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ABSTRACT 

3D to 3D registration is an important process in computer visualization. This visualization entails the use 
of CAD model which has become important in the process of comparing and combining the 3D datasets. 
The automation of many applications in computer visualization is driven by the registration of a CAD 
model and a sensed 3D dataset. Image-based point cloud is competitively becoming an alternative to laser 
point cloud owing to its full automation, and reliable accuracy for most applications such as building 
construction, object identification, and damage assessment. Notwithstanding the inherent disadvantages of 
image-based point cloud, it is generally noisy. This research investigates the adaptability of feature-based 
matching to overcome the problems image-based point cloud such as noise. Prior to the feature-based 
registration of the 3D datasets, a point cloud was generated from a set of images using SFM and PMVS, 
while CAD model was obtained from the same set of images with the aid of Imagemodeler  software. We 
extracted and matched corresponding 3D features from the CAD model and point cloud of the same 
object. The completely independent processes of creating these two datasets lead to some offsets or 
discrepancies between the CAD model and the point cloud. Given the type of datasets used, results 
indicate correctness and high completeness of the matching process following the low average residual, 
standard deviation and angle difference between matched features after the registration. This research has 
confirmed the limitation of applying distance or angle difference as matching criteria between 
corresponding features for registration purposes. Furthermore, an up-to-date and high quality CAD model 
is also important. The approach to this research has proven that feature-based registration is a reliable 
option against noisy and occluded datasets. However, the accuracy of the registration depends on the 
nature of extracted features and the correctness and completeness of the matching process.  
 
Keywords: automatic registration, image based point cloud, dense matching, UAV, CAD model. 
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1. INTRODUCTION 

1.1 Motivation and problem statement 
 
Unmanned Aerial Vehicles (UAVs) are portable devices which can be used to acquire very high resolution 
data (images), of any scale and at a low cost. The advent of UAV technology has led to an increase in the 
number of image processing applications. Applications involving images of building and its 3D CAD 
model are now common. Application areas of UAVs in the European Union (EU) include construction 
site monitoring, and disaster assessment among others. However, to realize the benefits of UAV 
applications as in the context of the EU project RECONASS (Reconstruction and Recovery Planning: 
Rapid and Continuously Updated Construction Damage, and Related Needs Assessment), actual images of 
buildings need to be co-registered with a geometric description of the same 3D CAD model.  
 
Registration can be viewed as a process by which data obtained from different conditions are transformed 
and aligned. The conditions may be different times, sensors or sources (Kim et al., 2010). Once the 
registration is achieved, many applications could be realized like the monitoring of construction progress 
with the registration of point cloud obtained from construction site and its 3D CAD model (Bosche, 
2010). In addition, it is applicable to computer vision operated with robotic applications (Zitova & 
Flusser, 2003). However the techniques used during registration of images of building and its 3D CAD 
model are diverse. 
 
David et al. (2003), have examined the direct registration of images to 3D CAD model (2D/3D)by 
attempting to use lines to simultaneously solve the problem of automatic registration, high occlusion, and 
high clutter. Even though the method succeeded in addressing these two issues, its limitation arises from 
the initial guess of the model pose which is not accurate. Furthermore, the proposed algorithm had major 
limitation in determining the number of guesses to be done before finding a good pose. These problems 
with the 2D/3D registration have led to the exploration of new methods. 
 
Today with the development of science and technology and the availability of new software with high 
processing and big storage capabilities, new techniques are being used. One of those techniques is the 
combination of all images by dense matching to obtain a 3D point cloud (Gerke, 2009). The registration is 
now 3D/3D involving the 3D point cloud and the 3D CAD model. However 3D/3D registration 
automation may be a challenge. The datasets involved are in different formats: points without topological 
relationship and geometric representation with topological relationship (Ip & Gupta, 2007). Another 
problem to surmount when registering point cloud data and 3D CAD model is the difference in level of 
details and accuracy between the two datasets (El-Hakim et al., 2005). In spite of these challenges, they 
have been some tests and case studies. 
 
The use of 3D/3D registration has been applied by many scientists. Ip and Gupta (2007), examined the 
use of a point cloud of an artefact to find its CAD model in a database. They showed that matching CAD 
models and point cloud data could be used for searching a CAD database to find a specific machine part. 
But the major limitation of the method is that, it can only be applied to small parts which are very distinct 
and cannot be extended to buildings which are generally similar when they are located in the same area; 
even though this method could itself be very efficient in cases of occlusion. 3D Modelling concerning 
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historical architectural sites could involve different types of data from different sources such as laser data, 
3D CAD data, and photogrammetric data. One of the important steps to model an architectural site is to 
register all the 3D models created from these different datasets (El-Hakim et al., 2005). Although El-
Hakim et al. (2005), mentioned the use of Laser data in theory, they did not really use this data in the case 
study. Bosche (2012), proposed an alternative to the standard point base registration techniques by 
introducing a novel semi-automated plane-based registration system which performs a coarse registration 
of laser scanned 3D point cloud with 3D model. However the extraction of laser planes was semi-
automatic and the plane matching was manual. Therefore, a reliable fully automated solution (between 
point cloud data and CAD model data) is still lacking. 
 
The direct registration of images (2D) with 3D CAD model; that is 2D/3D method still faces many 
challenges. Although the 3D/3D may be an alternative, a careful look at the two methods of registration 
(2D/3D and 3D/3D), as tested by Stamos et al. (2008), indicates that they are complementary. Hence, 
3D/3D registration could be an input for the first initial guess of parameters for the 2D/3D registration. 
Nevertheless, all these will only be possible if we solve the deficiencies underlying the 3D/3D registration. 
The problems mentioned above has proven that there is still room for improvement which can be 
addressed by automatic registration. 
 

1.2 Research identification 
 
With the increase in the number of natural and manmade disasters such as earthquake, typhoons, floods 
and tsunamis, post disaster assessment, automated image registration is of major concern. Chiroiu et al. 
(2006), described an inventory of techniques used like optical imagery from high resolution satellite, to 
radar imagery including airborne laser. Use of satellite images may be affected by cloud and smoke or 
limited by daylight and low revisit frequency. Also, SAR images have limitations because of considerable 
noise level associated with the processing and interpretation of complicated images (Eguchi et al., 2010). 
Point cloud obtained from direct laser scanning of buildings (Li  et al., 2008) or from dense matching of 
airborne or UAV images (Gerke, 2009; Wang et al., 2011) has the advantage of showing point data but 
also detailed information like roof and also façade even though it may be limited by daylight. 
 
Chiroiu et al. (2006), used datasets collected before and after an earthquake to described the methods used 
in damage assessment like damage-based photo interpretation or using semi-automatic techniques. 
Nowadays, many cities have 3D CAD models of at least some key buildings and for this, a model-to-point 
cloud registration would be needed before any damage detection algorithm can be developed. 
 
Most works done on registration of point cloud and 3D CAD model were found in construction 
automation and monitoring applications. The data acquisition technique used for the point cloud is 
Terrestrial Laser Scanning (Bosche, 2012; Kim et al., 2010; Kim et al., 2013). 
 
We can see that none of these studies took advantage of using UAV generated images. However, after 
showing the drawbacks of TLS data, Golparvar-Fard et al. (2009) used point cloud from image-dense 
matching in construction site monitoring by registration of 3D point cloud to a 3D/4D model. Since the 
images were taken from the ground, the limitations found with TLS data was that only features like the 
façade and interior were visualized, while the roof was not captured in the dense point cloud imagery. 
Therefore, the registration of dense point cloud from imagery of building with a 3D CAD model and its 
applications is still a field to explore. 
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Brenner and Dold (2007), demonstrated an improved method for fully registering laser scans commencing 
with extraction of planar patches. With a view to reduce the research space, the authors deployed a 
combination of hierarchical test with angular constraint. According to Brenner and Dold (2007), this 
method could be extended to any scene having planar features as in the case of buildings. However they 
used infinite planes which does not guarantee effective match. 
 
This study attempts to overcome these limitations, by designing an automatic registration algorithm 
between CAD model and point cloud from UAV using dense matching (showing façade and roof) with 
minimal manual intervention and minimal constraints. The algorithm should integrate both the occlusion 
problems and efficient search strategy. 
 

1.2.1 Research objectives  
Our main objective is to set up an algorithm which will perform an automatic registration between the 3D 
CAD model and the 3D point cloud generated from UAV images by dense matching. 
 
The following sub-objectives will help reach the main objective: 
 

1 To determine features which are suitable for both CAD model and point cloud in the perspective 
of matching;  

2 To determine best strategies to match corresponding features with an efficient and robust search 
strategy included;  

3 To derive the transformation parameters; and 
4 To evaluate the accuracy of the registration process. 

 

1.2.2 Research questions  
 

(a) What are the available techniques for 3D/3D registration? 
(b) Which of these are more suitable to both 3D CAD model and the 3D point cloud? 
(c) In case of feature based registration, which features are more robust to occlusion problems? 
(d) Which search strategy is more suitable for looking for corresponding features to match? 
(e) How accurate and successful is the registration algorithm especially with occlusions/gaps? 

 

1.2.3 Assumptions  
 
We use UAV to take the images. From the images, we generate dense point cloud as shown in Figure 1.1. 
Since on board we have GPS so that UAV images can be oriented with quite a high accuracy but the 
location with respect to coordinate frame is uncertain because of limited onboard GPS positioning 
capabilities. With the CAD model and Google maps, we can approximately co-register the model and the 
map. Hence we can know the position of the building with an accuracy of 3m to 4m.  
 
Although the GPS and Google maps are not very accurate we assume to know the coordinates of the 
point cloud and the coordinates of corners of the building. Further the scales are unknown, but in our 
case we assume to have no scale difference between both datasets. So we assume an initial coarse 
registration. 
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Figure 1.1: Point Cloud data 

 

1.2.4 Innovation aimed at  
 
Most of the works done concerning the automatic registration between CAD model and point cloud was 
done using Terrestrial laser scans data. 
 
The innovation aimed is: 
An automatic algorithm that registers 3D CAD model and the 3D point cloud from UAV dense matching 
with very limited manual operation. 
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2. LITERATURE REVIEW 

In this chapter we introduce the theoretical background required for this research. The chapter opens with 
the description of the types of inputs we have in this research in Section 2.1 named data acquisition where 
the importance of UAV, imaged based point cloud are elaborated. CAD models are described in Section 
2.2. Section 2.3 highlights some terminologies used throughout this research with a broad description of 
3D/3D registration its working principle, the mathematical background behind it. An overview of the 
existing methods has also been given in this section.  
 

2.1 Data acquisition  

2.1.1 UAV and high resolution images 
 
The unmanned Aerial vehicle (UAV) is a more affordable technology. With this promising technology, it 
is possible to acquire very high resolution data (images) of any scale at a low cost. It is commonly applied 
nowadays. UAV has been defined by Remondino et al. (2011) as a generic apparatus conceived to function 
without human pilot onboard. It is an aircraft which is portable and light. The cost of traditional manned 
aircraft and its operability depends on weather conditions such that UAVs have become more feasible 
alternatives (Hassan et al., 2011). The low altitude flight done by UAVs allows it to avoid most of the 
problems like atmosphere interference, handicapping the traditional photogrammetric methods (Manned 
craft and satellite). So UAVs are more reliable. UAVs were first used for defence and military purposes, 
but are increasingly used in a wide range of applications in many emerging fields (Lelong et al., 2008). 
 
Nevertheless, UAVs have some challenges or limitations to overcome. The main limitation is with the 
problem of GNSS/INS systems used on board UAVs. This low cost and inaccurate device has a negative 
effect on the accuracy of the images of UAV (Remondino et al., 2011). Indeed the weight and dimensions 
of the sensors of UAV have posed limitations to the quality of data from UAVs (Kim et al., 2013). 
Notwithstanding the advantages of low weight and affordable price of UAVs, attempts towards improving 
the quality of its IMU and incorporation of RTK techniques create a trade-off between affordability and 
quality of the technology (Remondino et al., 2011). Hence, more solutions are also under investigations 
among which is the experimentation of smartphones and its numerous imaging and geo-processing 
capabilities (Kim et al., 2013).  
 
The other problem of UAV is weather related. For example it becomes difficult to use this technology ins 
a raining or windy environment. The UAV is designed to fly at a very low altitude of around 20 to 100m 
for the purpose of obtaining very high resolution images. The implication is that images are generated at 
different scales and with geometric deformations (differences in resolution and viewing angles). This 
implies extra pre-processing of images for their correction (Lelong et al., 2008). Despite these drawbacks, 
UAV is having an increasing important role with many applications especially in forestry and agriculture, 
archaeology and cultural heritage, environmental surveying, traffic monitoring, 3D reconstruction. 
(Remondino et al., 2011).  
 
Remondino et al. (2011), enumerated the main types of UAVs among which includes the unmanned 
combat autonomous vehicles, which are special UAV design for military purpose. According to 
Remondino et al. (2011), the primary objectives of designing UAVs were for military use. These military 
tasks could be surveillance and spying by taking aerial photographs. It can also be used as a tool for 
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military targets. However many countries are working to come up with new regulations for the specific 
conditions in terms of technical specifications as well as geographical places where this unmanned vehicles 
could operate (Remondino et al., 2011). Hence, UAVs still have a bright future with science. Indeed its 
low cost and ease of operation has made it a credible alternative to expensive classical aerial 
photogrammetry (Remondino et al., 2011). 
 
3D Reconstruction of historical site has always been an important task because of its role in preserving 
and maintenance of these sites. Laser scanning, aerial or terrestrial, could be used for 3D reconstruction. 
Although the accuracy of this method is very efficient, its high cost and technical sophistication in post 
processing has encouraged users to look for alternatives. Koutsoudis et al. (2013), proposed the use of 
UAV-based imaged combined with SFM and dense Multi-view 3D reconstruction software. In a 
comparative study, of the two technologies (Laser and image based), he showed that UAV imaged based 
could be also very accurate for 3D reconstruction.  
 
The limitations of traditional aircraft with high altitude which are not compatible with large scale mapping 
have prompted the use of UAV. Indeed these low altitude flying devices like UAV and RPV (Remote 
aerial vehicle) were used and tested successfully for the conduct of archaeological surveys in the Italian 
piedmont region (Chiabrando et al., 2011). Gruen et al. (2005) further identified the challengers which are 
specific to UAV to include strong winds, insufficient overlaps and lack of contrast in images and how to 
solve them. 
 
Its ability to deliver very high temporal and resolution image in record time has given UAV a leading 
advantage compared to traditional photogrammetric image acquisition tools (Remondino et al., 2011). 
However, it is not a matter of opposing the two methods but rather to see their complementarity 
(Remondino & El-Hakim, 2006). 
 

2.1.2 Image based point cloud 
 
In recent years, the interest for image based point cloud has steadily increased. This is principally due to 
the availability of high resolution images but also manned aerial images because data from laser scanner 
are still expensive or inexistent (Alobeid et al., 2010). Generally there are two sources for point cloud: 
image based point cloud and laser based point cloud. Even though 3D scanners are becoming popular and 
progressively used in many applications thanks to a steadily decreasing cost (Bosche, 2012), imaged based 
point cloud is still a widely first choice due to its numerous advantages like portability, affordable cost and 
more important flexibility and automation (Remondino & El-Hakim, 2006). 
 
There are many techniques and dense matching algorithms (local methods, pixel-wise matching, dynamic 
programming) used for the acquisition of imaged based point cloud (Hirschmuller, 2005). Brandou et al. 
(2007) gives examples describing 3D reconstruction using dense matching for a world heritage site like a 
tomb. The main steps he used are summarised using the workflow in Figure 2.1. 
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Figure 2.1 3D reconstruction overview 

 (Brandou et al., 2007) 

 
The appropriate algorithm to use depends with the nature of the data available but also the result to 
expect. Nevertheless, Alobeid et al. (2010) have done the comparison between least square, dynamic 
programming and semiglobal matching by applying each in DSM generation. He concluded that semi 
global matching had the best results. 
 
Generally dense matching is applied to vertical images, but it could also be done for oblique images. 
Unlike vertical images, this may lead to dense point cloud on vertical structures. This is due to the special 
properties of oblique images being able to show façade of buildings (Gerke, 2009). Cabrelles et al. (2010) 
concluded that the advantage of imaged based dense matching for 3D reconstruction is not only the 
advantage of avoiding carrying expensive and heavy equipments but also it is a successful alternative to 
LIDAR technology for 3D projects. But he insisted that the two technologies could be complementary in 
many cases.  
 

2.1.3 Accuracy of image based point cloud (Comparison between imaged base point cloud and laser point 
cloud) 

 
Terrestrial Laser Scanner (TLS) point cloud is not uniform, because unlike airborne 3D data, areas of the 
object to be scanned which are close to the scanner get more points than those which are away (Lam et al., 
2010). On the other hand, UAV imaged based point cloud is more noisy (Gerke, 2009). Despite all this, 
could we use image based point cloud in place of TLS point cloud and handle the same applications and 
have accurate results? Westoby et al. (2012), tried to bring an answer by comparing the use of point cloud 
from image dense matching and TLS point cloud. He used both of them separately in producing DTM. 
He discovers that the TLS point cloud is slightly denser, but the result obtained from producing DTM 
using imaged based point cloud is as good as that of TLS even if the computation time to process the 
images to have the point cloud may be a concern. But this was downplayed by the low cost and 
automation gained from image based point cloud.  
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Following the same logic, Golparvar-Fard et al. (2011) compares two methods using point cloud from 
imagery and the other point cloud from 3D laser scanning for construction progress monitoring. Using a 
comparison table, he concluded that image based point cloud is less accurate than 3D laser scanner data. 
However if image based point cloud cannot be used when very sophisticated and precise alignment is 
needed, it can still be very useful for most applications like measuring deviation, or to assess overall 
project or even status of a post disaster site. And one can take full advantage of less cost and full 
automation of image based point cloud generation. In addition, Koutsoudis et al. (2013) evaluated the 
advantages and limitations of image based 3D reconstruction method by comparing it to many tools 
among them, terrestrial 3D laser scanning. He showed that measurements from UAV images based point 
cloud data are very accurate by comparing Euclidian distances between empirical measurements on a real 
monument and its Structure-From-Motion (SFM) and Dense Multi- View 3D Reconstruction photoScan 
data. Even if we have less accuracy with areas of low frequency of colour change or lack of strong 
features. 
 
Although, most of the popular algorithms and methods, the Structure-From-Motion (SFM) and Dense 
Multiple View 3D Reconstruction algorithms have been implemented by commercial software, 
Koutsoudis et al. (2013) investigated the reliability and quality of such software to already existing 
solutions like 3D scanning. After giving examples of these commercial software like Photoscan, 
PhotoModeler scanner, Pix4D, the authors compare the results of these software against traditional 
methods like 3D scanning in recording archaeological sites. They concluded that with high end hardware 
(like cameras), the 3D reconstruction software could produce high quality results. 
 
 The image based point cloud is still very reliable, low cost and is accurate enough. Therefore it could be 
use to do accurate surveying but also interesting applications like the ones described above. 
 

2.2 CAD models 
 
With the rapid development of very efficient computer hardware but also computer aided design 
softwares, the use of CAD models is becoming common. The unique property of a CAD model, is that 
most of the projects or objects are constructed based on their CAD model. Once completed, the product 
is expected to be the closed to its CAD model (Bosché, 2008). Indeed many applications take advantage of 
3D Computer Aided Design modelling. Most of the objects need to be model in 3D before any further 
process. These applications could be find in industries, civil engineering applications or damage 
assessment.  
 
The realization of a CAD model is generally the first compulsory step in many processes. It is the case in 
automatic inspection of industrial parts which is carried out to monitor if a product satisfies all the preset 
specifications. Here the CAD model and a sensed 3D data (point cloud) are compared to trace the errors. 
The CAD model is used for these specifications and necessary mathematical information describing the 
shape and geometric relationship between different parts of the object (Boukebbab et al., 2007; Li et al., 
2013; Prieto et al., 1999). The same idea is used in Ip and Gupta (2007) where the idea of looking for a 
CAD model of a specific industrial part by mean of its 3D scan is introduced when no other information 
like the part number is available. Here the concept of a database of CAD models is used where the 3D 
scan is used to search the database to retrieve its CAD model equivalent. Even though the search 
algorithm should be robust enough to segregate between similar parts. 
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Building Information Model or 3D/4D CAD model is generally available for any construction project. 
This as planned model with 3D point cloud acquired from the site of construction is also involved in 
many construction automation applications like construction progress (Bosche, 2012; Ip & Gupta, 2007; 
Kim et al., 2013; Mani et al., 2009). Here the use of the 3D CAD model is essential because the CAD 
model contains information like as planned progress but also construction schedules (Kim et al., 2013). 
And all these information are critical for any automation process. 
 
The use of CAD model is common to all these applications, they also share the fact that the CAD model 
need to be aligned to the other dataset (generally a sensed 3D data) for any automation to be possible. 
Therefore to perform an automatic task, there is always a critical step: the registration of the CAD model 
to the 3D data. Many methods has been described and tested but each with also its advantages and 
disadvantages. 
 

2.3 3D/3D registration 

2.3.1 3D/3D registration 
3D registration could be defined as a process by which different datasets are aligned in one coordinate 
system (Wang, 2013). These datasets may be from different times, sensors, or viewpoints (Kim et al., 
2010) 
With the advent of Unmanned Aerial Vehicles (UAV), an affordable technology, a big step has been done. 
Now, it is possible to acquire very high resolution data (images) of any scale at a very low cost. This has 
led to the increase in the number of applications with images. Applications involving images of building 
and its 3D CAD model are now common. However to realize applications, as in the context of the EU 
project RECONASS (Reconstruction and Recovery Planning: Rapid and Continuously Updated 
Construction Damage, and Related Needs Assessment), where we have tasks like construction site 
monitoring, disaster assessment among other. Actual images of buildings need to be co-registered with a 
geometric description of the same like a 3D CAD model.  
 
Registration can be viewed as a process by which data which are from different conditions are 
transformed and aligned. The conditions may be different times, sensors or sources (Kim et al., 2010). 
Once the registration is achieved many applications could be realized like the monitoring of construction 
progress with the registration of point cloud obtained from construction site and its 3D CAD model 
(Bosche, 2010) , but also in computer vision with robotic applications (Zitova & Flusser, 2003). However 
the techniques used during registration of images of building and its 3D CAD model are diverse. 
 
With the increase in the number of natural and manmade disasters (earthquake, typhoons, floods, 
tsunamis), post disaster assessment has never been so important. It is now a major research field. Chiroiu 
et al. (2006) gave an inventory of techniques used. One of the techniques is the use of point cloud 
obtained from direct laser scanning of buildings (Li  et al., 2008), which could be extended to point cloud 
from dense matching.  
 
Schweier et al. (2004) showed how damage information could be evaluated by comparing models of the 
pre and post earthquake. The author described two strategies which could be used to have the input data 
which consist of a CAD model of the intact building and laser point cloud before and after the damage. 
And a comparison of the two point cloud be used to assess the damage by detecting changes like volume 
difference, plane orientation among others. 
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Nowadays many cities have 3D models of at least some key buildings and for this a model-to-point cloud 
registration could be directly used to detect and evaluate the same changes. We could use UAV to have 
images of the building and used a dense match technique to generate the point cloud. Damage assessment, 
also follows the same principle, principle which states that all this applications have a common step in 
their process and this step is the registration between a 3D model and a 3D remotely sensed data: 3D 
registration. 
 
Gressin et al. (2013) and Zitova and Flusser (2003) described the steps involved in registration of 3D 
datasets. The main steps are:  

 Feature detection.  
 Feature matching.  
 Transform estimation.  
 Registration 

 
 Feature detection.  

Feature extraction is the process by which features to be used during the registration are identified in the 
datasets to be registered (Doucette et al., 2013). In feature based registration, we need to study and 
compare the datasets to be registered and try to extract common features which may be used in the 
registration process. According to Besl and McKay (1992) , in 3D / 3D registration the following 
geometric features could be used: 

 Point Sets 
 Line Segment Sets (Polylines) 
 Implicit Curves 
 Parametric Curves 
 Triangle Sets (Faceted Surfaces) 
 Implicit Surfaces 
 Parametric Surfaces 

The obvious question is which feature is the most appropriate? Generally there is no straight answer to 
this question. The 3D features to use depends mainly on the type of data we have and the specific task to 
be performed (Ramalingam et al., 2010; Rottensteiner, 2002). The selection and extraction of features 
from datasets will need to be related together and extra information will be needed to carry out the feature 
matching. 
 

 Feature matching:  
Matching is a fundamental step in registration and deals with what is called the correspondence problem, 
i.e. how to relate the two datasets. It can be expressed as the processes of comparing two datasets in order 
to extract common features (Monnier et al., 2013). The flexibility of feature based matching against noise 
and occlusion compared to other type of matching like area based matching is prominent and one of the 
most reliable way to perform a registration between two 3D datasets is to find and match corresponding 
3D features (Rottensteiner, 2002). Matching is also a critical step. The matching algorithm should not only 
look for potential correspondences but it should be able to eliminate false matching pairs of features from 
the two datasets (Armenakis et al., 2013). Different feature matching strategies could be adopted 
depending on the type of data and the aim of the registration. The matched features can allow computing 
the transformation parameters which will align the different datasets. 
 

 Transform estimation and Registration: 
To estimate the transformation parameters, we need features like points, lines or planes. The combination 
of features to be used depends on the datasets and the strategies adopted. Jaw and Chuang (2008), showed 
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that we could have point based transformation model where the transformation parameters are estimated 
using 3D points from both datasets. We can also have line base transformation model or plane-base 
transformation model where lines and planes in both datasets are respectively used. The combination of 
different type of features like use of points in one dataset and planes in the other ( point to plane) to 
estimate the transformation parameters has been also successfully carried out (Grant et al., 2012). 
Furthermore the integration of all these features point, line, plane at the same time in the mathematical 
model used, could be done for solving parameters. The comparison of the four methods point-base, line-
base, plane base and the integration of the three have proven that the latter has better result in estimating 
the transformation parameters (Jaw & Chuang, 2008). 
 
To estimate transformation parameters we need at least 3 3D corresponding non planar points, or 3 3D 
corresponding non parallel planes, and in case of line we need at least 2 corresponding 3D lines. Generally 
points are represented by its 3D coordinates, planes by normal and distance from origin and line by 
coordinates of 3D end points (Jaw & Chuang, 2008). For 3D similarity transformation, the parameters are 
a translation vector (Tx, Ty, Tz) and three rotation angles (ω, φ, κ) and a scale to complete the 7 
parameters points (Jaw & Chuang, 2008). In case of rigid transformation the scale S = 1. 
 
The estimation of the transformation could be done in case of point to point registration, line to line, 
plane to plane registration or point to plane registration. The mathematical model and estimation of 
parameters when having 3 3D corresponding points is well described in Thapa (2009). However the main 
problem of point registration is that one point present in one dataset may not be available in the other 
dataset due to many reasons (occlusion, type of sensor used or different in view-points, different 
resolutions between datasets). An alternative to this problem is the use of point to plane registration (Salvi 
et al., 2007) or a plane to pane registration. 
 

2.3.2 Registration of 3D Point cloud /3D CAD model: selection of methods 
 
Before the plane to plane registration (Bosche, 2012; Brenner & Dold, 2007), many techniques have been 
experimented in registration of CAD model and point cloud. The most popular ones are the point to 
point registration and the point to surface registration. For point to point registration, the general idea was 
to perform a point to point registration (traditional or improved ICP) (Besl & McKay, 1992). First, the 
CAD model is converted into points to have both datasets into points. This idea was at the beginning 
introduced by Besl and McKay (1992) later Boulanger et al. (1996) used the same technique. But the 
method was improved to make it more robust to occlusion.  
 
Boulanger et al. (1996) Method, used three algorithms: Least Median of square error (LMS) to make sure 
that the method could face outliers, an improved ICP and the used of quaternion method for the rigid 
transformation estimation. To avoid local minimum, Boulanger et al. (1996) divided the first dataset of 
points into small sets of points and register each subdivided dataset with the entire second dataset using at 
each time the quaternion method. After multiple initial transformations, the LMS estimator was then used 
to determine each transformation and the best one is chosen. Since this initial transformation could have 
only been done with inliers, it’s not very reliable because it is not taking all points into account and may 
have excluded some outliers. To make sure that all the points are used, an ICP algorithm is used to 
transform the entire points of the first dataset into the second using the transformation as initial guess. 
This method used by Boulanger et al. (1996) was very successful. It has been used and adapted in different 
situations according to the geometry, complexity, size of the CAD model but also for the type of 
application the registration of the point cloud and the CAD model is aimed for (Prieto et al., 1999). The 
Boulanger et al. (1996) algorithm was reorganized and used in the field of inspection and quality control of 
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manufactured parts. In fact Boukebbab et al. (2007) applied this algorithm for checking the conformity of 
the industrial parts after their production. They compared these products with their CAD model which 
has been used as reference to manufacture them. Here they register the point cloud of the part and its 
CAD model. The authors converted the CAD into STL (STereoLitography) format instead of points. The 
STL format will convert the CAD model into triangular facets. Each facet represented by the coordinates 
of three vertexes and its normal. He then uses the (Boulanger et al., 1996) method with following changes: 

 Transformation of the CAD model into STL format. 
 Random selection of points for use in the computation of the rigid transformation. 
 ICP algorithm was used with the singular value decomposition function (SVD) until convergence 

 
The (Boukebbab et al., 2007) method is also very robust to noise and could be a well suited method for 
registration of imaged based point could which is also noisy. Even though the pre-processing phase of the 
datasets may be a concern, other alternatives like plane to plane and point to plane registrations are being 
tested and applied. 
 

2.3.3 Plane to plane or point to plane registration 
 
Many problems and limitations were discovered with point to point registration to include necessary good 
initial guess; however, it does not necessarily mean that closest points between two datasets should be 
registered as that may lead to false correspondences. All these problems may negatively influence the 
performance of point to point registration. So a solution may be the point to surface registration also 
called point to plane registration (Xie et al., 2010). 
 
There are many methods used in point to plane registration. Chen and Medioni (1992) used point to plane 
registration by finding correspondences between 3D points with normal in one dataset to 3D planes in the 
other dataset and register them. However here like ICP we need a good initial guess. While Ramalingam 
(2013), try to register points to plane by considering coplanar points in one dataset against their 
corresponding plane in the other dataset. Of course the problem of correspondence between coplanar 
points and plane has first to be solved. And here the constraint of the points being coplanar is used. And 
these methods have also the advantages of less iterations. 
 
A reliable alternative may also be the plane to plane registration. Many researches have been carried out in 
this domain. Bosche (2012), proposed a registration method of 3D point cloud with 3D CAD model. The 
method was semi-automatic. The extraction of planes from the laser data was manual. Brenner and Dold 
(2007), showed an improved method for fully automatically registering laser scans. They extracted planar 
patches. To reduce the search space, the authors use hierarchical test combined to angular constraint.  
The mathematical transformation model of plane to plane registration is completely described in Brenner 
and Dold (2007) and Jaw and Chuang (2008), but it has been well summarized by (Thapa, 2009), from 
which we give the major steps. 
 
As expressed in Brenner et al. (2008) we need at least 3 pairs of non parallel planes represented by their 
normal and distance from origin. Considering the normal vectors (a,b,c,1) and their corresponding 
transformed counterparts, Jaw and Chuang (2008) elaborated the mathematical transformation as : 
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=    Equation (1) 

 
 
Where 

  
  
 

 
′ ′ ′ ′ is the normal vector of ( ) transformed system1 to system 2. 

And the rotation matrix is considered as: 
 
 

(R)=  

 
(Jaw & Chuang, 2008; Thapa, 2009) 

 
To compute the rotation parameters ( , , ), Thapa (2009) divided the rotation matrix into its three 
components Rx, Ry, Rz before giving the values of m11 through m33 in terms of , ,  as shown below: 
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So the rotation parameters will be 

) 
   Equation (2) 

) 
(Thapa, 2009) 

 
Once the rotation parameters obtained, the computation of the translation parameters was derived by 
Brenner et al. (2008) and confirmed by Thapa (2009) as 
 

    Equation (3) 
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where m4 =  

 
 
Refining the registration: 
Generally, the estimation of these parameters: rotation, translation is approximate. This may be due to the 
presence of noise or inexact correspondences. And having more than the minimum 3 corresponding 
planes (redundancy measurements) may help reduce the errors (Thapa, 2009). As the number of planes 
increases, by mean of least –square adjustment, more accurate parameters and a fine registration are 
achieved. In order to have a more precise and fine registration, a process of progressively minimizing a 
distance function is started. This distance could be between corresponding points of the datasets or a 
point in one dataset and another in the other dataset or the distance between corresponding planes of the 
datasets (Salvi et al., 2007). 
The working principle of least square adjustment has been also summarized by (Thapa, 2009) using 
corresponding points. However these equations were adapted and could be extended to corresponding 
planes from (Thapa, 2009) as follow: 

-  the initial solution of vector of unknowns. X0 is the result of the transformation parameters 
computed from the coarse registration. 

- V is the vector of residuals obtained after the first transformation of the two datasets using the 
transformation parameters of the coarse registration. 

- X is the vector of adjustments for the unknowns. X is computed from the following equation: 
-  

   Equation (4) 

Where P is the Jacobian matrix and defined as partial derivative of equation (1) with respect to 
every unknown. 
I is the identity matrix. 

Hence the newly computed solution X will be given by: 
    Equation (5) 

The equation (5) is iterated until convergence. After each iteration,  will be given the newly computed 
X. and X will be computed again. 
 

2.3.4 The other methods used in registration of 3D Point cloud /3D CAD model: 
 
Kim et al. (2010) have proposed a fully automatic registration method between 3D CAD model and laser 
point cloud obtained from construction site. The registration was done in two steps. A coarse registration 
using PCA (principal component analysis) and a fine registration. But before these two steps, the two 
datasets have undergone a processing step. The CAD model had to be converted into sterolithographt 
(STL) format then transformed into points having same resolution the author called “uniform resolution 
points”. To complete the pre-processing, the author put the two datasets in same resolution in a bid to 
improve the accuracy of the registration. For the fine resolution, Kim et al. (2010) used an improved 
version of ICP called Levenberg-Marquardt ICP (LM-ICP) in order to take care of the noise in the point 
cloud during the registration. Although, the registration was successful and automatic, the pre-processing 
helped the two datasets to have uniform resolution which may be robust in case of occlusions, its 
computation cost and efficiency which may be subjected to questions in case of “unordered” and complex 
large datasets which may be the case of big construction site. Furthermore the use of the PCA for the 
coarse registration imposed the datasets to meet predefined conditions. Kim et al. (2013) tried to use the 
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fully automated method proposed by Kim et al. (2010) to perform an automatic 3D registration. However 
the extraction of feature from the laser scans data uses not only the coordinates of position of points (x, y, 
z) recorded with a laser scanner but also includes colour information (R, G, B) using a camera device. This 
make the process too complex, because the laser scanner and camera may not always be aligned but also 
complicate extra leaning colour algorithm was used. This method may also not work if both or one of the 
datasets has uniform colour as in case of a CAD model. During the phase of automatic registration, the 
presence of occluded data may, also be a challenge. Instead Golparvar-Fard et al. (2011) used point cloud 
from image dense matching in construction site monitoring by registration of 3D point cloud to a 3D/4D 
model by taking photographs from the ground. Then a closed-form method using unit quaternion was 
adapted to compute the transformation before registering the two datasets. The aim of these photographs 
taken from the ground was to avoid occlusions generally affecting traditional photogrammetric methods. 
 

2.3.5 Conclusion of 3D/3D registration 
 
Although registration is an important part in many applications, it automation for large scale applications 
is required for the purpose of achieving efficiency. When it is performed manually, it is vulnerable to 
human errors and subjective interpretations which may lead to inaccurate results (Kim et al., 2010).  
 
From the methods of registration of point cloud and CAD model described in the literature review, we 
have globally two methods: the point to point registration and the feature based registration. With Point to 
point registration: the CAD model is converted into points to have both datasets in point format. 
Generally an ICP or improved ICP is used to perform the registration. Examples of these methods have 
been proposed by Besl and McKay (1992), Boulanger et al. (1996) and Boukebbab et al. (2007). However 
as stated by Kim et al. (2010), the original ICP considers most registered datasets to be characterized by 
outliers besides the problem of overlapping. The imaged-based point cloud of the data to be registered is 
noisy because of the dense matching. So this ICP cannot be used in its actual format. A flexible method 
which is more robust in noise correction has to be adapted.  
 
According to Boulanger et al. (1996), points and lines are very sensitive to noise and clutters. The authors 
argued that the surfaces are less vulnerable to noise, and could be extracted. This was also confirmed 
earlier with a study by Marshall et al. (1991), where it was found that planes are more reliable than points 
for matching and also more robust to the presence of noise. Furthermore common planes are more 
distinguishable from different datasets than points (Bosche, 2012). 
 
In this study our datasets as described in Section 3.1 are a building (made of planar structures) and an 
imaged based point cloud (noisy). So an appropriate method to register these two datasets may be the 
plane to plane registration. 
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3. METHODOLOGY 

This chapter describes the methodology used. Section 3.1 gives an overview and description of existing 
types of segmentation algorithms and strategies; Section 3.2 described the methodology itself with the 
presentation of the global workflow, followed by the description of the different steps of the workflow: 
the features extraction, the matching strategy, and the type of registration performed. 

3.1 Point cloud planar segmentation 
 
To do a feature based registration, you need to extract features like points, lines, and planes. When there is 
presence of manmade objects like buildings, they are likely to be planar features (Vosselman, 2009). The 
most reliable features we can extract from buildings are planar features. With point cloud data of the 
building, we first need to perform segmentation by employing planar surface model. (Vosselman, 2009). 
Segmentation could be defined as the process of identifying the measurement of each point within a point 
cloud so that to group points having same label into regions (Rabbani et al., 2006). There are many types 
of segmentation algorithms as listed and described in Rabbani et al. (2006) and Vosselman et al. (2004). 
These include edge based segmentation, surface based segmentation, and scan line based segmentation 
with strategies like top down, bottom up and global. For our case of the building point cloud data, we 
need to extract planar segments. Therefore an appropriate algorithm could be the surface base 
segmentation combine with the surface growing strategy (Pu & Vosselman, 2006). 
 
The surface growing strategy is divided into two steps: the seed region selection and the region expansion 
(Brenner et al., 2008). To determine the seed, Brenner et al. (2008) selected plane characteristics like 
proximity of points; locally planar or smooth normal vector field could also be used (Vosselman et al., 
2004).The other important part of the surface growing is the region expansion. The neighbouring points 
are added to the selected seed region (if they are within a specific threshold) and the plane equation is 
updated. This process need to be iterated until no point is below the set threshold. Its main steps is well 
described in Rabbani et al. (2006) and summarized by Brenner et al. (2008). 
 
In conclusion, according to Brenner et al. (2008) and Grant et al. (2012) segmentation is still a large and 
extensive field of research, so we need to adapt it to the level of planar segmentation. The type of 
segmentation to be chosen may depend and take advantage on the fact that we may have enough 
information on the type of features which are expected to be available within the scene, or which are 
expected to be extracted (Böhm et al., 2000).  
 

3.2 Methodology  

3.2.1 Overview and flowchart 
 
When feature based method is chosen for registration, two majors challenges should be addressed, i.e the 
correspondence and the transformation problems. These are closely linked to each other and the solution 
of one is determined by the other (Ramalingam & Taguchi, 2013; Schenk et al., 2000) . 
The correspondence issue tries to find relation between features. Once this correspondence problem 
solved, transformation parameters are computed so that differences between the two datasets are 
progressively minimized (Schenk et al., 2000) . To overcome these problems, a general methodology has 
been proposed in Figure 3.1. 
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The methodology consists of mainly the following steps: 

 The pre-processing and extraction of features which are mainly the segmentation of the UAV 
data and the extraction of planar features for both the UAV and CAD model datasets. 

 The matching strategy to have a first estimate of corresponding features. As it will be elaborated 
in following sections, this part will use common geometrical characteristics of features and their 
relationship to have a first estimate of possible corresponding features. 

 The refinement of the matching partners to more reliable matching corresponding features. the 
use of geometry or relation between primitives could lead to false correspondences, or one feature 
having more than one partner. A more restrictive strategy is needed to filter out the bad 
correspondences. 

 The computation of the transformation parameters as described in Chapter 2 Section 2.3.3 before 
performing the registration,  

 And finally the evaluation of the registration 
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Figure 3.1: General methodology workflow 
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3.2.2 Features extraction 

(a) Identification of f features 
 
The extraction of features is very important. Because the result and accuracy of the registration depend 
closely on it. The consequence of choosing inappropriate features could lead to the overfit of the model 
(Kim et al., 2013) and hence bad result. The robust extraction of corresponding features is a big challenge 
in registration (Bosche, 2012). Many methods have been adopted for extraction and matching of features. 
We can distinguish point based, target based and feature based matching. In manual matching well 
distinguishable corresponding points are manually selected. While in target based matching prior manually 
placed targets into the scene are identified in both data. The manual method could be time consuming, 
difficult and many tasks could be repeated over and over again (Kim et al., 2013) . The feature based 
matching is aiming to be semi-automatic or fully automatic. But it has to overcome problems like lack of 
texture, self-similarities and occlusions (Bosche, 2012). 
 

(b) Extractions of segment features from point cloud and CAD model 
 

 The point cloud: 

As stated when we have buildings, we need to extract planar features. For the Point cloud, we extracted 
features; specifically planes using segmentation (see Section 3.1). We adopt the planar segmentation 
strategy, a process by which points are in a same plane are identified and grouped together (Wang, 2013) . 
Despite many attempts to solve it, a recurrent problem with image based point cloud is its noise level, 
especially when a dense stereo method has been applied. This is due to the type of matching applied 
within this technique. This results specially in noisy flat surfaces (Gerke, 2009; Musialski et al., 2013). Since 
surface based segmentation combined with surface normal estimation is less sensitive to noise (Rabbani et 
al., 2006), we could use the strategy of surface growing as described in Section 3.1. 
 

 Extraction of segment features: 

After the segmentation, the next step is the extraction of the segment features. A dense point cloud is a set 
of 3D points with known coordinates (Wang, 2013), therefore to extract planar features we just need to 
group the points of coordinates (x, y, z) having the same segment number with the help of a software like 
matlab. 
 

 The CAD model: 

For the CAD model, the procedures (plane fitting of RANSAC, computation of plane parameters) as for 
the point cloud were applied (see Section 4.4), except for the extraction of the CAD planes. To extract the 
CAD planes, an xml file generated from the RZI file or an obj file of the model from Imagemodeller were 
used and the matlab software to read the coordinates and plane number. After the fitting of a plane, the 
same parameters information as in the case of the point cloud were computed. 
 

3.2.3 Matching and strategy of search 

(a) Matching features 
 
For estimating the rigid transformation parameters (rotation + translation) we need at least two non-
parallel matched pairs of planes for the rotation and three non-parallel matched pairs for the translation 
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estimation (Bosche, 2012; Marshall et al., 1991). But for the optimization of the least square adjustment 
more planes should be used (Marshall et al., 1991) . Bosche (2012), added that to have better result, the 
features to be matched should be spread in space as much as possible. After choosing at least 3 non 
parallel planes, the order in which matching pairs are taken may also influence the speed and accuracy of 
the transformation result estimation (Marshall et al., 1991) . To choose the best possible matching pair to 
get better result, Marshall et al. (1991), proposes the following rules: largest area first, when there is planar, 
cylindrical and spherical faces, choose simpler before complex one and at last the faces with more 
neighbouring faces should be chosen first. 
 

(b) Possible constraints to be used during matching 
 
Matching is the process of finding a common feature in two or more datasets. Although finding 
corresponding primitives depends on the actual datasets to be aligned, often the problem of matching 
between two 3D datasets could be summarised as an assessment of the quality of primitives or planes to 
be matched. This assessment include generally three steps: the common geometrical characteristics of the 
two primitives to match, the similarity of relationship of primitives in one dataset with that of primitives in 
the other dataset and finally to grade negatively primitives with no correspondence in either dataset to 
eliminate them (Zhang, 1993). 
 
If we want to use area of planar faces for matching, only planes that are likely to be equal in area may be 
matched. Because noise areas of scene and model planes cannot be exactly equal, the matching of scene 
plane which is greater than model plane is ruled out (Marshall et al., 1991). Marshall et al. (1991) further 
stated that segmentation of curved surface may generate very small planes, and using these small planes 
during matching may generate considerable errors; hence, to avoid these errors a threshold may be set 
about minimum size of a plane to be matched. This will help to identify and reject these small planes. 
Furthermore, when reliable planes and noisy planes are clearly identifiable, it is better to choose first the 
reliable ones for matching before considering the noisy planes. Because noisy planes could increase the 
search time and add errors to the estimation of the transformation (Marshall et al., 1991). According to 
Boulanger et al. (1996), for matching surfaces, we have two methods: the use of quaternion to estimate the 
rotation, or the use of centres of gravity of surfaces. But the centre of gravity method is very sensitive to 
occlusions and does not offer any constrain which could be used during matching. 
 
Considering all the constraints and possible methods described above and the process of finding 
corresponding planes; we have used the method proposed by Li et al. (2013), which may be integrated 
with methods used by Monnier et al. (2013), and Brenner et al. (2008). Furthermore, to limit the search we 
added some constraints by the use of heuristics to give priority to correspondences base on parameters 
like size or number of points (Rabbani & van den Heuvel, 2005). Combining these methods, we have the 
following steps: 
 We compute for each plane in both datasets for following parameters: 

 Selection of big-sized planes (extraction of planes of larger size) 
Since the dimensions of the building are around 5 m. We could consider a segment having a length 
equal or greater than 2m or a width equal or greater than 2m as a big-sized plane.  
So to select large planes we perform the following steps 

a. We compute the length of the plane L =max(x) – min(x) 
b. We compute the width of the plane W =max(y) – min(y) 
c. For selecting the big-sized planes we put a threshold by stating that a plane is 

considered to be a large one if t L > =2m or W>=2m. 
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 Computation of m:n matches (1 to many correspondences) using compatibility of normals 
between potential corresponding planes 

 Computation of m:n matches (1 to many correspondences) using minimum distances ( closeness) 
of potential corresponding planes. 

 Consider both properties for the computation of the first estimate of possible matching 
corresponding planes ( m:n correspondences) 

This is summarized in Figure 3.2.  
 

In our first estimate matching table we have n:m correspondences which means that each feature in one 
dataset corresponds to n features in the other dataset and vice versa. This choice is motivated by the fact 
that the Euclidian distance and the angle difference may change in presence of noise (Dubuisson & Jain, 
1994). So the matching was done to consider in the first stage all possible candidates which may 
correspond to a particular feature. However, it is necessary to filter out false correspondences. Because the 
presence of false correspondences may affect our registration result (Zhang, 1994). 

To select best correspondences, a direct “brute force” may be a solution, i.e. computing and testing every 
possible combinations (Khoshelham, 2010). Its main disadvantage is that it is computationally expensive. 
Khoshelham (2010), estimated the number of combinations for two sets of m,n planes where K 
corresponding pairs are needed for registration as: 

 

!
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 Where C and P denote combination (unordered selection), and permutation (ordered selection) 
respectively. 
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Start

Extract big Segments from 
both CAD and UAV 

Compute angle difference 
of normals between CAD 

and UAV segments

Compute distance 
between CAD and UAV 

segments

Select for each CAD 
segment n UAVs 

segemnts having smallest 
distance

Select for each CAD 
segment n UAVs 

segments having smallest 
angle difference

Combine both tables by  selecting the 
CAD segments present in both tables 
and n equal number of CAD and UAV 

segments from both tables

End

Matching 
table

CAD and 
UAV 

segments

 
Figure 3.2: Matching strategy for first estimation of corresponding planes 

 

(c) The matching strategy:  
 
After extraction of planes, we should look for corresponding planes by matching. To establish the 
correspondences, following plane features like area, , size, plane–plane distance, plane angle among others, 
could be used (Brenner et al., 2008; Li et al., 2013; Rottensteiner, 2002). But not all of these characteristics 
are compulsory to consider. Some of them may not be reliable due mainly to occlusions or clutters which 
may be responsible of different values for the same feature (Brenner et al., 2008). 
In our case, the two datasets are close to each other (coarse registration), this means corresponding planes 
should be close to parallel (Li et al., 2013) . The same idea is also used by Brenner et al. (2008). They 
consider two planes match if they have similar directions of normals and distances from origin. Therefore, 
we could use the compatibility of normals, and closeness (distance) properties to find corresponding 
planes between our two datasets. To achieve this, following steps adapted from Li et al. (2013) were used: 

 
a. Computation of angle difference between normals of all CAD planes and UAV planes. We then 

set a threshold to select the pairs of UAV and CAD planes having smallest angular difference as 
potential corresponding plane candidates. This will lead to m:n correspondences. Which means 
that a CAD plane can have more than one corresponding UAV planes and vice versa.  

b. Computation of the distances between all CAD and UAV planes. And same as in the case of the 
angle difference, we then set a threshold to select the pairs of UAV and CAD planes having 
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smallest distance (which are close) as potential corresponding plane candidates. This will also lead 
to m:n correspondences.  

c. Combination of the two to derive the first estimate of possible corresponding planes matching 
table. Later an algorithm will be used to refine the matching table. 

 

To compute the distance between each plane of the CAD model and each plane in UAV point cloud, we 
could use the distance between normal and centre of gravity of planes or the distance between centre of 
gravity of the planes. Here we have chosen the distance between the centres of gravity, because even 
though the centre of gravity may be disturb by occlusions or noise(Boulanger et al., 1996) it is more stable 
than the normal of the plane which is not fix. 

(d) Strategy of selecting best matching partners 
 
The first estimate matching table may result in many corresponding pairs which are not necessarily 
correct. False correspondences need to be removed. 
To reduce the number of combinations and limit the search complexity, Khoshelham (2010) used the 
“INITIATE-AND-EXTEND SEARCH” while Rabbani and van den Heuvel (2005) used a strategy called 
“constraint propagation”.  
 If some have been successfully implemented, the risk of suppressing good matches has always been 
present, and generally the techniques need to be adapted with the type of data we have (Brenner et al., 
2008).  
 
Taking into account the above analysis, the characteristics of our datasets ( see Chapter 4, Section 4.1) , 
and knowing that to compute transformation parameters we need at least 3 non parallel corresponding 
planes, we choose the option to compute all possible combinations of 3 non parallel corresponding pairs. 
The next stage is the testing of each to identify good combinations. The summarize steps are shown in 
Figure 3.3. 
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For good Combinations
Derive and set :
- Residual threshold
- Standard deviation threshold

2nd filter
For each combination 
check against residual 
and standard deviation 
threshold

 

Matching 
Table

Computation of all sets of 3 
non parallel CAD planes

All  sets of 3 
non parallel 
CAD planes

For each set of 3 non parallel 
CAD planes compute all possible 
corresponding pairs with their 
corresponding UAV planes

All  combinations 
of  3 non parallel 
corresponding 
pairs CAD-UAV

For each combination

- Compute Transformation parameters
- Perform Registration
- Compute residuals, standard 
deviation, angle difference between all 
corresponding plane pairs used or 
unused during transformation 
computation

Get all best 
combinaisons

3rd filter
For each best combination  check angle fit 
for all corresponding plane pairs  used or 
unused  during transformation computation

Angular threshold

Final matching table

end

1st Filter
Angular threshold
Distance threshold 
to filter combinations consider as 
outliers

Get all 
remaining 
combinations

For  all combinations
 compute graphs of 
translation in x-axis against 
residual and standard 
deviation respectively.

Get all best 
combinations

 

Figure 3.3: Strategy of selecting final matching table 
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The first step is the computation of all possible combinations of three (3) non parallel pairs taking the first 
estimate matching table as input. Three examples of such combinations are shown below in Table 3.1. 
 

CAD UAV CAD UAV CAD UAV 

11 93 11 93 11 93 

31 1 31 1 31 52 

71 172 71 135 71 172 

Table 3.1: Examples of possible combinations of 3 non parallel corresponding pairs (numbers given are segments 
Ids) 

  
To reduce the number of combinations, and avoid errors during the computation of the transformation 
parameters, we need to remove false correspondences by applying a modified version of method 
proposed by Zhang (1994). To put in place a robust method, Zhang (1994), used a statistical method of 
which the main idea is that points belonging to same frame (plane) should have approximately same 
residuals, if the registration is good. Zhang (1994), sets two parameters: A distance D (residual) to indicate 
when the registration is good and the maximum distance Dmax, which is the tolerable distance (residual) 
where the registration is still acceptable. 
 

 

Our method is based on the geometrical relationship of corresponding planes after registration. Two 
parameters are taken into account: the Residuals threshold and angle differences between corresponding 
planes. 

 Residual threshold: after registration we need a maximum distance between each CAD plane and 
its transformed corresponding UAV plane (threshold) above which the matching is considered 
bad, since we consider the datasets are close before registration. 

 The angle difference between corresponding planes (referring to the initial condition of the data 
before registration) should not exceed a certain threshold after registration. 

To make sure that these geometrical relationships between corresponding planes after registration are 
maintained and at the same time allowing us to identify and remove bad correspondences, three filters 
were used. Each filter has a specific threshold to progressively filter out the false correspondences. 

 The first filter is the angular threshold and residual threshold above which, a combination could 
be considered just as an outlier, because the registration of these combinations results in large 
residual values and angle differences between “corresponding planes”. To set these thresholds, we 
can consider the initial condition of the datasets before registration. 

 For the second filter, it is based on the rule that combinations which result in good registration 
result should be having same transformation parameters (translation and rotation) (Zhang, 1994). 
So we are going to set two thresholds: 

- A maximum distance Dmax, which is the tolerable distance (residual) where the 
registration is still acceptable. 

- A maximum standard deviation which is the tolerable value where the registration is still 
acceptable. 
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To set the thresholds for the residual and the standard deviation, we can plot a graph of 
translation in x-axis against residuals in y-axis on the one hand; and the graph of translation in x-
axis against standard deviation in y-axis of all combinations on the other hand. By identifying the 
location of accumulation of some combinations, we will be able to give an estimation of these 
thresholds. An example of this kind of graphs is shown in Figure 3.4. The accumulation of 
combination is clearly distinguishable around zero of the x-axis. 

 
 3rd filter: The goodness of selected combination from filter 2 (with corresponding parallel planes 

after transformation) is checked using the 3rd filter. The purpose is to investigate that the 
selection from filter 2 was reliable and also removed bad combination which may not be detected 
from these thresholds due to errors in their estimation. 

 

 
Figure 3.4: Graph of translation in x-axis against residuals 

 

3.2.4 Estimation of transformation parameters using least square Adjustment or fine registration 
The grouping of all final good selected combinations together will result in having more than 3 
corresponding pairs. Having more than 3 corresponding pairs (redundancy), a least square adjustment (see 
Chapter 2 Section 2.3.3) could be applied for the registration of the two datasets to have better results. 
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4. IMPLEMENTATION RESULTS AND EVALUATION 

This chapter presents the implementation results of our methodology. Section 4.1 describes the datasets. 
Section 4.2 shows result of pre-processing of datasets. Section 4.3 presents the extracted features followed 
by the description of the computation of segment parameters in Section 4.4. The results of the matching 
and the registration are described in Section 4.5 and 4.6 respectively. 

4.1 Description of the datasets 
 
The two datasets to register are from the same object. They are represented by a CAD model and a point 
cloud. These two datasets even though they are from the same set of images, they have been created by 
two completely independent processes. The point cloud was generated from a set of images taken from 
different viewpoints. First the software 123D Catch was used to do the orientation of the images. This 
software is able to do the orientation automatically using an algorithm called Structure From Motion 
(SFM). SFM uses corresponding points in two or more successive images in order to reconstruct the 3D 
object structure as well as the camera motion and orientation. In a second phase, the Patch Based Multi-
View Stereo (PMVS) technique was used to have the dense point cloud. The Figure 4.1 shows the raw 
point cloud obtained from SFM and PMVS. 
 
As shown the building is surrounded by trees and vegetation which may come as occlusions in case of 
segmentation. The door is opened; this also may give inconsistent planar structures which may be used as 
a simulation of a damage situation in case of damage assessment of a building. 
 

 
Figure 4.1: Raw data point cloud 

The CAD model was obtained using Image modeller software .This software is used to create 3D models 
from images. The same set of images was loaded into the software before manually modelling the object. 
But prior to this the software 123D Catch was chosen to do the orientation of the images automatically. 
During the modelling of the CAD model a wrong CAD plane has been assigned on purpose for 
simulation. This will help us to analyse how our registration algorithm will behave in case of a CAD plane 
without corresponding UAV plane. Furthermore, in a real situation, it can be the case of a wall which was 
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part of the building and for some reasons was removed or destroyed. In the discussion we will analyse the 
effects of this CAD plane in the overall registration and generalise with a conclusion. After the modelling, 
the model is exported to software like AutoCAD to generate the full 3D CAD model. The 3D CAD 
model is shown in Figure 4.2. 
 
As in most CAD model, we have geometrical structures like rectangle, triangle, square, among others. The 
geometrical structures are slightly tilted, and as visible in Figure 4.2; we don’t have perfect match at the 
intersection of the geometrical structures. This may be due to errors as a result of the manual modelling of 
the structures. These errors may come also from the manual definition of the World Coordinate System 
and reference distance (scale) during the orientation of the images using the 123D catch software. These 
errors will not only affect the quality of the CAD model, but also the result of the registration. In the 
discussion section, we will talk about the consequences of inappropriate or bad CAD model in the result 
of the overall registration between the Point cloud and the CAD model. 
 

 
Figure 4.2: 3D CAD model 

 
Since the processes of creation of these two datasets are completely independent, the errors generated 
while performing a dense matching and errors from image modeller are different in term of type and 
quantity. This will result in some offset or discrepancies between the CAD model and the point cloud in 
their initial states. 
 

4.2 Preprocessing of the data 
 
The pre-processing of point cloud was mainly the segmentation. Segmentation was performed using the 
Point Cloud Mapper (PCM) software. The strategy of surface growing with direct neighbours and planar 
surface model as elaborated in Section 3.1 was adopted. The following parameters were selected: the 
maximum distance to surface model parameter was set at 0.3 m. This distance was set according to the 
amount of noise expected with the data as we already described, imaged based point cloud are noisy. The 
surface growing radius is fixed at 0.3m while the minimum number of points is at 500 taking into account 
the high density of imaged based point cloud and the fact that in case of buildings we generally have large 
planar segments.  



AUTOMATIC REGISTRATION OF ARCHITECTURAL (CAD) MODELS OF BUILDINGS TO AIRBONE IMAGES 

31 

 
The process can be summarized in two steps: 

 Segmentation of UAV data through PCM  
 Generation of point coordinates and segment numbers before saving them in a txt file. 

 The result of the segmentation is shown in Figure 4.3. If we perform a visual inspection, we can notice 
that the different segments are clearly distinguishable. They can be differentiated by colour. The shape and 
size of some segments which are manmade planar structures like wall, door, roof, windows among others 
are also clearly identifiable. Very small structures with no clearly defined geometry are also visible. 
 

 
Figure 4.3: Point cloud after segmentation. 

 

4.3 Extraction of features 
 

 Point cloud 

As described in Section 3.2.2, the extraction of planar features from the point cloud (after segmentation); 
was done by the grouping and extraction of points with common segment number. The software matlab 
version R2013a was used to compute plane parameters. The Figure 4.4 below shows examples of the 
extracted segments. As it can be noticed, there are well structured planes, there are also unstructured 
segments. The well structured segments could be explained by the presence of manmade structures in 
almost all buildings. But some segments were unstructured. This also could be expected because of the 
presence of vegetation and trees in the original point cloud, and the strategy of segmentation used. 
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Figure 4.4: Examples of extracted segments from Point cloud 

 
 CAD model 

For the CAD model the following steps were used: 
 Read the XML file from RZI file and the obj file from imagemodeller. 
 Extract the coordinates of points of planes in a txt file 
 Use of Matlab for the computation of plane parameters of CAD model after grouping the points 

with common point number 

For the CAD model, planes are regular geometrical structures like rectangle, triangle, and square as in 
most CAD model. For our CAD model the geometrical figures are slightly tilted as stated before. 
 

4.4 Computation of segment parameters 
 
After extracting all segment features, we need to compute the parameters of each segment. Geometrically 
a plane is defined by its Hesse form, which mean its normal and the distance from origin (Rabbani & van 
den Heuvel, 2005) . As described in Chapter 2 Section 2.3.3, when computing the transformation 
parameters in a plane based registration, we need as input the normal and distance from origin (Brenner & 
Dold, 2007). 
The plane parameters could be estimated using Principal Components Analysis (PCA), where the plane 
normal and the distance from origin are obtained respectively from the eigen-vectors with smallest eigen 
value and the median of the dot product between vector of each individual point and normal vector 
(Sande et al., 2010). And finally to remove outliers the plane fitting algorithm RANSAC is robustly applied 
to each segment (Sande et al., 2010). The plane P and its parameters adapted from (Sande et al., 2010) is 
shown in equation (7): 
 
P=  (1)     Equation (7) 
 
Where the normal n=  and d is the distance from origin 
 
The others plane parameters like center of gravity or size may be helpful specially in the matching process, 
and may be tools which can be used in the result assessment. All the parameters computed are listed 
below. 

 Normal 
 d (distance from origin) 
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 Center of gravity 
 Number of points (Size Segment) 
 Minimum x, maximum x 
 Minimum y, maximum y 

 

4.5 Matching result 
 
The extracted planes from both the point cloud and the CAD model will serve as our input for our 
matching process algorithm. But for the reasons elaborated in Chapter 3 Section 3.2.3 only large size 
planes from both datasets are selected. If we consider the number of correct and reliable CAD planes 
(eight) at the beginning only five were appropriate (see Chapter 3 Section 3.2.2). For the UAV, out of a 
total number of 315 segments only 73 were selected. As an example, the result of selected large CAD 
planes is shown in Table 4.1. 
 

CAD Plane Segment number 11 21 31 51 71 

Width of CAD plane (m) 2.619 2.253 2.254 1.179 2.033 

Length of CAD plane (m) 2.602 2.171 2.579 2.416 0.362 

Table 4.1: Selected CAD planes. 
 
To compute the transformation parameters we need a minimum of three (3) non parallel pairs. From 
these selected CAD planes, we tested all the combinations of possible sets of three (3) CAD planes. Only 
non-parallel triplets were finally considered. 
 
As elaborated Chapter 3 Section 3.2.3, distance and angle constraints are combined to compute the first 
estimate matching table. Later wrong matched pairs were removed using the strategy described in Figure 
3.3 of Chapter 3 Section 3.2.3 to make sure that only correct CAD-UAV pairs are matched. The result of 
the final matching planes of the two datasets is shown in Table 4.2. This table shows the segment numbers 
of computed corresponding pairs UAV-CAD model planes. 
 
To check the accuracy of the matching, we compute the residuals and standard deviations for all final 
selected matched pairs. The residual is the mean distance between all points of a UAV plane and its 
corresponding CAD plane. The standard deviation shows variability from this mean. The result shown in 
Table 4.3 is the average residual, average standard deviation and angle difference of each corresponding 
pair from all good combinations of 3 non parallel corresponding pairs. Globally this average residual is 
low. This also confirms by the low standard deviation and angle difference. This implies that the matched 
planes are globally correct. 
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CAD plane 

segment number 

UAV Plane 

segment number 

11 93 

21 113 

31 1 

71 135 

21 315 

Table 4.2: Result of final matching table. 
 

Corresponding pairs 

Segment numbers 
Residual (m) Std (m) Angle difference (degree) 

11 93 0.022 0.013 0.985 

21 113 0.033 0.013 0.923 

21 315 0.039 0.023 1.047 

31 1 0.030 0.014 1.417 

71 135 0.054 0.022 1.518 

Table 4.3: Average residual, average standard deviation, average angle difference of corresponding pairs CAD-UAV 
of final matching table 

 
The Figure 4.5 displays the figures of two examples of corresponding matched segments. From visual 
analysis, the result of accuracy check is confirmed; the matched pairs seem to have approximately same 
shape, and orientation. In some cases the sizes are approximately similar as it was expected. 
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Figure 4.5: Examples of planes of final matching table. 

4.6 Registration results 
 
The final step is the registration of the two datasets. All correct matched pairs i.e five in number are 
combined. This can help to have more than 3 pairs of corresponding planes (redundancy) to be able to 
apply a least square adjustment. In a 3D similarity transformation, the CAD model was considered as the 
reference dataset and the UAV as the dataset transformed and registered to the reference dataset.  
Table 4.4 shows the result of the 6 transformation parameters obtained. While table 4.5 displays the 
accuracy of the registration by showing the residuals (mean distance) between points of each UAV plane 
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to the corresponding CAD plane and their standard deviation. The registration is correct with globally 
residual of less than 7cm and standard deviation of less than 3cm.  
 

Rotation (degree) Translation (m) 

 

Omega PHI kappa Tx Ty Tz 

-0.080 0.395 -1.264 -0.120 0.200 0.112 

Table 4.4: Result of six transformation parameters: 3 rotation angles, 3 translations. 
 

Corresp. Pairs ID  11 - 93 21 - 113 21 - 315 31 - 1 71 - 135 

Mean residual (m) 0.014 0.037 0.033 0.036 0.068 

Standard deviation (m) 0.010 0.014 0.023 0.019 0.026 

Table 4.5: Result of mean residual (mean distance) and mean standard deviation between points of each UAV plane 
and the corresponding CAD plane and their standard deviation after registration. 
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5. ACCURACY ASSESSMENT AND DISCUSSION 

This chapter is dedicated to the assessment and discussion of the results obtained in Chapter 4. It outlines 
matching strategy evaluation and registration accuracy in Section 5.1 and Section 5.2 respectively. Each 
section is concluded with a discussion about the results of the assessment and implementation. 

5.1 Evaluation of the matching result 
 
The correctness of matched features in feature based registration is critical in order to have good 
registration result. In this section we are going to do the evaluation of the matching algorithm. To do the 
evaluation we assess the quality of our matching algorithm qualitatively and quantitatively (Boudet, 2007). 
This will be done by comparing a computed dataset and a reference dataset: the matching result with the 
reference matching table. Both are presented as tables. 
The evaluation technique used is adapted and well described from Khoshelham et al. (2010) and Rutzinger 
et al. (2009) . The comparison will allow us to identify corresponding matched pairs which are in both 
matching tables i.e the result and the reference tables. And the ones which are in either matching table or 
reference matching table and not present in the other table. The following classes are defined: 

 The matched pairs which are both present in the two tables (result and reference) are considered 
correct or “classified”: as true positive (TP). 

 The matched pairs which are in result table and not present in the reference table are considered 
incorrect or “classified” as false positive (FP). 

 The matched pairs which are in reference and present in another table (not the result table) are 
considered incorrect or “classified” as false negative (FN). 

 The matched pairs which are in the reference table and not present in the result table are 
considered incorrect or “classified: as Unclassified positive (UP). 

(Khoshelham et al., 2010; Rutzinger et al., 2009) 
 
From these classes, the completeness is defined as the percentage of matched pairs in the reference table 
which are detected (detection rate). The correctness gives how the correct matched pairs are close to the 
reference. The quality link the two entities (Rutzinger et al., 2009). Here in our case the unclassified 
positive (UP) is the equivalent of false negative or FP. Equation (8), equation (9), and equation (10) were 
adapted from Rutzinger et al. (2009) to represent the mathematical formulas of completeness, correctness, 
and quality respectively. 
 

     Equation (8) 
 

     Equation (9) 

 
     Equation (10) 

 
 
To do the test, we manually edited the reference matching table. This is shown in Table 5.1. As elaborated 
before the CAD plane 51 is unassigned (has no matching partner). 
We have tried to oversee the behaviour of the matching algorithm when it is subjected to different types 
of inputs like:  
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 Changing the initial position of the datasets: translation by 2 meters or rotation by 5 degrees 
 Changing of the number of input planes by removing or adding planes. 

 
What will be the variability of the result of the matching regarding these changes? 
The result of the matches will be compared to the reference matching table which is holding the correct 
corresponding matched pairs. The reference matching table is shown in Table 5.1. 
 

CAD 
planes 

UAV 
Planes 

11 93 
21 113 
21 315 
31 1 
51 unassigned 
71 135 

Table 5. 1: Reference Matching Table (manually edited) 
 

 
For each of the different inputs described above, the following information will be computed 

 Nature of inputs 
 Reference matching table (does not change) 
 1st matching table (First estimate matching table) 
 Final matching table 
 Evaluation result. 

 

5.1.1 1st test: Input n:m matches (1 to n correspondences) 
 
In this test, for each CAD plane, four corresponding UAV planes were selected based on distance and 
angle as described in Section 3.2.3. The result of this selection is shown in Table 5.3 (b). Table 5.3 (c) 
displays the result of the automatically selected CAD-UAV planes: the final matching table of the 
matching algorithm. Its performance is in Table 5.3 obtained by comparing the reference matching Table 
5.2 (a) and the finale matching Table 5.2 (c). 
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Reference matching 
Table 

 1st Matching table  Final matching table 

CAD 
planes 

UAV 
Planes 

 CAD 
planes UAV planes 

 CAD 
planes 

UAV 
Planes 

11 93  11 93 138 93 85  11 93 
21 113  21 113 315 113 315  21 113 
21 315  31 1 52 1 70  21 315 
31 1  51 3 4 116 152  31 1 
51 unassigned  71 172 135 135 168  71 135 
71 135          

a)  b)  c) 
Table 5. 2 Results of input n:m matches 

 

TP FN FP Completeness Correctness 

5 1 0 0.8 1 
Table 5. 3 Evaluation Result 

 
The correctness is 100% and the completeness is also high. Here all the matched pairs detected by the 
algorithm are in the reference table. But not all the matched pairs in the reference table have been 
detected. That is why the completeness is 80% 
 

5.1.2 2nd test Removing CAD plane 11 
 
In this test, we want to see the behaviour of our matching algorithm when a CAD plane is removed. For 
example, the CAD plane with segment number 11 was removed. The result of the first estimate matching 
table is displayed in Table 5.4 (b). We can notice that the CAD plane 11 is not present among the selected 
CAD planes with corresponding UAV. The final matching Table 5.4 (c) has no input which means that no 
corresponding CAD-UAV planes automatically selected by the matching algorithm 
 
 

Reference matching 
Table 

 1st Matching table  Final matching table 

CAD 
planes 

UAV 
Planes 

 CAD 
planes UAV planes 

 (no final inputs) 
 

11 93  21 113 315 113 315    
21 113  31 1 52 1 70    
21 315  51 3 4 116 152    
31 1  71 172 135 135 168    
51 unassigned          
71 135          

a)  b)  c) 
Table 5. 4: Results removing CAD plane 11 
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Evaluation Result: 
 
Here we have no correct combination. 
 
This was expected, because the only correct combination comparing the 1st matching table to the 
reference table is 21 31 71 and this combination is not a non parallel one. 
Here also the algorithm is performing well. 
 

5.1.3 3rd test Removing CAD plane 71 
To confirm the result obtained in test 2, that when a plane is removed, the matching algorithm is 
performing well. We remove another plane. The CAD plane segment number 71 and add again the CAD 
plane 11. The result of the first estimate matching table is displayed in Table 5.5 (b). We can notice that 
the CAD plane 11 is again among the automatically matched plane while it is not the case for the CAD 
plane 71. The final matching Table 5.5 (c) display the final corresponding planes selected. In this case, we 
have corresponding pairs confirming that our first test was correct. The absence of corresponding pairs in 
the second test were not due to failure of our matching algorithm, but effectively there was no correct 
corresponding pair available. The performance of the matching algorithm is in Table 5.6 also obtained by 
comparing the reference Table 5.5 (a) reference table and the finale matching Table 5.5 (c). 

 
Reference matching 

Table 
 1st Matching table  Final matching table 

CAD 
planes 

UAV 
Planes 

 CAD 
planes UAV planes 

 CAD 
planes 

UAV 
Planes 

11 93  11 93 138 93 85  11 93 
21 113  21 113 315 113 315  21 113 
21 315  31 1 52 1 70  21 315 
31 1  51 3 4 116 152  31 1 
51 unassigned          
71 135          

a)  b)  c) 
Table 5. 5: Results removing CAD plane 71 

 

TP FN FP Completeness Correctness 

4 2 0 0.6 1 
Table 5. 6: Evaluation Result 

 

The correctness is still 100% but the number of undetected matched pairs has increased explaining the 
average rate of the completeness. 
Despite this average completeness, the algorithm is still performing well. This may be explained by the fact 
that the inputs CAD-UAV planes for computing the matching result and the inputs CAD-UAV planes for 
computing the reference table are different, because the CAD plane 71 is not accounted for the inputs 
used to compute the matching result while it was maintained for the inputs of the reference table. 
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5.1.4 4th test Shifting point cloud by 2m in x, y, z axis. 
 

To further evaluate the robustness of our matching algorithm, we change the inputs by shifting the point 
cloud by 2m. The automatically selected matched UAV-CAD planes for the first estimate matching table 
and final matching table are displayed respectively in Table 5.7 (b) and 5.7 (c). The performance of the 
matching algorithm is in Table 5.8. Table 5.7 (a) is the reference table. 

 

Reference matching 
Table 

 1st Matching table  Final matching table 

CAD 
planes 

UAV 
Planes 

 CAD 
planes UAV planes 

 CAD 
planes 

UAV 
Planes 

11 93  11 3 10 93 85  11 93 
21 113  21 4 3 113 315  21 113 
21 315  31 3 112 1 70  21 315 
31 1  51 112 3 116 152  31 1 
51 unassigned  71 43 112 135 168  71 135 
71 135        

a)  b)  c) 
Table 5. 7: Results Shifting point cloud by 2m 

 

TP FN FP Completeness Correctness 
5 1 2 0.8 1 

Table 5. 8: Evaluation Result 
 

This result is the same as in the first case (m:n matches). Despite of the shift of 2m, the correctness is 
100% and the completeness is also high. Here all the matched pairs detected by the algorithm are in the 
reference table. But not all the matched pairs in the reference table have been detected. That why the 
completeness is 80% 
 

5.1.5 5th test: Rotation of point cloud by 5 degrees in x, y, z axis. 
 

In this test, the same test was repeated as in 4th test. The only difference is the point cloud dataset is 
rotated by 5 degrees instead of being shifted. 

Tables 5.9 (b, c) displays the results of the automatically selected matched UAV-CAD planes for the first 
estimate matching table and final matching table respectively. The performance of the matching algorithm 
is in Table 5.10 obtained by comparing the reference matching Table 5.9 (a) and the finale matching Table 
5.9 (c) 
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Reference matching 
Table 

 1st Matching table  Final matching table 

CAD 
planes 

UAV 
Planes 

 CAD 
planes UAV planes 

 CAD 
planes 

UAV 
Planes 

11 93  11 93 138 93 85  11 93 
21 113  21 113 315 315 113  21 113 
21 315  31 1 52 1 70  21 315 
31 1  51 4 3 116 14  31 1 
51 unassigned  71 135 172 135 168  71 135 
71 135          

a)  b)  c) 
Table 5. 9: Results rotation point cloud by 5 degrees 

 
 

TP FN FP Completeness Correctness 
5 1 0 0.8 1 

Table 5. 10: Evaluation Result 
 

 
 
This result is the same as in the first case test, despite of the rotation of 5 degrees of the point cloud. We 
have the same conclusion as is the shift of 2 m. 
 

5.1.6 Discussion on the accuracy of the matching 
 
A good matching algorithm is one which combines both high completeness and high correctness 
(Rutzinger et al., 2009). Since for all tests performed by varying the inputs, we have an average 
completeness of 0.80 and average correctness of 1, we can conclude that, for this particular type of 
datasets, the matching algorithm is correct and reliable enough; even though for some cases the 
undetected matched pairs (FN) need more attention. 
 
We notice that despite its good quality, the algorithm for some inputs, its performance in the 
completeness is not 100%. This means corresponding pairs which were supposed to be matched are 
ignored. Which are these planes which are ignored? If we analyse carefully the reference matching table, 
it’s the CAD plane 51 which is being ignored in almost all cases. So what is “special” with this CAD plane 
51? As explained before, and shown in our reference matching table (table 5.1), CAD plane 51 is 
unassigned. This means it is suppose to have no corresponding partner. So if our matching algorithm did 
not assign any corresponding UAV plane to this CAD plane; this was fully expected. So we could not have 
100% for the completeness. The CAD plane 51 was also purposely put in our model with no possible 
corresponding partner, since our matching algorithm also ignore it, this also a proof that the matching 
algorithm for this datasets, is robust against bad modelling or segmentation error which may produce this 
extra segments or planes in one dataset without corresponding partner in the other dataset. 
Despite the rotation and the shifting of the point cloud, for this particular type of datasets, the 
performance of the matching algorithm is also good. This confirms that the algorithm is robust against 
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change in distance, or change in rotation between the two datasets. However the use of distance is just 
reliable to some extent. Above this limit it is not. And this could be also generalised for the difference of 
angle parameter. 
To conclude , according to Tubic et al. (2003), when using distance for matching corresponding pairs, the 
datasets need to be closed to each other, as the distance between the two datasets is larger, matching 
errors are more probable. Since our datasets were already close, our matching algorithm will be more 
effective if it is combined with a complete and good up-to-date CAD model when a rigid transformation 
is to be performed. 
 

5.2 Accuracy of the registration 
 
There are many methods in assessing the accuracy of a registration. The method to choose depends 
generally of the author of the registration. If the computation time should be considered, generally the 
evaluation of the rotation error, the translation error and RMS (root mean square) could be consensual 
parameters to investigate the accuracy of most registrations (Salvi et al., 2007). 
To evaluate the registration result we look at three parameters: 

 The residuals after registration 
 The histograms of the residuals 
 We also simulate errors by shifting and rotating the initials positions of the datasets before 

respectively registering them and analyzing the results. 

5.2.1 The residuals after registration 
When two datasets are correctly registered, the corresponding features (planes) must be parallel (Li et al., 
2013) and close to each other. 
So to evaluate the result of the registration we are going to look at the geometric relationship of the 
corresponding plane pairs after registration by computing their mean residual and the standard deviation. 
Table 5.11 displays the mean residuals and respective standard deviations between points of each UAV 
plane and the corresponding CAD plane. By visual analysis we can notice that residuals are very small. The 
standard deviations are low less than 3 cm which make the registration globally correct. 
 

Corresp. Pairs ID 11 - 93 21 - 113 21 - 315 31 - 1 71 - 135 
Mean (m) 0.014 0.037 0.033 0.036 0.068 
Standard deviation (m) 0.010 0.014 0.023 0.019 0.026 

Table 5. 11: Mean residual (mean distance) and mean standard deviation between points of each UAV plane and the 
corresponding CAD plane and their standard deviation. 

5.2.2 The histograms of the residuals 
 
To further analyse this result we can look at the histograms of these residuals. The histograms are 
displayed in Figure 5.1. 
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a)Histogram of residuals of matched plane pair 
CAD 11 and UAV 93 

b)Histogram of residuals of matched plane pair 
CAD 21 and UAV 113 

c)Histogram of residuals of matched plane pair 
CAD 21 and UAV 315 

d)Histogram of residuals of matched plane pair 
CAD 31 and UAV 1 

d)Histogram of residuals of matched plane pair 
CAD 71 and UAV 135 

 

Figure 5.1: Histograms of residuals between registered corresponding planes pairs. 

 
In general when it is correct, the histograms of the residual of a registration should follow a normal 
distribution (Chen & Medioni, 1992; Thapa, 2009; Tubic et al., 2003). About the histograms in Figure 5.1, 
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the first one has a normal distribution but for the others the tails are slightly right or left skewed. This will 
be elaborated in the discussion section. 
 

5.2.3 Shifting and rotating the initials positions of the datasets 
 
After the computation of the transformation and the registration of the two datasets as they are in their 
initial positions, to further evaluate the registration we are going to respectively change the initial positions 
of our two datasets by a known offset and known rotation angle respectively. Then, we are going to 
analyse how the registration will behave with respect to these changes. 

5.3.2.1 Shifting point cloud by 5m in x, y, z axis 
 
The point cloud is shifted by 5m. Table 5.12 displays the result of the automatically selected CAD-UAV 
planes of the first estimate matching table. The final matching table obtained as a result of the matching 
algorithm is shown in Table 5.13. These matched pairs were used to: 

 Compute the transformation parameters ( Table 5.14) 
 Compute the mean residual and mean standard deviation of each matched pair used during the 

computation of transformation parameters. ( Table 5.15 and 5.16 respectively). 
  Figure 5.2 shows an example of the datasets before and after registration. Some of the offsets 

between the two datasets after registration are circled and will be described in the discussion 
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     Point cloud 
     Vertices of CAD planes model 

 

a) b) 

Figure 5.2: Point cloud shifted by 5m and vertices of CAD planes model before registration ( a) and after registration 
(b) 

 
CAD Planes UAV Planes 

11 112 3 93 85 
21 112 3 113 315 
31 112 3 1 70 
51 112 3 116 152 
71 112 3 135 168 

Table 5. 12: Matching Table 
 

CAD planes UAV Planes 
11 93 
21 113 
21 315 
31 1 
71 135 

Table 5. 13: Final Matching table 
 
 

Omega 
(degree) 

Phi 
(degree) 

Kappa 
(degree) Tx (m) Ty(m) Tz(m) 

-0.080 0.395 -1.264 4.528 5.331 5.209 

Table 5. 14: Result of six transformation parameters: 3 rotation angles, 3 translations. 
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Corresponding pair IDs 11-93 21-113 21-315 31-1 71-135 
Mean residual (distance from points 
to corresponding plane). (m) 0.061 0.068 0.030 0.025 0.274 

Table 5. 15: Mean residual (mean distance) between points of each UAV plane and the corresponding CAD plane for 
each corresponding CAD-UAV plane pair. 

 
 

Corresponding pair IDs 11-93 21-113 21-315 31-1 71-135 
Mean standard deviation (m) 0.015 0.015 0.022 0.015 0.026 

Table 5. 16: Mean standard deviation between points of each UAV plane and the corresponding CAD plane for each 
corresponding CAD-UAV plane pair. 

 
Comparison between the registration of the initial position and the registration after the 5m shift 
 
The result in Table 5.17 was derived by comparing the result of the computation of the transformation 
parameters of the datasets in their initial position (Chapter 4, Table 4.4) and the result of the computation 
of the transformation parameter of the dataset after a shift of 5m in x, y, z axis (Table 5.14). 
 

   Tx (m) Ty (m) Tz (m) 
0 0 0 4.648 5.131 5.097 

Table 5. 17: Result of comparison between the registration of the initial position and the registration after the 5m 
shift 

 
As expected the translation has increased and the rotation has not changed. Since the data was only shifted 
by 5 m and not rotated, this result was fully expected. However if we look carefully to the increase in the 
translation it is 4.648m , 5.131m, 5.097m for Tx. Ty, Tz respectively. And for all these directions the 
increase should have been exactly 5m as the shift was 5m. Since the matching tables of the datasets in their 
initial state and after the shifting are same, how to explain these small differences? The negligible increases 
and decreases in the 5 m may be explained by the nature of the UAV planes which may be noisy. 
Furthermore, it also related, as explained before to the nature of CAD model planes which are slightly 
tilted due to errors in the manual modelling.  
 

5.3.2.2 Rotate point cloud by 10 degrees in: x, y, z axis 
 
The point cloud is now rotated by 10 degrees. As in the case of the shift, Table 5.18 displays the result of 
the automatically selected CAD-UAV planes of the first estimate matching. The final matching table 
obtained as a result of the matching algorithm is shown in Table 5.19. These matched pairs were used to: 

 Compute the transformation parameters ( Table 5.20) 
 Compute the mean residual and mean standard deviation or each matched pair used during the 

computation of transformation parameters. ( Table 5.21 and 5.22 respectively) 
  Figure 5.3 shows an example of the datasets before and after registration. Some of the offsets 

between the two datasets after registration are circled and will be described in the discussion. 
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     Point cloud 
     Vertices of CAD planes model 

 

a) b) 
Figure 5.3: Point cloud rotated by 10 degrees and vertices of CAD planes model before registration ( a) and after 

registration (b) 

 
 

CAD Planes UAV planes 
11 93 138 85 93 
21 315 315 315 113 
31 1 52 315 113 
51 240 43 116 3 
71 135 172 135 172 

Table 5. 18: Matching Table 
 

CAD planes UAV Planes 
11 93 
21 113 
21 315 
31 1 
71 135 

Table 5. 19: Final Matching Table 
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Omega 
(degree) 

Phi 
(degree) 

Kappa 
(degree) Tx (m) Ty(m) Tz(m) 

-11.691 -7.544 -12.956 -0.120 0.200 0.112 

Table 5. 20: Result of six transformation parameters: 3 rotation angles, 3 translations 
 

Corresponding pair IDs 11-93 21-113 21-315 31-1 71-135 
Mean residual (distance from points 
to corresponding plane). (m) 0.014 0.037 0.033 0.036 0.068 

Table 5. 21: Mean residual (mean distance) between points of each UAV plane and the corresponding CAD plane for 
each corresponding CAD-UAV plane pair. 

 
 

Corresponding pair IDs 11-93 21-113 21-315 31-1 71-135 
Mean standard deviation (m) 0.010 0.014 0.023 0.019 0.026 

Table 5. 22: Mean standard deviation between points of each UAV plane and the corresponding CAD plane for each 
corresponding CAD-UAV plane pair. 

 
 
Comparison between the registration of the initial position and the registration after 10 degrees 
rotation 
 
The result in Table 5.23 was derived by comparing the result of the computation of the transformation 
parameters of the datasets in their initial position (Chapter 4, Table 4.4) and the result of the computation 
of the transformation parameter of the dataset after a rotation of 10 degrees in x, y, z axis (Table 4.20). 
 

   Tx Ty Tz 
-11.611 -7.939 -11.692 0 0 0 

Table 5. 23: Comparison between the registration of the initial position and the registration after 10 degrees rotation 

 
For the rotation of the data by 10 degrees, we can have the same reasoning has in the case of the shifting 
by 5m described above. 
As expected the rotation has increased and the translation has not change. Since the data was only rotated 
by 10 degrees. This result was fully also expected. The increases and decreases in the 10 degrees rotations 
(-11.611, -7.939, -11.692) may be explained by the nature of the UAV planes which may be noisy. 
Furthermore, it also related, as explained before to the nature of CAD model planes which are slightly 
tilted due errors in the manual modelling. Also when the rotation angle between the two datasets increases 
the registration is less precise explaining this noticeable difference or around 2 degrees ( 10 - 7.939 ) for 
Phi. 
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5.3.3 Discussion on the accuracy of the registration 
 
If we analyse these results we can conclude that the registration is correct. These results have been 
demonstrated by the nature of the residuals and the histograms. The registration is also very robust to 
changes of the positions of the initial datasets to some extent.  
However after registration the corresponding planes should be parallel. Even though the residuals are very 
low, still it shows some offsets (figures 5.2 and 5.3). This indicates some errors. According to (Bergevin et 
al., 1996) the accuracy of registration may be influenced by two types of errors: acquisition errors or/ and 
registration errors. For the type of datasets we used, we could add a third error: the errors within the CAD 
model due to manual modelling errors. As stated before, the result of registration is closely link to the 
nature of the matched features. If we analyse the histograms, we notice that although they should follow 
generally a normal distribution, the tails are slightly right or left skewed. This skew indicates some 
problems within the planarity of the segments registered. We know that CAD model have good planar 
segments, however for the specific datasets we used they are slightly tilted due to modelling errors. The 
datasets registered involved CAD model and Point cloud, the planarity problems must be also within the 
point cloud segments. This may be explained by the fact we have imaged based point cloud which is 
generally noisy. And this noise may come as outliers and affect the planarity of the segments. Occlusions 
present within the sets of images used to generate the point cloud may also produce noise which will 
affect the planarity of the point cloud segments. And naturally when tilted planes (from CAD model) and 
segments with planarity problems (from point cloud) are registered together, the planes after registration 
will not be completely close and parallel, we may have some offsets. This explains the amount of residuals 
(errors) we have after registration. Errors which are a combination of both systematic error (acquisition 
errors) and registration errors (noisy UAV segments) but also errors from the CAD model. 
Another source of registration error is the use of false matched features during the registration process. 
However, this is not our case because only good matched pairs were used. The matching algorithm was 
robust enough to discard false matched pairs. 
We can conclude that the systematic errors and the registration errors are interdependent in our case. 
Because registration errors may result from matched features with planarity problems and the nature of 
the features may partly also depend here on the acquisition of the data (systematic errors). 
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6. CONCLUSION AND RECOMMADATIONS 

6.1. Conclusion 
 
With the unmanned Aerial vehicle (UAV) it is possible to acquire high resolution images at a low cost. 
However, the main limitation is with GNSS/INS systems used on board UAVs. It has a low cost but it is 
not accurate. If we recall our assumption, UAV images can be oriented with quite a high accuracy but 
location with respect to coordinate frame is uncertain because of limited onboard GPS positioning 
capabilities. This will result in poor initial orientation with offset of around 3.5 m and angle of 5 to 10 
degrees. 
To better orient the images we may think of having high quality navigation device (IMU or RTK 
techniques) as an alternative to the inaccurate GPS to improve the accuracy. As we elaborated in this study 
this will be expensive and the UAV will lose its main advantage i.e its affordability. 
The other alternative is to orient the images. The aim of this study was the automatic registration of 
architectural (CAD) models of buildings to airborne images. 
The registration of the CAD model and the point cloud was performed using the assumption the two 
datasets are close (offset 3 to 4m). This study has proven that it can be done with a high accuracy. 
However our study has shown that the following challenges have to be identified and solved before 
performing the registration. 

 A good, reliable and up-to-date CAD model, because this study has revealed that a bad or not up-
to-date CAD model can have negative effects on the overall registration process and results. 

 Reliable point cloud segments. Outcome of a feature based registration is closely linked to the 
nature of features used during the registration. As highlighted in this study, having reliable planar 
point cloud segments is important. So the type of segmentation and strategy used is also critical. 
Image based point cloud is noisy and the strategy of segmentation applied should be able to 
extract a maximum planes with negligible amount of noise. 

 A very good matching strategy. This study has shown that false corresponding pairs but also 
undetected matched pairs are source of errors for the registration. So to have a good matching 
strategy is critical. The look for corresponding pairs should be combined to the ability to discard 
wrong matched features. 

The registration of imaged base point cloud and CAD model is very promising. In fact the registration of 
point cloud and CAD model is the main step in many applications of computer vision like damage 
assessment, construction progress monitoring, automatic inspection. So the success and accuracy of the 
registration are critical. 

6.2. Answers to the research questions 
 
1. What are the available techniques for 3D/3D registration? 

From our study we pointed out the following techniques 
 Point to point registration where the transformation parameters are evaluated using 

corresponding 3D points from both datasets. 
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 Plane to plane registration where a minimum of 3 non parallel corresponding planes are 
extracted from both datasets to perform the registration 

 And finally a combination of different features like point to plane to perform the registration 
 

2. Which of these are more suitable to both 3D CAD model and the 3D point cloud? 

In this research, methods which used features like point to plane or plane to plane have proven to be 
more reliable and successful in the registration due to the nature of the datasets. 
 
3. In case of feature based registration, which features are more robust to occlusion problems? 

This research has demonstrated that point and lines are very sensitive to noise and clutters. In the other 
hand, planes are more robust to noise. Furthermore planes are more distinguishable and less difficult to 
extract than point. Therefore in case of feature based registration with occlusion, registration using planes 
are more appropriate. 
 
4. Which search strategy is more suitable for looking for corresponding features to match? 

Taking into account the two datasets are close, compatibility of normals and distance properties were 
used to find correspondences between the two datasets. A one to many correspondences were used 
before refining it to remove false correspondences to make sure the right corresponding partner were 
selected. 
 
5. How accurate and successful is the registration algorithm especially with occlusions/gaps? 

The completeness and correctness of the matching algorithm was based on correctly matched planes 
and false matched planes. The average completeness and correctness are 80% and 100% respectively, 
we can conclude that, for this particular type of datasets, the accuracy of the matching algorithm is 
high and reliable enough. The completeness is less than 100%. This was expected as we had an 
assigned CAD plane (CAD plane with no partner). This also is a proof that the algorithm is robust 
against bad modelling or segmentation errors and also occlusions/gaps. 
 

6.3. Recommendations 
 

To improve the algorithms, followings are some recommendations: 

 In this research we have used only big-sized UAV planes after segmentation. Non planar segments 
could affect the result of the registration. To increase the accuracy of the registration, further research 
could focus on developing a method to remove automatically non planar UAV segments after the 
segmentation before performing the matching and registration.  

 
 In this research in our matching algorithm, we selected good combinations by systematically testing all 

combinations. This may be computationally expensive when we have a big number of planar features. 
To reduce the time of computation, future work can focus on big-sized planes, after extracting all 
planes in both datasets. Furthermore, to reduce the search space, among this big-sized planes we can 
select only the ones which are spread as much as possible in space because this will give in better 
result. 
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 Feature based registration result is closely linked to the nature of extracted feature. For manmade 
structure like building planar feature are expected. For non structured surface, our method need 
further improvement in order to be applied due to difficulty of extracting reliable features for 
matching when we have non structured surfaces. 

  Further study could use additional geometric properties to check the effective overlap of planar faces 
after the matching during registration of 3D CAD model and the 3D point cloud. 
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