. & UNIVERS]TA \Orchestrating a brighter world
B2 DI TRENTO ehesirating = hriont NEC

Department
of Information Engineering and Computer Science

Master’s Degree in
Computer Science

FINAL DISSERTATION

SECURE AND TRANSPARENT DISPUTE RESOLUTION
SYSTEM IN SUPPLY CHAINS USING HYPERLEDGER

FABRIC
Supervisor UniTrento Supervisor NEC Laboratories Europe
. &75 2“/'\0 6}\&83“# mf
Bruno Crispo ' Ghassan Karame Zﬁ
Student
Cristian Rotari 213321

ACADEMIC YEAR 2019/2020

Acknowledgements

This dissertation would not have been possible without my thesis supervisors from NEC Laboratories Europe,
that assisted me during the research, development and writing process of my thesis.

Firstly, I would like to thank Dr. Ghassan Karame, that had my best interests at heart when times were tough
and uncertain. He was a great mentor by motivating me in my work and by knowing when to offer constructive
criticism or when to show appreciation.

Secondly, I would like to show my thankfulness to Alessandro Sforzin, that assisted me with the technical dif-
ficulties that I faced and who was always available in helping me clarify things.

Next, I would like to thank my supervisor from University of Trento, Professor Bruno Crispo, which advised
and accommodated me in the process of making this thesis possible.
Similarly, I would like to express my gratitude to Ms. Volha Tarasevich, who continuously provided me through-
out my internship and thesis with valuable practical information in a timely manner. Also putting efforts into
solving bureaucratic issues.

I would also like to take this time to mention and thank one of my university professors at University of
Twente, namely: Dr. Andreas Peter. Thank you for your professionalism, sharing your expertise with me and
for always being eager to help.

Moreover, | want to show my appreciation towards EIT Master School, who changed my life for the better
on an academic, professional as well as personal level by providing me with a scholarship that made this masters
experience possible.

Additionally, thank you to the University of Twente and University of Trento for the support throughout this
period and for making this all possible.

A big thank you goes towards anyone who I may have missed that has contributed to this thesis by giving
me advice or support when I’ve asked.

Lastly, I would like to sincerely thank my family and friends who I could always turn to and who continu-
ously had my back.

Abstract

Consumerism has become one of the main pillars of today’s world economies. This is putting increased pres-
sure on supply chains to have a good and efficient management. The increased size and complexity of supply
chains along with fraud and misunderstandings also results in a high number of disputes between parties. These
have the potential not only to disrupt supply chain partnerships and activities, but also lead to time and financial
losses.

Blockchain is one of the most promising technologies that can improve the way supply chains are managed. It
has the potential to bring transparency and traceability in the system, increase security and reduce administrative
costs.

This thesis proposes a dispute resolution blockchain system built with the permissioned Hyperledger Fabric
technology, which helps manage and solve disputes in the supply chain easier. The developed system allows
easy tracking and access to information among supply chain participants such as the source, current and past
states and holder information of assets. It also enables dispute creation, examination and settlement within the
app. Because the designed system is meant to be as automated as possible, it implements automated shipment
deliveries among organizations. To showcase the system functionalities, a web Graphical User Interface has
been developed. Finally, the system design is analyzed from the security point of view and implementation
details are discussed.

The paper concludes with the idea that blockchain technology, especially permissioned blockchains, have great
applicability in the supply chain management process. Moreover, the dispute resolution process can benefit
from such a technology firstly by preventing disputes and secondly by offering means to a transparent and ef-
ficient resolution.

Index Terms: Blockchain, distributed ledger, supply chain, dispute resolution, security, traceability.

Contents

1 Introduction

L1 Context e e e e
1.2 Motivation o o e e e e
1.3 ODbjJectiVes o ot o e e
1.3.1 Main ObJectiVes v v o e e e e e
1.3.2 Secondary Objectives e
1.4 Dissertation Structure e e e e
2 Related Work
3 Background
3.1 Blockchain Technology e
3.1.1 Blockchain Architecture
3.2 Hyperledger Fabric e
3.2.1 Traditional distributed ledgers architecture
3.2.2 Fabricarchitecture
323 Transactionflow
3.2.4 Hyperledger Fabric Components
4 System Design
4.1 Requirements specification
4.1.1 Functional Requirements
4.1.2 Non-functional Requirements,
42 System OVEIVIEW v v o i e e e e e e e e e e e
42.1 Network Topology o
4.3 System Architecture
4.3.1 Dispute Resolution Fabric Network
432 REST Server e
4.3.3 Graphical User Interface
5 Security Analysis
5.1 Hyperledger Fabric Security e
5.1.1 Immutability e
5.1.2 Privacy and Confidentiality
5130 CONSENSUS .« v v v v vt et e e e e e
52 DeSIZNSECUIILY . . . v v v v o e e e e e e e e e e e e e e e
6 Implementation
6.0.1 Processdescription
6.1 Dispute Resolution Fabricsystem
6.1.1 Network Deployment
6.1.2 Chaincode Implementation
6.2 REST Server e
6.3 Front-end application e e

11

18
18
18
21
21
22
23
24

53
53
53
53
54
54

7 Validation and Testing

T Testing o o e e e e e e
7.2 System Validation.
7.3 Graphical User Interface guide
7.3.1 Delivery Flow
732 Dispute Flow e

8 Conclusion

A Application Screen Captures

65
65
66
67
67
68

70

73

List of Figures

1.1

2.1
2.2
23

3.1
32
33
34
3.5

3.6
3.7

4.1
4.2
43
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6

A.l
A2

Process flow in a simplified supply chain 8
Overview of proposed concept. Adapted from [7] 12
Multi-chain architecture data flow. Adapted from [14] 14
Buy process event responses. Adapted from [18] 16
Sequence of blocks in a blockchain. Source: [22]., 19
Order-Execute architecture 22
Execute-order-validate architecture L L 23
Hyperledger Fabric transaction flow 24
Membership service provider (MSP) hierarchy diagram. ICA/RCA - Intermediate/Root Certifi-

cate AUthOTity 25
Peer-query (1-3) and Peer-update (1-5) operation steps [29] 26
Chaincode lifecycle relative to the system and application chaincodes 28
Circular interaction between System actors it 31
Network topology o e e e 33
System COMPONENLS o o e e e e e e e e e e e 33
OperationsContract data Structures v i it e e 35
StateContract data structures L 38
Items state transition diagram 39
Shipments state transition diagram 40
Disputes state transition diagram e 41
Shipment delivery flowchart 44
Shipment delivery interaction diagram 45
Shipment delivery state transitions example 45
Shipment return flowchart 46
Shipment return interaction diagram 47
Shipment return state transitions example 47
Shipment delivery flowchart - static path version 48
Graphical User Interface main components, 51
Types of relations between entities 60
Exemplification of entity dependency 61
State representations e e e e e e e e 64
Items tab screen capture e 66
Shipment creation SCreen Capture v v v v v vt e e e e e e e e e e 66
DeliveryInstruction SCreen capture v v vt vt e e e e 67
Shipments VIEW SCIEEN CAPIUIE v ot e e e e e e e e e e e e e e 67
Open Dispute SCreen Capture v vt v vt e e e e e e e 68
Item and Shipment information screen captures L Lo 68
Profile editor screen capture e 73
Items VIew SCreen Capture o ot v it e e e e e 73

A3
A4
A5
A.6
A7

Item details modal screen capture 74

Shipments View SCreen Capture v v v vt i e e e e e e e e e 74
Shipment creation sCreen Capture v v vt e e e 75
Instruction details screen capture e 75
Dispute Settlement process SCreen captureo i i e e e 76

Chapter 1

Introduction

1.1 Context

We live in a world in which consumerism is a key factor driving world economies. It refers to the consumption
of goods in larger quantities which usually motivates the production of goods. Furthermore, it offers a broader
range of available products and services, creates jobs and in turn grows the economy of a country. The tech-
nological advancements in the last 20 years and the fact that the world is becoming more and more digitalized
has impacted the way we live our lives and perform day to day activities. Among those it has also impacted
the way people do shopping and acquire goods. Nowadays the number of people preferring online shopping is
growing steadily and the current and future pandemic challenges of our society are going to stimulate that trend
even more.

An important factor enabling consumerism are the supply chains. Supply chains refer to the systems of activi-
ties, organizations, information and resources involved in the process of creating and delivering a product to a
consumer [1]. A system can be considered a supply chain if it involves three or more organizations or individ-
uals and it may contain upstream and downstream flows of resources. Organizations can take part in multiple
supply chains which may vary in size and complexity. The supply chain can not exist without the organizations
that form it and perform different functions within it. The typical participants in any supply chain are [2]:

* Producers: these organizations are also called manufacturers that produce goods, which in turn can be raw
materials consumed by other producers or final products that need to be delivered to the customer. Among
these can be companies that mine for natural resources, farms land, grow animals or those manufacturing
technological goods such as phones or laptops.

* Distributors: also known as wholesalers, buy products from producers in big quantities and sell them to
other customers. Their usual customers are other businesses that are interested in buying bigger quantities
than the regular customer. This participant has the role of offering demanded products to customer at the
right time in the right place. For this they have large inventories of products and act as a buffer between
the customers and producers which protects both parties from fluctuations in demand or supply.

* Retailers: these participants are the ones having moderately large quantities of products and they sell
directly to the end customer. Their primary goal is to make the product attractive to buy by combining
service, marketing and pricing strategies.

* Customers: these are the identities or organizations that buy and use products. They can either be end
customers or another type of supply chain participant that uses the bought product for the creation of other
products which in turn get sold to other customers.

Supply chains are considered bidirectional because of the different flows running from different ends. One
flow represents the distribution of goods and is going from the producers to the customers. Another one is the
financial flow which represents the customers paying for the products they are buying. The third flow describes
how information travels within the supply chain and is bidirectional. This is because suppliers get informed
about the demand of goods while customers have access to information about the products representing the
supply. The participants together with the aforementioned flows are represented in Figure 1.1. One must keep

in mind that this diagram is an extreme simplification of the numerous and different participants from a real
supply chain and the intertwined flows between them.

‘ PRODUCER K::> DISTRIBUTOR <:Z> RETAILER <:> CUSTOMER

Goods

Information

Money

Figure 1.1: Process flow in a simplified supply chain

Supply chain management is the domain responsible for assuring a seamless flow of resources from produc-
ers to consumers and vice versa, and for reducing the number of disputes between parties. Even though supply
chain management is directly connected to supply chains, the latter can exist without the former. It has been
shown that increased complexity within the supply chains has negative consequences on it such as increased
operational costs, delays and lack of cooperation and integration between business partners [3].

1.2 Motivation

Because of the previously described tendencies, there is an increased pressure on the supply chains to have a
good and efficient management. A simple mistake at the beginning of the chain could have a potential snow-
balling effect on the consequent processes, which in turn results in financial losses for the involved parties.

If we only look at employees of a company that take part in processing a product, we can understand that only
inside this organization a multitude of things can go wrong at various levels. Taking into account the size and
complexity of the supply chains and the vast differences between involved participants, it is only natural for
conflicts to arise at some point. A lot of the problems arise because of lack of information, information mis-
match or lack of trust between parties. As Min mentions in [4], "contractual disputes resulting from fraud,
misunderstanding, and performance failures can not only destroy the supply chain partnerships but also disrupt
supply chain activities with prolonged time for resolution”. Frequent disputes between business partners leads
to time and financial losses, broken commercial ties and dissatisfaction among involved participants. Therefore,
timely and efficient resolution of these problems are essential for a good supply chain management. Currently,
the dispute resolution process in a supply chain is a costly process in terms of time and resources and often
leads to bigger ruptures. Also, some of the biggest challenges currently faced by supply chains are the lack
of transparency and traceability, quality assurance and ultimately minimizing operational costs. Having this
in mind, new technologies present huge potential in improving the way supply chains are managed and how
disputes are solved within it.

One of the most promising technologies that can assist in managing supply chains more successfully is

the distributed ledger technology and more specifically blockchain. Having in mind blockchain’s design, it is
believed that it can improve transparency, traceability and reduce administrative costs in businesses, therefore
it is also applicable inside supply chains. Moreover, by providing a central distributed database which can act
as a source of truth, it can assist dispute resolution processes and enhance trust between parties.
Finally, because of the lack of trust, organizations are reticent with sharing information between them as it
might give other organizations a competitive advantage over them. For this reason, the privacy and security of
information systems and supply chain processes acquires a higher value. This leads us to the idea of private and
permissioned blockchains that can have a perfect fit to the current problem.

1.3

Objectives

The main topic of this dissertation represents the applicability study of permissioned blockchains, namely Hy-
perledger Fabric to supply chain management and more specifically to the dispute resolution process inside
supply chain systems.

1.3.1 Main Objectives

The main objectives which contribute directly to the stated topic can be formulated as:

Design and implement a proof of concept prototype representing a supply chain management system
enhancing the dispute resolution process. This objective can be considered achieved when the developed
application will allow every supply chain participant to perform normal operational activities as well as
open disputes and provide remedies for solving them.

Analyze the applicability of permissioned blockchains to dispute resolution processes within the supply
chains.

1.3.2 Secondary Objectives

The secondary objectives represent a series of steps that are required to be taken in order to achieve the main

ones:

1.4

The study of supply chains, supply chain management and disputes within them.

The study of blockchain technology: the functioning mode of a blockchain network, ways of reaching
consensus and validating transactions, types of blockchains, security analysis of the technology, advan-
tages and limitations.

The study of Hyperledger Fabric: mode of operation, advantages and limitations over traditional blockchain
networks.

Set up a Hyperledger Fabric test network having supply chain participants (e.g. producer, distributor and
retailer) run blockchain nodes.

Design and write chaincode for a supply chain dispute resolution system.
Implement a REST server for client applications, serving as a gateway to the Hyperledger Fabric network.

Design and implement a graphical user interface that provides means to interact with the developed net-
work and which showcases the functionalities of the system.

Dissertation Structure

The rest of this paper is structured in 7 chapters:

Chapter 2: Related Work, that provides an insight into the current state of the art in the applicability of
blockchains in supply chain and the dispute resolution process. Also, other examples are given of how
blockchain and distributed ledger technology can be used to improve present technological systems.

Chapter 3: Background, which describes the most important theoretical concepts needed in order to un-
derstand the rest of this work. In the first part, the blockchain technology is described from a more general
point of view, the blockchain types and how it can be useful in our world. The second part focuses on the
architecture and concepts behind the Hyperledger Fabric network, its advantages and limitations.

Chapter 4: System Design, represents the most important part of this dissertation and describes the rea-
soning standing behind the made design choices, how does the system function, the functionalities that
get enabled by it as well as its limitations plus some possible alternatives to certain parts of the design.

Chapter 5: Security analysis, looks into the system design from the security point of view. It specifies
what are the security implications from using this technology and this design.

Chapter 6: Implementation, dives into the technical details relevant to implementing the system such as
used libraries or important steps in setting up the Fabric network.

Chapter 7: Validation and testing, showcases the resulted application, its use cases, how the functionalities
were tested and an user guide.

Chapter 8: Conclusion, gathers all the achieved results and gives an overview of what has been done.
Ultimately it specifies how the system can be improved in potential future works.

10

Chapter 2

Related Work

The topic of supply chain dispute resolution systems is relatively new and there is not much scientific literature or
industrial projects addressing this issue. Nevertheless, there is a multitude of papers regarding the applicability
of blockchain in the supply chain and supply chain management.

For example, Feng Tian proposes in [5] an agri-food supply-chain traceability system based on RFID (Radio
Frequency Identification) tags and blockchain technology.The information from RFID tags can be recorded and
uploaded to the blockchain using wireless networks in different links of the supply chain such as:

* Production link where information relevant to the production process can be recorded for each item or
batch of items. For example plants can have all the information recorded from the time they were planted
to the time they got harvested, strain of the plant, when and what kind of pesticides were used, location
or fertilization details. The process can be similarly done for meat products where the breed, parents,
vaccination or diseases information can be recorded together with information regarding the personnel
operating with it. In this way, cases of accidents or anomalies can be easily detected and responsible
employees can intervene in a timely manner.

* Processing link uses the information provided by the production link and on top of that records valuable
information such as keeping conditions, expiration date, how the products have been processed and how
they should be handled consequently.

» Warehouse management link could make use of information used in RFID tags in order to manage the
stock dynamically and make sure the losses due to expiration or lack of proper preserving conditions are
minimal. Stored information can also be used to check the real-time environmental conditions during
storage or delivery.

* Distribution link uses temperature and humidity sensors to record the transportation conditions and make
sure it complies with the requirements stored on blockchain for the transporting items. Furthermore, GPS
can be useful to improve the delivery efficiency and keep track of the products in real time.

* Sales link can finally benefit from all the efforts put into recording the information by previous supply
chain participants. Therefore, customers are assured that the products they are buying are fresh, as sales
organizations can easily manage products close to the expiration date. Another key benefit is transparency
of products’ supply chain journey, as customers can use RFID tag readers to obtain the history of the
relevant item. Finally, accident risks can be mitigated as products can be easily localized and action
would be taken immediately.

This paper is a good example of how blockchains can be used in practice in the supply chain of agro-
products. Taking into account that food products are the ones with the most requirements, it can be concluded
that this approach is applicable to other fields with looser requirements. As it proposes a more general approach
on a real life example, we can consider it a confirmation that blockchains have real use within supply chains.

Saberi, Sara et al. in [6] discuss and review the blockchain technology adoption in the supply chains. It is
stated that blockchain’s ability to guarantee traceability, reliability and authenticity, basically removing partially
the need of trust in the system, brings the necessity to rethink how supply chains are generally designed. It also

11

mentions that more often than not, a private, permissioned blockchain might be required to be used, but does not
dismiss the applicability of public ones in certain scenarios. In comparison to regular supply chains, four major
entities required in a blockchain supply chains are mentioned: registrars which issue identities, standards orga-
nizations responsible for defining and maintaining policies and requirements, certifiers that provide certificates
needed in order to participate in the network and actors which include participant roles defined previously such
as producers, distributors or retailers. One important noted thing is the need of having a mechanism for checking
the permissions of different parties within the system and how parties would get into sell or buy agreements.
As a possible solution, smart contracts are mentioned, that can design the business rules required in real life.
In the second part of the paper the authors turn their attention to how blockchains can make supply chains more
sustainable. One angle is social sustainability in which corrupt individuals or organizations can be prevented
and held accountable for their misdeeds. Also it would help assure human rights by giving customers access
to product history which in turn would promote ethical production sources. Another one is the environmental
one, by enhancing product quality and therefore reducing the number of returns and reworks, which in turn re-
sult in less energy consumption and emissions. Another way is by giving another meaning to ’eco” or “green”
products, whose authenticity could become verifiable. Other mentioned positive effects on sustainability are
improved recycling processes, better tracking of carbon emissions and removal of intermediaries.

This article proves that the adoption of blockchains in the supply chain has various benefits not only for the
involved participants but also for the whole society and encourages further research in the domain, which this
dissertation is doing.

Abeyratne and Monfared propose in [7] a decentralized system with blockchain for collection, storage, and
managing of most relevant information of products.
All items have unique profiles that would get populated through their life cycle. The link between the software
identity of the product and the physical one is made through RFID tags or QR codes which contain cryptographic
identifiers. Actors can create profiles on the network through designated parties, representing their identity and
containing useful information such as location, descriptions or owned certifications. The actors of the system are
similar to the ones mentioned in [6] and they interact with the system through a commonly developed software
interface. The application would differ for every type of application and profile.

O

Authenticated

Access
Data Reglstrar
entry/access
\ 4 Actor
” Blockchain
User
Product
with tag
Standards Org
Certifier

Figure 2.1: Overview of proposed concept. Adapted from [7]

The code is executed and data is stored on a a blockchain network such as Ethereum [8]. To perform any
action on the ledger actors need to identify themselves with a valid set of public-private keys. It is proposed that

12

for each item, a set of rules would be created on the ledger as a smart contract, which decides who is allowed
to access what and checks permissions for certain actions. In terms of data access, each product would have
certifications stating what data is available for that identity. Therefore, a customer interested in checking the
history of events would have access only to the type of events, while a participant that handles the product
could access more information such as the specific identities that managed the product previously. The system
overview is shown in 2.1

Even though the authors provide sufficient evidence that such a system would benefit consumers, suppliers and
the environment, the proposed design has also disadvantages. Because of the need to store all the information
related to products, the use of the Ethereum network is unsuitable. Not only it is an unsuitable place to store
huge amounts of sensitive data [9], but also code execution in the network is too costly for the system to be able
to scale in a real world scenario.

In[10], Casado-Vara et al. proposes an improvement to the current agriculture supply chain with the addition
of blockchain technology. The main noted benefits added by this technology are the availability of data from the
beginning to the end of the chain as well as higher security in the transactions. Authors state that by incorporating
this technology, a circular type of economy gets enabled in which consumers and producers are linked through
the recycling process.

In another paper, Caro et al. [11] present AgriBlockloT - a blockchain based decentralized traceability
solution for the supply chain management of agro-food. In their solution, the following actors are identified:
providers which provide raw materials, producers that produces the food, processors whose responsibility varies
from packaging to complex actions, distributors responsible for the delivery of the product, retailers which
ultimately sell the products directly to the customer - the last actor. The system is composed of the following
modules:

* Blockchain representing the main component and which implements the business logic through smart
contracts. Depending on the needs and desired complexity, the actual implementation of the blockchain
can vary.

* Controller which has the job of a middleman between the blockchain and upper levels acting as an adapter
between low-level and high-level calls.

» REST API having the role of exposing the system functionalities in a easy and accessible way.

The main use-case of AgriBlockloT is to offer consumers complete information about the products they are
purchasing, with the requirement that all actors and [oT devices are registered on the blockchain with a public-
private key pair, and that all product related activities are recorded on the ledger.

The performance of the system has been assessed with two blockchain implementations: Hyperledger Sawtooth
and Ethereum. The results show clearly that Hyperledger Sawtooth has much lower latency, transaction size
or CPU load. This can be further taken into account when designing systems with a realistic applicability that
needs to scale.

The authors of [12], try to analyze on a theoretical level how the adoption of blockchain can influence the
supply chain management process. The paper concludes that one of the biggest benefits would be the reduction
in costs for supply chain operations, as it reduces the time needed to look for reputable partners thanks to the
records regarding their reputation. Also by implementing business contracts in logic, some of the processes
would become automated reducing needed resources to be put in activities related to it. At the same time, this
technology may have a disruptive effect on the established supply chain and the relations and governing within.
These findings therefore motivate further research in the domain and makes the blockchain adoption in supply
chain more promising.

A blockchain based tracking system is proposed in [13]. Just like in previously mentioned articles, the
data is shared between participants using the ledger network. Smart contracts are interpreted as state machines
responsible for tracking the status changes of goods. Moreover, interested stakeholders can track or react to
specific state changes depending on the terms of agreement stated by the smart contracts. In this way the
information from the supply chain is delivered to the participants through a push mechanism rather than pull
as it currently is. This would reduce the needs to keep backlogs and result in lower operation costs. It also
concludes that an on-chain payment method would be beneficial and reduce payment lead time.

13

Regarding the dispute resolution process within the supply chain, the available literature uses blockchain
as a way of storing information and a mediation point that does not take decisions about who is right or wrong,
but rather offers means to help solve the issues.

For example the authors in [14], introduce a blockchain-based solution for cross-border e-commerce supply-
chain, to solve the traceability problem. The data stored on the blockchain is classified into five categories:

« Digital documents which replace paper documents, increase processing speed and reduce transaction
costs.

 JoT Data which is essential in providing product traceability.
* Transaction records that are afferent to the implementation of the blockchain system.
* Traceability tags representing the digital identities of products on the ledger.

» Execution records of smart contracts, which are stored on the ledger and are used to look for solutions in
case of disputes.

Big quantities of data are stored outside the ledger (e.g. IPFS) and only the hash of the uploaded data
is stored on the blockchain. The most important element providing security and traceability in the system
is the traceability tag, which is generated using elliptic curve cryptography, is difficult to crack or copy and
ensures privacy and security. While suppliers and producers upload product information manually or through
IoT devices, consumers and auditors have access to this information stored either fully or in IPFS, and can
conduct checks on the history and validity of the product.

Depending on the need for read and write speed, access frequency and data encryption requirements, the data
is stored on three different chains that satisfy the needs. Namely these are account chain, transaction chain and
IoT chain, which operate on different levels and interact between them accordingly as shown in 2.2 [14].

Enterprise & | _Registration Account chain
Regulator Information
Product & Account
Information
Organization — Transactions Transaction chain
Transaction &
IOT Data
Logistics &
GPS & Sensors — Delivery
Information

Figure 2.2: Multi-chain architecture data flow. Adapted from [14]

The biggest challenge in the adoption of such a system is the fear of using the immutable blockchain tech-
nology among participants, which would be from different countries and that do not trust each other in the first
place. As mentioned previously, the the system can provide means and data for collaboration, but it can not
solve disputes within it. It can offer evidence and accessible data to parties across countries but the issues still

14

need to be addressed in the legal and commercial system. Also, the interfaces between the developed systems
and the enterprises need to be developed accordingly to the needs of each and every organization.

Wang et al. in[15] built an information management framework in the construction domain using blockchain.

The system is used by project owners, contractors, off-site plants and logistic companies by serving as a mean
to collect and query information during the whole process of precast ordering, starting from its production to
final use. Relevant information such as digital identity, delivery truck information, quantity or check-in time
are recorded on the ledger. Because the information shared is of sensitive nature and the actors know each other,
a permissioned ledger is preferred over the public one. In order for the process to flow smoothly, parties need
to collaborate and communicate between them, therefore the process is not fully automated. For a transaction
regarding the precast to be considered valid, all parties must agree on the details to be written.
Organizations which are using the network also participate in the transaction validation process on the network
level, by including business rules in it. That is, the off-site plants, logistic providers, construction providers and
project owners start by proposing a transaction, after which the proposal is verified and executed by the peers
of other organizations, then the transaction gets ordered by the ordering service and finally it gets validated by
the peers. The clients gets notified about the outcome of this process. For the implementation part, Hyperledger
Fabric 1.0 was used together with Golang as the chaincode programming language. The resulting framework
does not only make the flow of information smoother between parties, but also offers a way to access traceable
information at any time, therefore facilitating the dispute resolution in case of claims. It is stated that such a
system can enhance supply chain management process from the following perspectives:

1. Accessible and easy way of sharing information between participants.

2. Real-time control of the process and ability to intervene at any moment during the process, thus reducing
the number of disputes.

3. Traceable information, which allows for easy auditing and dispute resolution.

The authors of [16] came up with a solution that uses Ethereum blockchain and smart contracts to track and
trace transactions in the agricultural soybean supply chain. The solution makes use of smart contracts, which can
notify the interested parties when a specific transaction occurs. This allows for an automated way of monitoring
and preventing frauds and disputes. The actors of the system vary from the seed company, through processors,
to retailers and finally customers. The plants are registered on the blockchain using Global Trade Identification
Numbers (GTIN), which make it easy to track information in the system. Bigger quantities of information are
hashed and only the hash is stored on the ledger. Such an example are the images of the growth of the plants
which are stamped and uploaded on IPFS. The farmer can either be responsible for uploading accurate video
materials, or secured video cameras can also be installed that track the growth of plants, allowing for easy
verification or dispute opening. Even though the system checks for validity of input data, it can not check if
the actors inputting it are honest. To make up for this fact, smart contracts can have functionalities to invalidate
shipments or flows, once fraudulent data is eventually discovered. This will allow new correct data to be linked
to untrue one, thus ensuring correct information auditability and traceability.

A real-time supply-chain architecture for project deliveries is built in [17]. By using RFID, QR codes and
IoT devices, the real-time characteristic of the system is ensured. Each transaction is linked to a generated ID,
user ID, transaction timestamp and location of the device. The information is inputted to the system manually
using either the web or mobile application. Also implemented with Ethereum, the system’s performance has
a ceiling because of the maximum number of possible transactions per second. Because of these reasons, the
operational use of the system is more similar to the Observe - Orient - Decide - Action loop, meaning that the
management of the system checks the normal functioning of it, and intervenes only in case of necessity.

The paper [18] develops a system prototype that can track back a product to its source by using the trans-
actions log associated with it. It works as an event-based system in which every transaction is verified before
being validated.

The supply-chain participants are grouped into suppliers, manufacturers, distributors and retailers, which all can
have the demand or supply function. There is an additional regulatory department that monitors the activity in
the system and acts in case of necessity. The system logic consists of three smart contracts: for registering new
products in the system, to add and manage batches of previously added products and to add to the ledger trans-
actions relevant for a batch. To achieve traceability of goods, another level of distributed ledger is implemented

15

on top of the blockchain architecture within the third smart contract. More specifically, validated transactions
related to the batch are linked together using the same chaining mechanism (e.g. linking with the hash of the
previous block/transaction) and they serve as a source of truth when verifying new transactions. The agreement
process in a purchase transaction consists of the following steps and events shown in Figure 2.3 [18]:

1. Buyer purchases goods and the system triggers the Buy event with the relevant necessary information
(i.e. addresses, batch and product information and signatures).

2. Seller verifies validity of signature in the events and responds accordingly with Respond event.
3. Seller sends goods to buyer and system triggers a Send event which contains the important information.

4. Buyer signals the receipt of the shipment by triggering the Receive event.

1. Buy Event
Buyer < >

A 4. Receive Event

Send
Goods
~ 2. Respond Event
< 3. Send Event > Blockchain
Seller

Figure 2.3: Buy process event responses. Adapted from [18]

The prototype has been built on truffle framework using Ethereum test network and from a security per-
spective is characterized by data accessibility and immutability, system autonomy and resistance to man-in-the-
middle attacks by using signature schemes.

One similar piece of work is [19]. The author analyzes and builds a system with Hyperledger Fabric and
Composer, that is able to allow users create and manage products and shipments in the supply chain, query
and audit the transactions written on the ledger, submit complaints and update status of the products. In order
to facilitate payments between parties, a cryptocurrency is introduced to the system. Among the normal users
of the system (i.e. supplier, manufacturer, distributor, retailer, customer), there are also regulatory users able
to audit and observe the normal functioning of the system and admins that have close to full control over the
information on the ledger. The assets that the system operates with are:

« Commodity - representing a single product with all the relevant necessary information about it.

» ShipmentBatch - representing a physical shipment from a seller, containing commodities, delivery infor-
mation and is associated to a contract.

* OrderContract - representing the digital buying contract associated to a ShipmentBatch. It holds infor-
mation regarding the agreement between parties and conditions that need to be met. Based on this infor-
mation, fraud and mistakes in the system can be detected.

16

In order to expose the functionalities of the blockchain system to the outer environment, a REST API was
developed on top of the network. The resulting system proves that a feasible supply chain management system
can be implemented to improve security, traceability and operational process. Nevertheless, the system does
not address the disputes that can arise between parties and only mentions that the design can assist in the dispute
resolution process.

Judging from the presented scientific literature, we can conclude that supply chain management systems are
possible to implement in various domains and they would bring clear added value to the current ones. Traceabil-
ity and security are among the main advantages that these implementations bring. Even though the mentioned
designs try to reduce the number of disputes or aid by providing a shared way of accessing information, they
do not go in details into the process of resolving issues. Therefore, in this dissertation we are going to attempt
to contribute to the exploration of dispute resolution process within blockchain supply chains.

17

Chapter 3

Background

This chapter will briefly describe the main technologies required to understand the content of this disserta-
tion. First it will start by describing the blockchain technology from a wider perspective, history and types of
blockchains. In the second part we will dive a bit deeper into the permissioned Hyperledger Fabric network and
the specifics about it.

3.1 Blockchain Technology

The beginning of blockchain technology is marked by the introduction of Bitcoin by notoriously famous, but
still unknown group or individual Satoshi Nakamoto in [20], where a peer-to-peer electronic cash system is pro-
posed, which allows sending payments between parties without a central authority. Several years later, Bitcoin
represents a multibillion dollar market with a multitude of varieties and adaptations of the original network.
Currently the world relies on third party actors whose main role is to offer security, provide confirmation of
our online actions or certify identities. The presence of these third parties in every online process makes sys-
tems more complex, opening more possibilities for security vulnerabilities, fraud, corruption and manipulation.
Blockchain has the advantage of being able to remove these limitations by introducing a distributed consensus.
Moreover it does so by preserving the privacy and anonymity of involved parties. With such advantages at
hand, the current way of how things work can be challenged, putting a new system in place with fundamental,
game-changing differences. This potential outweighs all the complexity, regulatory and technical challenges
that come with this technology.

3.1.1 Blockchain Architecture

A blockchain essentially represents a distributed database containing records, transactions or events information
that are shared among all the participants of the network [21].

Blocks

Every block has only one parent block, to which it is linked through a hash. The only exception is the first
block recorded on the ledger, which has no parent and is called genesis block. An example of a blockchain
architecture corresponding to Hyperledger can be seen in Figure 3.1.

A block consists of three sections [22]:

1. Block Header consisting of the following fields which are cryptographically derived internally:

* Block Number representing the sequence number of the current block since the creation of the gen-
esis one, which has the 0 index.

* Block Hash, which is made of all the contained transactions from a block, hashed together.

* Previous Block Hash, which points to the anterior block header hash. In this way blocks are linked
between them.

18

Blockchain

DO

(genesis)

Block

H1

Block header

Block data

D1

Transaction

Block metadata

H2 is chained to H1

Figure 3.1: Sequence of blocks in a blockchain. Source: [22]

2. Block Data containing a bunch of ordered transactions.

3. Block Metadata, containing identity information of the block creator and used in the process of validating
the block by commiters. This field is not included in the hashing process.

Digital Signatures

Digital signatures are at the base of identities and privacy in blockchain networks. Users have a pair of crypto-
graphically secure private and public keys, which are related between them through modular arithmetic proper-
ties. The keys belong to digital signature cryptosystems such as ECDSA, RSA or DSA. The private key, as the
name suggests, must be kept private and represents a person’s identity on the blockchain. On the other hand,
the public key is shared to the network for everyone to see. Transactions are signed with the private key before
they get broadcast to the network. The process of digital signature is usually composed of two steps [23]:

* Signing phase in which the person that wants to send the message uses his private key to encrypt the

message.

* Verification phase in which the recipient of the message uses the sender’s public key in the decryption
process. Based on modular arithmetic, if the public key is related to the private key, the decryption process
is successful, otherwise it is impossible to recover the message. In this way, one can sign messages in a
way that proves that he is the sender, and that the data has not been tampered.

Main Characteristics

Generally, blockchains are described by the following main aspects, which also represent their strength [23]:

* Decentralization - as there is no need to have a third party entity validating and managing transactions,
the system relies on the collective power of participants in the network. This not only reduces costs, but
also eliminates bottlenecks, enhances trust in the system and makes it more secure by removing the single
point of failure.

* Auditability - as the network represents a chain of blocks of transactions, the validity of every input and
output can be verified by consulting the history of transactions. This greatly reduces the possibility of
fraud and data manipulation.

 Security - thanks to the Public Key Infrastructure, transaction data on blockchains is encrypted, removing
the need for having a gate-keeper.

19

* Persistency - once a valid record is added to the ledger, it is nearly impossible to remove it or to add an
invalid record. This property lies in the nature of the system of data redundancy. By having the necessity
to store the ledger on every network node, the system becomes highly secured.

* Anonimity - depending on the type of network, users can interact with the blockchain only by having a
pair of valid keys and without providing any information about their real identity.

» Consensus - one key element making blockchains so trusted are consensus algorithms, which help in the
decision making process within the network. This is responsible for making the blockchain trustless,
meaning that there will always be a single truth among all the participants that do not know or trust each
other.

Blockchain Taxonomy

Since the creation of Bitcoin, blockchain technology has been under various transformations. This is because
different systems and architectures are suitable for different use cases. There is no silver-bullet blockchain type
that is suitable to any kind of problem. That is why it is important to know the differences between them and
their characteristics. According to [24], blockchains can generally be attributed to one of the following groups:

* Public Blockchain - this type of blockchain is permission-less, meaning that anyone with an internet
connection can take part in the network and submit transactions. In this version, each peer has a copy of
the ledger and participating nodes are responsible for keeping it working by validating transactions and
reaching consensus. This is one of the most popular types of blockchains, mainly because the first created
blockchains are public and because it has a wide adoption. Among its advantages are:

Requires no intermediaries for it to work.

The bigger the network, the more secure they become.

Can be joined by anyone and brings trust among participants that do not trust each other.

Anyone can verify the data.

Despite their wide adoption by users, this type of blockchain is not suitable for all use cases, namely
because of the following limitations:

— Transaction speed: the strength in numbers of this network comes with this drawback. This is mainly
because it takes a lot of time to reach consensus and propagate a decision between huge number of
users. This makes public blockchains unscalable, as they become slower with time, making them
unsuitable for many current business applications.

— The fact that the network is public can come as an disadvantage in cases where parties want to engage

in private interactions or when they do not want to disclose certain information to the public.

* Private Blockchain - these types of networks are the ones functioning in environments with certain re-
strictions, usually under the control of an entity. In this type of network, in order to be part of it, a trusted
entity needs to give such permission. They are also considered partly centralized, as the controlling entity
monitors and gives permissions to users, while the participating users maintain the decentralized nature.

The advantages are:

— Transaction throughput - because of the smaller size of the network and simplified way of reaching
consensus, the number of possible transaction for a time interval increases considerably. This makes
it suitable for use cases where scalability is an important factor.

— Privacy - as the access to the network is permissioned, this type of blockchain becomes suitable for
more private interactions such as business agreements that should not be disclosed to non-members.

Respectively, the disadvantages are:

20

— Network is not fully decentralized anymore, which goes against the definition of blockchain and
distributed ledger technology.

— Lower security by having a smaller number of running nodes.
— Trust in the network has a changed definition as there is a central authority.

» Consortium Blockchain - this type of network has some features of the public and private one. It has a
decentralized nature because there are predefined nodes that take part in the decision process, and it has a
private nature because access to the network is permissioned. It can be looked at as a private blockchain
that shares the decision making process between multiple entities. Their strength lies in:

— More customizable than its predecessors.
— More efficient than public blockchains.

— Suitable for cases in which the ruling entities are well-defined and do not change.
The weaknesses are:

— Reduced transparency in the decision process.
— Less secure due to the ruling entities integrity.
— Less anonymous than other types.
* Hybrid Blockchain - this type represents a combination of public and private blockchains. It can have
permissioned or permission-less access at the same time. Some of the data can be kept private while the

other can go public. An example can be a private blockchain that consists of more public ones or that
have connections to public ones.

It has the following strong points:

Customizable depending on the needs.

Immune to 51% attacks.

Better scalability than the public network.

Works in a closed environment keeping public properties.
while the weak points are:

— More complex to create.
— Lack of incentive to participate and maintain the network.

— Less transparent.

3.2 Hyperledger Fabric

Hyperledger Fabric is a free and open-source distributed ledger platform. The participants in the network are
known to each other, unlike in the public distributed ledgers, meaning that there should be some kind of trust
mechanisms established between them in order to have some kind of authority in the system. This makes the
platform best suited and meant to be used at enterprise level between partners, competitors and regulators [25].

3.2.1 Traditional distributed ledgers architecture

Usually distributed ledgers follow an order-execute architecture which means that initially the nodes agree on
an order of the transactions through a consensus protocol such as Proof of Work, followed by the execution of
these transactions on all the nodes in the network. This architecture is shown in Figure 3.2.

This traditional architecture is fairly easy to understand and it achieves the desired results, making it vastly
adopted in different blockchain networks. Nevertheless, it suffers from a series of limitations and drawbacks
such as [26]:

21

Order Execute Update

State
Consensus or Deterministic Persist state on all
atomic broadcast execution peers

Figure 3.2: Order-Execute architecture

* Limited throughput: because of the sequential execution of transactions on all the nodes, the resulting
throughput is affected, thus increasing latency and making the network susceptible to denial of service
attacks. This can happen because the blockchain acts like a distributed computing machine, and a smart
contract whose execution does not terminate can make the whole network unavailable. In order to over-
come this threat, some distributed ledgers adopt different limiting mechanisms (e.g. gas for Ethereum)
which might become unsuitable for permissioned ledgers.

* Domain-specific languages: because the structure and content of the blockchain should be kept consistent
among all the nodes, the code executed on it must be deterministic in order to avoid network forking. The
most popular blockchain networks achieve this by introducing domain-specific programming languages,
which represent another inconvenience for the programmer and influences negatively the adoption rate of
the technology. On the other hand, integrating blockchain with general-purpose languages can be a real
challenge as some of them are not always deterministic, which can potentially lead to the inconsistency
of the whole network.

* Lack of confidentiality: this limitation is a consequence of one of the strengths of many permissionless and
public networks - transparency. Because the code has to be executed on all the nodes, peers have access
to smart contract logic, execution parameters and data. This might pose a limitation for many businesses
that can not and do not wish to expose confidential business details. Even though there are techniques
such as encryption to keep the data confidential, they significantly increase the overhead making them
unsuitable for practical cases.

* Another limitation of architectures that currently exist is fixed consensus protocol: prior to Hyperledger
Fabric, blockchain networks allowed only one type of consensus mechanisms, which therefore reduces
the flexibility and adaptability of the network to case by case business needs. It is also known that the
performance of different consensus protocols differs significantly when introduced to different environ-
ments. For example BFT protocols’ performances vary considerably when performing in adversarial
environments.

3.2.2 Fabric architecture

Fabric is a system operating on permissioned blockchain networks which executes applications written in gen-
eral purpose programming languages such as Java, NodeJs or Go and has no cryptocurrency built in. Because of
the previously mentioned limitations of traditional distributed ledgers limitations, it follows an execute-order-
validate architecture that can be seen in Figure 3.3

Simply put, a Fabric distributed application is composed of two entities:

* A chaincode which represents the smart contract that implements the logic of the application. It is exe-
cuted at the execute phase, can be written by a malicious developer and represents the central part of the
application.

22

Execute Order Validate Update

State
Simulate TX and Order rw-sets Validate Persist state on all
endorse Atomic broadcasts endorsements & peers
Create rw-set (consensus) rw-sets
Collect Stateless ordering Eliminate invalid
endorsements service and conflicting TX

Figure 3.3: Execute-order-validate architecture

* An endorsement policy that represents a static library used for validating transactions in the validation
phase by specifying the peers that are necessary for endorsement. It can be modified by system adminis-
trators and chaincode developers do not have access or influence over it.

Because Fabric is a permissioned network, all the peers in the network have an identity which is given to
them by the membership service provider (MSP). The network is composed of the following roles:

* Clients which propose transactions for execution, take part in organizing the execution phase and dis-
tribute transactions to be ordered;

* Peers that store the blockchain ledger data which contains a chain of transaction hashes and the latest state
of the ledger. Peers that are specified by the endorsement policies or chaincode are also called endorses
and they have the role of execution of transaction proposals and transaction validation.

* Orderers that are unaware of the application state and do not get involved in the previous execution or
validation phases. These nodes are responsible for creating a total order of transactions which contain
ledger state changes and cryptographic signatures of the endorsers.

3.2.3 Transaction flow

The transaction flow (Figure 3.4) starts with the execution phase (or proposal), in which clients sign and send
to the endorsers the transaction proposal to be executed (1). The proposal contains data such as client’s identity,
payload, parameters, transaction identifier and a nonce used to uniquely bind each client with each transaction.
The endorsers execute the operation in isolation and therefore simulate the proposal against his local ledger’s
state (2). As a result of this, each endorser produces and sends back to the client an endorsement containing
a readset which are the dependencies of the simulation to previous local states and a writeset that consists of
changes made by the simulation on the state (3). After the client collects enough endorsements on a proposal,
he creates the transaction and forwards it to the orderers (4).

In the ordering phase, a total order is established in each channel by the ordering service that groups
multiple transactions into blocks and chains these blocks using their hashes (5), thus improving the throughput
of the protocol. The ordering services has two high-level functionalities that can be called by the clients:

* Broadcasting a transaction containing its payload and the signature.

» Retrieving a block by the sequence number containing a list of transactions and a hash of the previous
block. Because the content and sequence numbers of the blocks do not change, this operation is executed
only upon first invocation.

23

2 - Execute
chaincode

Endorser|
4' Chaincode

3 - Proposal
Response

6 - Validate
transaction

1 - Transaction
proposal

Peer

4 - Submit

transaction Orderi
raering 7 - Ledger

Service commit

5 - Order
Peer

transaction

Endorser

4’ Chaincode

Figure 3.4: Hyperledger Fabric transaction flow

Orderers ensure that the blocks that get delivered in channels follow a set of safety properties that guarantee
the well-formed state of the transaction blockchain. The fact that the ordering services do not execute transac-
tions or maintain the state of the blockchain ensures the separation of consensus from validation and execution.
This leads to a highly modular design of Fabric, making the use of different consensus protocols possible in the
same network.

Before entering the validation phase, a block has to be forwarded to the peers by the orderers or through
gossip dissemination protocol. At this stage, the peers check the transactions in parallel using the validation
system chaincode (6). Transactions that do not meet the endorsement policy rules of the channel are deemed
invalid, after which a read-write conflict check is performed in sequential order to make sure that for each
transaction the readset corresponds to the actual state of the ledger locally stored (6), otherwise the transaction
is flagged as invalid and its effects are nullified.

After all the checks have been performed, the ledger is updated (7) by appending the new block to the ledger
and updating its state from the block writeset.

3.2.4 Hyperledger Fabric Components
Membership Service Provider

On a permissioned blockchain network, all the operations, messages and interactions between members have
to be authenticated, usually through digital signatures. For this, members need a way to prove their identity on
the network. The membership service provider (MSP) is responsible for issuing and maintaining credentials
for the nodes, which can be used for authorization and authentication. This is done through Root Certificate
Authorities (RCA) and Intermediate Certificate Authorities (ICA). The MSP consists of a component at each
node, where it is in charge of signing and validating endorsements, authentication of operations, verification of

24

the integrity and authentication of transactions.

In practice, MSPs are implemented as a set of folders added to the network configuration which determine
who the organization’s admins are, the permissioned entities and which other organizations have the right to
validate that entities are authorized to do a specific action [27]. It is the MSP that assigns roles to simple
identities by specifying the privileges the identity has in a channel or a node. There are two types of MSPs:

* Local MSPs that are bound to peers, orderers or clients and they state what permissions do users have on
that specific node. All the nodes need to define a local MSP in order to define the admins and participants
at a level. This type of MSPs exist only on the file system of the nodes.

* Channel MSPs which function at the channel level. Similar to local MSPs, the channel ones specify the
identities that take part in a channel (which are MSPs themselves) and the possible actions associated with
them. All channel members have the same channel MSP which they consult to decide if a transaction is
authorized or should be ignored. In order for a node to be part of a channel, the organization’s MSP
states that its trusted members should be included in the channel configuration. Moreover, the channel
MSP includes all the MSPs related to organizations that specify the orderers that take part in running
the ordering service. Even though conceptually a channel MSP is one for all the participants, in practice
every node has a copy of it and it is being synchronized and updated through consensus.

Whether we are talking about multinational corporations or small start-ups, the MSP allows employees’
identities to be attributed to the specific organization. Because of the one to one relation of MSPs and orga-
nizations, it is usually the case that they are named the same. In cases which an organization has multiple
departments and membership groups that are naturally separated, multiple MSPs can be created to outline these
differences. An example is shown in 3.5

O@O
ﬁ shop.msp | —> M.\ —) C‘)

Shop members

O@®©
Corp.Legal. .
Pish =4 ICA B RCA1 C‘D

Legal department
members

. Oa@O
Corp.Industrial. O
MSP ——> [{ V.V C">

Industrial department
members

/
TN

Figure 3.5: Membership service provider (MSP) hierarchy diagram. ICA/RCA - Intermediate/Root Certificate
Authority

Ordering Service

While public distributed ledgers offer the possibility to participate in the probabilistic consensus process, per-
missioned ledgers work differently. Fabric introduces a new type of node called ordering node or just orderer
whose role is to perform atomic broadcast to establish order on transactions. Orderers inject transactions for
broadcasting and during the batching process of transactions, a new block is formed when one of the following
conditions gets fulfilled:

¢ The maximum number of transactions in the block has been reached;

25

* The maximum size of the block has been reached;
* A predefined amount of time has passed since the last formed block.

All the ordering nodes together form the ordering service and because it achieves consensus in a determinis-
tic way, any block that gets validated is correct and final. This ensures the impossibility of forks to happen and
separates the consensus level from chaincode execution, increasing the performance and transaction throughput
in the network [28].

Besides ordering, another responsibility of the orderers is to maintain which organizations have the right
to channel creation. Also they enforce access control at the channel level by allowing or forbidding reading
or writing data or channel configurations. It makes these decisions based on policies set at the creation of the
channel or consortium. When an orderer received a configuration request, it checks if the requestor has the
necessary rights to perform the action, validates it based on the current configuration and packs the update
in a block. The block then gets distributed to all the peers on the channel which then verify if the approved
modifications follow the channel defined policies.

Peers

Another type of nodes are peer nodes, which mainly form the blockchain network by hosting ledgers and smart
contracts, also called chaincodes. Every peer keeps a copy of the ledgers and the chaincodes, which even though
increases redundancy, it represents the distributed nature of the blockchain and avoids single point of failure
vulnerabilities.

Even though it is theoretically possible that peers hold ledgers without chaincodes, practically every peer
needs a chaincode associated with the ledger in order to be able to read, write and interact with it.

In order to access the ledger and chaincodes, applications have to connect to peers using the Fabric Software

Development Kit (SDK) [29]. Applications can either query or update the ledger and the required steps for these
actions differ in complexity. The necessary steps can be seen in Figure 3.6

Blockchain
Network
/ 2.1 peer invokes chaincode with proposal \
@ Application
1. connect to peer
2. invoke chaincode (proposal) 2.2 chaincode generates Peer
A query or update
3. proposal response proposal response
! .
! 5. ledger update event Chaincode
[L — 1 4.2 peer updates ledger
: using transaction blocks
H i (]
4. request that transaction is ordered __14.1 Transactions sent - Ledger
to peers in blocks y
. Orderer

Figure 3.6: Peer-query (1-3) and Peer-update (1-5) operation steps [29]

In order to query the ledger, an application should connect with a peer (1), invoke the chaincode (2) and
receive the proposal response (3). As all the information required for the query is contained in peer’s local copy
of the ledger, it does not need to consult with others and the response can be sent instantly.

To update the ledger, additional to the 3 mentioned steps before, the process involves 2 more steps. In
order to perform the update operation, a consensus needs to be reached first among the peers. This is achieved
by peers sending back to the application signed proposed updates which then all get sent to the orderer to get
packaged into blocks and be distributed to the entire network of peers (4). Peers then verify the validity of the
change before applying it to the local ledger and the application is notified asynchronously (5).

26

Ledger

From the logical point of view, in Hyperledger Fabric there is only one ledger while in reality, every peer
stores and maintains a copy of the ledger through the consensus process, hence the term Distributed Ledger
Technology. The ledger is used to store current and previous information about the business objects, and it
consists mainly of two components: a world state and a blockchain [22].

In order to keep information about the current state of the objects ready for use, the world state holds all
the current attributes of business objects as (key, value) pairs. In this way, if an application wants to query the
ledger for certain information, instead of traversing the whole blockchain to get the updated information, it can
read it straight from the world state. In practice, the world state acts like a database that through the ledger API
offers get, put and delete functionality as well as the ability to perform more advanced queries. After every valid
transaction on the ledger (i.e. endorsed with enough signatures), the world state gets updated and the application
is notified. Along with the (key, value) pair, a version number is also stored to keep track of how many times
the attribute has been changed. Before updating the present state, the version is checked to make sure it matches
with the one at the time of endorsement.

The other component is the blockchain, and in comparison to the world state, the blockchain holds all trans-
actions ever recorded and shows how the world state ended up in the current state. Contrary to how the world
state is implemented, the blockchain represents a file with interlinked sequential blocks as the majority of oper-
ations performed on it are append and sometimes query. Each block represents a set of sequential transactions
ordered by the ordering service, which either query or update the world state. While the world state gets af-
fected only by valid transactions, the blockchain stores both valid and invalid transactions. The transactions are
linked to the created block by including the cryptographic hash of the transactions inside the block header along
with the hash of the previous block, therefore linking the block to the already existing chain. In this way, the
blockchain has an append-only nature, making it practically impossible to tamper with the previously written
blocks once they have been added to the chain.

Chaincode and Smart Contracts

While the ledger serves as the storage of Hyperledger Fabric, the chaincode represents the executable logic
associated with it. The business model rules that model the interactions between parties are dictated in the
blockchain by smart contracts. While the terms chaincode and smart contract are sometimes used interchange-
ably, there is a slight difference between them. The smart contracts define the transaction logic specific to the
business model, but the chaincode represents the way these smart contracts are implemented and deployed to
the network. The term chaincode is relevant mostly to those that administer the network, while everyone else
can view the blockchain logic in terms of smart contracts. Smart contracts can belong to the same or different
chaincodes. Because contracts can invoke functionalities of other contracts, there is a slight difference when
they belong to the same chaincode or not. Contracts packed in the same chaincode share the same world state
(readset and writeset), therefore it is recommended to group smart contracts in a chaincode based on application
logic and endorsement policy.

On the basic level, most of the smart contracts perform put, get and delete transactions on the world state,
which immutably get saved on the blockchain. Associated to every smart contract is an endorsement policy,
which defines how many and which organizations in the network are required to sign a contract transaction in
order for it to be considered valid. Smart contracts implement the application logic in an application chaincode,
which is closely tied to the real business world. Additionally, Fabric provides system chaincodes or lifecycle
chaincodes that are domain independent and offer low level functionalities to interact with the ledger. Among
these functionalities are: handling changes to system configurations, querying blocks and transactions, signing
transaction responses, installing chaincodes on peers or validating transactions [30]. The interaction with the
system chaincodes can be done through command line interfaces (CLI) or software development kits (SDK).

The Fabric chaincode lifecycle is a series of steps that organizations follow in order to install, upgrade or
deploy chaincodes to the channel. Before a chaincode can be ready to use, organizations must agree on param-
eters such as chaincode version, name or endorsement policy. The agreement is achivied using the following
steps [31]:

1. Package the chaincode: each organization needs to package the smart contracts in a .far file containing

27

chaincode files and metadata that specifies the path to the code, programming language (Go, Java or
JavaScript) and a short label that would identify it.

2. Install chaincode on peers: all the peers that are going to run the chaincode need to install the package
using the Peer Administrator. In order to have the exact same package on all the peers, a good practice
is to package the chaincode once on one peer and distribute it to other peers for it to get installed. The
install command will issue a package identifier formed of the label and a package hash.

3. Approve chaincode definitions: organizations need to approve a chaincode definition by voting that it ac-
cepts the parameters is is composed of. This process needs to be done by at least one peer per organization.
These parameters include:

» Package identifier which can be different for different organizations. This parameter can also be
missing in case the organization does not need to use the chaincode but still is required to approve
the definition;

» Name of the chaincode;
* Version number associated with the package;
» Sequence number indicating the number of times a chaincode has been upgraded;

* Endorsement policy specifying who needs to sign transactions from this chaincode in order to be
considered valid;

¢ Collection Configuration file associated with the chaincode;
» Whether the /nitialization function is required to be called before any other function;

* Optionally a custom validation or endorsement plugin to be used.

4. Submit chaincode: after enough members approved the chaincode definition, one Organization Adminis-
trator from the ordering service can commit it to the channel. Before the definition is sent to the ordering
services, it gets sent to the peers in the channel which endorse it depending on whether their organization
has approved it or not. The number of organizations that need to approve the definition before being
committed is defined in the LifecycleEndorsement policy. This policy is different from the chaincode
endorsement policy because it defines who needs to endorse the committing transaction, while the latter
defines who needs to endorse the chaincode transactions in order for them to be valid. After this step,
the channel members can invoke the Init() method to instantiate the chaincode if it requires so, and start
using the newly installed chaincode.

The lifecycle is illustrated in Figure 3.7.

Target: Peers Target: Channel Ready for use

System Packing Installation Organizations Channgl Invoke Init()* Invoke or
chaincode approval commit Query
App!lcatlon Not usable Usable by approving
chaincode organizations

Figure 3.7: Chaincode lifecycle relative to the system and application chaincodes

28

Chapter 4

System Design

In this chapter we will dive into the system design process and will try to explain the design choices that were
made. This will be done by describing each component individually, their roles and challenges associated with
them. We will start by describing the most important element of the system, which is the Hyperledger chaincode,
followed by the REST server and finally we will talk about the front-end application.

4.1 Requirements specification

This project is developed as a proof of concept, which has the role of validating the feasibility of blockchain
supply chain implementations in the supply chain management process and the dispute resolution process in it.
The objective is not to prototype a product that can be used by participants, but more of an integrated common
system that is able to showcase that the necessary functionalities can be achieved in practice.

Therefore, the scope of this project is the development of an automated blockchain system, together with the
underlying infrastructure supporting it, in order to facilitate supply chain participants to interact between them
in the supply chain. The development of individual systems, tailored for the needs of every participant is outside
of the scope of this project.

4.1.1 Functional Requirements

Judging from the desired system description, we can form the following functional requirements. Members
should be able to:

1. Read information about assets according to their permission levels.

2. Change and update information about themselves.

3. Create new assets in the system.

4. Place orders through the system and query the information related to the order.

5. Complete orders using the system.

6. Initiate on own assets deliveries assisted by the system.

7. Specify delivery rules that must be applied to the delivery process.

8. Check the current and past locations of assets.

9. See the history of actions related to an asset.
10. Check information and current state of deliveries created by or destined for them.
11. Participate in the delivery process of a shipment as an intermediary.

12. Dispute assets from a shipment.

29

13. Query the history and status of disputes.

14. Solve disputes opened for them.

4.1.2 Non-functional Requirements

The system should also be described by the following characteristics:

» Speed: the transaction throughput of the system should be high enough to allow users perform continuous
tasks while being in the flow.

* Availability: the system should be able to process transactions at any moment, with almost no downtime.

» Immutability: it should be impossible to modify the contents of the ledger unless through a valid trans-
action.

* Scalability: it should be possible to add a big number of nodes and users without affecting the good
functioning of the system.

* Usability: the source code and configuration files should be written in a clear way, with proper docu-
mentation and explanations. It should be possible to build personalized systems on top of the developed
components with ease.

* Privacy: transactions and data should be possible to be kept private from other system users.

4.2 System Overview

Flow Description: The system uses a dynamic way of finding the path for a shipment and assumes organiza-
tions can physically send packages to any organization unless mentioned otherwise in the policy. Organizations
buy available items from other organizations and pay for them off-chain. After the buying contract is created
by the buyer organization, the seller gets notified through a Hyperledger Fabric event, after which he creates
the delivery shipment attaching desired delivery rules. The way the shipment gets delivered through the supply
chain is that each node is responsible for sending it to the next destination, by following the specified constraints
in the policy. Each organization has a profile which contains necessary information such as its location, country
or what type of organization it is. The policy for a Shipment has a fixed size as it uses two bloom filters to
whitelist and blacklist organizations. When the total number of organizations increases, a bigger bloom filter is
automatically used.

After the delivery shipment is created, the system filters all available organizations based on the attached pol-
icy. Out of those filtered organizations, one is chosen as the next step based on a heuristic function (in this case
minimizing distance to destination and distance to the node). The system converts the next step to a QR code
and the holder sends the shipment with the instruction attached to it. After its arrival, the QR code gets scanned
by the receiving organization and the process is repeated until it reaches the final destination.

In a supply chain, the type and number of participants can vary greatly from the supplier of producer to the
final customer. For this proof of concept system, a simplified version of supply chain is adopted. According
to [1], a group can be considered a supply chain if it involves 3 or more organizations. Therefore, the main
participants considered for this system are:

e Producers
* Distributors
» Retailers

e Customers

30

These 4 actors can generally represent the majority of supply chains. Even though the customer is also part
of the supply-chain, it does not take part in the system as a full member, because it only consumes what the
supply-chain has to offer, and for the sake of simplicity, we can assume that Retailers are the ones responsible
for developing and maintaining applications that give identities and access to the network to other clients and
end customers. In the current supply chain, the flow of good would start at the producer and end at the cus-
tomer, but for the design of this system, we will assume that any organization can interact directly with any
other organization, thus enabling a circular economy. This can be seen in 4.1

Blockchain
Network

Retailer Distributor

\ Producer /

Figure 4.1: Circular interaction between system actors

The underlying technology used to build the network is Hyperledger Fabric for the following reasons:

» Because of the private and permissioned nature, it is ideal for the supply chain application as only its
members should have access to the system, and the network can be run by participating nodes.

* Does not require a cryptocurrency to execute transactions, therefore reduces costs when the application
scales.

* Because there is no proof of work consensus algorithm, the process of validating transactions is much
faster, which is suitable for enterprise cases.

* Channels can be used to partition the data between different domains of the supply chain, and in this way
an organization can be part of a channel together with his suppliers, and at the same time part of another
channel with his buyers.

To keep the system simple but still make it able to capture all the functionalities in a real supply chain, assets
are grouped per:

* Items: represent single physical individual assets, such as products.
* Orders: representing the buying contract of one or more items, between a seller and a buyer.
» Shipments: represent physical shipments, associated to orders and that contain items.

* Disputes: represent problems associated with items that are contained in shipments, opened by the client
for the seller.

31

4.2.1 Network Topology
A Hyperledger Fabric network has three types of nodes:

* Clients - which are applications that need to connect through a gateway to a peer in order to communicate
with the blockchain.

* Peers - that endorse and commit transactions and physically keep a copy of the blockchain.

* Orderers - which order transactions in blocks for the peers and does not need a copy of the ledger.

A Hyperledger network is formed by all organizations that provide resources (i.e. orderer and peer nodes)
to its normal functioning. Because running an orderer or a peer node can not be done on a lightweight hardware
device (e.g. smartphone), it is not expected for customers to run peer or orderer nodes. They will have to connect
to the network using applications provided by organizations, which will make use of gateways to connect to
peers. For example, the retailer’s application or website will take care of identity management for its customers,
and will facilitate connection to the blockchain through their peer node.
Therefore, we can conclude that the blockchain will be run by all other actors interested in taking part in the
system and in the dispute resolution process and which are able to run their own nodes. These are producers,
distributors and retailers. If an organization is too small to have its own peer node, it can communicate with the
blockchain through a bigger organization that would provide them an identity and application, potentially at a
cost.
The ordering service can either be run by a single organization that will handle the whole process and does
not need to provide peer nodes or each organization can contribute with their own orderer node to participate
in the ordering services. All the employees from organizations would communicate with the network through
applications created by their organization, under the organization’s identity. Transportation companies can also
use the applications given by their customer (producers, distributors or retailers). The network topology can be
seen in Figure 4.2.

In the implemented system, each organization runs a peer node, while the orderer node is a separate entity.

4.3 System Architecture

The designed system is composed of three main components, which can be seen in Figure 4.3

* Dispute Resolution Fabric network - this is the most important component as it represents the brain of the
whole architecture. It is responsible for the system logic and is the one bringing the desired characteristics
such as immutability, security and traceability.

* REST Server - this component is responsible for exposing the blockchain component functionalities to the
outside environment. It does so by using a gateway and packing the needed methods in an Application
Interface that can be used when building external applications. Without this component, anyone willing
to interact with the blockchain would have to go through the cumbersome process of developing their
own system that implements the connection.

* Graphical User Interface - this is the component that will be used by application users and that has the
responsibility of presenting the system functionalities in an accessible and clear way. It connect to the
REST API server through HTTPS. Without this component, the designed system would be usable only
by individuals with expertise in application development and information technology.

In this section we will describe the design of each component individually.

4.3.1 Dispute Resolution Fabric Network

The logic of this component is implemented through chaincode, which consists of two smart contracts:

* OperationsContract - responsible for providing functionalities for normal supply chain operations. This
contract implements all the logic that is being exposed to users.

* StateContract - responsible for providing functionalities for managing the current and past states of Items,
Shipments and Disputes. The functionalities can be called only by the OperationsContract.

32

Customer
¢ — Y Retailer S —] Distributor,
: | Application | ' ' | Application | !
! v ! ! v :

Ordering Services

— Producer
| Application |

@ Peer

Figure 4.2: Network topology

Graphical User) REST AP Server @ Hyperledger Fabric
Interface network

Figure 4.3: System components

ID generation & Identity Management

In order to have a system that is as automated as possible, the entity IDs are generated by the OperationsContract.
This is done by maintaining a variable for each type of entity, that gets incremented each time a new ID is
required. This ensures that no two entities of the same type can have the same ID, because of the fact that
Hyperledger Fabric transactions are atomic in their nature. An example for retrieving the next item ID can be
seen in Algorithm 1. For more complex and secure systems, cryptographically secure identifiers should be used
and generated randomly.

Organizations have their identities corresponding to their MSPs. This way, any employee of an organization
will be identified as the the organization itself. In systems where a more refined identity management is required,
client identities can be used instead of MSPs. Therefore, the identities present in the system are:

* ProdMSP - representing the Producer organization and its employees.
* DistMSP - representing the Distributor organization and its employees.

* RetMSP - representing the Retailer organization and its employees.

33

1 Function GetNextID:

2 | nextID «— read(itemsID);

3 if nextID = NULL then

4 ‘ nextlD «— 0

s | write(itemsID, nextID + 1)

6 return next/D

7 End Function

Algorithm 1: ID generation function for items

OperationsContract Data Structures

The data structures used by the OperationsContract can be seen in Figure 4.4. The data structures which con-
tain the ID field are stored on the ledger, while those missing the ID field are created only for a more clear
representation and easier interaction. The arrow between two entities represents the fact that one entity points
to the other entity by having its ID stored as a field in case both entities are stored on the ledger. Otherwise,
the entity that is not on the ledger and does not have an ID is included in the referring entity as a structure field.
This choice was made for two reasons:

1. In order to secure the data, it needs to be managed by the system. In this case, saving an entity object on
the system ensures that it will be the same for any party that tries to retrieve it at any moment in time.

2. Not all entities require to be saved independently on the ledger. For example there is no reason to save all
the locations in a data structure with an ID if the location itself does not represent anything without the
data structure that contains it. This also reduces the amount of data that needs to be saved and reduces
data throughput.

In a practical example, additional fields and data which are not mandatory to be stored on the ledger (e.g. photos
and videos) can be stored off-chain with a link to the ledger ID. Such a solution would reduce the transaction
size and make sure the system is having a desired performance.

Items represent physical assets and are identified by their ID. It is worth mentioning that an item does not
represent an item type or model, but a real object. Two identical items will receive different IDs in the system.
Items are described by:

* ID - the unique number that identifies the physical item and links it with the logical entity. This field gets
auto generated by the system.

» Owner - the MSP of the organization that owns this item.

* Description - the name or a short description of the item.

Contracts (or orders) represent buying agreements between a buyer and a seller. Both parties should be
members of the network. Contracts can be created only by the Buyer organization as it needs payment proof.
This ensures that nobody can make purchases in the name of another organization. When a contract is created,
the seller gets notified through events that specify that there is a new order to be processed by him. It has the
following fields:

* ID - the unique number that identifies the contract. This field gets auto generated by the system.

» Seller - the MSP of the organization that is selling the owned items. This field is automatically inferred
by the system by checking who is the owner of the included items.

* Buyer - the MSP of the organization that is buying the included items. This field is automatically inferred
by the system by retrieving the identity of the organization which creates the contract.

34

Item

-ID: String
-Owner: String
-description: String

Deliverylnstruction

- ID: String
- shipmentID: String
- srcOrglID: String

Dispute

-ID : String
-shipment:ID String
-itemlIDs: [Istring

- dstOrgld: String 7 -problemProof: string
/I\ - completed: bool 0.1
L !
| |
0.1
1
| 1
N4
Contract ;
Shipment
-ID: String . .
-Seller: String -ID: String) —1 \ Policy
-Buyer: String -ownerlD: String telist st
. — -holders: [IString - Whitelist: string
-expectedDate: *Time . . - blacklist : string
. eu | -locations: []*Location
-itemIDs: []*String —1— 0.1)
) -sourcelD: String
-paymentProf: String DAl
-policy: *Policy
-isDelivery: bool
-targetLocation: *Location
1“*
\|/ OrgProfile
Location - msplD: String
- latitude: String &— 1 —— - location: *Location

- country: String
- orglype: String

- longitude: String

Figure 4.4: OperationsContract data structures

* ExpectedDate - represents the date on which this order should be completed. This field is automatically
calculated by the system by applying the formula

Distance(Seller.Location, Buyer.Location)

expectedDate = currentTime + -
avgDistancePerDay
The seller and buyer locations can be retrieved from their profiles, while the average distance per day is
a parameter set by the system administrator.

* ItemlIDs - represents an array with all the IDs of the items that are bought. These must belong to the same
organization, must be different than the buying organization and items must be in the right state to get
sold. At least one item must be contained in a contract.

» PaymentProof - a piece of information that proves that the buyer has paid for the ordered items. As the
system does not implement a cryptocurrency, this field is present only to represent that Contracts can not
be created without paying.

Shipments (or packages) are the system representation of physical packages. Because in real life shipments
usually represent simple boxes, the life cycle of a shipment inside the system is short. After it gets delivered, it
can not be reused after. Shipments can be of two types:

* Delivery shipments, that are created for an order, and are being delivered to the buyer from the seller.

35

* Return shipments, which represent shipments going back from the buyer to the seller. This type of ship-
ments are created for a dispute.

A shipment can not be created if there is no reason to do so, namely if there is no contract or dispute that
requires its creation. A shipment has the following fields:

* ID - the unique number that identifies the Shipment and links it with the physical package. This field gets
auto generated by the system.

» OwnerID - the MSP of the organization that owns the Shipment. The owner remains the same from the
creation until the shipment is delivered at the target location. When a shipment is created, the organization
that called the creation transaction becomes the owner.

» Holders - a list of organization identities (i.e. MSPs), which had the shipment under their control. This
list gets automatically updated as the shipment goes through the delivery process. The first holder is
the organization that created the shipment, followed by all intermediary organizations that received the
shipment and sent it forward, and the last holder is the organization which keeps the shipment at the
current moment.

* Locations - similar to the Holders field, this one keeps a list of locations that the shipment has been
located at. The first location is the location of the creating organization and the last one is where it is
currently located. Locations get automatically updated every time the shipment is exchanged between
organizations, with the location from the organization’s profile.

» SourcelD - the ID of the entity for which this shipment was created for. It either points to the contract
entity in case of delivery shipments or dispute entity in case of return shipments. Based on this field, it is
possible to infer what items does the shipment contain.

* Policy - a set of rules in terms of whitelisted and blacklisted elements that are checked in the delivery
process. It is set by the creator of the shipment, which can dictate the delivery rules that he prefers.

» isDelivery - a flag which is set in case of delivery shipments and unset in case of returns. This field is
inferred automatically by the system judging by the logic.

» targetLocation - the final destination of the shipment. This field is set automatically as the location of the
buyer in case of deliveries and as location of seller in case of returns.

Disputes represent a disagreement or a problem that was detected by the buyer on a shipment. Disputes can
only be opened by the buying organization, after the shipment has been marked as delivered. When a buyer
opens a dispute, the seller gets notified through an event that signals that one of his shipments are disputed. The
fields have the following meaning:

* ID - the unique number that identifies the dispute. This field gets auto generated by the system.
* ShipmentID - the ID of the shipment that is disputed.

* ItemIDs - the IDs of the disputed items contained in the disputed shipment. This allows to open disputes
on specific items only, if the rest are as expected. In case the problem refers the Shipment as a whole (e.g.
missing or wrong shipment), all the items are disputed.

» ProblemProof - a piece of information proving that the dispute is valid (e.g. photo, video, description).
This field has been added to make sure clients can not open disputes without a reason.

Delivery Instructions represent steps automatically generated by the system, which aid organizations in the
delivery process of a shipment. The instruction specifies to which organization the shipment needs to be sent.
Delivery instructions are generated when the organization which currently holds the shipment retrieves the next
instruction. After it gets generated, the instruction must be encoded in a QR code and attached to the shipment.
The receiver then scans the QR code and if it is the destination organization, then the instruction is marked as
completed. Instructions have the following fields:

36

¢ ID - the unique number that identifies the instruction. This field gets auto generated by the system.

ShipmentID - the ID of the Shipment for which this instruction has been generated for.

* SrcOrgID - the MSP ID of the organization that needs to send the package.

DstOrglID - the MSP ID of the organization that the package needs to be sent to and that has to receive it.

» Completed - a flag which is set if the instruction has been performed (i.e. the destination organization
received the Shipment by scanning the current Delivery Instruction).

OrgProfiles are entities associated with organizations. It holds necessary information about the respective
organization which is required to take part in the system, such as:

* MSPID - the unique identifier of the data structure and is the same as the MSP ID of the organization that
it describes.

* Location - the coordinates where the organization is located. For the sake of simplicity, in this proof of
concept we assume that an organization has a single fixed location.

» Country - the country in which the organization is located.

* OrgType - the type of organization. In the context of this proof of concept, this field can take the value
of: Producer, Distributor or Retailer.

Policies are entities that describe rules in the delivery process. Because they live together with the shipment
and are only relevant in that context, they are not stored on the ledger independently. Rules are in the form of
whitelist or blacklist, which allow or forbid organizations, countries or organization types.

Usually, white or black lists represent arrays or hash tables, which contain specified elements. In the worst
case scenario, these lists can contain half of the total number of available elements. Because in a real system the
number of organizations can be big, so will be the policies in the system. Having the Policy space complexity be
linear to the number of organizations not only increases the amount of data that needs to be written on the ledger,
but also increases transaction size when reading or writing every Shipment. This would represent a bottleneck
in a real system.

In order to make the Policy be constant size, the data structure chosen to implement white or black lists are
bloom filters. This makes the process of querying and adding elements to the Policy instant, and offers the
desired functionality. Nevertheless, bloom filters are also characterized by false positives. In order to reduce
the false positive rate to almost 0, we need to choose the correct parameters for the size of the filter. In the
current system, the size is automatically calculated judging by the total number of organizations registered on
the network.

When delivering a shipment, judging by the organizations’ profiles, the ones that have characteristics (e.g.
country, MSP ID or organization Type) included in the blacklist (if any) are removed, and the ones having
characteristics in the whitelist are picked. The resulting set of organizations can further participate in the delivery
process.

Locations are used to represent physical locations, described by latitude and longitude degrees. As this data
structure does not make sense to be kept separately, it is saved as part of the entity that contains it.

StateContract Data Structures

The StateContract is characterized by the data structures presented in Figure 4.5. This contract is mainly re-
sponsible for keeping track of the current and previous states of certain entities. This is done by maintaining
state machines, with predefined rules that decide if a state transition is possible or not. State machines are
developed only for Items, Shipments and Disputes and can be created only by the OperationsContract when
the transactions for creating items, shipments and disputes are invoked. For every entity, there exists a state
machine with the past and current states it has been in. If the transition is considered invalid, the operation that
caused this transition will be reverted and the transaction will fail.

37

ItemStateMachine State ShipmentStateMachine

- itemID: String ———*—> - hame: String f&— *—— - shipmentID: String
- states: []*State - relevantlD: String - states: [|*State

T

DisputeStateMachine

- disputelD: String
- states: []*State

Figure 4.5: StateContract data structures

States represent generic states in which items, shipments or disputes can be. States do not have an ID and
are not saved as a separate entity on the ledger as they do not make sense outside the context of the object they
belong to. In this way, states are part of the StateMachine entities and saved as their field. A state is described
by the following fields:

* Name - the name that describes the state. Possible state names are presented in the following sections.

 RelevantID - an ID which points to an entity stored on the ledger, which is relevant for the current state.
Every state has a specific type of relevant ID, depending on the type of state machine it belongs to and
the state itself. For example, the state ”Created” of an ItemStateMachine must hold the MSP ID of the
organization that created it. The decision to use generic relevant IDs has been made in order to facilitate
easy data retrieval and to have proof of validity of the state transition stored inside the state. As an
example, when an Item goes in the ”Shipped” state, one can check that the relevant ID corresponds to the
ID of the shipment containing it. Without having the relevant ID field, one would have to look through
all the Shipments and find the one containing the item. The specification for the states and their relevant
IDs are mentioned in the following sections.

ItemStateMachines represent state machines associated with every item on the ledger. This data structure
has the following fields:

¢ ItemID - the ID of the item that this state machine is associated with. In this way, from a logical point of
view, the ID of the state machine is the same as the ID of the item.

* States - the past states that the item has been into. The last state in this array represents the current
state of the item. This field gets populated automatically when specific transactions are invoked in the
OperationsContract, and the user can not access or modify this field directly.

ShipmentStateMachines represent state machines associated with every shipment on the ledger. This data
structure has the following fields:

 ShipmentID - the ID of the shipment that this state machine is associated with. In this way, from a logical
point of view, the ID of the state machine is the same as the ID of the shipment.

« States - the past states that the shipment has been into. The last state in this array represents the current

state of the shipment. This field gets populated automatically when specific transactions are invoked in
the OperationsContract, and the user can not access or modify this field directly.

38

DisputeStateMachines represent state machines associated with every dispute on the ledger. This data struc-
ture has the following fields:

 DisputelD - the ID of the dispute that this state machine is associated with. In this way, from a logical
point of view, the ID of the state machine is the same as the ID of the dispute.

« States - the past states that the dispute has been into. The last state in this array represents the current
state of the dispute. This field gets populated automatically when specific transactions are invoked in the
OperationsContract, and the user can not access or modify this field directly.

State Transitions

As mentioned in the previous section, every item, shipment and dispute has a state machine associated with it,
responsible for validating and keeping track of the transitions the entity has been into. The rules validating the
transitions are represented in the following state transition diagrams, in which the arrows represent conditions
for the transitions to take place. States are described in the form of [StateName, RelevantID].

Item State Diagram represents the states and transitions that an item can be in. It can be seen in Figure 4.6.

ltem is included in
end Shipment

Shipment

) , containing the
ltem is [tem is .

included in included in
Contract Shipment

arrived

Created Sold Shipped Delivered

Return
nt has
heen delivered

=P [tem is included in

return Shipment

Returned Returning Disputed

Figure 4.6: Items state transition diagram

The state meanings together with their relevant IDs are the following:

* [Created, CreatorID] - represents that the item has been created and no other operations have been per-
formed with it. The relevant ID for this state is the MSP ID of the organization that created the item.

¢ [Sold, ContractID] - represents the fact that the item has been bought, therefore it has been included in a
contract. Only items that are either freshly created or that have been returned can be bought again. The
relevant ID represents the ID of the contract that contains this item.

¢ [Shipped, ShipmentID] - means that the item has been packed in a shipment. Items must either be bought
first and then packed in case of delivery shipments, or they can be directly shipped after being created
if it is part of a shipment that serves as a resend. The relevant ID for this state is the ID of the shipment
which contains the item.
Starting from this state, the item will stay in the ”Shipped” state until the shipment will get delivered,
as they represent the same entity. This ensures that the state of the item will match the shipment state,
as long as it will be part of it. This results in less computations and data stored, as shipments can have
hundreds of items, which would end up duplicating the shipment’s states in the delivery process.

39

¢ [Delivered, BuyerID] - means that the shipment containing the item has arrived at the target location,
therefore it has been delivered. From this moment on, the item is considered an individual entity again
and its states no longer match the ones of the parent shipment. An item also ends up in this state when it is
involved in a dispute, the dispute gets resolved and the item stays at the buyer organization. The relevant
ID represents the ID of the organization that ordered the shipment, therefore received it.

* [Disputed, DisputelD] - represents the fact that the buyer organization has opened a dispute on the ship-
ment that delivered this item, and the item has been marked as disputed as well. If the shipment has
been disputed but this specific item has not been reported as disputed, the item stays in the ”Delivered”
state. When the dispute gets solved and the item stay at the buyer organization, the item goes back in the
“Delivered” state. The relevant ID represents the ID of the Dispute entity saved on the ledger.

* [Returning, ShipmentID] - represents the fact that the buyer and seller organizations have agreed on a
resolution mechanism and the buyer will return the disputed items through a return shipment. This state
is the equivalent of ”Shipped” state, in case of returning shipments.

From this moment until the return shipment will get delivered, the state of the item will correspond to the
state of the shipment that contains it. The relevant ID is the ID of the returning shipment that contains the
item.

* [Returned, SellerID] - means that the return shipment containing the item has been delivered back to
the seller organization. From this moment on, the item state machine is detached from the shipment state
machine and is considered an individual entity. The relevant ID represents the MSP ID of'the organization
that received the shipment, therefore, of the seller organization.

Shipment State Diagram represents the states and transitions that a shipment can be in. One important thing
to note is that shipments are not reusable, therefore even if it gets returned, another shipment will be created
instead of using the same logical entity. It can be seen in Figure 4.7

-
JC
I

generated destinatio

Created Transiting Received Delivered

Disputed

Figure 4.7: Shipments state transition diagram

The states meanings are:

* [Created, SourcelD] - represents the beginning of the shipment life cycle. Shipment state machine gets
assigned this state during the shipment creation transaction. At the creation of the shipment, all items
contained in the shipment go to ”Shipped” state. The relevant ID represents the ID of the contract or
dispute that this shipment has been created for.

* [Transiting, InstructionID] - represents that the shipment is in the delivery process and is being sent to
the next destination. Transition to this state is happening when the organization that currently holds the
shipment receives a delivery instruction. The relevant ID represents the ID of the generated instruction.

40

* [Received, ReceiverID] - signals the fact that the shipment has been received by the target intermediate
organization and is not at the target location. In order to transition to this state, an organization needs
to receive the shipment by scanning the QR code containing the delivery instruction. The relevant ID
represents the MSP ID of the receiving organization.

¢ [Delivered, BuyerID] - means that the shipment has been received by the destined organization (that is
- the buyer) and is at the target location. In order to transition to this state, the buyer must receive the
shipment by scanning the QR code, and the system will automatically perform the required transition.
Additionally, when a dispute gets solved, the disputed shipment also transitions to this state as shipments
are not reusable. When Shipments get delivered, all the items contained in the shipment transition to the
”Delivered” state as well. The relevant ID represents the MSP ID of the organization that ordered the
items contained in the shipment.

* [Disputed, DisputelD] - represents the fact that the buyer has opened a dispute on the delivered shipment.
Shipments get disputes if any of the items contained by it get disputed. After the dispute gets solved, the
shipment transitions back to the ”Delivered” state as it can not get reused. The relevant ID represents the
ID of the dispute entity saved on the ledger.

Dispute State Diagram represents the states and transitions that a dispute entity can be in. It can be seen in
Figure 4.8

Returning
Buyer change
tate
" ﬁE"' _'Ir't' Seller provides
TIEES Stats payment proof
. Under : . :
Created .. Reimbursing Closed
examinaton
Buyer changes
ctate MNew
Shipment is
) provided
Resending

Figure 4.8: Disputes state transition diagram

The states represent the following:

* [Created, ShipmentID] - means that a dispute has only been opened by the buyer organization. Transi-
tion to this state happens together with the dispute opening transaction. The relevant ID represents the
shipment which is being disputed.

* [Under Examination, SellerID] - represents the fact that the seller organization has started looking into
the dispute. During this state, off-chain negotiations between the seller and buyer organizations must
happen and they must agree on a way to solve the dispute, by using the information offered by the system.
Transition to this state is done when the seller signals that he initiated the resolution process. This is done
also to let the buyer know that things are moving towards finding a solution for the reported problem.
The relevant ID represents the ID of the buyer organization.

* [Returning, BuyerID] - represents that the involved parties have agreed on a resolution method, and the
buyer has chosen to return some or all the items from the shipment. The transition to this state will allow

41

the creation of a return shipment, which otherwise would not be possible. The relevant ID represents the
MSP ID of the party that decided the settlement method - the buyer.

* [Reimbursing, BuyerID] - represents the fact that the buyer prefers to get all or part of his money back for
the ordered shipment. Transition to this state will allow the seller organization to start the reimbursement
process. The relevant ID represents the MSP ID of the party that decided the settlement method - the
buyer.

* [Resending, BuyerID] - means that the parties have agreed to resend some or all the items contained in
the disputed shipment in a new shipment. This allows the seller organization to start the resend process.
The relevant ID represents the MSP ID of the party that decided the settlement method - the buyer.

* [Closed, ShipmentID] - signals the resolution of the dispute through the chosen settlement method. The
condition for transitioning to this state and the relevant ID change depending on the previous state:

— From ”Returning”: seller organization must receive back the returning shipment. Relevant ID is the
ID of the return shipment destined for the seller.

— From “Reimbursing”: seller organization must provide proof of off-chain payments representing
the reimbursed money for the disputed items. Relevant ID is the ID of the disputed shipment that is
being reimbursed.

— From ”Resending”: seller organization must provide as solution the ID of the shipment which re-
sends the disputed items. Relevant ID is the ID of the new resending shipment.

Delivery Path Computation

In order to have an automated system as much as possible, the system also needs to decide how shipments are
delivered. For this, a dynamic path computation algorithm has been implemented. It is dynamic in the sense
that the path is decided during the delivery process, after every completed step. This design choice makes the
system resilient in front of network changes in case new organizations join the network or if others leave it.
Another advantage is that the path does not need to be stored anywhere, but a limitation is that it is more com-
putationally intensive.

Computelnstruction The algorithm for calculating the next instruction in the delivery path is presented in
Algorithm 2. Computelnstruction function receives as parameter the shipment for which the instruction is being
requested, and verifies the identity of the calling organization (line 2). As only the organization currently holding
the shipment is allowed to get the next instruction, any other different organization than the holder, will get an
error. In order to pick the next organization in the path, all available organization profiles in the network are
filtered based on the black and white lists given by the policy (line 4). Next, based on a heuristic function,
one organization is chosen as the next step in the delivery process (line5), after which the instruction entity is
generated and returned to the calling organization (lines 6 and 7).

Heuristic The heuristic function is supposed to pick from a list of available organization, the most suitable
organization which should serve as the next step in the delivery process from source (src) and destination (dst).
In the current design, the heuristic chooses the organization which is the closest to the source location, while
minimizing the distance to the final destination. In other words, it picks the closest organization which is in
the way to the destination. For this, the heuristic uses the location of each organization which is stored in
their profiles. Firstly, the variables are instantiated (lines 10 and 11), then the distance from the source to the
destination is calculated (line 12). For every individual organization from the filtered ones, a score is calculated
that shows how good of a candidate is this organization to be the next step in the path. The score is calculated
by the following formula:

Distance(src, dst) — Distance(org.location, dst)
2

Score = - :
Distance(src, org.location)

42

The numerator represents how much shorter the distance to the destination is from the new organization
than from the current location. This number gets bigger for organizations that are closer to the destination.
If we would only use the above mentioned parameter to calculate the score, then the algorithm would pick
the closest organization to the destination as the next step, which is not how we want it to be designed. In
order to pick the new organization to be closer to the source, we need to use the denominator. It represents the
distance from the source to the new organization, and the bigger it is, the less likely it will be selected as the
next organization. In conclusion, the score is higher for those organizations that are closer to the source, while
minimizing the distance to the destination.
The function considers only those organizations that are closer than the destination itself (line 15), calculates
the above mentioned score (line 17) and keeps track of the organization with the highest score (line 18, 19 and
20).
In case of need, any other heuristic function can be implemented which would prioritize organizations based on
the business needs. For example the cost or time of delivery could also be taken into account.

1 Function Computelnstruction(shipment):

2 if tx.getMSPID! = shipment.holder then

3 | return Error

4 | filteredOrgs < filterOrgs(shipment.policy);

5 nextOrg «— heuristic(filteredOrgs, tx.getMSPID.location, shipment.targetLocation);
6 nextInstruction «— Deliverylnstruction(shipment, shipment.holder, nextOrg, false);

7 return nextInstruction
8 End Function
9 Function heuristic(filteredOrgs, src, dst):

10 maxHeur «— —Inf,

1 maxHeurOrg «— NULL,;

12 | distToDestination «<— distance(src, dst);

13 | foreach org € filteredOrgs do

14 distToOrg «— distance(src, org.location);

15 if distToOrg <= disteToDestination then

16 distFromOrgToDestination «— distance(org.location, dst);
17 heur «—

(distToDestination — distFromOrgToDestination) [(distToOrg * distToOrg);
18 if heur > maxHeur then

19 maxHeurOrg <— org;
20 maxHeur <— heur;
21 end

22 return maxHeurOrg

23 End Function
Algorithm 2: Delivery Instruction generation algorithm

Delivery Flow

To understand the systems’ way of functioning on a general level, we can go through the flow of actions in the
delivery process of a shipment. These steps can be seen in Figure 4.9.

43

1. Client places

[order & Creates
Contract

emit "Contract Created" event

v

2. Seller creates
Shipment &
Attach Policy

3. GetDeliverylnstruction L 4

Filter Orgs by

| Policy

Pick next org by
heuristic

!

Generate
instruction & QR
code

Send Shipment physically

v

4. Scan QRCode,
receiveShipment

Delivered?

Figure 4.9: Shipment delivery flowchart

44

The flow is composed of the following ac-

1. The client uses the system to browse

the available items in the system of-
fered by other organizations. After
deciding which ones he wants to or-
der, he makes the off-chain payment
for those items and places order, for
which the system creates a Contract
that contains all the needed informa-
tion. An event is emitted by the system
to let the seller know there is a new or-
der that he needs to process.

. The seller examines the placed order

and creates a shipment for it. In the
creation process, he attaches a policy
consisting of a white and black list,
which specify the delivery rules.

. The current holder of the shipment,

which initially is the seller, requests
from the server the next Deliveryln-
struction. In order to compute it, the
system filters all organizations in the
network based on the attached policy.
Then, based on the heuristic function
developed, the best suited organiza-
tion is chosen as the next step. After
having the next organization picked,
the Deliverylnstruction is generated,
and it gets converted to a QR code that
is attached to the physical shipment.
The holder sends the shipment to the
destination mentioned in the received
instruction.

. The receiving organization scans the

QR code that is on the shipment and
completes the shipment reception op-
eration. If the shipment has arrived at
the target destination, the flow is com-
plete. Otherwise, the flow continues
starting with step 3.

From the system interactions point of view, the above mentioned flow would be similar to the one in Figure
4.10. Every step represents a transaction called by the respective actor trough their application. As we can see,
the actors interact strictly with the OperationsContract. This is mainly because the StateContract publicly ex-
poses only the methods for retrieving the machine states, while other methods that are used for state transitioning
are kept private. In this way, the only way one can change the state of an asset is through the OperationsCon-

The bidirectional flow between the OperationsContract and StateContract mean that they communicate with
each other. This happens when the OperationsContract tries to update the state of the assets or when checking
if the operations are valid by querying the current state the asset is in.

Intermediates

4. receiveShipment(instructionID)
5. computelnstruction(shipmentID)

Hyperledger
O 0)
i 2. createDeliveryShipment . teContract(items] Proof)
———(contractID, whitelist, blacklist) » ; <& . CreateContract({items|, payrroo
3. computelnstruction »| OperationsContract < 6. receiveShipment(instructionID)
(shipmentID) \ A)
Seller v Buyer
e ™
StateContract
. J/

Figure 4.10: Shipment delivery interaction diagram

From the state transition’s point of view, a delivery flow would result in state transitions similar to the
one in Figure 4.11. In this example, two items are being ordered by the client, and in that moment the items’
states transition to ”Sold”. When the shipment containing the items gets created, the items switch to ’Shipped”
state. This state contains the ID of the shipment, therefore it is possible to track the shipment state transitions
by querying the item states. Next, the shipment gets in the ”Transiting” state when the holder requests a De-
liverylnstruction, followed by "Received” when the QR code gets scanned by the destined organization. This
process continues until it reaches the final destination, after which the items together with the shipment switch
to the final "Delivered” state.

Seller Client Seller Seller Intermediates Buyer
creates buys creates receives exchange receives
items items Shipment Instruction Shipment Shipment
et : @ ShiDDEd s
Item2 T @ Shipped

SendShipment

Figure 4.11: Shipment delivery state transitions example

[
e
[-)
@
=
@
=Y

Dispute Flow

As an example for the dispute flow, we consider the case in which the buyer wants to return the items from the
shipment. The steps can be seen in Figure 4.12.

45

1. Client Opens
Dispute

emit "Dispute Generated" event

v

2. Seller Examines Dispute &
Negotiates off-chain

l

3. Buyer choses to Return
Shipment

4. GetDeliverylnstruction A 4
Filter Orgs by I

| Policy R

Pick next org by
heuristic

> -

Generate
instruction & QR
code

Send Shipment physically

A 4
5. Sclaﬂ QRCode, Delivered?
receiveShipment
Yes
End

Figure 4.12: Shipment return flowchart

The flow is composed of the following actions:

1.

After receiving the ordered items, the client
reports one or more items from the shipment
as disputed and the system creates a dispute
entity. After this step, the system generates
a "Dispute Generated” event which lets the
seller know that one of his shipments are be-
ing disputed.

When the seller looks into the details of the
dispute and disputed shipment, the client
gets notified that his dispute is ”Under ex-
amination”. During this time, seller and
buyer investigate the dispute by querying
the information stored on the ledger and ne-
gotiate off-chain a suitable solution for the
client in order to solve the dispute.

After the buyer decides that his organization
will return one or more items from the ship-
ment, he uses the system to report the re-
turn of the shipment. After this step, the
system creates a new logical entity - re-
turn shipment, with the disputed items. The
newly created shipment gets attached the
same policy that was used in the delivery
process and has the location of the seller as
the targetLocation.

The shipment holder (the client in this case)
requests a new Deliverylnstruction to find
out where he needs to send the shipment.
Just like in the delivery flow, the system
filters all available organizations based on
the attached policy, picks next organization
based on the heuristic and generates a new
instruction with the new organization as the
destination. After this, the shipment gets
physically delivered where the instruction
specifies.

After receiving the shipment, the destined
organization scans the QR code and the sys-
tem finalizes the reception operation. If the
shipment has reached the final destination
(that is, the seller organization), then the
process is finalized. Otherwise, the process
continues starting from step 4.

The interactions with the system for the shipment return are presented in Figure 4.13. Similarly to the
normal delivery case, actors interact only with the OperationsContract. For this system, the “examineDispute”
transaction would happen automatically when the seller decides to view the opened dispute, but depending on
the business rules, it can also be explicitly invoked, which would signal that the seller is open for negotiating a

solution for the dispute.

46

Intermediates

5. receiveShipment(instructionID)
6. computelnstruction(shipmentID)

Hyperledger 1. openDispute(shipmendID, [items],

description, proof)
2. examineDispute(disputelD) (A 3. returnShipment(disputelD)
7. receiveShipment(instructionID) 4. computelnstruction(shipmentID)

/\ OperationsContract [« A
-

Y

J
Seller T l Buyer
e N
StateContract
N J

Figure 4.13: Shipment return interaction diagram

The state transitions in this case can be seen in Figure 4.14. Once the buyer opens a dispute, the disputed
items together with the shipment go in the ”Disputed” state. From this moment until the dispute gets closed, the
items’ and the shipment’s states correspond to the state of the dispute. When the seller investigates the dispute
and negotiates with the buyer, the dispute stays in the “Under examination” state. After deciding on a way to
solve the issue, the buyer reports in the system that he wants to perform a return and a return shipment is created.
Just like for normal deliveries, items go into the ”Retuning” state, with the relevant ID from the state pointing to
the newly created return shipment. Then the shipment passes through the delivering process and ends up in the
“Delivered” state. When this happens, the dispute gets ”Closed”, the initial shipment goes in the "Delivered”
state to show that it is no longer disputed, and the items go in the ”"Returned” state, from which they can be
bought again by other clients.

Buyer Seller Seller
opens changes changes
dispute state state

Item1 Disputed

‘;@ Returned j« --

‘;@ Returned J« -+

Item2 Disputed

b ¢

¢

SendShipment Disputed Delivered

Under

Created

Dispute

0
JORUIRURC

ReturnShipment Created Delivered } -

Figure 4.14: Shipment return state transitions example

47

(" Client places '|

arder

s

Client creates

Contract

emit

I

—

Seller creates

Shipment

"Contract Created" event

ComputePath

—

Filter Orgs by

Paolicy

Pick next org by

heuristic

!

Generate

instruction

Figure 4.15: Shipment delivery flowchart - static path

version

Yes

v

Getinstruction

QRCode

§—No

|
Send Shipment
h, 4

Scan QRCode

receiveShipment

Yes

End

48

Design Alternatives

The current design has been chosen among other
possible options for specific reasons. In this sec-
tion, some design alternatives that were taken into
account will be discussed.

Path Computation A possible alternative to dy-
namic path computation is the static one. This
means that the delivery path is computed before
the beginning of the delivery process itself. The
flowchart of this approach can be seen in Figure
4.15.

This approach implies that the delivery instruc-
tions need to be stored on the ledger in a way
that they can be queried individually by each in-
termediate organization. This can be achieved by
storing each instruction with a composite key in-
cluding the shipment ID and the MSP ID of the
organization. In this way, the instruction with
key ’ship-"ID-X’instr-"mspID-Y’”” would retrieve
the instruction destined for the organization with
MSP ID equal to 'mspID-Y’ for the shipment with
id ’ID-X’. This ensures that intermediates do not
have to and can not query more instructions than
the one meant for its organization (if there exist
any). This is not only efficient but also secure
from the privacy point of view. Another advan-
tage is that there is less computation to be done, as
the path is computed only once, instead of comput-
ing the best next destination for each intermediate.

The biggest disadvantage is that this approach is
vulnerable to network changes. This would mean
that either the path will not be the most optimal one
in case a more suitable one becomes available or
even worse, it will be impossible to complete it in
case a chosen organization becomes unavailable.

Advanced Heuristic Currently in the proposed
design, a simple heuristic that prioritizes the clos-
est node in the direction towards the destination
is chosen. This is because the system is a proof of
concept and has the scope of demonstrating that an
implementation in this domain is possible and fea-
sible. In different scenarios, this heuristic can be
designed to encompass different business needs.
For example, organizations can be differentiated
by their type and only those responsible for trans-
portation could be picked in the delivery process.
Also, delivery time and price can also be an im-
portant factor. It is also possible to design multi-
ple heuristics and let the system user decide which
one suits the business needs for that case.

Handling Payments In order to make the system more automated, a method for verifying or handling pay-
ments could be implemented. This can be done by using a built-in cryptocurrency, which would allow parties
to make payments within the system for the items that they order. This would allow the system to act as an
intermediate, which could handle returns, reimbursements or any other types of financial operations.
Alternatively, the system could have a connection with a payment system (e.g. VISA), that would allow him to
verify the proof of payments given by the organizations. This approach is less automated, therefore the system
can only partially verify the legitimacy of payments, but has the advantage of being able to integrate more easy
with modern payment methods used nowadays.

4.3.2 REST Server

The REST server has the role of exposing the functionalities of the designed fabric network, through an APIL.
It uses the Fabric SDK to connect to a peer of an organization, and manages the identity of the caller by using
wallets. This component is necessary because client applications can not connect directly to Fabric network, as
this requires libraries that can be used only on the server side.

In order to be able to connect to the network, every organization needs to enroll an admin user, which allows
the connection through a gateway to one peer of that organization. The server is not designed to be used as
an API to build any kind of client applications on top. This is because it is meant to be used as a server in a
proof of concept application, which implies multiple drawbacks. One of them is that there are no advanced
authentication methods, mainly because there is no need to have any, as the client application will be a common
one for all the organizations.

The API is composed of HTTP GET and POST methods. Each method makes a new connection with the
Hyperledger network and invokes the specified transaction or query using the identity that is currently set. The
request data, response and the data passed as parameters to transactions are in JSON format. The server API
methods are briefly presented in Table 4.1.

4.3.3 Graphical User Interface

The Graphical User Interface component is responsible for showcasing the system functionalities in an easy
and user-friendly way. As the information on the ledger is always correct, the application is just a view that the
organizations have of the underlying system. Sometimes, because of the connection problems or issues with
the nodes, the data in the interface might not always correspond to the one on the ledger. For this, the interface
needs to represent this issue by highlighting which information corresponds to the one on the ledger. Therefore,
some data needs to be stored locally, which would represent the truth from the organization’s point of view. As
an example, if an organization places an order with some items, but the connection to the blockchain system
gets broken, the interface should show this mismatch.

The data is fetched from the Hyperledger Fabric network using the developed REST Server described previously
through HTTP, every time the user performs an action. The data fetched from the server is considered ground
truth, and it populates the local storage of the organization. The records present on the ledger are considered
”Confirmed” in the sense that it is up to date with the ground truth. When there is information stored locally
but missing on the ledger, it has an ”Unconfirmed” status, meaning that the actions which resulted in that data
were not validated, and the issue needs to be looked into.

Chosen approach

During the design process, there were being take into consideration two approaches regarding the way the
interface is going to be used.

The first one is to design the application as an end product indented to be used by each individual orga-
nization. This would imply that organizations would have to authenticate themselves, could see assets strictly
relevant to them and some parts of the available information, such as past states of assets, would not be available
because of privacy reasons. The advantage is that the flow of actions would be tailored specifically for the end
user, making the use of the application much easier and enjoyable. For example, actions would be possible to
perform with a single click only at the right location (e.g. an open dispute button in the page with shipment
information). Also, error messages would communicate the status of the action results.

49

Method| URL Parameters Description
/getltem Retrieve an item by ID.
/getContract Retrieve a contract by ID.
/getDispute Retrieve a dispute by ID.
/getShipment id: String Retrieve a shipment by ID.
/getltemStateMachine Retrieve the item state machine.
/getShipmentStateMachine Retrieve the shipment state machine.
/getDisputeStateMachine Retrieve the dispute state machine.
/getAvailableltems Retrieve items in ”Created” or ”Returned”
state owned by other organizations and all
GET items owned by the current organization.
/getAllOrgProfiles Retrieve all profiles of registered organiza-
i tions on the network.
/getOrganizationContracts Retrieve contracts in which the current ac-
tive organization is either seller or buyer.
/getOrganizationShipments Retrieve shipments created or currently
held by the current organization.
/getDisputesByOrganization Retrieve all the disputes opened by the cur-
rent organization.
/getDisputesForOrganization Retrieve all the disputes opened for the
current organization.
/currentOrganization Retrieve the MSP ID of the current active
organization.
/enrollAdmins Create a wallet with an admin identity for
the Producer, Distributor and Retailer.
/getOrgProfile msp: String Retrieve the profile of an organization.
/changeOrganization org: String Change the current active organization.
/computelnstruction shipment id: String Compute the next Deliverylnstruction as-
sociated to a shipment.
/receiveShipment instruction_id: String Receive a shipment associated with a De-
liveryInstruction.
/examineDispute dispute id: String Examine a dispute.
/createltem description: String Create an item
/saveProfile msp_id, country, | Save the profile details of an organization.
org type, long, lat:
String;
POST | /createContract payment proof: Create a contract.
String; items_ids:
JSON(Array[String])
/createDeliveryShipment contract_id: String | Create a delivery shipment.
whitelist, blacklist:
JSON(Array[String])
/createDispute shipment id, proof: | Create a dispute.
String; items_ids:
JSON(Array[String])
/initiateSettleDispute dispute _id, set- | Initiates the settlement process of a dis-

tle_method: String;

pute.

/returnShipment dispute id: String Return a shipment involved in a dispute.
/resendShipment dispute id: Resend a shipment with new items for a
String; items_ids: | dispute.
JSON(Array[String])
/reimburseShipment dispute id, Reimburse a shipment involved in a dis-

proof payment: String

pute.

Table 4.1: REST API methods

50

Even though this is the closest design to how the application would actually be used in a real life scenario, it
does not showcase all the functionalities of the system. Also, completing a full delivery operation through the
system requires several actions from different organization, which in this case would imply logging out and
logging in every time, making the process cumbersome.

The other option would intend a totally different outcome. It would represent a back office made for system
admins, that could have access to all the data. This implies that privacy would not matter, and the actions would
be performed in a more manual, less flowy or real way. For example, the admin would have a generic page
for disputes and fields where he should put information in order to open a dispute. This design choice has
the advantage that it can be easily implemented and it would show all the functionalities of the system. The
disadvantage is that it is much harder to use without proper knowledge about the action flows. It also would not
offer proper input or error handling and would result in a worse user experience.

Having the previous arguments in mind, the user interface has been designed as a combination of those
approaches. More specifically, it tries to offer a flowy user experience to enable easier interaction with the
system, while keeping some of the admin features in order to showcase most of the available functionalities.

Layout Design

Navigation Bar

Side Menu
Content

Figure 4.16: Graphical User Interface main components

From a general, user point of view, the interface layout has three main components, which can be seen in Figure
4.16. They have the following roles:

* Navigation Bar - this component is present all the time at the top of the screen and has the role of showing
what is the current active organization and is offering functionalities to change it. This is an alternative to
more complex authentication methods. It also gives the possibility to view and change the profile of the
current active organization. For example, when a user wants to act as a different organization, he should
be able to do so with a few clicks.

* Side Menu - this component, just like the Navigation Bar, is visible all the time on the screen and does
not change. It should make the changes of tabs possible, which in turn should be reflected in the Content
component. The menu items should represent pages with information and functionalities that make sense
when grouped together. The current design gives the option to change tabs between the following pages:

— Items - contains information about the available items and owned items. Should give the possibility
to view item information, create new items and pick items for purchasing.

51

— Orders - contains information about the orders opened for and by the current organization. Addi-
tionally, the user should be able to view order details and items, complete orders by creating delivery
shipments and query the state of the order.

— Shipments - contains information about the shipments created by the organization and those that
have been received by it, whether they are in transit or destined for the organization. Similarly, the
user should be able to query information about the shipments and perform actions related to it, such
as opening disputes. In this page, organizations can also perform actions to simulate the scanning
of a shipment, resulting in its reception.

— Disputes - contains information related to the disputes opened by and for the current organization.
In the case of those opened by the organization, it can see its status and decide on a settlement
method. For those opened for the organization, it can examine the dispute and settle it according to
the solution chosen by the buyer.

* Content - this component contains the main information and functionalities. It changes content based on
the chosen tab in the Side Menu and reacts to the actions performed bt the user in the application.

52

Chapter 5

Security Analysis

The security aspects of the proposed design stem from two main sources. The first one is the security character-
istics inherited from the blockchain, namely from the Hyperledger Fabric model. The second layer of security
is given by the design choices that were made in order to maintain privacy, access-control and traceability .

5.1 Hyperledger Fabric Security

By building the system on top of the Hyperledger Fabric network model, the system acquires its security capa-
bilities. Among them are the following:

5.1.1 Immutability

Since Fabric is a permissioned ledger, the immutability requirements change compared to a public blockchain.
Before blocks are added to the ledger, they need to be signed by the ordering service. After what the transactions
are ordered in blocks, they are sent to peer nodes, which can check the validity of the blocks by having access to
the Certificate Authorities of the ordering node. Therefore it can know if the blocks are coming from a trusted
source or not. If an orderer node is made out of thin air or his private keys are compromised, then it leads to
the orderer being able to write any new blocks effortlessly. This implies that having a secure ordering service
is quite important, especially when the orderer participates as a peer node as well.

Having a compromised orderer allows modifying previous existing blocks by censoring or reshuffling transac-
tions. Even so, because transactions are signed by clients, this does not let the malicious party modify transac-
tions. Even if we assume that the ordering service gets compromised, this means that the malicious party will
result in having a different ledger than the other participants, and having a valid but different ledger does not
help in any way if you can not convince others that your version is the right one. If in public blockchains you
can convince other members by having a longer chain through forking, forks are by design impossible in Fabric,
resulting in a bug. If an honest node receives a block with an unmatching hash having the same height, then it
is sure that the block corresponds to a different ledger and a critical situation arises.

Because of the private nature of the network, private channels can be implemented even with two participants.
In these cases where one party can modify the ledger and there are no other peers to compare it with, the im-
mutability property lies in a strong endorsement policy. By having a policy that requires all the parties to sign
the endorsement, one can be sure that the participant’s states match. If the data is forged, the endorsement pro-
cess would fail.

For above mentioned reasons, the data on the designed system can be considered immutable.

5.1.2 Privacy and Confidentiality

The privacy aspects of Hyperledger Fabric include multiple aspects. One of them is the asymmetric cryptogra-
phy and zero-knowledge proofs, which have the role of separating the transaction data from the records on the
ledger. This results in the protection of the data from the underlying algorithm. Thus, the orderers that order
the transactions have no knowledge of the transaction data.

53

Another aspect is the fact that the organizations participating in the network are legitimate. This is achieved
by the fact that in order to be a participant in the network, one must be given a valid digital certificate by the
Membership Service Provider that would prove his identity. This achieves user privacy between the participating
actors, by keeping the other non-involved users out of the network. Moreover, it separates the roles between
different organizations in the system between simple users and governing ones. Based on the roles between
organization, access-control rules can be implemented through chaincode, which we will discuss in the following
section.

Other two aspects that are features of Fabric are separate channels which separate data between groups of
nodes and leads to privacy among business partners. Channels share the same copy of the ledger, with separate
chaincodes accessible only to its participants. This allows the development of any type of private relations
between organizations, exactly as socio-economic rules dictate. Additionally, one other aspect is the ability to
store private data within the same channel. This can further implement viewing rights on different levels over
organizations’ data. As the designed system does not implement or benefit significantly from this featurs we
will not discuss them in detail here.

Ultimately, the ledger data can be encrypted via file system encryption on each peer node, while the data in
transit is encrypted using TLS.

5.1.3 Consensus

Consensus is responsible for confirming the correctness of all transactions in a block and agrees on an order
between them. It must guarantee two properties:

* Safety - each node is guaranteed to execute the transactions in the same way. In other words, given the
same inputs, nodes among the network should output the same result.

* Liveness - assuming that there is a communication channel, every non-faulty node eventually should
receive the submitted transactions.

In Hyperledger Fabric, consensus is a complex process, that is present in the transaction flow process de-
scribed in the Background chapter. This process starts by making sure the set endorsement policies are met,
which consists of checking if the transaction proposal is well-formed, if it has not been submitted in the past,
thus preventing replay-attacks, checking the signature validity using the MSP and checking if the submitter has
the right to invoke the transaction. Then the proposal is checked by the application and if the endorsements are
valid, the ordering service orders the transaction. After this, transactions are validated again and committed by
peer nodes.

We can conclude that consensus is reached in systems that have nodes acting honestly. It is worth men-
tioning that depending on the type of endorsement policy, the system’s security varies. For example, if the
endorsement policy requires half of the nodes to agree on a transaction, then the network is susceptible to 51%
attacks.

One great benefit of Fabric is that it allows plugable consensus, thus the network administrators can decide
on the tradeoff between performance and security depending on the network type.

5.2 Design security

When analyzing security aspects of the designed system, we assume the blockchain data corresponds to the
one in real life and participants do not fabricate the data inputted to the system. The security aspects of human-
blockchain interface are outside of the scope of this project. Additionally, another assumption is that a sufficient
number of honest peer and orderer nodes are operating on the network. With these assumptions and depending
on the endorsement policy, the designed system ensures the following security properties:

* Privacy from outside world - as participants need to have a valid certificate provided by MSP services,
only the supply chain participants allowed to access the network can have access to the designed system
and data.

54

Asset traceability - because any operation performed on the ledger is recorded and saved in the asset’s
state, one can track items and shipments up to its creation on the blockchain.

Transparency - having access to the state history of an asset, it is possible to know if products are new,
returned or have been involved in any type of disputes. Also, there is a layer of transparency and trust
between system participants because of the fact that the blockchain is permissioned and identities are
known by administrating parties.

Soundness - because of channel’s endorsement policy, which requires the majority of organizations to
agree on the outcome of a transaction, one can only invoke valid transactions which operate within the
set business rules. Therefore, no invalid data can be accepted in the system as long as there is a majority
of honest peer nodes.

States validity - by performing checks on the validity of the operations both in the OperationsContract
and StateContract through the state machines, the system ensures that items, shipments and disputes can
not end in illegal states.

Restricted data modification - even though the chaincodes offer functionalities to update the data on the
ledger, they are made private and can be accessed only through proper operational use of OperationsCon-
tract. Therefore, in order to change an asset it must be involved in a valid transaction which takes into
account access and business rules.

ID uniqueness - as the IDs of the logical entities are generated through the chaincode’s OperationsContract
and because of transaction atomicity, the system ensures that no two different logical entities can have
the same ID.

Order validity - by checking the MSP ID, the system ensures that the ordered items are available to be
sold, that they belong to the same organization and that the buyer has provided a payment proof.

Timely delivery - because the expected delivery time is calculated on-chain, any delay in the delivery
process can be automatically detected.

Policy confidentiality - the bloom filter implementation of shipment policy whitelist and blacklist, ensures
that it is impossible to know what the policy consists of. Therefore the policy rules are known only by the
selling organization at the moment of shipment creation. In case of returns, the return shipment gets the
same policy as the delivery shipment, thus the buyer does not find out anything about the delivery rules
imposed by the seller.

Accountability - organizations can not perform actions on behalf of other participants. Because of the
permissioned nature of Fabric, for every operation, the identity of the caller is checked and validated and
the transaction is signed by him. Using the Public Key Infrastructure of Fabric, it can be proven that the
corresponding transaction has been submitted by him.

Shipment validity - it is impossible for organizations to create shipments without having a valid buy-
ing contract or dispute for it. Therefore sending unsolicited shipments and requesting money for them
becomes impossible.

Return validity - as buyers are the one that choose the method of settlement they want for the dispute, it
is always possible to return the items of the shipment.

Shipment privacy from intermediates - even if organizations participate in the delivery process of a ship-
ment, they can not know who the final client is, or where it is coming from. Having access only to the
DeliveryInstruction destined for your own organization, one can only find the shipment ID, and where it
needs to send the shipment.

Path validity - shipments can not be lost or end up in unwanted destinations as long as the path finding
algorithm works properly and participants follow the given instructions. It is impossible to exchange a
shipment with an organization that is not part of the path as each step is checked using the DeliveryInstruc-
tions. Moreover, shipments can not be processed by organizations which are blacklisted by the policy,

55

because every time the next instruction is computed, the policy filters all available organizations, thus
ensuring that the rules specified by the seller are followed.

» Shipment tracking - organizations are responsible for the shipments they hold. This ensures that at any
point in time, the location and holder of a shipment can be known by querying the Locations and Holders
lists of it. If the shipment is sent to a wrong destination, the system will refuse to record this change,
leaving the sending organization responsible for the mistake.

+ Dispute validity - buyers can only open disputes on shipments they received by giving proof of the prob-
lem. Having access to history of shipment and items, faking a problem with the shipment becomes in-
creasingly difficult.

Still, there are security aspects that can be improved. One of them is the fact that seller organization can
refuse to examine the disputes, forcing it to stay in the ”Created” state and making the client unable to return the
shipment or ask for a reimbursement. Similarly, the system can not force the seller to create and send shipments
that have been ordered already. This is left as the responsibility of the network administrators, to punish and
exclude organizations that do not fulfill their responsibilities.

56

Chapter 6

Implementation

In this chapter we will describe the designed system from the implementation’s point of view. The first part
will refer to how the Fabric network has been created, the development process of the chaincode, as well as the
challenges that were faced during this process. Then will follow some technical details about the REST server
implementation. The last will be the implementation process of the graphical user interface and the framework
used for that.

6.0.1 Process description

The implementation process of the whole system consisted of three steps:

* Blockhain system implementation - started with building a Fabric test network, that would be able to
deploy and invoke chaincodes. Then it followed by modifying the built network by modifying names and
adding an extra node in order to get the desired network topology and accommodate the design. After the
network was deployed, the development of the chaincode has begun by implementing the designed system
specification. Functionalities were being tested from the terminal while they were being implemented.
The process was considered finalized once it was possible to perform all the action flows by transaction
invocation.

* REST Server implementation - the design and implementation of the system came as a necessity after
finding out that client applications can not connect to the Fabric network. This component implements
only the methods that are necessary by the front-end side. Therefore the process consisted by outlining
the needed functionalities, implementing them one by one and testing them with CURL tool.

» Front-end implementation - started with setting up a template application, followed by building the main
empty components. Then the pages were being developed one by one until the action flows were possible
to complete from the application.

6.1 Dispute Resolution Fabric system

6.1.1 Network Deployment
Prerequisites

The network setup consisted in following the test network setup tutorial from the Hyperledger Fabric documen-
tation page [32]. For this, a series of prerequisites are necessary to be installed, such as:

*+ Git
* cURL
* wget

* Docker and Docker-compose

57

* NodeJS and NPM
* Golang and Python programming languages

This is followed by cloning the Hyperledger fabric-samples [33], which contain the necessary binaries and
pre-made projects that can help in the learning process of Fabric. One of the most important things from the
fabric-samples repository are the platform-specific binaries and configuration files which are saved in the /bin
and /config directories of fabric-samples. Finally, the Hyperledger Fabric docker images are pulled.

Setup

As mentioned earlier, this project was built on top of the Fabric 2.0 test-network project by modifying the
necessary configuration files and scripts in order to adapt the network to our needs. Every node is running in a
separate docker container, just as the deployed chaincodes.

The network setup is strongly dependent on several configuration files. Among them are:

* configtx.yaml, which has channel transaction files and configuration information for building the genesis
block. It is split in several sections:

— Organizations - which hold the details about individual organizations and hold their identities that
are referenced in the rest of the file. The identities contain the organization name, MSP ID, the
directory that contains the MSP configuration and the read, write, admin and endorsement policies
for this organization. Finally, the host and port of the anchor peers or orderer endpoint are specified,
which get encoded in the genesis block. They are used for communication between nodes in the
gossip protocol. Here we define one orderer organization OrdererMSP and three peer organizations:
ProdMSP, DistMSP and RetMSP.

— Capabilities - which define the capabilities of the Fabric network. These receive the profiles defined
in the next sections.

— Application - application defaults.

— Orderer - the details regarding the orderer parameters. This includes the orderer implementation
configuration, TLS certificates or block property configurations.

— Channel - define the values to encode into a config transaction or genesis block for channel related
parameters.

— Profiles - which describe the organization structure of the network. Here we specify that the consor-
tium is composed of the producer, distributor and retailer organizations and what kind of capabilities
does the orderer have. Also, we define the channel configuration, capabilities and which organiza-
tions are part of it. For this proof of concept, one channel for the whole network is considered, as
the network is composed only of three peers and there is no reason in having separate channels.

* crypto-config-*.yaml, that has the orderer and peer informations for generating their certificates. These
files are required only if cryptogen tool is used for certificate generation. Here the organizations are
defined with their name, domains and number of users.

« fabric-ca-config-*.yaml, that has the Certificate Authorities parameters. These files are required only if
the organizations’ certificates are using certificate authorities instead of the default cryptogen tool.

* docker-compose-*.yaml, these files contain the docker configurations of the containers, such as ad-
dresses, domains, ports, path to the genesis block, chaincode ports and other variables important for a
correct network setup. These files are also important for setting up the certificate authorities containers.

The creation and deployment process of the network is done by executing commands from the network.sh
script. In order to bring up the network, the network.sh up command should be executed, which performs the
following actions:

58

1. Create the keys and certificates for the peer and orderer organizations. This can be done using the cryp-
togen tool from the binaries folder, by consuming configuration files crypto-config-*.yaml. It is also
possible to bring the network up using Certificate Authorities by using the -ca flag. This uses the fabric-
ca-config-*.yaml files. Both approaches generate MSP folders and crypto materials.

2. Generate the system channel genesis block, using configtxgen tool from the binaries. This uses the
configtx.yaml file previously described.

3. After which the crypto material for organizations and the channel artifacts have been created, the network
can be brought up. This is done by using the docker-compose-*.yaml files to create containers for
network participants and the respective Certificare Authorities in case it is necessary.

After this step, the network is up and running, but no channels exist between the participants. For this, the
./network.sh createChannel command should be run, which executes the channel creation script. This uses
the configtx.yaml file to create the channel creation transaction, and transactions that update the peers to be
anchor peers. It then uses the peer binary to create the channel and join the organization peers to it, making
them anchor peers.

Now there exists a channel between the organizations, but there is no chaincode deployed on it. To deploy
a chaincode, the . /network.sh deployCC command must be run, which:

1. Installs the chaincode dependencies such as Fabric contract API and packages the source code into a
chaincode.

2. After the chaincode is packaged, it can be installed on the peers and it must be installed on every peer that
will take part in the endorsement process using the peer binary. After the install process, the chaincode
will be build on each peer.

3. The approval process of the chaincode definition follows, in which the package ID and the version of the
chaincode is used. Every time a new version of the chaincode is built, the version number should be in-
cremented. In this step, one can specify the custom endorsement policies associated with each chaincode,
otherwise the default option will be set. The default endorsement policy is a majority of nodes, which
in our case would mean that 2 out of 3 organizations should endorse a transaction in order for it to be
considered valid.

4. After enough organizations have approved the chaincode definition, one peer node can commit it to the
channel. The commit transaction will pass only if the majority of nodes have it approved.

5. Now the chaincode is committed and ready to be invoked. If necessary, the initialization method of the
chaincode should be invoked first.

With these steps behind, a fully working Hyperledger Fabric network with 3 peer nodes and one orederer is

up and running. The implementation of the ordering services is solo, meaning that there is only one node taking
part in the ordering process. This configuration is simple to set up and manage and is suitable for development
environments. Nevertheless, in larger production networks it can become a bottleneck. At the same time, having
only one ordering node, puts the network and production data under single point of failure risk.
Initially, the system has been implemented using cryptogen tool for creating certificates and crypto material,
but after the implementation process was complete, Certificate Authorities were used. This choice was made
because the connection to the network from the REST Server is easier and more documented if the network is
set up with CAs. Moreover, in a production environment only Certificate Authorities are able to be used.

6.1.2 Chaincode Implementation

The two smart contracts have been implemented in the same chaincode. This is because the two contracts need
to communicate between each other. Also, if the contracts are packed in the same chaincode, they share the
same world state, making it easier to invoke each other’s methods. It is also common to pack contracts together
based on their domain and functionality, and it would make sense to separate them only in case they need

59

separate endorsement policies. In this case, the contracts are tightly coupled, and they do not require different
endorsement policies. For these reasons, it makes more sense from the performance point of view to develop
both contracts in the same chaincode.

The smart contracts have been implemented in Go programming language [34] using Visual Studio Code.

Data Structures

All the data structures and their fields are implemented according to the specifications shown in the Design
chapter. In order to be able to operate with them properly, their definitions and fields have been made public
and contain specifications on how to convert them to the JSON format.

As mentioned previously, data structures that do not contain IDs, are not stored on the ledger. This makes the
reference between entities of two types, which can be seen in Figure 6.1:

+ ID reference - in which one entity points to the other by keeping its ID. This is done between entities that
are both stored on the ledger.

+ Structure reference - when the entity is contained in the parent entity. This is implemented when the child
entity is not stored on the ledger.

ID reference: Structure reference:

I T
L8 I.

Ilid"l: "@"J |Iidll: lle"J
"description”: "gold",

"OwnerID": "ProdMSP"

"description": "gold",

"Owner":{
"msp_id": "ProdMSP",

) "location": {

'I_ " 10|'|g" . "1a" ,
"msp_id": "ProdMSP", "1at": "20"
"location": { 1

2
long™: "18", "country": "France",
) lat": 20 "Gt‘g_‘type": "Producer”
T
"country": "France",

"org_ type": "Producer"

Figure 6.1: Types of relations between entities

Because of the inability to have pointers in JSON structures, ID referencing was necessary to implement
in order to avoid circle dependencies and to reduce the size of data structures. Nevertheless, the Location and
Policy structures are contained within their parent structures as they do not make sense outside that scope.

The Location longitude and latitude are implemented as floating point numbers. A negative/positive lon-
gitude would mean Western/Eastern hemisphere, while a negative/positive latitude means Southern/Northern
hemisphere. This format makes it easy to store the coordinates and calculate distances in this proof of concept.
The Location is stored as a whole structure within other structures.

The Policy data structure contains two bloom filters representing the whitelist and blacklist. Because all data
structures need to be converted to JSON, the bloom filter implementations need to be marshaled to byte before
converting them to JSON. In the bloom filter implementation, the [35] library is used. This implementation
allows Marshal and Unmarshal operations. If the bloom filter is stored as a data structure, the conversion to and
from JSON fails for some reason. This brought the requirement to convert the bloom filter implementation to
an array of bytes first, which is stored as a String, and then convert it back when reading it. For this reason the
bloom filters are stored as strings.

60

The filter can be created either by manually giving the parameters such as the number of hash function
and the total number of elements, or it is possible to give the total number of elements and the maximum
probability of False Positives allowed and leave the rest to the library implementation. In this way, a maximum
FP probability of 0.001% has been used, with the total number of elements being:

3*xN+10

where N is the total number of currently registered organizations on the network. The number 3 comes from the
fact that each OrgProfile has three possible elements that can be added to the bloom filter: MSP ID, orgType and
country. If we assume worst case, these elements would all be different, resulting in three times more distinct
elements than the total number of organizations. The 10 is an extra margin added just to make sure that even if
new organizations get added to the network, the policy will be able to function as intended.

In the InitLedger function, which is called before any other transaction, the IDs of all entities are initialized
with 0. Also, the OrgProfiles of the three registered organizations are saved to the ledger, together with the total
number of current organizations equal to 3. The function getEntityNextID has been implemented to retrieve
the ID of the next entity. The entity is specified as a parameter, the ID is returned and the next ID is incremented
no matter if the returned ID will be used or not. Entities are saved on the ledger with the key entityID. For
example, the item with ID 3 is saved under the key item3. This allows to retrieve all entities of one type by
using the function GetStateByRange(startKey, endKey).

In the calculation of delivery time, the current time is considered the timestamp of the submitted transaction.
This is necessary because local times are different for each peer, while the transaction has a fixed timestamp,
resulting in a deterministic execution. To calculate the number of days for delivery, an average of 100 km per
day are considered.

All methods perform the necessary checks on the identity of the caller. This is done by retrieving the MSP
ID and checking if it corresponds to the requirements for that specific actions.

Implementation Difficulties

Database Relations One of the first implementation difficulties was the fact that Hyperledger Fabric does
not operate like a relational database but as a (key, value) database. This implies that entities can not point to
each other. In order to associate two entities between them, they have to have as fields in their structure the key
(ID) of the other entity. This ends up in forcing the development of uni and bidirectional relations, by storing
string IDs in all the entities. For example, in Figure 6.2 the dispute entity points to the shipment that is disputed,
which in turn points to the contract that it is created for. The contract contains the IDs of all the items that are
ordered in it, and all entities except the dispute contain MSP ID of an organization.

Dispute > Shipment
Y Y
Item < Contract > OrgProfile

T

Figure 6.2: Exemplification of entity dependency

61

This makes the querying process more difficult. For example, in order to retrieve the items that are in a
shipment, by having only the dispute ID, one would have to perform 4 different queries to get the dispute, then
the shipment, followed by the contract and ending with all the items within it. In a relational database this op-
eration could be executed more efficiently. Similarly, in order to find the shipment that contains a contract, one
would have to iterate through all the shipments and check which one has the respective contract ID. This results
in very inefficient queries and checks. In a relational database, any relation would be bidirectional, thus making
it trivial to navigate between data objects. Even though this problem is known, this system is not designed to
be as efficient as possible with Fabric database.

Risk of Data inconsistency The aforementioned problem can also result in problems with data integrity. This
is because entities point to each other by storing their string IDs, and not by pointing to the actual entity. In
case the entities are changed or removed from the ledger, it would result in consistency problems, as structures
would point to non existing objects. To make up for this, the developer has to automate the update operations
through the chaincode functionalities, not only making the development process cumbersome, but also making
the project prone to bugs and hacks. As the current system is a proof of concept, the design does not take into
consideration a solution for this problem.

Deterministic Bloom Filters Because the execution of the chaincode has to be identical for all the peers, no
randomization in the operations are allowed. This implies that the bloom filter implementation and execution
has to be deterministic for every endorser. As bloom filters contain multiple hash functions, usually initialized
with a seed, the libraries that initialize the hash functions with random seeds are not suitable. This includes
libraries that use the local time as seed, as the time for every endorser differs.

The current implementation produces the hash functions from the data itself, therefore the functions will be
deterministic for all the peers as long as the data will be the same.

Inability to check changes to World State made by current transaction Initially, the idea of communi-
cation between StateContract and OperationsContract was that each of them would consult the other when
performing changes. For example, before item state machine would transition to the ”Shipped” state, it would
check in the OperationsContract if the Shipment has been created. Similarly, the OperationsContract would
query the current state of entities to decide the validity of operations. This design was supposed to keep both
smart contracts’ functionalities public and independent.

During the implementation process, this choice turned out to be a blocking point. The problem lies in the fact
that it is impossible to check the changes to the world state that the current transaction is going to make. To
understand the problem better, let us consider the shipment creation transaction. Within the same transaction,
the Shipment entity must be created, and items’ states must be updated. In order for the StateContract to check
if the change from ”Sold” to ’Shipped” is valid, it must check if a Shipment containing the items was created on
the ledger. As the shipment creation is supposed to be done in the same transaction, the changes are only made
to the world state, and are going to be committed at a later point in time. Therefore, it is impossible within the
same transaction to create the Shipment in a contract and check its creation from another contract.

This made it necessary to make the StateContract’s funnctionalities private, use it exclusively inside Opera-
tionsContract and leave only the getters public. In this way, instead of implementing security checks in the
StateContract and trusting the implementation, the trust is shifted towards the OperationsContract implementa-
tion. Therefore, the state changing methods, only verify if the transition makes sense from the state diagram’s
point of view, without performing further more elaborated verification. In this way, OperationsContract is to-
tally responsible for checking the validity of operations and uses the StateContract only as a way of storing the
state machines.

6.2 REST Server
As the REST Server has a simple and clear design, the implementation process was straightforward as well.

The server is implemented with NodeJS and ExpressJS [36] was used as Web framework. In order to connect
to the Fabric network, fabric-network and fabric-ca-client have been used.

62

As the server needs to remember and change the current active organization as requested, this is done by keeping
the path to different connection profiles as variables. When the current active organization needs to change, the
path to the current connection profile changes accordingly.

Because the implementation complexity of GET /get* methods is low and the majority of them have a high
degree in similarity (e.g. /getItem?id=0 and /getContract?id=0), it has been decided to implement a generic
/get:entity method, that would pass the parameters to the Fabric network accordingly. Even though this defies
the single responsibility principle, for this proof of concept it improves readability and reduces the size of these
methods by around 14 times. In this way, the :entity parameter can be checked and the right transaction can be
invoked depending on its value.

the methods are implemented in the same way: firstly the connection profile is read depending on the current
active organization, then the wallet for the organization is retrieved and the presence of the admin identity
is checked. Afterwards, the gateway to the Fabric is created, followed by the retrieval of the channel and
chaincode. Then, depending on the method, the transaction is invoked with the right parameters and the result
is returned in the response body.

As this component represents just a middleman between the front-end and Fabric network, it does not implement
any logic and is responsible only for parsing the request and response accordingly.

6.3 Front-end application

The front-end application has been implemented using the Shards Dashboard [37] as initial template. For this,
React]JS library [38] has been chosen, while the components are provided by Shards React [39] library. Axios
library was used to perform calls to the REST Server, whose IP was available in the whole project tree by saving
it as an environmental variable in the . /env file.

In the whole application, it was necessary to know at any moment which organization is the current one, which
decides the content shown on the page. For this, the React Context has been used, which removes the need to
pass props down the project tree. The context is known in every child element of the tree, and together with the
context, the context changing function is passed as well. This allows the component responsible for changing
the current organization to be able to change its value. Every time the current organization is changed, the page
gets refreshed in order to repopulate the components with the correct data.

As mentioned in the Design chapter, there is one layout containing a Navigation Bar, Side Menu and Content
area. The content area can be made up of one of the following views:

 ItemsView - a view in which the organization can see its items, other available items, create items and
create orders.

* OrdersView - a view where organizations can see lists of orders ordered for and by him. These are
implemented using HTML tables.

* ViewOrder - view in which information about the Order, corresponding shipment (if any) and included
items is shown. This view is shown when the button to view the order is clicked.

» ShipmentsView - view in which lists of created and received shipments are shown.

* ViewShipment - a view containing details about shipments and offers functionalities to manage them.
This view can be accessed from the ShipmentsView by clicking the view shipment button.

* DisputesView - a view containing disputes opened by and for the current organization.

» ViewDispute - view in which dispute information can be seen together with the disputed items and ship-
ment.

In the whole application, item details can be seen by clicking the eye button next to it. This will create a
modal on top of the application where item details are shown together with their state history.
States are represented visually as colored badges, where every color corresponds to a specific state. The themes
and the associated states can be seen in Figure 6.3.

63

Created Returning Delivered Info Shipped Disputed Under Returned
Resending Closed Received Transiting Examination
Reimbursing

Figure 6.3: State representations

In order to show which data corresponds to the one on the ledger, it must be kept locally for each individual
organization. For this, the local storage at the client side has been used. Every time an operation would be
attempted but it would fail, the local storage would be updated accordingly. When the data from the ledger will
be fetched, there will be a mismatch between the local and ledger data, resulting in an ”Unconfirmed” status of
that asset. For example, if an organization tries to place an order, it provides payment proof but the connection
to either the server or Hyperledger network is broken, this item would be saved in the local storage of this
organization. When the connection would be established again, items from the ledger will not match with the
local ones, therefore the corresponding item will be ”Unconfirmed”.

64

Chapter 7

Validation and Testing

7.1 Testing

The system and its parts have been tested thoroughly during and after the development process. The develop-
ment and testing has been done in the following environment:

» Host Machine:

— Processor: Intel Core 17-7700HQ, 2.80 GHz
— RAM: 8GB

— Operating System: Windows 10 Home

— System Type: 64 bit OS

 Fabric Network and REST Server: 64 bit Ubuntu Virtual Machine, 4700 MB base memory, Virtual Box

* Front-end application: Host Machine

The request would be made on the host machine in the front-end application, it would target the VirtualBox’s
virtual machine IP, on the port 8080. The REST Server listens on localhost:8080 and forwards the calls to the
Fabric network through the Gateway.

The testing of the Fabric system has started right after setup of the network. The ./network.sh script re-
sponsible for deploying the network contains operations that are meant to test whether the deployment steps
have been performed with success. For example, in the chaincode deployment script, after the installation pro-
cess, the peer lifecycle chaincode command is used to query whether the peers have successfully installed the
chaincode. Also, after organizations approve the chaincode definition, the commit readiness is checked and the
commit is queried afterwards using the command previously mentioned.

The chaincode functionalities were tested individually step by step after their implementation. This was done

from the terminal using the peer chaincode invoke command by setting the right environment variables to

act as one of the organizations and by providing the right parameters to the command. An example of such
command is:

peer chaincode invoke -o ordererAddress:Port —ordererTLSHostnameOverride ordererDomain —tls —
cafile ordererCAFile -C channelName -n chaincodeName —peer Addresses peer Address:Port —tIsRootCertFiles
peerCAFile -¢ *"function”:”functionName”,” Args”:[functionArgs]’

The REST Server methods implementations have also been tested individually. This was done using the
cURL tool from the terminal. For example, a command used to test the create item POST method looks like the
following:
curl -d "”description”:"valuel”’ -H ”Content-Type: application/json” -X POST http://localhost:8080/createlter
while one for retrieving an item is:
curl localhost:8080/getItem?id=0

65

7.2 System Validation
The validation process has been performed through the front-end application. To validate it, the delivery and
dispute flows have been performed in-app, which demonstrates the presence of all necessary functionalities.

The full screen captures can be seen in the Appendix.

The user can create items, orders and view the available items from the ”Items” tab shown in Figure 7.1.

Owned Items Create Item
D Item Description Owner State View Ledger Status

1 two DistMSP m ©® Confirmed

3 random DistMSP @ [0 Confirmed

Available Items

ID Item Description Owner Select State View Ledger Status
Create Item
0 one ProdMSP ©® Confirmed

Place Order

Figure 7.1: Items tab screen capture

After placing the order, the seller organization can view the order and create the Shipment for it, using the
functionality shown in Figure 7.2.

Order information Shipment information

ID: 1 Order not shipped. Create shipment:
Seller: ProdMsP

Buyer: DistMSP

Whitelisted organizations, countries,

Expected Delivery Date: 2020-10-10 13:20 organization types:

Payment Proof: Payment proof

Blacklisted organizations, countries,
organization types:

Create Shipment

Ordered Items

ID Description Owner State View

2 item one ProdMSP @ ®

Figure 7.2: Shipment creation screen capture

Once the shipment is created, the holder can initiate the delivery process by asking for a DeliveryInstruction,
which is shown in Figure 7.3.

In order to receive a Shipment and simulate the scanning of the QR code, the organization must input the
instruction ID in the designated field for instructions in Figure 7.4. Moreover, the orders and disputes views have
the same structure as the shipments view, with the exception that they lack the Shipment receival functionality.
These can be seen in the Appendix.

After the shipment is received, the buyer organization can open the dispute by selecting the disputed item
and providing problem proof in the screen from Figure 7.5.

At any moment of the flow, it is possible to view item, shipment and dispute details and states. Item and
shipment information can be seen in Figure 7.6.

Also, changing the current active organization or editing its profile is possible by using the top-right toggle
buttons, which trigger a modal.

66

Instruction Details

ID: =

From: ProdMSP
To: RetMSP
Shipment ID:

QR Code:

Figure 7.3: Deliverylnstruction screen capture

Created Shipments

ID

0

Owner Type Holder Location State View Ledger Status
DistMSP Delivery DistMSP (100, 200) m ® Confirmed
ProdMSP Delivery ProdMSP (0, 0) ©® Confirmed

Received Shipments

ID

1

7.3

Owner Type Holder Location State View Ledger Status

ProdMSP Return ProdMSP (0,0) @ ® Confirmed

Receive Shipment

Figure 7.4: Shipments view screen capture

Graphical User Interface guide

7.3.1 Delivery Flow

In order to perform the delivery flow within the web-app, the following steps must be followed:

1.

Using the top-right button, change the current active organization to the desired one and move to the Items
tab.

Create one or more items by providing item descriptions.

. Change the current active organization to any other organization, provide payment proof, select interested

items and create order.

Change current active organization to the seller organization and go to Orders tab.

. View the newly sold order and create a shipment by providing delivery rules as blacklist and whitelist.

Move to Shipments tab, view the shipment held, compute new instruction and save the ID and destination
organization.

. Change current active organization to the destination organization, move to Shipments tab and receive

the shipment by providing the saved instruction ID.

. Repeat steps 6 and 7 until shipment is delivered.

67

Order information Shipment information

ID: 3
ID: 2 Owner: RetMSP
Seller: DistMSP Type: Delivery
Buyer: RetMSP Contract ID: 2
Expected Delivery Date: 2020-10-09 15:17 Target Location: Long: 100; Lat: 100
Payment Proof: payment Holders: DistMSP
RetMSP <- Current
State History: @

Transiting

Open Dispute

Ordered Items

ID Description Owner State Disputed View
3 random RetMSP ®

Figure 7.5: Open Dispute screen capture

[tem Details Shipment information
ID 0 ID: 2
Description: one Owner: DistMSP
Owner: ProdMSP | Type: Delivery
Contract ID: 1
State History: Target Location: Long: 100; Lat: 200
@ Holders: ProdMSP
: RetMSP
Shipped i
ol DistMSP <- Current
ivered
State History: Created
'
w Transiting
Received
Transiting
Delivered

Figure 7.6: Item and Shipment information screen captures

7.3.2 Dispute Flow
In order to perform one of the dispute flows, the following steps are required:

1. As the buyer organization, view the received shipment and create a dispute by picking at least a disputed
item and providing problem proof.

2. As the seller organization, go to Disputes tab and view the dispute.
3. As the buyer organization, view the dispute and pick a settle method.

* For Return:

— Pick ”Returning” option.

— Perform steps 6 and 7 from delivery flow until shipment is received by selling organization.
» For Resend:

— Pick "Resending” option.

— As the seller organization, view the dispute and pick items to be resent.

68

— Perform steps 6 and 7 from normal flow until shipment is received by buying organization.
* For Reimbursing:

— Pick ”"Reimbursing” option.

— As the seller organization, view the dispute and provide reimbursement proof.

69

Chapter 8

Conclusion

Distributed ledger technology is a revolutionary innovation with huge potential to improve many current exist-
ing systems by making them more transparent, secure and efficient.

In this dissertation, the main characteristics of blockchain technology are reviewed, with emphasis on Hy-
perledger Fabric and the benefits brought by it. More importantly, the focus was put on the applicability of
blockchain technology in the supply chain management domain.

For this, a Dispute Resolution system for supply chains has been developed using Hyperledger Fabric 2.0

blockchain. The designed proof of concept prototype facilitates the prevention of accidental or intentional sys-
tem misuses, thus reducing the number of potential dispute situations between parties. One such example is
the prevention of sending packages to wrong destinations by automating the delivery process. The system also
serves as a common source of truth, which can be consulted in cases a dispute arises. Moreover, product trace-
ability is achieved by having access to the history of holders, owners, locations and actions performed on an
asset. This results in increased transparency for customers in the buying process within supply chain.
The dispute resolution process is facilitated by allowing parties to dispute delivered shipments and items, in-
spect the problem and ultimately settle the dispute on-chain. The proposed system along with transparency,
immutability and traceability, also brings security to the supply chain. Participants in the network can be sure
that no parties can bend the rules in their favor or circumvent imposed regulations which are imposed by the
chaincode. Nevertheless, these benefits are achieved without sacrificing the privacy of participants, which
makes it suitable for establishing private business relations.

Having the proposed system and the main objectives of this paper in mind, we can conclude that blockchain
technology can have a great utility in the supply chain management. More specifically, the dispute resolution
process in the supply chain can be assisted and improved by making use of the transparency, immutability and
security which this technology brings.

Among the limitations of this system is the fact that blockchain technology is a relatively immature technol-
ogy, which can result in resistance or doubt in its adoption process. Also, this technology shifts the trust from
within the system to its frontier, but securing the blockchain-real world interface is a separate research domain,
outside of the scope of this work.

As this project represents a proof of concept, future work might include the development of a more elaborate
system, which would take into account the business needs and the topology of a real supply chain. Another
direction of research can be the further automation of those decisions in the supply chain, which currently are
done manually by its participants, such as settlement negotiation in a dispute.

70

Bibliography

[1] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith, and Z. G. Zacharia, “Defining
Supply Chain Management,” Journal of Business Logistics, vol. 22, no. 2, pp. 1-25, 2001.

[2] mhugos, “Four Participants in Every Supply Chain | SCM Globe.”

[3] F. Isik, “Complexity in Supply Chains: A New Approachto Quantitative Measurement of the Supply-
Chain-Complexity,” Supply Chain Management, Apr. 2011.

[4] H. Min, “Blockchain technology for enhancing supply chain resilience,” Business Horizons, vol. 62, no. 1,
pp- 35 —45,2019.

[5] Feng Tian, “An agri-food supply chain traceability system for China based on RFID blockchain tech-
nology,” in 2016 13th International Conference on Service Systems and Service Management (ICSSSM),
pp. 1-6, June 2016. ISSN: 2161-1904.

[6] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain technology and its relationships to sustain-
able supply chain management,” International Journal of Production Research, vol. 57, pp. 2117-2135,
Apr. 2019.

[7] S. A. Abeyratne and R. Monfared, “Blockchain ready manufacturing supply chain using distributed
ledger,” 2016.

[8] “Ethereum Whitepaper.”

[9] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem and solidity,” in
2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 28, Mar.
2018.

[10] R.Casado-Vara,J. Prieto, F. D. la Prieta, and J. M. Corchado, “How blockchain improves the supply chain:
case study alimentary supply chain,” Procedia Computer Science, vol. 134, pp. 393-398, Jan. 2018.

[11] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, “Blockchain-based traceability in agri-food supply
chain management: A practical implementation,” in 2018 loT Vertical and Topical Summit on Agriculture
- Tuscany (10T Tuscany), pp. 1-4, 2018.

[12] C. G. Schmidt and S. M. Wagner, “Blockchain and supply chain relations: A transaction cost theory
perspective,” Journal of Purchasing and Supply Management, vol. 25, no. 4, p. 100552, 2019.

[13] S. E. Chang, Y.-C. Chen, and M.-F. Lu, “Supply chain re-engineering using blockchain technology: A
case of smart contract based tracking process,” Technological Forecasting and Social Change, vol. 144,
pp. 1 —11,2019.

[14] Z. Liu and Z. Li, “A blockchain-based framework of cross-border e-commerce supply chain,” Interna-
tional Journal of Information Management, vol. 52, p. 102059, 2020.

[15] Z. Wang, T. Wang, H. Hu, J. Gong, X. Ren, and Q. Xiao, “Blockchain-based framework for improving
supply chain traceability and information sharing in precast construction,” Automation in Construction,
vol. 111, p. 103063, 2020.

71

[16] K. Salah, N. Nizamuddin, R. Jayaraman, and M. Omar, “Blockchain-based soybean traceability in agri-
cultural supply chain,” IEEE Access, vol. 7, pp. 73295-73305, 2019.

[17] P. Helo and A. Shamsuzzoha, “Real-time supply chain—a blockchain architecture for project deliveries,”
Robotics and Computer-Integrated Manufacturing, vol. 63, p. 101909, 2020.

[18] S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart Contract-Based Product Traceability System in the Supply
Chain Scenario,” IEEFE Access, vol. 7, pp. 115122—-115133, 2019.

[19] “FEUP - Supply Chain Management with Blockchain Technologies.”
[20] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” tech. rep., Manubot, Nov. 2019.

[21] “Blockchain Technology: Beyond Bitcoin (2016), Crosby, Nachiappan, Pattanayak, Verma & Kalyanara-
man,” Nov. 2017.

[22] “Ledger — hyperledger-fabricdocs master documentation.” Available at https://hyperledger-fabric.
readthedocs.io/en/release-2.0/ledger /ledger.html.

[23] Z.Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain Technology: Architecture,
Consensus, and Future Trends,” in 2017 IEEE International Congress on Big Data (BigData Congress),
pp- 557-564, June 2017.

[24] “4 Different Types of Blockchain Technology & Networks,” Apr. 2020.

[25] “Introduction — hyperledger-fabricdocs master ~documentation.” Available at https://
hyperledger-fabric.readthedocs.io/en/release-2.0/whatis.html.

[26] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukoli¢, S. W. Cocco, and J. Yellick, “Hyperledger Fabric: A Dis-
tributed Operating System for Permissioned Blockchains,” Proceedings of the Thirteenth EuroSys Con-
ference, pp. 1-15, Apr. 2018. arXiv: 1801.10228.

[27] “Membership service provider (msp) — hyperledger-fabricdocs master documentation.” Available at
https://hyperledger-fabric.readthedocs.io/en/release-2.0 /membership /membership.html.

[28] “The ordering service — hyperledger-fabricdocs master documentation.” Available at https://
hyperledger-fabric.readthedocs.io/en/release-2.0 /orderer /ordering service.html.

[29] “Peers — hyperledger-fabricdocs master documentation.” Available at https://hyperledger-fabric.
readthedocs.io/en/release-2.0/peers/peers.html.

[30] “Smart contracts and chaincode — hyperledger-fabricdocs master documentation.” Available at https:
//hyperledger-fabric.readthedocs.io/en/release-2.0/smartcontract /smartcontract.html.

[31] “Fabric chaincode lifecycle — hyperledger-fabricdocs master documentation.” Available at https://
hyperledger-fabric.readthedocs.io/en/release-2.0/chaincode_ lifecycle.html.

[32] “Using the Fabric test network — hyperledger-fabricdocs master documentation.”

[33] “hyperledger/fabric-samples,” Oct. 2020. original-date: 2017-06-20T00:15:53Z.

[34] “The Go Programming Language.”

[35] W. Fitzgerald, “willf/bloom,” Oct. 2020. original-date: 2011-05-21T14:18:41Z.

[36] “Express - Node.js web application framework.”

[37] “DesignRevision/shards-dashboard-react,” Oct. 2020. original-date: 2019-01-07T16:56:11Z.
[38] “React — A JavaScript library for building user interfaces.”

[39] “Shards React.”

72

Appendix A

Application Screen Captures

Shipments

Disputes

) tems

Orders
Shipments

Disputes

Owned Items

1D Item Description
1 two

3 random

2 item one

Available Items

D Item Description

Owned Items

ID Item Description
1 two

3 random

2 item one

Available Items

D Item Description

Organiation Profile

Organization ID: DistMSP
Country:

Organization Type:
Latitude:

200
Longitude:

100

ProdMSP

State

Owner State

DistMSP [Deiiverea]

DistMSP

DistMSP
Owner Select
ProdMsP

73

View

(0]

View

©

Figure A.1: Profile editor screen capture

Create Item
us
Confirmed
Place Order
Create Item

Ledger Status

Confirmed
Confirmed

Confirmed

Ledger Status

Confirmed

Place Order

Figure A.2: Items View screen capture

Create Item

Edit DistMSP ~

Edit DistMSP ~

| B s

Item Details
Orders
Owned Items Create Item
ID 0
Shipments D Item Description Description: one o
Owner: ProdMSP '
Disputs 1 two
isputes
P State History:
3 random @
Shipped
Available Items
Va
i &=
D Item Description us Create Item
0 one ProdMSP ® Confirmed

Place Order

Figure A.3: Item details modal screen capture

Items Edit ProdMSP ~

Orders N

Created Shipments
w Shipments ID Owner Type Holder Location State View Ledger Status

0 DistMSP Deliver: DistMSP 100, 200; Confirmed

bisutes Y (100,200 D ®
2 ProdMSP Delivery ProdMSP (0,0) ®© Confirmed
Received Shipments
ID Owner Type Holder Location State View Ledger Status
1 ProdMsP Return Prodmsp (0,0) [Deiivered } © Confirmed

Figure A.4: Shipments View screen capture

74

Items Edit

Orders
Order information Shipment information
Shipments
ID: 1 Order not shipped. Create shipment:
Seller: ProdMsP
Disputes .
P Buyer: DistMsp Whitelisted organizations, countries, ~ _
Expected Delivery Date: 2020-10-10 13:20 organization types: - B
Payment Proof: Payment proof
Blacklisted organizations, countries,
organization types:
Ordered Items
D Description Owner State View
2 item one ProdMSP @ ®
Figure A.5: Shipment creation screen capture
Items Edit
Instruction Details
Orders
Order information nformation
ID: 4
Shipments From: ProdMsP
ID: To: 2
_ Seller: Shipment ID: ProdMsP
Disputes Buyer: QR Code: Delivery

1
Long: 100; Lat: 200
ProdMSP <- Current

Expected Delivery Date:
Payment Proof:

Ordered Items
ID Description Owner State View

2 item one ProdMSP Shipped ®

Figure A.6: Instruction details screen capture

75

Items Edit etM:

Orders
Dispute information Shipment information
Shipments
ID: 2 1D: 3
Shipment ID: 2 Owner: RetMSP
Disputes Proof of problem: Type: Delivery
Contract ID: 2
State History: | Target Location: Long: 100; Lat: 100
Holders: DistMSP

RetMSP <- Current

State History:
Transiting
E=
{ D

Choose settle option:

Disputed Items

D Description Owner State View

3 random RetMSP ®

Figure A.7: Dispute Settlement process screen capture

76

	Introduction
	Context
	Motivation
	Objectives
	Main Objectives
	Secondary Objectives

	Dissertation Structure

	Related Work
	Background
	Blockchain Technology
	Blockchain Architecture

	Hyperledger Fabric
	Traditional distributed ledgers architecture
	Fabric architecture
	Transaction flow
	Hyperledger Fabric Components

	System Design
	Requirements specification
	Functional Requirements
	Non-functional Requirements

	System Overview
	Network Topology

	System Architecture
	Dispute Resolution Fabric Network
	REST Server
	Graphical User Interface

	Security Analysis
	Hyperledger Fabric Security
	Immutability
	Privacy and Confidentiality
	Consensus

	Design security

	Implementation
	Process description
	Dispute Resolution Fabric system
	Network Deployment
	Chaincode Implementation

	REST Server
	Front-end application

	Validation and Testing
	Testing
	System Validation
	Graphical User Interface guide
	Delivery Flow
	Dispute Flow

	Conclusion
	Application Screen Captures

