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ABSTRACT 

Collection of geospatial data through UAV photogrammetric systems is emerging as useful technique for 
several photogrammetric applications e.g. image acquisition, rectified images, point clouds, DSM 
generation, 3D modelling, etc. Cost effectiveness of UAV photogrammetric systems is main reason for 
their rapid development and usage for various purposes by different communities. UAV’s image-based 
point cloud of a topographic area is exploited for feature-based registration with airborne Lidar data of 
same area.   
 
UAV’s image-based point cloud data become an effective alternate to point cloud data obtained by 
airborne Lidar systems. However certain factors affect positional accuracy of UAV’s data. Prominent 
factors are lack of IMU on UAV systems and usage of imprecise GPS due to its payload capacity. These 
two reasons cause for an unknown shift in UAV data, therefore direct or indirect sensor orientation is 
performed for its correction. Beside both these methods, modern algorithms exploit several geometric 
features like point, lines, polygon, sphere, torus, etc. for an automated feature based registration with ALS 
dataset. This conducted research is also about feature-based registration between 3D point clouds 
obtained by two different sources for same area. RANSAC algorithm is exploited for plane extraction 
from both datasets.  Distance and angle difference are used as initial measures to extract correspondences 
from both datasets. This study proves that 1: many approach is much more realistic and reliable than 1:1 
approach in an urban scene. Mean and standard deviation of distance between ALS plane and UAV 
corresponding points are used as measures to analyse these initial correspondences.  
 
Developed algorithm reliably detects features from both datasets, extracts reliable correspondences from 
UAV dataset, assesses them for their validation and finally registered both datasets by obtaining 
transformation parameters. Plane-to-plane and point-to-plane approaches are executed for registration 
purposes. According to results obtained, an automated feature-based registration can be considered as 
trustworthy option for 3D point cloud data registration. However, quality of datasets, pre-processing 
quality and corresponding features correctness can affect registration accuracy.      
 
 
Keywords: UAV, ALS, Feature-based matching, 3D Registration 
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1. INTRODUCTION 

1.1. Motivation and Problem Statement 

Unmanned aerial vehicle (UAV) based photogrammetry has emerged as a convenient and cost-effective 
practice in community of remote sensing with different applications. UAV development has been driven 
primarily by military users and then by civilian users for earth observation and scientific data collection 
purposes (Watts et al., 2012). Initially, high resolution images were sole product of UAV but with the 
advent of technologies in computer vision, several photogrammetric products like point cloud, DSM, 
orthoimages, etc. have also been obtained through these images using specific software. Point cloud is 
mainly product of airborne laser scanning (ALS) but can also be obtained from UAV images using dense 
image matching approach. Both datasets are different in density and accuracy.  
 
Airborne laser scanning (ALS) is well matured and sophisticated technique which delivers 3D point data 
with high positional accuracy (Vosselman & Mass, 2010). However, positional accuracy of 3D points 
acquired by using UAV images is often less accurate and have varying point density as compared to ALS 
points (Golparvar-Fard et al., 2011). UAV point cloud is obtained after UAV’s image orientation through 
structure from motion (SFM) and dense image matching technique. Due to payload limitations for UAV 
photogrammetric systems, high precise GPS and IMU cannot be mounted on them for direct 
georeferencing. 3D similarity transformation issue arises between both datasets due to this drawback, 
which involves translation, rotation and scale. However use of micro GPS on UAV’s is good enough to 
provide rough initial approximation of camera positions but still accuracy of data is upto several meter 
level. The image block is already affected by an unknown 3D similarity transformation with respect to the 
reference therefore point cloud generated through this image block is also affected by the same. 
Generation process of point cloud from UAV images also contains random errors which decreases 
accuracy of UAV dataset. The mentioned effect of unknown transformation can be seen in fig.1.1, where 
ALS and UAV datasets are shown in green and red colour respectively whereas rotational affect can be 
seen in fig. 1.2. One can notice these shifts around building corners where UAV dataset is clearly shifted 
in one direction.  Conventionally, this shift can be removed by direct sensor orientation (using precise on-
board GPS and IMU) or indirect sensor orientation (using ground control points (GCP’s)). These 
methods are considered reliable but are not cost-effective and require manual field work also. 
 
Registration issue arises when acquired datasets are of same area having different characteristics and 
contains above mentioned shifts. Registration of overlapped 3D point cloud is major problem for 
applications in object modelling, 3D object recognition, 3D map construction, etc., (Liu, 2006). 
Principally, registration process of two point clouds is determination of best geometric transformation 
parameters that aligns one dataset closer to other (Xie et al., 2010). Significance of registration increases in 
manifolds when it comes to feature-based instead of using ground control information because of its low 
economic impact and can be executed at short notice. Features found in both datasets (overlapping areas) 
can be exploited for the purpose. An advantage of feature-based registration is that no target/control is 
required in scene and aimed at automatic feature extraction and matching (Bosché, 2012). Planar features 
are considered as most reliable features in 3D point cloud so conducted study focuses only on planar-
based algorithms and exploits planar features existing in both datasets. 
 
Several automatic and semi-automatic feature-based registration algorithms have been developed so far 
with different matching strategies. Matching strategies are influenced by characteristics of datasets and 
tries to optimally find true correspondences. Matching strategy deals with robust correspondence search 
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and comes up with true feature correspondences only. Conducted study is using dataset of an urban scene 
where plenty of planar features helps to optimize registration algorithm but also reduces chances of 
extracting true correspondences easily. Well-defined planar features seem more reliable for feature-based 
algorithms. Many authors have adopted different measures for robustness of matching strategy.  Sharp et 
al. (2002) have described a fully automatic range image registration method that uses feature shape as a 
measure in conjunction with point positions without initial estimation but it is valid only for small scene. 
Dold and Brenner (2006), described a registration method, based on the extraction of planar patches in 
overlapping 3D laser scan data and used image information to improve it so is also dependent on extra 
information. An integrated approach have been used by Rabbani et al. (2007) for registration of point 
clouds by existing pre-hand knowledge about datasets. They have used a constraint based approach to 
reduce possible candidates of matching using this knowledge. This approach can also be utilized for this 
study as possible solution. Grant et al. (2012) have used pair-wise fine registration approach (point-to-
plane) by formulating the general least square adjustment model but optimized only for planes and also 
not efficient when surface geometry is coarse. Gressin et al. (2013), described the optimization process of 
ICP based on the knowledge of feature shape and analyse these variations for linear, planar or volumetric 
features but lacking information about point extraction and adopted point-to-point strategy only without 
any modification in matching phase. Fast and robust matching could be achieved through effective 
features of interest especially in case of objects acquired with different point densities (Salvi et al., 2007).  
 
This proposed research will be focused on extraction of planar features, their matching and registration. 
Reliable planar features will be selected and used to improve registration accuracy with redundancy found 
in both datasets by exploiting least square adjustment technique. A reliable matching algorithm will 
correctly extract planar features from both datasets, evaluate their correspondence and then exploit them 
for computation of transformation parameters. Accuracy of feature-based registration will be analysed by 
quantitative and qualitative statistical measures which will determine its reliability for being an alternate to 
conventional methods (direct or indirect sensor orientation). This analysis will be helpful to identify 
reliability of feature-based method for large photogrammetric blocks. 
 
 

 

Figure 1.1: Illustration of both overlapping datasets in urban environment.  
    ALS dataset (green) & UAV dataset (red) 



FEATURE BASED MATCHING BETWEEN UAV BASED POINT CLOUD & ALS DATA 

3 

 

 
 
 
Discussed shifts are shown from perspective view in figure 1.2 where datasets are aligned to each other 
just few meters away. Point cloud mapper (PCM) has been used for this purpose. Datasets have shift of 2 
meter and 8 meters in horizontal and vertical axis, respectively. However it can be observed that datasets 
are approximately well-aligned to each other in terms of rotation. Proposed study is to remove these shifts 
automatically developing a reliable matching strategy for true correspondence search and their exploitation 
for computation of transformation parameters. These transformation parameters will be used to register 
both datasets in order to make them reliable for photogrammetric applications. Different algorithms 
developed in the past for extraction of features in point cloud datasets will also be part of this research.  

1.2. Research identification  

UAV photogrammetric systems can be considered as cost-effective alternative to conventional 
photogrammetric techniques involved in data acquisition and production of different photogrammetric 
products e.g. Orthophoto, DSM, 3D point cloud, 3D mapping, etc.(Nex & Remondino, 2014). For 3D 
point cloud, laser scanning (airborne or terrestrial) is still basic important source of high precise 3D point 
data. However an emerging technique for generation of 3D point cloud data is execution of dense image 
matching technique using high resolution images acquired by UAV (Gerke, 2009). Registration of point 
cloud data from two different sources with different characteristics is of much importance in computer 
vision field e.g. 3D modelling, quality assessment, etc. This research is to register 3D point cloud 
generated by UAV’s images with ALS dataset. Datasets are of same topographic urban scene but obtained 
in different time. This temporal shift may change structural detail found in both dataset and since study is 
about planar feature therefore it can have an impact on registration process.  
 
In urban environment, large number of man-made structures exists which can easily be detected in point 
clouds due to their geometrical properties (roof planes). These planar features can also be used in feature-
based algorithms for computation of transformation parameters. Extraction of true correspondence is 
problematic due to symmetrical geometries. Rabbani et al. (2007), have used a constraint based search 
approach to minimize possible number of candidates for being true correspondence using pre-hand 
knowledge about datasets. Dold and Brenner (2007), have also described a method for registration of 
terrestrial laser scans by applying an angular constraint based search approach.  

Figure 1.2: Illustration of horizontal & vertical shift found in both datasets

ALS Dataset                
UAV Dataset 

Scale: 1 meter
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Gressin et al. (2013), have assessed a method which computes robust geometric features on LiDAR point 
clouds in order to optimize the fine-registration algorithm ICP. Datasets (especially ALS) used by them is 
of different point densities and acquired in different times. In ‘Matching’ phase, they have used point-to-
point approach without any variation and considered standard Euclidean distance. This adopted approach 
is sensitive with noisy datasets having inconsistent point density. UAV’s image based point data also 
contains noise during its generation process. Therefore point-to-plane or plane-to-plane approach seems 
more reliable in order to deal with noise in UAV dataset. Other approaches like point-to-line, line-to-line, 
line-to-plane, plane-to-plane, etc. can also be analysed. Grant et al. (2012), have proposed a point-to-plane 
approach for registration of terrestrial laser scanned data by formulating least square adjustment model. It 
will also be assessed that how much this approach is effective in matching and overcome limitations of 
dataset. 
 
Feature-based registration of UAV’s image based point cloud with high precise ALS dataset has not been 
performed yet for solving 3D similarity transformation issues. Development of an automated registration 
algorithm for registration of UAV’s image based point data (having low accuracy) with high precise ALS 
point data, which is independent of direct or indirect sensor orientation methods is main theme of this 
research. To summarize in one sentence, research identification is to confirm reliability of feature-based 
registration approach as trustworthy alternate to direct or indirect sensor orientation (costly and time 
consuming) methods. 
 

1.2.1. Research Objectives 

The main objective of purposed research is to develop a feature based registration algorithm between 
UAV’s image based point cloud and ALS data. To reach this objective, few sub-objectives can be defined 
as: 

1. To analyze plane-based feature matching approaches for reliable and robust registration. 
2. To obtain optimal transformation parameters for both datasets and perform residual check to 

determine best approach.  
3. To analyze statistically, validity of feature-based algorithm with conventional indirect sensor 

orientation method. 

This research will use only planar features as observations for registration of UAV data with ALS data. By 
doing so, it is aimed to improve accuracy and quality of UAV’s image based point data without using 
ground control information. 
 

1.2.2. Research Questions  

 
1. Which technique has been used for feature extraction and its reliability for registration? 
2. Which kind of matching approaches are more robust for registration? 
3. How far registration algorithm, reliably registers both datasets by using extracted/matched 

features? 
4. How robust this approach will be when the scene (features) changed considerably between 

both datasets? 
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1.2.3. Innovation  

Several works has been performed for registration of 3D point datasets using features especially in laser 
scanning environment. Point cloud generated through dense-image matching is modern technique and 
registration of point cloud with high precise ALS dataset for topographic scene is interesting to perform 
which is independent of direct or indirect sensor orientation (conventional methods). Innovation of this 
study is:   
  
 Development of an automated algorithm which extracts features, validate their matching and 

utilize them for computation of transformation parameters. 
 Prove reliability of feature-based registration technique against direct or indirect sensor 

orientation techniques.   

1.3. Thesis Structure 

A short but comprehensive introduction to summarize structure of presented thesis is given here. 
 
Chapter 1 includes motivation, problem statement and research identifications. Described last section has 
been further divided into subsections i.e. research objectives, research questions and aimed innovation of 
this research. Chapter 2 provides theoretical and mathematical background involved in this proposed 
research. A broad review has been taken on existing methods and algorithms developed in past years for 
registration of point clouds in 3D environment. Review of feature-based algorithms for 3D data 
registrations is also included as final part of this chapter.    
 
Chapter 3 includes description of pre-analysis of data and developed algorithm step by step. Pre-
analysis/pre-processing of data consists of analyzing planar accuracy in both datasets by calculating 
distances from fitted plane through RANSAC. Different stages of algorithm are also discussed. Method 
includes automatic feature extraction from both point clouds, detection of true correspondences and 
finally providing final transformation parameters exist in both datasets. Plane-to-plane and point-to-plane 
registration methods are discussed in this chapter. Chapter 4 provides a brief overview of used datasets. 
Results obtained after implementation of developed algorithm are included with discussion on them. 
 
Chapter 5 comprises of analysis part of conducted research. Performance of developed algorithm has been 
analyzed by adopted different statistical measures. Discussion on results before registration and after 
registration is also included in this chapter. Chapter 6 is last chapter of this study which includes final 
drawn conclusions, answers to research questions and recommendations for future study and 
development. 
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2. LITERATURE REVIEW 

In this chapter, a brief review is given on different procedures/techniques involved in registration 
(feature-based) of 3D point clouds. In section 2.1, a short but comprehensive review about UAV 
photogrammetry is described. Section 2.2 is about procedures involved in point cloud generation through 
UAV images. Section 2.3 is about 3D data registration (coarse and fine registration aspects) and review 
about most standard ICP algorithm. Discussion about feature-based registration, feature extraction, 
transformation estimation and planar-based registration algorithms is included in section 2.4. Conclusion 
of chapter is given in section 2.5. 

2.1. UAV Photogrammetry 

Photogrammetry is generally defined as computation of metric measurements at aerial photographs about 
objects without having any physical contact with them (Ordóñez et al., 2010). Satellite, Aerial and 
terrestrial are termed as three major classification of photogrammetry. A sub-category of terrestrial 
photogrammetry where object size and camera-to-object distance both are less than 100m (330ft) and 
obtained images have convergent camera positions around the object is termed as close-range 
photogrammetry (Cooper & Robson, 1996). From last decade, another dimension of photogrammetry is 
emerging rapidly with its vast applications and is termed as unmanned aerial vehicle (UAV) 
photogrammetry. Kim et al. (2013), have defined UAV photogrammetry as combination of aerial and 
terrestrial photogrammetry, which is being applied over short distances.  Unmanned aerial vehicles have 
many platforms e.g. fixed-wing, mini-helicopter, multi-copter, etc. They become UAV photogrammetric 
systems when cameras/sensors are attached with them for remote-sensing purposes. Their evolution 
driven primarily by military users, and then by civilian users for earth sensing reconnaissance and scientific 
data collection for multi-purpose applications (Wallace et al., 2012). Remondino et al. (2011), have 
discussed UAV’s role with many applications e.g. agriculture, cultural heritage, 3D reconstruction, 
surveying, monitoring, etc. UAV photogrammetry is more efficient than traditional photogrammetric 
aerial flights for limited areas in order to reduce the cost and production of suitable large scale images 
(Chiabrando et al., 2011).  
 

 

Figure 2.1: UAV overview (van Blyenburgh, 1999)
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An overview of UAV’s was presented by van Blyenburgh (1999) (president of the European unmanned 
vehicle systems association ‘EURO UVS’). He termed UAV’s as un-inhabited aerial vehicle, described 
their specifications and wrote about commercial aspects of UAV’s. In recent times, it becomes quite 
general that UAV’s are being used by local authorities/commercial users within a range of <15 km having 
an altitude <100 m. Elliptical imprint in figure 2.1 specifies usage of UAV’s for small scale/civilian 
purposes.  
       
UAV photogrammetry is extremely proving itself as helpful tool in aerial photography, surveillance, live 
video monitoring, security services, search & rescue, mapping services, crop monitoring, wild-life 
protection, etc. Their cost-effectiveness and easy-handling has motivated researchers to exploit them in 
different fields for their applications. Few applications of UAV’s are landslides investigations 
(Niethammer et al., 2012), measurement of  building facades (Ordóñez et al., 2010), photogrammetric 
surveys in archaeological sites (Chiabrando et al., 2011), crops monitoring (Zarco-Tejada et al., 2013), etc. 
Besides using off-the-shelf cameras, Kim et al. (2013) have made use of smart phones with conclusion that 
smart phones are not only suitable for UAV systems but can also be used for photogrammetric products 
depending upon their application. Modern UAV photogrammetric systems are also using different sensors 
other than cameras e.g., Wallace et al. (2012) have developed a UAV-LiDAR system having an application 
to forest inventory. These applications are evident that UAV photogrammetry is playing an eminent role 
for development of various photogrammetric applications and has potential to create new fields of 
research in remote-sensing community.      

2.2. 3D Point Cloud  

Airborne laser scanning (ALS) is a well-known and well-matured technique for collection of point data 
over topographic terrains for different applications. For large scale topographic areas, Lidar system 
delivers 3D point cloud data which contains large number (in billions) of points having precise positional 
accuracy (Vosselman & Mass, 2010). In this literature review, 3D point cloud extraction from collected 
UAV imagery is discussed only.  
 
Among many other applications, one of the important applications of UAV photogrammetric system is to 
capture high resolution images over targeted area. Detailed imagery captured from UAV can produce 
dense point clouds using multi-view stereopsis (MVS) techniques combining photogrammetry and 
computer vision (Harwin & Lucieer, 2012). Orientation of images is initial step after their acquisition 
through UAV photogrammetric systems. UAV images having more than 60% overlapping are highly 
recommended for point cloud extraction through them. Structure from motion (SfM) is an automated 
method for creation of static scene from sequence of images and resulting in individual camera 
orientations and 3D point clouds (Westoby et al., 2012). They have described purpose of this method as 
estimation of extrinsic parameters of camera (camera position) by exploiting epipolar geometry of 
corresponding features. It exploits corresponding feature points found in overlapping images as tie points 
to connect them and orientate them without having any prior information about extrinsic parameters of 
camera.  
 
Keypoints and descriptors are tracked along epipolar line between stereo images for finding corresponding 
features. Traditional area based matching techniques (2D search) results in too many false matches due to 
pixel similarity in both images. Lowe (2004), has explained a technique named as ‘scale invariant feature 
transform’ (SIFT) for finding corresponding features. Selected corner point (a point having strong 
gradients) will be searched for its correspondence in its stereo mate on basis of gradient histograms. After 
this step, whole image block has to be adjusted through these retrieved corner points (descriptors) which 
served as tie points between images. This block adjustment can also results in sparse point cloud. For 
dense point cloud, patch-based multi-view stereo (PMVS) or semi-global matching (SGM) can be 
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executed. Dense image matching results in dense point cloud data by exploiting forward intersection of 
maximum corresponding feature points in object space (Gerke, 2009). Semi-Global matching (SGM) 
developed by Hirschmuller (2008), is an optimized technique used for this purpose. Matching is done only 
in stereo image pair for creation of point cloud data and do not exploits redundancy of matched points in 
multiple images. Furukawa and Ponce (2010), have also developed a method named as patch-based multi-
view stereopsis (PMVS). Initially they match corner features in multiple images and obtain more accurate 
geometry through redundancy. These initial patches are then expanded through area based matching. 
Point cloud obtained by this method is not denser than SGM but has much better accuracy.   
 

2.2.1. Image-based Point Cloud Density 

Point cloud generated by using high resolution UAV images has varying point density. Maximum number 
of corresponding points exploited during dense image matching results in dense point cloud data. High 
resolution UAV images have an impact on point density because chances of correct correspondences 
from paired images increases. Large number of mismatched pixels exists in images (due to occlusion, 
surface properties, etc.) which introduces certain noise level in generated point cloud, however structures 
are well preserved in image-based point cloud (Gerke, 2009). Potential areas for incorrect matching are 
those areas which have low texture, reflecting surfaces, vegetation, etc. (Haala & Rothermel, 2012) and due 
to their properties it also have an effect on density of point cloud.  

Several types of features exist in topographic scene having different properties. These properties include 
shape, size, volume, slope, flatness, scattering, content, texture, etc. Due to these properties, matching 
points varies from object to object and results in irregular point density. Usually for planar 
features/structured features having some contrast, point density is quite dense because large number of 
correspondences are extracted from them. Another important factor which can affect point density is 
occlusion found in UAV images. Occlusions appeared in images can result in point cloud having more 
empty spaces (mismatched pixels). Short base image configuration is always recommended with nadir view 
of area to avoid occlusion. Above described factors are responsible for noisy (denser) point cloud 
generated by use of images taken by UAV photogrammetric system.  

2.3. 3D Point Cloud Registration 

In ALS case, point data is captured using sophisticated methods and equipment resulting precise and 
smooth 3D point data. In UAV case, high resolution images are used for creation of 3D point dataset by 
applying modern developed techniques. Due to payload limits for UAV photogrammetric systems, high 
precise GPS and IMU cannot be mounted on them. However, using micro GPS for these systems enables 
us to have a rough initial approximation of camera positions. These approximated positions bring an 
unknown shift (in terms of position and scale) in whole image block and therefore photogrammetric 
product (point cloud) generated from it contains positional error and scale deformation also. 
Conventionally, shift can be removed by direct sensor orientation (using precise on-board GPS and IMU) 
or indirect sensor orientation (using ground control points (GCP’s)).  
 

Dense Image Matching 

Point Cloud Data 

UAV Flight 

UAV images Bundle Block Adjustment 
 Image Orientation 

Figure 2.2: Point cloud generation process using UAV images 
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Registration of 3D point datasets can be described as process of alignment of two datasets from two 
different locations. Datasets acquired with two different techniques also differ in their characteristics e.g. 
ALS dataset and UAV image based dataset. Registration of overlapped 3D point cloud is major problem 
for applications in object modelling, 3D object recognition, 3D map construction, etc., (Liu, 2006). 
Principally, registration process of two point clouds is determination of best geometric transformation 
parameters that aligns one dataset closer to other (Xie et al., 2010).  

2.3.1. Coarse & Fine Registration 

Generally 3D data registration comprises of two steps (Bosché, 2012): 
1. Coarse/rough registration (to align datasets roughly), followed by 
2. Fine registration (to align datasets optimally) 

According to Gressin et al. (2013), registration algorithms for 3D data can be classified into three types 
depending on application. These three types are feature-based, surface-based (model) and point-based. 
Dold and Brenner (2007), has described coarse registration as estimation of relative transformation 
parameters between two independently acquired datasets without having any knowledge about their 
orientation beforehand. Coarse registration brings two datasets more close than earlier one but this 
registration is not optimal. For optimal registration, fine registration has to be done after coarse/rough 
registration. However, it is true that fine registration generates optimal results but its convergence is 
dependent on obtained results through coarse registration (Bosché, 2012). For automated matching, 
features (point, linear, planar, and volumetric) which exist in overlapping region of datasets are helpful for 
initial/coarse registration. 

2.3.2. Iterative Closest Point (ICP) 

After coarse registration, fine registration can be achieved through well-known algorithm Iterative Closest 
Point (ICP) developed in early 90’s by Besl and McKay (1992). This method was initially proposed for 
registration of 3D shapes based on point-to-point correspondences which requires correct initial 
orientation parameters and is also not good in handling outliers (noise). With the passage of time, different 
ICP variants have been evolved with much great improvement in convergence and accuracy. First and 
initial improvement in ICP was made by Chen and Medioni (1992), by exploiting point-to-plane 
correspondences instead of point-to-point. These two algorithms are considered as standard ICP 
algorithm for 3D data registration. Few variants/improvements carried out on ICP are discussed in 
following paragraph.  
 
Sharp et al. (2002), have explained an automated method describing the influence of invariant features and 
their position in order to simplification of ICP algorithm especially in the presence of noise in dataset. 
Least squares matching of overlapping surfaces for automatic co-registration of point clouds have been 
described by Gruen and Akca (2005), by minimizing sum of squares of the Euclidean distances between 
surfaces. Their method is convenient to handle datasets having differences in resolution, scale, time, etc. 
Rusinkiewicz and Levoy (2001), classified several variants of ICP and evaluated their effect on the speed in 
order to obtain accurate alignment. Salvi et al. (2007), have given an excellent overview of classification of 
registration methods. They classified registration algorithms into coarse and fine registration and analyzed 
them on the basis of different criteria i.e., features exploited, registration strategy, motion estimation, 
robustness, etc. According to them, for coarse registration, method of Chu-Song et al. (1998) is considered 
as best in presence of low resolution views, principal component analysis is optimal when computing time 
is critical and genetic algorithm is most robust with noise but is expensive in time. For fine registration, 
standard ICP method developed by Chen and Medioni (1992) has been considered most competent 
algorithm which performs also well with non-overlapping regions. Grant et al. (2012), have described a 
pairwise fine registration approach utilizing corresponding point and plane feature, along with their 
stochastic properties. They defined optimum registration parameters by formulating least squares 
adjustment model and compared them with standard ICP algorithm. Gressin et al. (2013), have also 
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evaluated this method by taking neighborhood shape and its reliability into account and improve two steps 
(selection & rejection) of ICP. They optimized ICP for registration of point clouds having different point 
densities acquired in different time over same area in order to find change detection. 
 
3D point cloud data collected by airborne laser scanning and generated by UAV imagery, both are of 
different properties having unknown transformation shift between them. Registration of both datasets can 
minimize/remove these shifts. ICP algorithm having point-to-point matching strategy is not enough 
robust for noisy datasets and point-to-tangent plane matching strategy provides much better registration 
accuracy (Akca, 2007). UAV point dataset is generated through images and contains lot of noise in it. In 
presence of noisy dataset it seems feasible to apply point-to-plane strategy. Existing features in 
topographic dataset might be helpful for registration of both datasets. Following section describes 3D 
point data registration carried out by using extracted reliable features found in both datasets. 

2.4. Feature-based Registration 

Point cloud data of an urban scene contains large number of features which can be exploited in feature-
based algorithms for datasets registration. Feature type can be defined according to their geometrical 
characteristics and it can be point, line, planes, circular shapes, cylinders, torus, etc. Feature based 
algorithms exploits different type of features found in datasets to estimate transformation parameters. 
According to Bendels et al. (2004), feature definition, their way of matching and their exploitation for 
computation of transformation parameters are important for any feature-based algorithm. Feature-based 
algorithms align datasets through the correspondence of feature primitives exist in both datasets (Gressin 
et al., 2013). These features can be key points (Stamos & Leordeanu, 2003), segments and curves (Stein & 
Medioni, 1992), local planes (Dold & Brenner, 2006), spheres/cylinders (Frome et al., 2004). 
 
Extraction of features and computing transformation parameters by exploiting these features are termed 
as two important steps of feature-based registration. Classical methods of registration make use of sign 
marks, ground marks, pointers, etc., in order to achieve data registration. 3D positions of these signs are 
then utilized in process of transformation for registration. This technique is robust and accurate for data 
registration but demands huge effort and expensive in time also. Usage of signalised points/artificial 
markers also add an extra layer of uncertainty and error in registration process (Bosché, 2012). 
  
Drawback of above described classical methods have motivated researchers to search for an automatic 
registration of datasets independent of any artificial targets to be placed in object space.  Feature-based 
registration has another advantage that they do not require initial estimates of rigid-motion parameters 
(Chu-Song et al., 1999). Several algorithms have been developed so far for registration which exploits 
existing information available within dataset. Conducted study is only about planar features therefore 
discussion about only plane-based algorithms is briefly described in following subsection.  

2.4.1. Feature Extraction 

In an urban environment dataset, planar features are found excessively all over the area. This excess of 
existence makes it easy for their extraction. For plane-based matching, extraction of planar surfaces from 
both datasets is regarded as an initial step. Large number of algorithms exist for their extraction e.g., 
through region growing process exploiting Bayesian framework (Osorio et al., 2005), segmentation 
method (Hoover et al., 1996), clustering technique (Vosselman, 1999), gradient-based range image 
segmentation method (Gorte, 2007), Hough transform (Vosselman. et al., 2004), RANSAC for shape 
detection (Schnabel et al., 2007). 
 
RANdom SAmple Consensus (RANSAC) is well-known algorithm for shape detection and has large 
application variability in various fields of computer vision. Initially proposed by Fischler and Bolles (1981) 
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for model fitting with applications to image analysis and later on devised by many other authors for 
various applications. RANSAC can be used for model fitting, shape detection, outlier removals, etc. but 
most prominent motivation to use this technique is its robustness with noisy datasets (Vosselman & Mass, 
2010). After process of surface growing/segmentation, planarity of a segment is not sure certain and it 
contains outliers, e.g. points on trees, walls, other surfaces which are not part of same roof. (Sande et al., 
2010). To deal with these outliers, robust plane-fitting approach through RANSAC is recommended for 
datasets having noise in them. Therefore it is concluded that RANSAC based plane-fitting approach is 
helpful in handling noisy datasets like UAV point dataset. 

2.4.2. Transformation estimation 

After completion of correspondence matching in target dataset, these planar features are used as 
observations for estimation of transformation parameters. Seven parameters are needed for 
transformation between 3D point clouds having homogeneous coordinates. These seven parameters are 3 
rotations		ሺ߱, ߮, ,	ሻ, 3 translations ൫߬௫ߢ ߬௬	, ߬௭൯ and 1 scaleሺݏሻ. Scale parameter is considered as 1 if there 
is no deformation in feature shape but if scale change in both dataset or shape deformation happens than 
it is needed to be considered.  Theoretically non-rigid transformation (similarity transformation) can be 
obtained using equation: 
 

 
Mathematically, rotation angle matrix (3×3) and translation vector are described as: 
 

 
Rotational parameters can be calculated as followings: 

 
 
K Khoshelham and Gorte (2009), have described a plane-based transformation model for estimation of 
transformation parameters as: 
 
 
 
The term ‘n’ is number of points/planes to be used in model and ‘H’ is a 4×4 similarity transformation 
matrix. Minimum three corresponding planes from both datasets are required to form a set of equations 
for computation of H. This model can be expressed in matrix form as: 

ω				 ൌ 						tanିଵሺെݎ௭௬/ݎ௭௭ሻ 

φ				 ൌ 						 tanିଵሺݎ௭௫/ටݎ௭௬ଶ ൅	ݎ௭௭ଶ ሻ 

				ߢ ൌ 							tanିଵሺെݎ௬௫/ݎ௫௫ሻ 

(2.2)

 ௫௬ݎ

 ௭௬ݎ

 ௬௬ݎ
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Rotation matrix ሺܴሻ =   , translation vector ሺܶሻ =   

߬௫
߬௬ 

߬௭ 

, ݔ				∀ ൌ 1, ݕ ൌ 2, ݖ ൌ 3

= ݏݐ݊݅݋ࡼ	݀݁݉ݎ݋݂ݏ݊ܽݎࢀ  (2.1)                               ݊݋݅ݐ݈ܽݏ݊ܽݎࢀ    + ( ݏݐ݊݅݋ࡼ ×  ݊݋݅ݐܽݐ݋ࡾ) × ݈݁ܽܿࡿ

ܽሺସൈ௡ሻ    =    ۶ሺସൈସሻ ൈ ܾሺସൈ௡ሻ (2.3)
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ሾܽ௫, ܽ௬, ܽ௭, ݀௔ሿ் and ሾܾ௫, ܾ௬, ܾ௭, ݀௕ሿ்are the normal vectors and distance parameter of planes found in 

both datasets.  A set of linear equations will be acquired and after some rearrangements transformation 
matrix ‘H’ can be estimated for R and T. Linear equations are obtained therefore initial values are not 
required and results will be achieved in single iteration. Results obtained (R & T) through this estimation 
may not be accurate and have a chance to be effected by wrong correspondences between both datasets. 
Redundancy of possible matches can overcome this problem and make its convergence feasible.  

2.4.3. Plane-based Algorithms 

Planar features are reliable features and helpful for registration of topographic point datasets Planar 
features have been used by Dold and Brenner (2007) in their algorithm for automatic coarse registration. 
Planar features are extracted through region growing segmentation and used to compute initial values of 
transformation parameters automatically for datasets acquired independently. Along with plane features, 
angle constraints are also used to determine correspondences. To eliminate wrong correspondences, they 
put a criteria of relative angles exist between normal vectors of plane triples constructed in each scan or in 
other words corresponding plane triples are extracted by using these angle constraints. They have set 
matching constraint as 1⁰ for normal vector deviation and 1m for distance from origin. Pair combinations 
which retrieve most of correspondences with these constraints are declared as correct pairs. Dold and 
Brenner (2006), also present an image based registration algorithm with range data based on planar 
surfaces (Fig 2.3). Laser scanners are mostly equipped with high resolution image sensors therefore 
information extracted from images can also be exploited for improvement of registration process. In their 
algorithm, they extract corresponding planar surfaces in two overlapping scan positions and also extract 
planar surfaces from images. Correlation between corresponding planar patches of range data and image 
data has been calculated and exploited in improvement of registration process.  
 

   
A semi-automated plane-based algorithm for coarse registration has been proposed by Bosché (2012). In 
his algorithm, registration process is decomposed into three stages by two assumptions about datasets. 
First assumption is about conversion of 3D model objects into meshes and other is about orientation of 
both datasets along z-axis. In first step of registration, vertical and horizontal planes exist in both dataset 
are extracted using RANSAC. After extraction of planes, model and point cloud are aligned in x-y plane 
by two correct correspondences of non-parallel planes. In last step, datasets are aligned in z-direction 
(translation) by using one correct correspondence. 
 

ܽ௫ 
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ܽ௭ 

݀௔ 

߬௫
߬௬ 
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= (2.4)

Figure 2.3: Result of registration using planar surfaces (Dold & Brenner, 2006) 
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Rabbani and van den Heuvel (2005), have proposed an automated method correspondence search for 
registration of point clouds in industrial scenes. Their approach is based on detection of planes and 
cylinder exists in the area. For automatic correspondence search of features, they exploited geometric 
constraints applied on initial correspondences to refine/confirm their matching.  Initial matches have been 
found on basis of some weak measures like size, point density, etc. and no constraints have been fixed. 
This made all initial correspondences equally valid. In second step, rotation component of initial matches 
has been figured out by applying geometric constraints on them. These constraints ensure that rotation 
must be around normal axis (normals aligned after initial match remains same) and translation is only for 
planar movement in plane. In third and last step, rotation obtained from second step has been fixed and 
correspondences are found by looking at similarity of their normal directions (parallel planes have almost 
same normal directions). In result of these three steps, correct correspondences of objects have been 
found and used in point cloud registration. 
 
Stamos and Leordeanu (2003), have made use of linear and planar features for pair wise registration 
between datasets. Their algorithm initiates with segmentation process and converts 3D range data into set 
of bounded planes and finite lines. Boundary of planes and dimension of lines (start point, end point, etc.) 
are also extracted. Lines lying on bounded planes are used for parameter estimation. 3D dataset consists of 
many lines and invalid lines are first removed by applying appropriate threshold value which has to be 
determined during pre-processing step. Valid line pairs are ordered and used for parameter estimation one 
by one. Estimated R is applied to all pairs and rotated lines whose directions and respective plane normal 
do not fulfil a fixed threshold are removed. Similarly other pairs of lines are also declared invalid who have 
same behaviour with estimated T. Remaining lines are then exploited for computation of R and T again. 
These transformations are than ordered by number of valid pairs used by them and higher grade has been 
given to higher number of matches. Finally R and T are computed by set with higher matches (high 
graded transformation set). 

2.5. Conclusion 
Applications of collected data through UAV photogrammetric systems are growing day by day with 
different dimensions. Modern techniques have made it possible to generate 3D point cloud data from 
imagery attained by UAV’s and are discussed in detail. Feature-based registration (independent of GCP’s) 
of generated point cloud with any other 3D point cloud having better accuracy is termed as effective way 
to increase its own accuracy also. It becomes more interesting when registration aimed to be automatic 
rather manual. Algorithms developed in past 20 years involved in 3D data registration have been 
discussed. RANSAC based plane fitting approach has been found more robust in case of noisy datasets. 
Discussed algorithms have achieved coarse and fine registration of 3D range data using several matching 
strategies by exploiting existed features in their datasets. A review on fine registration through ICP 
algorithm has also been narrated. According to many researchers, point-to-plane matching strategy is 
considered as more effective instead of point-to-point strategy especially dealing with noisy datasets. 
Effectiveness of plane-based matching provokes idea about feature-based matching. One of important 
objective of this research is to analyse which matching approach (plane-to-plane or point-to-plane) and 
how far it is effective to register UAV’s data with precise ALS data.   
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3. RESEARCH METHODOLOGY 

This chapter briefly explains adopted methodology to carry out this research in order to achieve final 
results. Section 3.1 describes overview of proposed study and general workflow. Pre-processing and pre-
analysis of data are explained in section 3.2. RANSAC application for plane extraction is discussed in 
section 3.3. Brief description about feature correspondence search plan is described in section 3.4. 
Evaluation of obtained correspondences is also discussed in section 3.4. In section 3.5., registration 
process of datasets is explained and concluding remarks based on discussion of adopted algorithm are 
incorporated in section 3.6.  

3.1. Overview 

Feature-based registration of two datasets (point cloud) is core theme of this study. Plenty of features can 
be found and extracted in point datasets but most reliable and common features are planar features. In 
case of urban environment, due to constructive areas/accommodation structures, probability of finding 
planar features certainly increases. Examples of planes that can be found in such scene are roof planes of 
buildings, open ground planar areas, long vehicles upper surface (temporary objects), etc. This excess of 
plane existence is advantageous and problematic at same time for registration of both datasets. Sure 
existence and extraction of planar features makes it advantageous, while search of true correspondences in 
presence of similar geometry/symmetrical planes makes it problematic. Important part of this study is to 
devise such an automatic correspondence search plan which can itself detects possible candidates for 
matching and decide also about their being true or false. Workflow for proposed methodology is shown in 
figure 3.1 and discussed in following paragraph. 
 
Data preparation is considered as initial step and its output will be taken as input for feature based 
matching. Most important step of algorithm is development of correspondence search plan/feature 
matching strategy from target dataset (UAV dataset). Registration of datasets will be performed after 
finding true correspondences from developed search plan and transformation parameters will be 
calculated. Some parts of algorithm (fig. 3.1) are described briefly in subsequent sections of this chapter.      

3.2. Data Preparation (Pre-Analysis & Pre-Processing) 

Preparation of data is considered as important step for registration of datasets. It will provide us key 
information about features found in datasets and this information will be exploited in further processes. 
For this proposed study, data preparation is composed of two major steps: Data pre-analysis and Data 
pre-processing. A flowchart of data preparation process is displayed in figure 3.2 and involved both steps 
are further discussed in following paragraphs. 
 

Pre-Analysis: 
Data pre-analysis is termed as procedure to extract important information about accuracy of planar 
features found in both datasets. RANSAC based plane-fitting approach is applied to both datasets and 
obtains distance values from the fitted plane. Error tolerance (threshold) value required for consensus set 
fitted by RANSAC algorithm is needed to fit a plane. This value is noted down when normal distribution 
for distance form fitted plane is achieved for both datasets. 
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Pre-processing: 

After pre-analysis of data, next step is data pre-processing. This step is further divided into two steps: 
Filtering and Surface growing/segmentation. ALS and UAV datasets are of urban environment, therefore 
both datasets contains several uncovered ground objects/areas and some of them are also planar e.g. 
crops field areas, road surfaces, play grounds, parking areas, vehicles (temporary objects), tiny vegetation, 
etc. Theoretically these planar surfaces can also be used for registration purposes but proposed study 
focuses only on roof planar surfaces. These features may become problematic during search of true 
correspondences. To reduce search space, all these objects/areas can be eliminated from dataset. A 
reasonable approach is to remove all these objects from both datasets and removal process is termed as 
filtering (Vosselman & Mass, 2010). Several methods have been developed so far for process of filtering 
the point cloud datasets. Mathematical morphological filtering (Haralick et al., 1987), slope based filtering 
(Vosselman, 2000) and progressive densification (Axelsson, 2000) are some of well-known algorithms 
developed for process of filtering. M. Gerke and Xiao (2014), have used commercial software LAStools 
component ‘lasground’ (Axelsson, 1999) for classification of Lidar data into ground and off-ground data. 
Filtering both datasets will remove some temporary/useless/problematic objects from them. 
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Surface growing/Segmentation of point cloud data is executed for feature extraction and is performed by 
clustering all points of same cluster applying some conditions (Vosselman & Mass, 2010).  In other words, 
points having same characteristics e.g. smoothness, same normal direction, etc., have been grouped 
together and provides information about features exist in datasets. Many algorithms exist for feature 
extraction e.g. detection of planes in3D point cloud by Hough transform (Maas & Vosselman, 1999), 
plane detection by RANSAC proposed by Schnabel et al.,(2007), region growing by Vosselman. et al. 
(2004), etc. Planar accuracy results found in pre-analysis of datasets will be used for setting up suitable 
parameters for surface growing algorithm. These parameters are used compute planar shapes during 
surface growing process. Planar features especially building roof planes are most suitable/appropriate 
features in point data to be preserved. Therefore, special attention will be given to planar features for their 
exploitation in data registration.  
 
Outcome of data preparation is taken as input for next processes and values obtained in this process are 
extremely helpful during plane-fitting through RANSAC for computation of plane parameters. Therefore, 
quality of data preparation can play an effective role in selection of suitable and well-defined features.  

3.3. RANdom SAmple Consensus (RANSAC) based Plane-Fitting  

RANSAC can be used for model fitting, shape detection, outlier removals, etc. but most prominent 
motivation to use this technique is its robustness with noisy datasets (Vosselman & Mass, 2010). After 
implementation of surface growing, extracted segments are not completely coplanar and contain outliers, 
e.g. points on trees, walls, other surfaces which are not part of same roof (Sande et al., 2010). To deal with 
these outliers, robust plane-fitting approach through RANSAC has to be applied for both segmented 
datasets.  
 
Plane-fitting through RANSAC is extremely helpful when applied to UAV dataset as it contains more 
noise than ALS dataset. Due to noise in UAV dataset, probability of outlier increases for each segment 
after segmentation, therefore this technique is much more helpful for UAV dataset. For each consensus 
set (critical part of RANSAC), an error tolerance has needed to be set for plane-fitting of each segment 
(fig. 3.3). Computation of error tolerance has been discussed in detail by Bae and Lichti (2008). 
Determination of a segment point as an inlier or an outlier is also an output of RANSAC algorithm but an 
appropriate threshold value (error tolerance value) must be selected for this purpose. This value can be 
selected by using beforehand knowledge about the datasets. Inliers/outliers ratio has been selected on the 
basis of this threshold value (Bae & Lichti, 2008). Therefore, values obtained during planarity accuracy 
evaluation and adopted for segmentation process are set as a threshold value for plane-fitting.  
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Figure 3.2: Data Preparation Process
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Mathematically, a plane can be well defined by its parameters .i.e. normal vector and perpendicular 
distance from origin.  

ݔܽ ൅ ݕܾ ൅ ݖܿ ൅ ݀ ൌ 0			                    (3.1) 
Where ܋ ,܊ ,܉ and ܌ are plane parameters.  ܊ ,܉ and ܋ are components of plane normal and are obtained 
by applying Principal Component Analysis (PCA) to points (inliers) contained by consensus set during 
RANSAC algorithm. Normal of surface is axis of minimum variation which is last principle component of 
PCA or in simple words eigenvector of smallest eigenvalue provides good approximation about plane 
normal. Eigen values and Eigen vectors are used here for determination of principle components.(Sande 
et al., 2010). ܌ is perpendicular distance from origin and since plane is an infinite surface in space so its 
value is dependent on direction of plane while normal vector determine the direction of plane. Along with 
basic plane parameters, secondary information can also be extracted during plane-fitting. This information 
includes planar segment density (number of points per plane), angle differences, mean (centre of plane), 
inliers & outliers ratio, etc. All these informations are exploited later on in correspondence search plan. 

3.3.1. Sensitivity of plane parameter ‘܌’ with RANSAC 

Perpendicular distance ‘܌ ’ from origin is fourth parameter of a plane. Geometrically, value of this 
parameter is dependent on surface normal direction and a slight shift can destabilize its value. This slight 
shift in normal direction does not have any major impact if plane is near to origin. However, if plane is 
situated far away from origin, a very little shift even matters then. Due to this behaviour, ‘܌’ is much more 
sensitive with RANSAC algorithm when large distance exists between origin and datasets. RANSAC uses 
random sampling of given points to form its consensus set and normal found for that set has always a 
little change in it for each run. This small alteration of normal value causes a large difference in ‘܌’ each 
time and different parameter have been achieved. Gravity of this effect increases manifolds if RANSAC 
has to deal with noisy datasets (UAV dataset). If this value of ‘܌ ’ is used for computation of 
transformation parameters, numerical instability occurs and wrong results will be achieved. To avoid this 
or to overcome this effect, normalization of datasets takes place and translational shifts are applied to 
datasets in order to minimize distance between origin and dataset.  

Figure 3.4: Effect of RANSAC on plane parameter ‘d’
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Figure 3.5(b): Perpendicular distance
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Figure 3.5(a): Euclidean distance
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3.4. Feature Correspondence Search Plan 

Topographic point datasets contains large number of planar features in them. Other features like point, 
linear, torus, spheres, etc. do also exist but most interested/reliable features are flat surfaces/planar 
features for this study. Availability of planar features in excess makes it easier for their 
detection/extraction but obstruct also from detection of true correspondences. Measures adopted for 
correspondence search plan and their why (motivation) and how (methodology) are also described here in 
detail. Influential or decisive measures which have been adopted are Euclidean distances, segment density, 
outlier ratio, and normal angle difference. Feature correspondence search plan is aimed to automatically 
detect, extract and evaluate correspondences on basis of above described measures and results obtained 
from them.   

3.4.1. Search Space Reduction 

As discussed earlier in chapter 2 that UAV photogrammetric systems are equipped with a micro GPS on 
them and data obtained from them has translational, rotational and vertical shift in it. However, collected 
data is just a few meters away from real positioning (fig.1.2). This pre-knowledge about datasets makes it 
somehow reasonable to put some realistic constraints for actual correspondence search. This approach 
seems practical to reduce possible number of correspondences in target dataset by adopting some suitable 
constraints/threshold values based on available pre-hand knowledge about both datasets. This kind of 
constraint based approach to limit number of possible correspondences in search space has been 
presented by Rabbani et al. (2007).  
 
Reduction of search space can be considered as initial step towards finding true correspondence from 
target dataset (UAV dataset). Search space can be reduced by adopting some measures and adopted 
measures are distance, normal angle deviation, segment size (point density per plane) and outlier ratio. All 
these measures are discussed in detail in following paragraphs; 
 
 Distance between planes: 

Both datasets are already coarsely aligned to each other and translation & vertical shift exist between 
them is only few meters. With this approximation, distance between each segment of both dataset can 
play role as an initial measure to figure out possible correspondences in close neighborhood. Distance 
can be calculated between them by two ways i.e. Euclidean distance and perpendicular distance. Both 
nature of distances have different repercussions and are discussed hereunder; 
 

Euclidean Distance: Euclidean distance (fig. 3.5(a)) can be calculated 
from center of one plane to center of other plane exist in other 
dataset. Since both datasets are geo-referenced, therefore simple 
calculation is made by using following formula; 

 
ܦ ൌ ඥሺݔଵ െ ଵሻଶݕ ൅ ሺݔଶ െ ଶሻଶݕ ൅ ሺݔଷ െ     (3.2)					ଷሻଶݕ

 

Perpendicular Distance: Perpendicular distance (fig. 3.5(b)) can be 
calculated by taking dot product between normal vector of one plane 
and vector connecting two centers. It is defined as projected distance 
exists between two centers. Let ܺሺݔଵ,ݔଶ,ݔଷሻ and ܻሺݕଵ,ݕଶ,ݕଷሻ  be center 
point of ALS and UAV planes, respectively and ݊	ෝ (ܽ, ܾ, ܿ) is normal 
vector of planes. Their projected distance can be calculated as; 
 

ܦ ൌ
|ሺ௑௒തതതതሻ.௡ො|

|ழ௡ොவ|
      (3.3) 
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θ 

Figure 3.5(c): Normal angle deviation
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ܦ ൌ
|௔ሺ௫భି௬భሻା௕ሺ௫మି௬మሻା௖ሺ௫యି௬యሻ|

√௔మା௕మା௖మ
    (3.4)  (Anton & Chris, 2005) 

Above described both forms of distances can be used but both results in different correspondences. 
Correspondences obtained by exploitation of perpendicular distance are not reliable because there 
might be many planes in close neighborhood which are parallel to each other but are not true 
correspondences. Due to symmetrical geometrical features existence in close neighborhood selection 
of minimum perpendicular distance criteria can leads to wrong correspondences. Since both datasets 
are already just few meters apart, therefore perpendicular distance increases more chances for 
selection of wrong corresponding segments. Another issue to negate perpendicular distance values is 
existence of too many parallel planes in whole target dataset and minimum value of this distance can 
result in wrong corresponding plane which lies far away from source plane. For initial guess to 
determine correspondences, it seems feasible to calculate Euclidean distances between segment 
centers instead of perpendicular distance. It can be further analyzed by visualizing initial 
corresponding guess obtained for each ALS plane during processing.  
 

 Normal Angle Deviation between planes: 
Distance measurement is adopted to reduce search area for true 
correspondence in target dataset. After limitation made by distance 
measure, second measure adopted is normal angle deviation exist 
between planes of both datasets. Normal vector of a planar surface is 
depiction of planar surface direction and it has been calculated 
during RANSAC based plane-fitting. True correspondences are 
parallel to each other and parallel planes have same direction. 
However, proposed study is conducted in point cloud environment 
instead of solid surface planes therefore use of RANSAC to fit a 
plane always brings some minute difference in normal angle of parallel planes. True corresponding 
plane is almost parallel to plane for which correspondences are searched for. In other words, their 
normal vectors are almost in same direction and deviation (θ) between them can provide confidence 
about their correctness. If nଵ and nଶ are normal vectors of ALS and UAV planes respectively, then 
deviation between them is calculated as;  
θ	ݏ݋ܥ       ൌ

݊1.݊2		

|݊1||݊2|
     (3.5)

  

 Segment size:  
Segment size is defined as total number of points that lies on a segment/surface. Size of segment is 
dependent on point density of a dataset. ALS and UAV dataset both have different point densities 
according to their acquisition methods therefore threshold value for both dataset will also be different. 
However, ALS dataset point density is known and is lower than UAV dataset. Segment size can be 
calculated approximately by simple calculation applied on planar surface only. 
 
 
 
 
 
 
 
Proposed study is about planar feature matching, therefore focus is to preserve only planar features in 
search space. Usually planar features/flat surfaces have more points as compared to linear, irregular 
shapes, etc. so therefore segment size value is considered important in reducing possible 

Length 

Width
Area = Width × Length 

Segment Size =Area × Point density/m² 
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correspondences to only well-defined planar features in close neighborhood search space. An optimal 
and realistic value to preserve planar features is chosen for this purpose. This value must be selected 
critically especially for source dataset as number of planes for which correspondences are to be 
searched for are dependent on it. Large value of segment size may remove many good planes from 
dataset or may disturb well-distribution of planes in area. Removal of good planes can also minimize 
advantage of plane redundancy so optimality of threshold value is recommended for source dataset.   
 

 Outlier Ratio: 
Outlier ratio found in a segment is also an important measure to limit algorithm only to well-defined 
planar features found for correspondence search in target dataset. A well-defined planar feature 
preserves its geometry and during plane-fitting process through RANSAC most of planar feature 
points become inliers. RANSAC algorithm is robust upto 50% of outlier existed within a segment but 
a good planar feature/flat surface does not contain much outlier during plane-fitting. A threshold 
value is set up for planar features and point lies outside this threshold value are considered as outliers. 
However, it is also pertinent to know that measurement errors are not the only reason for having 
outlier in a segment. Occluded planar features by some adjacent topographic features (trees, attached 
roofs, roofs having dormers, etc.) have also more outlier ratio although they are good planes. By 
putting threshold value for outlier ratio calculated for each segment, non-planar/segments having 
irregular shapes can be removed. Their removal from dataset enhances confidence for rest of 
segments to be planar. 
 

Discussed measures are important for selection of only planar features for correspondence search in a 
determined neighborhood. Distance measure is important to specify close neighborhood range in a target 
dataset for source plane. Normal angle deviation is also important to consider only parallel planes found in 
already defined neighborhood. These two measures collectively provide important initial guess about 
correspondences. Correctness of this initial guess is discussed in next section. Other two measures 
segment size and outlier ratio are applied to have a confidence about planarity of initially selected planes. 
These are also helpful to confined to only planar surfaces. Small segments (non-planar) and noisy 
segments (irregular shapes) from search space will certainly be removed by applying these measures. Other 
additional measures include plane shape, plane area, etc. however these measures becomes ineffective due 
to similar geometrical pattern existence in close neighborhood and fail to improve correspondence search.   

3.4.2. Correspondence Determination 

After reduction of search space, second most important step is extraction of true correspondences found 
in target dataset for each source plan. In an urban scene, building structures exists adjacent to each other 
and it becomes more problematic as many building roofs have same geometrical designing or in simple 
words, many geometrical resemblances and symmetries do exist in close neighborhood. Due to this 
reason, even after adopting earlier discussed measures for space reduction, there is sure possibility for 
having wrong corresponding plane/segment in searching neighborhood. A robust, effective and reliable 
search plan is required to accommodate these problems. Proposed search plan must detect possible 
candidate correspondences in searching space neighborhood, reduce them to most possible candidates 
and evaluate them also to confirm their correctness. Algorithm works in two phases: in first phase (fig. 
3.6) it provides initial guess about correspondences from target dataset based on distance and angle 
measurement and second phase is to evaluate them for their confirmation. 
 
Measures discussed in previous section are good enough for provision of initial correspondences from 
target dataset. Possible candidates for correct correspondence can be more than one due to existence of 
symmetrical geometrical planar features in close search neighborhood. Evaluation of these initial 
correspondences is necessary to be used for final registration. Discussion about both cases (1:1 and 1: 
many) is described in following paragraphs; 
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1:1 correspondence:  
Both datasets are close enough each other therefore based on adopted measures, 1:1 correspondence can 
result in true correspondence. In an urban environment, many planes can exist in close neighborhood with 
same height, dimensions, shape, etc. therefore selection of correct correspondences becomes problematic 
(especially when all candidate correspondences are of same geometrical properties). Due to this 
occurrence, 1:1 selection can leads to wrong correspondence if selected on basis of earlier discussed 
measures. It is possible to have correct correspondence at a place other than first one therefore 1:1 
approach can eliminate correct correspondence (fig. 3.7). This elimination lessens the advantage of 
redundancy of planar features to be used for reduction of registration errors. 
 

Figure 3.7 is showing three possible candidate correspondences found in close search neighborhood area 
for single source plane. 1:1 approach is resulting in wrong correspondence at first place, so it will be 
discarded by putting threshold value for normal angle difference. In this case, source plane will have no  

ALS_998

UAV_79 UAV _70 

UAV _61 

Figure 3.7: Wrong correspondence selection using 1:1 approach
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Figure 3.6: Feature Correspondence search plan (Phase I)



FEATURE BASED MATCHING BETWEEN UAV BASED POINT CLOUD & ALS DATA 

23 

 

 

  Table 3.1: Numerical details of three corresponding planes from target dataset 
correspondence but in reality it is there. Therefore application of 1:1 approach in urban environment            
seems in-appropriate to tackle these kinds of issues. Numerical details of candidate corresponding planes 
are shown in table 3.1. UAV plane no 79 is ranked as first on basis of distant measure and if 1:1 approach 
is applied than UAV plane no 79 will be discarded on basis of angle difference. Therefore ALS plane no 
998 will receive any correspondence which is wrong. For said dis-advantage 1: many approach is adopted 
instead of 1:1.  
 
1: many correspondences:  
Disadvantages of 1:1 corresponding approach can be minimized by taking more than one plane as a 
possible candidate plane in search area. This 1: many approach consider all possible candidate planes 
found in close neighborhood search area and then reduction measures applied to them. This approach is 
robust with disadvantage we discussed in 1:1 approach. However, possibility of existence of wrong 
correspondence is still there due to symmetrical geometrical shapes in urban scene. Point dataset 
generated by exploiting UAV images, contains fragmented plane segments for one single surface plane. 
These fragmented planes are placed at different position of correspondence but in actual all of them are 
true correspondences of source plane. Advantage of 1: many corresponding approach will also take care of 
this problem. Disadvantage of 1: many approach is existence of parallel planes in neighborhood area 
which passes all reduction measures and remains there as a candidate correspondence of source plane. 
 
In fragmented case (fig. 3.8(a)) both fragments belong to same planar surface and are correspondences of 
single source plane. 1: many approach will consider both of them and involve both of them in process of 
determination of transformation parameters. Roofs of buildings have multiple surfaces and during 
acquisition of data these multiple surfaces are considered as individual segments. These multiple surfaces 
(fig. 3.8(b)) are also parallel with source plane. These multiple/parallel surfaces are found within range of 
close search neighborhood and can pass adopted reduction measures. In 1: many approach, these surfaces 
appear as a possible correspondence candidate for source plane although they are wrong. Fragmented 
planes are true candidates also but it increase computational cost of algorithm because number of pairs 
will be increased. Evaluation of these correspondences is discussed in next section.  

ALS 
Plane 

Corr. UAV 
plane 

Corr. 
Rank 

Distance 
(<10 m)

Normal Angle 
Deviation 
(degree) 

Segment Size 
(points/plane)

Outlier Ratio 
(%) 

Status

998 
79 1 8.25 51 13758 7.13 × 
70 2 8.42 2 11093 14.94 ok 
61 3 8.75 49 5669 3.68 × 

(a) Fragmented planar surfaces (b) Multiple (parallel) surfaces 

Figure 3.8: Selection of fragmented and multiple planar surfaces using 1: n approach 
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3.4.3. Evaluation of initial correspondences 

Initial correspondences obtained by adopting earlier discussed measures and 1: many approach still cannot 
be considered as true correspondence. Evaluation of these correspondences is needed to be carried out 
for confirmation about their correctness. These initial correspondences can be evaluated by analysing 
residuals of distances between ALS and UAV dataset (after rigid transformation). Extraction of matched 
planes between source and transformed UAV dataset is confirmation of correctness of correspondences 
achieved in phase I. Diagram of phase II is shown in figure 3.9 and detailed description is given in 
following paragraphs step by step.     
 
i) Evaluation of initial correspondences start from selection of planes from initially extracted matched 

planes. After adopting search space reduction measures, ‘n’ number of matching pairs are obtained. 
For computation of parameters, minimum three matching planes are required to estimate the 
homography that exists between them. Selection of more than three planes from initial matched 
planes can make algorithm expensive in time as number of combinations are increased. 
Combinations of three selected pairs can be achieved by following mathematical formula; 

ݎܥ݊        ൌ 		
௡!

௥!ሺ௡ି௥ሻ!
      (3.5)

  
n = number of corresponding pairs 
r = minimum selected pairs 
For a single source plane, many possible candidates from target dataset might claim to be true 
correspondence of it. Therefore from matched pairs instead of source plane, planes from target 
dataset are selected for combination formation. Number of combinations is directly proportional to 
total number of matched pairs obtained after initial matching (Eq. 3.5). In other words combinations 
frequency is indirectly dependent on threshold value adopted for segment size of source dataset. 
Each combination/triplet is to be exploited in rigid transformation for computation of residuals 
(standard deviation & mean) of distances between source plane and target plane points. 

      
ii) After forming a combination, its geometrical alignment is assessed. Mathematically, three planar 

surfaces are declared orthogonal when scalar triple product of their normal vectors is non zero. In 
other words, their point of coincidence is same or they intersect at single point. This orthogonality 
condition (a good check at non-parallelness of selected three planes) is mathematically described as;  
 
    n₁	. ሺn₂ ൈ n₃ሻ 	് 0      (3.6) 

  Or, 
  
   
  
 
 
 Terms n₁	, n₂		and	n₃ are normal vectors of three planes. This value should be significantly non-zero 

and it would be better to set a threshold value for determinant value to keep only reliable non-
parallel combinations. It will automatically discard those weak combinations whose determinant  
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Figure 3.10: Feature Correspondence search plan (Phase II) 
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values will be near to zero. This condition cannot be imposed if four planes are selected as discussed 
earlier and algorithm has to consider all those combinations which have weak geometry also. 
 

iii) After selection of three planes (one combination) from matched pairs, their corresponding matches 
are attached with them to form pairs. Plane information about these matched pairs is already 
obtained during plane-fitting process and this information is exploited as input for computation of 
transformation parameters. 
 

iv) For evaluation purpose, rigid transformation is executed between both datasets to analyze 
correctness of obtained initial correspondences. For rigid transformation, plane-to-plane approach is 
applied. If initial correspondences are correct in triplet then approximately correct transformation 
parameters (R & T) are achieved. These achieved R and T are applied to UAV dataset to transform it 
towards ALS dataset.   After transformation of target dataset, RANSAC based plane fitting is applied 
to extract plane parameters of transformed dataset. Euclidean distance is computed between ALS 
and newly transformed UAV dataset for determination of matched planes again between these 
datasets. 
  

v) In phase I, 1: many approach is applied but after transformation only 1:1 approach is applied because 
if R & T are computed correctly than true correspondence will occur at first place. If this first place 
matched plane is same as achieved during phase I, than this is confirmed as true correspondence. 
 

vi) After correct transformation almost all planes moves toward source dataset and combinations for 
which more than 80% planes are retrieved as confirmed planes are saved. This threshold value of 
80% is dependent on constraint values of distance and angle difference introduced second time. 
Strict constraint value can give no correspondence and soft value can result again in wrong 
correspondence. 

 
vii) Distance between each source plane and its corresponding points of target plane are calculated for 

combinations passing above condition. Mean and standard deviation of these distances are also 
computed after transformation for these combinations. These measures are considered as residuals 
achieved after rigid transformation (Bae & Lichti, 2008). Analysis of both measures is performed and 
planes involved in best combinations are then further used for final registration. 

3.5. Registration Process 

Analysis of mean and standard deviation, results in true corresponding planes fit for final registration 
process. Registration can be achieved by exploiting only three corresponding plane pairs however 
redundancy of planes is recommended to minimize random errors. Exploitation of more than three 
correspondences enables algorithm to perform least square adjustment. Selection of more than three 
corresponding planes is made by selecting more than one combination having low mean and standard 
deviation values (low residuals). Redundancy of available correct correspondences is helpful in 
determination of optimal transformation parameters by reducing registration errors with the help of least 
square adjustment method.  
 
Registration process starts after finding true correspondences from target dataset. True correspondences 
are determined after analysis of residuals (mean & std. deviation) and are exploited for registration 
purposes by adopting certain feature matching approaches. For aimed study, plane-to-plane and point-to-
plane approaches are performed and analysed based on accuracy achieved after final registration. 
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3.6. Conclusion 

This chapter describes developed technique for extraction of features from point cloud, determining true 
correspondences from target dataset for their exploitation in computation of transformation parameters to 
register both datasets. Previously developed algorithms are incorporated in devised method for feature 
extraction and a correspondence search plan is developed based on four measures for automatic detection 
of correspondences from target dataset. Evaluation of these obtained correspondences is carried out by 
statistical measures about their correctness. 
 
Pre-analysis and pre-processing are considered as two important steps for data preparation for registration 
purpose. Surface growing technique is adopted for datasets to extract feature information from them. 
Plane-fitting for each segment is than performed by exploiting well-renowned algorithm RANSAC, 
considering its robustness to handle large amount of outliers found in datasets. PCA is performed for 
computation of plane parameters during this step. Information extracted during plane-fitting process is 
utilized for determining initial correspondences found from target dataset. Pre-hand knowledge about 
datasets is important for setting up different threshold values for correspondence search. These initially 
obtained correspondences are than evaluated with the help of residuals (mean & std. deviation) obtained 
after rigid transformation. As final step these evaluated correspondences are than used as input for final 
registration.  
 
In an urban environment, to avoid wrong correspondences obtained due to existence of symmetrical 
shapes in close search neighborhood, 1: many searching approach is presented instead of 1:1. By adopting 
above all described measures, presented method is robust enough to extract planar features, detect their 
initial correspondences from target dataset, evaluate them and register both datasets by exploiting different 
matching strategies.   
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4. IMPLEMENTATION AND RESULTS 

Implementation of algorithm developed in last chapter and results achieved through this are included in 
this chapter. Section 4.1 provides general overview of datasets used for implementation of algorithm. Pre-
analysis and pre-processing of these datasets are described in section 4.2. Results of RANSAC based 
plane-fitting/feature extraction are discussed in section 4.3., which is then followed by implementation of 
correspondence search plan in section 4.4. Impact of adoptive search space reduction measures, 
correspondence determination and their evaluation are also included in this section.   
LAStools and Point Cloud Mapper (PCM) are also used for data pre-analysis and pre-processing. Matlab 
(version 8.1.0.604, R2013b) is used for pre-analysis, algorithm development.  

4.1. Datasets 

Both datasets used for this study are point cloud datasets with different characteristics. Comparison of 
both dataset to have a general overview in tabular form is depicted in table 4.1. 
 
 

 
 
 
 
 
 
 
 
 
              Table 4.1: Comparison of ALS and UAV datasets 

ALS Dataset 
ALS dataset used for this research is subset of national dataset AHN-2, which is second part of the 
Actueel Hoogtebestand Nederland (AHN) project. This project was initiated for acquisition of high-
resolution altimetry data over entire Netherlands using airborne laser scanning (Sande et al., 2010). ALS 
used in this research study was captured over city of Nunspeet, the Netherlands in 2007 (fig. 4.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ALS UAV 
Point density 10 points/m² In-Consistent density 
Coordinate System Amersfoort / RD New Amersfoort / RD New 
Acquired by Standard ALS procedure Micro Drone 
Acquisition time 2007 2012
Acquisition method Airborne laser scanning Dense image matching  
No. of Points 77365 5281949
Covered Area 0.04 sq. Km 0.04 sq. Km 
Coverage Area Nunspeet, The Netherlands. Nunspeet, The Netherlands. 

Figure 4.1: Visualization of ALS dataset using PCM over Nunspeet, Netherlands. (2007) 
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UAV Dataset 
UAV dataset was acquired by Dutch Kadaster in June 2012. They used a micro drone named as MD4 -
1000, equipped with a camera model Olympus E-P3 OGT with a focal length of 17mm. A total of 380 
images with 80% overlap at flying height of 60m were captured. Image size obtained was 4032 x 3024 
pixels with pixel size of 4.4 µm. Resolution of UAV images (ground sampling) has been computed by 
exploiting this information; 
 
            (4.1) 
 
 
 
 
 
 
 
Computed value of GSD for UAV images is a proof that images are of very high resolution. This high 
resolution (not only) affects point density of point cloud data generated through images and makes it 
denser. Detailed process about point cloud generation has already been discussed in chapter 2 under 
section 2.2. 3D point cloud generated by dense image matching technique is shown in figure 4.2 using 
point cloud mapper software.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2. Data Preparation 

This section consists of three parts. Analysis of both datasets, filtering outputs and segmentation 
outcomes will be discussed in first, second and third subsection, respectively.  

4.2.1. Data Analysis  

Data analysis of both datasets gives us useful information about datasets. Proposed study is only about 
planar features therefore evaluation of planar features (only roof planes) accuracy provides us valuable 
information about their compactness/density. Analysis of planar feature provides information e.g. point 
density per plane, threshold value to fit a plane, accuracy of a planar feature (noise), etc. Achieved values 
are noted down and further used for surface growing and plane-fitting process to achieve reliable results. 
 
  
 

Focal length 

  Pixel size × flying height 
Ground Sampling Distance (GSD) =

=
4.4 μm × 60m 

17mm

0.0155 m or 1.55 cm =

Figure 4.2: Generated Point Cloud through UAV images and visualized in PCM 
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 ALS planar features UAV planar features 
 1 2 3 4 5 1 2 3 4 5
Total no. of points 1072 1006 1054 751 1366 23566 23202 28058 11093 34781
95 % (2σ) 1018 958 1001 713 1297 22388 22042 26655 10538 33042
Distance threshold 0.08 0.06 0.08 0.08 0.07 0.20 0.20 0.25 0.40 0.20
No. of outliers 27 29 53 17 63 513 710 1039 375 1628
Dist. Threshold (avg) 0.07m 0.25m 

Table 4.2: Details of five selected planar features of both dataset 
 
To take a broader view of both datasets, five planes from each dataset are analysed. Selection of points, 
lies on a single plane is made carefully to make our results more realistic and reliable. Selected planes are 
randomly selected and having good geometrical dimensions. RANSAC algorithm is exploited to fit a plane 
within each selected planar feature. Table 4.2 is showing details of five selected planar feature in both 
datasets and adopted value of distance threshold for fitting a plane. This value of distance (between point 
& fitted plane) is selected in such a way that 95% points of selected planar feature become inliers. 
Distances of points (inliers) from fitted plane are normally distributed at this value.  This value of distance 
form fitted plane is directly proportional to noise present in dataset and therefore is different for both 
datasets. 
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Figure 4.3: Comparison of Planar accuracy with signed distance values (above) ALS (below) UAV 
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Computed distances with fitted plane are plotted against number of plane points and are shown by 
histogram bar chart, describing their attitude within both datasets. In reality, distance can never be 
negative but theoretically it occurs when observations are accumulated around zero on both sides. These 
are called signed values of distances. Figure 4.3 is depiction of computed distance values of inlier points 
from fitted plane. Plane is fitted in flatted surface through RANSAC algorithm and statistical 2σ rule is 
exploited for selection of points as inliers. Planar features selected from both datasets results in quite 
normal distributions.  
 
For ALS dataset (fig. 4.3(above)), selected feature has mean of 0 and standard deviation of 0.06 m which 
means that points are evenly distributed for ALS planar surface and has dispersion of 6 cm around fitted 
plane. In other words, observations (distance values) are concentrated at an equal distance of 6 cm from 
fitted plane surface. For UAV dataset (fig. 4.3(below)), signed values of distances also results in normal 
distribution but with standard deviation of 25 cm value. It has mean of 0 and standard deviation of 0.25 m 
which means that inliers point are evenly distributed at distance of 25 cm  above and beneath fitted plane 
surface. Standard deviation (dispersion) value of UAV dataset is 0.25 m which is quite large as compared 
to ALS dataset. Analysis of planar features accuracy of both dataset in signed values provides us useful 
information about their dispersion for planar surfaces. . In ALS and UAV dataset dispersion of points is 
around 6 cm and 25 cm, respectively. Selected features are planar features therefore values are valid for 
planar features. These values are helpful during plane fitting process to consider 95% of points of planar 
surface as inliers. For ALS dataset, number of points (point density) on y-axis of histogram is much less 
than UAV dataset proving ALS as low density dataset.  
     

Figure 4.4: (a) bimodal distribution (b) ALS plane with two surfaces
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Beside this information, some other information is also extracted from this analysis. An ALS plane is 
resulted in bimodal normal distribution by adopting same parameters. One of such bimodal distribution is 
presented by histogram bar chart in figure 4.4(a) and ALS plane having double surfaces is also shown in 
figure 4.4(b). In this case, number of points on ALS plane are increased and Standard deviation value 
almost becomes double than a normal ALS plane. (Standard deviation value is 11 cm instead of 6 cm). 
This bimodal distribution of ALS plane points and multi-surface visualization is an indication that plane 
might lies within overlapping regions during laser scanning.   
 
 
 
 
        Table 4.3: Outcomes of Planarity Accuracy for both datasets  
 
To conclude this discussion, information given in table 4.3 is an outcome for planar feature accuracy of 
both datasets. Mean values of these planar surfaces are zero which is an indication that planes are really 
planar/flat surfaces and computed values of distances are evenly distributed above and beneath fitted 
planar surface. However dispersion (standard deviation) of points (inliers) for both datasets is different 
depending on their accuracy. ALS having lower standard deviation value than UAV dataset is depicting 
accuracy of ALS dataset. This low value of standard deviation shows compactness of ALS dataset which 
needs only 6 cm to accommodate 95% of points for its planar surface to fit a plane. Non-planar feature 
will not fit a plane at these values with normal distribution. This standard deviation value is used in further 
processing i.e. surface growing, plane estimation, etc. Point density along y-axis of histograms depicts 
density of both datasets. Pre-processing of datasets is next step of data preparation and is discussed in 
next section.   

4.2.2. Filtering 

LAStools software’s component ‘lasground’ (Axelsson, 1999) has been used to filter UAV data by 
adopting appropriate parameters. M. Gerke and Xiao (2014), have also used it for classification of Lidar 
data into ground and off-ground data. Scene under discussion is of city area of Nunspeet, the Netherlands 
therefore selected parameter for terrain nature is city. Second important parameter is threshold value to 
decide which point has to be classified as ground or off-ground point. Although roof planes/buildings are 
considerably high above ground but to keep all planar features above ground, value of 0.5 m has been 
selected. By selecting this value, successfully removed ground points from scene and almost left with only 
points above ground (Fig. 4.5). 
 

Mean Std. Dev 

ALS plane 0 0.0601
UAV plane 0 0.2525

Figure 4.5: Outcome of LAStools applied on both datasets 

(a) ALS Dataset (b) UAV Dataset 
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(a) UAV dataset (b) ALS dataset 

Figure 4.6: Outcome of Surface growing applied on both datasets

4.2.3. Surface Growing/Segmentation 

Surface growing takes place after filtering of datasets and region growing algorithm developed by 
Vosselman. et al. (2004) is exploited using PCM software. Interested features for proposed study are 
planar features (roof planes) therefore suitable surface growing parameters have been adopted. In seed 
detection step, value for seed neighborhood radius has been selected 1.0 m for both datasets. For surface 
growing parameters, values obtained during planarity accuracy are helpful for surface growing phase. 
These values are manoeuvred in such a way that mostly planar features are preserved in both datasets. 
Surface growing radius for both datasets is kept as 1m but maximum distance to surface is set as 0.10 m 
and 1.0 m for ALS and UAV dataset, respectively. Minimum distance required for re-computation of local 
plane is set as 0.10m and 0.30m (near to initial values gained in planar accuracy measurements) for ALS 
and UAV datasets respectively. Outcome of surface growing algorithm is presented in figure 4.6 and 
segmented datasets with segment ID’s are used directly as input for further process. 

4.3. RANSAC based Plane Fitting 

RANSAC algorithm is exploited for fitting planar features in both datasets and plane parameters are 
computed for each segment after surface growing process. RANSAC is robust to deal with noisy datasets 
(UAV dataset) however, as discussed in Chapter 3, section 3.3.1, plane parameter ‘d’ (perpendicular 
distance from origin) is sensitive and it generate results with quite large differences at each run (Table 4.4). 
This abrupt and huge change in plane parameters brings numerical instability during computation of 
transformation parameters (especially in translation factor). To overcome this problem, normalization of 
datasets is executed and shift is introduced in both datasets to bring them near origin. By doing this, 
difference in plane parameter (d) almost becomes stable (Table 4.4) with RANSAC. More abrupt changes 
can be seen for UAV dataset as compared to ALS dataset before normalization.      
 
 
 
 
 
 
 
 
                         Table 4.4: Effect of RANSAC on plane parameter‘d’ 

 Distance from origin 
(before normalization)

Distance from origin 
(after normalization)

UAV ALS UAV ALS
Plane No. 2 33 2 33 

1st run 70220.36 112662.9 16.7564 35.0607 

2nd run 78252.62 112774.6 16.7457 35.1197 

Difference (m) 1967.74 111.7 0.0107 0.0590 
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5m

15m 

(a) ALS gable roof 

5m 

15m 

(b) UAV gable roof 

Figure 4.8: Segmented gable roof planes of same building 

4.4. Feature Correspondence Search Plan 

4.4.1. Search space reduction 

Segment Size: 
Segment size (number of points on a segment/roof plane) is considered as first constraint to reduce 
search space. Focus of study is plane based matching therefore interesting features are roof planes and an 
estimate about point density of these features is important for their preservation. A gable roof plane of 
same building along with its length and width exist in both datasets is depicted in figure 4.8. Point density 
of ALS dataset is 10 points/m², therefore points on such planar roof are estimated as; 

Segment Size of ALS (approx.) = 75 × 10 = 750 points/segment 

This estimation provides an initial guess about threshold value selected for preservation of these planar 
features. To preserve more and more planar features in dataset for exploitation of redundancy, adopted 
value for ALS dataset should be less than computed value. For UAV dataset, due to inconsistent point 
density of data, such kind of threshold cannot be computed however selecting few very good planes 
manually from UAV dataset and averaging their point density is reasonable approach for selection of 
threshold value. Manually selected five UAV planes and their point densities are presented in table 4.5 (a). 
 

 
 
 
 
          
    Table 4.5: Segment size for UAV full and fragmented planes case 
 
Table 4.5 depicts point density for planar features (full & fragmented planes). These values provides us 
information about both type of planar features found in UAV dataset. However adopted value is selected 
4000 points/plane to preserve more and more planar features in target dataset. Threshold value is crucial 
for ALS dataset because of its low point density. It affects number of ALS (source) planes for whom 
correspondences have to be determined. Selection of large (tight) threshold can also affect their well-
distribution in scene by removing planes from there. Large value of segment size reduce advantage of 
redundancy and can hamper well distributions of planes in scene while lower value can make algorithm 
computationally expensive and possibility of getting non-planar surface increases. For UAV dataset, point 
density is much higher than the ALS dataset therefore segment size has no real effect on plane frequency 
however above mentioned value is adopted for removal of minor features. 
 
  
 

 UAV  Full Planes UAV fragmented planes 

Plane ID 2 349 1098 815 830 578 

Segment Size 23566 28058 26895 7718 6861 4421 
Average value 

(points/plane) 26173 6333 
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Outlier Ratio: 
Another important measure adopted is to filter out possible candidate target planes by looking at outlier 
ratio they have. RANSAC method is applied to each segment in plane-fitting process and some points of 
each segment are detected as outliers. Outlier ratio can be a good measure to describe a segment as a flat 
surface. However connected planar segments can also have higher outlier ratio but discuss study is only 
about smooth and flat surfaces. Large outlier ratio increases possibility of that feature to be non-planar. 
To limit correspondence search, it is another good idea to already delete those segments which are non-
planar or which have large ratio of outliers. 

                       Figure 4.9: Outlier ratio proportion found in UAV dataset      
A pie-chart depicting proportion of outlier ratio percentage for UAV segments is shown in figure 4.9. 
Almost half of segments of UAV have less than 10% outlier ratio and since planar features has lower 
outlier ratio therefore possibility of UAV planar features increases for their existence in lower ratio 
proportion. To put threshold value for removal of non-planar surfaces from target dataset, pie chart (fig. 
4.9) draws an impression about proportion of segments containing amount of outliers. Instead of putting 
10% as threshold value, 20 % is selected which means 63% of segments are saved for further process and 
37% are discarded or declared as non-planar by this measure (fig. 4.9). Three prominent segments having 
outlier ratio more than 20% can be seen in figure 4.10. These types of features which are useless for 
feature based matching should be removed from close neighborhood to limit search space for source 
plane. 

(a) UAV segment 41 (41%)  (b) UAV segment 105 (42.5%) 

Figure 4.10: UAV Segments along with Outlier ratio 

(c) UAV segment 362 (25%) 

<10%
41%

10% ‐ 20%
22%

20% ‐ 30%
15%

30% ‐40%
13%

> 40%
9%
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4.4.2. Feature Correspondences 

To find out feature correspondences, 1: many approach is adopted instead of 1:1 approach. Advantages 
and disadvantages of both these approaches are already discussed in chapter 3 under section 3.4.2. 
Adopted number of possible candidate correspondence is 5. For each source ALS plane, 5 possible UAV 
candidate planes come up to prove its correctness with source plane. Table 4.7 is showing 5 possible UAV 
correspondences initially extracted from UAV dataset based upto fifth minimum distance from source 
ALS plane.  

Sr. 

No 

ALS Plane  
(ID no.) 

5 Possible Candidate UAV Planes (ID no.) 
1st 2nd 3rd 4th 5th 

1 7 1098 1 5 2 238 
2 15 2 1098 237 1 5 
3 33 200 222 207 203 194 
4 45 203 200 222 207 194 
5 70 188 192 333 198 243 
6 81 198 188 243 242 192 
7 159 352 356 359 349 355 
8 183 349 352 356 359 355 
9 301 371 951 377 381 367 
10 333 951 371 381 377 367 
11 407 670 692 665 688 686 
12 442 665 643 670 692 688 
13 504 652 654 659 661 663 
14 517 659 661 652 663 654 
15 998 70 61 143 73 79 
16 1157 79 82 146 70 73 
17 1258 1028 533 1049 1050 533 
18 1409 533 1028 1049 532 1050 
19 1458 830 815 833 824 785 
20 1479 826 824 830 833 815 
21 1819 1019 1018 1066 1017 1014 
22 1870 579 578 541 576 580 
23 1885 541 579 580 578 542 

          Table 4.7: Five possible candidate UAV planes for one ALS plane  
 
 
Distance & Normal Angle Deviation: 
After selection of five possible correspondences from target dataset (table 4.7), pre-hand knowledge of 
distance exist between both datasets. Both datasets are coarsely aligned to each other and are 
approximately 8 meter away from each other (fig. 1.2). To select true correspondence from these 5 
possible matches, threshold value selected for distance measure is 10 meter. Second important measure 
adopted jointly with distance threshold is to select threshold value to allow difference occur between ALS 
plane and five corresponding UAV planes. True correspondences have same normal vector because both 
datasets have not much distortion in rotation (fig 1.2). However, in point cloud environment where 
surfaces are not solid and RANSAC algorithm is applied to fit plane deviation always occurs in normal 
vector direction. Dold and Brenner (2006), have set this value 1⁰ for finding correct correspondences. A 
very simple and basic calculation is performed to take initial guess about selection of threshold value for 
allowable angle difference between normal vectors of planes.  
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Calculation is based on some assumptions and exploiting simple trigonometric tangent rule;  
 
ߠ݊ܽݐ ൌ ߠ      Or    	ݐ݆݊݁ܿܽ݀ܽ/݁ݐ݅ݏ݋݌݌݋ ൌ  ሻ             (4.2)ݐ݆݊݁ܿܽ݀ܽ/݁ݐ݅ݏ݋݌݌݋ଵሺି݊ܽݐ
 
Both datasets are geo-referenced and pre-hand knowledge about datasets, provides information about 
difference found in z-coordinates and difference computed is almost 9.28 meters. This difference is shown 
as adjacent in figure 4.11. Assumed allowable deflection (opposite) in planes is considered as 1 meter. 
Submitting these assumed/computed values in above formula results as; 
ߠ  ൌ 6.15⁰ 
If assumed deflection is 2m, 
ߠ ൌ 12.16⁰ 
Putting large value for normal angle deflection can result in many wrong correspondences for each source 
plane and make algorithm expensive, therefor value obtained for 1 meter deflection is selected as 
threshold value for normal angle allowed deviation. Any corresponding UAV plane having angle 
deflection greater than this value is discarded from list. Reducing search space and applying these 
measures, outcome for initial guesses against each source ALS plane is shown in table 4.8.  

    Table 4.8: Initial correspondences found with their positions 
 
Most of correspondences appeared at 1st position but some exist also at other than first position. For two 
source planes (highlighted in table 4.8), there appears no correspondence from target dataset and for two 
source planes, there comes more than one correspondence. No correspondence means either source 
planes are situated in corner of scene and because of shift their true correspondence is missing in target 
dataset or they have no correspondence due to structural change (temporal shift effect). Another reason 
for no correspondence is effect of RANSAC algorithm on adopted threshold value for angle difference 

Sr. 

# 

ALS Plane 
(ID no.) 

Corresponding UAV 
Planes (ID no.)

Sr. 

# 

ALS Plane 
(ID no.) 

Initial Corresponding 
UAV Planes (ID no.) 

1st 2nd 3rd 1st 2nd 3rd 
1 7 1098 - - 13 504 652 - - 
2 15 2 - - 14 517 659 - - 
3 33 200 - - 15 998 70 - - 
4 45 203 - - - 1157 - - - 
5 70 188 - - - 1258 - - - 
6 81 198 - - 16 1409 533 - 1049 
7 159 352 - - 17 1458 830 - - 
8 183 349 - - 18 1479 826 - - 
9 301 371 - - 19 1819 1019 - - 
10 333 951 - - 20 1870 578 579 - 
11 407 670 - - 21 1885 541 - - 
12 442 665 - -    

ALS plane 

UAV plane 

ߠ

A
dj

ac
en

t 

Figure 4.11: Estimation of threshold value for normal angle deviation
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deviation. Therefore corresponding plane pair which has normal angle difference near to applied threshold 
value may come at one run and may not come at next run. More than one correspondence may contain 
right and wrong correspondences/parallel planes because of multiple surfaces effect (fig. 3.8(b)) or may 
have fragmented parts of one target plane for each source ALS plane (fig. 3.8(a)). Correspondences 
appeared only on basis of angle and distance measures are not considered as true correspondences and are 
evaluated further. Evaluation process is discussed briefly in chapter 3, section 3.4.3.  

4.4.3. Correspondence Evaluation 

Evaluation of these correspondences for their confirmation is executed by developed algorithm (fig. 3.10) 
discussed in previous chapter. By putting threshold for geometrical alignment of planes, all combinations 
with true correspondences generate good results. Few combinations which are non-parallel but 
concentrated only in specific area/corner area of scene may have large residuals. During processing it is 
observed that non-rigid transformation has been used for evaluation of initial correspondences (Table 4.8) 
and it brings UAV data within 3-4 meter range after correct correspondences even. This is not acceptable 
and it doesn’t fulfil purpose of algorithm. This phenomenon is also discussed by Tubic et al. (2003) that 
registration strategies are sensitive with large distance between them. Expensiveness of point-to-plane 
approach/non-rigid transformation has forced to exploit plane-to-plane rigid transformation for 
evaluation of initial correspondences. Figure 4.12 is depicting effect of vertical shift application on target 
dataset. Applying plane-to-plane (rigid transformation) approach with true correspondences provides 
distance residuals not less than 3 meter (fig. 4.12(a)) while after applying vertical shift, residual lies in 1m 
range (fig. 4.12(b)). Its numerical details are also sketched in graphs shown in fig. 4.13. Application of 
vertical shift also enhances determination of true correspondences between both datasets. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After computing distance between source plane and corresponding target plane points, residuals (mean & 
standard deviation) are analysed. Combinations having true correspondences resulted in low residuals after 
rigid transformation. After transformation only 1:1 search is applied subject of constraints which resulted 
in 18 planes as true out of 23 initial planes. There are three reasons for which these 5 planes are removed. 
Removed planes may not be correct one or they might be located in corners of scene or they may not 
prove themselves correct at first position after rigid transformation. Distribution of these planes can be 
seen in figure 4.14. 

(a) Before vertical Shift application (b)    After vertical Shift application 

Figure 4.12: Effect of vertical shift applied on UAV dataset

ALS dataset UAV transformed dataset UAV original position 
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           Table 4.9: Final correspondences found within both datasets 
 
 
 
 
 
 
 

Sr. 

# 

ALS Plane 
(ID no.) 

UAV Plane 

(ID no.) 

Sr. 

# 

ALS Plane 
(ID no.) 

UAV Plane 

(ID no.) 
Sr. 

# 

ALS Plane 
(ID no.) 

UAV Plane 

(ID no.) 

1 7 1098 9 301 371 15 1258 1028 
2 15 2 10 333 951 - 1409 - 
3 33 200 11 407 670 - 1458 - 
4 45 203 11 442 665 16 1479 826 
5 70 188 13 504 652 - 1819 - 
6 81 198 - 517 - 17 1870 579 
7 159 352 14 998 70 18 1885 541 
8 183 349 - 1157 -   

          Before Registration           After Registration 
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Figure 4.13: Impact of Vertical Shift application on residuals (mean) of Distance (above) shift not applied  
      (below) shift applied 

×



FEATURE BASED MATCHING BETWEEN UAV BASED POINT CLOUD & ALS DATA 

41 

 

 

4.5. Registration Results 

Plane-to-Plane Registration 

Plane-to-plane rigid transformation is already involved in evaluation process of initial correspondences 
therefore each combination having true correspondences results in low residuals. Therefore combination 
having minimum residual (mean) is first exploited to compute transformation parameters using only three 
observations (matched pairs). Results of transformation parameters with three observations and all 
observations are shown in table 4.10 and 4.11 respectively.  
 
 
 
 
 
 
 
              Table 4.10: Transformation parameters obtained with three observations 
 
 
 
 
 
 
       Table 4.11: Transformation parameters obtained with all eighteen observations 

Point-to-Plane Registration 

Second approach applied by exploiting all above correspondences is point-to-plane approach. Both rigid 
and non-rigid transformations are performed and results obtained in terms of parameter values are shown 
in table 4.12 and 4.13, respectively. Before applying point-to-plane approach, target dataset is renormalized 
to its actual position by removing applied vertical shift. Visualization of registration is presented in figure 
4.15. 
 

Rotation parameter Translation parameter 
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௭ܶ	
ሺmሻ	
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ሺmሻ

௭ܶ	
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Figure 4.14: Final Matched Correspondences and their distribution in area 

ALS planes UAV dataset Correspondences found 
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      Table 4.13: Results of point-to-plane rigid transformation approach 
 
 
 
 
 
 
    Table 4.14: Results of point-to-plane non-rigid transformation approach 

4.6. Conclusion 

Feature based registration of point cloud starts from pre-processing of data. Pre-analysis and pre-
processing are discussed in detail and plays a basis and vital role in registration process. Normalization of 
datasets is also necessary to overcome numerical instability occurs during feature extraction through 
RANSAC. Feature correspondences extracted from distance and angle constraints cannot be considered 
as true one in urban environment due to similar geometry issues. Plane-to-plane approach is applied for 
evaluation of these correspondences and vertical shift is also required for this. Correspondences extracted 
after rigid transformation are considered as confirmed to be used for registration process. Wrong 
correspondence may not hamper registration process but decreases registration accuracy. Results of plane-
to-plane and point-to-plane approaches are given, however their accuracy will be discussed in next chapter 
with different cases.   
 
 
 

Rotation parameter Translation parameter
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Figure 4.15: Registration result of point-to-plane approach
ALS dataset UAV transformed dataset UAV original position 
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5. PERFORMANCE EVALUATION 

This chapter includes discussion on results obtained from implemented algorithm in last chapter. 
Evaluation of performance of algorithm is analysed by adopting few certain conditions and obtained 
results are discussed also. Systematic evaluation is performed and discussed by applying conditions. Pre 
and post registration analysis is also an important part of algorithm evaluation. Accuracy assessment is 
done with quantitative and qualitative analysis showing feasibility of algorithm. Limitations of adopted 
algorithm are discussed and conclusions drawn are added at end of this chapter.  

5.1. Completeness, Correctness, Quality and Accuracy 

Evaluation of algorithm is important to determine its effectiveness and limitations. Qualitative and 
quantitative measures are adopted for evaluation of performance/quality of this algorithm. Presence of 
wrong correspondences in final correspondence results may not hamper the registration process but can 
affect accuracy of registration. Quantitative and qualitative measures are adopted here to analyse quality of 
algorithm and registration, respectively.  
 
To check quality of algorithm quantitative measures based on amount of observations/material are 
described as an efficient way of performance analysis (Heipke et al. (1997); Rutzinger et al. (2009) and 
Kourosh Khoshelham et al. (2010)).  Critical review is presented by Rutzinger et al. (2009) about 
evaluation of performance of classification algorithm and Kourosh Khoshelham et al. (2010) have 
described different quantities for performance evaluation involved in quantitative analysis. Some of these 
quantities are presented and modified according to conducted research and are defined as under; 
 
True Positive (TP):     ‘Number of corresponding pairs found in Reference and final matched pairs’. 
True Negative (TN):  ‘Number of corresponding pairs which are found neither in Reference pairs nor in 
           final pairs’.  
False Positive (FP):    ‘Number of corresponding pairs found in Reference pairs with wrong   
          corresponding pair in final pairs’. 
False Negative (FN): ‘Number of corresponding pairs found in Reference pairs but not found in final 
           pairs’. 
 
Or in tabular form; 
 
 
 
 
 
            
              Table 5.1: Rules for Evaluation quantities 
 
These quantities are further exploited for derivation of several metrics explained by different authors 
(Heipke et al., 1997; Kourosh Khoshelham et al. (2010); Rutzinger et al., 2009) for assessment of 
algorithms. Only few of those metrics are selected for assessment of proposed algorithm. Their definitions 
and mathematical relationships as described by Heipke et al. (1997) are presented on next page. 

 Referenced Pairs Final Pairs 
True Positive (TP) √ √ 
True Negative (TN) - - 
False Positive (FP) √ × 
False Negative (FN) √ - 
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 Completeness: is termed as percentage of reference data which is presented in the final data. For 

example, number of planes retrieved back as final matched plane also is representing completeness of 
algorithm. Its optimum value is 1. 

 
 
 
 

 Correctness: is measurement of percentage of correctly extracted features. For example, planes 
extracted as final matched planes also correctly found in reference data. Its optimum value is 1.  

 
 
 
 

 Quality: is a measure of ‘goodness’ of final output. Completeness and correctness both metrics are 
involved in quality measurement. Its optimum value is 1. 

 
 
 
 
 Overall Accuracy: is measure to analyse overall accuracy of algorithm by considering all features 

used/not used for final registration. Its optimum value is 1. 
 
 
 
 

5.2. Evaluation 

Evaluation of adopted algorithm is executed through quantitative and qualitative analysis. For quantitative 
analysis, above mentioned metrics are computed for each case and for qualitative analysis, statistical 
analysis of residuals obtained after registration is considered. Quantitative metrics results are depicted in 
table 5.2 which are computed on results obtained in previous chapter. Rutzinger et al. (2009), have stated 
that high completeness and correctness are signs of a good algorithm.  
 
 
 
 
 
 
 
                                Table 5.2: Quantitative metrics results for developed algorithm 
 
Table 5.2 shows quantitative analysis of adopted algorithm with completeness rate of 0.79 and correctness 
1. Both metrics are representing high values therefore algorithm works fine with given datasets. No wrong 
matched pairs come in final matching pairs, therefore correctness remains 1, which shows effectiveness of 
this algorithm for particular datasets which are coarsely aligned to each other. Results of simulation of 
datasets are stated later on.   
 
 
 

  Completeness Correctness Quality Overall Accuracy 
TP 18 

0.79 1 0.79 0.79 
TN 0 
FP 0 
FN 5 

Completeness						ൌ		
TP	

TP	൅	FN
(5.1)  

Correctness									ൌ		
TP	

TP	൅	FP
(5.2)  

Quality																ൌ		
TP	

TP	൅	FP	൅	FN
(5.3)  

Overall	Accuracy						ൌ		
TP	൅	TN

TP	൅	TN	൅	FP	൅	FN
(5.4)  
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After quantitative analysis of adopted algorithm, qualitative analysis using statistical residuals is performed. 
An important objective of this research is to see reliability of feature-based matching approach as a 
potential alternative to sensor orientation techniques. This can be analysed by looking at residuals obtained 
after each case.  

                  Table 5.3: Summary of Residuals results for Feature-based & GCP based point cloud 
 
Distance residuals between ALS plane and corresponding UAV points are computed for evaluation of 
registration accuracy. Distance mean residual and standard deviation for different approaches are 
displayed in table 5.3. Important comparison can be made between residuals of point-to-plane non-rigid 
approach and UAV point data with GCP’s. For this UAV’s image based point cloud with ground control 
points has been pre-processed (surface growing) and then corresponding point-plane distance is computed 
with ALS dataset. Residuals of distance between ALS dataset and UAV dataset with GCP are shown in 
table 5.3. Values shown in table 5.3 are for whole dataset (all corresponding planes) and are different 
depending upon their approach. However GCP based point data has lowest mean residual of 15 cm 
showing its best fitness among others (Fig. 5.1). Point-to-plane approach has almost residuals near to 
GCP based UAV data with a difference of 4cm. This small difference proves that feature-based matching 
approach can be a reliable alternate to ground control method. These can be further analysed by 
histograms for each case.  
 

 
  Figure 5.1: ALS (green) plane with UAV (blue) plane (ground control points used) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Before Registration After Registration 

Without 
vertical shift 

With vertical 
Shift 

GCP 
based 

Registered 
dataset 

Feature Based Registered dataset 

Plane-to-
plane 
(rigid) 

Point-to-
plane 
(rigid) 

Point-to-
plane 

(non-rigid) 

Mean 6.5756 0.9234 0.1558 0.6299 0.2084 0.1959 
Std. deviation 0.2864 0.3501 0.1840 0.3410 0.2430 0.2207 

Figure 5.2: Distance residuals before registration
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Histograms of distance residuals before registration and after registration are displayed in fig. 5.2 and fig. 
5.3, respectively. Absolute distances have been calculated for distance residuals therefore histogram of 
point-to-plane registration is skewed.  

Figure 5.3: Distance residuals after registration with different approaches
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5.2.1. Systematic Evaluation 

To further assess robustness of developed algorithm, artificial systematic evaluations are performed. 
Translation and rotation are applied to one dataset and both kind of analysis is performed for results 
obtained after adopted algorithm. For said purpose, three cases are performed which are discussed here; 
 
Translation Case:  
For translation case, UAV dataset is further shifted 5 meter away from its original position in each 
direction. Distance threshold value is also changed according to estimated distance. Final correspondences 
are achieved after adopted algorithm. Quantitative metrics results are shown in table 5.4.   
 
 
 
 
 
 
 
                                      Table 5.4: Quantitative metrics results for Translation case 
 
Completeness of algorithm is decreased but correctness remains 1. Quality and overall accuracy of 
algorithm also decreased. Translation more than 5 metre are also tested but gives wrong results, which 
means that algorithm is working fine upto 5 meter translation. Final correspondences have been 
determined between ALS dataset and newly translated UAV dataset. Appropriate threshold values are 
adopted to find initial and final correspondences. These final correspondences which are decreased in this 
case are exploited for computation of transformation parameters. Results of residuals before and after 
registration are shown in table 5.5. For plane-to-plane approach, translation parameters are not as accurate 
as in case of point-to-plane. Since plane-to-plane is sensitive with translation effects which reduces its 
accuracy as well. Point-to-plane approach shows much better results than plane-to-plane approach. 
Residual mean value and standard deviation for this approach also remains higher than point-to-plane 
approach. Quality of registration with point-to-plane approach for translation case seems reliable however 
quality of algorithm decrease in terms of quantitative metrics measures.  
 

 
 

Before 
Registration

After Registration 

Plane-to-plane Point-to-plane 

Mean 3.9603 0.8913 0.2052 
Std. deviation 0.1310 0.4340 0.2280 

 
 Rotation parameters Translation parameters 

Omega 
ሺdegreeሻ 

Phi 
ሺdegreeሻ 

Kappa 
ሺdegreeሻ 

T୶ 
(m) 

T୷ 
(m) 

T७ 
(m) 

Plane-to-plane 0.0772 -0.0942 0.0442 5.8728 7.3573 6.1287
Point-to-Plane 0.0597 -0.0265 0.0647 5.4447 5.5054 5.2831

 
                                  Table 5.5: Residuals and Registration results for Translation case 
 
Rotation Case: 
In second example, UAV dataset is rotated about 5 degree about its original position. Rotation is applied 
in each direction and translation remains constant. Correctness still remains 1 but completeness of 
algorithm decrease (Table 5.6). Algorithm gives more true positives if less than 5 degree rotation is 
applied. Decreasing number of final pairs also affect accuracy of registration and residuals are slightly on 

 Completeness Correctness Quality Overall Accuracy 
TP 17 

0.74 1 0.74 0.74 
TN 0 
FP 0 
FN 6 
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higher side as compared to original ones. This result shows that algorithm is sensitive with rotation also. 
Algorithm gives fine results if rotation is applied upto 3 degree.  
 
 
 
 
 
 
 
                                           Table 5.6: Quantitative metrics results for Rotation case 
 

 Before 
Registration

After Registration 

Plane-to-plane Point-to-plane 

Mean 3.2052 1.0042 0.2276 
Std. deviation 0.2288 0.7400 0.2341 

 
 Rotation parameters Translation parameters 

Omega 
ሺdegreeሻ 

Phi 
ሺdegreeሻ 

Kappa 
ሺdegreeሻ 

T୶ 
(m) 

T୷ 
(m) 

T७ 
(m) 

Plane-to-plane -3.6502 -4.2486 -4.1157 0.6401 0.1805 -1.5321
Point-to-Plane -2.9106 -3.2458 -3.0924 0.5723 0.2413 -1.1129

 
                                          Table 5.7: Residuals and Registration results for Rotation case 
 
Rotation & Translation Case: 
By analysing previous two cases, completeness of algorithm is decreasing, therefore for rotation and 
translation case UAV dataset is moved only three meter further away from ALS dataset and three degree 
rotated in all direction. After application of rotation and translation, final correspondences are determined 
by applying adopted algorithm. Final correspondences in this case achieved are 16 which are then used for 
computation of transformation parameters. To keep correctness of algorithm as 1, appropriate threshold 
values are adopted for correspondence search. For this case, completeness of algorithm is 0.69 with 
correctness 1 (Table 5.8). Transformation parameters achieved through these correspondences are 
described in table 5.9 and point-to-plane approach provides much better results than plane-to-plane 
approach.   
 
 
 
 
 
 
 
                              Table 5.8: Quantitative metrics results for Rotation & Translation case 
 
 

 Before 
Registration

Estimated parameters After Registration 

Plane-to-plane Point-to-plane 

Mean 3.4584 1.7590 0.2184 
Std. deviation 0.1139 0.2521 0.2300 

 

  Completeness Correctness Quality Overall Accuracy 
TP 15 

0.65 1 0.65 0.65 
TN 0 
FP 0 
FN 8 

  Completeness Correctness Quality Overall Accuracy 
TP 16 

0.69 1 0.69 0.69 
TN 0 
FP 0 
FN 7 
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 Rotation parameters Translation parameters 
Omega 
ሺdegreeሻ 

Phi 
ሺdegreeሻ 

Kappa 
ሺdegreeሻ 

T୶ 
(m) 

T୷ 
(m) 

T७ 
(m) 

Plane-to-plane -4.0715 -2.6015 -3.7446 1.9710 2.6930 -2.2556
Point-to-Plane -3.2593 -2.8934 -3.1824 -3.4293 -2.5074 -3.0591

                      Table 5.9: Residuals and Registration results for Rotation & Translation case 
 
All above discussed simulations shows limitations of developed algorithm. Initial hypothesis about 
datasets is that they are coarsely aligned to each other within range of 1-2 meter. Shifting UAV dataset 
further away from ALS is contradictory to hypothesis therefore algorithm works with low 
accuracy/completeness. Similarly UAV dataset is well aligned to ALS dataset in terms of rotation (results 
of table 4.14). In all three discussed cases, point-to-plane approach seems more reliable than plane-to-
plane approach and transformation parameters estimated by point-to-plane approach is more realistic. 
However slight difference can be seen also in parameters due to noise found in both datasets. Both 
datasets are point cloud datasets and contain systematic and random errors which are also problematic 
when large translation or rotation values are applied. Artificial simulation has also been tested for ALS 
dataset only and achieved results were much better. But these cases are discussed here only to figure out 
robustness and limitations of developed algorithm.  

5.3. Conclusion 

Quantitative and qualitative tests are performed on given datasets. Qualitative analysis results show that 
registration occurs correctly between ALS and UAV datasets. Distance residuals (mean & std. deviation) 
and histograms for each approach depict quality of registration. Quantitative metrics for registration of 
given datasets are quite high. Algorithm attained completeness of 0.79, correctness of 1 and accuracy of 
0.79. Algorithm has been further evaluated with the help of artificial simulation of datasets by shifting and 
rotating UAV dataset upto some extent. However, for simulated tests, limitations of algorithm are defined. 
For simulation cases, algorithm keeps its correctness as 1 but loses its completeness. This decreases overall 
accuracy of algorithm for simulated cases. Therefore it means that algorithm works fine with datasets 
which are well-aligned (<3m) to each other. Algorithm keeps its correctness as one by removing all wrong 
correspondences from final pairs but loses its completeness with large distances and angle differences.    
 
Two type of feature-based approaches are analysed i.e. plane-to-plane and point-to-plane. Point-to-plane 
approach is found more robust than plane-to-plane approach in this study. Accuracy of point-to-plane is 
found higher than plane-to-plane approach. Their accuracy is analysed through distance residuals (mean & 
standard deviation). Point-to-plane non rigid transformation accuracy is compared with UAV data having 
GCP’s and only difference of 4-5 cm is observed between their mean values. This result proves that 
feature-based matching approach has potential to become alternate of GCP’s.   
 
Based on above stated facts, it can be concluded that automatic feature-based matching (point-to-plane 
approach) produces satisfactory results and can be an alternate to GCP method. However it depends upon 
application. Accuracy achieved through feature-based method is highly dependent on used datasets 
accuracy, pre-processing quality and feature extraction process. Wrong estimation of these errors can lead 
registration process off track.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

Point data of topographic scene can be generated through high resolution images obtained by UAV 
photogrammetric systems. These high resolution images are processed by commercialized softwares for 
creation of point data. Payload capacity limitation of UAV’s reduces possibility of mounting a precise GPS 
with IMU for direct georeferencing of its data. Indirect sensor orientation is another option for this 
purpose. Both these methods are reliable for removing 3D similarity shifts occurred due to above 
mentioned factors but are not cost effective. Point cloud data of urban scene generated through UAV 
images contains several features with regular geometry. These features include lines, planes, spheres, etc. 
and can be exploited for automated registration of both datasets. Conducted research is about to know 
reliability of feature-based registration of UAV’s image based point cloud data with highly precise ALS 
point cloud data for removal of shifts without GCP’s.   
 
Key objective of this study is development of an automated algorithm which detects reliable 
correspondences, validate them and extract optimized transformation parameters for both datasets. These 
parameters are than exploited to register both datasets of topographic scene of same area. Algorithm 
consists of two steps: first step is about extraction and confirmation of correspondences and second step 
is exploitation of these correspondences for estimation of transformation parameters. Given datasets are 
then registered by using these estimated transformation parameters by applying plane-to-plane and point-
to-plane approaches. Authentication of algorithm had been done by analysing outcomes obtained by data 
simulation. This research has recognized that feature-based matching (point-to-plane approach) is reliable 
to become an alternate method for 3D similarity transformation issue. Few conclusions during processing 
and development of algorithm are specified and are described as followings; 
 

 Pre-processing (especially surface growing process) quality is vital for feature-based registration. 
Poor quality of segmentation process can remove many planar features from scene and also 
hamper feature extraction from point clouds.  

 Plane parameters are extracted during plane extraction through RANdom SAmple Consensus 
(RANSAC) algorithm, which brings numerical instability in results, therefore datasets should 
always been normalized prior to start of registration process.  

 Adoption of ‘one-to-many’ correspondence approach seems more realistic and reasonable as 
compared to ‘one-to-one’ in urban environment. ‘one-to-one’ approach might discard many 
correct correspondences also. 

 A residual analysis based selection of final matching planes is robust enough for detection of 
wrong correspondences. Initial correspondences based on distance and angle constraints are not 
taken as true correspondences because of symmetrical geometries found in close neighborhood.  

 Although three planes are enough to compute transformation parameters between two datasets 
but redundancy of planes is helpful in exploiting least square adjustment for optimal computation 
of transformation parameters.  
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6.2. Answers to research questions 

1. Which technique has been used for feature extraction and is it reliable for registration? 
A well-known algorithm RANdom SAmple Consensus (RANSAC) has been used for feature extraction 
(plane feature0. This algorithm is robust enough to deal with noisy datasets (especially in case of UAV 
point cloud dataset) and can handle noise upto 50%. However, it has few drawbacks e.g., slight change 
occurs at each run in plane parameters which affect results for datasets having large difference from 
origin.  
 
2. Which kind of matching approaches are more robust for registration? 
Two type of matching approaches have been applied for registration of both datasets i.e. plane-to-plane & 
point-to-plane, etc. According to performance evaluation of both these approaches point-to-plane 
approach is found more robust than plane-to-plane approach. Plane-to-plane is sensitive with large 
distance (>3 meter) between datasets and especially in dealing with noisy datasets having scale issue also, 
whereas point-to-plane approach is robust with noisy point datasets also. Non-rigid transformation 
through point-to-plane registers both datasets with high accuracy (in terms of residuals). It shows that 
point-to-plane feature matching approach can play an alternate role for indirect sensor orientation.  
 
3. How far registration algorithm, reliably registers both datasets by using extracted/matched features? 
Developed algorithm works fine with both matching approaches but accuracy obtained for both 
approaches is different. Accuracy obtained by point-to-plane approach is much better than plane-to-plane 
approach. Non-rigid point-to-plane approach reaches upto 4cm difference in residuals with GCP based 
UAV point dataset.  
 
4. How robust this approach will be when the scene (features) changed considerably between both 
 datasets? 
Developed algorithm is tested on city data with a time scale difference of 5 years and scene has 
considerably changed due to urban expansion or some other development activities in target area. UAV 
data has up-to-date information about scene which is clearly visible in figure 1.1 showing some new 
buildings located in middle of area in UAV dataset (red colour). Un-availability of source plane (ALS 
dataset) in this middle area is not considering any planar feature within this region. By coincidence, in 
tested case, algorithm works fine as dispersion/scattering of planar features is not disturbed because 
developed area is in middle but it can reduce matching accuracy if same thing happens in some corner at 
large extent. However, no final conclusion can be made without applying developed algorithm on other 
dataset with structural deformation.  

6.3. Recommendations 

Few recommendations have been made for improvement of registration algorithm efficiency and accuracy 
or for future developments. Recommendations are; 

 Rapid developments in UAV photogrammetry can also be exploited for further study. Instead of 
generating point cloud from UAV images (introduction of random errors), lidar-UAV 
photogrammetric system can also be used which can provide at least less noisy data than UAV 
image-based. Such type of lidar-UAV’s are already come into play e.g. Wallace et al. (2012) has 
already used it for development of forestry inventory. Lidar-UAV data can also be exploited for 
conducted research and then evaluation results could be much better than now.  

 This study considers only planar feature for registration of both datasets. Other features like ‘line’ 
can also be incorporated for more optimal results. 

 Plane-to-plane rigid transformation is applied to dataset which is not working fine, however 
plane-to-plane non-rigid transformation results should also be analysed.  
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 Tested area is not congested area and buildings are situated at a quite noticeable distance from 
each other. It will be interesting to apply same technique with congested cities where extraction of 
true correspondence will become even difficult from this. This algorithm uses 1:5 
correspondences which may become inefficient for congested urban areas.   

 Adopted algorithm find true correspondences by inspecting matched correspondences after rigid 
transformation for their confirmation. Combination approach makes algorithm computationally 
expensive. In future it can be modified by looking only at residuals (mean & std.dev) of distances 
for each combination by applying few limitations/constraints in this approach. 
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