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Abstract 

 

Accurate assessment and monitoring of forest biomass is important for 

sustainable forest management. In particular, biomass assessment is required 

to estimate the global carbon budget, which is affected by recent increases in 

atmospheric CO2 concentrations. Various remote sensing (RS) techniques can 

be applied to estimate forest biomass. Airborne LiDAR data, in this respect, 

has proved to be a valuable tool, able to provide accurate estimates of above-

ground biomass (AGB). Similarly, three-dimensional (3D) matching of digital 

aerial photographs provides a new prospective for AGB estimation which is low 

cost compared to LiDAR. This study aims to compare the photogrammetric 3D 

aerial point cloud and LiDAR to extract tree height and Crown Projection Area 

(CPA) and develop species-specific regression models for accurate estimation 

and mapping of carbon stock in Bois noir forest of Barcelonnette, France. 

LiDAR data was processed to obtain the canopy height model (CHM) by 

subtracting the digital terrain model (DTM) from digital surface model (DSM). 

3D aerial point clouds were processed to generate CHM using subtraction of 

LiDAR DTM from aerial DSM since the terrain does not change abruptly but 

gradually. Tree crown delineation was done using a region growing approach in 

object based image analysis (OBIA). The carbon stock was calculated from 

field measured DBH and height using species-specific allometric equations and 

a standard conversion factor. For carbon stock estimation and mapping of the 

study area, species-wise multiple regression models were developed using 

segmented CPA and derived CHM from LiDAR and aerial point clouds and field 

measurements. The LiDAR derived tree height and the CHM derived from aerial 

point clouds were able to explain 81% and 66% of the field measured height 

variability respectively. Overall segmentation accuracy was 77% and 80% 

based on 1:1 correspondence for LiDAR and aerial image respectively. Species 

wise multiple regressions were able to explain 57%, 74%, 84% & 88% of 

variation in carbon estimation for Pinus uncinata, Pinus sylvestris, Fagus 

sylvatica and Larix decidua in the case of the aerial image and 54%, 57%, 

71% & 72% of variation in the case of the LiDAR. A total of 54.18 tonne C ha-1 

and 47.37 tonne C ha-1 AGB carbon stock was estimated using aerial images 

and LiDAR respectively. This study concludes that photogrammetric matching 

of digital aerial images is as promising a technique as LiDAR for estimating 

above ground carbon stock and the cost of forest sampling can be reduced 

with its application. 
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Chapter 1 
 

 

1.1 INTRODUCTION 
 

 

1.1.1 Background 

 

Forest ecosystems play a very important role in the global carbon cycle, 

contributing 80% of all above-ground and 40% of all below ground terrestrial 

organic carbon (Kirschbaum, 1996). Forest biomass which is defined as “the 

dry mass of the above-ground portion of live trees per unit area” (Bonnor, 

1985) is linked to many forest ecosystem processes. The growth in forest 

biomass results in net atmospheric carbon sequestration in the terrestrial 

biosphere whereas the cutting or burning of forest causes emissions to the 

atmosphere. Forests, therefore, act as either a carbon sink or source. The 

increasing concentration of atmospheric carbon dioxide (CO2), the major 

constituent of Green House Gases (GHG) is one of the main causes of climate 

change (IPCC, 2007). With the growing awareness about rising CO2 

concentrations, the role of forests in the assimilation of atmospheric CO2 is 

being increasingly realized. The preservation of forest areas can contribute 

strongly to the mitigation of global climate change. Therefore, for 

understanding the global carbon cycle, the assessment of carbon stock is 

crucial and are highly practiced (Sierra et al., 2007). 

 

Quantifying biomass is a matter of significant concern within the United 

Nations Framework Convention on Climate Change (UNFCC) and the Kyoto 

Protocol, both of which require signatory countries to regularly assess and 

address the issue of reducing GHG emissions in the atmosphere. All the 

contracting parties to the UNFCC convention commit themselves to update, 

publish and report their national inventories to emissions by sources and 

removals of sinks of all GHGs (Houghton, 1997). The Bali Action Plan of UNFCC 

in 2007 opened opportunities for developing countries to participate in forest 

carbon financing through the mechanism of “Reducing Emission from 

Deforestation and forest Degradation” (REDD). This aims to reduce emissions 

from forested lands by minimizing carbon emissions and investing in low-

carbon paths of sustainable development (MOFSC, 2009). Thus. REDD is an 

international effort to create a financial value for the carbon stored in forests.  

 

Forest management relies on accurate and up-to-date spatial information for 

the assessment of forest resources and for planning forest management 

activities (Weir, 2000). It is widely recognized that obtaining different forest 

parameters through ground measurements is time consuming and costly. 

Aerial photography, spaceborne optical sensors, Radar and LiDAR are used in 
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collecting spatial data (Suárez, 2002). These remote sensing techniques are 

used as indirect methods that are capable of obtaining information efficiently 

over wide areas.   

1.1.2 Overview of techniques for biomass 

estimation 

 

There are different techniques to measure biomass of forest. The main three 

techniques can be categorized as i) field measurement based (Brown et al., 

1989), ii) GIS based (Brown & Gaston, 1996)  and iii) Remote Sensing based 

(Lu, 2006) approaches. The traditional approaches based on field 

measurements are accurate, but their application is limited due to their 

laborious and destructive nature. GIS based methods, in the absence of good 

quality ancillary data such as land cover type, site quality and forest age, etc. 

are difficult because of an indirect relationship between these ancillary data 

and biomass in an area and the comprehensive impacts of environmental 

conditions on biomass accumulation. RS based method do not measure 

biomass directly, but rather use the statistical relationship between tree 

parameters extracted from satellite or aerial images and ground based 

measurements. This makes RS based approaches a faster method than the 

other approaches for the estimation of biomass (Gibbs et al., 2007).  

 

The majority of biomass assessments are done for above-ground biomass 

(AGB) of trees. The AGB accounts the greatest fraction of total living biomass 

in a forest which can be measured directly in the field or indirectly through 

emote sensing technique. The determination of biomass typically involves 

measurements of tree size parameters, in particular trunk diameter at breast 

height (DBH) and tree height. DBH is the stem diameter of a tree at 1.3 m 

above the ground level. DBH and height are the important tree parameters for 

biomass estimation (Jenkins et al., 2003). These parameters are used to 

develop allometric equations to estimate biomass. Since, DBH can be more 

easily measured in the field than height, most of the allometric equations are 

developed based on DBH (Jenkins et al., 2003). Allometric equations are the 

most used tool to assess the volume or biomass from forest inventory data. 

The quality of these equations is crucial for ensuring the accuracy of forest 

carbon estimates. However, the propagation of errors all along the process of 

building these equations should be considered, from the field work to the 

modelling and the prediction (Nguyet, 2012; Picard et al., 2012). Wood density 

is also an important variable in order to assess the biomass, which is defined 

as “the ratio of dry biomass with the fresh volume without bark” (IPCC, 2006). 
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Aerial photography and its applications for forest characteristics 
estimation 
 

Aerial photography is the economical method of RS for taking pictures of earth 

surface from an airborne platform such as aircraft, helicopter, kite and 

unmanned aerial vehicle (UAV). 2D or 3D models are created from aerial 

photographs of the ground from an elevated position and the technique is 

termed as aerial photogrammetry. Photogrammetric techniques are used to 

accurately determine the relationships of features on aerial photographs, such 

as ground distances and angles, the heights of objects and terrain elevations 

(Natural Resources Canada, 2007).  

 

Aerial photographs are classified into vertical and oblique photos, and they can 

be captured depending on the application intended. In vertical photos, the 

optical axis of the camera is perpendicular to the ground while, in oblique 

photos, the axis of the photograph is purposely tilted from the vertical. Most 

photographs are acquired vertically down from the aircraft so that 

measurements of objects and areas on Earth’s surface can be made with a 

minimum of calculation and correction for distortion due to the tilt of the 

camera. The photos are taken with overlap within flight-lines (forward overlap) 

and between flight-lines (sidelap). Forward overlap within a flight-line typically 

is from 60 to 70% while sidelap between flight-lines typically is from 25 to 

40% (Wolf & Dewitt, 2000) (Figure 1). Aerial photography is acquired with 

significant (more than 50%) overlap between images to obtain a complete 3D 

view of the covered territory (stereoscopic overlap), which can be viewed using 

a stereoscope. Through the use of photogrammetry, highly detailed 3D data 

can be derived from 2D photographs of a stereo pair. The 3D view is made 

possible by the 

effect of parallax, 

which refers to the 

apparent change in 

relative positions of 

stationery objects 

caused by a change 

in viewing position 

(Murtha & Sharma, 

2005). 

Measurements of 

this parallax are 

used to deduce the 

height of the 

objects. 

 

                Figure 1: Illustration of flight line and image overlapping 

                Source: Natural Resources Canada (www.nrcan.gc.ca) 
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The paradigm shift in aerial photogrammetry from analogue to digital 

photogrammetry has made aerial photography a rapidly evolving tool for 

environmental and ecological management. Digital photogrammetry is a 

computerized application and can be used with digital images and scanned 

analogue photographs (Madani, 2001). Digital aerial cameras have much 

higher radiometric resolution than analogue aerial cameras. The digital aerial 

photographs can be interpreted as 2D and 3D image. 3D based interpretation 

develops with digital photogrammetry can produce many forest parameters 

such as tree height, canopy density, crown radius and crown surface curvature 

(Gong et al., 2002). The recent advancement in algorithms to generate 3D 

data from automatic matching of aerial imagery has created a revolution in the 

estimation of forest parameters (Bohlin et al., 2012).  

 

Although aerial photography was used for forest mapping in Myanmar in the 

1920s, its widespread use as a major tool in forestry and related fields came 

about in the United States in the 1940s (Avery, 1969; Morgan et al., 2010). 

Aerial photography has been the most used RS data for decades in 

assessment, inventory and monitoring of natural resources (Packalen, 2009).  

Korpela (2004) lists the applications of photogrammetry in forestry such as 

forest mapping, stand attribute estimation, forest damage evaluation, 

interpretation of individual tree characteristics and tree composition 

estimation. Digital aerial photographs having multispectral information at the 

red, green, blue and near-infrared levels and high spatial resolution can be 

useful for acquiring tree species composition at individual tree or stand level 

(Kim et al., 2010). Similarly, many researchers have used analogue and digital 

aerial photographs to estimate different forest parameters such as volume 

measurement (Aldred, 1978), canopy structure (Nakashizuka et al., 1995), 

cover and distribution (Hudak & Wessman, 2001), stand biomass in tropical 

forest (Okuda et al., 2004), AGB in temperate forest (Tiwari & Singh, 1984). 

Nowadays, Unmanned Aerial Vehicles (UAVs) are rapidly gaining popularity for 

resource management due to the flexibility and relatively low cost for image 

acquisition. Thus, researchers are testing UAV in many forestry applications 

such as forest resources assessment (Herwitz et al., 2004), forest fire 

monitoring (Merino et al., 2012) and forest characterization (Tao et al., 2011).  

Satellite Imagery and its application 

 

Many studies have been carried out to estimate forest AGB using various types 

of RS satellite imagery at various scales and environments. The coarse spatial 

resolution optical sensors such as NOAA AVHRR (Dong et al., 2003) and 

MODIS (Baccini et al., 2004)  have been used for estimating biomass for the 

global, continental and national scales. On the other hand, because of the 

mixed pixels and a huge difference between the support of ground reference 

data and pixel size of the satellite data, the application of coarse resolution 

NOAA AVHRR have been limited (Lu et al., 2003). For regional and local scale, 

medium resolution satellite imagery, such as Landsat TM, is routinely used to 

estimate AGB (Steininger, 2000). However, these optical remote sensing 
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technologies face the problem of cloud cover, which limits the acquisition of 

high quality RS data (Karna, 2012). Very high resolution (VHR) satellite 

images have been used to develop carbon for carbon estimation of the forest 

(Shrestha, 2011). However, the effect of shadow, sun elevation angle and off-

nadir viewing angle cannot be tackled by the high resolution satellite images.  

LiDAR and its applications in forestry 

 

Light Detection and Ranging (LiDAR) is a relatively recent active RS technology 

for high precision three dimensional (3D) topographic data acquisition (Lefsky 

et al., 2002). Airplanes and helicopters are the most commonly used platforms 

for acquiring LiDAR data over broad areas (Figure 2). The LiDAR device directly 

measures the distance between the sensor and the target surface. It 

determines the elapsed time between the emission of laser pulse and the 

detection of the reflected signal (the return signal) at the sensor’s receiver 

(Jensen, 1996). The laser pulse is emitted from the device and travels through 

the atmosphere into a 

forested area and is then 

reflected from several 

surfaces such as a canopy, 

branches, leaves and often 

the ground (Evans et al., 

2009). A laser pulse is in the 

near infrared or visible part of 

the electromagnetic spectrum 

(900 – 1064 nm). For canopy 

mapping or studying forest 

parameters, LiDAR data often 

are acquired in leaf-off 

conditions to maximize the 

laser returns from tree 

crowns and forest structures 

(McGaughey & Carson, 2003).  

 

                                 

 Figure 2: Airborne LiDAR data acquisition (USDA, 2006) 

 

 

LiDAR system consists of four precision instruments: (1) a global positioning 

system (GPS), (2) an inertial navigation system (INS), and (3) an angle 

encoder and (4) a clock  

  

The absolute position of reflective surfaces such as the tree canopy, 

understory vegetation and the ground surface are recorded by LiDAR through 

the combination of these four elements. The GPS provides the coordinates of 

the laser source and the INS measures the attitude (roll, pitch and yaw) of the 

sensor. The angle encoder helps in measuring the orientation of the scanning 
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mirror while the clock measures the time between when a pulse is emitted and 

received (Lefsky et al., 2002). A detailed group of elevation points, called a 

“point cloud” are generated when laser ranges are combined with position and 

orientation data that are obtained from the abovementioned integrated 

elements. Each point in the point cloud has 3D spatial coordinates that 

correspond to a particular point on the Earth’s surface from which a laser pulse 

was reflected. The point cloud conveys information on elevation, structural 

geometry and intensity. 

  

LiDAR sensor can be categorized into two forms i.e. Discrete-return devices 

and Waveform recording device for receiving laser pulse returns. Discrete-

return systems have a high spatial resolution which detects fine-scale or 

‘small-footprint’ variation (typically 20 – 80 cm in diameter). These are able to 

record one to several returns through the forest canopy depending on returned 

laser intensity to a sensor. In contrast, waveform systems lack the spatial 

resolution resulting in a ‘large-footprint’ variation (10 – 100 m). This records 

the amount of energy returned to the sensor for a series of equal time 

intervals (Evans et al., 2009).  The distinction between discrete-return and 

waveform LiDAR is illustrated in Figure 3.  

 
Figure 3: Illustration of the conceptual differences between waveform and 

discrete-return LiDAR devices (Lefsky et al., 2002) 

LiDAR is considered to be a promising technique for forest monitoring because 

of its ability to assess the 3D forest structure (Patenaude et al., 2005) and to 

provide a reliable data on vertical profiles of vegetation canopies (Balzter et 
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al., 2007). With this capability, various methods have been developed for 

biomass estimation using both discrete-return and full waveform LiDAR 

systems. Lim and Treitz (2004) reviewed and found the potential of LiDAR for 

retrieving forest parameters. LiDAR data have been used to study several 

biophysical forest metrics such as Douglas fir western hemlock biomass 

(Means et al., 1999), tropical forest biomass (Drake et al., 2002), tree height 

and stand volume (Nilsson, 1996), tree crown diameter (Popescu et al., 2003), 

and canopy structure (Lovell et al., 2003). Lefsky et al. (2001) explained 84% 

of the AGB variance by regression from the LiDAR measured canopy structure. 

Popescu (2007) developed a method for biomass extraction from LiDAR-

derived tree height and crown diameter in combination with regression models 

at individual tree level where she found the good model performance with R2 of 

0.93. Ke et al. (2010) performed forest classification with an accuracy of 87% 

using LiDAR based segmentation.  LiDAR complements traditional field 

methods through data analysis, which is an advantage over high resolution 

satellite imagery for the extraction of vegetation parameters in detail (Song et 

al., 2010). These systems have been used either alone or in combination with 

passive optical or RaDAR data (Hyde et al., 2007). Fusion of LiDAR and very 

high resolution optical images show promise and can offer substantial 

improvements to biomass estimates (Chen et al., 2012; Erdody & Moskal, 

2010). 

1.1.3 Point cloud based on aerial image and LiDAR 

 

A point cloud is “a set of geometrically unstructured observations consisting of 

a large number of individual measurements in a three-dimensional coordinate 

system” (Heritage & Large, 2009). Both LiDAR and aerial imagery have been 

employed in many application fields because they generate reliable and dense 

3D point clouds over subjects or surfaces under consideration. 

Photogrammetry has a long history for the automation of information 

extraction from digital images while LiDAR is a more recent technology 

(Baltsavias, 1999). Despite the fact that tools for automatic stereo image 

matching have been available for more than decades, the collection of high 

resolution, high accuracy elevation data has been mainly dominated by the 

application of airborne LiDAR systems (Haala, 2009). However, automatic 

generation of high quality, dense point clouds from digital images by matching 

is a recent technology in digital photogrammetric technology (Haala, 2009). 

Lemaire (2008) reports that a DSM can be generated from image matching 

having similar accuracy to that of high resolution LiDAR data.  

 

DSM and DTM generated from aerial images provide sufficient accuracy to 

manage forest resources. Waser et al. (2008) used a photogrammetric DSM to 

detect the tree/shrub on a mire environment. St-Onge (2008) combined LiDAR 

and digital photogrammetry to create hybrid photo LiDAR CHMs where LiDAR 

was used to produce a DTM and a DSM was obtained using automatic stereo 

matching of aerial photographs. This kind of study opens up the possibility of 

using historical photography to retrospectively assess biomass (Morgan et al., 
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2010). A number of studies have shown the successful use of LiDAR combined 

with other sensor data to estimate tree height, crown diameter, basal area, 

stem volume and mapping the 3D canopy structure as canopy height models 

(Næsset & Gobakken, 2005). Some of the studies using LiDAR and aerial 

imagery either alone or in combination were shown in Table 1 to produce 

timely and accurate forest parameters. 

 

The high point density of LiDAR data makes it more possible to detect accurate 

height and crown dimensions of individual trees. Persson et al. (2002) 

detected height and crown diameter with RMSE of 0.63 m and 0.61 m 

respectively with high density of points. Kwak et al. (2010) estimated the stem 

volume and biomass of individual Pinus koraiensis using LiDAR with density of 

5-7 point/m-2. An individual tree crown and height of deciduous forest was 

analysed by  (Brandtberg et al., 2003) using point density of 12 point/m-2. In 

their study, (Thomas et al., 2006) found that the high density models are well 

correlated with mean dominant tree height (0.90), basal area (0.91) and 

crown closure (0.92) while crown closure could not be predicted accurately 

with low density models. In many research studies, LiDAR data fusion, 

especially low point density with high resolution aerial imagery or passive 

optical sensors, is considered to be effective. For example, improving 

measurement of forest structural parameters by co-registering aerial imagery 

and LiDAR data (Huang et al., 2009). The integration of digital aerial 

photography and LiDAR data can be more useful for assessing biomass and 

carbon storage than using either aerial photographs or LiDAR data alone 

(Popescu, 2007). 

 

Table 1: Application of LiDAR and aerial photos 

Author 
Aerial 
image LiDAR Parameters Accuracy 

Leckie et al. (2003) 8.5cm  2/m-2 
tree crown 
isolation 

80% - 90% 

Heinzel et al. (2008) 25 cm 7/m-2 
tree species 
classification 

83% 

Chen et al. (2012)  10 cm 1.7/m-2 
Forest canopy 

modeling 
88% 

St-Onge & Achaichia 
(2001) 

85 cm 1/m-2 
Forest canopy 
height 

90% 

Bohlin et al. (2012) 12 cm 7/m-2 
Forest variable 
estimation 

Height (92%),  
Stem volume 
(86%), 
Basal area (85%) 

Kim et al. (2010) 25 cm 5-10/m-2 
Carbon 
estimation   
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1.1.4 Rationale and Problem statement 

 

The assessment of forest above-ground biomass is important for the 

estimation of long-term carbon storage and for forest resource management 

(Waring & Schlesinger, 1985). DBH and tree height has been an important 

parameter used for calculating biomass, which traditionally is estimated by 

field surveys. However, measuring tree height and biomass estimation by field 

survey involves very labor-intensive and time consuming work (Kwak et al., 

2007). Remote sensing techniques such as aerial photography, satellite 

imagery and airborne LiDAR data solved the problem of biomass estimation 

over large areas. The relationship between DBH, tree height and Canopy 

Projection Area (CPA) should be established from regression analysis to 

estimate AGB from RS techniques (Popescu & Wynne, 2004). Several RS based 

approaches have been developed for biomass and carbon estimation. However, 

most of the existing methods have considerable uncertainties and, thus 

accurate methods are required (Köhl et al., 2009). In this context, LiDAR data 

and photogrammetric matching of aerial images can be used to improve the 

accuracy of estimation of carbon stock compared to other approaches. 

Airborne LiDAR and digital photogrammetry are considered to be most precise 

remote sensing means among others for mapping the height of forest canopies 

(Lim & Treitz, 2004).  

 

Airborne LiDAR is a promising technology for the assessment of AGB but it is 

difficult to estimate the tree species and tree density in LiDAR data with low 

point density (Means, 2000). Also, the LiDAR data acquisition is too costly to 

be used over large areas (Gibbs et al., 2007) . However, 3D point clouds 

produced through image matching of high spatial resolution digital aerial  

images cover a large area and can replace the potential of LiDAR data, 

reducing some of the costs incurred by expensive LiDAR data acquisition 

(Leberl et al., 2010). Previous studies found that the canopy surface modeling 

using digital aerial photogrammetry has similar quality compared to that which 

is obtained by LiDAR data (Bohlin et al., 2012; Järnstedt et al., 2012). The 

advantages of image matching and good signal-to-noise ratio of digital 

photogrammetric cameras lead to the improvement of accuracy, reliability and 

density of automatic point transfer (Haala et al., 2010).  

 

LiDAR can be used for improving traditional photogrammetric methods, but it 

has poor textural and spectral information in comparison to digital aerial 

images. While, aerial photography records the features on the ground in their 

true appearance, even in a 3D form under stereoscopic vision (Rabben et al., 

1960). The tree height obtained from LiDAR is more reliable than 
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photogrammetry, because shade obscures bare soil on aerial images (Hyyppä 

et al., 2008). This problem is not faced by with high density LiDAR imagery. 

Despite the differences between two technologies, many authors (Ackermann, 

1999; Hollaus et al., 2007; Persson et al., 2002) advised the use of combined 

data from photogrammetry and laser scanning in order to study different 

forest attributes. In this study, a high density of LiDAR data with an average of 

164 points/m-2 and aerial images with an average of 16.4 points/m-2 available 

for the Bois-Noir basin, France will be used to assess forest biomass and 

carbon stock.  

 

Thus, this study aims to explore the accuracy of the forest structural extraction 

with its high point density and intended to look into the accuracy levels of 

these two methods for biomass estimation, which is important for sustainable 

forest management.  

 

 

1.1.5 General Objective 
 

To compare point clouds derived from i) 3D photogrammetric matching of 

aerial images and ii) airborne LiDAR for the estimation of biomass/carbon in 

the Bois noir forests of Barcelonnette, France. 

1.1.6 Specific Objectives 

 
1. To compare the heights of conifer and broad-leaved trees derived from 

aerial image point clouds with tree heights derived from LiDAR point 

clouds. 

 

2. To estimate the Crown Projection Area (CPA) of conifer and broad-

leaved trees derived from aerial image point clouds and CPA derived 

from LiDAR point clouds. 

 

3. To estimate total above ground biomass/carbon using point cloud 

extracted from i) aerial image ii) airborne LiDAR data. 

1.1.7 Research Questions 

 

1. How accurately can the heights of individual trees be determined from 

the CHM obtained from i) aerial image and ii) LiDAR data? 
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2. How accurately can CPA (m2) of individual trees be estimated on 

segmented point clouds derived from i) aerial image and ii) LiDAR data? 

 

3. What is total above-ground biomass / carbon stock estimated using 

point clouds derived from i) aerial image and ii) LiDAR data? 

  

1.1.8 Research Hypotheses 

 

1. Ha: The tree heights obtained from the CHM of LiDAR data are 

significantly  higher at 95% confidence level than the tree 

heights obtained from aerial image point cloud. 

 

2. Ha: The CPA obtained from segmented point clouds derived from 

aerial image is significantly greater at 95% confidence level than 

the CPA obtained from LiDAR data. 

 

3. Ha: There is a significant difference in estimation of biomass/carbon 

estimated using aerial image point cloud (aerial height + aerial 

CPA) and LiDAR point cloud (LiDAR height + LiDAR CPA). 

 

1.1.9 Thesis Outline 

 

Chapter 1 provides the research background with the overview of techniques 

for biomass and carbon stock estimation. It focuses on point cloud generation 

from aerial photographs and LiDAR. The research problem along with the 

research objectives, questions and hypotheses are also described in this 

chapter.  

 

Chapter 2 briefly describes the study area, material and methods adopted to 

meet the research objectives.  

 

Chapter 3 presents the results of tree height and tree crown delineation from 

two main datasets (Aerial image and LiDAR). The relationships among different 

forests variables are also presented in this chapter. 

 

Chapter 4 focusses on the results and are discussed separately under different 

headings i.e. CHM preparation, tree crown delineation and its assessment and 

carbon stock estimation. 

 

Chapter 5 presents the research’s conclusion providing answers to research 

questions and possible recommendations for the future research works. 
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Chapter 2 
 

 

2.1 STUDY AREA, MATERIALS AND METHODS 
 

 

2.1.1 Study Area 

 

The study area is a part of Bois noir catchment situated in the South-eastern 

part of France in the district of Barcelonnette around latitude 44°25’ 22°87’’N 

and longitude 6°40’ 22°43’’ E. ‘Bois noir’ is a French word, and it means ‘Black 

Wood’ in English. The Barcelonnette basin  lies at an elevation ranging from 

1100 to 3000 m asl, (Saez et al., 2012). The area is a steep forested basin in 

the greater L’Ubaye river valley and about 26 km long (Thiery et al., 2007). 

The study site is about 1.3 km2, shown in Figure 4. It is a tourist hotspot, 

famous for skiing in winter and for biking, hiking, paragliding and rafting in a 

summer. 

Climate 

 

The climate of the study area is characterized by dry and mountainous 

Mediterranean climate with a strong inter-annual rainfall variability (Saez et 

al., 2012). The rainfall varies between 400 and 1400 mm (Flageollet et al., 

1999). The mean annual temperature is around 7.5° C with 130 frost days per 

annum (Maquaire et al., 2003). 

Geology 

 

The Bois noir basin has an irregular rugged topography with slope gradients 

ranging from 10° and 70° (Saez et al., 2012; Thiery et al., 2007). 

Geologically, the northern part of Bois Noir is described by morainic colluvium 

and autochthonous Callovo-Oxfordian black marls, overlaid by deposits of 

reworked glacial till (Flageollet et al., 1999). Due to these predisposing 

geological structure, the area is highly sensitive to weathering and erosion. 

Outcrops of limestone and sandstone characterize the southern part of Bois 

Noir. 
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 Figure 4: Study area, Bois noir, Barcelonnette, France 

Vegetation 

 

About 92% of the total surface area of the Bois noir catchment is covered by 

forests (Thiery et al., 2007). The Mountain pine (Pinus uncinata), Scots pine 

(Pinus sylvestris), European larch (Larix deciduas) and a few Norway spruce 

(Picea abies) are the dominant tree species. Some broadleaved trees such as 

European beech (Fagus sylvatica), ash (Fraxinus sp.), alder (Alnus sp.), 

juniper (Juniperus sp.), and poplar (Populus sp.) were also recorded in the 

study area during the field work. The forest in the Ubaye Valley was severely 

degraded by population pressure and soil erosion in the 15th and 16th centuries 

(Weber, 1994). In the 19th century, reforestation was started over the Ubaye 

Valley through the enforcement of local laws. A high and frequent landslide 

activity in the catchment has disrupted the tree stand structures giving rise to 
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so-called “drunken trees” (Razak et al., 2011). A brief description of dominant 

tree species in the study site is given below: 

Pinus sylvestris L.  

 

The Scots pine (Pinus sylvestris) is an evergreen coniferous indigenous in the 

dry inner alpine valleys and the dry Alps. It consists of a single trunk and a 

rather broad irregular crown. The crown is conical-ovoid in shape with widely 

spreading to ascending lateral branches. It is readily distinguished from other 

pines by its combination of fairly short, blue-green leaves and orange-red bark 

in the upper half of the stem. In the study area, the Scots pines are infested 

with Mistletoe (Viscum album L). 

Pinus uncinata Mill. Ex Mirb.  

 

The Mountain pine (Pinus uncinata) is naturally found at the tree line in 

Pyrenees and the Western Alps. It consists of a single trunk, and the crown is 

conical in shape with narrow spreading lateral branches. The Scots pine and 

the Mountain pine can be distinguished based on stomata and cuticle 

characteristics of their needles (Fauvart et al., 2012). A high number of 

drunken P. uncinata trees is found in higher elevations in the study area 

(Thapa, 2013). 

Larix decidua Miller 

 

The European larch (Larix decidua) is a deciduous-coniferous tree, native to 

the mountains of central Europe, in the Alps and Carpathians. The Larch is 

found at higher elevation in the research area and occurs in small open groups 

of trees much taller than the surrounding pine trees. 

Picea abies L.  

 

The Norway spruce (Picea abies) is a fast growing evergreen coniferous tree, 

native in northern Europe and throughout the Alps. This species is also widely 

planted outside its natural habitat. 
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2.1.2 Materials 

The airborne LiDAR data and aerial photographs were acquired in July 2009. 

 

Aerial Images 
 

The aerial photographs of 15 cm resolution were co-captured with the LiDAR 

data (Figure 5). The images were taken by HasselbladH3DII digital camera. A 

total of 302 images captured and stored in .JPEG file format. The image 

consists of 3 bands (Red, Green and Blue). The focal length of the camera is 

35.026 mm. Detailed specifications are given in Table 2. The ortho image of 

the study area was prepared from mosaicking aerial photographs and ortho-

rectifying in Leica Photogrammetry Suite (LPS) plugin of ERDAS Imagine 10 

using LiDAR derived DTM (Kumar, 2012). Aerial image processing resulted into 

28,771,790 points, with a mean density of 16.4 points/m-2. The 3D view of 

study terrain is shown in Figure 6. 

 

Table 2: Metadata for Aerial images 

 

Acquisition date 08.07.2009 

Image type RGB 

Flying height 300 m 

Scan resolution 0.15 m 

Average density 

Image size  

16.4 points/m-2 

49.056 mm  x 36.792 mm 

 

 

 
                                Figure 5: Aerial photographs of the study area 
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  Figure 6: 3D view of photogrammetrically matched aerial images 

LiDAR data 

 

A high density airborne LiDAR data was acquired using a helicopter flying at an 

altitude of 300 m above the ground by Helimap Company SA. A RIEGL VQ-480 

laser scanner with a pulse repetition rate of up to 300 kHz was used to record 

the LiDAR data. The spatial positioning was done using a Topcon Legacy GGD 

capable of tracking GPS and GLONASS positioning satellites. The orientation of 

the aircraft was determined using the iMAR FSAS inertial measurement unit 

(IMU). Seven flight lines were flown at an altitude of 300 m above the ground 

resulting in 213.7 million points, with a mean density of 164 points/m-2 and 

113 points/m-2 for all and last return records respectively. The LiDAR fight data 

as obtained from the field was first pre-processed by the vendor using 

Terrascan software. The point data (X, Y, Z) was produced in LAS1.2 format 

which contains (X, Y, Z) coordinates, intensity, return number, scan direction, 

scan angle rank, point source ID, classification and GPS time.  In total 17 

subsets were provided for the study area in LAS file format. Details of the 

LiDAR acquisition are given in Table 3. A sample visualization of study area is 

shown in Figure 7. 
 

Table 3: Metadata for Airborne LiDAR data 

Acquistion date 

Laser pulse repletion rate 

08.07.2009 

300 kHz 

Beam divergence 0.3 mrad 

Laser beam footprint 75 mm at 250 m 

Flying height 

Field of view 

300 m 

60° 

Average density 

Scanning method 

164 points m-2 

Rotating multi-facet mirror 
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Figure 7: 3D view of LiDAR point cloud (Kumar, 2012) 

2.1.3 Methods 

 

The overall method consists of four major parts: field work data collection, 

aerial photographs and LiDAR processing, object based segmentation analysis 

and model development. The aerial images were processed to obtain point 

clouds data and DSM. DSM, DTM and normalised point cloud were generated 

from processing of liDAR data. Canopy Height Model (CHM) was generated 

from both datasets and was used to extract height of the individual tree. 

Individual tree crown delineation was done using Region growing in eCognition 

software. Accuracy assessment of segmentation was performed. Multiple 

regression model for both datasets were developed using CPA and height as 

explanatory variables for carbon estimation. A flow diagram showing the 

research method is illustrated in Figure 8. 
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Figure 8: Flowchart of research methods 
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2.1.3.1 Field Sampling design 
 

A stratified random sampling design based on plots was applied for this study. 

This sampling design helps to ensure that the sample is spread out over the 

entire study area and gives more precise estimates of the population 

parameters of interest (mean or total) (Shiver & Borders, 1996). Stratification 

was done using a land cover map obtained from the French Forest Service,  

which was divided into five strata (i.e, Scots pine, Mountain pine, broad 

leaved, mixed forest and bare rock (Office National des Forest, 2000). Twenty-

eight plots were visited and measured for this phase, but ancillary data 

collected in 2011 and 2012 using the same sampling design provided extra 

sampling plots for this research. Altogether 88 plots were taken into 

consideration for the study (Appendix 1). 

2.1.3.2 Field data collection 

 

Field data collection was carried out during the month of September 2013. A 

Garmin GPS receiver and orthophoto map were used to locate the center of 

each plot. A circular plot of 500 m2 area with a 12.62 m radius was chosen out 

for the measurement of tree parameters after slope correction (Husch et al., 

2003). The Suunto clinometer was used to measure the slope, and the slope 

correction was performed for all plots having slope larger than five degrees 

using a slope correction table (Appendix 2). Within the circular plot, trees with 

DBH 10 cm or greater were measured with DBH tape at height of 1.3 m above 

the ground. Individual tree height was measured using Haga hypsometer and 

plot canopy cover was measured using a spherical densiometer from five 

different locations within the plot and canopy cover was averaged. A total of 

28 plots were surveyed. Ancillary data collected in 2011 and 2012 along with 

the current study provided additional 975 individual trees of known location.  

2.1.3.3 Data Analysis 

 

The collected field data was entered appropriately in an Excel sheet. Box plots 

were made for depiction of collected field data for major tree species. 

Identified trees on the image during the fieldwork were delineated using 

ArcGIS. The identified trees were used for developing and validation of the 

regression model.   

2.1.3.4 LiDAR pre-processing 

 

LiDAR data is in the form of discreet point clouds of ground features having X, 

Y, Z coordinates of all the points where the Z value characterizes the elevation 

of each point. LiDAR point cloud was obtained in the las format which consists 

of 17 tiles for the study area. LAStools was used for pre-processing of raw 

LiDAR data which is the efficient tool and can be used for filtering, tiling, 
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rasterizing, triangulating, converting, clipping, quality-checking etc. 

(Rapidlasso, 2013). LiDAR pre-processing involved the generation of the 

Digital Terrain Model (DTM), Digital Surface Model (DSM) and Canopy Height 

Model (CHM).  

DSM, DTM and CHM generation 

 

The Digital Terrain Model (DTM), Digital Surface Model (DSM) and Canopy 

Height Model (CHM) were generated using LAStools software.  

 

Digital Terrain Models are digital representations of variables relating to a 

topographic surface, such as elevation (DEM), aspect, gradient, 

horizontal/vertical land surface curvature and other topographic attributes 

(Florinsky, 1998). LiDAR DTMs are created by interpolation of ground returns 

with the assumption that terrain does not change abruptly but gradually 

(McCullagh, 1988). In total, 9.4 million returns in the point cloud were 

classified as ground returns. LASgrid tool was used to generate the DTM using 

ground returns only and a fill of 2 pixels with grid size 0.15 m. The fill function 

determines the number of pixels to be considered in the prediction of ‘no data’ 

pixels based on the neighbourhood during rasterization. 

 

A Digital Surface Model (DSM) represents the earth’s surface and includes all 

objects on it whereas DTM represents the bare ground surface (Heritage & 

Large, 2009). A DSM is generated from the first canopy return of the LiDAR 

pulse and LASgrid tool for Windows was used to generate the DSM using the 

same algorithm as used in DTM generation keeping the highest elevation of 

first returns.  

 

A Canopy height Model (CHM) or the normalized DSM represents the absolute 

height of all above-ground features. A CHM was obtained through gridding 

normalized point cloud using LASheight tool for Windows provided in the 

LAStools software, keeping the highest elevation of first returns and a 2 pixel 

fill. Alternatively, it could also be obtained by computing the difference 

between DSM and DTM using a raster calculator in ArcGIS. The generated CHM 

showed some noise resulting in high variation in height values of trees which 

are not true in reality. Thus, we dropped all the noise points and kept the 

value of CHM as 0 and 40 m. 

2.1.3.5 Aerial Images Pre-processing  

 

There are several commercial software and algorithms for the generation of 

DTM and DSM; point clouds and orthophoto such as Socet set, Match-T DSM, 

Photosynth and LPS software (Bohlin et al., 2012; Lemaire, 2008). Pix4D 

software was used in this study which converts thousands of aerial images into 

geo-referenced 2D mosaics and 3D surface models and point clouds (pix4d, 

2014). It is a digital photogrammetric workstation which is fully automated 

and requires no manual interaction, capable of computing the 
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photogrammetric products: 3D point cloud, DSM and orthophoto mosaic 

(Naumann et al., 2013). The software searches for and matches points by 

analysing all uploaded images using a computer vision technique, the SIFT 

(Scale Invariant Feature Transform) (Lowe, 2004). SIFT identifies the features 

in images invariant to scaling, rotation, illumination and deformation. This 

method automatically identifies key-points in each image followed by 

extraction of vector feature descriptors surrounding the key-points that are 

invariant of orientation (Lowe, 2004). Those matching points and approximate 

locations of the cameras are then used in a bundle block adjustment to 

reconstruct the position and orientation of the camera for every require image 

(Triggs et al., 2000). 

Bundle block adjustment 

 

Bundle block adjustment involves orientation of the entire block of images. It 

estimates the 3D location of each point corresponds to the location and 

orientation of cameras (Snavely et al., 2008). The orientation parameters of 

aerial images are interior and exterior orientation. Pix4D allows computing the 

block orientation in a fully automatic way, requiring only camera calibration 

parameters and image geo-location as an input (Gini et al., 2012). Ground 

Control Points (GCPs) were included together with corresponding image points 

within bundle block adjustment to improve spatial accuracy (Naumann et al., 

2013). Bundle block adjustment refines the structure from motion by non-

linear least square solution minimizing the reprojection error (Lourakis & 

Argyros, 2009).  

 

Dense Image matching 
 

Pix4D performs abovementioned tasks as part of an automated computer 

vision SfM (Structure from Motion) pipeline in order to produce 3D RGB point 

cloud (Verhoeven, 2011). Dense image matching is used to match a huge 

number of pixels automatically to generate a surface model from a set of 

overlapping digital images. The matched points after bundle block adjustment 

can have their calculated 3-D coordinates. Those 3D points are interpolated to 

form a triangulated irregular network to achieve a mesh Digital Surface Model 

(DSM) through image matching (Küng et al., 2011). The quality of images, 

orientation, and camera calibration determine the quality of DSM. The 

geometry accuracy of DSM from image matching depends upon the image 

correction coordinated from bundle block adjustment (Haala, 2009). Figure 9 

depicts the entire processing pipeline in generating 3D point cloud. 
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CHM generation 
 

The aerial photo CHM was generated by subtracting the LiDAR DTM from the 

Aerial DSM. The point clouds of the aerial image have one return, and 

therefore they cannot estimate the ground level of terrain properly. Thus, the 

point cloud generated from the aerial image only contains DSM. LiDAR DTM 

performed better than aerial photo DTM as LiDAR has multiple returns. DTM 

can be constant for a long time, but DSM needs to be accurate and up-to-date 

Figure 9: 3D point cloud generation by building geometry form matching 

features identified in multiple overlapping photographs (Dandois & Ellis, 
2013) 
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to get CHM. Thus, (Schardt et al., 2004) suggest using DTM from LiDAR to 

achieve better accuracy for forestry purposes. The co-registration of LiDAR 

DTM was done with Aerial DSM which resulted with root mean square error 

(RMSE) of 0.29 m (Appendix 3). Matching of different sources of information 

can be sometimes impossible due to terrain slope and tree height (Valbuena et 

al., 2008). Thus, error introduced during the co-registration process 

subsequently leads to the error in segmentation and height extraction.  

2.1.3.6 Validation of CHM 

 

The LiDAR derived tree height and photogrammetrically derived tree height 

were compared to the corresponding height of the corresponding field 

measured tree. The LiDAR and photogrammetrically derived tree height were 

extracted as a maximum pixel value from CPA of the CHM. The tree height 

derived from point clouds of LiDAR and Aerial image were regressed against 

field height, which yielded a R2 to validate the CHM created. Pearson’s 

correlation test and one - way ANOVA test were carried out to find out if there 

is a significant difference between their heights. 

2.1.3.7 Tree crown delineation 

 

Segmentation of individual trees and extraction of relevant tree structure 

information from remotely sensed data is very useful in forestry (Chen et al., 

2006). For a delineation of tree crown, the crowns should be recognizable as a 

distinct object in the remote sensing images and the spatial resolution of the 

image should be much higher than the tree crown size. Segmenting an image 

into meaningful objects is an initial step of object based image analysis (OBIA) 

which involves grouping neighbouring pixels into significant image objects 

(segments) based on homogeneity criteria. Several methods exist for 

segmentation of the image depending on the algorithms having different 

characteristics. Some of the commonly used algorithms include watershed 

segmentation (Wang et al., 2004), region growing (Ke & Quackenbush, 2008), 

valley following (Gougeon & Leckie, 2006), multi-resolution (Yu et al., 2006). 

The segmentation techniques can be grouped into top-down and bottom-up 

approach. Top down approach includes cutting big objects into smaller pieces 

through Chessboard, Quadtree, Contrast filter and Contrast split segmentation 

while bottom up approach is merging of small pieces so as to get bigger 

objects based on homogeneity criteria (Karna, 2012). In this study, 

chessboard segmentation and the region growing method were used in 

eCognition Developer 8.7 software to derive the tree crowns. The image 

segmentation process was as follow: 

Smoothening/Filtering 

 

Both the orthophoto and LiDAR CHM were smoothened to improve an image 

visual interpretability and to avoid the finding of false tree tops within a tree 
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(Reitberger et al., 2007). This was done by applying a Convolution filter, which 

replaces each pixel value by the average of the square of the matrix centred 

on the pixel (eCognition, 2011). In this study, 3 X 3 kernel size was used for 

the filtering. 

Chessboard segmentation 

 

Chessboard segmentation is a top-down segmentation strategy in which an 

image objects split into smaller objects into equal squares of a given size 

(Definiens, 2007). The object size is the most important parameter in 

chessboard segmentation, which has to be specified by the user. Grid size of 

2*2 pixels was used for chessboard segmentation based on processing 

capability of eCognition. Figure 10 illustrates the chessboard segmentation 

having square grid of fixed size aggregated into meaningful objects. After 

chessboard segmentation, the resulting objects were divided into two 

preliminary classes: tree and others. The mean brightness value from the 

aerial image and height information from LiDAR CHM were used to assign the 

classes. Objects (tree) with height less than 2 m were removed (Næsset, 

1997) in order to have trees with significant stem volume for biomass 

calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

Region Growing Approach 

 

Region Growing is bottom-up segmentation where the segments grow, 

according to some similarity rules, from a number of seed points. It starts with 

one pixel objects and subsequently merges pairs of adjacent objects into larger 

objects based on the smallest growth of heterogeneity, which may be defined 

through spectral variance and geometry of object (Definiens, 2007). This 

approach needs seed points to be specified first. Starting at potential seed 

pixels, neighbouring pixels are examined and added to growing region if they 

are similar to the seed pixels (Ke & Quackenbush, 2008). Individual tree 

segmentation was done using local maxima (peaks) and local minima 

(valleys). Local maxima are used a seed points to grow into meaningful objects 

Figure 10: Chessboard segmentation 
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and it looks like peak of the mountain and local minima are used as a 

restriction for growing region which looks like valley (Culvenor, 2002) (Figure 

11). The algorithm assumes that the centre of the crown is brighter than the 

edges (Culvenor, 2002).  

 

The CHM and orthophoto were used as primary raster layers for Region 

Growing segmentation. Tree crown delineation was done based on growing of 

treetop using local maxima and local minima to define likely crown boundaries. 

Treetop detection can vary with window size; thus, an appropriate window size 

or threshold should be chosen. In this study, a 5x5 window size was chosen to 

fit the average crown diameter of 2.9 meters measured in the field. 

 

Firstly, local minima were identified defining the “search range window” size 

and local minima that were close to each other were merged as they form the 

edge of the segmented object or the boundary of the tree crown. Then, local 

maxima were identified but all identified tree tops were not true tree tops as 

the algorithm identified more than one tree top for a single tree. To remove 

false tree tops, all tree tops which neighbours to one another were merged. 

Then region growing from tree top was started until it reached the local 

minima. Minima were used to control the relative growth of crown so as to 

prevent neighbouring crowns intruding each other’s space (Kumar, 2012). Tree 

crowns were grown in relation with neighbouring objects. Local maxima and 

local minima were identified using height information from the CHM and 

extracted using “find enclose by image object” (Kwak et al., 2007).  

 
Figure 11: Radiometric 'topography' of a subset of VHR image of Eucalypt 

forest (Culvenor, 2002) 
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2.1.3.8 Accuracy assessment of tree crown 
delineation 
 

Segmentation validation is related to quality of data (noise, spatial and 

spectral resolution) and the optimal customization of parameter settings 

(Möller et al., 2007). There are several methods for segmentation validation. 

In this study, validation of the segmentation was done using two accuracy 

measures i.e. Relative Area measures developed by (Clinton et al., 2010) and 

1:1 correspondence (Zhan et al., 2005).  

 

Clinton et al. (2010) have developed a geometrical segmentation accuracy 

measures in terms of over and under segmentation; and goodness of fit (D). 

Over segmentation and under segmentation as defined by (Clinton et al., 

2010) are given in equations 1 and 2. 

 
 

Where xi is a reference object and yj is a corresponding segmented objects. 

 

The value of over segmentation and under segmentation lies within the range 

of 0 to 1, where 0 value means a perfect segmentation (Clinton et al., 2010). 

The segmentation goodness or closeness of fit (D) is a measure of error in 

segmentation (equation 3). The D value ranges from 0 to 1 and a D value 

equals to 0 means perfect segmentation (Clinton et al., 2010). 

 
 

1:1 spatial correspondence was assessed by matching manually delineated 

tree crowns with automated segments. A higher percentage  of 1:1 

correspondence indicates a higher accuracy. 
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2.1.3.9 Above Ground Biomass and Carbon Stock 

calculation 

 

For the estimation of above-ground biomass (AGB), a crucial step is to 

determine the allometric equations which can be used to estimate carbon stock 

of forests. Site specific allometric equations were not available for the tree 

species recorded in the study area. The following allometric biomass equations 

of Pinus uncinata (Spain), Pinus sylvestris (Italy), Larix decidua (Italy) and 

Fagus sylvatica (Italy) were used for the carbon estimation in the study area. 

The allometric equations for these tree species were available from an 

international web platform, GlobAllomeTree. This platform support volume, 

biomass and carbon stock assessment (GlobAllomeTree, 2013). The equation 

for each tree species is given in equations 4 to 8 below: 

 

P.uncinata  

AGB = 0.0203*DBH^2*H……………………………………………………………………4  

P.sylvestris 

AGB = DBH^1.82075*H^1.07427*exp(-2.8885)……………………………..5  

L. decidua 

AGB = 8.8267+0.03426*DBH^2*H+0.27518*DBh^2……………………..6  

F. sylvatica  

AGB = 0.03638*DBH^2.15436*H^0.6587……………………………………….7  

 

Where,  

AGB = above ground biomass (kg) 

DBH = tree diameter at breast height (cm) 

H = tree height (m) 

Exp = exponential function 

 

Furthermore, carbon stock of the tree species was calculated from AGB using a 

conversion factor of 0.47 (about 47% of the dry biomass is assumed to be 

carbon for all parts of trees as a default value) as suggested by IPCC (2006). 

 

Carbon stock = 0.47 × AGB………………………………………….8 

2.1.3.10 Regression analysis and model validation 

 

Regression analysis has been intensively used for modelling the relationship 

between response variable and one or more explanatory variables. The 

analysis provides quantitative relationship and is expressed by an equation and 

its graphic representation (Husch et al., 2003). The coefficient of 

determination (R2) and root mean squared error (RMSE) help to evaluate the 

model performance. Generally, a higher R2 or a lower RMSE value indicates a 

good fit between observed and predicted outcomes (Lu, 2006). R2 gives the 
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proportion of the variance of one variable that is predictable from the other 

variable. RMSE gives error in kg which is calculated as follows: 

……………………………9 

 

Where,  

Xo = Observed carbon 

Xp = Predicted carbon 

n = Number of observation 

 

In this study, AGB considered as a dependent variable while other variables 

such as segmented CPA (LiDAR CPA and aerial CPA) of each tree and the 

height derived from LiDAR and aerial derived height were considered as 

independent variables. In order to avoid multi-collinearity amongst the 

explanatory variables (CPA and height), the Variation Inflation Factor (VIF) 

was calculated. A VIF value above 10 indicates the effect of multi-collinearity 

on the model (O’brien, 2007).  

 

The individual tree which had 1:1 spatial correspondence with reference and 

delineated tree crowns were used for model development and validation since 

incorrectly identified and misclassified trees cannot be used for evaluation 

(Pouliot et al., 2002). Besides this, outliers should also be removed to 

establish a robust model. Therefore, the total number of observations become 

less than that of the number of trees that were initially identified on the image. 

Validation of the model was carried out using 30% of the field measured data 

to determine the significance and strength of the relationships. 

2.1.3.11 Estimation of AGB and Carbon stock  

 

After the regression model was developed and validated, the model was 

applied to estimate AGB and carbon stock in the study area. The CPA and 

height derived from aerial point clouds and CPA and height derived from LiDAR 

data were used as independent variables to produce estimates of AGB and 

carbon stock. A carbon map of the study area was prepared using ArcGIS. 
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Chapter 3 
 

 

3.1 RESULTS 
 

 

3.1.1 Descriptive analysis of field data 

 

Forest stand parameters (DBH, height and crown diameter) were recorded from 

88 sampling plots in the study area. In total, DBH was measured for 2180 trees 

while the height and crown diameter of 1377 and 892 trees were measured 

respectively. Descriptive statistics of sampled data are shown in Table 4. 

 

Table 4: Descriptive statistics of sampled trees 

 

Statistics DBH  (cm) Height (m)  Crown diameter (m) 

Mean 21.75 13.25 3.08 

Minimum 10 5.20 0.50 

Maximum 61 29 11.10 

Standard Deviation 8.26 3.52 1.55 

Number of trees 2180 1377 892 

 

Bois noir is dominated by conifer species. Pinus sylvestris and Pinus uncinata are 

the dominant species with occurrence of 48% and 41% respectively. Other tree 

species are Fagus sylvatica, Larix decidua, Fraxinus excelsior and Picea abies. 

Details of occurrence of these tree species as observed during the field study are 

given in Figure 12. 
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48%
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Species distribution in study area
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Picea abies

Fagus sylvatica

 
           Figure 12: Species composition of study area 

DBH, height and crown width of dominant tree species were analysed and 

presented by Box-plots which are given in Figures 13 (a,b,c). Larix decidua has 

the largest DBH and Pinus uncinata has the smallest DBH on average. In case of 

mean height, Fagus sylvatica is found to have highest height followed by Larix 

decidua, Pinus sylvestris and Pinus uncinata. Similarly, Larix decidua is found to 

have largest crown diameter. All tree attributes of these tree species show a 

normal distribution (Appendix 4). 

 

a. Box plot of DBH  
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        b. Box plot of height                                                   c. Box plot of crown diameter 

 

Figure 13: Box plot of DBH, height and crown diameter of major tree species 

3.1.2 CHM generation from LiDAR data 

 

LiDAR data was processed to obtain the canopy height model (CHM) as shown in 

Figure 14. The extracted ground points were interpolated for generating a DTM 

while the first return points were interpolated for generating a DSM which are 

shown in Figure 14 (Top Left, DSM, Top Right, DTM). Figure 14 (Bottom) shows 

the CHM, which was created by subtracting DTM from DSM.  

 



Results 

 34 

 
 

 

 

 

3.1.3 Assessment of LiDAR derived tree height 

 

A total of 340 tree heights measured in the field with a Haga hypsometer and 

corresponding heights extracted from LiDAR were used as a sample dataset. 

Summary statistics for both height performances showed that the average mean 

value of LiDAR derived height was 0.10 m lower than the field height. A linear 

regression between the LiDAR derived height and field measured height (Figure 

Figure 14: LiDAR derived images (Top Left, DSM, Top Right, DTM and 

Bottom: CHM) 
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15) showed R2 values of 0.813 and RMSE of 1.18. Summary of statistics for both 

height performances is given in Table 5. 

 

Table 5: Summary of statistics for LiDAR and field height measurements 

 

Statistic Field height(m) LiDAR derived height (m) 

Mean 11.88 11.78 

Minimum 5.20 5.08 

Maximum 25 23.66 

Std Deviation 2.56 2.72 

Observations 340 340 

 

 

 
Figure 15: LiDAR derived tree height compared with Field measured height 

3.1.4 CHM generation from Photogrammetric matching 

of Aerial Images 

 

The canopy height model (CHM) was generated from the aerial point clouds. To 

come up with a CHM, a DSM was created by interpolating the single returns of the 

aerial images. For the DTM, the LiDAR DTM was used. The subtraction of LiDAR 

DTM from aerial DSM represents the absolute height of trees in the study area. 

Figure 16 shows the CHM (Bottom), which was obtained by subtracting DTM (Top, 

Right) from DSM (Top, Left).  

R2 = 0.81 
Y = 0.42+0.96*X 
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3.1.5 Assessment of tree height derived from Aerial 
Images 

 

Tree height derived from Aerial Image was compared with the field measured 

height using linear regression model as shown in Figure 17. This was done using 

340 observations. The coefficient of determination (R2) was 0.66 and an RMSE of 

1.69 was obtained. The aerial derived height was underestimated by 0.66 m on 

average. Summary of statistics for both height performances is given in Table 6.  

Figure 16: Illustration of DSM (Top, Left), DTM (Top, Right) and CHM 
(Bottom) for a part of the study area 
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Table 6: Summary of statistics for tree height measurements 

 

Statistic    Field height (m)         Aerial derived height (m) 

Mean 11.88 11.22 

Minimum 5.20 5.67 

Maximum 25 22.88 

Std Deviation 2.56 2.57 

Observation 340 340 

 

 
Figure 17: Scatter plot between heights derived from aerial imagery and field 

measurement 

A paired-test was applied to test the hypothesis 1 as shown in Table 7 and it was 

concluded that there is no significant difference between height measured from 

field and height derived from LiDAR since the t - statistic is less than t - critical so 

two means are not statistically significantly different. On the contrary, in the case 

of Aerial data, the t - statistic is greater than t - critical value so the two means 

are statistically significantly different. When comparing LiDAR height and Aerial 

height, F - statistic is greater than F - critical, which indicates that two means are 

statistically significantly different (Appendix 5). Also the linear regression was 

performed between ground-measured heights with the LiDAR and Aerial derived 

heights, which showed a greater R2 in case of LiDAR derived heights than that of 

Aerial derived heights. For this reason, LiDAR derived heights are closer to field 

measured heights. 

R2 = 0.663 
Y = 1.50+0.82*X 
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Table 7: Summary of statistical test 

Test 

df t-stat P value t critical 
Paired t-test 

Aerial 1, 339 7.85526 2.66E-14 1.966986 
 

LiDAR 1, 339 

 
1.55042 
 

0.006099 
 

1.966986 
 

 

Pearson’s correlation (R) and RMSE between field measured tree height and 

predicted tree height is illustrated in Table 8. The correlation between measured 

and predicted tree heights of broadleaved trees is greater than that of conifer 

trees in the case of LiDAR while the correlation of conifer is greater than that of 

broadleaf trees in case of the aerial images. The tree heights of conifer trees have 

a smaller RMSE than those of broadleaved trees in both the LiDAR and the aerial 

images. 

 

Table 8: Goodness-of-fit statistics between field tree heights and those predicted 

from LiDAR CHM and Aerial CHM 

Numbers 

LiDAR Aerial Image 

Correlation RMSE(m) Correlation RMSE(m) 

Conifer (334) 0.90 1.17 0.81 1.68 

Broadleaf (6) 0.93 1.57 0.79 2.40 

Total (340) 0.90 1.18 0.81 1.69 

 

3.1.6 Tree crown delineation and accuracy 

assessment 

 

Individual tree crown delineation was done using the region growing approach. 

Figure 18 shows the results of delineated individual tree crowns using a subset of 

aerial image and LiDAR. 
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The accuracy measures of D and 1:1 spatial correspondence were used for the 

validation of tree crown segmentation using 277 and 292 manually delineated 

tree crowns in case of aerial images and LiDAR respectively. The quantitative 

accuracy assessment with manually delineated crown data showed that the aerial 

crown delineation was more accurate. Overall, over-segmentation error was 31% 

and 28% in LiDAR and Aerial image datasets respectively. Similarly, under-

segmentation error was 35% and 33% in LiDAR and aerial image datasets 

respectively. The goodness of fit (D) was 0.33 and 0.30 for LiDAR and aerial 

images datasets respectively. This means that the total accuracy of tree crown 

delineation in the case of LiDAR was about 67%, which means 33% of 

segmentation error. The total accuracy of tree crown delineation in the case of 

aerial image was 70%, which means 30% of segmentation error. 

 

To assess the accuracy of 1:1 spatial correspondence, the manually delineated 

tree crowns and the automated segments from the region growing segmentation 

were compared on a one to one basis. Out of 277 manually delineated reference 

tree crowns, 221 automated segments had a one to one relationship in case of 

aerial image dataset (Table 9). Thus, the overall segmentation accuracy was 

79.8%. Similarly, out of 292 reference polygons for LiDAR dataset obtained from 

manual delineation, only 226 automated segments had a one to one relationship 

as shown in Table 10. Overall, the segmentation accuracy was 77.4%.  

 

Figure 18: A subset of segmentation results. Left: Aerial Image and Right: LiDAR 
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Table 9: Matching of 1:1 correspondence of reference polygons to segmented 

polygons using Aerial Image 

Tree species No. of Reference polygons 1:1 Correspondence Accuracy (%)

Pinus uncinata 136 109 80.15

Pinus sylvestris 116 94 81.03

Larix decidua 9 8 88.89

Broadleaved trees 16 10 62.50

Total 277 221 79.78
 

 

Table 10: Matching of 1:1 correspondence of reference polygons to segmented 

polygons using LiDAR 

Tree species No. of Reference polygons 1:1 Correspondence Accuracy (%)

Pinus uncinata 137 111 81.02

Pinus sylvestris 128 101 78.91

Larix decidua 10 5 50.00

Broadleaved trees 17 9 52.94

Total 292 226 77.40
 

 

Figure 19 shows the overlay of the image objects and reference crowns for the 

1:1 method of accuracy assessment of segmentation process. The purple objects 

represent the manually delineated crowns for the identified trees while the red 

objects are the output of automated segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Overlap between the image objects and reference crowns. 
Left: Aerial Image and Right: LiDAR 
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3.1.7 Correlation analysis  

 

Pearson’s correlation coefficient was calculated to analyse the strength of the 

linear relationships among the variables such as field measured DBH, segmented 

CPA from both aerial and LiDAR datasets, CHM derived from aerial point clouds 

and LiDAR and carbon stock of trees. The relationships among these variables 

were shown in Table 11 and 12 for four different tree species. 70% of the 

datasets were used for model calibration and 30% for validation to determine the 

strength of relationship. Table 11 shows the correlation among the tree variables 

using aerial image and Table 12 depicts the correlation among the tree variables 

using LiDAR data.  

 

Table 11: Correlation among the variables of regression model using Aerial Image 

Species Name Variables df(n-2) r R square P value 

Pinus uncinata 

DBH and carbon 78 0.91 0.82 < 0.01 

CHM and carbon 78 0.63 0.39 < 0.01 

CPA and carbon 78 0.46 0.21 < 0.01 

Pinus sylvestris 

DBH and carbon 68 0.91 0.84 < 0.01 

CHM and carbon 68 0.52 0.27 < 0.01 

CPA and carbon 68 0.52 0.27 < 0.01 

Fagus sylvatica 

DBH and carbon 14 0.79 0.62 < 0.01 

CHM and carbon 14 0.88 0.78  < 0.01 

CPA and carbon 14 0.67 0.45 < 0.01 

Larix decidua 

DBH and carbon 8 0.99 0.98 < 0.01 

CHM and carbon 8 0.87 0.75  < 0.01 

CPA and carbon 8 0.67 0.45 < 0.01 

 

Table 12: Correlation among the variables of regression model using LiDAR 

Species   Name  Variables df(n-2) r R square 
   P  
value 

Pinus uncinata 

DBH and carbon 78 0.93 0.87 <0.01 

CHM and carbon 78 0.64 0.41 <0.01 

CPA and carbon 78 0.37 0.14 <0.01 

Pinus sylvestris 

DBH and carbon 68 0.95 0.91 <0.01 

CHM and carbon 68 0.64 0.41 <0.01 

CPA and carbon 68 0.33 0.11 <0.01 

Fagus sylvatica 

DBH and carbon 14 0.63 0.39 <0.01 

CHM and carbon 14 0.89 0.79 <0.01 

CPA and carbon 14 0.61 0.37 <0.01 

Larix decidua 

DBH and carbon 8 0.97 0.95 <0.01 

CHM and carbon 8 0.83 0.69 <0.01 

CPA and carbon 8 0.72 0.52 <0.01 
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There are strong positive correlations between tree DBH and carbon (>0.70) in 

almost all of the tree species in both aerial image and LiDAR datasets. The 

correlation between them are highly significant (P<0.01). In general, the 

correlation coefficient of carbon with CHM and carbon with CPA for both datasets 

was found to be less than that of carbon with DBH. The correlation coefficient 

between CPA and carbon is more than 0.60 in the case of Fagus sylvatica and 

Larix decidua in both aerial and LiDAR datasets. The lowest r value was found for 

CPA and carbon of Pinus sylvestris in the case of the LiDAR data.  

3.1.8 Model calibration and Validation 

 

Multiple regression models were developed for four tree species so as to estimate 

carbon stock. CPA and height were used as explanatory variable to estimate the 

carbon stock of individual trees. A linear regression model in Log form was 

developed for each of the species which describes the relationship between CPA, 

height and carbon stock. This is shown in equation 10. The relationship among 

these variables was found to be significant at the 95% confidence level. A 

collinearity test was done to avoid multicollinearity which may be a problem 

amongst the explanatory variables (i.e. CPA and height). Variance inflation factor 

(VIF) was applied for this. VIF was less than 10 for all four species. Summary 

statistics and regression coefficient of variables for both aerial and LiDAR datasets 

are presented in Tables 13 and 14. Details of the ANOVA table and other 

parameter estimates are presented in Appendix 6. 

 

Ln Carbon = β0 + β1*Ln(CPA)+ β2*Ln(Height) ………..………………………10 

                                                             (Multiple regression model)  

Where, 

Ln is natural logarithm to the base 2.71828 

Carbon is above ground carbon stock per tree in Kg 

β0 is intercept 

β1 is coefficient of CPA 

β2 is coefficient of LiDAR and Aerial derived tree height 

 

Table 13: Regression analysis of four tree species and summary statistics of 

model using aerial data 

Species β0 β1 β2 R sq Adj. R sq Std.error Obs 

Pinus uncinata -0.544 0.515 1.288 0.49 0.48 0.38 80 

Pinus sylvestris 0.398 0.722 1.062 0.46 0.44 0.52 70 

Fagus sylvatica -3.184 0.701 2.288 0.90 0.88 0.26 16 

Larix decidua -1.959 2.371 0.332 0.88 0.85 0.5 10 
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Table 14: Regression analysis of four tree species and summary statistics of 

model using LiDAR data 

Species β0 β1 β2 R sq Adj. R sq Std.error Obs 

Pinus uncinata -0.804 0.361 1.545 0.46 0.45 0.39 80 

Pinus sylvestris -0.152 1.789 0.157 0.44 0.42 0.62 70 

Fagus sylvatica -3.479 0.925 2.036 0.89 0.88 0.29 16 

Larix decidua -1.635 2.147 0.395 0.73 0.65 0.69 10 

 

Models for each species and regression coefficient were tested using the F-test 

and t-test respectively. All the models and regression coefficients were shown to 

be statistically significant at 95% confidence level.   

 

The developed models were used to predict carbon for the validation dataset, 

which was plotted against the observed carbon from the field as a way of testing 

the accuracy of the models. Independent datasets (30%) of the sample data 

(n=37, Pinus uncinata; n=23, Pinus sylvestris; n=10, Fagus sylvatica and n=5, 

Larix decidua) were used for validating the regression model as described in 

Table 15.  

 

Table 15: Summary of model validation using aerial image and LiDAR data 

Species 
Coefficient of  
determination 

Calculated 
mean 
carbon RMSE 

RMSE 
%   Obs. Dataset 

P.uncinata 0.57 31.54 9.61 30.48 37 

Aerial image 
P.sylvestris 0.74 81.45 17.08 20.97 23 

F.sylvatica 0.84 54.49 19.61 35.98 10 

L.decidua 0.88 180.13 97.92 45.95 5 

P.uncinata 0.54 34.82 9.75 28.00 37 

LiDAR 
P.sylvestris 0.57 76.57 29.48 38.50 23 

F.sylvatica 0.71 49.44 16.99 34.38 10 

L. decidua 0.72 185.14 97.47 47.95 5 

 

Observed and predicted carbon stock from the regression models were plotted 

against each other as shown in Figure 20 and the coefficient of determination (R2) 

was calculated to see the goodness of fit. Root Mean Square Error (RMSE) was 

used to test for the amount of error in the model. Larix decidua and Fagus 

sylvatica showed the best fit of the model in both datasets. Multiple regression 

models had the lowest RMSE % i.e. 20.97% and 30.48% for Pinus sylvestris and 

Pinus uncinata respectively. This means that there is 20.97% and 30.48% 
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average error in the prediction of carbon for Pinus sylvestris and Pinus uncinata in 

the case of aerial image. The model error varies from 9.61 to 97.92 kg/tree 

depending on the species and calculated mean carbon stock in the case of the 

aerial image data. Similarly, the model error varies from 9.75 to 132.87 kg/tree 

depending on the species and calculated mean carbon stock in the case of the 

LiDAR data. 
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Figure 20: Scatter plot of observed and predicted carbon stock. Top (a, b & c): Aerial Image and Bottom (d, e & f): LiDAR 
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3.1.9 Carbon stock mapping 

The multiple regression models developed for each species were used to estimate 

total carbon stock in the study area. The total carbon in the study area using 

aerial image and LiDAR datasets were 7,044,257 kg and 655,025.3 kg 

respectively. The study area was of 1.3 km2 (130 ha) thus the study area has 

approximately 54.18 tonne C ha-1 and 47.37 tonne C ha-1 respectively using 

aerial image and LiDAR datasets respectively. Figure 21 shows the carbon stock 

map of the study area from LiDAR dataset. The carbon stock map of the study 

area using aerial images is shown in Appendix 7. 

 

 Figure 21: Carbon stock map of the study area 
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Chapter 4 
 

 

4.1 DISCUSSION 

 

4.1.1 CHM preparation and accuracy assessment 

from both datasets 

 

The LiDAR derived canopy height model (CHM) and CHM derived from the 

photogrammetrically matching of aerial images have been described and 

reported in this study. The LiDAR derived tree height was underestimated 

relative to field measured height by 0.10 m on average.  Similarly, there was 

also an underestimation of the photogrammetrically derived tree height by 

0.66 m on average. Tree heights extracted from CHM of LiDAR and Aerial 

Images were evaluated by plotting against field measured height of 340 

sampled trees in a scatterplot. Comparision of the LiDAR derived tree height 

with the field measured tree height resulted in a coefficient of determination 

(R2) of 0.81 with RMSE of ±1.18 m. Likewise, regression model assessment 

between the aerial derived tree height and the field measured tree height 

showed the coefficient of determination (R2) 0.66 with RMSE of ±1.69 m.  An 

F-test revealed that there is a statistically significant difference between the 

tree height derived from LiDAR and the tree height derived from 3D aerial 

point clouds (P<0.05). However, there is no significant difference between the 

height measured in the field and the height derived from LiDAR (P<0.05). 

There is a significant difference between the height measured in the field and 

the height derived from 3D aerial point clouds (P<0.05). Thus, LiDAR derived 

tree height was closer to the field measured tree height than the tree height 

derived from 3D aerial point clouds. Hyyppä et al. (2000) and Persson et al. 

(2002) also found that the accuracy of the ground measurements is 

comparable to the height estimations from the LiDAR data. Comparing the 

correlation between measured and predicted tree heights using LiDAR data, 

the broadleaved and conifer trees have the value of 0.93 and 0.9 respectively. 

Similarly, with 3D point clouds of aerial image, the correlation between 

measured and predicted tree heights of conifers is slightly greater than that of 

broadleaved trees (0.81 and 0.79 respectively).  

 

Previous studies have shown a high correlation between tree measurements 

acquired from LiDAR and tree height derived from 3D point cloud of aerial 

image. Heurich et al. (2004) obtained 0.96 and 0.98 coefficient of 

determination (R2) for coniferous and deciduous trees respectively using 10 m 

point density. They used Vertex III system for the field height measurements 
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and found RMSE of 1.40 m.  Erdody and Moskal (2010) found R2 value of 0.93 

from LiDAR derived tree height in coniferous forest using FUSION software and  

they used an Impulse laser range-finder for measuring tree height. In this 

study, a high density of LiDAR data with an average of 164 points/m-2 was 

used and showed R2 of 0.81 which was lower than that of (Heurich et al., 

2004) and Erdody and Moskal (2010). We used Haga in this study to measure 

the tree height in the field and LasTools for processing LiDAR data which could 

explain the inconsistence with our findings with the abovementioned results. 

Similarly, Kwak et al. (2007) found R2 ranging from 0.77 to 0.80 for coniferous 

species and 0.74 for deciduous species. The accuracy of the tree height 

estimates in this study is also comparable to the accuracy of the tree height 

estimations achieved by Razak et al. (2011) with R2 of 0.72 to 0.91 and RMSE 

of ±1.07 to ±1.28 m. In this study, the underestimation of LiDAR derived tree 

heights can be explained by penetration through the canopy and failure to 

sample treetops caused by the conical shape of conifer trees.  

 

Nurminen et al. (2013) obtained coefficient of determination (R2) of 0.98 with 

RMSE of ±1.11 m in the pine forest using 3D point cloud of aerial image 

having 155 points/m-2 point density.  Similarly, Dandois and Ellis (2010) 

obtained an accuracy of field and CHM derived from photogrammetric 

matching of digital photographs of 0.63 to 0.84 coefficient of determination 

(R2) using high sampling density (i.e. 30 – 67 points/m-2) in temperate 

deciduous forest in Maryland USA.  The coefficient of determination (R2) found 

in this study with 3D point clouds of aerial image is lower than R2 value 

obtained by Nurminen et al. (2013). This is because of the low aerial point 

density we have obtained in this study. The coefficient of determination found 

in this study is in the range of the values found in the study carried out by 

Bohlin et al. (2012). However, comparison cannot be done directly because of 

different forest types, densities, and composition of tree species, topographic 

features and quality (point density) of LiDAR as well as aerial image. 

 

Density of the point cloud is expected to be one of the main factors for 

determining the accuracy of tree height (Hyyppä et al., 2008). A higher point 

density results in a denser point cloud from which a more accurate CHM can be 

interpolated (Heritage & Large, 2009). In this study, the aerial image has point 

density of 16.4 points/m-2 which was less than the LiDAR point density. When 

a lower point density is used, the interpolated CHM can result in significant 

errors (Gaulton & Malthus, 2008). Thus, in this study the underestimation of 

tree height was greater in case of photogrammetrically derived tree heights 

than that of LiDAR derived tree heights. The interpolation of poorly matched 

points result in a low quality of the digital surface model (DSM) from aerial 

point cloud which later gives a relatively poor CHM.  Yu et al. (2004) found the 

underestimation of height increased with higher flying heights because of 

lower sampling density. In addition, Lefsky et al. (2002) and Persson et al. 

(2002) also pointed the underestimation of height due to low sampling density. 

The point cloud resulted from photogrammetric matching of aerial images only 

has single return which might have impact on accuracy of DTM generation 

while LiDAR data has multiple returns, which makes it possible to generate the 
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DTM more accurately (Lisein et al. 2013). Additional error in the 

underestimation of heights from both datasets could be due to the gap (2 to 4 

years) between when these two datasets were co-captured in July 2009 and 

when field data were collected in 2012 and 2013. LidAR point cloud is a direct 

measurement while 3D photogrammetry matching point cloud is a derived 

estimation. 

 

Different types of error can be attributed to tree height measurements. The 

dominant source of error in LiDAR and aerial tree height measurement is due 

to the difficulty in measuring treetop location and error in the DTM at the base 

of the tree. The errors in the LiDAR derived measurement due to ground 

vegetation and terrain micro-relief can introduce up to 0.5 m of variability in 

height measurements (Leckie et al., 2003). However, with high sampling 

density the errors in terrain models are unlikely to produce errors greater than 

0.30 m (Reutebuch et al., 2003). Apart from that, it is often challenging in the 

field to identify the highest point of the tree crown because of no distinct peak. 

This was observed in the field when trees are leaning or have large crowns 

with irregular shape (Figure 22). In addition, the interlocking of branches of 

different trees also makes it difficult to extract single tree heights (Hollaus et 

al., 2007).  

 

 
 Figure 22: Errors in tree height measurements (Köhl et al., 2006) 

 

Tree height is an important variable in forest inventory programs. There are 

several instruments that are commonly used for measuring height in field, for 

example handheld instruments such as the Suunto hypsometer and Haga 

hypsometer. More precise, expensive and stable instruments such as the 

theodolite or total station can be used, but for routine work, this is impractical 

because of the expense and time required to make measurements of individual 

trees. Previous studies (Hyyppä et al., 2000; Maltamo et al., 2004) have 

shown a high correlation between tree measurements acquired from LiDAR and 

those acquired in field using handheld instruments. However, which of the two 

is the true height is questionable. In this study, Haga hypsometer was used to 
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estimate tree height in the field. Hunt (1959) reported that the Haga altimeter 

measure the tree height more precisely than most other handheld instruments. 

 

To investigate whether field measurement with a handheld instrument or the 

LiDAR derived height is the true height, a small experiment was conducted 

with measurements of some trees and buildings in the neighbourhood of the 

ITC building (Appendix 8). The heights of eight trees and two buildings were 

estimated with a Haga hypsometer and also measured with a Wild T05 

theodolite. Although it is not a precision theodolite (which can measure 

horizontal and vertical angles with a precision of ± one second of arc), the 

instrument can measure with a precision of ± 2 minutes of arc. At a typical 

horizontal distance of 50 m, a vertical angle of 2 minutes of arc means that 

heights can be measured to within 50 m × tan 2’ = ±0.03m. 

 

The LiDAR data for this experiment was the Actueel Hoogtebestand Nederland 

(AHN). This has a specified accuracy of ± 0.05 m standard deviation and ± 

0.05 m systematic error (Swart, 2010). The CHM was prepared for a small 

area covering van Heek Park and the ITC building with 9.9 points m-2. 

Coefficient of determination (R2) between T05 theodolite and LiDAR derived 

height was 0.97 and RMSE of ±1.12 was obtained. The LiDAR derived height 

was underestimated by 0.43 m on average. Similarly, Coefficient of 

determination (R2) between T05 theodolite and Haga derived height was 0.97 

and RMSE of ±1.19 was obtained. On average mean value of Haga derived 

height was 0.57 m greater than the theodolite height. Summary of statistics 

for tree height measurements presented in Appendix 9.  

 

This small experiment suggests that the LiDAR derived height is closer to the 

field height measured by theodolite than the field height measured by 

handheld Haga. The significant portion of the RMSE could be caused by 

uncertainty in the field height measurements for example in identifying the 

exact top of the tree. In our present study, we found there is no significant 

difference in mean heights between LiDAR derived tree height and field 

measured tree height.  

4.1.2 Image segmentation and accuracy assessment 

 

Several methods exist for detecting and segmenting trees on the image. In 

this study, region growing approach was used for the tree crown delineation of 

LiDAR and aerial image, which is explained in section 2.1.3.7 and results are 

presented in section 3.1.6. Erikson (2003) showed the superiority of the 

Region Growing method over other approaches. Region growing works well 

with correct delineation as much as 95% of all visible tree crown segmentation 

of images (Erikson, 2003). 

 

Several criteria have been used for quantitative evaluation of segmentation 

accuracy as represented by Möller et al. (2007) and Clinton et al. (2010). In 

this study, we adopted the methods presented by Zhan et al. (2005) i.e 1:1 
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spatial correspondence and Clinton et al. (2010) measure of closeness index 

i.e. goodness of fit between manually delineated polygons and segmented 

polygons for accuracy assessment of segmentation. Measure of closeness 

index with LiDAR data showed 67% accuracy with 0.33 D value whereas aerial 

image showed 70% accuracy with 0.30 D value. Likewise, 1:1 spatial 

correspondence showed 77% and 80% accuracy for LiDAR and aerial image 

respectively.  

 

The finding of this study can be compared with different studies carried out by 

several researchers (Maharjan, 2012; Wang et al., 2004; Workie, 2011). Wang 

et al. (2004) in their study obtained 75% segmentation accuracy for the 

spruce and fir forests of British Columbia, Canada. Similarly, Maharjan (2012) 

achieved segmentation accuracy of 76% by applying 1:1 correspondence 

method using region growing approach in the hilly forest of Gorkha, Nepal. 

Workie (2011) in his study achieved 80% segmentation accuracy in terms of 

‘goodness of fit’ for coniferous trees using combined valley following and 

marker free watershed transformation. Ke and Quackenbush (2008) obtained 

relatively low segmentation accuracy of 61% in mixed forest of broadleaf and 

conifer. The segmentation accuracy of this study is with agreement with the 

result obtained by Hatami (2012) in the same study. She found the 

segmentation accuracy of 79% in terms of 1:1 correspondence. Higher 

accuracy was expected because of high point density. The segmentation 

accuracy is found to be higher in aerial image than LiDAR. This may partly be a 

consequence of delineating the ground reference properly in the case of aerial 

image because of multispectral and spatial detail. The aerial image produced a 

better isolation in the more dense stands (Leckie et al., 2003). However, the 

use of height information helped to separate trees from other ground 

vegetation. Thus, the height from LiDAR data is combined with image to 

eliminate commission errors that often occur in open stand with optical 

imagery (Leckie et al., 2003). 

 

In this study, the segmentation result showed over-segmentation and under-

segmentation errors. The under-segmentation errors were higher in this study 

from both datasets because of inability to separate neighbouring trees. For the 

small tree crowns, the ground reference data and corresponding automated 

segmentation matched properly but for large crowns, individual large branches 

can cause the algorithms to split trees into several entities. This will lead to 

over-segmentation errors (Figure 23a). This makes it difficult to parameterize 

the algorithm to produce good results where there is a mixture of crown sizes 

and irregular shape of crown. Similarly, under-segmentation errors were also 

observed (Figure 23b) when the algorithm, instead of splitting the 

neighbouring trees, made one segment for two trees and in some part, more 

than two.  Thus, the segmentation accuracy can be misleading because of the 

accommodated over-segmentation and under-segmentation errors. The forest 

density also influenced the performance of algorithms. Trees stand which are 

close to each other have their tree crowns intermingled which made it difficult 

to visually separate tree clusters into individual trees (Ke & Quackenbush, 

2008). 
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a. Commission error         b. Omission error 

(Red polygons represent manually delineated crown and black polygon 

represent automated segments) 

Figure 23: Example of commission and omission error 

 

Apart from this view angle causes difficulties with tree crown delineation on 

both the LiDAR and aerial imagery. Different parts of the crown as well as 

crown outlines are visible depending on view angle and it makes a tree look 

different when it at nadir or at sunlit side (Leckie et al., 2003). In addition to 

this, distortion present in imagery (Figure 24) in some parts of the study area 

also hinder the algorithm in eCognition so that the tree crown were not 

segmented properly and it misled the segmentation accuracy.  

 

 
                                     Figure 24: Image distortion 
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4.1.3 Model development and validation 
 

The relationships among the variables DBH, CPA, AGB, and CHM of both the 

aerial image and LiDAR datasets were evaluated using correlation analysis 

(Table 11 & 12). This correlation analysis demonstrated that in almost all 

cases, the strength of the linear relationship between DBH and carbon (>0.70) 

is highly significant (P<0.01) for all four species in the aerial and LiDAR 

datasets. However, the correlation value of 0.63 was obtained in the case of 

Fagus sylvatica using LiDAR data. It was as expected that as DBH is one of the 

strong predictors to measure above ground biomass (Rutishauser et al., 

2013). Therefore, there is no significant difference in correlation values among 

these variables in both datasets. The correlation coefficient of CPA with carbon 

and CPA with height was found to be less than that of DBH with carbon for 

both datasets. The correlation coefficient between CPA and carbon is more 

than 0.60 in particular for the Fagus sylvatica and Larix decidua in both aerial 

and LiDAR datasets. Coefficient of determination (R2) was found low in this 

study between CPA and carbon while Kuuluvainen (1991) obtained R2 of 0.79 

for a Norway spruce plantation using the model of CPA and AGB. Coefficient of 

determination (R2) obtained for the relationship between height and carbon 

was 0.41, 0.41, 0.79 and 0.69 for Pinus uncinata, Pinus sylvestris, Fagus 

sylvatica and Larix decidua respectively which is comparable to the R2 obtained 

by Yu et al. (2010) who obtained R2 of 0.6 in the mixed forest in the north-

eastern United states. 

 

Multiple regression models were applied to know the combined effect of both 

the predictor variables in order to estimate carbon stock which ensures better 

prediction (Ketterings et al., 2001). Both CPA and height derived from both 

LiDAR and aerial image were used to predict the carbon stock of four different 

tree species present in the study area. A log transformed multiplicative model 

was preferred to predict the carbon stock to reduce bias in estimating biomass 

of tree as indicated by previous studies (Feldpausch et al., 2012; Means, 

2000). A log transformation is recommended to correct the skewness of data 

which do not fit with the requirements for parametric statistical tests (Keene, 

1995). Watt and Kirschbaum (2011) obtained R2 value of 0.73 between height 

and DBH of even aged coniferous stands after performing log transformation to 

both the variables.  

 

Coefficients of determination (R2) for the model using aerial image were 0.57, 

0.74, 0.84 and 0.88 for Pinus uncinata, Pinus sylvestris, Fagus sylvatica and 

Larix decidua respectively. This means 57%, 74%, 84% and 88% of the 

variation in carbon can be explained by CPA and height for Pinus uncinata, 

Pinus sylvestris, Fagus sylvatica and Larix decidua respectively. Similarly, in 

the case of the LiDAR data, 54%, 57%, 71% and 72% of the variation in 

carbon can be explained by CPA and height for Pinus uncinata, Pinus sylvestris, 

Fagus sylvatica and Larix decidua respectively.  This result is similar to the 

result found by Hatami (2012) in the same study area where she found R2 of 
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0.56 for pine species. The overall R2 value was 0.76 and 0.65 for aerial image 

and LiDAR datasets which can be compared to that of the results (0.75) 

obtained by Kumar (2012) in the same study area. In this study, the allometric 

equation for Pinus sylvestris, Fagus sylvatica and Larix decidua were taken 

from Italy, and allometric equation for Pinus uncinata was taken from Spain 

while Kumar (2012) used allometric equation of Pinus nigra for Pinus uncinata 

from Netherlands and he used different model based on height, CPA and local 

tree density. The result from this study is compared with the study done by 

Kuuluvainen (1991) who found R2 ranging from 0.22 to 0.79 in a Norway 

spruce in Switzerland. Results of this study are relatively lower in comparison 

to Zhao et al. (2009) who found R2 value ranging from 0.80 to 0.95 for pine 

trees when modelling carbon stock using LiDAR derived heights. 

 

The coefficient of determination (R2) and RMSE show how accurately carbon 

stock of the forest can be predicted from the regression model. The lowest 

RMSE % i.e. 20.97% and 30.48% was obtained for Pinus sylvestris and Pinus 

uncinata respectively using the aerial image. This shows that there were 

20.97% and 30.48% average error in the prediction of carbon for Pinus 

sylvatica and Pinus uncinata in the case of aerial data. Similarly, the result 

showed 38.5% and 28% average error in the prediction of carbon for Pinus 

sylvatica and Pinus uncinata in the case of the LiDAR data.  Validation of the 

models resulted in the highest value of RMSE for Larix decidua (97.92 kg/tree 

and 97.47 kg/tree) using aerial and LiDAR datasets respectively. The highest 

error can be attributed to the small sample size (5) used for the validation. In 

terms of the aerial image, it indicated that on average carbon stock can be 

predicted with 75% variability and 35% RMSE from the model developed for 

each species. Similarly, in terms of LiDAR data, it indicated that on average 

carbon stock can be predicted with 64% variability and 39% RMSE from the 

model developed for each species. Thus, height and CPA will give a good 

estimate of biomass and can better explain about variability of biomass than 

the use of CPA or tree height alone. 

4.1.4 Carbon stock estimation 

 

In this study, approximately 54.18 tonne C ha-1 of carbon stock was estimated 

using segmented CPA and height derived from aerial point clouds. Similarly, 

approximately 47.37 tonne C ha-1 of carbon stock was estimated using 

segmented CPA and height derived from LiDAR. The estimated carbon stock in 

this study is in agreement with the estimated carbon stock obtained by Hatami 

(2012). She obtained approximately 52.88 tonne C ha-1 using the same model 

in the same study area. The result obtained in this study can also be compared 

with  the result obtained by Kumar (2012) where he used a different model 

and different allometric equations. He got the estimated carbon stock of 29.32 

tonne C ha-1 which is lower than our study. Our result is also within the ranges 

of mean carbon stock per hectare calculated for French forest (48.3 tonne C 

ha-1 to 59 tonne C ha-1) (Pignard et al., 2000). The differences in biomass 

estimation in this study are because it attributed to the four different tree 
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species in the study area while Kumar (2012) estimated carbon stock for Pine 

trees only. The mean carbon/tree for Pinus uncinata and Pinus sylvestris is 

31.54 kg and 81.45 kg respectively in the case of the aerial image and 34.82 

kg and 76.57 kg respectively in the case of the LiDAR which is comparable to 

55.6 and 65.5kg for Pinus uncinata and Pinus sylvestris respectively (Hatami, 

2012). Kim et al. (2010) obtained 193 kg for Pinus densiflora with mean DBH 

of 40 cm and mean height 17.2 m. The difference in carbon stock in the study 

area of these two datasets is mainly due to the segmentation of the shadow 

area in the aerial image which would affect the total number of trees in the 

study area and eventually the carbon stocks. 

  

4.1.5 Sources of error or uncertainties 

 

There are several uncertainties associated with the estimation of above ground 

carbon in the forest. The sources of error may ranges from the data collection 

in the field to data acquisition, image processing and model development for 

carbon estimation. Some of the errors which introduced at several steps of 

research are highlighted in the following subsections. 

GPS error 

 

The orthophoto and coordinate of each sample plot was used to navigate the 

sample tree location in the forest using GPS. The GPS signal can, however, be 

disturbed by various factors such as topographic features, density of forest, 

atmospheric conditions, satellite position, noise in the radio signal and natural 

barriers to the signal (Karna, 2012). Noise can create an error between 1 to 10 

meters and barriers between satellite and receiver can produce error up to 30 

m. The errors are more profound in mountainous area which can produce error 

up to 30 m (maps-gps-info.com, 2014). Some degrees of uncertainties were 

also prevalent as the GPS signal was degraded by forest canopies and clouds 

particularly in plots where there were overlapping crowns. 

Allometric equation for carbon estimation 

 

Forest tree biomass estimates depend upon allometric equations that are 

developed from a limited region or a broader combination of sites using a finite 

number of individuals (Chambers et al., 2001). However, those allometric 

equations are often applied beyond the regions for which they were developed 

as well as beyond the range of diameters sampled (Chave et al., 2004). 

Unfortunately, allometric equations were not available for this study area. 

Therefore, allometric equations from Italy and Spain were taken for the 

estimation of biomass. Though the region from where these allometric 

equations are developed share the same climate, those allometries are based 

on significantly larger sample size. So the allometric equation developed for 

one area may produce extrapolation errors when applied beyond the range of 
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region and model development data (Andersen et al., 2005). Thus, one of the 

sources in biomass estimation can be attributed to allometric equation. 

Uncertainty on tree level estimation 

 

The accuracy of biomass estimation for individual trees depends on the 

accuracy of tree height measurements. Tree height and DBH are the most 

commonly used variables to predict AGB but height measurements are 

dependent on forest conditions, observer experience and the equipment used 

which introduces the error at initial stage. Thus, error propagates from 

measurement in the field. Likewise, due to the deformity of trunk at breast 

height or irregularity in trunk shape, the measurement of DBH of trees could 

be wrong. Thus, this possess systematic errors and can affect the quality of 

regression model and ultimately the overall estimation of carbon stock for 

individual tree (Zhang et al., 2010). 

Other errors/ uncertainty 

 

Noise on LiDAR data and Aerial image is also a limitation which cannot allow 

accurate biomass estimation. Though, the filter was applied, still some pixels 

with wrong values remain. The CHM derivation from LiDAR point cloud and 

aerial point cloud accumulate some errors while extracting based on each 

centre point of polygon and those errors can propagate in the further step 

(Nguyet, 2012). Accurate tree crown delineation is a key factor for estimating 

biomass based on CPAs derived from image segmentation (Ke & Quackenbush, 

2008). Over-segmentation and under-segmentation were observed due to 

overlapping trees and branches of big trees which can grow into irregular 

shape and thus affect the relationship between AGB and CPA.  
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Chapter 5 

 

5.1 CONCLUSION AND RECOMMENDATIONS 

 

5.1.1 Conclusion 

 

This research has emphasized the potentials of high density point cloud LiDAR 

data and photogrammetric matching of aerial images for estimating above 

ground carbon stock of Bois noir forest of Barcelonnette. This study clearly 

shows the potential of these two datasets to extract the forest attributes: 

height and CPA. However, the biomass estimation with these two datasets 

could not explain which one is more accurate but the substantial economic and 

logical costs incurred by LiDAR data can be overcome by inexpensive aerial 3D 

measurements. 

 

The result showed that LiDAR derived tree height was able to explain 81% of 

field measured tree height with RMSE of 1.18 m. While, tree height derived 

from 3D aerial point clouds was able to explain 66% of field measured tree 

height with RMSE of 1.69 m. Pearson’s correlation analysis indicated 

statistically significant correlation between field tree height and LiDAR derived 

tree height at P<0.05 whereas t-test showed no difference between means of 

field measured tree heights and tree heights derived from LiDAR point clouds.  

 

Two types of accuracy assessment for segmentation of the image were applied 

in this study i.e. measure of closeness (D value) and 1:1 spatial 

correspondence. Overall D value for the study area using LiDAR data was 

found to be 0.33 with 0.31 over segmentation and 0.35 under segmentation 

that means there was 33% error (67% accuracy) in segmentation whereas 

77% accuracy of segmentation was obtained from 1:1 spatial correspondence. 

However, overall D value for the study area using aerial image was found to be 

0.30 with 0.28 over segmentation and 0.33 under segmentation that means 

there was 30% error (70% accuracy) in segmentation whereas 80% accuracy 

of segmentation was obtained from 1:1 spatial correspondence. There was no 

significant difference between LiDAR and aerial photos in segmenting tree 

crowns at 95% confidence level. 

 

Pearson’s correlation analysis indicated that there is a strong positive 

correlation (r>0.90) between field measured diameter and carbon for almost 

all of the tree species in both datasets. The result also showed that the 

correlation between height derived from 3D aerial point cloud and LiDAR with 

carbon was higher than the correlation between automated segmentation of 

crown projection area and carbon. 
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Model validation results showed that species wise regression model were able 

to explain up to 57%, 74%, 84% and 88% of variation in carbon estimation for 

Pinus uncinata, Pinus sylvestris, Fagus sylvatica and Larix decidua respectively 

in the case of aerial image. Similarly, 54%, 57%, 71% and 72% of variation in 

carbon estimation for Pinus uncinata, Pinus sylvestris, Fagus sylvatica and 

Larix decidua respectively was explained by the model in the case of LiDAR 

data. There was no significant difference in carbon estimation between two 

datasets. The regression model developed is used to estimate the AGB carbon 

of each individual tree in the study area. The total amount of carbon stock in 

the study area with aerial image and LiDAR was 54.18 tonne C ha-1 and 47.37 

tonne C ha-1 respectively.  

5.1.2 Recommendations 

 

 

1. 3D photogrammetric matching of aerial image offers a potential 

approach for modelling forest AGB / carbon stock like LiDAR. It can 

replace the cost incurred by LiDAR in data acquisition. Further study 

should be done to check its accuracy for extracting essential forest 

related information in terms of time and cost. 

 

2. The allometric equation used in this study was not site specific which 

will bring errors in the developed models. Therefore, there is a need to 

develop site specific and species specific allometric equations for 

accurate carbon estimation. 
 

3. Differential GPS (DGPS) should be used for an accurate field validation 

which could minimize the field based location error and recognition of 

the individual trees on image. 

 

 

4. Further investigation on the effect of variable window sizes in the local 

maximum filtering strategy should be done to locate treetops on both 

the LiDAR CHM and the orthophoto. 
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Appendices 
Appendix 1: Distribution of sampling plots 
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Appendix 2: Slope correction table 

Plot size 500 m2 
    

Slope% Radius(m) Slope% Radius(m) Slope%  Radius(m) 

0 12.62 
    

1 12.62 36 13.01 71 13.97 

2 12.62 37 13.03 72 14 

3 12.62 38 13.05 73 14.04 

4 12.62 39 13.07 74 14.07 

5 12.62 40 13.09 75 14.1 

6 12.63 41 13.12 76 14.14 

7 12.63 42 13.14 77 14.17 

8 12.64 43 13.16 78 14.21 

9 12.64 44 13.19 79 14.24 

10 12.65 45 13.21 80 14.28 

11 12.65 46 13.24 81 14.31 

12 12.66 47 13.26 82 14.35 

13 12.67 48 13.29 83 14.38 

14 12.68 49 13.31 84 14.42 

15 12.69 50 13.34 85 14.45 

16 12.7 51 13.37 86 14.49 

17 12.71 52 13.39 87 14.52 

18 12.72 53 13.42 88 14.56 

19 12.73 54 13.45 89 14.6 

20 12.74 55 13.48 90 14.63 

21 12.75 56 13.51 91 14.67 

22 12.77 57 13.53 92 14.71 

23 12.78 58 13.56 93 14.74 

24 12.79 59 13.59 94 14.78 

25 12.81 60 13.62 95 14.82 

26 12.82 61 13.65 96 14.85 

27 12.84 62 13.68 97 14.89 

28 12.86 63 13.72 98 14.93 

29 12.87 64 13.75 99 14.97 

30 12.89 65 13.78 100 15 

31 12.91 66 13.81 101 15.04 

32 12.93 67 13.84 102 15.08 

33 12.95 68 13.87 103 15.12 

34 12.97 69 13.91 104 15.15 

35 12.99 70 13.94 105 15.19 

 

 

 

 

 

Source: Y.A. Hussin (2001) from lecture note 
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Appendix 3: Image-registration table 

 

Link X Source Y Source X Map Y Map Residual_x Residual_y Residual 

1 321546.24 4918761.22 321545.99 4918760.62 0.340357 -0.108698 0.357293 

2 321586.68 4918746.98 321585.73 4918746.79 -0.499966 0.14519 0.520621 

3 321611.51 4918710.48 321611.16 4918710.08 -0.025512 0.0516513 0.057608 

4 321601.97 4918711.87 321601.87 4918711.51 0.253241 0.139806 0.289269 

5 321607.05 4918710.34 321606.48 4918709.77 -0.23701 -0.10042 0.257407 

6 321652.96 4918712.37 321652.99 4918712.31 0.240507 0.0989228 0.260056 
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Appendix 4: Histograms of field measurements 
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Appendix 4: Histogram of field measurements 
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Appendix 5: Details of ANOVA table  

SUMMARY 
  

    Groups Count Sum Average Variance 

  Aerial derived 
height 

340 3813.37 
11.2158 6.61692 

  LiDAR derived 
height 

340 4006.307 
11.7833 7.380725 

   
ANOVA   

    Source of 
Variation 

SS df 
MS F P-value F crit 

Between Groups 54.74225 1 54.7422 7.821637 0.005309 3.855211 

Within Groups 4745.201 678 6.99882 

   Total 4799.944 679         

 

Appendix 6: Details of ANOVA table and regression parameters  

 

For aerial image 

Pinus Uncinata 

ANOVA 
       df SS MS F Significance F 

Regression 2 11.15332 5.576662 37.92506 3.43E-12 

Residual 77 11.32241 0.147044 
  Total 79 22.47573       

 

Regression coefficients 

  Coefficients 
Standard 

t Stat P-value 
Lower  Upper  

 Error 95% 95% 

Intercept -0.543 0.466 -1.164 0.247795 -1.473 0.385 

CHM 1.287 0.195 6.602 4.67E-09 0.899 1.676 

CPA 0.514 0.128 4.005 0.000141 0.258 0.77 

 

Pinus sylvestris 

ANOVA 
       df SS MS F Significance F 

Regression 2 15.59128 7.79564 28.563 1.07E-09 

Residual 67 18.28595 0.27293 
  Total 69 33.87723       



Appendices 

 75 

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 0.397 0.553 0.718 0.47495 -0.707 1.503 

CHM 1.062 0.217 4.884 6.77E-06 0.628 1.496 

CPA 0.721 0.146 4.919 5.93E-06 0.429 1.0149 

 

Fagus sylvatica 

ANOVA 
       df SS MS F Significance F 

Regression 2 8.471265 4.23563 60.465 2.61E-07 

Residual 13 0.910663 0.07005 
  Total 15 9.381928       

 

Regression coefficients 

  Coefficients 
Standard 

Error 
t Stat P-value Lower 95% 

Upper 
95% 

Intercept -3.184 0.672 -4.734 0.00039 -4.637 -1.731 

CHM 2.287 0.295 7.749 3.16E-06 1.649 2.925 

CPA 0.701 0.175 4.001 0.00151 0.322 1.078 

 

 

Larix decidua 

ANOVA 
       df SS MS F Significance F 

Regression 2 13.21249 6.60625 25.9986 0.000575 

Residual 7 1.778702 0.2541 
  Total 9 14.99119       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -1.959 1.144 -1.711 0.13 -4.666 0.747 

CPA 0.332 0.19 1.741 0.125 -0.118 0.783 

CHM 2.316 0.52 4.449 0.002 1.085 3.547 
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For LiDAR 

Pinus uncinata 

ANOVA 
       df SS MS F Significance F 

Regression 2 9.920921 4.96046 33.4032 3.59E-11 

Residual 77 11.4347 0.1485 
  Total 79 21.35562       

 

Regression coefficients 

  Coefficients 
Standard 

Error 
t Stat P-value Lower 95% 

Upper 
95% 

Intercept -0.804 0.532 -1.509 0.135 -1.865 0.256 

CHM 1.545 0.225 6.836 1.69E-09 1.095 1.995 

CPA 0.361 0.106 3.387 0.00112 0.148 0.573 

 

Pinus sylvestris 

ANOVA 
       df SS MS F Significance F 

Regression 2 19.77076 9.88538 25.8389 4.81E-09 

Residual 67 25.63266 0.38258 
  Total 69 45.40342       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value 
Lower  
95% 

Upper 
95% 

Intercept -0.152 0.68 -0.223 0.823 -1.511 1.206 

CPA 0.157 0.09 1.735 0.087 -0.023 0.338 

CHM 1.789 0.288 6.208 3.84E-08 1.214 2.365 

 

Fagus sylvatica 

ANOVA 
       df SS MS F Significance F 

Regression 2 9.996631 4.99832 57.5584 3.48E-07 

Residual 13 1.128907 0.08684 
  Total 15 11.12554       
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Regression coefficients 

  Coefficients Standard Error t Stat P-value 
Lower  
95% 

Upper 
95% 

Intercept -3.479 0.706 -4.926 0.0002 -5.005 -1.953 

CHM 2.036 0.248 8.202 1.70E-06 1.5 2.572 

CPA 0.925 0.246 3.76 0.002 0.393 1.456 

 

Larix decidua 

ANOVA 
       df SS MS F Significance F 

Regression 2 9.135316 4.56766 9.41899 0.01035 

Residual 7 3.394589 0.48494 
  Total 9 12.5299       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -1.634 2.214 -0.738 0.484 -6.87 3.6 

CPA 0.395 0.388 1.017 0.342 -0.523 1.313 

CHM 2.146 1.073 1.999 0.085 -0.392 4.686 
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Appendix 7: Carbon stock map of the study area using aerial images 
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Appendix 8: Field measurements (small experiment around ITC) 

 

 
Height measurement in meter 

Observations Theodolite LiDAR Haga hypsometer 

1 11.4 11.12 11.25 

2 10.83 10.39 11 

3 24.83 25.47 24.5 

4 12.58 12.06 13 

5 10.19 10.24 10.5 

6 24.38 24.14 27.75 

7 23.91 21 23.5 

8 19.16 17.78 20.25 

9 7.88 7.56 8 

10 18.42 19.5 19.5 
 

Appendix 9: Summary of statistics 

Statistic 
Height obtained from 

Theodolite (m) LiDAR (m) Haga (m) 

Mean 16.36 15.93 16.93 

Minimum 7.88 7.56 8.00 

Maximum 24.83 25.47 27.75 

Std Deviation 6.54 6.42 6.99 

Observations 10 10 10 

 

Appendix 10: Field photographs 

 


