 
distinct the tree species classes were. Optimum parameters values were chosen and used for SVM 
classification. MLC to some extent classified medium and large trees. SVM classified all tree species 
including small trees that could not be classified by MLC.  
 
 
 
 
 
 
 
 
 
 
 
 
 



URBAN TREE SPECIES CLASSIFICATION ON PIXEL AND OBJECT LEVEL WITH WORLDVIEW-2 IMAGE, USING MAXIMUM LIKELIHOOD CLASSIFIER AND SUPPORT VECTOR MACHINE  

 

10 

1.5. Research approach 
The research started with literature review on maximum likelihood classification and support vector 
machine to identify gaps on images and methods of urban tree species classification.  To attain the stated 
objectives and answer the research questions, the following major steps were taken, which included data 
pre-processing, use of NDVI to determine class separability, classification using MLC and SVM based on 
pixel and objects and apply accuracy assessment.  Finally the results were evaluated. The general flow of 
research activities are as shown in figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: General framework of research activities  
 

1.6. Thesis outline 
 
The thesis is structured into seven chapters. The first chapter deals with the background of research study, 
problem statement, research objectives, research questions to be answered, innovation that was aimed at 
and general research framework. The second chapter gives literature review of the research which is 
related maximum likelihood classification and support vector machine and tree species classification. The 
third chapter deals with study area location, data and software used. Chapter four of the thesis explains the 
concepts and methodology applied in the research and chapter five gives the results.  Chapter six gives the 
analysis of the results. The thesis ends with chapter 7, making conclusion and recommendations for future 
research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Literature review
 

Data pre-processing 

Class definitions 

Classification using MLC and SVM separately 

Accuracy assessment 
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2. LITERATURE REVIEW  

2.1. Tree species mapping and Remote sensing  
Remote sensing is a valuable tool in forest management; giving up-to-date information about land 
cover/use. Following advancement of technology in remote sensing, there has been increased availability 
of satellite images.  Vegetation mapping using remote sensing applications has improved majorly because 
of significant importance  in monitoring, protection and restoration programs (Xie et al., 2008). In the 
recent past, (80s and 90s), mapping and classification of tree species were done using the interpretation 
and mapping of aerial photographs (Engler et al., 2013). Over the last decade, however, use of high spatial 
and spectral resolution satellite imagery became increasingly common. This made research on classifying 
tree species at the individual tree level possible (Brandtberg, 2002).  Previous studies on mapping tree 
species composition have demonstrated the advantages of remote sensing techniques. For example, Ke 
and Quackenbush (2007) got improved accuracy of about 66% in classifying 5 species of trees (i.e. spruce, 
pine, hemlock, larch and deciduous) of New York city, USA.  
 
Several studies have demonstrated the ability of discriminating tree species with multispectral data. Multi-
spectral images like the Landsat  TM, SPOT, IRS, MOS among others with spatial resolution ranging from  
20 m  to 60 m were helpful in classification of tree species (Roller, 2000). The majority of the studies were 
restricted to single spatial resolution and few spectral bands. Among the challenges faced by then (around 
2000) was the spatial and spectral resolution of the available satellite images which was incompatible with 
the geometrical precision and level of details needed for mapping at a local scale (Carleer & Wolff, 2004).  
Dalponte et al. (2009) investigated the role of spectral resolution in forested areas and found that there is a 
relationship between the spectral resolution, the classifier and the classification accuracy.  Tree species 
mapping in remote sensing is based on knowledge that species have unique spectral signatures associated 
with bio-physical properties.  However, different tree species sometimes have similar spectral signatures 
which increases the challenges for successful tree species mapping (Leckie et al., 2005). The review of the 
literature reveals that classification accuracy depended on spectral resolution, spatial resolution, classifier 
and the study site.  
 
Over the recent years, more satellites with higher spatial and spectral resolution have been launched. Most 
of the multispectral sensors like the IKONOS or QuickBird have a high spatial resolution and the four 
standard spectral bands (Blue, Green, Red, Near Infrared). On the other hand, some like MODIS, 
Landsat, ASTER, and SPOT have more bands with lower spatial resolution. For some time most tree 
species mapping using high resolution images were based on IKONOS,  QuickBird and Light Detection 
and Ranging (LiDAR) data (Chen., 2010; Hájek, 2006; Mora et al., 2010; Voss & Sugumaran, 2008). 
Worldview-2 is among the new satellite imageries launched in 2009.  According to Chen. (2010), there 
were still few studies using Worldview- 2 data that had appeared in peer reviewed publications. However, 
with time more research work continued to be done on tree species using  WorldView-2  data,  with 
promising   results obtained (Latif et al., 2012).  Pu and Landry (2012) got a 16–18% higher classification 
accuracy using  Worldview- 2   imagery compared to IKONOS imagery in mapping seven urban tree 
species (i.e. sand live oak, laurel oak, live oak pine, palm, camphor and magnolia). Immitzer et al. (2012) 
classified 10 tree species in a forest in Austria which showed suitability of WorldView-2 images for tree 
species classification. Cho et al. (2012) used maximum likelihood classifier to map savannah tree species in 
South Arica.  Zhang and Hu (2012) used the longitudinal profiles of each tree to map six tree species (i.e. 
Maple, Ash, Birch, Oak, Spruce, Pine) of trees in Ontario, Canada.  
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The literature review suggests that maximum likelihood classification and support vector machine using 
high resolution satellite imagery, like QuickBird, IKONOS, and now the new WorldView-2 offers 
promising results in identifying and mappin group or individual tree species. In more recent studies Ardila 
et al. (2010) extracted individual tree crowns in an urban setting using super resolution mapping on Quick 
bird images. In the study, 73% of the trees in the study area were identified. In addition, Ardila et al. 
(2011) used Markov-random-field-based super-resolution mapping to identify urban trees in Quick bird 
image getting an accuracy of about 66%. Experiments was done using end member model on satellite 
imagery using SRM  by Wu et al. (2011). The experimental results proved that the algorithm gives 
improved accuracy compared to the traditional methods. This gave reason to expect that worldview-2 will 
yields better results in tree species mapping.  

2.2. Maximum likelihood classification  
 
The remote sensing literature presents several methods for supervised classification for  multispectral data. 
Maximum likelihood classification (MLC) has found wide application in the field of remote sensing. MLC 
is a supervised classification method based on the Bayesian theorem. Its main inputs are class mean vector 
and covariance matrix. The main steps are as follows; the number of classes required in the study area are 
determined and the training pixels for each of the desired classes are chosen based on land cover 
information for the study area. 
 
Even though MLC is perhaps the most widely used pixel based classification method, the class showing 
the highest likelihood is alway allocated to a pixel, thus resulting to  wrong classification making errors 
unavoidable. Alesheikh (2003) modified the MLC  by estimating a prior probability so as to  improve mis-
classification errors using data fusion model. The results of the study demonstrated that data fusion model 
was effective to deminish misclassification errors.  
 
Mahbooba (2011) categorized and classified forest tree species on SPOT imageries based on difference of  
each species based on optical properties. The study found that it was easier to distinguish tree species at a 
higher level (i.e coniferous and broadleaved) than at individual tree species level. Kubatko et al. (2009) 
estimated the use of maximum likelihood for species trees. They recomended  that while the availability of 
more data for inference of species trees increases, there is need for development of procedures to model 
relationships between methods and the tree species.  

2.3. Support vector machines  
 
SVM is a non-parametric classifier (SVM) and was first studied for the purpose of problem pattern 
recognition by Vapnik (1979). It has been increasingly applied in remote sensing applications (Camps-
Valls et al., 2004; Melgani & Bruzzone, 2004; Mercier & Lennon, 2003; Mountrakis et al., 2011). The 
attractiveness of SVM is because of higher accuracy achieved in comparison to traditional methods (e.g., 
maximum likelihood, decision tree classifiers ) and low sensitivity to high dimensionality i.e. the Hughes 
effect consequently reducing the impact of the “curse of dimensionality” (Bazi & Melgani, 2006).  
 
Recently, SVM classifiers have been used and a higher accuracy achieved in tree species mapping especially 
in combination with kernel functions. Colgan et al. (2012) applied SVM to make decisions boundaries on 
coniferous and deciduous trees and classify four tree species; scots, pine, Norway spruce and Birch. The 
study applies supervised grade of membership model (GoM) with SVM and achieves accuracy of 89%.  
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SVM has been to study performance of the different spectral features based on tree species namely Pinus sylvestris, 
Picea abies,  Betula pubescens, Betula pendula (Heikkinen et al., 2010). This was done on multi spectral four band sensor 
data of Leica ADS80. The results without SVM showed that the four band sensor data had inadequate 
classification information to classify the three tree species. However, when simulation is applied with 
SVM, it demonstrated an average 5-15% higher accuracy in classification.  Turhan and Serdar (2013) used 
SVM to differentiate salix tree species namely Salix alba, Salix caprea, and Salix alaeagnos in Turkey. With a 
linear kernel function, the study successfully  made an optimal decision boundaries for the three classes in 
a decision plane. The achieved accuracy was 80.6% and 95.2% for training group and testing group 
respectively.  
 
The literature review suggest there is little research publications on application of SVM on Worldview-2. 
Ebrahim et al. (2012) compared Worldview-2 image and hyperspectral data for urban area land-cover 
classification. Even though the interest of study was impervious areas, the study revealed the Worldview-2 
images for detection of vegetation. Xiaonan (2012) used SVM on WorldView-2 image to identify and 
classify saltcedar. The results indicated successful classification  despite their spectral similarity.  
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3. CONCEPT AND METHODOLOGY 

This chapter explains the methods applied to achieve the objectives and answer the research questions. 
The methodology framework is as shown in figure 2.  
 

 
Figure 2: Methodology framework 

3.1. Detection and dis-aggregation of different urban tree species 

3.1.1. Sampling and Field visit  
Trees were identified in the satellite image by visual/human interpreation. Literature  review on tree 
species and their locations in the selected study site was compiled. One day visit on 19th October 2013  
was done to verify information already available and to sample more trees. The simple random sampling 
was used. The positions of trees were selected randomly from the trees already identified on the image and 
spread out over the whole selected study site.  

3.1.2. Polygons digitization and Class definition 
Class definition involved identification and selection of tree species of interest in the image. Training sites 
for each tree species were determined using field collected data and literature review of the tree species. 
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Polygons were delineated based on the images.  The training samples of the listed tree species are as 
shown in table 1.  
 
Table 1: Class definition of the seven tree species 

Species  Common Name 
Acer Spp. Maple 
Aesculus Spp.   Horse-chestnut 
Alnus Spp. Alder 
Corylus Spp.  Hazels 
Fagus Spp. Beech 
Plantanus Spp. London plane 
Tilia Spp. Linden 

 

3.1.3. Class separability   
In remote sensing, class separablity  allows  one to determine how distinct, and thus separable, different 
classes are from each other. It helps to determine how similar the distributions of two or more groups of 
pixels are and  measures statistical difference or distance between two or more class distributions. When 
classes are spectrally distinct, then classification will be easier. Several class separability methods exist;  
some of the methods is based on the distance between class means (for example Euclidean Distance, 
Divergence). The other  method are based on the differences between class means and the distribution of 
the values around the means, for example  Jeffries-Matusita (JM) Distance, Bhattacharyya Distance (Ullah 
et al., 2012). In this regard, methods like the Euclidean Distance only work with one band at a time  while 
measure like the JM Distance work on any number of bands.  
  
For normally distributed classes, JM distance, Divergence, Transformed Divergence and Bhattacharyya 
distance are  are presented in sub-sections  3.1.3.1 – 3.1.3.3. 

3.1.3.1. Jeffries-Matusita distance (JM)   
 

Jeffries-Matusita distance (JM)  is a function of separablity that directly relates to the probability of how 
good a resultant classification will be (Chen, 1976). JMij  distance separability measure for class  and class 
 JM is : 

     
 )                             (1) 

 
Where  is the Bhattacharyya distance and is given by  
 

      (  -   (  -  +  ln     

         (2) 
where,  and  are the two classes,  is the covariance matrix of ,  is the mean vector of  and t 
indicates the transposition. 
 
JMij  ranges from 0 to 2, where  JMij > 1.9 is considered good separability of classes, moderate separability 
for 1.0 ≤ JMij ≤ 1.9 and poor separability for JMij < 1.0 (Gambarova et al., 2010; Jensen, 1996). The class 
regions are separated by decision boundaries, whereby, the decision boundary between class i and class j 
occurs as shown in equation (3). 
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 =                   (3) 

3.1.3.2. Divergence measure 
As the value of separation between classes, divergence increases. Divergence and Bhattacharyya distance 
have values between  0 to .   
 
   Dαβ =  ( ( (  + Tr [( ) ( ]          (4) 

where   and   are the covariance matrix of class 1 and class 2,  and   are inverted 
covariance matrix for classes 1 and 2.  

3.1.3.3. Transformed Divergence (TD) 
According to experiments done by Chen (1976), the transformed divergence performed better than the 
divergence and Bhattacharyya coefficient. TD  has both upper and lower bounds between 0 and 2. TD is 
as:  

= 2[1- ]                                                           (5)   
 
The following quantitative measures of class separability were used; Divergence (D), Transformed 
Divergence (TD), Bhattacharyya distance (B), Jeffries-Matusita distance (JM) and Euclidean Distance 
(ED). According to Jensen (1996), Transformed Divergence (TD) and Jeffries-Matusita distance (JM)  are 
preffered and widely used compared to  the other three measures. Although for completeness purposes, 
the five measures are presented in data processing for calculating class separability. 

3.2. MLC application of pixels  and tree objects analysis 

3.2.1. MLC pixel classification  
Maximum Likelihood classification (MLC) is based on the Bayesian theorem. In Bayesian theorem, the 
posterior distribution P  i.e. the probability that a pixel with vector   belongs to a classi is as shown 
in equation (6).  
 

= P              (6) 

 
where P ( │i) is the likelihood function, P  is the a priori information (the probability that class  
occurs) and P ( ) is the probability that  is observed.  
Assuming each observation has a set of measurements, then pixel x is assigned to class   when equation 7 
applies.  
 

If P (j│ ), for all          (7) 
Equation 6 can be re-written as shown in equation 8 where M is the number of classes; P ( is the 
normalisation constant which ensures that sums up to 1.  
 
P =           (8) 
 
The MLC assumption is that the distribution of a class training sample is normal (Gaussian).  A class is 
determined based on mean and covariance. The pixel with highest probability is allocated to a class or 
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unclassified if the pixel does not fit any of the classes. A pixel can be unclassified also if it is below 
threshold probability values set as shown in equation 9.    
 

 If (  for all j           (9) 
 
Normal distribution, the above becomes as (10). 
 

 t  -1   -  ) -  1 |) - 
= 0 

3.2.2. MLC object classification  
The following steps were followed in MLC tree object classification. 
 

i. Consider pixels inside each polygon. Boundary pixels and pixels on vertices are not included. 
ii. Take the mean and covariance of pixel DN values for pixels inside the polygon. 

iii. JM distance is computed between the polygon and each class 
iv. The class with the smallest JM distance is assigned to the polygon. 

3.2.3. Small and big trees  
The decision of minimum mapping size was influenced by the minimum number of samples to estimate 
the covariance matrix. MLC uses mean and covariance to determine likelihood of a pixel class. Any 
number of pixels can give the mean but difficult to get the covariance. Small trees were considered to be 
trees species that are smaller than 10 pixels. Big trees are trees bigger than 10 pixels.  

3.3. Support Vector Machine  
 
Support Vector Machine (SVM) is kernel-based supervised non-parametric statistical learning technique in 
the field of machine learning. SVM, a linear binary classifier do not have assumptions based on data 
distribution, rather it gives a training sample a class of one of the likely label.   
 
SVM algorithm relies on parameters. The parameter denoted as C controls of the trade-off of margin 
maximization and error minimization.  In non-linear classification there is kernel parameter. This is to 
ensure, all parameters can be treated in a unified framework (Gaspar et al., 2012). For this study, the radial 
Gaussian kernel was used.  The parameter  is the only kernel parameter. SVM model selection is the the 
adaptation of the hyperparameters.   
 
The hyperplane is the decision boundary which minimizes mis-classifications and errors that were 
obtained during the training process. The SVM algorithm targets to find a hyperplane which separates the 
data into specific classes in a manner that it is consistent with the training samples.  To find a hyper plane, 
in linear separable SVM that maximizes the margin figure 3 and equation (10a) and (10b) applies. For 
support vectors, it is as given in equation 11.  
 

.  +  =  1         (10a) 
.  +  =  1                   (10b) 
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and for support vectors: .  +  =  1         (11) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Mountrakis et al. (2011) and Cristianini and Shawe-Taylor 
(2000) 

 
To get the decision boundary then equation 12: 
 

. +  =   +  ,          (12) 
 

It relies on the product of the training sample point  and the support vectors  and computation of 
inner products (   ·  )  between the pairs of training sample points.  

 
To get the distance between the training sample point and the hyperplane, the equation 13;  
 

              (13) 

 

Thus, the margin is    and to maximize it, the   =  , where  is learned weight and  is 

support vector.  
 
Hence, for separable linear data, the equation is equation 14:  

 
  2      subject to ( .  + ) ≥ 1        (14) 

 
For Non-linear separable SVM, the equation (15)( 
 

  2     + i  subject to ( .  + ) -1 +  ≤ 0     (15) 

 
where C: tradeoff constant,  is the slack variable (positive), when margin is ≥1 then  ξi = 0 and when 
margin is < 1,  pay linear penalty and the  hinges loss is equation (16). 
 

Figure 3: Example of linear SVM:  
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 = max (0,1 - ( .  + ) -1 +  ≤ 0         (16) 
 

Gaussian kernel functions also named radial basis function (RBF) kernel is as shown equation (17). 
 

 (  =            (17) 

 
In  estimation of  optimum value for , all pairs of training input vector from the positive class and a 
training input vector from the negative class are used. The difference in both is computed in input space 
between all pairs. The median of distances is applied as a measure of scale thus as a good guess for .  

3.3.1. SVM object  analysis  
The following was done in SVM object classification  
 

i. Consider pixels inside each polygon. Boundary pixels and pixels on vertices are not included. 
ii. Determine the probability of every pixel inside the polygon to a certain class, probabilities are 

taken from SVM 
iii. Compute the sum of the pixel probabilities to this class  
iv. Repeat for all other classes 
v. The class with highest total probability is assigned to the polygon. 

3.4. Determination of the Worldview-2 NDVI to separate the tree species  
 
The Normalized Difference Vegetation Index (NDVI) relies on the principle that green plants absorb 
solar radiation for use as a source of energy in the process of photosynthesis. The green plant leaves cells 
scatter solar radiation in the near-infrared. The green plants appear relatively dark  in bands where they are 
photosynthetically active and bright in the near-infrared (David M. Gates, 1980). Therefore, the 
identification of vegetation cover is achieved by measuring the said reflectance change.    
 
WorldView-2 has two bands in the near-infrared range of the spectrum region, ( i.e. band 7 ), near 
infrared1in 0.77–0.895 μm named NIR1 in this study and band 8, near-infrared2 in 0.86–1.04 μm named 
NIR2. Bothe bands were used separately. The formula are 18a and 18b.  
 

  in using NIR1 and red band                     (18a)  
 

  in using NIR2 and red band                   (18b) 

 
The NDVI mean and standard deviation values of WorldView-2 data were derived for each of the tree 
species.   
 
The t-test was calculated to determine the p-value of NDVI mean between each of the tree species.   

3.5. Accuracy assessment  
The tree species classification accuracies were estimated based on cross validation matrix on seven 
stratified pairs of training test sets collected as described in the approach by Witten and Frank (2005). 
Congalton and Green (1998) gives many more detailed confusion matrices. Site-specific error analysis 
method applies only one accuracy value given as a percentage for the whole satellite image. However, in 
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this study it was not possible to apply most of them. Non-site-specific assessment is the simplest method, 
but does not provide no information on pixel mis-classification (Senseman et al., 1995).   Site-specific 
error analysis requires conciders locational accuracy of the classification. This  makes it susceptible  to 
gross errors from control points boundaries and pixel mis-classification (Ramlal & Drummond). In 
practical applications, analysis is inter-class based  and confusion (error matrix) achieves this as it gives the 
overall accuracy analysis. 
 
An error matrix is a square matrix having equal number of rows, columns and the seven classes of tree 
species. The major diagonal of the error matrix represents the properly classified class of tree sample 
species. The non-diagonal values of the matrix show the errors of omission or commission. Omission 
errors correspond to non diagonal column totals and commission errors are represented by non diagonal 
row totals. A comparison of the seven tree species mapped was done from all the verification datasets and 
the already classified image to get an error matrix (or confusion matrix).  
 
Overall accuracy (total accuracy), is the total number of correctly classified sample points by the total 
number of points. The user accuracy compared the classified map with the field collected data which gives 
the probability that the point is correctly mapped. Producer accuracy compared field data with the 
classified map, indicating the probability that a randomly selected point from the reference data is 
correctly mapped.  Mean accuracy combines the user and producer accuracy by dividing the number of 
correctly classified points multiplied by two by the sum of the number of field data points and map data 
points for each class. This helps to indicate the accuracy for a class which falls in between the two values 
of user and producer accuracy. Areal difference is used to compare areas of different classes on the map 
with the reference data. The areas are always related to the true (reference data) area.  Kappa ( ) index 
compares the agreement against which might be expected by chance The  value of 0 is random 
agreement, value of -1 means map does not correspond to the ground truth and 1 means that the map and 
the verification data have exactly the same attribute values.  
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4. MATERIALS AND STUDY AREA 

This chapter gives information about the data used i.e. the satellite image, subset image, training samples 
reference data. It also explains the study area including its location.   

4.1. Study area location 
The research was conducted in the city of Delft, in the province of South Holland, The Netherlands. Delft 
lies 52° 00′ 30.89″ N 4° 18′ 18.24″ E , 52° 01′ 59.67″ N 4° 22′ 26.15″ E, 51° 58′ 08.06″ N 4° 24′ 29.11″ E 
and  51° 58′ 23.32″ N,  4° 20′ 25.81″ E, at an elevation above sea level of about  -2 m to -6 m.The location 
map is as presented in figure 4. The city has several tree stands, especially in parks and nature areas such as 
the Delftse Hout and Botanical garden. The Botanical Garden of Delft University of Technology (TU 
Delft) has a wide variety of plants, trees, herbs and spices. Over the years exotic plants have been 
introduced in the garden. Within the city centre (central park) there are several parks like the Nieuwe 
Plantage, Agnetapark and Kalverbos.  
 
The urban landscape is a mixture of heterogeneous land-cover. It has diverse surfaces like roads, trees, 
parking lots, and water canals. The surfaces, too, are made of different materials like concrete, asphalt, 
metal, plastic, glass, grass, shrubs, water and soil among other materials. Trees are of varying species and 
age, hence varying sizes of crowns. The trees in a city face urban stresses (Dwyer et al., 1992). These 
stresses include compacted soil, and city streets and driveways which can constrain root growth. The road 
salt, environmental pollution and pesticides used to treat lawns can also contaminate their air and water. 
Moreover, tall buildings block sunlight to trees, the use of lawn mowers, weed trimmers, snow plows and 
and human interactions affects their health and growth.  Though the study area is in The Netherlands, 
classification of tree species using MLC and SVM brings up possibilities to apply the same approach in 
other parts of the world.  
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Figure 4: Location of study area, Delft City, The Netherlands 
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4.2. Data 
In this study, the datasets used included reference data and satellite images and are explained in detail 
below.  

4.2.1. Reference data 
Delft tree species guide by  That et al. (2006) was used to create a database of main trees species that occur 
in Delft city. Delft Municipality (2007) report of the list of monumental trees gave  locations in Delft 
streets and parks, scientific names, Dutch names, status as at year 2007 and who manages them (private 
property or municipality). Volunteer information on the monumental trees (large, old and/or very 
beautiful trees) in Belgium and Netherlands (Monumental Trees, 2013) was useful in visual interpretation 
(especially very large trees) which  aided verification of trees species.  
 
Fieldwork was done at study area on 19th October 2013 to verify locations using hand-held GPS. Tree 
species information was collected from the earlier sources and new information in parts of the study site 
that had no information. The result, reference data was divided into two sets; one set for use in training 
samples and the other for validation as shown in table 2.  
 
Table 2: Sampled tree objects and pixels and their totals 

 Species Tree objects Pixels  
 training set  verification set training set verification set  
Acer Spp. 15 15 1004 869 
Aesculus Spp.   30 14 918 481 
Alnus Spp. 43 31 283 222 
Corylus Spp.  19 14 808 499 
Fagus Spp. 17 11 947 516 
Plantanus Spp. 26 26 1552 2396 
Tilia Spp. 74 76 933 882 
Total 224 187 6445 5865 

 

4.2.2. Satellite images 
Worldview-2 satellite image of Delft City from DigitalGlobe's WorldView-2 Satellite acquired on 12th May 
2013 was used.  It provides Multispectral imagery of 8 bands at 1.84 m. The bands are the four standard 
bands: Blue (450-510nm), Green  (510-580nm), Red (630-690) and NIR1 (770-895). In addition are four 
new bands namely Coastal Blue (400-450), Red-edge (705-745), Yellow (585-625nm) and NIR2 (860-
1040nm)  
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4.2.3. Subset image 
Figure 5 shows the area chosen to test the SRM method of classifying tree species. The area has complex 
heterogeneous mixture of grass, varieties of trees along water canals and roads and trees in private 
properties and open green spaces. 
 

 
Figure 5: Subset of study area within Delft city centre, RGB: 5, 7 and 2 

4.3. Software 
The following are the softwares were used in this study.  ERDAS Imagine 2013, version 13.0.2 was used 
in pre-processing stage for geo-referencing and sub-setting the study site. ArcGIS version 10.2 was used to 
process GPS reference data positions collected from the field for use as training samples and for 
validation and visualization of maps of study area.  
 
R version 3.0.2, a free software environment for statistical computing and graphics(Bell Laboratories, 
2013). The following packages were used; geoR (for geo-statistical analysis), rgdal (allow access to 
projections/transformations), rgl(for visualization like graphics), maptools (for reading and handling 
spatial objects and kernlab, kernel based machine learning.  
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5. RESULTS  

5.1. Detection and dis-aggregation  

5.1.1. Class separability 
Class separability based on J-M distance is in table 3. The lowest class reparability of 0.325 was observed 
for Alnus Spp. and Tilia Spp. and highest was 1.925 for Fagus Spp. and Plantanus Spp. Moderate class 
separability of was observed between Acer Spp. and Alnus Spp. ,Corylus Spp., Fagus Spp., Plantanus Spp (1.050 
to 1.594). A J-M distance of 1.023 to 1.835 was observed between Aesculus Spp. and Alnus Spp., Corylus 
Spp., Plantanus Spp. Poor class separability (0.325 and 0.992) was observed between Tilia Spp.  and Plantanus 
Spp. , Aesculus Spp. and Fagus Spp. , Acer Spp. and Tilia Spp. , Alnus Spp. and Plantanus Spp. .  
 
Table 3: Class separability using Jeffries-Matusita distance measure for the seven tree species 

Species 
Acer 
Spp.  

Aesculus 
Spp.  

Alnus 
Spp.  

Corylus 
Spp. 

Fagus 
Spp.  

Plantanus 
Spp.  

Tilia 
Spp.  

Acer Spp.  0.605 1.050 1.188 1.136 1.594 0.739 
Aesculus Spp.  0.605 1.328 1.023 0.983 1.835 1.144 
Alnus Spp.  1.050 1.328 1.340 1.730 0.992 0.325 
Corylus Spp. 1.188 1.023 1.340 0.724 1.727 1.318 
Fagus Spp.  1.136 0.983 1.730 0.724 1.925 1.603 
Plantanus Spp.  1.594 1.835 0.992 1.727 1.925 1.051 
Tilia Spp.  0.739 1.144 0.325 1.318 1.603 1.051   

Note: > 1.9: good separability, 1.0 ≤ JMij ≤ 1.9: moderate separability and < 1.0: poor separability 

5.1.2. Conditional probabilities 
Figure 6 shows conditional likelihood probabilities that a given pixel is one of the seven tree species. The 
darkest (black) values indicate less likelihood for a tree and lighter (white) indicates higher likelihood of a 
presence of a tree. The highest probability was 0.86 and the lowest is value 0. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Conditional probabilities of the seven trees species 
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5.2. MLC object and pixel classification 
The result of pixel based analysis and objects based analyses are as presented in figure 7 and figure 8 
respectively (refer to section 3.1.3). Figure 7 show results of application of threshold value of 0.001, to 
remove areas of lowest probabilities (darkest in figure 6). This eliminates the undesired class memberships 
(example roads, pavements, buildings). The pixel based resulted in accuracy of 60.93% and kappa of 0.54 
(Table 6) while object analysis had accuracy of 71.17% and kappa of 0.66 (Table 7). This reveals that MLC 
object analysis performed better than pixel analysis.  Table 4 shows classification of pixels and mis-
classification of pixels that occurred.  

 
 
 
 

 
 
 
 

Figure 7: MLC pixel based classified results  
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Table 4: MLC contingency of pixel analysis of training set 

  Acer Spp.  
Aesculus 
Spp. Alnus Spp. 

Corylus 
Spp. 

Fagus 
Spp. 

Plantanus 
Spp. Tilia Spp.  

Acer Spp. 654 94 59 8 40 8 141 
Aesculus Spp. 216 539 23 41 66 2 31 
Alnus Spp. 51 4 96 1 0 16 115 
Corylus Spp. 119 66 39 442 114 12 16 
Fagus Spp. 72 100 19 174 574 2 6 
Plantanus Spp. 27 2 132 1 1 1129 260 
Tilia Spp. 182 39 131 11 1 92 477 

 
The classification results of big tree object based are presented in Table 5 and Figure 8 (refer to section 3.2.2). About 
49% of the total 224 tree objects were not classified. This was because they were small sizes (> 10 pixels) as shown in 
figure 8. There were no mis-claasification for Aesculus Spp. and Fagus Spp. . They were successfuly (100%) classified. 
Acer Spp.  was mis-classified as Aesculus Spp. while Alnus Spp.  was classified into every species with most of its tree 
objects going to Tilia Spp.  Plantanus Spp.  had 2 of its tree objects mis-classified as Tilia Spp.  
 

Figure 8: MLC object based classified results 
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Table 4: MLC tree objects contingency analysis of training set 

Acer 
Spp.  

Aesculus 
Spp.  

Alnus 
Spp.  

Corylus 
Spp. 

Fagus 
Spp.  

Plantanus 
Spp.  

Tilia 
Spp.  

Acer Spp.  12 5 0 0 0 0 0 
Aesculus Spp.  0 24 0 0 0 0 0 
Alnus Spp.  1 1 3 0 0 1 7 
Corylus Spp. 0 0 0 19 2 0 0 
Fagus Spp.  0 0 0 0 14 0 0 
Plantanus Spp.  0 0 0 0 0 22 2 
Tilia Spp.  2 0 2 0 1 1 10 
Unclassified 0 0 38 0 0 0 55 

 

5.2.1. MLC accuracy assessment  
Table 5 and table 6 present results of accuracy assessment of pixel analysis and object analysis respectively. 
The  overall accuracy was 60.93%, Kappa of  0.54 for pixel analysis. Plantanus Spp.  had highest user 
accuracy of 89.52% with few pixels being mis-classified. Alnus Spp.  sp. had most of its pixels being mis-
classified (about 80%) with most pixels being classified as Plantanus Spp.  and Tilia Spp. .  
 
Table 5: MLC pixel accuracy contingency analysis of verification set 

 
The overall accuracy for object based was 71.17% with a Kappa of 0.66 as shown in table 7. Alnus Spp. 
had the lowest in terms of user accuracy with 13% and the highest is Aesculus Spp. 92.31% with only 1 tree 
object classified as Acer Spp. The unclassified was 41% with Alnus Spp. leading at 77% followed by Tilia 
Spp. at 35%. The Plantanus Spp. had 14% classified as Tilia Spp.  
 
 
 
 
 
 
 
 
 
 
 

  
Acer 
Spp.  

Aesculus 
Spp.  

Alnus 
Spp.  

Corylus 
Spp. 

Fagus 
Spp.  

Plantanus 
Spp.  

Tilia 
Spp.  

User 
accuracy 

Overall 
Accuracy 

Acer Spp.  656 213 51 120 73 26 181 49.70 60.93 
Aesculus Spp.  94 543 5 65 97 2 40 64.18 
Alnus Spp.  59 23 98 38 19 133 129 19.64 
Corylus Spp. 8 41 1 446 174 1 11 65.40 
Fagus Spp.  40 65 0 112 576 1 1 72.45 
Plantanus Spp.  8 2 17 12 2 1128 91 89.52 
Tilia Spp.  139 31 111 15 6 261 480 46.02 
Producer accuracy 65.34 59.15 34.63 55.20 60.82 72.68 51.45 
Kappa statistic 0.54                 
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Table 6: MLC object accuracy contingency analysis of verification set 

 

5.3. Support Vector Machine  
Figure 9 present results for optimum SVM parameter estimation. The optimum values estimation for  
and C are 5. Both gave highest overall accuracy of 51.41% for pixel analysis and 45.16 for object analysis.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acer 
Spp.  

Aesculus 
Spp.  

Alnus 
Spp.  

Corylus 
Spp. 

Fagus 
Spp.  

Plantanus 
Spp.  

Tilia 
Spp.  

User 
accuracy 

Overall 
Accuracy 

Acer Spp.  11 1 1 0 0 0 4 64.71 71.17 
Aesculus Spp.  1 12 0 0 0 0 0 92.31 
Alnus Spp.  1 1 2 0 1 0 10 13.33 
Corylus Spp. 0 0 0 12 2 0 0 85.71 
Fagus Spp.  1 0 0 1 8 0 0 80.00 
Plantanus Spp.  0 0 0 0 0 25 4 86.21 
Tilia Spp.  1 0 2 0 0 1 9 69.23 
Unclassified  0 0 26 1 0 0 49 
Producer 
accuracy 73.33 85.71 40.00 92.31 72.73 96.15 33.33 
Kappa statistic 0.66 

Figure 9: SVM parameter estimation of C and Sigma 
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Table 8, contingency pixel analysis shows that most pixels were successfully classified.  Aesculus Spp.,  Acer 
Spp. and Tilia Spp. are mis-classified to all other species except Plantanus Spp. The rest of the species 
training samples are successfully classified (100%) to their corresponding species. Figure 10 of pixel based 
classified SVM does not seem to correspond to contingency pixels analysis in table 8.  Visual 
interpretation reveals mis- classification occurred in all the species, individual and group of trees.  
 

 
 
 
 
 
 

Figure 10: SVM pixel based classified results 
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Table 7: SVM pixel analysis contingency of training set 

  
Acer 
Spp.  

Aesculus 
Spp. 

Alnus 
Spp. 

Corylus 
Spp. 

Fagus 
Spp. 

Plantanus 
Spp. 

Tilia 
Spp. 

Acer Spp. 978 22 3 7 3 0 10 
Aesculus Spp.  11 889 1 9 3 0 2 
Alnus Spp. 0 1 270 0 0 0 0 
Corylus Spp. 0 0 0 790 7 0 0 
Fagus Spp. 0 3 0 2 934 0 0 
Plantanus Spp. 1 0 6 0 0 1544 5 
Tilia Spp.  14 3 3 0 0 8 916 

 
Figure 11 show object based classification of tree object classification. Small trees were classified 
successfully. None of Fagus Spp. was classified. Table 9 shows mis-classification of objects in all classes 
except Alnus Spp. Visual interpretation on the map, however, shows that all species of tree species had 
mis-classified. 
 
 

 
 
 Figure 11: SVM object based classified results 
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Table 8: SVM object analysis contingency of training set 

  
Acer 
Spp. 

Aesculus 
Spp. 

Alnus 
Spp. 

Corylus 
Spp. 

Fagus 
Spp. 

Plantanus 
Spp. 

Tilia 
Spp. 

Acer Spp. 15 0 6 0 0 0 15 
Aesculus Spp. 0 30 0 1 5 0 2 
Alnus Spp. 0 0 17 0 0 0 0 
Conylus Spp. 0 0 0 18 0 0 0 
Fagus Spp. 0 0 0 0 0 0 0 
Plantanus Spp. 0 0 0 1 13 22 2 
Tilia Spp. 0 0 20 0 0 4 57 

5.3.1. SVM accuracy assessment  
Table 10 and 11 present contingency accuracy assessment results of pixel and object analysis respectively. 
It was observed that pixel analysis performed better than object analysis. Pixel analysis had overall 
accuracy of 51.24% and 0.36 kappa while object analysis had 44.62% overall accuracy and 0.31 kappa. 
Fagus is not classified at all in verification datasets. 
 
Table 9: SVM accuracy pixel contingency analysis of verification set 

 
Table 10: SVM accuracy object contingency analysis of verification set 

Acer 
Spp. 

Aesculus 
Spp. 

Alnus 
Spp. 

Corylus 
Spp. 

Fagus 
Spp. 

Plantanus 
Spp. 

Tilia 
Spp. 

User 
accuracy 

Overall 
Accuracy 

Acer Spp. 12 1 5 2 2 0 27 24.49 44.62 
Aesculus Spp. 2 12 0 4 4 0 5 44.44 
Alnus Spp. 0 0 4 0 0 0 1 80.00 
Corylus Spp. 0 0 0 2 0 0 0 100.00 
Fagus Spp. 0 0 0 0 0 0 0 0 
Plantanus Spp. 0 0 2 6 5 20 9 47.62 
Tilia Spp. 1 1 20 0 0 6 33 54.10 
Producer accuracy 80.00 85.71 12.90 14.29 0.00 76.92 44.00 
Kappa statistic 0.31 

 
 

Acer 
Spp. 

Aesculus 
Spp. 

Alnus 
Spp. 

Corylus 
Spp. 

Fagus 
Spp. 

Plantanus 
Spp. 

Tilia 
Spp. 

User 
accuracy 

Overall 
Accuracy 

Acer Spp. 512 74 39 48 99 40 277 47.02 51.24 
Aesculus Spp. 186 367 12 89 125 3 74 42.87 
Alnus Spp. 6 0 45 5 1 12 15 53.57 
Corylus Spp. 6 5 1 143 14 1 7 80.79 
Fagus Spp. 3 0 1 11 4 1 4 16.67 
Plantanus Spp. 99 13 17 192 269 1599 173 67.70 
Tilia Spp. 57 22 107 11 4 734 332 26.20 
Producer 
accuracy 58.92 76.30 20.27 28.66 0.78 66.90 37.64 
Kappa 
statistic 0.36 
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5.4. Worldview-2 NDVI in separation of tree species 
 
The results of comparison of NDVI mean and standard deviation using both band 7 (NIR1) and band 8 
(NIR2) are as presented in table 12. The p-value of the mean of the different species is 0.4397. This 
revealed that the difference in the mean when using NIR1 and NIR2 is not statistically significant. 
 
       Table 12: NDVI mean and standard deviation per species using NIR1 and NIR2 

  Mean Standard deviation  Mean P Value   
NIR1 NIR2 NIR1 NIR2 0.4397 

Acer Spp.  0.693 0.656 0.088 0.096 
Aeculus Spp. 0.701 0.676 0.074 0.08 
Alnus Spp.  0.565 0.515 0.152 0.163 
Corylus Spp. 0.706 0.668 0.125 0.138 
Fagus Spp.  0.763 0.735 0.073 0.082 
Plantanus Spp.  0.52 0.47 0.124 0.136 
Tilia Spp.  0.596 0.543 0.143 0.163   

 
The box plot of both NDVI mean and standard deviation of NIR1 is as presented figure 10. It was 
observed that the higher the mean, the lower the variability and the lower the mean, the higher the 
variability of NDVI.  
 
The results of NDVI mean p-value determination between species are as presented in table 13. NDVI 
mean between Acer Spp., Aesculus Spp. and Corylus Spp. was not statistically significant (p-values of 0.29 to 
0.79). This was the same between Tilia Spp. with Alnus Spp. and Plantanus Spp.  (p-value between 0.06 and 
0.69). NDVI mean statistically significance was observed in most tree species (p-value of 0.0001) between 
Acer Spp. with Alnus Spp. Plantanus Spp. and Tilia Spp.; between Aesculus Spp. with Alnus Spp., Plantanus Spp. 
and Tilia Spp.; between Alnus Spp. with Corylus Spp.and Fagus Spp.; between Corylus Spp. sp. with Plantanus 
Spp. and Tilia Spp. and finally between Fagus Spp. with Plantanus Spp. and Tilia Spp. .  
 
Table 13: NDVI mean p-value between the species 

Note: < 0.0001: statistically significance and < 0.0001: no statistically significance 

  Acer Spp.  
Aesculus 
Spp.  

Alnus 
Spp.  

Corylus 
Spp.  

Fagus 
Spp.  

Plantanus 
Spp.  Tilia Spp.  

Acer Spp.   0.7997 < 0.0001 0.2911 0.0024 < 0.0001 < 0.0001 
Aesculus Spp. 0.7997 < 0.0001 0.5166 0.0072 < 0.0001 < 0.0001 
Alnus Spp.  < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0402 0.0566 
Corylus Spp. 0.2911 0.5166 < 0.0001 0.0112 < 0.0001 < 0.0001 
Fagus Spp.  0.0024 0.0072 < 0.0001 0.0112 < 0.0001 < 0.0001 
Plantanus Spp.  < 0.0001 < 0.0001 0.0402 < 0.0001 < 0.0001 0.6891 
Tilia Spp.  < 0.0001 < 0.0001 0.0566 < 0.0001 < 0.0001 0.6891   
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5.5. Summary  
The result summary of the kappa coefficient and overall accuracy of the two classifications done are as 
presented in Table 14.  Plantanus Spp. Acer Spp., Aesculus Spp. and Fagus Spp. are better classified. Tilia Spp, 
Corylus Spp. And Alnus Spp. are are easily confused. 
 
Class separability by J-M distance measure and NDVI mean and variation show the Plantanus Spp. and 
Fagus Spp. are separable compared to the rest. Tilia Spp and Alnus Spp. were least separable.  
 
Table 11: Summary accuracy assessment 

Classification approach Kappa (%) Overall accuracy (%) 
MLC Pixel analysis of tree species   0.54 60.93 
MLC tree object analysis of big trees (>10 pixels)  0.66 71.17  
Support Vector Machine pixel analysis 0.36 51.24 
Support vector machine object analysis  0.31 44.62 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: NDVI mean and standard deviation box plot 
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6. DISCUSSION 

6.1. Detection and dis-aggregation 
 
The study has shown that multispectral data can be used  for classifying four main species in an urban area 
in The Netherlands. The species that were well separated were Plantanus Spp., Fagus Spp., Acer Spp.  and 
Aesculus Spp.  In particular, Plantanus Spp.  and Fagus Spp.  showed high class separability with a distance of  
1.925 obtained. MLC pixel analysis, Plantanus Spp.  was classified with an accuracy of  about 89%. Fagus 
Spp.  achieved an accuracy of over 70%, which was caused by commission errors  with Corylus Spp. class. 
As shown in MLC confusion matrix (Table 6), the proposed method offered fairly good user accuracy 
results for Planatanus Spp and Fagus Spp.  The classification success of Plantanus Spp. is important for it is 
commonly used as an ornamental trees, in particular the urban areas and roadsides (Turner et al., 2012).   
 
Low class separability was observed in Alnus Spp. and Tilia Spp., a distance of 0.325. The two species are 
along the Delft water canals and are continouesly pruned annualy by the municipality to maintain specific 
tree crown size. Both do have similar textual properties. The adjacency effects caused by surrounding 
within a city causes spectral mixing thus making it difficult to distinguish the two species. In the study by 
Tolpekin and Stein (2009), lower classification accuracy was observed in parts of the image that had mixed 
pixels compared to parts that had pure pixels.  
 
Studies show that it is possible to get high class separability for some species and low separability in other 
species (Carleer & Wolff, 2004; Latif et al., 2012; Naidoo et al., 2012). Stavretović et al. (2010) had higher 
accuracy for Platanus acerifolia, Betula verrucosa but lower accuracy for Acer negundo, Acer platanoides and 
Fraxinus ornus. This was because the latter three species had the small sizes of the main growth elements in 
(i.e tree height, and crown size) in Mali Park in Obrenovac.  
 
In this study, tree polygons of  the training samples during class definations of tree crowns  were manually 
delineated. This was effective for the study area was small. In practical applications, this would not be 
feasible especially if it deals with large area. An automatic tree crown extraction technique rather applied. 
The delineation errors that come with manual digitizing of the tree crowns can affect the image measures 
like mean and covariance. Unclear boundaries on inter-locking tree crowns when delineated as one causes 
errors because one tree crown could be having different characteristics than the other.   Each tree species 
is modelled by the normal probability distribution, as mentioned earlier (see section 3.2). The successful 
application of MLC depends on correct delineation of the spectral classes of the tree species. Incorrect 
delineation leads to incorrect classification, consequently leading to low accuracy.  
 
An automatic delineation of tree crowns is likely to reduce  the omission and commission errors  which 
occur due to human errors. This does not imply that automatic is accurate than manual deliniation because 
it eliminates human errors. Automatic may introduce its own errors but in some cases it will be more 
accurate and cheaper in cost especially in large areas for it will save labour. Many studies have been done 
on automatic tree crown extraction from satelite images using  multispectral data (Ardila et al., 2011; Wang 
et al., 2004) , LIDAR data (Ene et al., 2012) and hyperspectral data (Bunting et al., 2010). The method of 
Ardila et al. (2012) can be used as an alternative approach to automatically extract tree crowns on high 
resolution imagery in an urban area.  
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6.2. MLC pixel and tree object based classification  
 
The object analysis shows better results, nevertheless, a number of objects were unclassified. This was 
because they did not meet the criteria of big trees (<10 pixels). The tree species crowns had median crown 
sizes from  2 m2  to 5 m2. This meant a small cown or young tree covers approximately 4-6 pixels in the 
WorldView-2 image. Hengl (2006), recomended that at least four pixels represents the smallest objects. 
Considering  Worldiew-2  2 m resolution, this rule, in this study was observed. MLC proofed effective for 
medium and large trees.  
 
MLC pixel based accuarcy of small trees was low compared with accuracy of big trees. This could be 
because a small tree pixel often contains spectral information belonging to other classes  like the grassland, 
water, bare ground i.e mixed pixel. This is due to spectral mixing because of adjacency effects and the 
surrounding. Small trees and shrubs pose a challenge in mapping the species tree crowns. Ardila et al. 
(2011) had commission and ommission errors on both even when he was using Markov random fields, a 
method that conciders neighbourhood system. For bigger trees, however, they occupy a much larger area 
with many pixels which are pure and spectral information on the pixels is more dominant than adjacency 
effects.  This is in agreement with Ene et al. (2012) who observed that spatial resolution of the data 
strongly influences the tree crown extraction.   
 
Research studies have been done on alternative methods that are not based on the limitations of spectral  
and spatial resolutions in urban area. In this research study, object analysis perfomed better than pixel 
analysis. Hard classification makes an assumption that the classes are discrete and mutually exclusive 
(Congalton; & Green, 1998). According to Foody (2002), in hard classification, a pixel is assigned 
unambiguously to a single class resulting in low classification accuracy in heterogeneous areas where a 
pixel is a mixture of several classes. Conditional probability (figure 6) gives 0.86 as the highest probability 
of one of the tree species. Threshold eliminates, however, the undesired membership classes of low 
probabilites (e.g. roads, water, impervious surfaces) as shown in in figure  7.  The number of training 
samples and reference samples affects pixel classification in MLC. Congalton and Green (1998) 
recomends minimum 50 samples per class.  The condition was in this study. One needs at least 100 pixels 
per band, image is 8 bands meaning 800 pixels per tree species for training. Combining these rules for 
pixel analysis leads to a minimum 283 pixels samples for Alnus Spp. species and 1552 pixels for Plantanus 
Spp. for training set. For the seven species, this led to a total of  6445 pixel samples for training set (tab;le 
2).  The minimum number of 800 training  samples was not fulfilled for Alnus Spp. thus low accuracy. This 
is because during MLC classification, the estimated mean becomes biased and while the variance rely on 
the training samples in concideration of other classes (Lesparre & Gorte, 2006). It therefore suggests that 
increased training sample size will reduce the error in calculating accuracy of Alnus Spp. 

6.3. Worldview-2 NDVI in separation of the tree species 
 
NDVI mean values succesfully separated Fagus Spp.  and Plantanus Spp.  (p-value of 0.0001) but showed 
low separation in  Tilia Spp.  and Alnus Spp. (p-value of 0.0566). The poor separation could be perhaps be 
because NDVI was not able to provide accurate identification of species because of similarity in amount 
of photodynthetically active material. This corresponds with the findings in J-M distance class separability. 
There is no statistical significance in using either of the NearInfraRed bands. This is because both bands 
overlap (Satellite Imaging Corporation, 2013). NIR2,  band 8  was used in determining NDVI successfully 
without NIR1 to separate vegetation areas using maximum likelihood (Maglione, 2013).   
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Delft city has different species of the same genus. The Tilia Spp. species had Tilia tomentosa genus and Tilia 
x europaea pallida sub-species. Tilia x europea palida is a hybrid between Tilia europea and Tilia palida. Tilia Spp. 
was under continuous annual pruning by the municipality. Both react differently to pruning practices 
(Bengtsson, 2005). This affects the growth hence leaf reflectance and consequently NDVI values. The 
common Acer Spp. species in Delft city of Netherands are the Acer campestre,  Acer negundo and Acer 
saccharum and the common species for Plantanus Spp.  are Platanus × acerifolia and Platanus orientalis. The 
indifference in NDVI mean separation could have been brought by each of species having species-specific  
chlorophyll content and leave structures (Abbasi et al., 2008). Gomes and Maillard (2013) studied the 
mapping problems of urban tree crowns on Worldvied-2 image. One of the methods used was vegetation 
indices (mainy NDVI). He suggested that NDVI  is effective in separating trees at tree type level (i.e 
coniferous and deciduous) and not at specific individual tree species level. This could be because of leave 
strcuture of narrow and broad leaves respectively. Pettorelli et al. (2005) found out that NDVI is 
predominantly used in studies focusing on the effects of environmental change on plants more than on 
separation of tree species.   

6.4. Support vector machine object and pixel based classification  
 

SVM is considered to be resistant to over-fitting, has bias-variance trade-off and ability of capacity control 
(Melgani & Bruzzone, 2004; Mountrakis et al., 2011).  The results however, did not demonstrate the said 
superiority. Pixel analysis had an overall accuracy of 51.24% and object based had 44.62%.  Contingency 
analysis of training set in both pixel and object were excellent (Table 8 and 9). There was minimal mis-
classification with most species having 90% to 100% user accuracy. The output classified maps however 
were not in agreement with the contingency analysis of the training set. This could be attributed to the 
SVM classifier in relation to high dimensionality and correlation to feature space (Bazi & Melgani, 2006). 
In this study, the SVM classifier was not tested for the curse of dimensionality, i.e. the Hughes effect. We 
cannot rule out, however, its consequences in classification.  
 
Object based SVM classification did not classify Fagus Spp. both in the training and verification data. This 
may not be the problem of the dataset but how SVM operates. The performance of kernel based SVM 
relies on parameters. Few kernels used in SVM have been fully exploited because of complex parameter 
fine tuning that has to be done (Chapelle et al., 2002; Staelin, 2003). Parameters C and   values of 5 for 
both gave reasonable results in the experiments. The perfomace of the used parameters suggest overall 
accuracy could be improved. This include more training samples, concidering data dimensionality and fine 
tuning to get  optimal conditions that  give satisfactory results. This mean more research work needs to be 
done to  
 
The single largest increase in user accuracy was for Alnus, from 19% in MLC pixel analysis to 53.37% in 
SVM pixel analysis despite having the least number of training samples.  This is in agreement with the 
findings of  Mantero et al. (2005)  that SVM can handle small training samples of a dataset.  Roli and 
Fumera (2001) tested the performance of three classifiers neural networks, (i.e. K-NN and SVM) based on 
the number of training samples. The study demonstrated that SVM is less sensitive to small training 
samples. The SVM algorithm was not tested for curse of dimensionality i.e. the Hughes effect based on 
number of training samples. We cannot rule out that increase of training samples is likely to increase the 
overall accuracy.   
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6.5. Support vector machine and Maximum likelihood classification  
 

MLC method performed better SVM in both pixel and object analysis.  Compared to MLC, SVM is 
considered to have structural risk minimization (Tso & Mather, 2009). Furthermore, SVM does not work 
using the prior assumptions (a priori) made on the probability distribution of the data as MLC does.   
Literature gives weight to how to determine optimization parameters and the choice of kernel. This shifts 
the challenges of over-fitting from parameters and the choice of kernel to model selection. Kernel models, 
however, are sensitive to over-fitting the criteria of model selection. This problems are not unique to SVM 
kernel methods,  most machine learning methods experience the same challenges (Cawley & Talbot, 
2010). If one require a sparse kernel machine, it is advisable to use a kernel designed to be sparse from the 
beginning e.g. the Informative Vector Machine. SVM support vector loss functions used for regression do 
not have exact statistical interpretation (Roli & Fumera, 2001). This however, can be solved by use of 
expert knowledge of the problem encoded in the loss function (e.g. Poisson, Beta or Gaussian). In most 
cases, many classification challenges require the probability of class membership (Huang et al., 2002). 
Thus, methods like Kernel Logistic Regression would give class membership probability instead of results 
post-process of SVM so as to get probabilities. 
 
The lower accuracies of SVM than MLC was probably because of SVM inability to transform non-linear 
class boundaries in the original space into linear space in high-dimensional space. According to SVM 
algorithm, non-linear decision boundaries depends on the factor of decision boundaries based on if they 
can be transformed to linear spaces (Zhong et al., 2013). This is achieved by mapping the input samples 
into a high-dimensional space. The SVM might have less success in transforming complex decision 
boundaries in the original input space into linear space in a high-dimensional space. MLC is less influenced 
by correlated feature space. 
 
The application speeds of the two classifiers were different. In all training and classification, both pixel 
and object based, MLC took few minutes on (8 GB RAM, Corei7).  SVM took about 32 to 47 minutes on 
same computer using the same datasets.  In the study areas, there were pure pixels (homogenous) and 
mixed pixels (heterogeneous). MLC assigns a class to a pixel that has highest likelihood while SVM 
depends on decision boundary. Study to assess the applicability of SVM on land cover classifications by 
Huang et al. (2002) demonstrated that training the SVM to classify mixed classes took several times longer 
than training pure pixels. This is because SVM training is influenced by noise level in data set, training data 
size, kernel parameters chosen and class separability.  
 
Both methods in object based classification did not operate directly on single pixels, but on image objects 
which are considered homogeneous. The objects are classified to the classes to which they are most close 
to (refer to section 3.2.2 and 3.3.1).  The classification accuracy depends on the quality of training samples. 
Objects likely extracted in-accurately leads to subsequent poor classification accuracy. The classification 
error can also accumulate from both the error in both training samples and clasification process. This 
means that when  an object is mis-classified, all the pixels in that object will be mis-classified and 
consequently leads to poor classification results.  This can be improved by advanced classification 
techniques that can combine spectral information with shape characteristics, texture and neighbourhood 
relationships in classification from an image (Stow et al., 2012).  
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Pixel and object based classifications required defination of several classes in application. Urban areas have 
a complex environment (e.g. impevious surfaces, grassland, pavements).Thisbrings the need to define 
many classes. Assuming a user required just one class. This means that it will involve a lot of unneccesary 
processes to get just that one class. 
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7. CONCLUSION AND RECOMENDATIONS 

7.1. Conclusion  
For urban tree species classification, MLC performed better than SVM in both object and pixel based 
calssification. MLC pixel based overall accuracy  was 66.93% with Kappa of  0.54 and 51.24% with Kappa 
of 0.36 for SVM pixel based. MLC object based overall accuracy was 71.17%  with Kappa of 0.66 and 
44.62% with Kappa of 0.31 for SVM object based analysis. Even though MLC perfoms better than SVM, 
the accuracy is still low compared to generally accepted accuracy of 85% set by Anderson (1976). This 
indicates that both methods are still not satisfactory techniques of classifying high resolution images for 
Delft city. MLC, however, has been used for many years in image classification. It is straightforward and 
does not require extreme expert skills to apply. MLC algorithm can be found in most of the remote 
sensing application software. Examples of this software are ERDAS, ENVI and ILWIS (open source) 
among others. This makes MLC an easy available method for classification.   MLC pixel based 
classification is effective in classifying medium and large trees (e.g. Plantanus Spp. and Fagus Spp.). MLC 
relies on mean and covariance of samples hence calculation of covariance matrix in small tree crowns (> 
10 pixels) could not be determined. Class separability using J-M distance measure and NDVI mean and 
variation evaluation were the same. This gives the  possibilty of use of NDVI in separating tree species.  
SVM does not operate based on data distribution making it applicable to any type of data (i.e. normal or 
non-normal distribution. Its performance relies on kernel parameters. Experimenting on optimum 
parameters values of C and   can give satisfactory classification results. In conclusion, MLC and SVM can 
classify tree species on high resolution images and can be recommended for urban inventories. Though 
the study area is in The Netherlands, both methods need to be applied to other urban areas and other 
species for comparison and improvement towards optimal performance. 

 

7.2. Recommendations 
 
The research was done on WorldView-2 multispectral image. The Worldview-2 has additional 
panchromatic band of 0.46 m. Further research can be done to incorporate the panchromatic information 
including texture, shape charactersitic in tree species information so as to fully explore the capability of 
Worldview-2 image.  The main drawback of SVM algorithm is the need of parameters to be set correctly 
so as to get the best reasonable classification results. Parameters that may give good results for one 
problem, may not give same good results in another problem. In most SVM algorithms, the user have to 
do experiments with different parameters through trial and error to get satisfactory results. It is 
recommended that an automatci parameter estimation method be further researched.  There is increase in 
images with high spatial and spectral resolutions.  Worldview-2 used in this study is one of them. This 
comes with challenges in classfication. This includes adjacency effects, the Hughes effect and illuminations 
of the species tree crowns. More,over tree crown boundaries are not precise i.e. they have fuzzy boundary. 
Further reseacrh needs to be done towards a solution of fuzzy boundary issue and canopy density which 
increases from boundary to the centre of the crown. Trees species have sub-species for each genus has 
species varieties. Trees too atimes occur in groups and can be tree crowns can be interlocked to each 
other. A multi-scale analysis is recommended to help map the tree crowns and species at different 
appropriate scales.  
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