
A DESIGN METHOD FOR THE
DEVELOPMENT OF
CYBER-APPLICATIONS

TIGIST ABRAHAM GIZAW
February, 2013

SUPERVISORS:

Dr. Javier Morales
Drs. B.J. Barend Köbben

A DESIGN METHOD FOR THE
DEVELOPMENT OF
CYBER-APPLICATIONS

TIGIST ABRAHAM GIZAW
Enschede, The Netherlands, February, 2013

Thesis submitted to the Faculty of Geo-information Science and Earth
Observation of the University of Twente in partial fulfilment of the requirements
for the degree of Master of Science in Geo-information Science and Earth
Observation.
Specialization: GFM

SUPERVISORS:

Dr. Javier Morales
Drs. B.J. Barend Köbben

THESIS ASSESSMENT BOARD:

Dr. A.A. Voinov (chair)
External examiner: J.J. Verplanke MSc

Disclaimer
This document describes work undertaken as part of a programme of study at the Faculty of Geo-information Science and Earth
Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and
do not necessarily represent those of the Faculty.

ABSTRACT

Most real world problems can be resolved by assembling existing data and components into the
necessary application. In some cases, all the required components are available in the development
phase of the application. However in many other cases, new components need to be incorporated
into an already executing application due to the dynamic nature of the problem. These kinds of
applications are called Cyber-applications. These applications are the most recent developments
of web application which are data intensive and highly interactive. It is widely recognized that de-
velopment of any web application requires a sound design method. This is why there exist several
methodologies to guide the development process. However, these methodologies mainly focus
on the design of the navigation and the presentation of data. This means, almost all of these de-
sign methods emphasize mainly on visual design and user interface aspects. In the contrary, the
development of Cyber-application requires a different design method since the main focus is the
processing and analyzing of new data source that are discovered at run-time. Therefore, in this re-
search project, we present a formal design method for the development of Cyber-applications. This
methodology incorporate the principles of Separation of concern (SoC), application partitioning
based on the Model-View-Controller (MVC) design pattern, run-time data and component inte-
gration using the Dynamic Data Driven Application System (DDDAS) method, external resource
exploitation, and communication between the partitioned application modules for the ease of the
development process. Additionally, a prototype for quantitative multi-hazard analysis is built to
demonstrate the basic concepts in the design method.

Keywords

SoC, MVC, DDDAS, Event-based interaction, Design method, Cyber-applications, SQL/MED, Geospa-
tial CyberInfrastructure, WebGIS, Cloud Computing

i

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

ii

ACKNOWLEDGEMENTS

First and foremost, I thank the almighty God for the wisdom and determination that he has been
bestowed upon me during this research project. Next, I would like to pass my deepest gratitude to
my first supervisor Dr. Javier Morales for his useful comments, excellent guidance and remarks
all the way through the learning process. Thank you for allowing me to grow as an independent
research scientist. I would also like to thank my second supervisor Drs. B.J. Barend Kobben for
his kindness and valuable advices.

A special thanks to my beloved brother Netsanet Abraham. You have been a tremendous
mentor for me throughout my life. Thanks for all the caring, encouragements, suggestion, and
technical helps you provided me especially during this research project. Love you brother. Most
importantly, I would like to deliver all the love I have in my heart to my sweetest, and most
wonderful parents. Mom and Dad, you gave me birth, you gave me life, and everything else is in
between. Because of you I always thrive to be better. Nani and Baby, you guys are hilarious. Love
you both to bits.

Last but by no means least; I would like to express my special appreciation to Mulugeta Tadesse
for cheering me up and stood by me through the good and bad times. Many thanks for always be-
ing there and for all the support :). Additionally, Thanks to the music, bases of my work, comfort
and painless hits.

“Everything should be made as simple as possible, but not simpler.”... Albert Einstein

iii

TABLE OF CONTENTS

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Listings xi

List of Acronyms xiii

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Research identification . 2

1.2.1 Research objectives . 3
1.2.2 Research questions . 3
1.2.3 Innovation aimed at . 3
1.2.4 Related work . 3

1.3 Method Adopted . 4
1.4 Structure of Thesis . 7

2 Preliminary Concepts 9
2.1 Introduction . 9
2.2 Geospatial CyberInfrastructure: What is it? 9

2.2.1 Geospatial Data sources and Services 10
2.3 Cloud Computing . 11

2.3.1 How Cloud Computing Works? . 12
2.3.2 Service Models of Cloud computing 12
2.3.3 Types of cloud computing . 13
2.3.4 Cloud computing and the Geospatial science 13

2.4 Conclusion . 14

3 Review of Web Application Development, Their Emerging Technologies and Proper
Methodologies 15
3.1 Introduction . 15
3.2 Web Application Development . 15

3.2.1 Development Perspectives . 15
3.3 Types of Web applications . 16

3.3.1 Google docs . 17
3.3.2 CitySourced . 17
3.3.3 WebGIS . 17

3.4 Their emerging technologies . 17
3.5 Review of Proper Methodologies for Web Application Development 18

iv

3.5.1 Model-Driven Approach . 18
3.5.2 Component Based Development . 20
3.5.3 User Centered Approach . 21
3.5.4 The Web Based Information System Development with a comprehensive

Methodology (WISDOM) Framework 21
3.5.5 Web Engineering . 22

3.6 Conclusion . 22

4 Our Methodology 23
4.1 Introduction . 23
4.2 Design Steps . 24

4.2.1 Problem Definition (Step 1) . 26
4.2.2 Data Structure Design (Step 2) . 26
4.2.3 Data Source Identification (Step 3) . 28
4.2.4 Workflow Specification (Step 4) . 31
4.2.5 Application Partitioning (Step 5) . 32
4.2.6 Interface Specification (Step 6) . 34
4.2.7 Realization (Step 7) . 36

4.3 Conclusion . 36

5 Design and Implementation of Quantitative Multi-hazard Vulnerability Analysis
Application 37
5.1 Introduction . 37
5.2 Implementation Environment and Setup . 37
5.3 Architecture of the application . 38
5.4 Quantitative Multi-hazard Vulnerability Application Development 39

5.4.1 Step 1: Problem Definition. 39
5.4.2 Step 2: Data Structure Design. 40
5.4.3 Step 3: Data source identification. 41
5.4.4 Step 4: Workflow specification. 41
5.4.5 Step 5: Application partitioning. 44
5.4.6 Step 6: Interface specification. 53
5.4.7 Step 7: Realization. 54

5.5 Evaluation of the application . 56
5.6 Conclusion . 56

6 Summary, Conclusions and Recommendations 57
6.1 Introduction . 57
6.2 Summary . 57
6.3 Conclusions . 58
6.4 Recommendations . 60

Bibliography 66

Appendix 67

A Creation Of the Models 67
A.1 Creation of All the Model Classes . 67
Appendix . 68

v

B The Controllers 69
B.1 Building Listing Controller . 69
B.2 Creation of DAL controller . 69
B.3 Mapping Controller . 73
B.4 Hazard Selection Controller . 74
B.5 The Executive Controller . 74
B.6 Event-Handling Function . 75

C Creation Of the Views 77
C.1 Creation of the Three Main Views . 77
C.2 Creation of the Grid View . 78
C.3 Creation of the Results View . 79
Appendix . 81

D Implementation start-ups 83
D.1 Starting Point for Implementation of Application Home Page 83
Appendix . 84

E Additionals 85
E.1 Technological Architecture based on ASP.Net MVC framework 85
E.2 Sets of vulnerability value Scales . 85
E.3 PIM Models for the Use Case . 86

vi

LIST OF FIGURES

1.1 Method Adopted . 5
1.2 MVC Structure . 6

2.1 General Overview of Cloud computing [24]. 11

3.1 Development perspectives of web applications 16
3.2 A general development framework for web application [14]. 19

4.1 Cyber-Application Design Steps . 24
4.2 Foreign Table [35]. 29
4.3 Workflow for determining landslide vulnerability value 32
4.4 Simple Event-based Interaction in MVC design pattern. 35

5.1 Architecture showing Components of the Application 38
5.2 General Workflow Diagram for the Application 42
5.3 Workflow for determining flooding vulnerability value 43
5.4 The Structure of Our Solution . 52
5.5 Application page layout . 54
5.6 Building information on-click . 55
5.7 Results view . 56

E.1 Diagram of Technologies Used . 85
E.2 Sets of values [5] . 85
E.3 PIM . 86

vii

viii

LIST OF TABLES

3.1 Similarities with Cyber-applications . 22

4.1 Basic Concepts Overlaid in Our Methodology 23

5.1 Relevant Software and Platforms . 37
5.2 Required Datasets . 40
5.3 Example of Data Source Identification . 41

ix

x

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Listings

4.1 Model element for building information . 27
4.2 Model for landslide hazard . 27
4.3 Creating connection to web service . 29
4.4 Creating a foreign table . 29
4.5 Executing a query in the external web service 29
5.1 Model Class for “Flooding” . 44
5.2 Model Class for “Mudflows” . 44
5.3 Queries used when creating tables . 45
5.4 Creation of the “GridView” . 46
5.5 Results view . 47
5.6 The “BuildingListing” Controller . 48
5.7 Landslide function from the “HazardSelection” Controller 49
5.8 The “Data Access Layer (DAL)” Controller . 50
5.9 Function that handles flooding request in the “Executive” Controller 51
5.10 On Click Events . 53
5.11 Selection Changed event handler function . 53
A.1 Complete Source Code for Buildings Model Class creation 67
A.2 Complete Source Code for Flooding 20 Years Model Class 67
A.3 Complete Source Code for Flooding 100 Years Model Class 67
A.4 Complete Source Code for Model Class of Landslide 68
A.5 Complete Source Code for Model Class of Mudflows 68
B.1 Complete Source Code for Building Listing Controller 69
B.2 Complete Source Code for creation of DAL (Data access layer) 69
B.3 Complete Source Code for Creating and Initializing the Map 73
B.4 Selected Hazard type Controller . 74
B.5 The Executive Controller to respond to analysis requests 74
B.6 Complete Source Code for Selection Change Function 75
C.1 Main views Creation . 77
C.2 Complete Source Code for Creation of the Grid view 78
C.3 Dialog Form for Creation of Results View . 79
C.4 Landslide Results view . 79
C.5 Mudflows Results View . 80
C.6 Flooding 20 Years Results view . 80
C.7 Flooding 100 Years Results view . 81
D.1 Master Set-up for Application Home page . 83

xi

xii

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

List of Acronyms

AJAX Asynchronous Javascript and XML

API Application Program Interface

ASP Active Server Pages

CBD Component-Based Development

CI CyberInfrastructure

CIM Computation-Independent Model

CSS Cascading Style Sheet

DaaS Data as a Service

DAL Data Access Layer

DBMS Database Management System

DDDAS Dynamic Data Driven Application System

DFS Data Feed Service

ESRI Environmental System Research Institution Inc.

GCI Geospatial CyberInfrastructure

GEOSS Global Earth Observation System of Systems

GI Geographic Information

GIS Geographic Information Systems

GPS Geographical Positioning System

GSDI Global Spatial Data Infrastructure

HDM Hypertext Design Model

HMBS/M Hypermedia Model Based on State/Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IIS Internet Information Services

xiii

IT Information Technology

MVC Model View Controller

MVP Model View Presenter

MVVM Model View View Model

NASA North American Space Agency

NDT Navigational Development Techniques

NSF National Science Foundation

OGC Open Geospatial Consortium

OO Object Oriented

OO-H Object Oriented Hypermedia

OOHDM Object-Oriented Hypermedia Design Method

PaaS Platform as a Service

PIM Platform-Independent Model

PSM Platform-Specific Model

QGIS Quantum GIS

RMM Relation Management Methodology

SaaS Software as a Service

SDI Spatial Data Infrastructure

SOA Service-Oriented Architecture

SoC Separation of Concern

SQL/MED Management of external Data

SQL Structured Query Language

UI User Interface

UML unified modeling languages

UWA Ubiquitous Web Application

UWE UML-Based Web Engineering

WAP Wireless Application Protocol

WebGIS Web Geographic Information System

WebML Web Modeling Language

WISDOM Web Based Information System Development with a comprehensive Methodology

xiv

WFS Web Feature Service

WML Wireless Markup language

WMS Web Mapping Service

WSDM Web Site Design Method

WWW World wide Web

XHTML Extensible Hypertext Markup Language

xv

xvi

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Chapter 1

Introduction

1.1 MOTIVATION AND PROBLEM STATEMENT

Most interactive web applications consist of distributed components that access data, encapsulate
business rules, and handle user interaction to address some specific real world problem. Identifying
the kinds of components commonly found in distributed software solutions is usually conducted
at the early stage in the process of application design [30]. Software components intended to be
integrated into and distributed as an integral part of an application that dynamically incorporates
new data and functions to their execution engine at run-time are referred as Cyber-applications.
The term “Cyber” means everything that we need is provided by third-parties and it is available
somewhere in the web. Therefore, Cyber-applications support CyberInfrastructure environment
and provide the flexibility to manipulate external data and exploit computational resources that
are available online.

Cyber-applications are data intensive and highly interactive application which runs in the web
environment [39]. They provide support for the manipulation and processing of large volume of
data for domains of scientific research. These data can be structured or unstructured which needs
to be processed, analyzed, and linked for some sort of purpose. Extremely high storage and com-
putational requirements, robust architecture, scalability and security are common characteristic
of these applications [17]. Additionally, these applications are free-standing and highly interac-
tive as they allow web pages to be displayed in standard web browsers to present responsive user
interfaces.

There exist variety of applications which present interactive user interface in the web such
as email communications, search engines, multimedia and community, encyclopedias, and basic
office applications. However, we do not consider them as cyber-applications. Cyber-apps are
different in the sense they enable the processing of complex tasks in the web environment and they
also have the capability to dynamically integrate new components into the application at run time.
Addressing the potential of these application requires available tools and assists for the composition
of the application [9]. The support of recent web engineering tools such as .Net, Java, Hypertext
Transfer Protocol (HTTP), Hypertext Markup Language (HTML)5, Asynchronous Javascript and
XML (AJAX), Ruby and Cascading Style Sheet (CSS) plays vital role in the development of cyber-
application.

Cyber apps are the latest advancement along the development path of web applications. They
allow the exploitation of off-the-shelf online resources by using a clear separation of concerns in
the assembly of the application’s structure. Separation of Concern (SoC) is a design principle for
dividing an application into distinct modules, such that each component or modules deals with a
separate concern [38]. When concerns are well separated, individual modules can be developed
and updated independently. The identified components provide certain functionality and are ac-
cessible through a well-designed interface. There are certain architectural patterns which imple-
ment this principle for partitioning the application into different modules and also useful when
dynamically incorporating new data and functions into the application.

1

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Cyber-applications can be implemented for real world problems which require dynamic and
real time integration of large amount of spatially referenced data and simulation. Flood risk assess-
ment, landslide prediction, wildfire detection, and weather forecasting are some of the few scien-
tific research areas where the application can be adopted. Therefore, the development process of
these applications requires paradigms such that components can easily be designed and integrated
into the application depending on the chosen scenario. Application paradigms are design patterns
or frameworks which simplify the construction of the application process. Selecting appropriate
paradigm and their underlying architecture leads to effective development of cyber-applications
but most importantly, it is essential to adopt a standard design methodology for the development
of cyber-application.

The absence of a proper design method for the development of cyber-applications is one of
the problems that need to be addressed. Having a well-established formal design method will
reduce the complexity of the development process and also increase performance and quality of
the application [36]. Currently, there are no standard design methods for the creation of cyber-
applications since these applications are the most recent application type in the development path
of web applications. Designing such a methodology will support independent exchange of data
between interacting modules and facilitate the computational model of cyber-applications. It will
also make the work of developers simple by distributing responsibilities over different modules of
entire applications.

Limited number of application paradigms for the development of cyber-applications is another
problem in the development process. Selecting the appropriate application paradigm based on the
requirements and nature of cyber-application is important in reducing the complexity and satisfy-
ing the pre-requirements of the application. A typical cyber-application requires partitioning the
entire application into modules with clearly defined interactions between them [39]. This indi-
cates that the bases, which are modularity and extensions needs to be preserved by the application
paradigm that is expected to be selected or developed.

Another issue that we need to consider when developing cyber-application is the extra level
of complexity that is inherently generated by the approach or the methodology we are follow-
ing. Most applications have certain level of complexity and we would introduce an extra level of
complexity to cyber-applications by separating the concerns. This additional level of complex-
ity is a natural consequence of the approach, arises from fulfilling the requirements of separating
the application into parts. Therefore, there has to be a mechanism to identify and manage the
complexity that is introduced during the development of cyber-applications.

1.2 RESEARCH IDENTIFICATION

The scope of the methodology which is proposed in this research project is defined from user’s
perspective. The development path of cyber-application starts with the application problem and
come up with the application itself. Our target is not the application; rather it is the methodology
to guide the development process. Therefore, the methodology includes identifying those prob-
lems, setting up design principles and steps, defining the underlying architecture and building a
prototype for validating the concept. The proposed methodology enabled us to identify the extra
level of complexity that is introduced in the development process and found a mechanism to man-
age it in the application in lined with the design criteria. Additionally, we assumed that there exist
various dataset which are suitable for a given domain of problem and transformation process on
the datasets is not included on the scope of this methodology.

The proposed methodology begins with identification of problem domain to define require-
ments of the application which includes data requirements, their formalization, identification of

2

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

data sources, and specification of application workflow. Followed by, the design and the develop-
ment of cyber-applications. With this in place, we identified the steps that are involved in each
phases of the development process and this enabled us to define a well structured and robust
methodology. The concerns addressed here are described through the following research objec-
tives and research questions.

1.2.1 Research objectives

The aim of this research project is to define a design method for the creation of cyber-applications.
This general objective can be achieved by defining the following sub-objectives:

1. To select appropriate application paradigm that is capable of identifying components for the
development of cyber-applications.

2. To define an underlying architecture which allows dynamic incorporation of functional and
data components into the application’s execution engine at run-time.

3. To validate the correctness and completeness of the designed method.

1.2.2 Research questions

1. How to define a methodology for the development of cyber-application?

2. What are the types of problems that can be addressed with the application?

3. Which application paradigm can we use to identify the components in the development of
cyber-applications?

4. How to design the underlying architecture for cyber-applications based on the design pat-
tern?

5. How to validate the correctness and completeness of the design method for cyber-application?

1.2.3 Innovation aimed at

The design method incorporates the opportunities for cyber-applications to integrated spatial data
which are necessary to understand and forecast environmental and physical processes that are
changing the surface of the Earth. The methodology will guide users to address the design process
properly and enable them to build the application with only a small modification depending on
the nature of the problem. We used some components of the system as a prototype to validate the
methodology designed.

1.2.4 Related work

As discussed in the previous sections, cyber-applications are innovations of recent web applica-
tion technologies. There has not been much of research done in this area. Therefore, there are
no particular design methods or defined underlying architecture to follow in the development of
typical cyber-applications. The challenges in the development of complex web applications, and
also problems arises from the absence of disciplined approach are discussed by [40]. However,
several development approaches for web applications are being presented to developers. Some of
these web methodologies are discussed in the next paragraph.

Hypertext Design Model (HDM) expresses the main abstractions of a hypermedia applica-
tion, their internal structure and navigation, and application-wide navigation requirements [20].

3

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Since this is the first method proposed for hypertext, it has been used as a basis for other method-
ologies. The most widely accepted Object-Oriented Hypermedia Design Method (OOHDM)
approach is an extension of HDM which mainly focused on navigation design, interface design,
conceptual modeling and object oriented implementation of the application [46]. The Web Site
Design Method (WSDM) of [10] follows “user-centered” approach composed of User model de-
sign, conceptual model design, implementation design and implementation. Relation Manage-
ment Methodology (RMM) approach of [49] consists of seven parallel and iterative executed stages.
UML-Based Web Engineering (UWE) approach of [29]wraps up the fundamental life-cycle of web
application development based on unified modeling languages (UML). The Hypermedia Model
Based on State/Model (HMBS/M) separate the content and structure using formal representation
techniques based on state charts and models [51]. Object Oriented Hypermedia (OO-H) is de-
rived from Object Oriented (OO) approaches and extends modeling and implementation process
of web applications based on UML [22]. The W2000 method is based on a specific meta-model
and allows the designer to model many aspects of web applications [3]. This model supports flexi-
ble definition and extension of other modeling concepts. The Web Modeling Language (WebML)
method of [7] enables designers to create the basic features of a high level web application without
defining architectural details. It provides high level description of a web system consisting of a
data model, hypertext model, presentation model and personalization model.

The central attention of most approaches that are mentioned above is the navigation and pre-
sentation of web applications. They do not consider a clear separation of user interface, data and
functionality of the application. Unlike most web applications, “cyber-applications focus mainly
on the manipulation of user activities, which may result in the generation of data, or asynchronous
access to a new data source” [39]. Therefore, the design method proposed here mainly focuses on
the clear separation of concern and components interaction to manage the exchange of data and
complexity of the application development process.

1.3 METHOD ADOPTED

In order to carry out the research objective and find possible solution for the research questions, we
splited the research project into phases. The first phase is requirement analysis and specification,
followed by application design. Next is defining the proper methodology, and finally undertaking
the prototyping and validation phase concludes the whole research project. The overall approach
adopted in this research project is shown in Figure 1.1.

Requirement analysis and specification is mostly conducted at the primary state of any soft-
ware and web application development techniques. In this stage, we reviewed basic concepts of
data intensive applications, separation of concern, exploitation of resources in real time and com-
ponents interaction to understand the design principle and requirements of cyber-applications. In
parallel, we identified a suitable problem area in which the proposed methodology is validated
through. After the requirements are identified, analysis based on those requirements has been per-
formed. The analysis includes identifying which components are needed and how the information
flows between these components, what kind of resources are available and what types of problem
that can be addressed with the application.

The development of cyber-applications requires design principles which enforce the partition-
ing of entire application into different modules and defining the interaction between them for
better provision of simple user interface, content and application logic. Therefore, on the appli-
cation design phase, previously specified components are distinguished, and application paradigm
and underlying architecture are selected.

Since separating the internal structure of the applications results in different components, the

4

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 1.1: Method Adopted

5

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

use of a Model View Controller (MVC) design pattern facilitates the process of identifying these
components in the design of cyber apps. The MVC design pattern of [50, 31] consists of three
elements. The Model element handles the application data, the View element handles the display
of the data and the Controller handles user’s interaction. The structure of this design pattern can
be seen in Figure 1.2. By adapting this design pattern to cyber-application, each of the components
have a particular task in one of the above mentioned MVC features. MVC enables designers to
separate the user interface from the data presentation and processing functions. The compatibility
between technological infrastructure and appropriate partitioning of the applications will reduce
the complexity of designing the application structure [31]. There exist alternative approaches to
MVC such as Model View Presenter (MVP), Model View View Model (MVVM) and WebForms.
However, most of these approaches focus on the presentation layer and making automatic unit
testing is an impossible task. Therefore, for our particular case MVC is best option since it enforces
separation of concerns, and unit testing is possible. It also structure and organizes application
modules, and provides the capability to handle complex application.

Figure 1.2: MVC Structure

The Interaction between the partitioned components needs to be defined in order to avoid
losing control on the sequence. Most Web-based applications are event-driven, they display events
as part of their application interface to understand interaction detail between components [30].
However, the architecture of Cyber-applications must support distributed and collaborative com-
ponents to completely adopt this approach. Therefore, this research project also defines the un-
derlying architecture for cyber-apps to distribute tasks between components.

Additionally, we put into consideration the situation where new components need to be added
to the application once it is already in use due to the dynamic nature of the problem and scenario.
For this case, the Dynamic Data Driven Application System (DDDAS) approach is proposed as
a solution. This approach was first recommended by [8]. DDDAS is a new paradigm in which
simulations, measurement data’s, and models are dynamically integrated into application to create
high performance capability for a wide range of advanced scientific and computational technology
research areas [43]. It is also useful for predicting the characteristics of complex application in order
to prevent sudden failure of system components.

Based on the approaches proposed in the requirement analysis and design phases, a proper
methodology consists of set of steps is defined for the creation of typical cyber-application. During

6

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

the final phase of the research project, the suitable problem identified in the requirement analysis
phase allowed us to demonstrate some components of the system as a prototype. This prototype
is used to validate the correctness and completeness of the methodology; it is not for solving any
application problem.

1.4 STRUCTURE OF THESIS

This thesis document is composed of Six chapters including the introductory chapter which de-
scribes the research project. The remaining chapters are organized as follows:

Chapter 2 Introduces the preliminary concepts needed to understand the concepts of cyber-
application. The main concepts discussed in this chapter are geospatial Cyberin-
frastructure, different data sources and cloud computing which greatly participate
in the growth of geospatial science.

Chapter 3 This chapter presents the development of web application, their emerging tech-
nologies and reviews of some of the proper methodologies. Additionally, few of
the modern web applications types are discussed and their similarities with cyber-
application is laid out.

Chapter 4 The design method for the development of cyber-application is defined in this chap-
ter. This is the basic chapter of the thesis document where the development per-
spectives, the design principles and structured set of steps are defined.

Chapter 5 This chapter discuses the identification and specification of the use case together
with the result and evaluation of the prototype built based on the design steps.
The prototype is developed to validate the methodology defined. Additionally, the
underlying architecture for the application is defined.

Chapter 6 The final stage of the research project is summary, conclusion and recommenda-
tion. This chapter discusses the strength and reveals the limitations of the design
method such that we recommend for further studies.

7

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

8

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Chapter 2

Preliminary Concepts

2.1 INTRODUCTION

The main intention of this chapter is to introduce the preliminary concepts needed to understand
the contents of the thesis project. We present concepts relevant to the development of Cyber-
application and for the process of defining a design method. It is a preparatory step for the re-
maining chapters.

This chapter defines the concepts of geospatial CyberInfrastructure and its relation with cloud
computing environment. We also reviewed some of the data sources that are available for the devel-
opment of Cyber-applications and Web Geographic Information System (WebGIS). There exists
an enormous list of data sources which provide different kinds of services for users and applications
in general. However, we only provide brief review of these lists. In Section 2.3, cloud computing
has been described in detail and how it is supporting the geospatial science. The final section of
this chapter aims to finalize the concepts that are described in relation to the requirements and
characteristics of Cyber-applications.

2.2 GEOSPATIAL CYBERINFRASTRUCTURE: WHAT IS IT?

A CyberInfrastructure (CI) is a combination of data resources, hardware, software, network proto-
cols, and computational services that enable distributing computing and information management
for building data intensive or other kinds applications [54]. The term CI was first introduced by
the United States National Science Foundation (NSF) to describe research environments for the
support of data acquisition, storage, integration, and information processing services spread over
the Internet.

Geospatial CyberInfrastructure (GCI) is based on CI which is required to store, process, and
deliver large amount of sensor data collected worldwide by using geospatial principles and geospa-
tial information to change the way research, development and education are carried out in all
aspects of science [54]. It is designed to deal with the distributed geospatial processing and to de-
fine the workflow and file transfer process. Geospatial Cyberinfrastructure’s requirements are a
good match for common capabilities of Clouds.
[54] states that the main components of GCI are community layer, functions, and computing

infrastructure. The community layer represents user interaction and virtual organizations which
are in specific user domain such as, environment, geography, climate and other science domains
to access the available tools and function. The basic components of the GCI framework are the
functions and computing infrastructure layers; the framework offers CI functions and geospatial-
specific functions and a geospatial middleware to bridge the gap. These functions provide various
analytical mechanisms for users. The geospatial information integration layer is supported by
geospatial processing, knowledge mining, and observations to integrate geospatial data, knowledge
and information. The geospatial information integration and functions layers distinguish GCI
from common CIs.

9

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

2.2.1 Geospatial Data sources and Services

Geospatial data sources are the most visible part of CI which are used to organize resources, data,
directories search tools and application in the web environment. In recent years, the growth of web
and the acceptance of the internet support the progression of creating, assembling, and dissemi-
nating geographic information for a wide range of activities [23]. Geographic Information (GI)
became very important to understand the true behavior of the earth and large number of geospa-
tial resources are available on the World wide Web (WWW) for educational and research purpose.
Keeping this in mind, the innovation of recent data sensing technologies plays vital role in ac-
cumulating enormous amounts of data in digital format. Data collection can be done by simple
forms such as the human eye; and recently, in-situ sensors and satellites help us produce data in
real time. The datasets are collected in different locations and obtain information on multiple
phenomena’s that are changing the surface of the earth. For example, the North American Space
Agency (NASA) has more than six petabytes of data stored till today [26]. The collected data are
increasingly offered in online data repositories. The initiatives like INSPIRE - the Infrastructure
for Spatial Information in the European Community and the Global Earth Observation System
of Systems (GEOSS) support this trend. Different standards on the datasets are popularly used in
order to be exploited by Wide range of applications. Similarly, the accessibility of these datasets
has become effortless since the establishment of Application Program Interface (API)s. Due to
this, software components can directly interact with the data and it can also be used to run data
portals for retrieval and updating processes on the data sources.

Large amount of spatial data sources can be found in different data repositories which are ba-
sically called Geo-portals. Geo-portals provide capabilities to query metadata records for a wide
range of applications by linking them directly to online services [32]. This can facilitate the dis-
covery and access to data so that the research environment can analyze these data. The portals
can be created by individuals, organization and institutions to deliver geographic content on the
web. Some of the geo-portals which have a great impact on the discovery of these spatial data
on the web includes: the British geological survey which covers geosciences resources, the World
Bank’s data catalogue that list of available World Bank datasets, reports, pre-formatted tables, and
other resources, the GEOSS which enhance the relevance of Earth observations to global issues,
the Global Spatial Data Infrastructure (GSDI) portal which index quiet large number of global
geographic data, EU INSPIRE that deals with national government data, US Geospatial One Stop
(www.geodata.gov) that serves as a public gateway for improving access to geospatial information,
the GeoNames geographical database which covers all countries and is accessible through various
web services to provide place names that can downloaded for free, the Dutch national Spatial Data
Infrastructure (SDI) (PDOK) that provide nationwide topographic and thematic maps of all kind.
However, this is not the complete list rather it is only a small preview of the well known geoportals
nowadays.

Since Cyber-application depends greatly on external data resources, some of specific data repos-
itories which can be relevant for our vulnerability analysis use case presented in Chapter 5 are:
SRTM (shuttle radar topography mission) which produce digital topographic data and provides
elevation data on a near-global scale, TRMM (Tropical Rainfall measuring mission) which pro-
vides detailed information of rainfall over the tropical and so on. Therefore, the approach we are
following for the development of Cyber-application provide a mechanism to dynamically create
access to, and operations on the external datasets. The required data and functions can be gathered
from the underlying infrastructure.

10

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

2.3 CLOUD COMPUTING

What is cloud computing? Cloud computing refers to distributed computing which relies on shar-
ing of computing resources to handle complex application in a network rather than computing
on local servers and personal hardware devices. The other definition of cloud computing is “a
model for enabling convenient, on demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction” [34].
It is an internet based computing in which servers, storage, and infrastructures are provided as a
service to several users over the internet. Figure 2.1 shows the general overview of this technology.
In conclusion, it allows users to take advantage from all of the technologies, without the need for
deep knowledge.

Geospatial CyberInfrastructure has gained advantage from the recent developments of Cloud
Computing technologies such as using Cloud Computing platforms, typical Information Tech-
nology (IT) resources such as storages, computing utilities, and databases that are available as ser-
vices in the cloud environment [54]. For example, MapReduce is a programming model that
provides a mechanism and runtime capabilities to undertake GCI tasks on the cloud. “Providing
geo-processing functions in Could Computing platforms can bring scalable, on-demand, and cost-
effective geo-processing services to geospatial users” [55]. Therefore, cloud computing gains the
importance for providing computing infrastructure for users and developers of different applica-
tions.

Figure 2.1: General Overview of Cloud computing [24].

11

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

2.3.1 How Cloud Computing Works?

Personal computers are no longer undertaking heavy processing since a network of large group of
servers running in low cost computer with specialized connection spread data processing across
them because of cloud computing technologies. However, the user computer needs to run the
cloud computing systems interface software and the cloud network do the rest of the work. In
[48], cloud computing system is divided into two sections: the front end and the back end. The
front end is the client computer which we interact with and the back end is various computers,
servers and data storage’s that compose the cloud computing system. Cloud computing mainly
depend on virtualization technologies which offer flexibility and platform independence; however
they require certain requirements upon systems and applications [33].

Cloud computing utilizes central server which follows some kind of protocols to manage the
system and use a software called middleware to allow the set of networked computers to com-
municate [48]. Many organizations define their own cloud computing technologies because the
standard for connecting the computer that runs the software and the system itself is not defined.
The technologies that are defined by different companies are based on open standards and open
source software’s.

2.3.2 Service Models of Cloud computing

There exist several services that are provided by cloud computing based on different models and
according to the abstraction level of the capabilities and resources provided. The services can be
integrated to provide better solution. Cloud computing adopt concepts from Service-Oriented Ar-
chitecture (SOA) since the aim of SOA is to deal with requirements of loosely coupled, standards-
based, and protocol-independent distributed computing [52]. The basic service models provided
by cloud computing are:

• Infrastructure as a Service (IaaS): this layer provides storage and compute resources. This
means consumers can directly use the resources such as CPUs, storage, firewalls and so on.
The Iaas service model focuses on the enabling technologies and use virtualization tech-
niques to meet resource demands [45]. Virtualization is the creation of a virtual machine
that acts like a real computer with an operating system and dividing the resources of one
physical computer in order to execute them on virtual machines. Amazon E2C is typical
example which mainly offers IaaS.

• Platform as a Service (PaaS): this service model offers development platform such that appli-
cations can be built and deployed using programming language and tools. Developers of the
application do not need to know what kind of computing resources that the application is
using [52]. Google AppEngine is an example of Platform as a Service, it provides scalable
environment for developing and deploying Web applications.

• Software as a Service (SaaS): this model is the most known and sometimes called Application
Clouds, it provides applications or software using cloud infrastructure. The applications
provided as a service can be accessed through a simple web browser by the user; there is
no need for client side installation. Salesforce.com adopts SaaS model to offer applications
of business productivity. And Google Docs is an example of SaaS which offers office pro-
ductivity software that can be accessed online. Application of cloud computing is every-
thing starting from basic word processing to customized computer program. Nowadays, it
is possible to run any types of application and execute many programs in a cloud computing
system.

12

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

2.3.3 Types of cloud computing

Cloud computing are classified as public, private, hybrid and community clouds based on model
of deployment.

• Public clouds: are available for the general public over a network. They reside outside of
private firewall. This approach is useful for companies which want to save time and cost for
deployment and maintenance purpose. Data security issue is not handled in public clouds
and this where the difference lays from other types of cloud deployment models. Amazon
AWS, Microsoft and Google are public cloud service providers. They own and operate the
infrastructure and offer access only via Internet.

• Private clouds: operate operated exclusively for a single organization, thus data and acces-
sibility are only for internal users by interacting directly to the local data center.. These
clouds can be managed internally in the organization or by third-party. It is suitable for
users focusing on data security and privacy. Implementation of these deployment models
can be complicated and time-consuming.

• Hybrid clouds: combine aspects of both public and private clouds to deliver solution. This
approach is useful for organizations wishing to reduce costs, while preserving data security
and privacy [34]. Hybrid clouds employ cloud bursting; which is an application deployment
model such that application runs in a private cloud and “bursts” to a public cloud when there
is an increase in computing capacity demand.

• Community clouds: shared by several organization and support specific community with
common concerns (e.g., security, mission, policy, etc) [34]. It can be managed by the orga-
nization or third-party and may exist internally or externally.

2.3.4 Cloud computing and the Geospatial science

The geospatial science requires computing infrastructure that can provide access to data, data pro-
cessing and real time resources. Traditional computing platforms can no longer handle the in-
creased computing demand and it is almost impossible for individual organizations or any end user
to own high-performance computing infrastructure. In order to build enhanced applications, we
need computing infrastructure that can enable us to access real time data and processing functions
on the cloud in order for us to acquire scalable and cost effective geoprocessing services. Therefore,
cloud computing platforms using strong storage service can be used store the geospatial data that
are required for geoprocessing applications [53].
[53, 55] states that Cloud computing provides solution for geospatial problem by integrat-

ing main components of geospatial science which are observation data, phenomena simulation,
decision support, parameter extracting and user feedback. It will become the next computing in-
frastructure for supporting and providing service for geospatial science community over the web.
One advantage of using cloud computing is that; cloud platforms that are available in present offer
built-in load balancing function to web applications when various request are running.

Public clouds provide adequate resources for both data-intensive and computing-intensive geo-
processing applications. We can mitigate geoprocessing applications into the cloud computing
platform by using virtualization techniques, compiling, or building computer source code and
following Open Geospatial Consortium (OGC) service standards. In addition, the programming
language used for development is usually Java due to its platform-independent feature such that
the application can be moved easily from one computer system to another.

13

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Cloud computing are well known for providing service models for consumers. Data as a Ser-
vice (DaaS) model is specially defined to geospatial sciences to supports data discovery, access, and
utilization on the fly to end users regardless of geographic location of provider and consumer [42].
Currently, DaaS is being developed based on several cloud platforms. It is designed to maintain
large amount of metadata entries to support data intensive applications.

Generally, there have been several efforts to use cloud computing for geospatial application
and Microsoft, Amazon and Environmental System Research Institution Inc. (ESRI) are exploring
how to operate geospatial applications on cloud computing environments and are trying to adapt
to this new approach in the coming years.

2.4 CONCLUSION

In conclusion, we have available data sources and computing infrastructure that are necessary for
the development of any web application. The concept of Cyber-application came from the fact
that most of the things we need to solve a problem are actually available somewhere in the web
environment and upgraded by third-parties. This includes the data itself, the computing platform,
infrastructure specific to geospatial data, and so on. Cyber-applications is different from that of the
previous applications in the sense that we do not need to start from the resources we have; rather
we directly assume that there exist external sources with certain functionality and the concern is
how to be able to exploit from those resources.

These applications also take advantages from the popularity and recent advancement of cloud
computing technology. It is possible to use platforms provided by the clouds to build our applica-
tion or create components on demand and use the computing infrastructure that can enable us to
access real time data and processing functions on the cloud. Therefore, everything that has been
defined in the previous sections of this chapter assists us to identify the available resources and
concepts which can possibly contribute for the construction of Cyber-applications. Understand-
ing the requirements and characteristics of cyber-application is the stepping stone for defining our
proper design method.

14

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Chapter 3

Review of Web Application Development, Their
Emerging Technologies and Proper Methodologies

3.1 INTRODUCTION

The development process of web application is supported by several technologies and design meth-
ods to deliver expected application performance. This chapter presents the development perspec-
tives of these applications, their emerging technologies and a review of proper methodologies that
greatly participate in the development process.

3.2 WEB APPLICATION DEVELOPMENT

Web applications are software systems which can be accessed through the internet using a web
browser. The development of these applications is a versatile activity which involves technical,
organizational, social and artistic issues. The process must cope with a number of requirements
such as handling of structured and unstructured data, exploratory access through navigational in-
terfaces, graphical quality, customization of content structure, navigation primitives, and presen-
tation styles, easy development and maintenance, interoperability of systems and data and many
more [18].

The structure of web application consists of client-side scripts which run in the client and in-
teract with the user; HTML data displayed to the user and server side scripts which perform main
processing at the server end and interact with the database. They perform their task regardless
of the operating system and browser running client side. The installation of these applications is
rapid and can be deployed wherever at no price without any installation requirements at the user’s
end. These applications allow users to submit and retrieve data or information over the internet
using their favorite web browser to/from a database. They dynamically generate web documents
to serve users of the application (e.g., in our use case, informing users about the vulnerability level
of a building). These documents are generated in a standard format in order to be supported by
all browsers. One of the important aspects of web applications is to support user participation to
add value to the application and cooperate with users. Currently, the web is a dominant platform
which offers an enormous collection of tools and components to application developers. In gen-
eral, web applications take the place of desktop applications and became one of the fastest growing
technologies with the help of web internet infrastructure, protocol standards, design methods and
emerging technologies [27].

3.2.1 Development Perspectives

Before defining the design principles and design steps for the development of Cyber-application,
we need to understand different perspectives which are carefully considered in the development
process of web applications. Figure 3.1 shows the three main perspectives: the presentation layer,
the data, and the business logic. Most web applications reflect on the definition of navigation

15

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

structure and the specification of UI on the presentation layer and the storage, the requirements
and formalization of data on the data design layer and essentially the specification of core business
logic.

Figure 3.1: Development perspectives of web applications

The presentation layer is the part which manages the user interaction with application data. It
consists of user interface and navigation structure. The user interface components construct the
presentation layer to acquire and render data. Navigation structure includes links and controls
which basically enables users to navigate easily through pages. It is important to separate naviga-
tion from user interface elements in the design process because it will reduce confusion and hide
application complexity.

The data layer holds the data sets which will be manipulated by the application. This layer also
includes data access components and service standards to provide functionality for accessing the
data hosted in the application or the data exposed by external data sources through web services
respectively.

The business logic is responsible for processing function of the application. It implements and
encapsulates the behavior and core functionality of the application. Retrieval, transformation,
processing and management of the application data are handled in this layer.

Generally, these are the basic design perspectives for the development of most web applica-
tion but there are also other aspects which are equality important in the design process of Cyber-
applications. However, these perspectives are the basis to define the design method for the con-
struction of Cyber-application in Chapter 4.

3.3 TYPES OF WEB APPLICATIONS

There are many examples of web applications, and many of them come out all the time. These
applications can be categorized as document centric, interactive, transactional, workflow based,
collaborative, portal oriented, semantic, and social [41]. Since the popularity of Google Maps and
advent of different APIs, web application developers started to illustrate their application using
online maps and use the mechanism to access data directly from the data source for geospatially
enabled web applications. Few of the modern web application types are discussed here.

16

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

3.3.1 Google docs

Google Docs is sometimes called Web 2.0 application which allows users to collaborate in real-
time to generate and edit documents held on Google repository [12]. It is a cloud application
that provides the capability of sharing of documents, presentation slides and spreadsheets on the
web environment. Changes to documents are saved at a regular interval and updates the repository
accordingly. It is a lightweight application and there is no need of configuration at user’s computer;
we only need a simple web browser to run the application. However, this application does not
support off-line editing of documents and the collaborative protocol of Google docs can only be
used on textual documents not on graphics or other contents.

3.3.2 CitySourced

CitySourced is a real time web application which was developed in 2009 by CitySource Company.
It uses location-based technology like Geographical Positioning System (GPS)-enabled device to
connect citizens to different governmental organizations [13]. The data from citizens is fed di-
rectly to Geo-databases and become accessible for geospatial analysis. This application can be used
to collect and report information varying from damage report to traffic problems. Users with
Smart-phone’s can take the picture and submit it along with more information to report about
specific problem. Then the application sends it up to a cloud-based platform where it can be
routed to the responsible organization. User with no Smart-phone can still take part in reporting
by using the site.

3.3.3 WebGIS

A WebGIS application is a type of web applications, which generally deals with complex geo-
graphic data and makes it accessible on a web environment to users for different purposes. These
applications offer numerous services for visualization and analysis of geographic information on
the web [28]. In the case of geographic information, WebGIS developers should handle the data
separately from the task or functions that can be performed on the data. Therefore, far more com-
plex functionalities are required in WebGIS for visualization and content management other than
the common web application tasks which are navigation and composition of tasks. As a matter of
fact, this kind of application needs bigger attention on spatial data’s with different format which
can be obtained from different data sources, hence it is necessary to follow a proper development
process to develop such applications.

3.4 THEIR EMERGING TECHNOLOGIES

The support of software tools, methodologies, database, object-oriented programming languages
and emerging technologies help the designer to master the development of web application signifi-
cantly. Some of the recent emerging technologies such as JavaScript framework, .Net technologies,
HTML5 and CSS have come together to redefine the way developers build web applications. These
technologies provide simple interactivity without plug-ins such as Java applets and Active X con-
trols. There exists other standard coding languages, web design software’s, scripting languages,
graphic and content management tools which greatly support the development process. To men-
tion few, Web 2.0, MVC architecture, Adobe Flash, Microsoft Silverlight, Java FX, Google web
kit and different mobile technologies such as Extensible Hypertext Markup Language (XHTML),
Wireless Application Protocol (WAP), Wireless Markup language (WML) and so on. Web tech-
nologies seem to change rapidly with the nature of web applications and their development pro-
cess.

17

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

The choice on selecting development platforms heavily depend on the application developer
but for the purpose of our research project, we choose to work with Microsoft Visual Studio
2013 the web developer edition, Active Server Pages (ASP).net MVC framework. This platform
is where we will write and debug our code. It includes editors, debuggers and all the short cut
technologies such as C#, JavaScript, HTML and CSS to develop our application. We also use
PostgreSQL DBMS and Internet Information Services (IIS) Express to manage our data and to
respond to HTTP request from the browser respectively. IIS is a light weight web server that
can be used during development time. It runs behind the scene and help to run and execute our
application.

ASP.Net MVC design pattern is selected for building our prototype since we want to separate
the responsibilities of our application components in the User Interface (UI). This design pattern
does not dictate what type of data access layer we should use. We can either use services, relational
database or any form of storage behind the scene. It is extensible, testable and embraces the web.
Jquery is also used to add AJAX feature to our application.

3.5 REVIEW OF PROPER METHODOLOGIES FOR WEB APPLICATION DEVELOPMENT

A proper methodology to support web application development is one that clearly defines the
design principles of the application, have a good architectural model, and also progress with the
rapidly changing nature of the web. Web application development is unique in a way it requires
the selection of an appropriate development methodology. Most of web application development
methodologies being used currently are extensions of standard software engineering methodolo-
gies. They often involve requirement, analysis, design and development phases. Application devel-
opment methodologies are step generation activities in different phases of a system development
life cycle.

In this section of the chapter, we reviewed few of widely used methodologies for the devel-
opment of web application and WebGIS. This includes Model-Driven approaches (e.g., the Navi-
gational Development Techniques (NDT) methodology), Component-based development, User-
centered approach, WISDOM Framework, and the Web engineering methods.

3.5.1 Model-Driven Approach

The approach proposed by [14] for the development of web application is a model-driven approach
which is based on the Ubiquitous Web Application (UWA) of [19] design framework, the MVC
of [50, 31] architectural pattern and the JavaServer Faces technology. The approach combines the
MVC design pattern with a strong proper methodology for the user-centered conceptual design
of web applications to improve separation of business logic and data presentation. It also helps
to produce web applications which are of standard quality from users perspective and simpler in
terms of development process by taking the advantage of model-driven Development and user-
centered design.

Some of the concerns and development steps for web application engineering together with
their specification can be found in [6]. Basically most of the design methodology representations
of web applications are in three development levels: content, navigation and presentation. They
try to addresses a number of aspects beginning from structure to behavior of the web application.
As it is depicted in Figure 3.2, aspects are orthogonal to all construction levels. It describes how
contents are structured as well as the structure of the navigation and presentation represents how
pages are organized. Additionally, behavior which can be the interaction of user can be associated
with content, navigation and presentation [14].

18

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 3.2: A general development framework for web application [14].

The development process starts with requirement specification and continues with a number
of design steps until the implementation phase. The steps that are included in the design phase are
Conceptual design, which mainly focused on describing the problem domain and what the system
should do. This step is works independently of any technological detail. The second step is Logi-
cal design, which centers the attention on the operation of the system and hides implementation
details. The last step is Physical design; obtain detailed specifications for implementation with the
selected platform by adapting the logical model of the application.

To summarize, the proposed method defines an intermediate model based on MVC logical
model, UWA conceptual design and implementation phases for the development of web applica-
tion. It also includes rules to transform the logical model to a platform specific model for Java
ServerFace applications. This methodology has been experimented in an example case study.

The NDT Methodology

The procedure of NDT (Navigational Development Techniques) [16] begins with requirements
analysis and identifies a set of transformations processes to produce analysis models. Like any of
the software development phases, this method includes viability study, requirements treatment,
analysis, design, construction, implementation, and maintenance and test phases. The NDT is
based on the model-driven paradigm because each of the development phases has meta-models
in order to support the pieces defined in the methodology. This methodology defines clearly
the requirements engineering and analysis phases of a software development process. Informa-
tion storage requirement model, functional requirements model, actors model, and interaction
requirements model are defined in the requirement engineering phase [44].

19

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

NDT also defines two models in the analysis phase; conceptual model which represent the
structure of the system and navigational model which presents a view of the conceptual model
and shows how to navigate through the information in the system. The relationship between
the models is defined in all the phases and it is extended to fit the WebGIS. Geographical data
storage requirement model which include the specification of the geographic data is defined in the
requirement engineering phase to manage the information and display in the navigational system.
Geographical conceptual model is also defined in the analysis phase to represent the structure of the
system and describe the information handled by the system within the development of navigation.

This methodology targets the development of WebGIS and it covers the natural characteristics
of geographic information system and also the behavior of the web and available Web platform.
This methodology combine the NDT approach with some of model driven web methodologies
to introduce new process for creating WebGIS applications.

However, there are some drawbacks encountered by the NDT methodology [1]:

• they do not consider a complete organization of requirements which is suitable in most web
applications,

• they consider non-functional requirements separately,

• they mainly focus on design aspects of the intended Web system without considering the
web requirements and last but not least,

• they do not perform the analysis of the user’s needs.

3.5.2 Component Based Development

Component-Based Development (CBD) approach proposed by [30] is a software development
approach where the complete phases of the development process is focused on concept of compo-
nent life cycle. This methodology is specifically designed for high-level design component-based
Web applications, since most methodologies lack the support for componentization. A compo-
nent in Web-based applications is a software program that has been pre-compiled to present certain
functionality. Therefore, web application development is definitely component-oriented and need
appropriate object oriented process [2]. The CBD process has five phases: requirements, analysis,
design, implementation and testing. The methodology introduces page and component classifi-
cation then specifies procedures for requirements analysis and design. An example is also used to
demonstrate various stages of the analysis and design process.

The two key parts of the methodology are the components requirements analysis and compo-
nent specifications. The methodology starts with identifying application function both in terms
of high level abstraction as well as lower levels in the requirement analysis phase. The three steps
necessary for component specifications phase are: rendering specification, integration specifica-
tion, and interface specification. The integration specification identifies relationships between
components and the interface specification finalizes the interfaces of the components. “First two
specifications are needed for the developer to build, customize, and compose components, while
the third one is used to locate and call components in a distributed application environment” [30].

Since the size and complexity of web applications is increasing through time, component-based
application development is an essential and effective approach. The proposed methodology intro-
duces comprehensive framework to facilitate such development process. However, it also contains
few limitations such as it did not clearly define the interaction between different component types
and this is particularly important for ease exchange of data. Most spatial problems require great
amount of data exchange in the application, hence this should be defined when modeling the in-
teraction between the different kinds of components.

20

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

3.5.3 User Centered Approach

The paper presented by [21] is a design method along with process models for the development of
web applications and it includes the aspect of user modeling and customization to Web engineer-
ing. This approach is user centered since it considers individual needs and preferences by adapting
the information provided in the application. Designer can adjust the presentation of the applica-
tion content according to types of user since the user profiles are captured and user categories are
defined.

The proposed approach considers three different levels of abstraction: Conceptual, Logical
and Physical. The management of user’s data, content design, navigational design and interface
design are separated in the development process by following SoC principle of [38].

In the conceptual level, a conceptual navigation schema is created and transformed in to a set of
logical pages and links to enable the implementation of the application in the chosen environment.
The proposed method is defined as a set of data models and process models. The process models
symbolize design guidelines including a number of different steps such that the developer can
follow and create the intended application. The data models provide the concepts which allow for
describing the application structure.

The approach considers navigation session by the user as an achievement, so the user and user
goal are modeled. This conceptual modeling step is to characterize the user goals in terms of
navigational elements. The structured way of navigating is defined in a Navigational structure
Navigational guide. This process is incremental and recursive and it also includes two steps. User
Goal Reduction process which is based on the defined User Profiles and Deriving Navigation
Structures and Navigational Guidelines.

3.5.4 The WISDOM Framework

WISDOM (Web Based Information System Development with a comprehensive Methodology)
[4] is a structured methodology that can be adapted to a particular web-based information system
application development. This technique is mainly focused on managing application data in the
web environment since the web has become the standard interface or platform for publishing and
exchanging data. In the context of web application, information import and information export
are the two main concerns in WISDOM framework.

The two main activities identified in the methodology related to the information export con-
cern are Web site design and workflow design. Associating web site with its content for querying,
development and maintenance and separating the information content from navigation and pre-
sentation are the two basic goals of web site design. Therefore the methodology distinguishes three
main sub-activities: the data design, the hypertext design, and the presentation design. These ac-
tivities are independent of each other but highly coordinated. The workflow design is relevant
for all the activities that are involved in building the application. This phase involves three steps:
process analysis, workflow specification and workflow implementation.

On the other hand, information import in WISDOM involves series of steps to identify het-
erogeneous information sources and come up with unified information representation. The major
activities in this phase are extraction, integration and warehousing. Identification of information
sources, selection of target data model and wrapper design are three sub activities that are required
in extraction process so that relevant information can be extracted.

In general, the WISDOM framework support the development of web-based information sys-
tem application in which information sources are analyzed, extracted, processed and integrated to
give some kind of services on the web.

21

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

3.5.5 Web Engineering

Web Engineering is an engineering principle which is the most traditional of Web-specific method-
ologies that proposes efficient development framework for creating web based applications and
systems [41]. It specifically focuses on the methodologies, techniques and tools which help in
building the foundation of web application development and support their design, development,
and evaluation. Web engineering deals with all aspects of Web-based application development, it
starts from conceptualization to design, implementation, and testing life-cycles.

3.6 CONCLUSION

This chapter explored the various aspects of web application development. This includes the de-
velopment perspectives, the types of web applications and common tools and technologies that
greatly participate in the development process. Web application types that are described in Sec-
tion 3.3, share few similarities with Cyber-applications as pointed out in Table 3.1. All of these
web application types require a robust design method to guide the development process.

Table 3.1 Similarities with Cyber-applications

Shared Similarities with Cyber-applications
Google docs - Allows users to collaborate in real-time
CitySourced - Uses location-based technologies like GPS-enabled devices

- Can be used to collect and report information based on problem domain
WebGIS - Handles the data separately from the task and function that can be performed

on the data

In Section 3.5, we reviewed in detail some of the proper methodologies that are used to develop
web application. All methodologies that are reviewed possess qualities that have significant values
for Web development. Therefore, the design method for the development of cyber-applications
overlay multiple concepts from the techniques and approaches described above. However, our ap-
proach is different since it has the capability to dynamically incorporate new data and components
into the application’s execution engine at runtime. This is where it basically departs from the pre-
viously proposed proper methodologies. It is based on the MVC design pattern and the DDDAS
method, such that it fits the purpose of cyber-application. This methodology will be discussed in
the next chapter of this thesis document.

22

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Chapter 4

Our Methodology

4.1 INTRODUCTION

This chapter presents a design method for the development of Cyber-applications. The proposed
approach is used to guide developers who wish to gain high degree of control over implementation.
The chapter is organized as follows. Section 4.2 provides structured set of steps for the develop-
ment process which includes Problem definition, Data structure design, Data source identification,
Workflow specification, Application partitioning, Interface specification and Realization. Their
detailed explanation is presented. Some of these steps also include sub-steps to elaborate the design
method and meet the requirements of the application. Section 4.3 summarizes the basic concepts
of this chapter.

Additionally, after undertaking an analysis of the existing methodologies summarized in Sec-
tion 3.5, set of elements are selected and incorporated into our methodology based on their strong
aspect pointed out in Table 4.1. We overlaid the concepts of separation of business logic with the
data presentation and component identification in the application partitioning step. The manage-
ment of data, identification of heterogeneous information source and information representation
in the data structure design and data source identification phases. Also, the description of the
problem and the identification of application functions in the problem definition and workflow
specification steps respectively.

Table 4.1 Basic Concepts Overlaid in Our Methodology

Selected Features
Model-Driven approaches (e.g NDT) - Separation of business logic with data presentation

- Requirement of problem definition at early stage
- Management of geographic data in the geographical
data storage requirement model.

Component-based development - Identification of application function both in terms
of high level abstraction as well as lower levels.
- Component identification and interaction

User centered approach - Separation user’s data, content design, navigational
design and interface using SoC principle.

WISDOM Framework - Identification of heterogeneous information sources
and come up with unified information representation
and selection process of data model for this informa-
tion.

23

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

4.2 DESIGN STEPS

Figure 4.1 shows the design perspective for the development of Cyber-application. The inner layer
is the same for any arbitrary web application development. The two outer layers describe the steps
relevant for Cyber-applications. The development steps are:

Figure 4.1: Cyber-Application Design Steps

24

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Step 1 Problem Definition. This step focuses on creating the textual description of the
problem domain. This means we need to identify and clearly describe the prob-
lem and how we are going to provide solution for it. This step also includes the
identification of data requirements.

Step 2 Data Structure Design. In this step, we should create a formal representation of
the data elements which will be circulated inside the application based on the data
requirements. We need to define a pre-defined data structure for the datasets in a
way they can be incorporated into our application.

Step 3 Data source identification. This step includes the identification of suitable data
sources from available infrastructures and mapping them into the data structure
that is created. We have to decide which datasets are fit to use on the basis of the
area of interest and provide mechanisms to use them in the application. This step
includes sub-steps: data accessing and data fitting process.

Step 4 Workflow specification. This stage of the design process focuses on identifying the
workflow, identifying tasks and their ordered sequence of action to take place, and
the events that are behind the instantiation of those tasks to achieve the goal of the
application.

Step 5 Application partitioning. This step is about the definition of executable mod-
ules. After the workflow is specified and different elements of the application are
identified, it is necessary to partition the application into different pieces called
application modules to distribute tasks and achieve the separation of concern prin-
ciple.

Step 6 Interface specification. Once different application modules are identified, we need
to define the communication pattern to avoid losing control on sequences of in-
teraction. Therefore, in this step we build the interaction interface between the
partitioned modules to be able to realize the communication between them.

Step 7 Realization. The final step of our design process is the realization of the applica-
tion. Since we have all the necessary components of the application at this stage,
the reasonable step here is to instantiate the application.

25

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

4.2.1 Problem Definition (Step 1)

At the start of the implementation process, the developer should clearly define the problem through
simple to understand descriptions. This includes identifying and describing the problem domain
along with its data requirements. It is also necessary to describe the overall application behavior in
relation to the problem domain. This means the developer should point out what the application
is aiming to solve and identify what kind of functionality is offered by the application. At this
stage of the design step, it is not necessary to use any technical terms.

Data requirement identification

Defining the problem enable us to identify data requirements that are relevant to the application.
The identification of data requirement means documenting the data which is necessary to describe
each item in the definition of the problem domain. Data describes real world problems and the
procedure of identification is an iterative process. Data can be identified by different means. For
example, from analysis of existing data structures, document preparation, interviews, and so on
[37]. The outcome of this step is a documented set of data which describes the overall application
structure and represents requirements of the problem domain. Section 5.4.1 presents an example
of this step for the use case which is presented in Chapter 5. Therefore the next step of the design
process is to organize and structure the contents so that the information that is circulated in the
application can be represented formally.

4.2.2 Data Structure Design (Step 2)

In this step, we make a formal representation of the data required by the application. This step cor-
responds to the categorization, organization and modeling of the core data which was previously
identified during the first step into a conceptual schema defined using Computation-Independent
Model (CIM). We have to create a conceptual schema of the problem by documenting the basic
entities of the application and their simple relationships. After creating the conceptual schema for
the application, we need to map it into a logical schema using Platform-Independent Model (PIM)
(For example, into a definition of table for relational Database Management System (DBMS)) but
independent of a particular DBMS and other physical consideration. In the logical data schema, we
should specify more detailed entities and their specific attributes with their relationships without
implementation detail. This process is important since it allows the developer to build a different
module if another technology comes around. Therefore, the PIM should be independent of all
physical considerations. The next step in the data modeling process is the physical level; which is
defined using Platform-Specific Model (PSM). It is described under the next sub-step.

Data Formalization

The PSM is basically adding physical definition to the logical model. It describes the database
structure and specifies how the functionality identified in a PIM is realized for a particular plat-
form. The data should be structured such that it can easily be maintained and be accessible by the
application. In the case of Cyber-applications, the data should be formalized in a way it allows
the integration of new dataset coming from different data sources. Therefore, we need to create a
pre-defined structure (For example, as Model elements) to represent the information base of the
application using a platform of choice. This means we need to decide what technology to use and
implement the PSM into the application.

The data schema that is created has to be represented by a set of model elements in the ap-
plication. The responsibility of representing Cyber-applications data falls between Model-type

26

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

application modules when following the MVC design pattern. Models are created to instantiate a
class in the data schema. These Models capture the semantics of the problem domain, which the
application is intended to solve. These model elements will be instantiated as classes of language
and they represent the actual data which come from a database in the background by the means
data access layer, or from external data sources which can be accessed by a service.

An example could be, a Model called “building” to manage the data about buildings. Listing
4.1, show that in each of building object, we are interested in the Materials, Floors, Occupancy,
People, Area and Value. We have assigned a data type and a display name for the elements in the
model. This model and the properties of its elements are the same as our respective data schema
in our data structure such that it represents the data structure properly.

Listing 4.1: Model element for building information

1 // C l a s s f o r b u i l d i n g i n f o r m a t i o n
2 namespace V u l n e r a b i l i t y . Models
3 {
4 publ i c c l a s s B u i l d i n g
5 {
6 [Disp l ay (Name = " B u i l d i n g ID")]
7 publ i c double Bui ld_ID { g e t ; s e t ; }
8

9 [DataType (DataType . M u l t i l i n e T e x t)]
10 publ i c s t r i n g M a t e r i a l s { g e t ; s e t ; }
11

12 publ i c double F l o o r s { g e t ; s e t ; }
13 publ i c s t r i n g Occupancy { g e t ; s e t ; }
14 publ i c double People { g e t ; s e t ; }
15 publ i c double Area { g e t ; s e t ; }
16 publ i c double Value { g e t ; s e t ; }
17

18 }
19 }

In Listing 4.2, a Model has been created to hold information about landslide vulnerability for
all the buildings. The same thing works here; in our Landslide model we are interested in the Land-
slide_runout, Landslide_distance_max, Landslide_distance_beyond, and Building_vuln_Value. The
Building ID is also required since it is a foreign key in our respective table in the back-end.

Listing 4.2: Model for landslide hazard

1 // L a n d s l i d e h a z a r d Model
2 namespace V u l n e r a b i l i t y A n a l y s i s . Models
3 {
4 publ i c c l a s s Lands l i d eMode l s
5 {
6 [Disp l ay (Name = " B u i l d i n g ID")]
7 publ i c double Bui ld_ID { g e t ; s e t ; }
8

9 publ i c double L a n d s l i d e _ r u n o u t { g e t ; s e t ; }
10 publ i c double L a n d s l i d e _ d i s t a n c e _ m a x { g e t ; s e t ; }
11 publ i c double L a n d s l i d e _ d i s t a n c e _ b e y o n d { g e t ; s e t ; }
12 publ i c double Bui ld ing_Vuln_Va lue { g e t ; s e t ; }
13 }
14 }

All of the models should be correct since most of the View and controller elements depend on
them to manipulate the datasets. When these model elements are loaded, all components of the
application can effortlessly access and manipulate the data.

27

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

4.2.3 Data Source Identification (Step 3)

This step includes the identification of data sources that fits the pre-defined data structure from
available infrastructures based on the problem domain. We need to identify datasets and map their
data definition into the data structure of our application. The availability of these data sources is
vast. Therefore, the identification should be based on fit for purpose criteria such that appropriate
datasets that fit the model of the application can be identified and accessed for the specified geo-
graphic area covered by the application [39]. This means, there will be several data sources that
can be associated for the application since the application can be used in different geographical
areas. One of the functionality that is offered by Cyber-application is the mechanism to access
and operate on external data sources. Therefore, our design method provides different approaches
to use identified datasets for the purpose of the application as described in the next sub-step.

Data accessing and fitting processes

There could be three situations to use the datasets for the application:

1. If there exists an already available dataset that fits the model,

2. If the identified dataset fits the model and,

3. If the identified dataset needs to be manipulated in order to fit the model.

Identified datasets can be accessed and used in our Cyber-application by three different ap-
proaches. For the first situation, we only need to introduce the data to the application. The
datasets can be straight uploaded to the models of the application. For the second situation, our
design method uses Management of external Data (SQL/MED) approach which provides foreign
data wrapper to wrap the data and use it in the application. The third situation is if the identified
dataset does not fit the model and needs manipulation. For this, we need another approach which
is called the DDDAS method.

SQL/MED

Cyber-app implements the concepts of SQL/MED standard specification [35] to access and ma-
nipulate identified datasets which fit the pre-defined data structure of the application. SQL/MED
stands for the Management of External Data. It provides a fast and easy technique to access exter-
nal data sources. This specification is divided into two parts: the foreign data wrappers which is
used to access external data and the datalinks which is used to treat or manage external linked files.
For the purpose of our design method, we can use the foreign data wrapper to access datasets from
different data sources. The data’s can be stored in XML, CSV, SHP, or HTML file formats.

The foreign data wrapper provide access to third party data sources and translates them into a
standardized format [47]. It also gives information about the data sources and delivers the data to
the application. The wrapper uses regular Structured Query Language (SQL) to manipulate the
data stored in SQL-based or NoSQL DBMSs. It does not need any other form of implementation
to communicate with web services. The foreign data wrapper architecture is depicted in Figure 4.2
with the steps to install, connect and create the foreign table.

To implement the foreign data wrapper concept, we need to install a library that handles the com-
munication with the external service. Once the library is installed, the extension has to be loaded
and we need to establish a link with the foreign server which also provides a pointer to the web

28

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 4.2: Foreign Table [35].

service. The next procedure is to create the foreign table and access the data via a simple SQL
queries and the resulting data’s can then be transformed/interpreted such that they can be com-
patible with the pre-defined data structure (or Models elements) of the application. Listing 4.3
shows a simple example on how we can exploit external data sources using the concepts of foreign
data wrapper.

Listing 4.3: Creating connection to web service

1 c r e a t e extens ion www_fdw ;
2

3 c r e a t e s e r ve r g o o g l e _ s e r v e r fore ign data wrapper www_fdw
4 opt ions (u r i ’ h t t p s : // a j a x . g o o g l e a p i s . com/ s e a r c h /web ? v= 1 . 0 ’) ;

In Listing 4.3, we have installed the extension foreign data wrapper (www_fdw) from the li-
brary and we created the foreign server with an option setting a pointer to the appropriate web
service. This will create a direct connection to the requested third party data stream.

Listing 4.4: Creating a foreign table

1 c r e a t e fore ign t a b l e g o o g l e _ t a b l e (
2 t i t l e text ,
3 l i n k text ,
4 s n i p p e t text ,
5 q t ex t
6) s e rv e r g o o g l e _ s e r v e r ;

After we set up the connection, we create a foreign table in Listing 4.4 which brings the rows
from the external data source with the response fields.

Listing 4.5: Executing a query in the external web service

1 s e l e c t ∗ from g o o g l e _ t a b l e where q= ’ c a t dog ‘ l i m i t 1 ;
2

3 R e s u l t :
4 t i t l e | s n i p p e t | l i n k
5 −−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−
6 CatDog − Wikiped ia | CatDog i s a n American . . | h t tp : // en . w i k i p e d i a . .

29

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Finally, we use a regular SQL query to access the external web service or data source.
Generally, there will be different data sources if we use the application in different geographical

areas, but the application data definitions remain the same. The identified dataset might easily fit
into the pre-defined data structure created for the purpose of the application. Therefore, we can
adopt the above wrapper approach 1 concept to access the datasets. However, this might not always
be the case because of the dynamic requirements of the application and the heterogeneity of the
data sources. In this case, we use the DDDAS approach.

DDDAS

Another approach to access the data is the DDDAS method by Darema [8]. This method is used
for the cases where the identified dataset does not automatically fit into the data structure of the
application because of the heterogeneity and we do not know what the original data is going to be.
There are also conditions where new data might not fit because the application requirement can
change dynamically at execution time due to the nature of the problem, and require the dynamic
integration of new data into their execution engine. The DDDAS method provide the capability
for dynamic adaptation of new data into the application considering the heterogeneity of compu-
tational models and data sources that are available on the web environment.

The DDDAS method is used to deal with the problem of large-scale dynamic data integration,
where the data sources are unknown at design time, and are from heterogeneous sources [56].
Data from different data sources or real-time data-acquisition system can be incorporated to the
application to enhance prediction capability using the DDDAS method. This method requires the
integration of more data and computational modules into the application to be able to function as
required. DDDAS is usually used where data is fed into an executing application either as the data
is collected or from a data source. The data is integrated on the fly and the DDDAS method en-
ables the identified dataset to be understood by the models of the application for different purpose.

How to implement the DDDAS approach in our design method?

How do we use it here? In cases where the data schema of the data source does not fit with the
schema of the destination data store, the dataset needs to be parsed and formatted to an intermedi-
ate data repository structure based on its metadata. These intermediate data structure can also be
defined based on the application’s predefined data structure. The next step will be to map the inter-
mediate structure to the target data schema of the application. There must also be an “integration
manger” that will impose an integration strategy between the intermediate and target structure.
This includes ignoring an attribute of the intermediate structure, merging with the version that
already exists in target data schema, initializing a new attribute if it is not available in the target
data schema and etc.[15].

The STEPS in a sample case

We have two elements:

• The data structure that has already been pre-defined for the application to be able to run;
and

• The dataset that is available as input which comes with its own metadata; and unknown
to the developer. This data may or may not match the pre-defined data structure of the
application.

1https://github.com/cyga/www_fdw/wiki/Examples

30

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Step 3.1 To retrieve that metadata and create an intermediate data structure of the datasets (e.g.,
as tables)

Step 3.2 This table which is created in the first step will be mapped into our application data
schema. (Mapping of the existing columns from external tables into the columns that
exist into the application). Now we have the mapping between the attribute we have
in the original arbitrary datasets and the attribute of the data structure.

Step 3.3 This step is to populate the database so the tables of the application with the original
data to be used by the application.

Following the steps from this method, we can be able to map arbitrary datasets to the pre-
defined data structure of our application. This means the description of the identified dataset
will be matched with the description of the targeted data schema of the application. Generally,
the DDDAS approach provides valuable mechanisms which allow us to use heterogeneous data
sources. There are also many other cases where the method comes up with a solution.

4.2.4 Workflow Specification (Step 4)

This stage of the design process, deals with the identification of different elements of the appli-
cation which includes functions, functional steps and events that trigger those steps. Workflow
specification is one of the important steps in application design. To specify the workflow of the
application, we need to identify a series of tasks and events that occur in the application in their
correct order. In workflows, the sequence of possible actions is predetermined. This means tasks
need to be organized in the application structure according to their execution order to achieve
the correct sequence of activities in the design process. Such workflows can be described using
formal or informal diagramming techniques. Tasks can be complicated and complex in Cyber-
applications because of the dynamic behavior of the application. Therefore, before starting the
implementation phase, it is important to visually represent how the tasks are being completed in
the design process.

For example, refer to the Figure 4.3 to understand the above concept in a sample workflow
specification diagram. We explain the concept used in determining a landslide vulnerability value
of a building. Note: this workflow is not a complete workflow specification for the use case. It is
only for the landslide vulnerability.

To calculate the vulnerability value, we first need the building dataset and landslide runout
dataset as input data. The landslide runout dataset contain the maximum runout for each landslide
areas. Then we need to join the two datasets and extract the minimum landslide runout value per
building from the attribute table of the building. The next step is to calculate the maximum runout
distance for the landslide to which a building is exposed. Then we subtract the minimum landslide
runout from the maximum runout distance to calculate how far the landslide moves further than
the house. If this value is zero, it is undefined else the building is exposed. The final step is to count
the number of buildings which are located in the runout zones of landslides. If the distance of the
landslide beyond the building is more than 17 meter, the building is considered to be destroyed;
otherwise the vulnerability value increases linearly [5]. Therefore, when a user selects a building
and calculates for landslide vulnerability, the computed value for the corresponding building will
be displayed to the user along with additional attributes.

Workflow expresses the behavior of the application. Each of the steps in the workflow needs
to have input description, rules, algorithms and output description. Therefore, tasks should be
identified as well as events that occur though the workflow steps. Based on the tasks and lists

31

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 4.3: Workflow for determining landslide vulnerability value

events identified in each step, we can be able to partition the workflow of the application in to
different parts.

4.2.5 Application Partitioning (Step 5)

Once the correct application workflow is defined and list of events are identified, it is a simple
procedure to partition the internal structure of Cyber-application into application modules such
that tasks can be assigned. Application modules are elements of the application which contains
application code for manipulation of data and provides access to the code through well-specified
available services. We are using application partitioning principle because it allows us to spread
the load between different parts of the application and achieve separation of concern principle.
We can build highly scalable and flexible systems by partitioning the application based on lists of
events occur and by separating the presentation from the data and core application logic parts for
ease of implementation purpose.

Based on the workflow specification, the first step of partitioning cyber-applications is to dif-
ferentiate the data’s from the presentation and the application logic. These major concerns can
be identified and separated in the workflow. Since we are using the MVC design pattern for iden-
tification of application modules, each of these concerns will be represented by the Model, the
View and the Controller elements respectively. An application module can be a Model, a View

32

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

or a Controller element. After we partition the application structure into three major parts, once
again each of these elements will be partitioned into pieces to represent separate tasks and cover
the whole application structure. This partitioning process must exhibit major phenomena and
events in the application workflow. Given that the partitioned application modules capture the
behavior of the application, they must also encapsulate the application workflow specified in the
previous step.

Partitioning a Cyber-application in a simple use case:

Suppose we want to use as an example the vulnerability analysis for partitioning the application
into a set of functional units (named application modules) that can be composed into a larger
application. In this application, the important elements are the elements at risk (e.g., building,
population information) the hazard and etc. We have available datasets for the region of Nocera,
Italy. Based on the general application workflow, we partitioned the application into Model, View
and Controller elements. Then each of these elements are partitioned into different pieces. First
the model is partitioned into five model classes which are “building”, “landslide”, “flooding20”,
“flooding100”, and “mudflow” model classes to represent the data concern in the application struc-
ture. These model classes are domain specific representation of the data models. Therefore, they
are basically partitioned based on the data models of the application and data aspects identified
in the workflow. The View is partitioned into four views which are three main views and one
floating view. Namely: “map view”, “hazard computation view”, “grid view” and “results view”.
This partitioning is done based on the user’s interaction identified in the workflow of the applica-
tion. View elements coordinate and arrange the user interaction with the application, and present
the information when required. These elements are also tightly knotted with model and the con-
troller elements. The controller is also partitioned into five elements which include “mapping
controller”, “building list controller”, “hazard selection controller”, “DAL” (Data Access Layer)
and “computation controller”. These are the core application modules which bind the application
together. The partitioning of the controller is based on the sequence of actions to take place and
the events that instantiate those tasks.

The cooperation among these elements is indirect since they do not know the existence of one
another. Hence, the MVC design pattern facilitate the structuring and organization of these inde-
pendent application modules based on their responsibility in the application; and it is also possible
to replace or include new one’s depending on the application requirement [39]. Due to this, the
application modules are of two types; namely: Permanent application modules and volatile appli-
cation modules.

Permanent Application Modules: These are the backbone for all Cyber-applications. They carry
the logic of the application, provide mechanism to access external data sources and work as a link
between the permanent and volatile application modules. Typical examples for this case are the
“DAL” and “Data Feed Service (DFS)” modules.

The DAL application module is responsible to store and manipulate states, typically in a data
store. In other words, any exchange of information to communicate with the reader is handled by
this “DAL” application module. The DFS is responsible to retrieve the data which is suitable for
the pre-defined data structure of the application from external services. This application module
adopt the concepts of SQL/MED or DDDAS approach depending on the situation of the data.
Both of these modules are always available for Cyber-application.

Volatile Application Modules: These application modules are one’s that are dynamically incor-
porated to cyber-application at run time when required. They can be computational models or

33

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

third-party data sources.

Generally, the partitioning is done based on the identified tasks in the workflow. Therefore, re-
sponsibility is distributed between the application modules to realize the final structure of the
application. Each of the tasks involved in the workflow of the application need to be assigned to
the appropriate application module. Responsibility distribution is the part where the developer
specifies a clear separation on “who does what and where”. For example, every Cyber-application
requires permanent application module to handle data transfer between the application and third-
party data sources such as the DFS and DAL application modules. Therefore, the designer is
responsible for assigning a permanent application module which is responsible for retrieving the
datasets and making them available to be used by the application adopting different mechanisms.
Cyber-applications also require another application module to depict the core logic of the appli-
cation. However, the number of application modules to assign for the application depends on
the tasks identified in the workflow and the purpose of the application. In general, responsibility
distribution involves identifying the appropriate application modules and answering the question
“what happens where?” or “who takes care of what?”.

4.2.6 Interface Specification (Step 6)

This step relates to the specification of interfaces between the partitioned application modules.
The interface specification is used to locate and call appropriate application modules participating
in one of the internal workflows that realize the purpose of the application. It specifies the relation-
ship between application modules and additionally provides information on who initiates the call
based on events. In order to specify interfaces, the interaction structure between the application
modules should be defined. Interface specification can be in terms of messages containing methods
which include information about the parameters, events, callers, callees and return values/types.

The interface specification of partitioned application modules should show clearly the defined
sets of interaction between them in order to have smooth communication and exchange processed
outputs. The interaction between the applications modules follows Event-based paradigm. List
of possible events occurred in the workflow specification step instantiates the interaction between
application modules. An event is any certain incidence that has importance in the communication
between the application modules. Events could be user generated like user gestures such as mouse
clicks and keystrokes or system generated like the arrival of a message and the completion of task
[39]. Defining the interaction is useful to compose the application modules into a complete appli-
cation at the later stage of the development process. Event-based paradigm is an essential design
principle which helps us to avoid losing control on sequences of interaction. Therefore, interface
specification provides an implementation detail of an application module in terms of its interac-
tions with other modules and processes in order to render a required result.

In Figure 4.4, the main task of the Controller is to listen to events and respond accordingly.
It is mostly concerned with the retrieval, manipulation and management of the application data
stored in the application DBMS or data residing outside. A controller could have different types
of interfaces. For example, an event manager interface which has methods to define the set up
of an event identifier that we want our controller to listen on and should simply return Model
and View elements to render results; or another interface which has methods to handle multiple
HTTP requests throughout the life-cycle of the application using GET, POST, PUT, DELETE
methods.

Controllers can receive events forwarded by the view and then decides what they mean and
what to do with them. For example, controllers communicate with the View to determine if a
building is being selected by the user, and they call methods on the building model to handle the

34

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 4.4: Simple Event-based Interaction in MVC design pattern.

next request. An event can also invoke action in the appropriate Model if needed. For example,
when new data is integrated into the application; any change on the Model state will result in
View updating its presentation because it is registered for change notifications. This is an example
of push-based mode which will be explained briefly later in this section.

Event-based paradigm is sometimes called publish/subscribe style which support a flexible
and effective interaction between software components. The development of a publish/subscribe
mechanism for information store in MVC chains event driven linked data concept. For exam-
ple, users can send request to compute landslide vulnerability value for a single building. The
participating application modules execute this task and provide response. It is useful to separates
event-processing logic from the rest of a program’s code. Most Web-based applications are event-
driven, they preserves both the structure and the semantics of the application modules and they
usually display events as part of their application interface to understand interaction detail between
components [30].

There are two modes in event-based interaction: Pull-based and Push-based [25]. In pull-based
mode, at regular interval data can be read and explored on-the-fly. This mode is basically used
for monitoring scenarios (e.g., read the sensor status for every thirty minute or get rainfall data
every hour). In push-based mode, a function produces an event when some kinds of conditions are
met and the View register with the model for change notification (e.g., send SMS notification for
registered users if certain thresholds are reached or exceeded). Each of the participating application
modules perceives the notification of an event as an external effect which determines a change in
their internal state. Both push and pull modes are valid and can be used for interface specification.
The examples above explain what they both mean and the situations they can be used. However,
the developer should decide which mode while specifying the interaction interface depending on
his/her application requirement.

The main intention of this step is to show the developer how to define the interaction between
the application modules in order to avoid losing control on sequence. Each element in the MVC
design pattern corresponds with each other in very specific ways. Communication is initiated by
a sequence of events that are triggered by a user interacting with the application. There are com-
munication patterns which are allowed and restricted. The usual way where the MVC elements
communicate is when users interact with a view, views interact with the controller and controllers

35

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

may interact with views. Controllers also communicate with other controllers and they may also
communicate with the model. Some of the restricted communication patterns between the ele-
ments are: users can not directly interact with controller or models, views cannot communicate
with view or models cannot interact with models. Therefore, the developer need to set the interac-
tion structure based on events that occur in the application and build the communication interface
between the application modules separate from the event handling modules. The outcomes of the
above consecutive design steps are an application workflow and a set of application modules with
clearly defined interaction structure.

4.2.7 Realization (Step 7)

Up until this point, we have the necessary development steps for the construction of Cyber-
applications. Therefore, this step focuses on the instantiation of the entire application. We have to
build the application to realize the final structure through the design steps. This includes instan-
tiating all the dependencies such as data store connections, instantiating the data schema, loading
identified application modules, and compilation of codes. To realize the application, the developer
should set up a routing that tells the application to start from a particular application module. As
a result, the application module will be called to instantiate the application every time the appli-
cation is running.

4.3 CONCLUSION

In conclusion, this chapter defines a design method for the development of Cyber-applications.
We first outlined different concepts that are relevant for the purpose of our design method and
how they are adopted in our methodology. Then, we defined the design principle and steps which
are used for the purpose of Cyber-application. In the design process, the internal structure of
Cyber-application is partitioned into a set of application modules to show the modular and dy-
namic behavior of the application. Our design steps achieve the separation of concern principle
by assigning different application modules to handle separate task in the application. Additionally,
we also provided mechanisms which helps to manipulate third party data sources and to dynam-
ically incorporate new data and components into the application. Generally, our design method
provides a mechanism to combine widely available data sources (Services) and required functional-
ities; and converts them into a module structure in the application to provide solutions for domain
problems. The approach is useful to develop web applications which intend to provide solution
for spatial problems over the web environment.

36

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Chapter 5

Design and Implementation of Quantitative
Multi-hazard Vulnerability Analysis Application

5.1 INTRODUCTION

In this chapter, we describe the Cyber-application development process through a simple applica-
tion. Section 5.2 and Section 5.3 presents the implementation environment used for development
and the underlying architecture for the application respectively. In Section 5.4, we want to demon-
strate that the concepts documented in previous chapter are actually valid. For example, separation
of concern is something that we follow as a design principle. Hence, it needs to be validated by our
simple application among other concepts such as partitioning of the application, workflow specifi-
cation, data manipulation and event-based component interaction. A use case has been identified
to build the prototype for demonstration purpose. Therefore, this section presents a complete
description of the use case and its implementation aligned with the design steps that are defined in
Chapter 4. We also present the evaluation of the prototype built in Section 5.5.

5.2 IMPLEMENTATION ENVIRONMENT AND SETUP

This section discusses the implementation set up used to implement the Quantitative multi-hazard
vulnerability analysis application. It includes the development platform used as well as the setup
and the software’s. The lists are summarized in Table 5.1 below.

Table 5.1 Relevant Software and Platforms

Software’s and Platforms Purpose
Microsoft Visual Studio 2013 Development platform
ASP.Net MVC 3 Framework
C# Front-End programming Language
JavaScript, Jquery Scripting Languages
HTML, CSS Interface Design
PostgreSQL 9.2 Database Design

We used Microsoft Visual studio 2013 the web developer edition, as the development platform
for the construction of the application since it enables us to create our application on the basis
of Model-View-Controller (MVC) design pattern. It includes project templates and solutions for
developing MVC based web applications. ASP.Net MVC 3 framework is used for the purpose
of our application since the design method for the development of Cyber-application is based on
the MVC design pattern. It is a lightweight and testable framework which provides support for
test-driven environment and separation of application tasks. The programming language used
at front-end for the development of the application is C#. For the client side scripting, we use

37

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Jquery, HTML, and CSS. For the back-end, we used PostgreSQL to store the application’s data.
PostgreSQL is open source software that is one of the well known relational database system.

In ASP.net MVC controllers are C# classes, mostly derived from the System.Web.Mvc.Controller
class. When a request is sent to the URL with an action method, the controller classes are executed
to perform some operations on the domain model and select view to display to the client. The
ASP.net MVC framework delivers a choice for view engines, in this particular choice, a view en-
gine which process ASPX pages using streamlined versions of the Web Forms markup syntax is
used. The framework does not enforce any constraints on the implementation of our own model.
We can create a model using regular C# objects and implement persistence using any data storage.
We are free to select any technology that will interoperate with the .NET framework if we are us-
ing asp.net MVC framework. The architecture of these technology elements based on the ASP.net
MVC framework is included in Appendix E.1.

5.3 ARCHITECTURE OF THE APPLICATION

The architecture presented in Figure 5.1 shows the actual functionality of the application and it
is based on the MVC design pattern. This architecture emphasizes on achieving the basic separa-
tion of concerns principles and unit testability of the application. In MVC framework, the most
essential separation is between the data management and application logic [11]. The architecture
supports a normal web server interaction. The application send request to the server and the server
responds to the web browser in a similar fashion.

Figure 5.1: Architecture showing Components of the Application

This architecture is a 3-tier model. This three tier architecture creates a boundary to imple-
ment the elements MVC architecture. The models, controllers and views of the application are
distributed through the different layers of the three tier model. The presentation layer contains
the graphical user interfaces and reports; the business layer contains the business rules, data man-
agement and data manipulation. The data layer contains data storage and data retrieval objects.

38

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Therefore, the distribution of the MVC elements in this three tier architecture is based on their
responsibility in the application. Since the Model contains a lot of complicated business logic and
spans the data layer, it is represented in the business layer. The view elements exist in the presenta-
tion layer and this allows the developer to render results. The controller is distributed between the
presentation and business layer. In this architecture, we present three controllers as an example to
show the distribution: Interaction controller, data controller and service controller. These con-
trollers are distributed in the architecture layers based on their responsibility in the application.
The interaction controller responds to requests from multiple browsers and devices. MVC frame-
work breaks the previous standard web request processing scheme. This is because; the MVC web
requests are handled by the appropriate controller instead of being processed by web pages. Based
on the request coming from the URL of the browser (user/observer), ASP.net MVC framework
chooses and executes the appropriate controller. The Data controller and the Service controller
are located in the business layer. The responsibility of the Data controller is to provide data ac-
cess and persistence operations against the storage database of the system. It is used to bind the
data to the model elements. The Service controller is used to access the data that are outside the
boundaries of our application, such as web services and external systems.

5.4 QUANTITATIVE MULTI-HAZARD VULNERABILITY APPLICATION DEVELOPMENT

This section presents the validation of the methodology developed. Therefore, the design and im-
plementation process for developing quantitative multi-hazard vulnerability analysis application
follows the design steps that are discussed in Section 4.2.

5.4.1 Step 1: Problem Definition.

As stated in the methodology, the first step for the development of Cyber-applications is defin-
ing the problem. Therefore, we summarize the problem and use case identified for multi-hazard
vulnerability assessment as follow.

Use Case Identification

Quantitative multi-hazard vulnerability analysis has been identified as a use case. Mainly, because
its requirement to use different datasets to perform vulnerability analysis for the elements at risk.
Additionally, we want to demonstrate that Cyber-applications can be implemented for real world
problem. This use case presents us the opportunity to choose between different datasets; and use
them in the computational models for the purpose of the application. Moreover, the use case
enables the application to perform complex tasks since the analysis will be performed for multi-
ple hazards. Handling complex tasks in the web environment is one of the behaviors of Cyber-
application. Therefore, each of the concepts about Cyber-application and the steps we will follow
to create the application can be demonstrated using this identified use case.

The test datasets corresponds to Monte Albino area, in Nocera Inferiore (Southern Italy). This
area has 10 catchments as well as 10 open slopes1. The area is threatened by hyperconcentrated
flows, floods, mudflows and landslides hazards. There are over 300 plus buildings in the area and
all of these buildings are assumed to be at risk. Therefore, we want to use the vulnerability analysis
of the elements at risk as an example to demonstrate our concepts by constructing an application.
This analysis only uses buildings and the population information which are considered to be the
important elements at risk.

1open slopes are usually slippery and this open slope was affected by a first disaster which caused destruction of
some buildings in 2005

39

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Use Case Description

The Quantitative multi-hazard vulnerability analysis application should be concerned with a use
case that determines vulnerability value for buildings. The vulnerability analysis will be carried
out for three types of hazards. Namely: landslide, flooding and mudflows. The application should
provide risk analysis for elements at risk particularly for buildings. It should enable users to select
building of interest and provide the vulnerability value based on the selected hazard type. The
analysis should be performed for each building to check which buildings are exposed for the haz-
ard. The application requires different datasets that are available for Nocera region and external
services like open layers for visualization purpose. For example, to provide visualization of the
buildings in the Google map for users; enable them to select a single building for determining the
vulnerability value depending on the hazard type they choose.

Data requirement identification

This step in the design process includes the identification of data that are required for the devel-
opment of the application. The required datasets relevant for the purpose of the prototype are
presented in Table .

Table 5.2 Required Datasets

Hazard type Required Computational models Required Datasets
Flooding FLO-2D Flood depth 20 years

Flood depth 100 years
Flood velocity 20 years
Flood velocity 100 years

Landslides Empirical assessment of runout zones Landslide distance
Landslide runout

Mudflows Safety factor analysis TRIGRS, runout Mudflow depth
with FLO-2D Mudflow velocity

- - Building information
Building geometry

Based on the requirements of the application, the computational model FLO-2D for flooding
requires maximum depth and velocity of the flooding for each building. To give the option for
users to select datasets based on year, the application requires 20 years and 100 years flood depth and
velocity datasets. Mudflow Depth and velocities modeled with TRIGGRS and FLO-2D requires
rainfall event of 200 year return period. To compute the landslide vulnerability, Landslide distance
and Landslide runout datasets are required. The required Landslide distance dataset indicates how
far the landslide moves further than the building and it is the empirically derived runout distance
of landslides from ten open slopes in between valleys. Landslide runout describes how far the
building is located from the toe of the unstable slope. Building information dataset is also required
to provide information about the Materials of the building, number of Floors, Occupancy, People,
Area, Value and etc for each building in the area.

5.4.2 Step 2: Data Structure Design.

Following the step in the development process, we create a PIM to represent the data and informa-
tion which will circulate through the application. This PIM shows the platform independence part
of the application. It is based on the description of the use case and the data requirements of the

40

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

application. The diagram of the PIM is presented in Appendix E.3 to show simple logical entities
that represent the information base for the quantitative multi-hazard application and the relation-
ships among them. In this PIM, five major entities are identified. Namely: Buildings, Landslide,
Flooding20, Flooding100 and Mudflows. All the entities have their own attribute to describe their
behavior as shown in the figure. This PIM needs to be transformed into platform specific models
(PSMs) which are basically C# model elements of MVC. These models map properly to the PIM
models.

5.4.3 Step 3: Data source identification.

After identifying the data requirement and creating the appropriate data models for the data that
will be used by the application, the next step in the development process is to identify the suitable
data sources from the available CyberInfrastructure that fits the models. For this, we identified
a dataset that fits our purpose and the models we have created in the previous steps. The data
was collected by the University of Salerno in the context of the EU SAFELAND project on the
hazard and risk analysis of the area [5]. Table 5.3 shows the identified datasets for the quantitative
multi-hazard analysis application.

Table 5.3 Example of Data Source Identification

Name General Information Ownership Data Data
(What is it?) (Who is responsible?) Characteristics Constraint

(how it is measured?)
Flood depth Depth of flood University of Salerno modeled with FLO-2D none

with rainfall event
Flood velocity Speed of flood University of Salerno modeled with FLO-2D none

with rainfall event
Landslide distance Distance of landslide University of Salerno Empirically derived none

from the building distance of the runout
of landslides from 10
open slopes b/n valleys

Landslide runout Location of building University of Salerno File of the 10 runout none
from the landslide areas with info.

Mudflow depth Depth of mudflow University of Salerno modeled with TRIGGRS none
from the building FLO-2D with rainfall

Mudflow velocity Speed of mudflow University of Salerno modeled with TRIGGRS none
FLO-2D with rainfall

Building General information University of Salerno In terms of number of none
about the building floor, people inside,

value and so on

5.4.4 Step 4: Workflow specification.

Based on the requirements of the application and the identified dataset, we can now identify the
general application workflow in order to categorize tasks and events that take place in the applica-
tion. First we need to initialize the building list, the map, the hazard selection option and so on.
Figure 5.2 shows the general workflow for the application.

The next process in the workflow is when the user selects a specific building from the list and
request to perform vulnerability assessment for a chosen hazard type from the available options.
There should be three options: Landslide, Flooding and mudflow analysis. Users should be able to
choose between these hazard types to come up with risk analysis result. For a single building they
will be able to compute three different hazard analyses. Computations of these analyses require the

41

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 5.2: General Workflow Diagram for the Application

use of different datasets. Each of these analysis will pass through three major steps in the workflow
in order to provide a complete output for users and achieve the application objective. The three
major steps in the workflow of these computations are analysis of the datasets, building exposure
analysis, and vulnerability Analysis. Therefore, based on the choice of the user, the workflows of
the computations which are described below will be performed. These computations are behind
computations and will be handled in a testing environment. However, the results of each of these
computations will be used in the application. We describe their workflow in the next subsections.

Flooding Computation Workflow

The datasets for computing the exposure of a building for flooding are Buildings dataset, Flood
Depth 20 years, Flood Velocity 20 years, Flood Depth 100 years, and Flood Velocity 100 years
datasets. Basically, here the user is given the opportunity to choose which year dataset to use in
the computation. After selecting the appropriate dataset, the computation begins by joining the
buildings dataset with the selected flood depth dataset. The next step is to join the columns of the

42

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

two attribute tables and determine the maximum values per building. In the same step, the same
thing works for the flood velocity; join buildings with flood velocity dataset and read the max-
imum values per building. The final step of the building exposure analysis is to determine how
many buildings flooded taking a threshold of 10 centimeters. The output of the final computation
will be used as an input for the Vulnerability analysis. This means, various levels of Vulnerabil-
ity depending on the depth and velocity of flooding exposure analysis result are calculated. For
simplification purpose refer the diagram in the Figure 5.3.

Figure 5.3: Workflow for determining flooding vulnerability value

Mudflow Computation Workflow

For the mudflow computation there exist three datasets identified. Namely: Buildings, Mudflow
depth and mudflow velocity datasets. The logic behind determining the mudflow vulnerability
value for each building follows the same workflow like the flooding computation. However, sets
of vulnerability values will be assigned based on the maximum depth and velocity of the exposure
analysis result are different. For example, if depth ≥ 1 and velocity ≥ 7, the respective value for
the vulnerability is 1. If depth ≥ 1 and 3 ≤ velocity< 7, the vulnerability value is 0.8. And finally,
if depth < 0.5 and velocity < 3, the value is 0.05 and so on.

Landslide Computation Workflow

The datasets required as an input for this computation are: Building, Landslide runout and Land-
slide Distance datasets. The workflow behind this landslide computation is different than the
above two hazard types. However this has been discussed in detail in Section 4.2.4.

43

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

5.4.5 Step 5: Application partitioning.

In reference to the task identified in the general workflow specification and the data model of the
application, we are going to partition the application in this step. First, we separate the workflow
into three main concerns; the data, the application logic and the presentation. To identify these
parts in the structure of the application, we use the MVC design pattern. The Model represents
the data concern, the View represents the presentation of the result and the Controller represents
the core application logic. Once again, each of these elements are going to be partitioned into
different parts such that they can handle and represent independent tasks in the application.

Creation of Model Classes

Partitioning the Model into different Model classes is based on the data model of the application.
The data model (PIM) we created in Step 2 will be transformed into C# Model classes. As discussed
previously, the model represents the domain entities and core information that the application
needs to access and manipulate. Therefore, to represent the data models inside the application
we create five model classes. Model class “building”, “landslide”, “flooding20”, “flooding100”, and
“mudflows”; each to represent the storage in the application and have one to one correspondence
with the entities of the data model. These Model classes will be instantiated and be used in the
computation of the application. We have presented two examples for the creation of the “building”
Model classes and “landslide” model class in Section 4.2.2 and we will present few more here in
Listing 5.1 and 5.2; and the rest will be found in the Appendix A.

Listing 5.1: Model Class for “Flooding”

1 //Model C l a s s f o r f l o o d i n g 100 y e a r s i n f o r m a t i o n
2 namespace V u l n e r a b i l i t y A n a l y s i s . Models
3 {
4 publ i c c l a s s Flooding100Model s
5 {
6 publ i c double Bui ld_ID { g e t ; s e t ; }
7 publ i c double Height_100 { g e t ; s e t ; }
8 publ i c double V e l o c i t y _ 1 0 0 { g e t ; s e t ; }
9 publ i c double B u i l d i n g _ V a l u e { g e t ; s e t ; }

10 }
11 }

Listing 5.2: Model Class for “Mudflows”

1 //Model C l a s s f o r Mudf lows i n f o r m a t i o n
2 namespace V u l n e r a b i l i t y A n a l y s i s . Models
3 {
4 publ i c c l a s s MudflowModels
5 {
6 publ i c double Bui ld_ID { g e t ; s e t ; }
7 publ i c double Mudflow_Height { g e t ; s e t ; }
8 publ i c double Mudflow_Velocity { g e t ; s e t ; }
9 publ i c double B u i l d i n g _ V a l u e { g e t ; s e t ; }

10 }
11 }

We will use these Model classes to represent their respective entities in the data schema. Each
instance of the “Flooding” or “Mudflow” object corresponds to the instance within the PIM and
each property of these classes will be mapped into the column in the table. This means the Models
contain properties corresponding to the data model entity.

For the quantitative multi-hazard application, we have not created any model classes concerned
with validation. However, Cyber-applications need to have model classes that are responsible

44

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

for validating the stores available in the application. This includes returning an error, rejecting
unnecessary changes in the application store, and validating input datasets.

At this stage of the design and implementation process of the quantitative multi-hazard app, we
have handled how the data is stored and represented inside the application structure. The method-
ology provides three mechanisms to fit the available or identified data to the model. However
in our case, the available data fits the model. Therefore, we are just going to introduce the data
to our application. To do this, we first create the tables in PostgreSQL and populate these tables
with the actual data. Listing 5.3 shows the query statements used to create the tables and integrity
constraints using PostGIS.

Listing 5.3: Queries used when creating tables

1 CREATE TABLE B u i l d i n g (
2 B u i l d i n g _ i d i n t e g e r ,
3 M a t e r i a l v a r c h a r (8 0) ,
4 F loor double ,
5 Occupancy v a r c h a r (8 0) ,
6 People double ;
7 Area double ,
8 Value double ,
9 geom geometry ,

10 PRIMARY KEY(B u i l d i n g _ i d)
11) ;
12

13 CREATE TABLE L a n d s l i d e (
14 B u i l d i n g _ i d i n t e g e r REFERENCES B u i l d i n g (B u i l d i n g _ i d) ,
15 L a n d s l i d e _ r u n o u t double ,
16 L a n d s l i d e _ d i s t a n c e double ,
17) ;
18

19 CREATE TABLE Flooding_20 (
20 B u i l d i n g _ i d i n t e g e r REFERENCES B u i l d i n g (B u i l d i n g _ i d) ,
21 Height_20 double ,
22 V e l o c i t y _ 2 0 double
23) ;
24

25 CREATE TABLE Flodd ing_100 (
26 B u i l d i n g _ i d i n t e g e r REFERENCES B u i l d i n g (B u i l d i n g _ i d) ,
27 Height_100 double ,
28 V e l o c i t y _ 1 0 0 double
29) ;
30

31 CREATE TABLE Mudflows (
32 B u i l d i n g _ i d i n t e g e r REFERENCES B u i l d i n g (B u i l d i n g _ i d) ,
33 Height double ,
34 V e l o c i t y double
35) ;

The Creation of Views

Considering the requirements of the application, we create three main views and three floating
views. The “MapView”, to display a Google map as a geographical reference and it should also
show the list of building objects overlaid for the particular area. This will allow users to visualize
the vector representation of the buildings. The “HazardAnalysis” view, to display three options:
landslide, flooding and mudflows. Each of these options needs to have “compute” buttons to cal-
culate for vulnerability. For “Flooding”, there will be two options to let user’s select different
datasets for the selected computation. A “GridView”, to display detailed information for each of
the building objects; such as Material, Floors, occupancy, Value, etc. The rest of the views are
floating views which will be used to display results for their respective hazard types. Therefore,

45

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

each of the hazards need to have independent views to display building vulnerability results for
users.

The user can perform three operations in the presentation layer (the View). 1) Select a building
from the map or the grid view to compute a vulnerability value. 2) Select which computational
model (hazard analysis) they want to use from the available list. Possibly landslide, flooding or
mudflow. 3) Then click on the relative “compute” button and get detailed information about the
building and its vulnerability value to the different hazards types. Therefore for users to interact
with the data, we create each of the above mentioned views based on their responsibility in the
application. The source code for creating all of views is presented in Appendix C. However, for
the purpose of a brief demonstration, we will discuss how we create few of the Views in the user
interface. Refer Listing 5.4 and the explanation to understand how we created the “GridView”.

Listing 5.4: Creation of the “GridView”

1

2 <d iv i d=" e x i s t i n g S l i d e V i e w " s t y l e=" width : 1155 px ; border : double ; h e i g h t : 450 px ">
3 <h5 s t y l e=" h e i g h t : 3px ; margin− l e f t : 2px ; margin−top : 1px ; c o l o r : g r e en ">BUILDINGS

INFORMATION VIEW</h5>
4 <d iv i d=" B u i l d i n g T a b l e C o n t a i n e r " s t y l e=" width : 1153 px ; c o l o r : b l a c k "></div>
5 <d iv i d=" S e l e c t e d R o w L i s t ">0</div>
6 </div>
7

8 < s c r i p t type=" t e x t / j a v a s c r i p t ">
9 $ (document) . r eady (f u n c t i o n () {

10

11 $ (’ # B u i l d i n g T a b l e C o n t a i n e r ’) . j t a b l e ({
12

13 pag ing : true ,
14 s o r t i n g : true ,
15 d e f a u l t S o r t i n g : ’ Bui ld_ID ASC’ ,
16 s e l e c t i n g : true ,
17 m u l t i s e l e c t : f a l s e ,
18 s e l e c t i n g C h e c k b o x e s : true ,
19

20 a c t i o n s : {
21 l i s t A c t i o n : ’/Home/ B u i l d i n g L i s t ’
22 } ,
23

24 f i e l d s : {
25 Bui ld_ID : {
26 key : true ,
27 l i s t : true ,
28 width : ’85 px ’ ,
29 t i t l e : ’ B u i l d i n g ID ’ ,
30 type : ’ f l o a t ’
31 } ,
32 M a t e r i a l s : {
33 t i t l e : ’ M a t e r i a l s ’ ,
34 width : ’350 px ’
35 } ,
36 F l o o r s : {
37 t i t l e : ’ F loors ’ ,
38 width : ’120 px ’ ,
39 type : ’ f l o a t ’
40 } ,
41 Occupancy : {
42 t i t l e : ’ Occupancy ’ ,
43 width : ’250 px ’
44 } ,
45 People : {
46 t i t l e : ’ People ’ ,
47 width : ’140 px ’ ,
48 type : ’ f l o a t ’
49 } ,

46

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

50 Area : {
51 t i t l e : ’ Area ’ ,
52 width : ’140 px ’ ,
53 type : ’ f l o a t ’
54 } ,
55 Value : {
56 t i t l e : ’ Value ’ ,
57 width : ’200 px ’ ,
58 type : ’ double ’
59 } ,
60 } ,
61 //Load B u i l d i n g l i s t from s e r v e r
62 \$ (’ # B u i l d i n g T a b l e C o n t a i n e r ’) . j t a b l e (’ load ’) ;
63

64 }) ;
65 </ s c r i p t >

In the above listing, we first use “div” which is an HTML tag to define a section in the user
interface. The rest of the code is a Javascript code. We use Jtable a Jquery command to build
the building table container. Following this, we set all the corresponding properties for the table.
After handling the layout of the table, we inserted seven fields which are basically information
about the buildings. This grid needs to be associated with the data store to work properly.

Listing 5.5: Results view

1

2 \$ (" # d i a l o g −form ") . d i a l o g ({
3 t i t l e : " R e s u l t s " ,
4 autoOpen : f a l s e ,
5 h e i g h t : 510 ,
6 width : 400 ,
7 modal : true ,
8 bu t ton s : {
9 Ok: f u n c t i o n () {

10 \$ (t h i s) . d i a l o g (" c l o s e ") ;
11 }
12 }
13 }) ;

Listing 5.5 shows how we create the floating view using Jquery UI dialog to display results.
In the same listing, we also set the title and property for the dialog form. The corresponding
HTML source codes which are useful to render the field sets inside this dialog form to display the
results for the appropriate analysis are presented in the Appendix C.4. These Views do not work
by themselves they need to be linked with a controller in order to be functional. For example, to
display results whenever they are called by the appropriate controller.

The Controllers

Up to this point, we have handled how the data is stored and represented in the application accord-
ing to the methodology. We have also created views to display information and results for users.
What is left is to bind the application all together. The main responsibilities of the controllers are
responding to requests and handling some of the processing in the application. Therefore, now
we have to create different controllers which handle separate tasks in the application.

We identify five core controllers in the application which are “BuildingListing”, “Mapping”,
“HazardSelection”, “DAL” (Data Access Layer) and “Executive” controllers. “BuildingListing”
controller handles the request for automatic loading of the building list on the grid. The “Map-
ping” controller is responsible for the interaction with external services. In this particular case,
it handles the communication with web map service (for example, Google maps). The “Hazard-
Selection” controller is responsible for checking the selected hazard type and the selected row list

47

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

from the building grid table to forward the request for the appropriate controller. The “DAL” con-
troller is responsible to manipulate the state of the data and used to bind the data to the model class
of the application. The last controller is the “Executive” controller. This controller is responsible
for processing the request from the hazard selection controller. It calls the “DAL” controller to
get the data from the database based on the building Id forwarded by the “HazardSelection” con-
troller and render a result on the appropriate view. The whole source code for all the controllers
is available at the Appendix.

The “BuildingListing” Controller

This Controller responds to Ajax requests for automatic loading of building list on the grid. It
calls the “DAL” to get all the buildings data from the database. It counts the number of buildings
to show per page and finally return the result in the “GridView”. Refer Listing 5.6. Anytime the
application page is open, the grid will automatically load the data for the table when results are
returned by this controller.

Listing 5.6: The “BuildingListing” Controller

1 namespace V u l n e r a b i l i t y A n a l y s i s . C o n t r o l l e r s
2 {
3 publ i c c l a s s B u i l d i n g L i s t i n g : C o n t r o l l e r
4 {
5 [HttpPost]
6 publ i c J s o n R e s u l t B u i l d i n g L i s t (i n t j t S t a r t I n d e x = 1 , i n t j t P a g e S i z e = 0 , s t r i n g
7 j t S o r t i n g = nul l)
8 {
9 t ry

10 {
11 //Get d a t a from d a t a b a s e
12 va r b u i l d i n g s = DAL. G e t A l l B u i l d i n g s () ;
13 va r bCount = b u i l d i n g s . Count ;
14

15 b u i l d i n g s = (from b in b u i l d i n g s
16 where b . Bui ld_ID >= j t S t a r t I n d e x && b . Bui ld_ID <= j t S t a r t I n d e x + 10
17 s e l e c t b) . ToLi s t () ;
18

19 //Return r e s u l t t o j T a b l e
20 return J son (new { R e s u l t = "OK" , Records = b u i l d i n g s , TotalRecordCount =
21 bCount }) ;
22 }
23 ca tch (Except ion ex)
24 {
25 return J son (new { R e s u l t = "ERROR" , Message = ex . Message }) ;
26 }
27 }
28 }
29 }

The “Mapping” Controller

The “Mapping” Controller handles the communication with web mapping service. We are using
Google maps as a base layer to display the building polygons. This helps the user to visualize
the area and buildings which are threatened by the hazard. The communication is handled by a
JavaScript API which is the most popular mapping API. This map can be customized based on
interest. We first load the Google maps Javascript API and then we create and configure the map.
This Javascript code contains a function called Intitialize() to run once when the page is loaded.
There exist many options that can be set for the map but for the purpose of our demonstration we
only used few. For example, we set the map to the location of the test site. We also add a marker

48

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

to locate the area for visualization purpose. After handling the loading of the map task, we over-
laid the KML layer which contain all the building polygons on the top of Google map. The last
step for this whole thing is to load the map on the user interface. The code for this controller is
attached in Appendix B.3.

The “HazardSelection” Controller

This controller first checks which hazard analysis and which building ID are selected. If a building
is selected and the selected hazard type is “Landside”; it will forwards the request with the building
ID as a parameter for the appropriate controller using the “POST” request method to handle the
actual task. The same thing works for “Flooding” and “Mudflow” analyses. This controller only
handles the events and issues requests; but the actual task to be performed is handled by another
controller which in this case is the “Executive” controller. In Listing 5.7, we present one of func-
tion from the “HazardSelection” controller which explains the above description for the case of
“Landslide”. Refer the rest of the functions in Appendix B.4.

Listing 5.7: Landslide function from the “HazardSelection” Controller

1

2 f u n c t i o n L a n d S l i d e () {
3 va r h a z a r d S e l e c t e d = $ (" inpu t [@name=Hazards] : checked ") . v a l () ;
4 va r b u i l d i d = $ (’ # Se l e c t edRowLi s t ’) . t ex t () ;
5

6 i f (h a z a r d S e l e c t e d == ’ L a n d s l i d e ’ && b u i l d i d > 0) {
7 \$. a j a x ({
8 u r l : " /Home/ L a n d S l i d e " ,
9 type : "POST" ,

10 data : { b u i l d I d : b u i l d i d } ,
11 dataType : " html " ,
12 s u c c e s s : f u n c t i o n (r e s u l t) {
13 $ (" # d i a l o g −form ") . html (r e s u l t) ;
14 $ (" # d i a l o g −form ") . d i a l o g (" open ") ;
15 }
16 }) ;
17

18 }
19 }

The “DAL” Controller

The DAL Controller is created to manipulate states in a database. When this controller is invoked,
it will automatically connect to the storage, issue the proper query and return the results. Basically,
it is just a code we write to interact with the data source and manipulate datasets. In this appli-
cation module, appropriate functions are included based on the requirements of the application.
For example, the application has to display list of buildings for users. To handle this operation,
we have created the GetAllBuildings() function. This function handles setting up a connection
with the data store, reading the data using SqlDataReader, selecting the appropriate columns using
regular queries and finally returns information about lists of available buildings. This controller
also includes the following methods: GetLandSlide(), GetFlooding20(), GetFlooding100(), and Get-
Mudflows(). All of these methods handle similar but separate tasks. When they are invoked, will
connect to the database, issue the appropriate query, and return the results. Listing 5.8 shows the
“DAL” controller used for the quantitative multi-hazard application with only two of the meth-
ods. The rest of functions for this controller are included in Appendix B.2. It is recommended to
make the code in the “DAL” controller database independent. This will make it much easier to
switch the back-end database without affecting any of the application modules if necessary.

49

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Listing 5.8: The “DAL” Controller

1

2 namespace V u l n e r a b i l i t y A n a l y s i s . C o n t r o l l e r s
3 {
4 publ i c s t a t i c c l a s s DAL
5 {
6 publ i c s t a t i c L i s t<B u i l d i n g> G e t A l l B u i l d i n g s ()
7 {
8 va r c o n n e c t i o n S t r i n g =Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing "] ;
9 va r b u i l d i n g s = new L i s t<B u i l d i n g > () ;

10 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
11 {
12 Sq lDataReader r e a d e r ;
13 va r cmd = new SqlCommand () ;
14 cmd . CommandText = " S e l e c t ∗ from [dbo] . [B u i l d i n g s] " ;
15 cmd . CommandType = CommandType . Text ;
16 cmd . Connection = connec t ion ;
17

18 connec t ion . Open () ;
19 t ry
20 {
21 r e a d e r = cmd . ExecuteReader () ;
22 while (r e a d e r . Read ())
23 {
24 b u i l d i n g s . Add (new B u i l d i n g ()
25 {
26 Bui ld_ID = r e a d e r . GetDouble (0) ,
27 M a t e r i a l s = r e a d e r . G e t S t r i n g (1) ,
28 F l o o r s = r e a d e r . GetDouble (2) ,
29 Occupancy = r e a d e r . G e t S t r i n g (3) ,
30 People = r e a d e r . GetDouble (4) ,
31 Area = r e a d e r . GetDouble (5) ,
32 Value = r e a d e r . GetDouble (6)
33

34 }) ;
35 }
36 }
37 ca tch (Except ion ex)
38 {
39 throw ex ;
40 }
41

42 r e a d e r . Close () ;
43 cmd . Dispose () ;
44 connec t ion . Close () ;
45 }
46

47 return b u i l d i n g s ;
48 }
49

50 publ i c s t a t i c Lands l i d eMode l s GetLandS l ide (double b u i l d I d)
51 {
52 va r c o n n e c t i o n S t r i n g =Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing "] ;
53 va r l a n d S l i d e = new Lands l i d eMode l s () ;
54 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
55 {
56 Sq lDataReader r e a d e r ;
57 va r cmd = new SqlCommand () ;
58 cmd . CommandText = " S e l e c t ∗ from [dbo] . [L a n d s l i d e s] Where Bui ld_ID=" + b u i l d I d ;
59 cmd . CommandType = CommandType . Text ;
60 cmd . Connection = connec t ion ;
61

62 connec t ion . Open () ;
63 t ry
64 {
65 r e a d e r = cmd . ExecuteReader () ;
66 while (r e a d e r . Read ())
67 {

50

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

68 l a n d S l i d e = new Lands l i d eMode l s ()
69 {
70 Bui ld_ID = r e a d e r . GetDouble (0) ,
71 L a n d s l i d e _ r u n o u t = r e a d e r . GetDouble (1) ,
72 L a n d s l i d e _ d i s t a n c e _ m a x = r e a d e r . GetDouble (2) ,
73 L a n d s l i d e _ d i s t a n c e _ b e y o n d = r e a d e r . GetDouble (3) ,
74 B u i l d i n g _ V a l u e = r e a d e r . GetDouble (4) ,
75

76 } ;
77 }
78 }
79 ca tch (Except ion ex)
80 {
81 throw ex ;
82 }
83

84 r e a d e r . Close () ;
85 cmd . Dispose () ;
86 connec t ion . Close () ;
87 }
88

89 return l a n d S l i d e ;
90 }
91 }

The “Executive” Controller

This controller is responsible for handling requests coming from the “HazardSelection” controller.
When the user selects one of the hazard types, the request will be directly forwarded to this con-
troller from the “event handler” which is basically the “HazardSelection” controller. What it does
is, it accepts the request and executes it. To execute the request, it calls the appropriate function
from “DAL” controller to get the relative data from the database based on the forwarded building
Id. The processing step for the data behind the computation is explained in the workflow spec-
ification in Section 5.4.4 for all the three hazard types. Finally, the result will be returned and
the same controller renders this result on the appropriate view. To show how the tasks are han-
dled by this controller, we present Listing 5.9 which shows the action result only for the Flooding
computation request. For the rest of the code refer Appendix B.5.

Listing 5.9: Function that handles flooding request in the “Executive” Controller

1

2 publ i c A c t i o n R e s u l t F looding (double b u i l d I d , i n t yea r)
3 {
4 i f (y ea r == 2 0)
5 {
6 va r f l o o d i n g 2 0 = DAL. GetFlooding20 (b u i l d I d) ;
7 return t h i s . P a r t i a l V i e w (" Flooding20PV " , f l o o d i n g 2 0) ;
8 }
9 e l s e

10 {
11 va r f l o o d i n g 1 0 0 = DAL. GetFlooding100 (b u i l d I d) ;
12 return t h i s . P a r t i a l V i e w (" Flooding100PV " , f l o o d i n g 1 0 0) ;
13 }
14 }

The user is expected to select which year dataset to use for “Flooding” analysis in the user
interface. Therefore, in the above listing, the method accepts two parameters the “buildId” and
“year” from the Flooding() function which is found in the “HazardSelection” controller. It will
first check if the year selected is 20. If this is the case, it will call the GetFlooding20() function from
“DAL” controller to get the flooding vulnerability information for the particular building. The
results then will be rendered in the partial view “Flooding20PV”. Otherwise, the selected year is

51

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

100 and the same operation will be performed for the relative year and displays the result on the
appropriate view.

In general, the “Executive” controller returns different types of action results when a request
is made. ActionResult is used to perform core operations on behalf of the action method. As far
as we have seen, we have created different controllers and distribute application responsibilities
across them. It is always a good practice to start distributing responsibilities by deciding how the
views are going to be controlled in the application.

Results of the partitioning

Figure 5.4 shows how the solution structures for the quantitative multi-hazard application looks
like after the partitioning is completed. We encapsulate all the components of the application
inside a project name “Landslide”. We use the .Net Framework 4 as a development framework.
The figure shows the partitioning of the MVC design pattern. The codes of the application are
grouped under the Model, the View and the Controller elements.

Figure 5.4: The Structure of Our Solution

52

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

5.4.6 Step 6: Interface specification.

We have all the partitioned application modules now. Therefore according to the methodology,
we need to define their communication pattern based on events. This basically means, we will
build the interaction interface between the partitioned components.

Example of event-Based Interactions

In the Quantitative multi-hazard application, there exist three “compute” buttons that are already
created when constructing view elements. Therefore, we will define the click action on these
buttons such that users can interact with the view and requests for vulnerability value based on
preceding parameter selection for each hazard type. Since their interaction is event-based, we
identify events and define call-back functions that are triggered as a response to these events. On the
click event of each “compute” buttons, the corresponding functions from the “HazardSelection”
controller will be invoked as shown in Listing 5.10. The call-back functions then initializes the
appropriate controlling functions for the selected hazard type from the “Executive” controller.

Listing 5.10: On Click Events

1

2 <button i d=" b t n L a n d s l i d e " s t y l e=" margin− l e f t : 144 px " o n c l i c k=" L a n d S l i d e () ; r e t u r n f a l s e ; ">
Compute</button>

3

4 <button i d=" btnFlood ing " s t y l e=" margin− l e f t : 150 px " o n c l i c k=" Flooding () ; r e t u r n f a l s e ; ">
Compute</button>

5

6 <button i d=" btnMudflow " s t y l e=" margin− l e f t : 150 px " o n c l i c k=" Mudflow () ; r e t u r n f a l s e ; ">
Compute</button>

As we can see, the communication between the application modules is based on events. The
event can be instantiated from the view and be the base for all other application modules to interact.
Another aspect of the event-based interaction we can demonstrate here is the change in selection of
a row in the building grid list. This event is handled by a function which will append the selected
building Id to a temporary variable named “record”. Refer Listing 5.11 below to understand the
results of the whole function.

Listing 5.11: Selection Changed event handler function

1

2 // R e g i s t e r t o s e l e c t i o n C h a n g e d e v e n t t o h a n d l e r e v e n t s
3 s e l e c t i o n C h a n g e d : f u n c t i o n () {
4 var $ s e l e c t e d R o w s = $ (’ # B u i l d i n g T a b l e C o n t a i n e r ’) . j t a b l e (’ s e l e c t edRows ’) ;
5 $ (’ # Se l e c t edRowLi s t ’) . empty () ;
6 i f ($ s e l e c t e d R o w s . l e n g t h > 0) {
7 $ s e l e c t e d R o w s . each (f u n c t i o n () {
8 va r r e c o r d = $ (t h i s) . data (’ r ecord ’) ;
9 $ (’ # Se l e c t edRowLi s t ’) . append (r e c o r d . Bui ld_ID) ;

10 }) ;
11 } e l s e {
12 //No rows s e l e c t e d
13 $ (’ # Se l e c t edRowLi s t ’) . append (’No row s e l e c t e d ! S e l e c t rows to s e e

here . . . ’) ;
14 }
15 }

Generally, at this stage of the design process, we have all the required partitioned application
modules with clearly defined interaction structure to be able to run the application.

53

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

5.4.7 Step 7: Realization.

The final step of this design process is to instantiate the application. The final result is, the Quan-
titative multi-hazard analysis application. All of the models, the views and controller elements are
now functional and perform as required. Figure 5.5 shows how the final application looks like.
We can see the “GridView” loaded with buildings data, the map is operational, the buildings are
overlaid in the map and also all the available hazard types are displayed on the top left of the page.

Figure 5.5: Application page layout

In Figure 5.6, it is visible that a small information window is displayed in the “MapView”.
This happens when one of the buildings is being selected from the “MapView”, it gives detailed
information about that particular building.

54

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 5.6: Building information on-click

The “ResultsView” which is basically a floating view is shown in Figure 5.7. This view presents
results when a request is made. As an example, building 4 is selected and the result shows the
vulnerability value for flooding. This view presents all the necessary information that helps in
assessing the vulnerability value. (E.g., Depth and Velocity. The values are 0.16 meter and 0.14
meter per second respectively). The resulting vulnerability value for the selected building is 0.005.
This means the building is vulnerable for flooding. Refer the scale to understand the resulting
values in Appendix E.2.

55

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Figure 5.7: Results view

5.5 EVALUATION OF THE APPLICATION

We were able to demonstrate many of the concepts in our design method though the implemen-
tation of the Quantitative multi-hazard analysis application. All the above mentioned functional-
ities of the application are operational. This small application is enough to validate most of our
concepts for the purpose of our research project. However, improvements can be made to this
application. To mention few:

• It would be more convenient for the users if better visualization of the results is provided.

• Including additional components which can let users choose which parameters should be
included in the computational model is another functionality that can be provided.

• Include real-time data and more computational modules into the application to be able to
test the concept of the DDDAS method.

5.6 CONCLUSION

This chapter demonstrates the basic concepts of the design method. We were able to develop a
small application through the design steps from the methodology. The basic concepts that are
tested through the Quantitative multi-hazard analysis application are data formalization, work-
flow specification, application partitioning, event based components interaction, and responsibil-
ity distribution between application components. Therefore, we can say all of these concepts are
valid and can be used for developing any kinds of Cyber-applications.

56

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Chapter 6

Summary, Conclusions and Recommendations

6.1 INTRODUCTION

In this chapter we restate our research project and summarize the basic concepts. Section 6.2
presents summary of the achievements. We also review the research objectives and methods used
to determine if all the research questions are answered. This will help us to point out the strength
and limitation of the thesis. Based on this, we present suggestion for related future research in the
final section of this chapter.

6.2 SUMMARY

The main objective we set out to accomplish in this research project was to define a design method
for the development of Cyber-application. To achieve this objective, we first reviewed basic con-
cepts relevant for the creation of a Cyber-applications, which are presented in Chapter 2. The
review includes available data sources, geospatial cyberInfrastructure and its various advantages
towards recent application developments. Cloud computing and other related concepts which
greatly participate in the growth of spatial research areas have also been discussed. Cyber-application
is one example, which takes full advantages of the widely available data sources, infrastructures and
cloud based development platforms to provide better solutions for real world problem. The avail-
ability of different data sources and computational models in the CyberInfrastructure enable the
application to provide full functionalities for users. In Chapter 3, we reviewed the developments
of web application together with their development perspectives, few of web application types
and proper methodologies which guide their development process. Most of the methodologies
reviewed focuses on the navigational design and handle the separation of the data aspect from the
presentation to preserve consistency of data presentation. However, Cyber-application requires a
different approach since the main focus is the exploitation of new data sources and the integration
of new data and components into the application. Therefore, we defined a new approach to guide
the development process and we overlaid some of their strong aspects in our methodology.

We introduced an MVC and DDDAS based design method in Chapter 4 for the development
process and evaluated it through the creation of quantitative multi-hazard analysis application.
This methodology offers clean separation of concern and laid out properly each of the design
steps that are involved in the development process. Our approach uses the principle of application
partitioning to separate the application into independent modules such that each can deal with
separate concern. The MVC Design pattern is used to identify and structure the partitioned ap-
plication modules. We also provided three situations and mechanisms to handle the data aspects
of the application. The SQL/MED is one mechanism to exploit and manage external data sources
based on the requirements of the application, using commands and regular SQL queries. If we do
not have an already existing data, we can use this mechanism to get access to different datasets that
fits the predefined structure of the application. The DDDAS method is another mechanism which
is used to treat new data that is going to be integrated into an already executing application. We use

57

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

this mechanism if the new data that is discovered at run-time does not fit with the predefined data
structure of our application. This method involves set of steps to reach to the required outcome.
It has been already described in Chapter 4.

In Chapter 5, Quantitative Multi-hazard analysis is identified as a use case since it allows us to
demonstrate our concepts. This application is developed by following the design steps. Through
this application we were able to demonstrate the concepts of data identification, workflow speci-
fication, the principle of application partitioning and responsibility distribution, interface speci-
fication, and etc. The source codes used to develop the quantitative multi-hazard application are
included in the appendix. All in all, we were able to define a design method for the creation of
Cyber-application and validate the methodology through the development of a prototype.

6.3 CONCLUSIONS

In this section, we present general conclusions derived from the research questions. We outline and
discuss the achievements of the research questions posed in the beginning of this research project.
We also present the problems encountered along with the limitations.

How to define a design method for the development of Cyber-application?

This question is fully covered and answered in Chapter 4. We present a solid design method for
the construction of Cyber-applications. We were fortunate enough to realize from the literature
review on web applications and their proper methodologies presented in Chapter 3, prior to define
a proper design method for any types of web application; we first need to understand the purpose
and requirements of the application; such that we can point out the design principle and design
steps which guide the development process. Therefore, to define the design method, we first found
out the basic design principles. Based on this, we defined a structured set of steps which are directly
relevant for the development of the application. The definition of the design method starts from
the identification of a problem domain and the description of the data requirements. The design
steps also includes the design of data structure, the identification of data sources, the specification
of workflow, the partitioning of application based on the tasks and events discovered when spec-
ifying the workflow, the specification of interaction structure between the application modules
and finally the realization of the complete application structure. Each of the steps involves a num-
ber of concepts and mechanism that helps to fully compile the definition of the design method.
We believe this robust methodology is useful in guiding developers of Cyber-application; since
it considers all aspects of the application behavior and proposed different mechanisms for all the
concerns. Additionally, we were able to test if the concepts are valid in the design method through
a prototype and the result is fair enough.

What are the types of problems that can be addressed with the application?

The question draws its answer from the description given to the behavior of Cyber-application.
These applications have a modular and dynamic behavior which offers an enhanced capability for
integration of new data into the application. Therefore, they can be used for complex real world
problems which require the use of different data sources or computational models to provide bet-
ter and relatively accurate solution. This conclusion statement is made because we have actually
tested the application in a real world problem. We built a Quantitative Multi-hazard analysis ap-
plication which has been presented in Chapter 5, to prove the theory and demonstrate the fact
that the application can be used for real world problems. In general, Cyber-applications can be

58

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

adopted for spatial problem that require real time data feeds to the computational model to en-
hance prediction capability, or provide accurate results for any other form of risk assessments due
to their dynamic behavior.

Which application paradigm can we use to identify the components in the development of cyber-
applications?

We proposed the MVC design pattern and the DDDAS approach as a base for defining the method-
ology for the construction of Cyber-applications in Chapter 4. The development of cyber-application
requires the partitioning of the entire application into independent application modules; and the
MVC design pattern was found a better fit to identify all of the partitioned modules. Each of the
elements in MVC represents each of the modules that are required in the applications structure.
We have considered other approaches (design patterns) as well; however, they do not comply with
the purpose of the application. MVC is chosen because it naturally enforces separation of concern
and ensures the independence of the application modules such that unit testing is possible. We can
dare to say this design pattern was found to be well suited for the purpose of our design method
since we have also tested it through a prototype.

The other application paradigm proposed for integration of new data and components into
the application is the DDDAS method. This method is found to be useful because it provides the
capability to fit new data or computational modules into an already existing application structure.
DDDAS is a new design method and it is not widely practiced yet. Although, the concepts of this
method are found to be strongly valuable for the purpose of our design method and the require-
ments of Cyber-applications, we did not have the chance to test it. This is because; the method
requires more data and computational modules to be able to realize the application.

How to design the underlying architecture for Cyber-applications based on the design pattern?

This research question has been answered in Chapter 5. We presented the underlying architecture
which supports the modular and dynamic structure of Cyber-applications. The architecture is
defined based on the MVC design pattern and the concepts of three tier architecture. It has three
layers; namely: the presentation, the business and the data layers. Each of the MVC elements of
the application are distributed between these layers according to their responsibility in the appli-
cation. Multiple aspects of cyber-application are considered in the architecture such as the services
which provide different data’s, data integration components, persistent data stores and so on.

How to validate the correctness and completeness of the design method for Cyber-application?

This question is about determining if our concepts are actually valid. Therefore, to validate the
correctness and completeness of the design method, we developed a small application based on the
proposed methodology. The sequence of steps that were proposed in the design method helped
us to identify and separate different concerns such as initialization of a task, loading of data, ren-
dering of a result, and so on based on the requirements of the application; and these results in
implementable modules that realized the desired purpose of the application. For example, the
“DAL” controller is an instance of such fact which is responsible for connecting with underlying
database, issuing a query and returning the results in the application. It handles the manipulation
of states in the data source. Therefore, all of the partitioned application modules handle separate
tasks in the application since responsibility is already distributed between them. These appli-
cation modules communicate through a well specified interface which is based on Event-based

59

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

paradigm. And as it is defined in the design method, we finally realized the structure of the appli-
cation. The conclusion we draw from this brief summary is that, we were again fortunate enough
to validate the correctness of the design method through the Quantitative Multi-hazard analysis
Cyber-application which, its development process is fully described in Chapter 5. Even if the
results were fair enough to validate the methodology, there still exist some shortcomings of the
prototype built which will be discussed in the next section.

All in all, in the beginning of this research project, there were three challenges for Cyber-applications
which are mentioned in the paper of Morales and de By [39].

1. A design method which provide useful framework to guide the development process.

2. Selection of a robust application paradigm to assemble disparate services into the applica-
tion.

3. The underlying architecture to support the modular and dynamic behavior of Cyber-app.

Therefore, we strongly believe that we overcome these challenges through the learning process
and the achievements of the research questions. We were able to define a design method which can
result in cyber-applications that are moderate and can be adopted for any kinds of real world prob-
lem. We presented different mechanism for assembling data and services into the application and
we also defined a simple architecture which takes into account multiple behavior of the applica-
tion.

6.4 RECOMMENDATIONS

Based on the discussion on the previous sections, the following areas are identified and recom-
mended for future work:

• Address the conversion of data.

• Extend the current functionality of the prototype.

• Include new data or component integration to the application to demonstrate the concepts
of DDDAS.

• Assess the complexity and accessibility of cyber-applications.

Address the conversion of different data formats.

In our design method, we are assuming that we are able to read standard services (For example,
Web Feature Service (WFS), Web Mapping Service (WMS), OGC standard services) and convert
them into module structuring in the application using the mechanisms proposed in Chapter 4.
However, our design method does not take into account the situation where the identified data
sources or services cannot be converted automatically into a suitable format or structure for Cyber-
application. What if we cannot convert them and create an intermediate data structure to be used
by the application? This is something which should be considered. Further research should be
conducted for the conversion of data that is going to be integrated into the application.

60

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Extend the the functionality of the Quantitative multi-hazard cyber-app.

Even if this small application was suitable enough to validate the basic concepts in our methodol-
ogy, the current functionality of the application can be enhanced by including more components
to the system. For example, to provide better visualization of the results, perform analysis for
individual risk, societal risk (the number of people that might be harmed by the hazards), and
economic risk (expected loss in terms of economic value) and so on. This could be an interesting
point of view to enhance the capability of the application.

Include more data and computational modules integration.

The prototype can be extended to a much more complete application to validate all the concepts in
the methodology such as the DDDAS method. As stated in the conclusion, more data and compu-
tational modules are needed to be able to fully test this method. This particular aspect is addressed
in Chapter 4 data Source identification step, such that other researchers can take the method pro-
posed here and have a clear idea where to start if they want to include additional modules.

Assess the complexity and accessibility of Cyber-applications.

It is obvious that the target of this research is not the application itself; it is the methodology to
get it done. However, it is a possible further direction to see the impact of the methodology in
the complexity of the application as a whole. This can be done by building a complete Cyber-
application by following the development stages and assess the impacts of the methodology in
terms of accessibility and complexity.

61

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

62

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Bibliography

[1] José Alfonso Aguilar, Irene Garrigós, Jose-Norberto Mazón, and Juan Trujillo. An mda
approach for goal-oriented requirement analysis in web engineering. J. UCS, 16(17):2475–
2494, 2010.

[2] H. Altarawneh and A. El Shiekh. A theoretical agile process framework for web applications
development in small software firms. In Software Engineering Research, Management and
Applications, 2008. SERA ’08. Sixth International Conference on, pages 125–132.

[3] Luciano Baresi, Sebastiano Colazzo, Luca Mainetti, and Sandro Morasca. W2000: A Mod-
elling Notation for Complex Web Applications, chapter 11, pages 335–364. Springer Berlin
Heidelberg, 2006.

[4] Silvana Castano, Luigi Palopoli, and Riccardo Torlone. A General Methodological Framework
for the Development of Web-Based Information Systems, volume 1921 of Lecture Notes in Com-
puter Science, chapter 12, pages 128–139. Springer Berlin Heidelberg, 2000.

[5] Westen Cees van, Cascini Leonardo, Ferlisi Settimio, Sorbino Giuseppe, and Cuomo
Sabatino. Tutorial on the use of gis for landslide risk assessment. the case study of monte
albino, nocera inferiore, italy. 2011.

[6] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-
Intensive Web Applications. Elsevier Science, 2003.

[7] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language (webml): a mod-
eling language for designing web sites. Computer Networks, 33(16):137–157, 2000.

[8] Frederica Darema. Dynamic Data Driven Applications Systems: A New Paradigm for Ap-
plication Simulations and Measurements, volume 3038 of Lecture Notes in Computer Science,
chapter 86, pages 662–669. Springer Berlin Heidelberg, 2004.

[9] Frederica Darema. Cyberinfrastructures of cyber-applications-systems. Procedia Computer
Science, 1(1):1287–1296, 2010.

[10] O. M. F. De Troyer and C. J. Leune. Wsdm: a user centered design method for web sites.
Computer Networks and ISDN Systems, 30(17):85–94, 1998.

[11] John Deacon. Model-view-controller (mvc) architecture. Online][Citado em: 10 de marÃğo
de 2006.] http://www. jdl. co. uk/briefings/MVC. pdf, 2009.

[12] Stijn Dekeyser and Richard Watson. Extending google docs to collaborate on research papers.
Toowoomba, Queensland, AU: The University of Southern Queensland, Australia, 23:2008,
2006.

[13] Matthew DeMeritt. Simplifying citizen reporting. 2011.

63

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

[14] Damiano Distante, Paola Pedone, Gustavo Rossi, and Gerardo Canfora. Model-Driven De-
velopment of Web Applications with UWA, MVC and JavaServer Faces, volume 4607 of Lecture
Notes in Computer Science, chapter 38, pages 457–472. Springer Berlin Heidelberg, 2007.

[15] Roland Eckert and Gunther Specht. Challenge of design data exchange between heteroge-
neous database schema. 2004.

[16] M.J Escalona and Gustavo Aragón. Ndt. a model-driven approach for web requirements.
Software Engineering, IEEE Transactions on, 34(3):377–390, 2008.

[17] Renato Ferreira, Gagan Agrawal, and Joel Saltz. Data parallel language and compiler support
for data intensive applications. Parallel Computing, 28(5):725–748, 2002.

[18] Piero Fraternali. Tools and approaches for developing data-intensive web applications: a
survey. ACM Comput. Surv., 31(3):227–263, 1999.

[19] Franca Garzotto. Ubiquitous Web Applications, volume 2151 of Lecture Notes in Computer
Science, chapter 1, pages 1–1. Springer Berlin Heidelberg, 2001.

[20] Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDMA Model-Based Approach to Hy-
pertext Application Design, pages 794–806. Morgan Kaufmann, San Francisco, 2002.

[21] Christophe Gnaho. Web-Based Information Systems Development - a User Centered Engineer-
ing Approach, volume 2016 of Lecture Notes in Computer Science, chapter 11, pages 105–118.
Springer Berlin Heidelberg, 2001.

[22] Jaime Gómez and Cristina Cachero. Oo-h method: extending uml to model web interfaces.
Information modeling for internet applications, pages 144–173, 2003.

[23] Michael F Goodchild. in the world of web 2.0. International Journal, 2:24–32, 2007.

[24] Halepis Harriette. 5 things you need to know about cloud computing, 2013.

[25] Dat Dac Hoang, Hye-Young Paik, and Chae-Kyu Kim. Service-oriented middleware archi-
tectures for cyber-physical systems. International Journal of Computer Science and Network
Security, 12(1):79–87, 2012.

[26] Barbara Hofer. Geospatial cyberinfrastructure and geoprocessing web: A review of com-
monalities and differences of e-science approaches. ISPRS International Journal of Geo-
Information, 2(3):749–765, 2013.

[27] M. Jazayeri. Some trends in web application development. In Future of Software Engineering,
2007. FOSE ’07, pages 199–213.

[28] Do-Hyun Kim and Kim Min-Soo. Web gis service component based on open environment.
In Geoscience and Remote Sensing Symposium, 2002. IGARSS ’02. 2002 IEEE International,
volume 6, pages 3346–3348 vol.6.

[29] Nora Koch and Andreas Kraus. Towards a Common Metamodel for the Development of Web
Applications, volume 2722 of Lecture Notes in Computer Science, chapter 92, pages 497–506.
Springer Berlin Heidelberg, 2003.

[30] Seung C. Lee and Ashraf I. Shirani. A component based methodology for web application
development. Journal of Systems and Software, 71(1-2):177–187, 2004.

64

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

[31] A. Leff and J. T. Rayfield. Web-application development using the model/view/controller
design pattern. In Enterprise Distributed Object Computing Conference, 2001. EDOC ’01.
Proceedings. Fifth IEEE International, pages 118–127.

[32] David J Maguire and Paul A Longley. The emergence of geoportals and their role in spatial
data infrastructures. Computers, environment and urban systems, 29(1):3–14, 2005.

[33] Maciej Malawski, Jan Meizner, Marian Bubak, and Pawel Gepner. Component approach to
computational applications on clouds. Procedia Computer Science, 4(0):432–441, 2011.

[34] Peter Mell and Timothy Grance. The nist definition of cloud computing (draft). NIST special
publication, 800(145):7, 2011.

[35] Jim Melton, Jan Eike Michels, Vanja Josifovski, Krishna Kulkarni, and Peter Schwarz.
Sql/med: a status report. SIGMOD Rec., 31(3):81–89, 2002.

[36] Emilia Mendes, Nile Mosley, and Steve Counsell. The Need for Web Engineering: An Intro-
duction, chapter 1, pages 1–27. Springer Berlin Heidelberg, 2006.

[37] Microsoft. Data identification, 2014.

[38] R. J. Mitchell. Applying the principle of separation of concerns in software development.
Annual Review in Automatic Programming, 14, Part 1(0):21–27, 1988.

[39] Javier Morales and Rolf A. de By. Cyber-applications as gateway to data-rich digital earth
systems. International Journal of Digital Earth, pages 1–18, 2013.

[40] San Murugesan and Yogesh Deshpande. Meeting the challenges of web application develop-
ment: the web engineering approach, 2002.

[41] San Murugesan, Yogesh Deshpande, Steve Hansen, and Athula Ginige. Web Engineering: a
New Discipline for Development of Web-Based Systems, volume 2016 of Lecture Notes in Com-
puter Science, chapter 2, pages 3–13. Springer Berlin Heidelberg, 2001.

[42] John A Olson. Data as a service: Are we in the clouds? Journal of Map and Geography
Libraries, 6(1):76–78, 2009.

[43] Ying Ouyang, Jia En Zhang, and Shi Ming Luo. Dynamic data driven application system:
Recent development and future perspective. Ecological Modelling, 204(12):1–8, 2007.

[44] J Ponce, AH Torres, MJ Escalona, M Mejías, and FJ Domínguez-Mayo. Developing web
geographic information system with the ndt methodology. 2012.

[45] Eeva Savolainen. Cloud service models. 2012.

[46] Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa. Systematic hypermedia applica-
tion design with oohdm, 1996.

[47] Florian Schwendener. Sql/med and more. 2011.

[48] Jonathan Strickland. How cloud computing works, 2008.

[49] Isakowitz Toms, Edward A. Stohr, and P. Balasubramanian. Rmm: a methodology for struc-
tured hypermedia design. Commun. ACM, 38(8):34–44, 1995.

[50] Reenskaug Trygve. Mvc xerox parc 1978-79. Trygve/MVC, 1978.

65

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

[51] MarceloAugustoSantos Turine, MariaCristinaFerreira De Oliveira, and PauloCesar Masiero.
Hyscharts: A statechart-based environment for hyperdocument authoring and browsing.
Multimedia Tools and Applications, 8(3):309–324, 1999.

[52] William Voorsluys, James Broberg, and Rajkumar Buyya. Introduction to cloud computing.
Cloud computing: Principles and paradigms, pages 2–44, 2011.

[53] Chaowei Yang, Michael Goodchild, Qunying Huang, Doug Nebert, Robert Raskin, Yan Xu,
Myra Bambacus, and Daniel Fay. Spatial cloud computing: how can the geospatial sciences
use and help shape cloud computing? International Journal of Digital Earth, 4(4):305–329,
2011.

[54] Chaowei Yang, Robert Raskin, Michael Goodchild, and Mark Gahegan. Geospatial cy-
berinfrastructure: Past, present and future. Computers, Environment and Urban Systems,
34(4):264–277, 2010.

[55] Peng Yue, Hongxiu Zhou, Jianya Gong, and Lei Hu. Geoprocessing in cloud computing
platforms: a comparative analysis. International Journal of Digital Earth, 6(4):404–425, 2012.

[56] Fujun Zhu, Mark Turner, Ioannis Kotsiopoulos, Keith Bennett, Michelle Russell, David Bud-
gena, Pearl Breretona, John Keane, Paul Layzell, and Michael Rigby. Dynamic data integra-
tion using web services. In Web Services, 2004. Proceedings. IEEE International Conference
on, pages 262–269. IEEE.

66

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Appendix A

Creation Of the Models

A.1 CREATION OF ALL THE MODEL CLASSES

Listing A.1: Complete Source Code for Buildings Model Class creation

1 //Model c l a s s f o r B u i l d i n g s
2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . ComponentModel . DataAnnotat ions ;
5 using System . Linq ;
6 using System . Web ;
7

8 namespace L a n d s l i d e . Models
9 {

10 publ i c c l a s s B u i l d i n g
11 {
12

13 publ i c double Bui ld_ID { g e t ; s e t ; }
14

15 [DataType (DataType . M u l t i l i n e T e x t)]
16 publ i c s t r i n g M a t e r i a l s { g e t ; s e t ; }
17

18 publ i c double F l o o r s { g e t ; s e t ; }
19 publ i c s t r i n g Occupancy { g e t ; s e t ; }
20 publ i c double People { g e t ; s e t ; }
21 publ i c double Area { g e t ; s e t ; }
22 publ i c double Value { g e t ; s e t ; }
23

24 }
25 }

Listing A.2: Complete Source Code for Flooding 20 Years Model Class

1 //Model c l a s s F l o o d i n g 20 y e a r s
2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . Linq ;
5 using System . Web ;
6

7 namespace L a n d s l i d e . Models
8 {
9 publ i c c l a s s Flooding20Model s

10 {
11

12 publ i c double Bui ld_ID { g e t ; s e t ; }
13 publ i c double Height_20 { g e t ; s e t ; }
14 publ i c double V e l o c i t y _ 2 0 { g e t ; s e t ; }
15 publ i c double B u i l d i n g _ V a l u e { g e t ; s e t ; }
16

17 }
18 }

67

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Listing A.3: Complete Source Code for Flooding 100 Years Model Class

1 //Model c l a s s f o r F l o o d i n g 100 y e a r s
2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . Linq ;
5 using System . Web ;
6 using System . Data . S p a t i a l ;
7

8 namespace L a n d s l i d e . Models
9 {

10 publ i c c l a s s Flooding100Model s
11 {
12 publ i c double Bui ld_ID { g e t ; s e t ; }
13 publ i c double Height_100 { g e t ; s e t ; }
14 publ i c double V e l o c i t y _ 1 0 0 { g e t ; s e t ; }
15 publ i c double B u i l d i n g _ V a l u e { g e t ; s e t ; }
16 }
17 }

Listing A.4: Complete Source Code for Model Class of Landslide

1 // L a n d s l i d e h a z a r d Model
2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . ComponentModel . DataAnnotat ions ;
5 using System . Linq ;
6 using System . Web ;
7 using System . Web . Mvc ;
8

9 namespace L a n d s l i d e . Models
10 {
11 publ i c c l a s s Lands l i d eMode l s
12 {
13 publ i c double Bui ld_ID { g e t ; s e t ; }
14 publ i c double L a n d s l i d e _ r u n o u t { g e t ; s e t ; }
15 publ i c double L a n d s l i d e _ d i s t a n c e _ m a x { g e t ; s e t ; }
16 publ i c double L a n d s l i d e _ d i s t a n c e _ b e y o n d { g e t ; s e t ; }
17 publ i c double B u i l d i n g _ V a l u e { g e t ; s e t ; }
18 }
19 }

Listing A.5: Complete Source Code for Model Class of Mudflows

1 //Model c l a s s f o r Mudf lows
2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . Linq ;
5 using System . Web ;
6

7 namespace L a n d s l i d e . Models
8 {
9 publ i c c l a s s MudflowModels

10 {
11 publ i c double Bui ld_ID { g e t ; s e t ; }
12 publ i c double Height { g e t ; s e t ; }
13 publ i c double V e l o c i t y { g e t ; s e t ; }
14 publ i c double B u i l d i n g _ V a l u e { g e t ; s e t ; }
15 }
16 }

68

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Appendix B

The Controllers

B.1 BUILDING LISTING CONTROLLER

Listing B.1: Complete Source Code for Building Listing Controller

1

2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . Linq ;
5 using System . Web ;
6 using System . Web . Mvc ;
7 using L a n d s l i d e . Models ;
8

9 namespace V u l n e r a b i l i t y A n a l y s i s . C o n t r o l l e r s
10 {
11 publ i c c l a s s B u i l d i n g L i s t i n g : C o n t r o l l e r
12 {
13 [HttpPost]
14 publ i c J s o n R e s u l t B u i l d i n g L i s t (i n t j t S t a r t I n d e x = 1 , i n t j t P a g e S i z e = 0 , s t r i n g
15 j t S o r t i n g = nul l)
16 {
17 t ry
18 {
19 //Get d a t a from d a t a b a s e
20 va r b u i l d i n g s = DAL. G e t A l l B u i l d i n g s () ;
21 va r bCount = b u i l d i n g s . Count ;
22

23 b u i l d i n g s = (from b in b u i l d i n g s
24 where b . Bui ld_ID >= j t S t a r t I n d e x && b . Bui ld_ID <= j t S t a r t I n d e x + 10
25 s e l e c t b) . ToLi s t () ;
26

27 //Return r e s u l t t o j T a b l e
28 return J son (new { R e s u l t = "OK" , Records = b u i l d i n g s , TotalRecordCount =
29 bCount }) ;
30 }
31 ca tch (Except ion ex)
32 {
33 return J son (new { R e s u l t = "ERROR" , Message = ex . Message }) ;
34 }
35 }
36 }
37 }

B.2 CREATION OF DAL CONTROLLER

Listing B.2: Complete Source Code for creation of DAL (Data access layer)

1

2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;
4 using System . C o n f i g u r a t i o n ;
5 using System . Data ;
6 using System . Data . S q l C l i e n t ;
7 using System . Linq ;

69

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

8 using System . Web ;
9 using System . ComponentModel . DataAnnotat ions ;

10 using System . G l o b a l i z a t i o n ;
11 using System . Web . Mvc ;
12 using System . Web . S e c u r i t y ;
13 using System . Data . S q l ;
14 using System . Data . S p a t i a l . DbGeometry ;
15

16

17 namespace L a n d s l i d e . Models
18 {
19 publ i c s t a t i c c l a s s DAL
20 {
21 publ i c s t a t i c L i s t<B u i l d i n g> G e t A l l B u i l d i n g s ()
22 {
23 va r c o n n e c t i o n S t r i n g = Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing

"] ;
24 va r b u i l d i n g s = new L i s t<B u i l d i n g > () ;
25 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
26 {
27 Sq lDataReader r e a d e r ;
28 va r cmd = new SqlCommand () ;
29 cmd . CommandText = " S e l e c t ∗ from [dbo] . [B u i l d i n g s] " ;
30 cmd . CommandType = CommandType . Text ;
31 cmd . Connection = connec t ion ;
32

33 connec t ion . Open () ;
34 t ry
35 {
36 r e a d e r = cmd . ExecuteReader () ;
37 while (r e a d e r . Read ())
38 {
39 b u i l d i n g s . Add (new B u i l d i n g ()
40 {
41 Bui ld_ID = r e a d e r . GetDouble (0) ,
42 M a t e r i a l s = r e a d e r . G e t S t r i n g (1) ,
43 F l o o r s = r e a d e r . GetDouble (2) ,
44 Occupancy = r e a d e r . G e t S t r i n g (3) ,
45 People = r e a d e r . GetDouble (4) ,
46 Area = r e a d e r . GetDouble (5) ,
47 Value = r e a d e r . GetDouble (6)
48

49 }) ;
50 }
51 }
52 ca tch (Except ion ex)
53 {
54 throw ex ;
55 }
56

57 r e a d e r . Close () ;
58 cmd . Dispose () ;
59 connec t ion . Close () ;
60 }
61

62 return b u i l d i n g s ;
63 }
64

65 publ i c s t a t i c Lands l i d eMode l s GetLandS l ide (double b u i l d I d)
66 {
67 var c o n n e c t i o n S t r i n g = Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing

"] ;
68 va r l a n d S l i d e = new Lands l i d eMode l s () ;
69 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
70 {
71 Sq lDataReader r e a d e r ;
72 va r cmd = new SqlCommand () ;
73 cmd . CommandText = " S e l e c t ∗ from [dbo] . [L a n d s l i d e s] Where Bui ld_ID=" +

b u i l d I d ;

70

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

74 cmd . CommandType = CommandType . Text ;
75 cmd . Connection = connec t ion ;
76

77 connec t ion . Open () ;
78 t ry
79 {
80 r e a d e r = cmd . ExecuteReader () ;
81 while (r e a d e r . Read ())
82 {
83 l a n d S l i d e = new Lands l i d eMode l s ()
84 {
85 Bui ld_ID = r e a d e r . GetDouble (0) ,
86 L a n d s l i d e _ r u n o u t = r e a d e r . GetDouble (1) ,
87 L a n d s l i d e _ d i s t a n c e _ m a x = r e a d e r . GetDouble (2) ,
88 L a n d s l i d e _ d i s t a n c e _ b e y o n d = r e a d e r . GetDouble (3) ,
89 B u i l d i n g _ V a l u e = r e a d e r . GetDouble (4) ,
90

91 } ;
92 }
93 }
94 ca tch (Except ion ex)
95 {
96 throw ex ;
97 }
98

99 r e a d e r . Close () ;
100 cmd . Dispose () ;
101 connec t ion . Close () ;
102 }
103

104 return l a n d S l i d e ;
105 }
106

107 publ i c s t a t i c Flooding20Model s GetFlooding20 (double b u i l d I d)
108 {
109 var c o n n e c t i o n S t r i n g = Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing

"] ;
110 va r f l o o d i n g 2 0 = new Flooding20Model s () ;
111 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
112 {
113 Sq lDataReader r e a d e r ;
114 va r cmd = new SqlCommand () ;
115 cmd . CommandText = " S e l e c t ∗ from [dbo] . [F l o o d i n g s 2 0] Where Bui ld_ID=" +

b u i l d I d ;
116 cmd . CommandType = CommandType . Text ;
117 cmd . Connection = connec t ion ;
118

119 connec t ion . Open () ;
120 t ry
121 {
122 r e a d e r = cmd . ExecuteReader () ;
123 while (r e a d e r . Read ())
124 {
125 f l o o d i n g 2 0 = new Flooding20Model s ()
126 {
127 Bui ld_ID = r e a d e r . GetDouble (0) ,
128 Height_20 = r e a d e r . GetDouble (1) ,
129 V e l o c i t y _ 2 0 = r e a d e r . GetDouble (2) ,
130 B u i l d i n g _ V a l u e = r e a d e r . GetDouble (3)
131 } ;
132 }
133 }
134 ca tch (Except ion ex)
135 {
136 throw ex ;
137 }
138

139 r e a d e r . Close () ;
140 cmd . Dispose () ;

71

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

141 connec t ion . Close () ;
142 }
143

144 return f l o o d i n g 2 0 ;
145 }
146

147 publ i c s t a t i c Flooding100Model s GetFlooding100 (double b u i l d I d)
148 {
149 va r c o n n e c t i o n S t r i n g = Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing

"] ;
150 va r f l o o d i n g 1 0 0 = new Flooding100Model s () ;
151 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
152 {
153 Sq lDataReader r e a d e r ;
154 va r cmd = new SqlCommand () ;
155 cmd . CommandText = " S e l e c t ∗ from [dbo] . [Flood ing s100] Where Bui ld_ID=" +

b u i l d I d ;
156 cmd . CommandType = CommandType . Text ;
157 cmd . Connection = connec t ion ;
158

159 connec t ion . Open () ;
160 t ry
161 {
162 r e a d e r = cmd . ExecuteReader () ;
163 while (r e a d e r . Read ())
164 {
165 f l o o d i n g 1 0 0 = new Flooding100Model s ()
166 {
167 Bui ld_ID = r e a d e r . GetDouble (0) ,
168 Height_100 = r e a d e r . GetDouble (1) ,
169 V e l o c i t y _ 1 0 0 = r e a d e r . GetDouble (2) ,
170 B u i l d i n g _ V a l u e = r e a d e r . GetDouble (3)
171 } ;
172 }
173 }
174 ca tch (Except ion ex)
175 {
176 throw ex ;
177 }
178

179 r e a d e r . Close () ;
180 cmd . Dispose () ;
181 connec t ion . Close () ;
182 }
183

184 return f l o o d i n g 1 0 0 ;
185 }
186

187 publ i c s t a t i c MudflowModels GetMudflow (double b u i l d I d)
188 {
189 va r c o n n e c t i o n S t r i n g = Conf igura t ionManager . A p p S e t t i n g s [" LandS l ideConnSt r ing

"] ;
190 va r mudFlows = new MudflowModels () ;
191 using (v a r connec t ion = new SqlConnect ion (c o n n e c t i o n S t r i n g))
192 {
193 Sq lDataReader r e a d e r ;
194 va r cmd = new SqlCommand () ;
195 cmd . CommandText = " S e l e c t ∗ from [dbo] . [Mudflows] Where Bui ld_ID=" +

b u i l d I d ;
196 cmd . CommandType = CommandType . Text ;
197 cmd . Connection = connec t ion ;
198

199 connec t ion . Open () ;
200 t ry
201 {
202 r e a d e r = cmd . ExecuteReader () ;
203 while (r e a d e r . Read ())
204 {
205 mudFlows = new MudflowModels ()

72

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

206 {
207 Bui ld_ID = r e a d e r . GetDouble (0) ,
208 Height = r e a d e r . GetDouble (1) ,
209 V e l o c i t y = r e a d e r . GetDouble (2) ,
210 B u i l d i n g _ V a l u e = r e a d e r . GetDouble (3)
211 } ;
212 }
213 }
214 ca tch (Except ion ex)
215 {
216 throw ex ;
217 }
218

219 r e a d e r . Close () ;
220 cmd . Dispose () ;
221 connec t ion . Close () ;
222 }
223

224 return mudFlows ;
225 }
226 }
227

228 }

B.3 MAPPING CONTROLLER

Listing B.3: Complete Source Code for Creating and Initializing the Map

1

2 f u n c t i o n i n i t i a l i z e () {
3 va r mapOptions = {
4 zoom : 15 , c e n t e r : new g o o g l e . maps . LatLng (4 0 . 7 5 1 6 , 1 4 . 6 4 6 7) ,
5 mapTypeId : g o og l e . maps . MapTypeId .ROADMAP,
6 s c a l e C o n t r o l : true
7

8 } ;
9 va r map = new g o o g l e . maps . Map (document . ge tElementById (’ map ’) , mapOptions) ;

10

11

12 va r marker = new g o o g l e . maps . Marker ({
13 p o s i t i o n : new g o o g l e . maps . LatLng (4 0 . 7 3 6 3 , 1 4 . 6 4 0 6) ,
14 map : map ,
15 t i t l e : ’ Study Area − Nocera I n f e r i o r e SA , I t a l y ! ’
16

17 }) ;
18

19 va r b u i l d i n g = new g o o g l e . maps . KmlLayer ({
20 u r l : ’ h t t p s : // s i t e s . g o o g l e . com/ s i t e /m y k m l b u i l d i n g s /mykml/ Bui ld ing s_LayerToKML .

kmz ’ ,
21

22 }) ;
23

24 b u i l d i n g . setMap (map) ;
25

26 }
27

28 f u n c t i o n l o a d S c r i p t () {
29 va r s c r i p t = document . c r e a t e E l e m e n t (’ s c r i p t ’) ;
30 s c r i p t . type = ’ t ex t / j a v a s c r i p t ’ ; s c r i p t . s r c = ’ h t t p s : //maps . g o o g l e a p i s . com/maps/

a p i / j s ? v=3. e x p& s e n s o r= f a l s e & ’ + ’ c a l l b a c k= i n i t i a l i z e ’ ;
31 document . body . appendChild (s c r i p t) ;
32

33 }
34

35 window . onload = l o a d S c r i p t ;

73

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

B.4 HAZARD SELECTION CONTROLLER

Listing B.4: Selected Hazard type Controller

1

2 f u n c t i o n L a n d S l i d e () {
3 va r h a z a r d S e l e c t e d = $ (" inpu t [@name=Hazards] : checked ") . v a l () ;
4 va r b u i l d i d = $ (’ # Se l e c t edRowLi s t ’) . t ex t () ;
5

6 i f (h a z a r d S e l e c t e d == ’ L a n d s l i d e ’ && b u i l d i d > 0) {
7 $. a j a x ({
8 u r l : " /Home/ L a n d S l i d e " ,
9 type : "POST" ,

10 data : { b u i l d I d : b u i l d i d } ,
11 dataType : " html " ,
12 s u c c e s s : f u n c t i o n (r e s u l t) {
13 $ (" # d i a l o g −form ") . html (r e s u l t) ;
14 $ (" # d i a l o g −form ") . d i a l o g (" open ") ;
15 }
16 }) ;
17 }
18

19 }
20

21 f u n c t i o n Flooding () {
22 va r h a z a r d S e l e c t e d = $ (" inpu t [@name=Hazards] : checked ") . v a l () ;
23 va r b u i l d i d = $ (’ # Se l e c t edRowLi s t ’) . t ex t () ;
24 i f (h a z a r d S e l e c t e d == ’ Flooding ’ && b u i l d i d > 0) {
25 va r yea r = $ (’ # FloodingYear ’) . v a l () ;
26 $. a j a x ({
27 u r l : " /Home/ Flooding " ,
28 type : "POST" ,
29 data : { b u i l d I d : b u i l d i d , yea r : yea r } ,
30 dataType : " html " ,
31 s u c c e s s : f u n c t i o n (r e s u l t) {
32 $ (" # d i a l o g −form ") . html (r e s u l t) ;
33 $ (" # d i a l o g −form ") . d i a l o g (" open ") ;
34 }
35 }) ;
36 }
37 }
38

39 f u n c t i o n Mudflow () {
40 va r h a z a r d S e l e c t e d = $ (" inpu t [@name=Hazards] : checked ") . v a l () ;
41 va r b u i l d i d = $ (’ # Se l e c t edRowLi s t ’) . t ex t () ;
42 i f (h a z a r d S e l e c t e d == ’ Mudflow ’ && b u i l d i d > 0) {
43 $. a j a x ({
44 u r l : " /Home/Mudflow " ,
45 type : "POST" ,
46 data : { b u i l d I d : b u i l d i d } ,
47 dataType : " html " ,
48 s u c c e s s : f u n c t i o n (r e s u l t) {
49 $ (" # d i a l o g −form ") . html (r e s u l t) ;
50 \$ (" # d i a l o g −form ") . d i a l o g (" open ") ;
51 }
52 }) ;
53 }
54 }

B.5 THE EXECUTIVE CONTROLLER

Listing B.5: The Executive Controller to respond to analysis requests

1

2 using System ;
3 using System . C o l l e c t i o n s . Gener ic ;

74

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

4 using System . Linq ;
5 using System . Web ;
6 using System . Web . Mvc ;
7 using L a n d s l i d e . Models ;
8

9 publ i c A c t i o n R e s u l t L a n d S l i d e (double b u i l d I d)
10 {
11 var l a n d S l i d e = DAL. GetLandS l ide (b u i l d I d) ;
12 return t h i s . P a r t i a l V i e w (" LandSl idePV " , l a n d S l i d e) ;
13 }
14

15 publ i c A c t i o n R e s u l t F looding (double b u i l d I d , i n t yea r)
16 {
17 i f (y ea r == 2 0)
18 {
19 va r f l o o d i n g 2 0 = DAL. GetFlooding20 (b u i l d I d) ;
20 return t h i s . P a r t i a l V i e w (" Flooding20PV " , f l o o d i n g 2 0) ;
21 }
22 e l s e
23 {
24 va r f l o o d i n g 1 0 0 = DAL. GetFlooding100 (b u i l d I d) ;
25 return t h i s . P a r t i a l V i e w (" Flooding100PV " , f l o o d i n g 1 0 0) ;
26 }
27 }
28

29 publ i c A c t i o n R e s u l t Mudflow (double b u i l d I d)
30 {
31 var mudFlow = DAL. GetMudflow (b u i l d I d) ;
32 return t h i s . P a r t i a l V i e w ("MudFlowPV" , mudFlow) ;
33 }
34 }
35 }

B.6 EVENT-HANDLING FUNCTION

Listing B.6: Complete Source Code for Selection Change Function

1

2 // R e g i s t e r t o s e l e c t i o n C h a n g e d e v e n t t o h a n l d e e v e n t s
3 s e l e c t i o n C h a n g e d : f u n c t i o n () {
4 //Get a l l s e l e c t e d rows
5 va r $ s e l e c t e d R o w s = $ (’ # B u i l d i n g T a b l e C o n t a i n e r ’) . j t a b l e (’ s e l e c t edRows ’) ;
6

7 $ (’ # Se l e c t edRowLi s t ’) . empty () ;
8 i f ($ s e l e c t e d R o w s . l e n g t h > 0) {
9 //Show s e l e c t e d rows

10 $ s e l e c t e d R o w s . each (f u n c t i o n () {
11 va r r e c o r d = $ (t h i s) . data (’ r ecord ’) ;
12 $ (’ # Se l e c t edRowLi s t ’) . append (r e c o r d . Bui ld_ID) ;
13 }) ;
14 } e l s e {
15 //No rows s e l e c t e d
16 $ (’ # Se l e c t edRowLi s t ’) . append (’No row s e l e c t e d ! S e l e c t rows to s e e here . . . ’) ;
17 }
18 }

75

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

76

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Appendix C

Creation Of the Views

C.1 CREATION OF THE THREE MAIN VIEWS

Listing C.1: Main views Creation

1

2 <%@ Page Language="C# " M a s t e r P a g e F i l e="~/Views/ Shared / S i t e . Master " I n h e r i t s=" System . Web .
Mvc . ViewPage " %>

3

4 <a sp : Content ID=" Content1 " ContentPlaceHolderID=" T i t l e C o n t e n t " ru na t=" s e r v e r ">
5 Home Page
6 </a sp : Content>
7 <a sp : Content ID=" Content2 " ContentPlaceHolderID=" MainContent " runa t=" s e r v e r ">
8 <d iv i d=" r i skView " s t y l e=" width : 320 px ; border : double ; background−c o l o r : #CCC; h e i g h t :

400 px ">
9 <h5 s t y l e=" h e i g h t : 3px ; margin− l e f t : 2px ; margin−top : 1px ; c o l o r : g r e en ">HAZARD

COMPUTE VIEW</h5>
10

11 <d iv c l a s s=" inputgroup ">
12 <h5 s t y l e=" h e i g h t : 3px ; margin− l e f t : 20 px ; margin−top : 1px ; c o l o r : brown">

S e l e c t from the f o l l o w i n g hazard to compute b u i l d i n g v u l n e r a b i l i t y
v a l u e :</h5>

13 <%:Html . RadioButton (" Hazards " , " L a n d s l i d e " , true)%>
14 < l a b e l s t y l e=" margin− l e f t : 5px ; c o l o r : g r e en ">L a n d s l i d e </ l a b e l>
15 <button i d=" b t n L a n d s l i d e " s t y l e=" margin− l e f t : 144 px " o n c l i c k="

L a n d S l i d e () ; r e t u r n f a l s e ; ">Compute</button>
16

17 <%:Html . RadioButton (" Hazards " , " F lood ing ")%>
18 < l a b e l s t y l e=" margin− l e f t : 5px ; c o l o r : g r e en ">Flooding</ l a b e l>
19 <button i d=" btnFlood ing " s t y l e=" margin− l e f t : 150 px " o n c l i c k="

F lood ing () ; r e t u r n f a l s e ; ">Compute</button>
20

21 < l a b e l s t y l e=" margin− l e f t : 45 px ; c o l o r : d a rkb lue ">S e l e c t F looding

Data s e t </ l a b e l>
22 < s e l e c t i d=" FloodingYear ">
23 <opt ion v a l u e=" 20 ">20 Years</option>
24 <opt ion v a l u e=" 100 ">100 Years</option>
25 </ s e l e c t >
26

27 <%:Html . RadioButton (" Hazards " , " Mudflow ")%>
28 < l a b e l s t y l e=" margin− l e f t : 5px ; c o l o r : g r e en ">Mudflow</ l a b e l>
29 <button i d=" btnMudflow " s t y l e=" margin− l e f t : 150 px " o n c l i c k=" Mudflow

() ; r e t u r n f a l s e ; ">Compute</button>
30 </div>
31

32 </div>
33 <d iv i d=" d i a l o g −form " s t y l e=" background−c o l o r : g a i n s b o r o "></div>
34 <d iv i d="mapView" s t y l e=" width : 800 px ; border : double ; h e i g h t : 400 px ;

background−c o l o r : #CCC; margin−top : −403px ">
35

36 <d iv i d="map" s t y l e=" width : 790 px ; h e i g h t : 360 px ; margin− l e f t : 5px "></div>
37 </div>
38

39 <d iv i d=" e x i s t i n g S l i d e V i e w " s t y l e=" width : 1155 px ; border : double ; h e i g h t : 450 px ;

background−c o l o r : #CCC">

77

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

40 <h5 s t y l e=" h e i g h t : 3px ; margin− l e f t : 2px ; margin−top : 1px ; c o l o r : g r e en ">BUILDINGS
INFORMATION VIEW</h5>

41 <d iv i d=" B u i l d i n g T a b l e C o n t a i n e r " s t y l e=" width : 1153 px ; c o l o r : b l a c k "></div>
42 <d iv i d=" S e l e c t e d R o w L i s t ">0</div>
43 </div>
44 </a sp : Content>

C.2 CREATION OF THE GRID VIEW

Listing C.2: Complete Source Code for Creation of the Grid view

1

2 < s c r i p t type=" t e x t / j a v a s c r i p t ">
3 $ (document) . r eady (f u n c t i o n () {
4

5 $ (’ # B u i l d i n g T a b l e C o n t a i n e r ’) . j t a b l e ({
6 pag ing : true ,
7 s o r t i n g : true ,
8 d e f a u l t S o r t i n g : ’ Bui ld_ID ASC’ ,
9 s e l e c t i n g : true ,

10 m u l t i s e l e c t : f a l s e ,
11 s e l e c t i n g C h e c k b o x e s : true ,
12

13 a c t i o n s : {
14 l i s t A c t i o n : ’/Home/ B u i l d i n g L i s t ’
15

16 } ,
17 f i e l d s : {
18 Bui ld_ID : {
19 key : true ,
20 l i s t : true ,
21 width : ’85 px ’ ,
22 t i t l e : ’ B u i l d i n g ID ’ ,
23 type : ’ f l o a t ’
24 } ,
25 M a t e r i a l s : {
26 t i t l e : ’ M a t e r i a l s ’ ,
27 width : ’350 px ’
28 } ,
29 F l o o r s : {
30 t i t l e : ’ F loors ’ ,
31 width : ’120 px ’ ,
32 type : ’ f l o a t ’
33 } ,
34 Occupancy : {
35 t i t l e : ’ Occupancy ’ ,
36 width : ’250 px ’
37 } ,
38 People : {
39 t i t l e : ’ People ’ ,
40 width : ’140 px ’ ,
41 type : ’ f l o a t ’
42 } ,
43 Area : {
44 t i t l e : ’ Area ’ ,
45 width : ’140 px ’ ,
46 type : ’ f l o a t ’
47 } ,
48 Value : {
49 t i t l e : ’ Value ’ ,
50 width : ’200 px ’ ,
51 type : ’ double ’
52 } ,
53

54 $ (’ # B u i l d i n g T a b l e C o n t a i n e r ’) . j t a b l e (’ load ’) ;
55 }) ;
56 </ s c r i p t >

78

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

C.3 CREATION OF THE RESULTS VIEW

Listing C.3: Dialog Form for Creation of Results View

1

2 $ (" # d i a l o g −form ") . d i a l o g ({
3 t i t l e : " R e s u l t s " ,
4 autoOpen : f a l s e ,
5 h e i g h t : 510 ,
6 width : 400 ,
7 modal : true ,
8 bu t ton s : {
9 Ok: f u n c t i o n () {

10 $ (t h i s) . d i a l o g (" c l o s e ") ;
11 }
12 }
13 }) ;

Listing C.4: Landslide Results view

1

2 <%@ Control Language="C# " I n h e r i t s=" System . Web . Mvc . ViewUserControl<L a n d s l i d e . Models .
Lands l ideMode l s>" %>

3 <div>
4 < f i e l d s e t >
5 <d iv c l a s s=" e d i t o r −l a b e l ">
6 <%: Html . Labe l (" B u i l d i n g ID") %>
7 </div>
8 <d iv c l a s s=" e d i t o r −f i e l d ">
9 <%: Html . TextBoxFor (m => m. Bui ld_ID) %>

10 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. Bui ld_ID) %>
11 </div>
12

13 <d iv c l a s s=" e d i t o r −l a b e l ">
14 <%: Html . Labe l (" L a n d s l i d e runout ")%>
15 </div>
16 <d iv c l a s s=" e d i t o r −f i e l d ">
17 <%: Html . TextBoxFor (m => m. L a n d s l i d e _ r u n o u t) %>
18 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. L a n d s l i d e _ r u n o u t) %>
19 </div>
20

21 <d iv c l a s s=" e d i t o r −l a b e l ">
22 <%: Html . Labe l (" L a n d s l i d e maximum d i s t a n c e ")%>
23 </div>
24 <d iv c l a s s=" e d i t o r −f i e l d ">
25 <%: Html . TextBoxFor (m => m. L a n d s l i d e _ d i s t a n c e _ m a x) %>
26 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. L a n d s l i d e _ d i s t a n c e _ m a x) %>
27 </div>
28

29 <d iv c l a s s=" e d i t o r −l a b e l ">
30 <%: Html . Labe l (" L a n d s l i d e D i s t a n c e beyond the b u i l d i n g ")%>
31 </div>
32 <d iv c l a s s=" e d i t o r −f i e l d ">
33 <%: Html . TextBoxFor (m => m. L a n d s l i d e _ d i s t a n c e _ b e y o n d) %>
34 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. L a n d s l i d e _ d i s t a n c e _ b e y o n d) %>
35 </div>
36

37 <d iv c l a s s=" e d i t o r −l a b e l ">
38 <%: Html . Labe l (" B u i l d i n g V u l n e r a b i l i t y Value ") %>
39 </div>
40 <d iv c l a s s=" e d i t o r −f i e l d ">
41 <%: Html . TextBoxFor (m => m. B u i l d i n g _ V a l u e)%>
42 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. B u i l d i n g _ V a l u e) %>
43 </div>
44 </ f i e l d s e t >
45

46 </div>

79

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Listing C.5: Mudflows Results View

1

2 <%@ Control Language="C# " I n h e r i t s=" System . Web . Mvc . ViewUserControl<L a n d s l i d e . Models .
MudflowModels>" %>

3 <div>
4 < f i e l d s e t >
5

6 <d iv c l a s s=" e d i t o r −l a b e l ">
7 <%: Html . Labe l (" B u i l d i n g ID") %>
8 </div>
9 <d iv c l a s s=" e d i t o r −f i e l d ">

10 <%: Html . TextBoxFor (m => m. Bui ld_ID) %>
11 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. Bui ld_ID) %>
12 </div>
13

14 <d iv c l a s s=" e d i t o r −l a b e l ">
15 <%: Html . Labe lFor (m => m. Height) %>
16 </div>
17 <d iv c l a s s=" e d i t o r −f i e l d ">
18 <%: Html . TextBoxFor (m => m. Height) %>
19 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. Height) %>
20 </div>
21

22 <d iv c l a s s=" e d i t o r −l a b e l ">
23 <%: Html . Labe lFor (m => m. V e l o c i t y) %>
24 </div>
25 <d iv c l a s s=" e d i t o r −f i e l d ">
26 <%: Html . TextBoxFor (m => m. V e l o c i t y) %>
27 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. V e l o c i t y) %>
28 </div>
29

30 <d iv c l a s s=" e d i t o r −l a b e l ">
31 <%: Html . Labe l (" B u i l d i n g V u l n e r a b i l i t y Value ") %>
32 </div>
33 <d iv c l a s s=" e d i t o r −f i e l d ">
34 <%: Html . TextBoxFor (m => m. B u i l d i n g _ V a l u e) %>
35 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. B u i l d i n g _ V a l u e) %>
36 </div>
37

38 </ f i e l d s e t >
39 </div>

Listing C.6: Flooding 20 Years Results view

1

2

3 <%@ Control Language="C# " I n h e r i t s=" System . Web . Mvc . ViewUserControl<L a n d s l i d e . Models .
Flooding20Models>" %>

4 <div>
5 < f i e l d s e t >
6

7 <d iv c l a s s=" e d i t o r −l a b e l ">
8 <%: Html . Labe l (" B u i l d i n g ID") %>
9 </div>

10 <d iv c l a s s=" e d i t o r −f i e l d ">
11 <%: Html . TextBoxFor (m => m. Bui ld_ID) %>
12 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. Bui ld_ID) %>
13 </div>
14

15 <d iv c l a s s=" e d i t o r −l a b e l ">
16 <%: Html . Labe l (" V e l o c i t y 20 Yrs ") %>
17 </div>
18 <d iv c l a s s=" e d i t o r −f i e l d ">
19 <%: Html . TextBoxFor (m => m. Height_20) %>

80

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

20 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. Height_20) %>
21 </div>
22

23 <d iv c l a s s=" e d i t o r −l a b e l ">
24 <%: Html . Labe l (" Depth 20 Yrs ") %>
25 </div>
26 <d iv c l a s s=" e d i t o r −f i e l d ">
27 <%: Html . TextBoxFor (m => m. V e l o c i t y _ 2 0) %>
28 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. V e l o c i t y _ 2 0) %>
29 </div>
30

31 <d iv c l a s s=" e d i t o r −l a b e l ">
32 <%: Html . Labe l (" B u i l d i n g V u l n e r a b i l i t y Value ") %>
33 </div>
34 <d iv c l a s s=" e d i t o r −f i e l d ">
35 <%: Html . TextBoxFor (m => m. B u i l d i n g _ V a l u e)%>
36 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. B u i l d i n g _ V a l u e) %>
37 </div>
38

39 </ f i e l d s e t >
40 </div>

Listing C.7: Flooding 100 Years Results view

1

2 <%@ Control Language="C# " I n h e r i t s=" System . Web . Mvc . ViewUserControl<L a n d s l i d e . Models .
Flooding100Models>" %>

3 <div>
4 < f i e l d s e t >
5

6 <d iv c l a s s=" e d i t o r −l a b e l ">
7 <%: Html . Labe l (" B u i l d i n g ID") %>
8 </div>
9 <d iv c l a s s=" e d i t o r −f i e l d ">

10 <%: Html . TextBoxFor (m => m. Bui ld_ID) %>
11 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. Bui ld_ID) %>
12 </div>
13

14 <d iv c l a s s=" e d i t o r −l a b e l ">
15 <%: Html . Labe l (" V e l o c i t y 100 Yrs ") %>
16 </div>
17 <d iv c l a s s=" e d i t o r −f i e l d ">
18 <%: Html . TextBoxFor (m => m. Height_100) %>
19 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. V e l o c i t y _ 1 0 0) %>
20 </div>
21

22 <d iv c l a s s=" e d i t o r −l a b e l ">
23 <%: Html . Labe l (" Depth 100 Yrs ") %>
24 </div>
25 <d iv c l a s s=" e d i t o r −f i e l d ">
26 <%: Html . TextBoxFor (m => m. V e l o c i t y _ 1 0 0) %>
27 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. V e l o c i t y _ 1 0 0) %>
28 </div>
29

30 <d iv c l a s s=" e d i t o r −l a b e l ">
31 <%: Html . Labe l (" B u i l d i n g V u l n e r a b i l i t y Value ") %>
32 </div>
33 <d iv c l a s s=" e d i t o r −f i e l d ">
34 <%: Html . TextBoxFor (m => m. B u i l d i n g _ V a l u e)%>
35 <%: Html . V a l i d a t i o n M e s s a g e F o r (m => m. B u i l d i n g _ V a l u e) %>
36 </div>
37 </ f i e l d s e t >
38

39 </div>

81

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

82

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Appendix D

Implementation start-ups

D.1 STARTING POINT FOR IMPLEMENTATION OF APPLICATION HOME PAGE

Listing D.1: Master Set-up for Application Home page

1

2 <%@ Master Language="C# " I n h e r i t s=" System . Web . Mvc . ViewMasterPage " %>
3

4 <!DOCTYPE html>
5 <html>
6 <head runa t=" s e r v e r ">
7 < t i t l e ><a sp : ContentPlaceHolder ID=" T i t l e C o n t e n t " ru na t=" s e r v e r " /></ t i t l e >
8 <!−− I n c l u d e one of j T a b l e s t y l e s . −−>
9 < l i n k h r e f=" . . / . . / Content / S i t e . c s s " r e l=" s t y l e s h e e t " type=" t e x t / c s s " />

10

11 <!−− I n c l u d e j T a b l e s c r i p t f i l e . −−>
12 < s c r i p t s r c=" . . / S c r i p t s / j query − 1 . 7 . 1 . min . j s " type=" t e x t / j a v a s c r i p t "></ s c r i p t >
13 < s c r i p t s r c=" . . / S c r i p t s / j query−ui − 1 . 8 . 1 1 . min . j s " type=" t e x t / j a v a s c r i p t "></ s c r i p t >
14 < s c r i p t s r c=" . . / S c r i p t s / j q u e r y . j t a b l e . min . j s " type=" t e x t / j a v a s c r i p t "></ s c r i p t >
15

16 < l i n k h r e f=" . . / . . / Content / j query−u i . c s s " r e l=" s t y l e s h e e t " type=" t e x t / c s s " />
17 < l i n k h r e f=" . . / . . / Content / j q u e r y . u i . d i a l o g . c s s " r e l=" s t y l e s h e e t " type=" t e x t / c s s " />
18 < l i n k h r e f=" . . / Content / themes /metro/ darkgray / j t a b l e . min . c s s " r e l=" s t y l e s h e e t " type="

t e x t / c s s " />
19 <meta http−equ iv=" content−type " c o n t e n t=" t e x t /html ; c h a r s e t=ut f −8"/>
20 < s c r i p t s r c=" h t t p s : / /maps . g o o g l e a p i s . com/maps/ a p i / j s ? key=

AIzaSyAsze9sFkb3VivhO3NXHoNQQ4_2ifnGIyA&s e n s o r= f a l s e " type=" t e x t / j a v a s c r i p t "></
s c r i p t >

21 < s c r i p t type=" t e x t / j a v a s c r i p t ">
22

23 </ s c r i p t >
24 < s t y l e type=" t e x t / c s s ">
25 #mapView , # e x i s t i n g S l i d e V i e w , # r i skView
26 {
27 border : 2px s o l i d g reen ;
28 }
29 # r i skView
30 {
31 margin− l e f t : 830 px ;
32 }
33 </ s t y l e >
34 </head>
35 <body>
36 <d iv c l a s s=" page ">
37 <d iv i d=" header ">
38 <d iv i d=" t i t l e ">
39 <h1>Q u a n t i t a t i v e mul t i ? hazard r i s k a s s e s s m e n t Cyber−app</h1>
40 </div>
41 <d iv i d=" l o g i n d i s p l a y ">
42

43 <%−−<% Html . R e n d e r P a r t i a l (" LogOnUserControl ") ; %>−−%>
44 </div>
45 <d iv i d=" menuconta iner ">
46 <u l i d="menu">
47 < l i ><%: Html . ActionLink ("Home" , " Index " , "Home")%></ l i >

83

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

48 <%−−<l i ><%: Html . ActionLink (" R e g i s t e r " , " R e g i s t e r " , "Home")%></ l i
>−−%>

49
50 </div>
51 </div>
52 <d iv i d=" main ">
53 <a sp : ContentPlaceHolder ID=" MainContent " runa t=" s e r v e r " />
54 <d iv i d=" f o o t e r ">
55 </div>
56 </div>
57 </div>
58 </body>
59 </html>

84

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

Appendix E

Additionals

E.1 TECHNOLOGICAL ARCHITECTURE BASED ON ASP.NET MVC FRAMEWORK

Figure E.1: Diagram of Technologies Used

E.2 SETS OF VULNERABILITY VALUE SCALES

Figure E.2: Sets of values [5]

85

A DESIGN METHOD FOR THE DEVELOPMENT OF CYBER-APPLICATIONS

E.3 PIM MODELS FOR THE USE CASE

Figure E.3: PIM

86

