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ABSTRACT 

Volunteered geographic information (VGI) was used for the acquisition of spatio-temporal information. 
Several studies show the involvement of volunteers in gathering information about phenological phases of 
plants. These observations together with climatic variables were used for modelling phenology. The main 
challenge was the existence of biased phenological observations and the absence of volunteers at 
important monitoring locations, which could lead to biased parameter values and modelling results.   
 
The objective of this research was assisting with the design of volunteer-based phenological monitoring 
networks by modelling phenological observations, determining temporal windows of monitoring and 
detecting spatio-temporal bias. For this purpose, we tested two different types of models, statistical (SW, 
UNIFORC, UNICHILL) and data-driven (PHASE) for predicting the beginning of the flowering dates of 
four species and leafing date of one species. The models were calibrated using VGI and raster-based 
temperature data (for the period 2003 – 2010). The statistical models were optimized by using simulated 
annealing and the data-driven model used an iterative optimization procedure based on the data. Quality 
measures (RMSE, efficiency and correlation) were used to choose the best performing model based on 
VGI data which was split into calibration and validation. Input erroneous phenological observations were 
identified by minimizing the systematic and unsystematic RMSE of the best performing model. The model 
was then re-calibrated with the non-erroneous observations and was used to determine areas showing 
variability (spatial bias) in the date of year (DOY) of the phenological event.  
 
The SW model showed better performance, and the calibration of the model resulted in parameter values 
with meaningful interpretations. As such, this model accounted for the inter-annual climatic variability and 
could be used to predict the phenological event of the five plant species. However, phenological responses 
to annual variations in temperature conditions were not fully tracked, probably due to landscape, 
topography or coarse gridded input temperature data. Also, the SW model helped in identifying erroneous 
observations and areas showing low, medium and high climatic variability. Areas showing variability in the 
prediction DOY of the phenological event differed among the five plant species. For year and plant 
species combinations, the duration of the phenological event also differed due to climate change. We 
found that the PHASE model was more robust to outliers than the SW model and could work well in the 
presence of temporally-biased phenological observations. But, the prediction accuracy of the PHASE 
model to an independent dataset was low. This indicated the over-fitting of the model to the training 
(calibration) data. The simulated annealing algorithm determined better optimal parameter values than the 
optimization process used by the PHASE model. Overall, our findings indicate that the DOY of the 
phenological event occur later in the northern part and earlier in the southern part of The Netherlands. 
Besides, the inter-annual variations in the DOY of the phenological event showed the change in climate 
through the years and revealed differences in the phenology of the five species. The variability in 
phenological events due to location, time and species were determined in this research. Further similar 
studies would enable to confirm the validity of the models for precise prediction of the phenological 
events. In general, we have assessed the value of VGI for monitoring environmental variables and the 
issues of quality (bias) that are associated with such kinds of data.  
 
 
 
Keywords: Volunteered Geographic Information, Phenological modelling, Model comparison, Spatial 
bias, Temporal bias, Climate change 
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1. INTRODUCTION 

1.1. Motivation and Problem Statement 
The increased need for collecting spatio-temporal information to detect and forecast ecological and social 
changes has supported the involvement of volunteer citizens as sensors to monitor natural (Goodchild, 
2011; Lovell et al., 2009) and social (Cui, 2013) phenomena. Because of advances in information and 
communication technology (ICT), scientists can now collaborate with citizens to collect more data about 
environmental conditions(Tulloch et al., 2013). One can also imagine that citizen science has boomed 
because of the convergence of two streams. The first one being the stream of citizens collecting large 
amounts of data in a context of web 2.0 and crowd sourcing applications on the internet (Bordogna et al., 
2013). The second stream involves scientists who address problems from a bottom-up perspective, and 
who require high resolution spatial and temporal observations for their experiments (Jiguet et al., 2012) or 
models (van Bussel et al., 2011). To address this need, citizen-based observation networks are used for 
monitoring environmental conditions existing in particular locations. 
 
Phenology, which is the study of seasonal development stages of plants and animals, helps in studying 
climatic variation  (Betancourt et al., 2007). Volunteers can gather spatio-temporal information about the 
phenological phases (phenophases) of plant species. The collected information can subsequently be used 
to study the effects of climate change at different locations (Jiguet et al., 2012). The timing of a wide range 
of phenophases is affected by various environmental variables, like temperature, precipitation, year and 
location (Polgar et al., 2013). Besides, phenophases display a varying degree of sensitivity to environmental 
variables, both in space and time. Clark and Thompson (2010) have shown the sensitivity of flowering 
date, which is a key development stage of a plant, to changes in temperature. Thus, it is important to 
identify the environmental variables that help explain the phenological phase of the species. 
 
Environmental variables and phenophases exhibit variability with location, time and among species. Also, 
as discussed by Saracco et al. (2008), environmental variability determines the distribution and abundance 
of species. Therefore, it is important that volunteers sample the parameters for environmental variables in 
a non-biased fashion. In other words, missing data from important locations will result in spatially-biased 
monitoring results that might yield misleading results. Similarly, the absence of volunteers at the 
appropriate timing of the phenological phase will create temporally-biased monitoring results. In addition, 
different species display varying levels of response to climatic variation. Some species have phenophases 
that make a clear response to climate change, while others have phenophases that appear unrelated to 
climatic variations (Møller et al., 2008). So, the identification of species which are abundant in suitable 
habitat, with ease of recognition, and phenophases that consistently respond to environmental variables 
will help decision-makers determine species that are better suited for monitoring purposes (Beaubien and 
Hamann, 2011). In addition, determination of optimal temporal windows and monitoring locations is 
useful for decision-makers to give recommendations for volunteers in the design of volunteer-based 
monitoring networks. 
 
Most phenological monitoring networks rely on spatially-distributed volunteers who are involved in 
gathering the timing of phenophases for a relatively wide range of species. The effectiveness and efficiency 
of monitoring networks is largely dependent on the survey design, i.e., the distribution of data collection 
efforts in space and time (Reynolds et al., 2011). As a result, the proper design of the phenological 
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monitoring network has economic and scientific benefits (Amorim et al., 2012). Properly designed 
networks consist of optimal spread of volunteers in space and time to sufficiently monitor an 
environmental phenomenon. This will reduce the economic cost of deploying volunteers for data 
collection (Bonney et al., 2009; Ferster and Coops, 2013). In addition, the proper design of the monitoring 
networks is essential for understanding and modelling the relationship between phenological phases and 
spatio-temporal variation in climatic conditions. 

 
The location of volunteers in phenological monitoring networks influences the quality of collected 
environmental information (Do et al., 2012). Therefore, an optimized monitoring network with 
strategically located volunteers is necessary to study better the influence of environmental conditions on 
the phenology of species. In this way, appropriate temporal windows and spatial variations are identified 
for a particular phenological phase of a species (Moller et al., 2011). Similarly, optimal design of the 
monitoring network can be used to predict the distribution of the species in the future and reduce the 
uncertainty in estimating that distribution (Fink et al., 2010). This information is helpful for decision 
makers to use their budget wisely to recruit new volunteers by preparing guidelines on which species, 
when and where citizen sensors should make reports. 

1.2. Research Identification 

 Research Objectives 1.2.1.
The main objective of this research is to assist with the design of a citizen-based monitoring network in 
which volunteers collect spatio-temporal information on the phenological phases of a number of species. 
This can be achieved by completing the following sub-objectives: 

 Modelling the relationship between environmental information and time-series volunteer 
phenological observations using three statistical models and a data-driven approach; 

 Improving phenological models by removing potentially-erroneous observations and by 
minimizing the systematic and unsystematic errors (RMSE); 

 Identifying the temporal phenological windows of monitoring the phenophase of the species in 
space using modelling results; and 

 Mapping phenological models through time to detect spatially biased areas at large scale. 
 

 Research Questions 1.2.2.
1. Which statistical phenological modelling approach best fits the species/phenophase combinations of 

volunteered phenological observations? 
1.1. How to fit statistical model parameters? 
1.2. Which data-driven approach can be used for modelling phenology of a species? 
1.3. What is the added value of data-driven modelling? 
1.4. What is the impact of erroneous VGI observations on the output of the phenological models? 

2. How can we systematically exclude erroneous observations from phenological models based on 
volunteered geo-information? 
2.1. Which VGI observations are erroneous? 
2.2. What is the error threshold that minimizes systematic modelling errors? 

3. How can the temporal windows of monitoring a phenophase be determined from the modelling 
results? 
3.1. Which recommendations can be given to volunteers on the timing of monitoring the 

phenophase in a given location? 
4. How can phenological dynamics be used to determine sampling schemes? 

4.1. How can phenological dynamics be used to determine temporally biased areas? 
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4.2. Which recommendations can be given to volunteers on the location of monitoring a 
phenophase of a species? 

 Innovation aimed at 1.2.3.
This research will improve the design of citizen-based phenological observation networks by modeling 
phenological observations in response to climatic variations and systematically removing erroneous VGI 
observations. Like this, these networks will be able to identify the species and the phenophases to be 
monitored as well as when (time) and where (space) to do it. 

  Related work 1.2.4.
The use of volunteered geographic information (VGI) has a long history (Silvertown, 2009). This can be 
associated with the existence of volunteer-based phenological monitoring networks for a long period. For 
instance, eBird is a phenological monitoring network, launched in 2002, where birdwatchers collect and 
store observations on bird populations (Sullivan et al., 2009). Networks of the ebird type (ebird.org in the 
USA, waarneming.nl in The Netherlands, and many others across Europe) for most part do not deploy a 
sampling scheme, and simply collect observations that their large volunteer base report. They often do 
organize, however, specific data collection projects with a fixed runtime. The long-running Christmas Bird 
Count1 is one such effort; in The Netherlands, the Great Grey Shrike winter count2 is another example. 
The design of monitoring networks involves different sampling schemes. Delaney et al. (2008) used 
systematic surveys, using randomly placed quadrats with 1000 volunteers across 52 sites to collect the 
species, gender, and carapace width of crab. Similarly, Braunisch and Suchant (2010) compared three 
volunteer-based monitoring schemes using data collected in exact locations; locations aggregated to grid 
cells and systematic counts conducted within a small subarea. 

 
As the amount of spatio-temporal VGI observation continues to increase, innovative ways of getting the 
best out of the available big data are required. Phenological models are one of the ways that make use of 
VGI data to study the effect of climatic variations on the phenophases of plant and animal species and 
make forecasts of their future distributions. Parker et al. (2011) compared three phenological models to 
determine the one with the best predictive ability on the flowering and veraison stage of grapevine. 
Similarly, Bolmgren et al. (2013) modeled a 73 years old data series to predict the first flowering dates of 
25 species. Furthermore, Miranda et al. (2013), used two different versions of critical date models and five 
different versions of critical chilling model to find the model with the best predictive ability. The 
parameters of the model can either be inferred from literature or fine-tuned. Deligios et al. (2013), 
obtained parameters of the model, base and optimum temperature, from literature to adapt a new model 
for predicting growth and yield of rapeseed. Alternatively, parameters can be refined by using a Bayesian 
approach (Ceglar et al., 2011), simulated annealing (Chmielewski et al., 2013; Parker et al., 2011) or least 
square parameter estimation methods (Sáez and Rittmann, 1992).  

 

On the other hand, geo-statistical models have been used to provide spatial interpolations and predictions 
(Júnez-Ferreira and Herrera, 2013). In addition to the statistical approaches, the advancements in data-
intensive science have increased the accuracy in estimating the distribution of species (Hochachka et al., 
2012b). Thus, data-driven approaches can be used as powerful modeling alternatives (Abdel-Rahman et 
al., 2012). For instance, Moller et al. (2011) modeled the relationship between climatic variables and 
‘Yellow Ripeness’ phase of winter wheat using a machine learning algorithm.  

 

                                                      
1 birds.audubon.org/christmas-bird-count 
2 waarneming.nl/waarnemingen_projecten.php?project=258 
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Although volunteered geo-information is the source of a vast quantity of data, the quality of the data is 
questionable. Sullivan et al. (2009) considered lack of identification skills; geographic bias due to absence 
of standardized location reporting mechanisms and uneven sampling distribution as the cause of bias in 
volunteer information. Several studies have used different approaches for removing bias in volunteer 
geographic information. Jun et al. (2012) developed an automated data quality filter which identifies 
outliers and groups the data into valid and invalid observations to improve data quality. Bonney et al. 
(2009) proposed that data quality can be achieved by delivering data collection protocols, data forms, and 
providing help for participants in understanding the protocols. 
 
The proposed research project used three statistical phenological models described by some scholars 
(Parker et al., 2011) and the data-driven model by Moller et al. (2011). The first two statistical phenological 
models, Spring Warming and UNIFORC, only consider the effect of forcing temperature on phenological 
development. Likewise, the third statistical model, UNICHILL uses chilling and forcing temperature to 
predict the date of the phenophase. On the other hand, the data-driven model (PHASE) made use of a 
machine learning algorithm, Random Forest, which was based on decision trees to determine the date of 
the phenophase. The models were used to map phenological dynamics through time to determine spatially 
and temporally biased volunteer monitoring areas in the design of monitoring networks.    

1.3. Method Adopted 
The proposed research was carried out by following the workflow shown in Figure 1.1. The research work 
started with a review of relevant literatures to justify the methods adopted. Statistical and data-driven 
phenological models, optimization method of model parameters, systematic identification of erroneous 
VGI observations were based on previous work in the literature. This review of relevant literature was 
accompanied by data preparation. In this phase, the volunteer phenological observations were checked for 
incompleteness (missing data) and the environmental variables (e.g., gridded daily temperature files) that 
were used were selected and prepared. This included extracting the values of the environmental variables 
at locations of phenological observations and storing them in a manageable way.  

 
Then, the volunteer phenological observations of species/phenophase combinations and environmental 
variables were fitted on three statistical phenological models taken from literature (Parker et al., 2011) and 
the data-driven PHASE model (Moller et al., 2011). The performance of each model was determined by 
validating the models. A separate validation dataset was used for validating the statistical phenological 
models. On the other hand, the algorithm of the data-driven approach partitioned some percentage of the 
data for validation and showed the accuracy of the model. Consequently, quantitative quality measures, 
like RMSE (Root Mean Square Error) and efficiency (percentage of variance explained) were used for 
comparing the performance of the models (Parker et al., 2011; Zhang and Tao, 2013). Based on these 
quality measures, the model with the highest efficiency and the smallest RMSE was considered as the best 
phenological model. The parameters of the best statistical phenological model was then optimized using 
existing method from literature.  

 
After that, the identification and removal of erroneous VGI observations were done by first partitioning 
the RMSE components into systematic and unsystematic (Malenovský et al., 2013). Secondly, the error of 
each observation was determined and an optimal threshold value was selected as the one that minimized 
the systematic RMSE. Thirdly, the observations above a certain error threshold (model prediction vs. 
observations) were considered as erroneous. Once the erroneous VGI observations were identified and 
removed, the performance of the statistical phenological model and of the data-driven model were 
assessed by calibrating the models with the non-erroneous observations. The data-driven model was also 
compared with the statistical model taken from literature to see the added value. 
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Finally, the model was fitted into the time-series data on yearly basis. The standard deviation of the 
prediction results of each year from all the years were determined and mapped. The variability in 
prediction result over the years could be associated either with heterogeneity in climate or absence of 
monitoring volunteers. Hence, areas showing higher variability in prediction results were considered as 
spatially-biased. In addition, once the erroneous VGI observations were removed, the new sets of 
observations were used to calibrate the phenological model and to make predictions. Additionally, the 
modelling results were spatially interpolated to determine the appropriate temporal windows for 
monitoring the phenophase of a plant species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Methods to be adopted for attaining the research objective 
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1.4. Overview of the Thesis research 
The thesis is composed of five main chapters. Chapter one of the research explains the motivation and 
problem statement, research objectives, questions, related work and the method adopted. Chapter two 
gives a brief explanation of works related to the research and to the methods adopted. Chapter three 
describes the materials that were used to undertake the research and the methods that were used to answer 
the research questions. Chapter four presents the results of the major findings of the research. In chapter 
five, the meanings and importance of the findings are discussed. These findings are also related with other 
similar findings in literature. Chapter six presents conclusions of the research and future 
recommendations. 
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2. LITERATURE REVIEW 

2.1. Overview 
This chapter gives background information about the proposed research by creating a link with researches 
that have already been completed. The review of the related works on Volunteered Geographic 
Information (VGI) justifies the importance of conducting the research and the possible analysis that can 
be applied on data collected by citizens with no formal expertise in the area.  In addition, a sufficient 
review of existing methods of analysis is discussed to explain the choice on the type of analysis as well as 
the methods. 

2.2. Importance of Volunteer-based Geographic Information 
In previous years, geographic information (GI) was used by small group of people for specialized 
purposes and data were solely accessed by expert users using a particular GI tool. Similarly, data providers, 
developers and users belonged to the same group of people who were well trained in a specific GI 
application and who had background knowledge in geographic information (Brown et al., 2013). The use 
of GI was also limited to paper maps but then shifted to digital maps, spatial databases and web-based 
applications, respectively (Harding et al., 2009).  
 
The availability of GI through internet and advances in ICT have made a large amount of diverse 
information and GI applications accessible to a wide range of people for various goals and context of uses 
(Silvertown, 2009). This has, in turn, contributed to the emergence of VGI, which is a GI shared publicly 
by a wider community of people (Brown et al., 2013). VGI has enabled users to access and contribute up 
to date information with wide spatial and temporal coverage to advance scientific knowledge. Global 
changes in species distribution, climate change and variations of biodiversity, temporal trends for 
recognizing the decline of species throughout the world are detected using VGI (Silvertown, 2009). 
Similarly, scientific journals and peer-reviewed papers are published using the data collected by volunteers 
(Jiguet et al., 2012).  In addition, the involvements of volunteers in monitoring activities have economic 
contributions. Volunteer participation in biodiversity monitoring in France has saved 678,523 and 
4,415,251 euros per year which would have been invested in the absence of volunteer participation (Levrel 
et al., 2010). However, the data collected by volunteers is mostly non-structured and the quality is 
unknown. Data credibility, non-comparability of the data, data completeness and logistical issues are some 
of the challenges of VGI (Gouveia et al., 2004). 
 
Citizen science projects engage volunteers for collecting various kinds of information. One of such areas 
involving volunteers in collection of geo-tagged reports about specific incidents is called VGI (Bordogna 
et al., 2013).  These incidents include reports on natural disasters, crime and environmental phenomena 
(Yanenko and Schlieder, 2012). For instance, Ushahidi, is an application that enables volunteers to give 
information on political crisis or natural disaster (Roche et al., 2013). Similarly, NoiseTube project 3 
involves citizens to monitor noise pollution by collecting noise information about their local environment 
(Maisonneuve et al., 2009). Designing a citizen science project starts from formulating a scientific question 
up to measuring the outcome of the project to ensure if the monitoring objective is achieved (Bonney et 
al., 2009).  

                                                      
3 http://www.noisetube.net 
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Furthermore, volunteer observers participate in phenological monitoring networks as they can only 
identify organisms reliably to the species level (Hochachka et al., 2007). Phenological monitoring includes 
tasks that are executed to collect geo-information about phenological phases of species. The phenological 
monitoring networks are designed for specific monitoring objectives and a particular area ranging from 
regions to continental or global scale. The observers make reports about phenological phases using web-
based maps or a global positioning system (GPS).  
 
Phenological information is important to recognize the potential impact of climate change on the spatial 
and temporal distribution of the species (Richardson et al., 2013). Additionally, they are useful for 
decision-makers to organize agricultural activities that require advanced information on the development 
stages of plants. For example, citizens collect phenological bird data by participating in projects, like 
hummingbirds.net, Journey North and eBird (Kelling et al., 2012). US National Phenology Network4  
(Sullivan et al., 2009), Alberta and Canada PlantWatch programs 5 (Beaubien and Hamann, 2011) engage 
volunteers for collecting information about the phenological phases of a wide range of plant and animal 
species.  Hence, different kinds of analysis can be applied on volunteer phenological observations to 
extract valuable information, patterns and trends through time and space. In addition, phenological 
observations can be associated with other external factors, like climate to determine the spatio-temporal 
effect of climate change on the phenological stages of organisms. 

2.3. Quality of Volunteer-based Geographic Information 
Geographic information collected by volunteers have variability or bias as it engages citizens with different 
level of expertise (Kelling et al., 2012). In addition, the spatial and temporal variability of VGI results in 
different values of the parameters that are measured. Correspondingly, the credibility of data collected by 
volunteers is also dependent on the motivations of the contributor (Flanagin and Metzger, 2008). Thus, 
the credibility of such geo-information should be carefully investigated prior to analysis and presentation 
of results.   
 
Citizen science projects, which involve a large number of volunteers, have unequal distribution of 
volunteers in space (spatial bias). Some regions are populated with a high density of volunteers, while 
others have a small number of volunteer distributions. Kelling et al. (2012) identified under-sampled 
locations in bird watching by using an active learning approach. The approach considers areas with higher 
uncertainty and lower density as under-sampled.  This was used to give volunteers a context on sampling 
locations that need monitoring. In addition to the spatial bias, there also exists a temporal bias, which is a 
deviation from the actual occurrence of events  in Volunteered Geographic Information (Bird et al., 2013).   
 
A balance between the quantity and quality of data collected by volunteers is important to get valuable 
information from citizen science data (Hochachka et al., 2012a). Motivating volunteers by giving rewards 
and having less complicated data collection protocols can help increase the quantity of data collected by 
volunteers. On the other hand, many efforts have been made to guarantee the quality of volunteer data 
collections. In the case of phenological observations, the quality of observation varies with different 
species, phase, year, location and environmental conditions. Beaubien and Hamann (2011) used a variance 
partitioning approach to partition the total variance in the phenological datasets into components. The 
causes of the residual variation in bloom date are partitioned into year, species, phase, location, and 

                                                      
4 http://www.usanpn.org/ 
5 http://www.naturewatch.ca/ 
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observer error considering their years of observing experience. This approach helps in determination of 
residual variance that is caused by observer error versus by climatic conditions. 
 
Moreover, an automated emergent filter process was developed to improve the quality of data collected by 
bird watchers in eBird citizen science project (Kelling et al., 2012). In this project, the accuracy of 
volunteer data on the identification of the bird species is unreliable. The developed emergent filter 
considers the levels of expertise of the users (experts and novice birders) to identify outlier (unusual) 
observations that need review.  
 
In addition, the calculation of site level anomaly and trend statistics were suggested as an approach to 
avoid the spatio-temporal bias existing in volunteer data (Alemu et al., 2013). Statistical analysis between 
spring, winter, and mean annual temperature and first flowering day in Canada has showed the advances 
in blooming day (earlier blooming day) due to climatic changes. Inter-annual variability in bloom dates, i.e. 
earlier or later bloom dates were considered as anomalies. Thus, the identification of these anomalies can 
help detect the bias in VGI.  Moreover, weekend bias, which is a temporal bias caused by having more 
observations in the weekends than week days, affects the quality of data collected by volunteers. Courter 
et al. (2013) investigated the temporal bias in volunteered phenological information caused by weekend 
bias and its implications on phenological studies.  
 
On the other hand, a constraint based approach was used to compensate for the missing and incorrect 
values existing in volunteer observations (Yanenko and Schlieder, 2012). This approach creates a 
constraint based on the principle of spatio-temporal proximity. The constraint satisfaction approach has a 
set of variables and constraints. That is, volunteer observations in same area and a given time delay can 
confirm each other and are consistent. The constraint graph was drawn for plants of the same species, 
phenophase and by considering climatic variability in air temperature, elevation, and latitude and plant 
position.  Thus, this approach was used to avoid the spatio-temporal bias existing in VGI. In addition, 
Bird et al. (2013) used statistical modelling techniques and machine learning tools as the analytical ways of 
determining the variability and bias existing in data from citizen science projects. They defined random 
error as the variation in the response variable which is not caused by the explanatory variables. The 
random error is a mistake that is a result of observation error and which is not included in a model.  
 
In this research, temporal bias is the deviation of the observer report on date of the phenological phase 
from actual date of the phenological event of the species, whereas spatial bias is the variation of volunteer 
distributions across space, which is associated with the absence of volunteers at important locations. In 
addition, for each species, areas showing inter-annual variability in the dates of the phenological event 
across space are considered as spatially-biased. Hence, it is important to detect the spatio-temporal bias 
existing in volunteered geographic information to increase the quality and usefulness of the data. 

2.4.  Spatio-temporal Analysis of VGI Data 
The active involvement of volunteers in citizen science projects had increased the availability of spatio-
temporal data. In connection to this, there is a dire need for data analysis techniques to extract hidden 
information from volunteered geographic information. Numerous data-mining tasks can be applied on 
spatio-temporal data collected by volunteers to achieve the complete potential of citizen science projects.  
To begin with, identification of spatial and temporal patterns requires exploration of volunteer geographic 
information. The understanding of the patterns that exist in spatial data is important for determining the 
cause of the spatial and temporal distributions of events. Siebert and Ewert (2012) used phenological 
information about oats obtained from volunteer observations to identify spatio-temporal patterns of 
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phenology in response to temperature and day length. In addition, geo-visualization was used to detect 
patterns by enabling visual exploration of spatio-temporal datasets (Kim, 2009). 
 
Alternatively, point pattern analysis helps to identify patterns existing in spatio-temporal datasets. The 
patterns that exist in point data are grouped into complete spatial randomness (CSR), regularity and 
clustering. The methods used to determine the spatial pattern existing in point datasets are categorized 
into distance-based and area-based techniques (Haggett et al., 1977). The distance-based techniques 
consider the spatial dependence (spacing) that exist between neighbouring point patterns. In contrast, area 
based techniques consider the density of point patterns in a specified region of the study area. Li and 
Zhang (2007) tested four methods of spatial pattern analysis for analysing the spatial distributions of tree 
locations. In addition to geographic location, point patterns consist of additional marks (attributes) which 
characterize them (Stein and Georgiadis, 2006). In the cases of phenological monitoring activities, the 
additional marks are the times or dates of observations.  
 
Clustering, which involves grouping similar data into one cluster (group), can be applied to spatio-
temporal VGI data. Miller and Han (2009) applied cluster analysis algorithms to determine datasets that 
can be grouped into a cluster. Additionally, classification and regression can be applied to spatio-temporal 
datasets. Classification involves dividing data into different classes based on attribute values of variables 
(Rodriguez-Galiano et al., 2012). On the other hand, regression analysis can be used for predicting the 
values of dependent variable from one or more independent variables in spatio-temporal datasets (Mennis 
and Guo, 2009). It also helps in determining the type of relation that exists among these variables. 
Regression analysis can be done by using either the parametric or machine learning (non-parametric) 
approaches. For instance, phenological models use regression analysis for predicting the date of 
phenological event based on climatic conditions (Luedeling and Gassner, 2012).   
 
Spatio-temporal analysis methods, which consider the spatial and temporal dimension of data, are applied 
on volunteered geographic information to extract useful information. These techniques are applied on the 
phenological information collected by volunteers to determine spatio-temporal patterns existing in 
phenology through the years. In addition, the analysis techniques help determine the phenological 
variability existing in different regions that are associated with climatic variability. However, the usefulness 
of the information extracted from VGI is dependent on the quality of the data. Therefore, it is important 
to consider the spatio-temporal biases existing in volunteer observations to guarantee the usefulness and 
quality of data. 
 

2.5. Review of Statistical Phenological Models 
 
Phenological models are used for understanding climate change and its impact on the phenology of a 
species (Sacks and Kucharik, 2011; Tao et al., 2012; Vitasse et al., 2011). These models are species-specific 
and are applied to specific species and climatic conditions. In addition, phenological models compensate 
for the absence of phenological records by predicting the dates of phenological events for areas that don’t 
have information (Miranda et al., 2013). Some phenological models base on the principle that phenological 
development is solely influenced by temperature (Vitasse et al., 2011). Such models use the chilling or 
forcing heat requirement of species to determine the day of phenological event. Spring warming is one of 
the phenological models that consider the effect of forcing temperature (Hunter and Lechowicz, 1992). 
Spring warming model uses a degree-day approach, which assumes a linear relationship between 
accumulated temperature and date of the phenological phase. In addition, they assume that a phenological 
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stage occurs when a certain amount of heat units above a base temperature are accumulated. These 
models are preferred as they have a good predictive accuracy (Schwartz, 1999).   
 
On the contrary, other phenological models consider the effect of chilling requirement during the 
dormancy period as a major regulating factor of crop phenological stage. The chilling hours model uses 
the hourly temperature below 7 oC to calculate the accumulated sum of chilling requirements (Valentini et 
al., 2001). Another version of the chilling hour’s model, Utah model, considers the negative effect of 
having higher temperature on the accumulation of chilling temperatures. To overcome this, weights were 
given for temperatures above 15.9 °C (Luedeling, 2012). These models are not much useful for species 
with medium or low winter chill requirement. Dynamic model assumes sequence of temperature 
accumulation for chilling requirement (Fishman et al., 1987). The first phase involves accumulation of 
intermediate chill temperature at low temperature. This phase is changeable as the intermediate 
temperature can change if  high temperature is encountered (second phase) (Luedeling, 2012). On the 
other hand, sequential models consider both chilling and forcing temperature requirements for predicting 
phenology of a species(Luedeling, 2012).  
 
Several researches have used phenological models to study phenology of species.  Zhang and Tao (2013) 
compared five phenological models to predict rice phenology in conditions of climatic changes and 
variability at different regions. The uncertainties of these five phenological models were calculated and the 
performance of the models varied at different regions. Miranda et al. (2013) used three versions of critical 
date models and five versions of critical chill models to predict peach bud development. The critical date 
models only consider the effect of forcing temperature on phenology while the critical chill models 
consider the effect of chilling temperature. Parker et al. (2011) used spring warming, UNICHILL and 
UNIFORC model to predict the flowering and verasion stages of grapevine. Spring warming and 
UNIFORC only consider the effect of forcing temperature while the UNICHILL considers the effect of 
forcing and chilling temperatures. Unlike the spring warming with linear response, the UNIFORC model 
has a sigmoid response to temperate (Chuine and Cour, 1999; Vitasse et al., 2011). Lastly, the UNICHILL 
model considers the effect of chilling temperature until a critical stage of chilling to break dormancy is 
reached. Following this, the forcing temperature will start to accumulate until critical stage of forcing is 
reached.  
 
Phenological models take volunteered geographic information (i.e. reports on dates of observation of 
phenological stages) and climatic variables as input to make predictions on the dates of occurrences of 
phenological stages. However, these phenological models have systematic defects that reduce the 
performance of the prediction results. This can be attributed to various factors like the uncertainties in the 
model parameters leading to non-meaningful values or absence of appropriate predictor variables of 
phenology. (Blümel and Chmielewski, 2012) improved the performance of spring warming model that 
predicts apple blossom day by considering day-length in addition to temperature which was solely used in 
other versions of spring warming models. In addition, they also fitted the model parameters to minimize 
the RMSE, which is the difference between the observed and predicted values. In addition, the quality of 
the VGI has a direct influence on the prediction results of phenological models. The existence of 
spatiotemporal bias in the volunteer observations cause either an over/under predictions in the modelling 
results. Similarly, the modelling results are dependent on the spatiotemporal analysis method which is used 
to find the relation between the dependent and independent variables. Therefore, the bias in VGI should 
be accounted when calibrating phenological models to avoid systematic defects and obtain accurate 
results. 
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2.6. Review of  Data-Driven Phenological Models 
In addition to the statistical modeling techniques, data-driven approaches are used to find the relationship 
between dependent and one or more independent variables.  Data-driven modelling approaches base on 
computational intelligence and machine learning algorithms to find relationship between dependent and 
independent variables (Solomatine et al., 2008).  They are based on a heuristic algorithm which does not 
make a prior assumption about the distribution of the data. Hence, data-driven modelling relies on the 
analysis of the data describing the system under study. For this reason, they can capture more complex 
relationships than the statistical phenological models. Similarly, they are more robust to the existence of 
unusual (outliers) observations in the data.  
 
There are different types of data-driven modelling techniques. For instance, artificial neural networks and 
support vector machines train from empirical datasets to model sophisticated non-linear relationships 
(Cheng et al., 2012). Similarly, some data-driven modelling techniques like, Random Forest, use decision 
tree algorithms (DTA) for determining the dependence between variables (Abdel-Rahman et al., 2012). 
DTA splits the feature space of explaining variables until the resulting partition show the best statistical 
correlation. Moller et al. (2011) developed a temperature vegetation model (PHASE) by using random 
forest regression to predict the dates of phenological stages from daily temperature values in Germany. 
Therefore, data-driven modelling techniques can be applied to model the relationship between volunteer 
phenological observations and environmental information. They enable the exploration of the spatio-
temporal characteristics of VGI data. In conclusion, statistical and data-driven modelling techniques are 
used to analyse volunteer phenological observations and climatic conditions. In addition, these models are 
used to detect the spatio-temporal bias existing in the observations. 
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3. MATERIALS AND METHODS 

This chapter explains the data needed for doing the analyses and the corresponding methods that were 
applied to the dataset. 

3.1. Materials 

 Phenological Data 3.1.1.
The main parameters of this study were the flowering dates of four plant species, namely Cow Parsley, 
Lesser Celandine, White Horse Chestnut, Wood Anemone and one leafing species Common Oak (Table 
3.1). Phenological data on the first phenological dates are collected by volunteers from different locations 
in The Netherlands. A total of data of eight years, from 2003 up to 2010, was obtained from 
“Natuurkalender”, which is a Dutch phenological monitoring network established in 2001 
(Natuurkalendar, 2013).  
 
The Dutch phenological monitoring network engages volunteers for obtaining information on 
phenological phases to study climatic variations, analyse, forecast and communicate the timing of 
phenological events. The data obtained from the “Natuurkalender” includes the location and time of 
observing a given species and phenophase (Table 3.2). In this research, the phenological observations on 
the first flowering dates of Cow Parsley, Lesser Celandine, White Horse Chestnut and Wood Anemone 
and the leafing date of Oak were used for calibration and validation of phenological models. In addition, 
phenological observation were analysed to check the quality of the data and existence of spatio-temporal 
bias. The phenological observations made by volunteers on the dates of the year (DOY) of the 
phenological events are shown (Figure 3.1). Also, the phenological data covered the whole area of The 
Netherlands. 
 
Table 3.1. Name of Species, year and number of observations of the phenological stage of the five plant 
species in the “Natuurkalender” dataset 
 
Species Name 
(English) 

Species Name 
(Dutch) 

Species Name 
(Scientific) 

Years No of 
Observations 

Stage 

Cow Parsley Fluitenkruid Anthriscus sylvestris 2003-2009 1185 First flower  

Lesser 
Celandine 

Speenkruid Ranunculus ficaria 2003-2009 2080 First flower  

White Horse 
 Chestnut 

Paardekastanje 
(witte) 

Aesculus 
hippocastanum 

2003-2009 601 First flower  

Wood 
Anemone 

Bosanemoon Anemone nemorosa 2003-2009 827 First flower  

Common Oak Eik (zomer) Quercus robur 2003-2009 384 First leaf  
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Table 3.2. A record showing instances of volunteer phenological observation.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Species  
Name 

X 
(Coordinate) 

Y 
(Coordinate) 

Phenophase Date Place Year 

Cow Parsley 109000 402000 First Flower 86 Breda 2004 
Lesser 
Celandine 

168000 391000 First Flower 69 gemeente 
LAARBEEK, de 
schop 

2007 



SPATIO-TEMPORAL MODELLING OF VOLUNTEERED GEOGRAPHIC INFORMATION: A PHENOLOGICAL STUDY 

15 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Box plots showing the yearly volunteer observations on the DOY of the phenological stage for 
the five   plant species 

a) Cow parsley 

b) Celandine 

d) Wood anemone 

e) Oak 

c) Chestnut 
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 Observed meteorological data 3.1.2.

To model the date of flowering or leafing and to calibrate the models, we used air temperatures observed 
by the Royal Netherlands Meteorological Institute (KNMI) from 2003 up to 2010. KNMI is a national 
institute that forecasts weather information to the public (KNMI, 2013). It collects daily maximum, 
minimum and average values of different climatic variables, like temperature, precipitation and evapo-
transpiration.  
 
This research used the daily average temperatures that were interpolated in a raster file of size 1km for the 
whole area of The Netherlands. The interpolation is based on the measurements made by 500 
meteorological stations. This interpolated temperature is used to calibrate the phenological models and 
later on to predict the DOY of phenological event across the entire study area. 

3.2. Methods 
This section describes the methods that were applied to do data analysis and complete the objective of the 
research (Figure 3.2). The data analysis is done by using the statistical computing and graphics software R 
(Grunsky, 2002). In addition, the codes for reproducing all analyses are provided as supplementary 
materials of the research. 
 
Firstly, observations that were incomplete (i.e. ‘0’ values for x and y coordinates) were removed from the 
dataset. Then, the dataset was split per species for an independent analysis within a species. For each 
species, the dataset was further divided into model building and validation. Secondly, phenological models 
were calibrated to model volunteer phenological observations in response to daily temperature values. 
Location information provided by volunteers was used to extract daily temperature values at the year of 
phenological observation. Three statistical and one data-driven phenological models were calibrated with 
daily temperature values and phenological observations to predict the flowering dates of four plant species 
and the leafing date of one plant species. In addition, the parameters of the statistical models were fitted 
by using an optimization algorithm, i.e. simulated annealing. After that, quality measures (RMSE, 
efficiency and correlation) were used to compare the three statistical models and to choose the best 
performing model.  
 
Thirdly, temporally-biased volunteer phenological observations were identified by using the phenological 
models. Specifically, the volunteer phenological observation dates were compared with dates predicted by 
the models and the error of each observation was analysed to detect temporally-biased observations. 
Then, biased observation sets were discarded and the improvement in the systematic and unsystematic 
root mean square error (RMSE) of the model was checked. Fourthly, the phenological models were used 
to predict the DOY of flowering of the four plant species and leafing of one species between the years 
2003 and 2010. As a result, the phenological dynamics was detected to determine the spatial bias across 
different regions of The Netherlands. Generally, phenological models were used to detect temporal bias in 
the volunteer phenological observations and spatial bias in the whole area of The Netherlands. 
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     Figure 3.2. The adopted method for answering the research questions 

 Data preparation 3.2.1.
In this step, incomplete phenological observations with ‘0’ values for the x and y coordinates were 
discarded from the dataset. Then, the dataset was split into two independent datasets, calibration and 
validation, per species. Splitting the data into calibration and validation helped in assessing the robustness 
of the models. The calibration data was solely used for building the model and the validation data were 
independent set of data to check the predictive accuracy of the model. About 70% of the data from all 
years were used for model calibration. The remaining 30% of the data from even years were used for 
validation purpose. Finally, climatic variables, in particular daily temperature values for the locations and 
years of the phenological observations, were extracted. 

 Statistical phenological models 3.2.2.
Phenological models provide an assessment on the adaptation of species to climatic variations and the 
impact of climate change on their future performance. Two different phenological modelling approaches, 
statistical (parametric) and data-driven (non-parametric), are tested in the study. The phenological models 
are used to predict the first flowering dates of four plant species and leafing date of one plant species 
based on daily average temperature values. These models are calibrated and tested using independent sets 
of volunteer phenological observations. 
 
 

Phenological Models  
 Statistical Models 
 Data-Driven model 
 Optimization 
 Quality Assessment 

Temporal Bias 
 Determining and analysing biased observations 
 Computing the systematic and unsystematic RMSE 

Spatial Bias 
 Analysing phenological dynamics through the years   

Data Preparation 
 Removal of incomplete observations 
 Splitting of data-set per species 
 Extracting climatic variables 
 Splitting of data-set into calibration/validation 
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3.2.2.1. Forcing model 
 
Temperature is the main factor affecting the development stages of plants (Chuine et al., 1999). In 
connection to this, some phenological models consider the effect of warm (forcing) temperature required 
to reach a phenological stage. Two forcing models that consider the effect of warm temperature on 
phenological development of plant species are used in this study. The models are described in section 
3.2.2.1.1 and 3.2.2.1.2. 

3.2.2.2. Thermal time (Spring Warming) model 
Spring warming model assumes that a phenological stage occurs when a plant accumulates a sufficient 
amount of heat sums (growing degree days) above a base temperature (Chuine et al., 2003). Hence, it uses 
a linear sum of daily temperature above the threshold temperature to calculate the heat sum requirement 
of a phenological stage (i.e. flowering or leafing). If daily temperature of the plant is below the base 
temperature, the plant stops growing and has a rate of forcing of zero (Eq. 1). Otherwise, the non-zero 
daily rate of forcing would be accumulated from a starting day until the date of phenological stage (Eq. 2). 
This model implicitly assumed that cold temperature was fully released before the starting date of forcing 
units’ accumulation. The rate of forcing of the spring warming model is calculated as follows: 
 
 

 

 
 
where Tb is the base temperature (minimum temperature required for development), Td is daily average 
temperature and Rf(Td) is the daily rate of forcing, which is a function of Td. The state of forcing, which is 
the summation of daily rate of forcing, from T0 until Ts is calculated as in equation 2.  
 

 
where ∆t denotes the time span of calculating the rate of forcing, i.e. 1 day; T0 indicates the starting day of 
accumulating a temperature; Ts represents the date where a critical phenological stage (flowering or 
leafing) reached and F* shows the amount of heat that needs to be accumulated by the plant to reach the 
state of forcing (Sf (ts)). Hence, spring warming model had three parameters, T0, Tb and F*, which were 
fitted and determined by an optimization process. 
 

3.2.2.3. Thermal Time (UNIFORC) Model 
The UNIFORC model considers the effect of forcing temperature on phenological stage (flowering or 
leafing) of plants. However, the rate of forcing in the UNIFORC model was calculated by assuming a 
non-linear (sigmoidal dependency) of rate of forcing on temperature (Chuine and Cour, 1999; Parker et al., 
2011) (Eq. 3). The sigmoidal function maps the entire range of daily temperature values to a domain that 
ranges between 0 and 1. 
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Therefore, the UNIFORC model had four parameters (d, e, T0, F*) that were fitted by an optimization 
process. The parameters d and e correspond to the slope at the inflection point (width) and the 
temperature of mid-response (centre) of the sigmoidal function, respectively (Vitasse et al., 2011).  

3.2.2.4. Sequential (UNICHILL) Model 
 
Many plants are assumed to require cold temperatures during the dormancy period to initiate flowering 
(Luedeling et al., 2009). In connection to that, sequential models consider the effect of cold and warm 
temperature required by a plant to reach a critical phenological stage (Cannell and Smith, 1983; Luedeling, 
2012). A plant first accumulates sufficient cold temperature starting from a fixed date (September 1) until 
it reaches a state of chilling (Sc(tc)). The state of chilling is computed between two dates, T0 (start) and Tc 
(end), by assuming a nonlinear dependency of rate of chilling on temperature. The state and rate of 
chilling were calculated as in equation 4 and 5, respectively. Once the state of chilling is reached, the plant 
starts accumulating warm temperature to reach a state of forcing. The rate of forcing of the UNICHILL 
model was calculated by using the sigmoidal function of the UNIFORC model (Eq. 3).  
 

                                                                                                                                    

with Td the daily temperature,  the daily rate of chilling calculated as follows:    
 

In sequential models, chilling and forcing temperatures have independent and successive effects on 
phenological stages of the plant. Once the chilling requirements are met, forcing temperature start to 
accumulate from the date where the critical stage of chilling (Tc) has reached. In this case, the forcing 
requirement (F*) is not fixed rather dependent on the amount of chilling temperature (C*) that has been 
accumulated.  
 
The UNICHILL model has a,b, c and C* as fitted parameters for determining the chilling requirement and 
d,e and F* were fitted for computing the forcing requirement of the plant. Therefore, this model enabled 
us to determine the amount of chilling units that were accumulated starting from September 1 to the date 
of dormancy and the amount of forcing units accumulated from the date of dormancy to the date of the 
phenological event. 

 Simulated annealing 3.2.3.
An optimization algorithm was needed to optimize the parameters of the three statistical models. For this 
reason, the global optimization algorithm, simulated annealing was chosen. Classical optimization 
algorithms have problems in convergence as they get trapped in local minima or maxima in the parameter 
space (Kramer, 1994). However, simulated annealing is known to find global optimal solutions of an 
objective function and it does not get trapped into local minima or maxima.  
 
The name simulated annealing is derived from the annealing (cooling) process of metals or from the liquid 
freezing and crystallization processes (Bohachevsky et al., 1986). In metallurgy, molten metal is annealed 
to reach at a state of equilibrium by lowering the temperature slowly. Similarly, the objective function in 
simulated annealing resembles the energy function to be minimized in the cooling process of a metal. 
Hence, simulated annealing has a temperature that is first set to be high and cooled slowly to find optimal 
results of the objective function (Kirkpatrick et al., 1983). In this research, the optimization algorithm 
minimizes the RMSE between the observed and predicted values and returns parameter values that gave 
the minimum results (Eq. 6).  
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Where ts is the date of phenological event (i.e. flowering or leafing) and N is total number of observations 
 
The configuration setting of the algorithm affects its performance and choice of parameters (Park and 
Kim, 1998). Firstly, the annealing or cooling schedule of the algorithm has to be set. The schedule 
involves setting the initial temperature, stopping condition, lower and upper bounds of the parameters of 
the function to be minimized. Once the initial temperature is set, the algorithm computes the solution 
with the specified condition. The solution will then be compared with the objective function that needs to 
be minimized. This process continues iterating until some defined stopping condition is met.  
 
In this research, we used the package GenSA (Generalized Simulated Annealing) for determining the 
optimal parameter values of SW, UNIFORC and UNICHILL model. The GenSA package finds the 
global optimum of the objective function among all the possible local optimum values (Yang Xiang, 
2012). Once the optimal parameters are determined, the three statistical models were used to predict the 
first flowering dates of the four plant species and leafing date of one plant species. Hence, the 
optimization algorithm help determine the optimal parameter sets which are different for each model and 
species. 

 Quality Assessment  3.2.4.

3.2.4.1. Statistical Models 
 
Once the model parameters were fitted, the best statistical model was selected based on two criteria 
(Efficiency and RMSE), which are widely used in plant models (Bellocchi et al., 2010). Efficiency (EF) is a 
measure of the proportion of variance that the model has explained (Eq. 7). This value ranges from -∞ to 
1. If the efficiency is 1, then there is a perfect match between the observed and predicted values. If it is 0, 
the predictive ability of the model is as accurate as the mean value. Otherwise, a value less than 0 indicate 
that the observed mean values are better than values predicted by the model.  Hence, an efficiency value 
closer to 1 is more accurate than 0 or negative values. 
 

 
with Si , simulated values and Oi, observed values and n, number of observations 
On the other hand, the RMSE indicates the average error that is produced by the model. RMSE is divided 
into its systematic and unsystematic components to determine the sources of error produced by the model 
(Willmott, 1981) (Eq. 8, 9 and 10). The systematic component indicates the bias between predicted and 
observed values of the model. Conversely, the unsystematic error is related with the quality of input 
observations. In this research, the quality of input observations is related with the biases (i.e. spatio-
temporal biases) that exist in volunteer phenological observations.  
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where Oi: observed value; Pi: predicted value of the model;  =a+ bOi [a (intercept) and b (slope) of 
linear regression between Pi and Oi]; n: total number of observations. 
 
Hence, systematic and unsystematic components of RMSE were used to detect and remove temporally-
biased phenological observations as explained in section 3.2.4.3. In addition to efficiency and RMSE, 
statistical correlation was used in comparing the performance of the three statistical models used in the 
study. Specifically, Pearson’s correlation coefficient was used to calculate the degree of linear dependence 
that exist between observed and predicted values (Plata, 2006). Pearson’s correlation coefficient ranges 
between -1 (negative correlation) and 1 (positive correlation). The Pearson correlation’s coefficient is 
calculated as follows:  
 

 

Where ρxy (rho) is pearson’s correlation coefficient; cov(x,y) is the covariance between x and y; σx , σy is 
the standard deviation of x and y, respectively. 

3.2.4.2. One factor analysis of variance (ANOVA) test 
One factor ANOVA test was used for determining the variability among the mean of groups of data sets. 
ANOVA uses F-statistic, which is the ratio between group variance to within group variance, to check if 
the groups that are being tested have the same mean (Bluman, 2012). In the test, the null hypothesis 
assumes that the means of the two groups are the same and the alternative hypothesis assumes that the 
two groups have different means. In this research, ANOVA test was done between the calibration and 
validation dataset to evaluate if there is a difference in their mean values.  Hence, if there is no difference 
in the mean values of the two groups, the null hypothesis would not be rejected.  

3.2.4.3. Temporal bias 
Liu et al. (2004) pointed out that the noise in the data should be reduced to avoid biased parameter 
estimation and incorrect modelling results. Additionally, the quality of input data should be assessed to 
give an interpretation of the phenomena under study. For this reason, the best statistical model was used 
to identify phenological observations with temporal bias. The phenological model was assumed to account 
for spatio-temporal variability in the DOY of the phenological event of the five plant species. Therefore, 
temporally-biased observations were not outliers that deviated from the data rather they were determined 
by a model that accounted for the environmental variability. 
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To determine the temporal bias, the error of each volunteer phenological observation was first computed 
as follows: 
 

 

Where E represents the error of each phenological observation, Oi denotes the observed value and Pi 
shows the predicted value. 
 
Secondly, the SD of the error of each observation from the mean of the errors of all observation sets was 
calculated by using equation 13.  Thirdly, the errors of each observation were normalized by the standard 
deviation as shown in equation 14. The normalized SD had a negative value if the error is below the mean 
(zero) and positive if the error is above the mean. 
 
 

 

Where N is the total number of observations and μ is the mean of observed values.  

 

The exclusion of outliers from phenological observation sets could be done in different ways. For 
instance, it is a common practice to remove observations above 3 (very conservative), 2.5 (moderately 
conservative) or 2 (poorly conservative) SD (Miller, 1991) or above 1.5 SD (Scheifinger et al., 2002) 
depending on the justification given by the researcher. We selected an optimal threshold value for 
normalized SD to detect temporally-biased phenological observations. However, we varied the SD 
threshold for each plant species by considering two conditions.  
 
The first condition was the point where the systematic and unsystematic RMSE of the model were 
improved and there was a smaller systematic RMSE than the unsystematic RMSE. Systematic errors of the 
model showed the bias between the observed and predicted values. They were computed by assuming a 
linear relationship between the observed and predicted values, while non-linear errors were unsystematic. 
If the systematic error of the model was smaller than the unsystematic error, then the model could be 
assumed to have good predictive accuracy (Malenovský et al., 2013; Willmott, 1981).  The second 
condition was the point where the smallest numbers of observations were removed given that the first 
condition was fulfilled. This was because we want to keep phenological observations with useful spatio-
temporal information. Hence, the normalized SD with systematic RMSE less than the unsystematic RMSE 
and the smallest number of observations removed was chosen as an optimal threshold value. 
 
Once the threshold for the normalized SD was selected, observations above the threshold were discarded 
from the observation sets and were considered as erroneous (temporally-biased). Then, the non-biased 
observations were used to recalibrate the best statistical phenological model and obtain new parameter 
values. 

3.2.4.4. Spatial bias  
Inter-annual variability (spatial-bias) was measured in terms of inter-annual standard deviation in the DOY 
of the phenological events between the years 2003 and 2010 for the five plant species. The best 
performing model, together with its optimal parameter values, was used to predict the DOY of the 
phenological event (i.e. flowering or leafing) of each year in the whole area of the Netherlands. For each 
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species, the inter-annual variation in the DOY of the phenological event with respect to location was 
determined and used to determine areas with climatic variability (Vilhar et al., 2013). In our research, this 
was done by computing the standard deviation of the prediction results of each year at a given location 
from the other years in the corresponding location. This assisted in the determination of areas that had 
variability in the DOY of the phenological event, which were also considered as areas with climatic 
variability (spatially-biased). Once the variability (SD) in the DOY of the phenological event at each 
location was computed, we grouped the areas into high, medium and low variable based on the SD values.  
Thus, areas showing high, medium and low variability had a higher, medium and lower SD values, 
respectively.  
 
The spatial distributions of volunteer phenological observations affect the quality of collected 
environmental information (Do et al., 2012; Reynolds et al., 2011). Hence, understanding the relationship 
between phenological phases and spatio-temporal variations in climate conditions require optimal spread 
of volunteers in space. We analysed the spatial spread of volunteers to identify areas that lack phenological 
observations. For this, the numbers of volunteers in the high, medium and low variable areas were first 
determined by calculating the average number of volunteers which were in the high, medium and low 
variable areas between the years 2003 and 2010. In addition, for each species, the areal coverage of high, 
medium and low variable areas in the whole of The Netherlands were calculated. As the medium variable 
areas were the average, it could be assumed that they had sufficient number of volunteers required for 
phenological monitoring. Thus, we used the numbers of volunteers in the medium variable areas to 
determine the expected number of volunteers in the low and high variable areas (Eq. 15 and Eq.16, 
respectively). Once the expected numbers of volunteers were determined, the required numbers of 
volunteers for low variable (Eq. 17) and high variable (Eq. 18) areas were calculated.  
 

) 

 

 

 

 

 

 

 
where Elow and Ehigh are the expected numbers of volunteers in the low and high variable areas, 
respectively. Nlow , Nmedium and Nhigh are the existing number of volunteers in the low, medium and high 
variable areas, respectively. Alow, Amedium and Ahigh are the areal coverage (in percentages) of the low, 
medium and high variable areas, respectively. Rlow and Rhigh are the required number of volunteers in the 
low and high variable areas, respectively. 

 Data-Driven Model  3.2.5.
The data-driven phenological model that was used for predicting the DOY of the phenological events is 
known as PHASE 2.0 (Section 3.2.5.2.). This model is an integration of three models which were 
developed by using Random Forest regression and ensemble-based decision tree algorithm (Section 
3.2.5.1.).  
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3.2.5.1. Random Forest Regression 
Random forest regression is an ensemble-based regression which uses decision trees to determine the 
relationship between predictor and response variables (Breiman, 2001). The ensemble-based regression 
obtains prediction results from multiple decision tree models. This gives it a better predictive accuracy 
than having a single decision tree model. Random forest regression uses 2/3 (70%) of the data for model 
calibration and the remaining 1/3 (30%) of the data is an Out of Bag data (OOB) to be used for model 
validation (Mendez and Lohr, 2011).  Decision rules, which are randomly selected subsets of the predictor 
variables, are used to split the nodes of the tree. After the nodes of the tree are split, the terminal nodes 
are the ones that will be used for prediction purposes. The number of predictor variables (mtry) and trees 
(ntree) are specified by the user.  

3.2.5.2. PHASE 2.0 
PHASE 2.0 model integrates three models that are built by using random forest regression (Moller et al., 
2011). Model 1 interpolates the temperature values at unknown locations based on known temperature 
values at some meteorological stations. On the other hand, model 2 predicts the phase specific heat units 
(poHU) that need to be accumulated by a plant to reach a phenological stage (flowering or leafing). This 
model is developed by assuming relations between location-specific heat units (psHU) and unspecific heat 
units (uHU). For each location in the volunteer phenological observation set, location-specific heat unit 
was the summation of daily average temperature from a starting DOY (T0) until the date of phenological 
event (Table 3.3). Similarly, uHU values were computed for each location as summations of daily average 
temperatures from day 1 up to the date of the maximum phase (Table 3.4).  For each psHU, random 
forest regression was used to find the best set of explanatory variables among all the uHU values to 
predict the poHU.  
 
Finally, model 3 is developed by having a random forest regression between psHU and volunteer 
phenological observations to predict the DOY of the phenological event. In this research, model 2 and 3 
were used to determine the phase specific heat units and phenological dates (flowering date of four plant 
species and leafing date of one plant species), respectively. However, we did not use model 1 as 
interpolated temperature values for the entire area of The Netherlands were available.   

3.2.5.3. Optimization of PHASE 2.0 
The first version of PHASE model, PHASE 1.0, used expert knowledge to determine the optimal starting 
DOY of accumulating phase-specific heat units. Contrarily, PHASE 2.0, used an optimization procedure 
to determine the optimal starting DOY (Figure 3.3). The optimization process involved an iterative step 
for determining the optimal starting DOY of accumulating a temperature. Firstly, for each location of the 
phenological observation, location-specific heat units (psHU) were calculated by summing daily 
temperature values from day 1(T1) up to the date of phenological observation (TDate) (Table 3.3). Then, 
model 2 found the relationship between psHU and uHU to predict the phase specific heat units (poHU) 
based on uHU values. Similarly, model 3 found the relationship between psHU and date of the 
phenological observation to predict the DOY of the phenological event based on poHU values. For each 
model and tree in the forest, the efficiency of the model was calculated for all the OOB samples (Eq. 7). If 
the forest had 500 trees, then the efficiency would have 500 values. The ith efficiency of the forest 
corresponds to the ith tree and the last value is the efficiency value determined by the whole forest.  
 
Secondly, psHU values were calculated by summing temperature values from day 2 (T2) up to TDate. Then, 
model2 was built basing on the random forest regression between psHU and uHU. In the same way, 
model3 used the new psHU to find the random forest regression between psHU and TDate. Lastly, the 
efficiency values of model 2 and 3 were computed. In general, psHU values were calculated from 
Ti…..TDate, where i was between 1 and maximum date of phenological event (max.ph). In addition, the 
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efficiency values of model 2 and 3 were calculated for every iteration in i. The values of Efficency2 and 
Efficency3 which were above zero were only considered. In this case, the optimal starting day was the ith 
date where there was a maximum Efficiency2 * Efficiency3 value in all iterations of i. After obtaining the 
optimal starting DOY, location-specific heat units were accumulated by summing daily temperature values 
from the starting DOY until TDate. Then, model 2 and model 3 were built by using the new psHU values.  
 
Finally, the quality of random forest regression for model 2 and model 3 was assessed. Random forest 
regression returns the mean square error and the total amount of variance of the observed variable 
(efficiency) that was explained by the model for the OOB dataset. Additionally, we assessed the 
performance of PHASE model by calculating RMSE and efficiency of the model on the calibration and 
validation (test) dataset.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3. Optimization of the PHASE model. psHUi and psHUmax.ph are the location specific heat units 
accumulated from a starting DOY of i and max.ph, respectively. Start.ph is the starting DOY determined by the 
optimization process. 

Table 3.3. Computation of psHU from a starting DOY (T0 = 1). Location (x,y), denotes the x and y coordinates of 
the volunteers. Date, is the date of phenological observation. T is the temperature and the subscripts indicate the 
DOY.     

Location(x,y) Date T1 T2 T3 T4 T5 T6 TDate psHU 
x1, y1 80 4 5 7 9 2 5 8 T1 +T2 + T3 +T4 +T5 + T6... +T80

x2, y2 70 3 2 1 4 9 3 6 T1 +T2 + T3 +T4 +T5 + T6... +T70
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Table 3.4. Computation of uHU values from daily average temperatures T1, T2,….Tmax.ph 

Location  
(x, y) 

T1 T2 T3    ………  Tmax.ph uHU1..2 uHU1..3 uHU1……………………uHUmax.ph 

x1, y1 4 2 3                 4 T1 + T2 T1 + T2 + T3 T1 + T2 + T3 + Tmax.ph 

x2, y2 3 4 2                 5 T1 + T2 T1 + T2 + T3 T1 + T2 + T3 + Tmax.ph 
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4. RESULTS  

4.1. Introduction 
This section presents the results obtained after applying the research methods. The data analysis involved 
data cleaning of incomplete observation sets and splitting of data per species into two independent sets for 
model calibration and validation. Calibration data were used to build the model and the results of the three 
statistical models for these data are discussed in section 4.2. The results included optimal parameter values 
determined by simulated annealing, RMSE, efficiency and correlation between the observed and predicted 
values. The validation data were independent dataset that were used to assess the performance of the 
model. The results of the statistical models with the validation dataset and the comparison of the three 
statistical models are presented in section 4.3.  

The results of the temporal and spatial bias are explained (Section 4.4.). The optimal parameter values and 
spatial prediction results of the best statistical model are documented after removal of temporally biased 
observations (Section 4.4.2.). On the other hand, the results of the data-driven (PHASE) model are 
discussed thoroughly and depicted (Section 4.5). In this case, the optimization and prediction results 
(Section 4.5.1) as well as the overall performance of the model are discussed accordingly (Section 4.5.2). 
Finally, the best statistical model is compared with data-driven (PHASE) model (Section 4.6). 

4.2. Model Parameterization  

 Spring warming 4.2.1.
In the case of spring warming (SW) model, a fixed sum of forcing units (F*) was accumulated  above a 
base temperature (Tb). As such, the phenological event would be reached when F* amount of heat was 
accumulated from a starting day (T0). Daily rate of forcing units were calculated by assuming linear 
relationship between base and mean daily temperature values (Figure 4.1). In addition, the optimal 
parameters were determined by fitting the models with simulated annealing. Simulated annealing was 
properly fine-tuned to have successful search results in the parameterization space. For this, we configured 
the algorithm to start at random initial point in the lower/upper bounds of the parameter space. It then 
continued with another random point until the stopping criterion was reached. The lower and upper 
bound threshold for the base temperature was 0 and 20, respectively. Similarly, optimal T0 values were 
searched in a range between the year of phenological observation and the year before the observation was 
made. Hence, the lower bound was a date in the previous year of the phenological observation and the 
upper bound was in the year of observation. F* was also set in a bound between 20 and 2000. Moreover, 
the initial temperature and stopping condition of simulated annealing were configured.   
 
After configuring simulated annealing, we obtained species-specific optimal parameter values (Table 4.1). 
That is, the optimization results were species-dependent and differed among species. Tb generally varied 
between 0.34 to 7.81 °C, and T0 ranged between late January (for Cow Parsley and Celandine) and start of 
April (for Oak) depending on the species. The amount of F* accumulated by the plant species varied from 
52 to 236. For instance, wood anemone started accumulating warm temperature on date 53 (February 22) 
and needed to accumulate 165 forcing units to flower. The number of days required to accumulate the 
forcing units was dependent on daily temperature values. 
 
Moreover, the performance of the SW model was evaluated by using the calibration dataset (Table 4.1). 
RMSE, which showed the average error produced by the model, ranged between 9.5 and 31.7 days. 
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Similarly, the efficiency of the model varied between 0.08 and 0.41, and the correlation coefficient values 
varied between 0.54 and 0.88. 
  
Table 4.1. Optimal parameters and statistical analysis of SW model for the calibration dataset. Tb (Base temperature), 
T0 (Starting DOY of temperature accumulation) and F*(Heat requirements) 

Species Name Tb T0 F* RMSE Efficiency Correlation 
Cow Parsley 3.52 22 236 28.18 0.10 0.65 
Celandine 0.34 27 177 31.78 0.12 0.68 
Chestnut 2.31 58 341 9.53 0.41 0.88 
Wood 
Anemone 

1.15 53 165 25.6 0.08 0.54 

Oak 7.81 96 52 21.30 0.15 0.71 

 

Figure 4.1.The linear relationship between daily rate of forcing and average temperature of Cow Parsley 

 UNIFORC 4.2.2.
The daily rate of heat accumulation (forcing) was computed by assuming a sigmoidal (non-linear) 
dependency between rates of forcing and mean daily temperature values (Figure 4.2). Optimal parameters 
of the sigmoidal function (d and e), T0 and F*, were determined by using simulated annealing algorithm. 
The parameters d and e were restricted to ranges, such that d<0 and e>0, respectively. Additionally, we 
used the same lower/upper bound combinations of SW model for selecting the optimal T0 and F* values 
in UNIFORC model.  

In the results, the starting date of temperature accumulation ranged between November of the previous 
year (for celandine) and February (for chestnut and oak) of the current year. For instance, Celandine 
started accumulating warm temperature in November of the previous year and flowered when it had 
accumulated a total of 93 0C temperature. The optimal parameter values, RMSE, efficiency and correlation 
of the model after being applied to the five plant species are shown in Table 4.2. It was observed that the 
optimal parameter values were different for all species.  
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Table 4.2. Optimal parameters and statistical analysis of UNIFORC model for the calibration dataset. d and e are 
parameters of sigmoidal function, T0 (Starting DOY of temperature accumulation) and F*(Heat requirements). 

 

 

 

 

 

 

 

 
Figure 4.2. The non-linear (sigmoidal) dependency between daily rate of forcing and average temperature of Cow 
Parsley 

 UNICHILL 4.2.3.
The parameters a, b and d were bounded to have values less than zero and c and e were greater than zero. 
In addition, C* and F* were fitted for determining the accumulated chilling and forcing temperature 
requirement, respectively (Table 4.3). The lower and upper bounds were 1 and 100 for C*, 10 and 1000 
for F*, respectively. After setting the lower and upper bounds of simulated annealing, optimal values of 
the seven fitted parameters were determined. With these optimal parameter values, the RMSE of the 
model ranged between 27 and 43 days and the efficiency was between -3.74 and -0.45. The correlation 
between the observed and predicted values of the model ranged between 0.31 and 0.60, respectively.  
 
Moreover, the starting DOY of temperature accumulation was forced to September 1. For instance, 74 0C 
of temperature was first accumulated by Oak to break dormancy. Then, the plant started accumulating 
warm temperature from Td until it reached 115 0C of temperature to start leafing.  
 
 
 

Species 
Name 

d e T0 F* RMSE Efficiency Correlation 

Cow Parsley -1.0 1.3 1 85 29.1 0.04 0.50 
Celandine -1.0 1.0 317 93 32.1 0.09 0.68 
Chestnut -1.0 2.37 40 64 11.08 0.20 0.65 
Wood 
Anemone 

-1.8 1.03 20 53 26.5 0.01 0.48 

Oak -5.4 3.16 44 57 21.7 0.12 0.57 
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Table 4.3. Optimal parameters and statistical analysis of UNICHILL model for the calibration dataset. a, b, c are 
parameters of sigmoidal function (Rc), d and e are parameters of sigmoidal function (Rf), C*(chilling requirements) 
and F*( Heat requirements). 

4.3. Model Performance and Comparison 
The three statistical models, namely SW, UNIFORC and UNICHILL, had differences in design and in the 
type and initial set up of the parameters used. Thus, the aim of model comparison was to determine a 
biologically meaningful model that accounted the variability in the data and that had optimal parameters 
with physiological interpretation. The best model was chosen by comparing the RMSE, efficiency and 
correlation of the three statistical models using the model building and validation dataset. The results of 
the three statistical models for the model calibration dataset are presented for comparison (Table 4.1, 4.2 
and 4.3). These results indicated that the SW model had a better performance than the other two statistical 
models in terms of RMSE, efficiency and correlation coefficient values.  
 
Moreover, the results of the three statistical models were compared for the validation dataset (Table 4.4). 
The validation dataset was independent of the calibration data and could be used for comparing the 
performance of the models. In the result, SW model showed a better prediction for three of the plant 
species, namely Oak, Celandine and Chestnut. However, the UNICHILL model showed an improvement 
in the prediction by 2.1 days for Wood Anemone and 2.52 for Cow Parsley than SW model.  
 
In conclusion, SW model showed better performance for all the five plant species in the model calibration 
dataset than UNIFORC and UNICHILL models. On the other hand, the UNICHILL model had a slight 
improvement over SW model in prediction results of Cow Parsley (2.52 days) and Wood Anemone (2.16 
days) for the model validation dataset. However, the improvements of the UNICHILL model were 
considered insignificant as compared to the improvements of the SW model for Oak, Celandine and 
Chestnut by 11.5, 11.9 and 16 days, respectively. Finally, we selected the SW model as the best statistical 
model for predicting the phenological stages of the five plant species in the ‘Natuurkalender’ dataset. 
 
 
 
 
 
 
 
 
 
 

Species 
Name 

a b c d e C* F* RMSE Efficiency Correlation 

Cow 
Parsley 

-4.23 -2.84 6.05 -1.01 3.23 94 65 38.4 -0.66 0.55 

Celandine -2.99 -2.23 9.39 -1.00 1.85 67 70 43.3 -0.64 0.60 
Chestnut -2.10 -1.02 3.48 -1.00 2.07 108 77 27.1 -3.74 0.36 
Wood 
Anemone 

-3.99 -1.18 8.95 -1.00 1.28 113 53 32.2 -0.45 0.48 

Oak -1.13 -4.53 3.88 -1.06 1.00 74 115 30.3 -0.73 0.31 
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Table 4.4. Statistical analysis of the SW, UNIFORC and UNICHILL model for the validation dataset 

 
Furthermore, we compared the means of the calibration and validation dataset by using one factor 
ANOVA test. The result of the ANOVA test for the five plant species are shown in Table 4.5. The test 
showed insignificant results for all species and the null hypothesis was rejected. This indicates that the 
calibration and validation dataset of the species have differing means. Besides, the F-value, which is the 
ratio between group variability and within group variability, showed higher values. If the F-value is greater 
than 1, then the between group variability is greater than the within group variability and the datasets have 
different mean. Moreover, these results are visualized by boxplots of the calibration and validation dataset 
(Figure 4.3).   
 

Table 4.5. Statistical analysis of the ANOVA test between the calibration and validation dataset 

Species Name F-value P-Value Significance level 
Cow parsley 57.69 6.29e-14 0 
Celandine 61.45 7.28e-15 0 
Chestnut 1.256 0.263 0.1 
Wood anemone 38.81 7.53e-10 0 
Oak 3.165 0.0761 0.05 

Name  of Plant RMSE Efficiency 
 

RMSE Efficiency RMSE Efficiency 

 Spring Warming UNIFORC UNICHILL 
Cow Parsley 25.94 0.14 26.48 

 
0.10 
 

23.42 
 

0.29 
 

Celandine 20.31 0.24 25.49 
 

-0.19 
 

32.19 
 

-0.91 
 

Chestnut 8.19 -0.69 8.70 -0.92 24.21 -13.83 
Wood 
Anemone 

15.26 0.04 16.06 
 

-0.06 
 

13.10 
 

0.29 
 

Oak 8.92 0.34 9.52 
 

0.25 
 

20.44 
 

-2.46 
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Figure 4.3. Boxplots showing the DOY of the phenological event of the calibration and validation dataset 

4.4. Bias Identification 

 Temporal Bias 4.4.1.
The presence of temporal bias in the volunteer phenological observations prohibited the model from 
explaining the variance existing in the data. For this reason, the RMSE was high and the efficiency of the 
model was lower than what had been expected. Hence, the best phenological model was used to identify 
temporal bias in the volunteer phenological observations.  
 
To detect biased observations, the SW model was used to predict the DOY of the phenological event at 
locations of phenological observations. For each phenological observation, the error (Predicted - 
Observed) and the normalized SD were computed. Two instances of volunteer phenological observations 
that were made for Cow parsley and Celandine are presented for illustration (Table 4.6). The error of the 
observation for Cow parsley indicated a latency of 4 days. Similarly, the normalized SD was positive, 
which means that the error of the observation was above the mean. In addition, Celandine showed an 
advance of 6 days in the prediction results than the observation date. Also, the normalized SD was 
negative indicating that the error of the observation was below the mean. After calculating the normalized 
SD of each observation, observations between 0.5 and 4 SD were removed and the systematic and 
unsystematic RMSE values of the model were compared.  
 
 

a) Cow parsley b) Celandine 

a) Chestnut d) Wood anemone 

e) Oak 
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Table 4.6 Instances of the volunteer phenological observations for Cow Parsley and Celandine. (x, y are the 
coordinates of the observer).  

Species 
Name 

X Y Observed Predicted Error Normalized_SD 

Cow Parsley 191000  440000 104 108 4 0.13 
Celandine 160000  426000 80 74 -6 -0.20 
 
The systematic RMSE, unsystematic RMSE and RMSE (Figure 4.4), correlation and efficiency (Figure 4.5) 
of the SW model were assessed by removing observations within a range of 0.5 and 4 normalized SD. The 
values were species-dependent. As a result, the RMSE, systematic and unsystematic RMSE of each species 
that gave an optimal normalized SD values were surrounded by a square box (Figure 4.4).  Cow Parsley 
had a systematic RMSE smaller than the unsystematic RMSE for normalized SD ranging between 0.1 and 
2. However, we chose 2 SD with 5% of observations removed as optimal threshold rather than 0.1, 0.5 or 
1 SD where 71%, 15%, 6% of observations, respectively, were removed from the calibration dataset. 
Similarly, normalized SD of 0.7, 4, 0.55 and 1 were chosen as optimal threshold values for Celandine, 
Chestnut, Wood Anemone and Oak, respectively.  
 
As the percentage of removed observations increases, more outliers were removed and there would be a 
better fit to the model. As a result, the efficiency and correlation values of the model got better and better 
(Figure 4.5). For all species, the efficiency of the model got closer to 1 as observations above 0.1 standard 
deviations were removed. Hence, as the percentage of removed observations increase, the systematic and 
unsystematic RMSE of the model got lower and the efficiency and correlation of the model get improved.  
 
Finally, phenological observations above the chosen species-specific normalized SD threshold were 
considered as temporally-biased observations. The spatial distributions of species-dependent temporally-
biased observations are shown on yearly basis (Figure 4.6). The observations were overlaid on a standard 
deviation map of the corresponding year of observation. This map showed the standard deviation of the 
phenological date of one year from the other years and the colours indicated the amount of deviation 
which was different for year/species combination. Positive values of the normalized standard deviation 
indicated an over-prediction, whereas the negative values indicated under-prediction. The temporally-
biased observations were visualized by three different sizes. Those observations that were above 0, 1 and 2 
standard deviation were shown with small, medium and biggest size circles, respectively (Appendix A). In 
the case of cow parsley, observations above 2 standard deviation were removed. Hence, the biased 
observations were shown by the biggest sized circles (Figure 4.6). 
 
Furthermore, the number and spatial distribution of biased observations varied from year to year. Most of 
the observations that were regarded as temporally-biased for cow parsley were in the year 2005, whilst 
there were no temporally-biased observations in 2009 and 2010. Lastly, temporally-biased phenological 
observations were removed from the calibration dataset and the remaining data were fitted to the SW 
model to determine new optimal parameter values and make predictions (Section 4.4.2).  
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Figure 4.4. Optimal normalized SD threshold values for removal of temporally-biased observations  
  

a) Cow Parsley 
c) Chestnut 

e) Oak 

b) Celandine 

b) Celandine 

d) Wood anemone 

a) Cow parsley 
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Figure 4.5. Efficiency and correlation values for removal of temporally-biased observations 

e) Oak 

a) Cow Parsley b) Celandine 

c) Chestnut d) Wood anemone 
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Figure 4.6. Spatial distribution of year based temporally-biased volunteer phenological observations of Cow Parsley 
(circle symbols). The colour of the map indicates the variability in the DOY of the phenological event between one 
year and all the other years. For each phenological observation, the sizes of the dot indicates the amount of 
normalized SD value. 
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 Parameterization of the best model after removal of temporally-biased observations 4.4.2.
The temporally-biased observations (red triangles) were spread away from the regression line where as the 
non-biased (black circles) were well aligned to the regression line (Figure 4.7). As shown in the figure, 
celandine had the highest and chestnut had the smallest number of temporally-biased observations. Once 
the temporally-biased observations were removed, we fitted the SW model by using non-biased 
phenological observations. Then, new optimal parameter values for Tb, T0 and F* were determined and 
presented (Table 4.7). The new optimal parameter values were different from the optimal parameter 
values determined by simulated annealing in the presence of temporally-biased observations. There was a 
smaller difference in the Tb, T0 and F* values of Wood anemone, Celandine, Cow parsley and Chestnut. 
However, the optimal parameter values of oak showed a larger difference in T0 from date 96 to 54, Tb 
from 7.81 to 1.98, and F* from 52 to 326.  
 
Moreover, the removal of temporally-biased observations improved the RMSE, efficiency and correlation 
of the SW model both for the calibration and validation dataset (Table 4.7 and 4.8, respectively). As 
expected, the RMSE and efficiency of the calibration dataset were better than the validation dataset except 
for oak where there was a better RMSE and efficiency for the validation dataset than the calibration. The 
RMSE of the calibration dataset ranged between 5.1 and 9.0 days and the efficiency was between 0.45 and 
0.68. Similarly, the correlations between the observed and predicted values ranged between 0.65 and 0.88.  
On the other hand, the RMSE of the SW model for the validation dataset ranged between 4.1 to 18.9 
days. The correlation was in a range between 0.20 and 0.87. Also, the efficiency of the model ranged 
between -1.31 and 0.64.  
 
The results of the accuracy measures on the five plant species were depicted on the scatter diagrams 
(Figure 4.8). The diagram showed a positive relationship between the observed and predicted values along 
the regression function. However, the annual variations existing in one year were not well explained by the 
model. Hence, the outliers in the scatter diagram were caused by annual climatic variations of phenological 
dates which could not be captured by the model. On the other hand, the model had explained inter-annual 
variation that existed between the years. For instance, the box plots of all species between the years 2003 
and 2010 showed three periods for a phenological event, namely, early, medium and late periods (Figure 
4.10). The year 2007 showed an early occurrence of the phenological event for four of the species except 
for celandine where there was an early phenological stage in 2007 and 2008. On the contrary, the year 
2006 showed a later period for the phenological event and the remaining years had a medium period. 
These periods could be visualized from the scatter diagrams where there were three clusters for the early, 
medium and late phenological periods (Figure 4.8). This indicated that the model had captured the inter-
annual variability in the phenological event. 
 
At this juncture, temporally-biased observations were removed from the calibration dataset. So, the 
systematic RMSE of the model was expected to be smaller than the unsystematic RMSE. For this reason, 
we computed the systematic and unsystematic RMSE of the model after removal of temporally-biased 
observations (Table 4.9). In that case, the model showed a systematic RMSE smaller than the unsystematic 
RMSE for the four plant species. But Oak showed a systematic RMSE larger than the unsystematic 
RMSE. This could be related to the incorrect parameter values of SW model, which was used in 
determination of temporally-biased observations. Specifically, the SW model had shown a large difference 
in the optimal parameter values for oak after removal of temporally-biased observations.  Therefore, we 
did a second round analysis on the components of RMSE for oak by fitting SW model with the non-
biased observations. Phenological observations between 0.1 and 3 SD were removed and the quality of the 
model was assessed (Figure 4.11). Twelve percent of the observations above a normalized SD of 1.5 (i.e. 
optimal threshold) were removed. As a result, the systematic RMSE (2.9) was smaller than the 
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unsystematic RMSE (3.36). Consequently, the SW model was fitted with the non-biased observations and 
new parameter values of 2.33, 52, 304.81 were obtained for Tb, T0 and F*, respectively. Similarly, the 
RMSE, efficiency and correlation of the SW model for the calibration dataset were improved to 4.35, 0.73, 
and 0.83, respectively. On the other hand, the accuracy of the model on the validation dataset did not 
change as the observations had normalized SD values less than 1.5.  
 
In conclusion, the new SW model could be used to accurately predict the dates of the phenological event 
of the five plant species. For this reason, we predicted the DOY of flowering of the four plant species and 
leafing of one species for the whole area of The Netherlands for the year 2010 (Figure 4.9). The 
phenological dates of all species in the year 2010 were in spring, which ranged between mid-March and 
mid-May. Early phenological events were encountered in the southern part of The Netherlands and late 
phenological events in the northern part. Moreover, the prediction results of each species varied from one 
year to another. Hence, the prediction results of all years were compared to determine inter-annual 
variations in climate and spatial bias (Section 4.4.3). 

Table 4.7. Statistical analysis of the SW model after removal of temporally-biased phenological observations in the 
calibration dataset. 

Name of 
species 

Tb T0 F* RMSE 
(days) 

Efficiency Correlation 

Cow Parsley 3.03 20 272 9.04 0.45 0.69 

Celandine 0.73 20 183 8.67 0.68 0.83 

Chestnut 3.27 57 290 5.14 0.67 0.88 

Wood 
Anemone 

2.25 55 116 6.77 0.52 0.65 

Oak 1.98 54 326 6.43 0.58 0.78 

 

Table 4.8. Statistical analysis of the SW model after removal of temporally-biased phenological observations in the 
validation dataset. 

 

 
 
 
 
 

Table 4.9. Systematic and unsystematic RMSE of SW model after removal of temporally-biased observations 

Name of species Systematic RMSE Unsystematic RMSE 
Cow parsley 6.06 6.7 
Celandine 4.76 7.25 
Chestnut 3.36 3.89 
Wood anemone 4.56 5.01 
Oak 4.98 4.06 
 

Name of species RMSE Efficiency Correlation 
Cow parsley 18.99 0.26 0.33 
Celandine 14.81 -0.05 0.87 
Chestnut 7.67 -1.31 0.2 
Wood Anemone 7.66 -0.41 0.86 
Oak 4.12 0.64 0.77 



SPATIO-TEMPORAL MODELLING OF VOLUNTEERED GEOGRAPHIC INFORMATION: A PHENOLOGICAL STUDY 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Observed and predicted values of SW model with temporally biased (  ) and non-biased (  ) volunteer 
phenological observations 

e) Oak 

c) Chestnut c) Wood anemone 

a) Cow parsley b) Celandine 
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Figure 4.8. Observed and Predicted values of SW model with non-temporally biased phenological observations  

a) Cow parsley b) Celandine 

c) Chestnut d) Wood anemone 

e) Oak 
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Figure 4.9. Spatial prediction of the DOY of the phenological event of the five plant species in The Netherlands in 
2010. 
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In addition to the DOY of phenological events, the SW model helped in determining the duration 
(temporal windows) and annual variability of phenological events for a period of 8 years (i.e. between 2003 
and 2010). The duration of phenological event, which was species and year dependent, is shown by the 
box plots (Figure 4.10). The difference between the minimum and maximum value of the box plots could 
be considered as the duration of the phenological period. In addition, the median showed the DOY where 
there was 50% of the phenological event. Similarly, the lower and upper quartile showed the DOY where 
there was 75% and 25%, respectively, of phenological event above that DOY. Some species, like Cow 
parsley (2008, 2009, 2010), Celandine (2004, 2005), Chestnut (2008, 2009 and 2010), and Oak (2005, 2007, 
2010) had outliers in the DOY. These outliers were due to annual variations in DOY of the phenological 
event at different locations of The Netherlands, caused by climatic variations. 

 

Figure 4.10. Box plots showing the duration of phenological event between the years 2003 and 2010. 

 

a) Cow parsley b) Celandine 

d) Wood anemone c) Chestnut 

e) Oak 
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Figure 4.11. Systematic RMSE, unsystematic RMSE and RMSE (a) and efficiency (b) of the SW model 
after second round removal of temporally-biased observations of Oak 
 
Furthermore, the box plots (Figure 4.10) could help determine the relation that exists between the DOY 
of the phenological event of one species and the other. For instance, cow parsley showed a relatively close 
DOY of phenological event with oak. The differences in the DOY (DOY of cow parsley – DOY of oak) 
of the phenological event between cow parsley and oak are shown in figure 4.12. These two species 
showed high variability in 2004, 2007 and 2008, which was caused by the varying sensitivity of the species 
to climatic variations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b)  

a) 
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Figure 4.12. The variability in the DOY of the phenological event between Cow parsley and Oak between the years 
2003 and 2010 

 Spatial bias 4.4.3.
The new SW model was used to predict the phenological dates of the five plant species from the year 2003 
until 2010 (Figure 4.13 (a)). The figure indicated the inter-annual variation in the prediction results caused 
by climatic variations. For instance, Cow parsley flowered between date 116 and 126 in 2006. However, 
the flowering in 2007 was between 86 and 98, which was earlier than that of 2006.  Similarly, the flowering 
period was later in the northern part and earlier in the southern part of The Netherlands due to relatively 
high temperature in the southern part (Figure 4.14). The average annual temperature in figure 4.14 was 
calculated by using the daily average temperatures of the 365 days in a year. There was a higher 
temperature in the southern part than the northern part of The Netherlands. In addition, the spatial 
patterns of the DOY of flowering in the eight years period for Cow Parsley could be visualized in Figure 
4.13 (b). The year 2007 showed earlier flowering than all the other years.  

To determine areas with climatic variability, the SD of the prediction results in the 8 years period were 
computed for all species. The SD map (Figure 4.15) showed the variability in prediction results of species 
in the years between 2003 and 2010. The colours on the map indicated the amount of variability (SD) in 
days in the whole area of The Netherlands. Celandine had shown the highest variability in the flowering 
date ranging between 10.5 and 12.5 days. On the contrary, chestnut had the least variability in the leafing 
date ranging between 5 and 6.5. These inter-species differences in SD values were caused by the varying 
sensitivities of species to climatic variations.  
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Finally, we grouped the areas with climatic variability into highly, medium and low variable depending on 
the SD values (Figure 4.16). The percentages of the areas that belong to each group had been presented in 
tabular form (Table 4.10). The percentage of high variable areas ranged between 6 (cow parsley, chestnut, 
wood anemone) and 22 (Celandine). The percentage of medium variable areas ranged between 31 (cow 
parsley) and 76 (chestnut). Similarly, the percentage of low variable areas ranged between 14 (oak) and 63 
(cow parsley). 
 
Moreover, the distribution of non-temporally biased observations on highly, medium and low variable 
areas of The Netherlands is illustrated (Figure 4.16). In connection to this, we analysed the yearly 
volunteer phenological observations to determine their spatial belongingness in the high, medium and low 
variable areas (Figure 4.17). More than 50% of the volunteer phenological observations for Chestnut and 
Oak were made in areas with medium variability. Similarly, the higher proportion of phenological 
observations for Cow parsley and Celandine were reported in areas where there was low variability. Wood 
anemone had higher number of phenological observations in the medium and low variable areas. For all 
species, the smallest proportions of phenological observations were made in areas where there was high 
variability. Exceptionally, there were no observations made in the highly variable areas for Chestnut in 
2004 and 2010, and for Wood anemone in 2006 and 2008, and for Oak in 2008 and 2010. In addition, the 
numbers of phenological observations in the high, medium and low variable areas were different from one 
year to the other depending on the number of volunteers who needed to report a phenological stage.  
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Figure 4.13. Prediction results of the SW model for Cow Parsley from the year 2003 to 2010 (a) with 
different scale depending on DOY of phenological event (b) with common scale ranging between the 
minimum and maximum DOY of phenological events in all years. 

a) 

b) 
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Figure 4.14. Average annual temperature of The Netherlands between the years 2003 and 2010.  

 

Figure 4.15. Standard deviation map of DOY of phenological event between the years 2003 and 2010 

 

e) Oak d) Wood anemone 

a) Cow parsley b) Celandine c)  Chestnut 
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Figure 4.16. Volunteer phenological observations overlaid on areas showing high (green), medium (yellow) and low 
(pale colour) variability in the prediction of DOY of phenological stage. 

 
 

 

a) Cow parsley b) Celandine 

c) Chestnut d) Wood anemone 

e) Oak 
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Table 4.10 Percentages of high, medium and low variable areas in the whole area of The Netherlands 

Name of 
species 

Higly 
variable (%) 

Medium 
variable (%) 

Low 
variable (%) 

Cow parsley 6 31 63 
Celandine 22 38 41 
Chestnut 6 76 18 
Wood 
anemone 

6 63 31 

Oak 19 68 14 
 

 
Figure 4.17. Percentages of volunteer phenological observations belonging to high, medium and low variable areas in 
The Netherlands (a) Cow Parsley (b) Celandine (c) Chestnut (d) Wood Anemone (e) Oak 

Low 

Medium 

High 

a)  b) c) 

d) e) 
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For each species, the average number of existing observations belonging to low, medium and high variable 
areas were calculated from the yearly phenological observations (Table 4.11). Phenological observations in 
the medium variable areas were then used to determine the expected numbers of observations in low and 
high variable areas.    
 
Table 4.11 Existing, expected and required number of volunteers in high, medium and low variable areas  

Species Low Medium  High Low 
 

High 
 

Low 
 

High 

 Existing Number of Volunteers  Expected   Required 
Cow 
parsley 

61 39 5 79 8 18 3 

Celandine 76 62 29 67 36 -9 7 
Chestnut 6 47 2 11 4 5 2 
Wood 
anemone 

30 32 1 16 3 -14 2 

Oak 4 27 3 6 8 2 5 
 
The results indicated the need for 18, 5 and 2 more volunteers for monitoring the phenological event of 
Cow parsley, Chestnut and Oak respectively, in low variable areas. Similarly, the required numbers of 
volunteers for high variable areas ranged between 2 (for Chestnut and wood anemone) and 7(for 
Celandine). However, there were sufficient numbers of volunteer observations in low variable areas of 
Celandine (76) and Wood anemone (30). In general, this information could be used by phenological 
monitoring networks to give recommendations on the potential phenological monitoring areas of species.  

4.5. PHASE 2.0 Model 

 Optimization 4.5.1.
The maximum date of the phenological phase, which was used to determine the optimal starting DOY, 
was different for each plant species in the dataset. The maximum dates for Cow parsley, Celandine, 
Chestnut, Wood anemone and Oak were 360, 361, 274, 332 and 302, respectively. The optimization 
process that was used to find an optimal starting DOY of Oak is presented in Table 4.12. For each 
starting date, the efficiency values of model 2 (Efficency2) and model 3 (Efficiency3) were computed and 
multiplied to choose the date with the maximum efficiency for model 2 and model 3.   
 
First, daily temperature values from date 1 up to 302 were summed. The efficiencies of model 2 and 
model 3 with a starting date of 1 were 0.34 and 0.72, respectively. Secondly, daily temperature values were 
summed from date 2 up to 302. The efficiencies of model 2 and model 3 with a starting date of 2 were 
0.36 and 0.75, respectively. In general, the same process was repeated until the starting date was equal to 
302. Lastly, the starting date where there was a maximum value for Efficiency2 * Efficiency3, i.e. 42 for 
oak, was selected as the optimal starting DOY.  
 
The optimal starting DOY that was determined by this iterative process is illustrated (Figure 4.18). The 
number of dots was equal to the number of iterations. That is, for each iteration, each dot have an 
efficiency value for model 2 (Efficiency2) and model 3 (Efficiency 3). The date where there was a 
maximum value of the product of Efficiency2 and Efficiency3 is shown in square box as an optimal 
starting DOY. The value shown on the y-axis was the efficiency of Model 2, which was used for 
predicting the phase-specific heat units from unspecific heat units. On the other hand, the value displayed 
on the x-axis was the efficiency of model 3, which predicted the DOY of phenological event from phase-
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specific heat units. The optimal starting DOY for cow parsley, celandine and wood anemone was 1. 
Additionally, the optimal starting DOY of chestnut and oak were 100 and 42, respectively. 

Table 4.12. Starting date and efficiencies of oak for model 2 and model 3 for iterations starting from i=1…to 
i=max.ph 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Starting date  Efficiency2 Efficiency3 Efficiency2 * 
Efficiency3 

1 0.34 0.72 0.24 
2 0.36 0.75 0.27 
3 0.32 0.72 0.23 
4 0.36 0.74 0.27 
. 
. 

302 
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Figure 4.18. Optimization of the PHASE model for (a) Cow Parsley (b) Celandine (c) Chestnut (d) Wood Anemone 
(e) Oak. Each dot indicates an iteration, which was made for the choice of the starting DOY, from date 1 up to the 
date of maximum phase. Efficiencies of model 3 (Efficency3) and model 2(Efficiency 2) for every iteration are 
shown on the x and y-axis, respectively. The squared box indicates the iteration that resulted in a maximum 
Efficiency 2 * Efficiency3.   

 Model performance 4.5.2.
The quality of PHASE model was assessed by using the RMSE and efficiency of both the calibration and 
validation dataset. The results of the quality measures on the calibration and validation dataset are 

a)  b)  

c)  d)  

e)  



SPATIO-TEMPORAL MODELLING OF VOLUNTEERED GEOGRAPHIC INFORMATION: A PHENOLOGICAL STUDY 

53 

presented (Table 4.13). For the calibration dataset, the RMSE ranged between 7.47 (Chestnut) and 24.08 
(Celandine) and the efficiency ranged between 0.49 (for Celandine) and 0.64 (for Chestnut). In addition, 
the RMSE of the validation dataset ranged between 11.27 (Chestnut) and 39.95 (Cow parsley) and the 
efficiency ranged between -2.27 (Chestnut) and -0.60 (Wood anemone). Hence, the model had shown 
better prediction results for chestnut and oak than the remaining species in the dataset. 

Table 4.13. Statistical analysis of the PHASE model by using the calibration and validation dataset 

Name of Species RMSE Efficiency RMSE Efficiency 

 Model Calibration Model Validation 

Cow parsley 20.87 0.50 39.95 -1.02 

Celandine 24.08 0.49 33.26 -1.11 

Chestnut 7.47 0.64 11.27 -2.27 

Wood Anemone 19.93 0.50 20.23 -0.60 

Oak 14.33 0.63 16.06 -0.99 

4.6. Comparison of SW and PHASE 2.0 model 
In order to compare the results of two different kinds of models (statistical and data-driven), the RMSE 
and efficiency of SW and PHASE model were compared (Smith et al., 2013). In the case of the calibration 
dataset, with temporally-biased observations, the PHASE model (Table 4.13) showed better prediction 
results than the SW model (Table 4.1). However, the PHASE model did not have a good predictive 
accuracy for the validation dataset. It was apparent that the RMSE and efficiency of the SW model (Table 
4.4) was better than the PHASE model for the validation (independent) dataset.  
 
In addition, we tested the performance of the PHASE model with a fixed starting DOY obtained from 
the SW model. The results of the PHASE model with a fixed starting DOY are presented in tabular form 
(Table 4.14). The RMSE of the model on the calibration dataset ranged between 7.54 and 20.77 and the 
efficiency ranged between 0.47 and 0.69. Hence, the optimal starting DOY determined by simulated 
annealing gave better prediction results for cow parsley, celandine, wood anemone and oak than the 
optimal starting DOY of PHASE model. Exceptionally, the efficiency and RMSE of the model on 
chestnut was slightly improved by the optimal starting DOY determined by the PHASE model.  
 
On the other hand, the efficiency of the model on the validation dataset ranged between -1.64 and -1.2 
and the RMSE ranged between 16.32 and 42.65 days. Therefore, the optimal starting DOY determined by 
the PHASE model had better prediction accuracy for the validation dataset than the fixed starting DOY. 
The overall results showed the varying sensitivity of the PHASE model on the five plant species. 
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Table 4.14.Statistical analysis of the PHASE model with a fixed starting DOY for calibration and validation dataset 

 Name of 

Species 

RMSE Efficiency RMSE Efficiency 

                        Model Calibration Model Validation 

Cow parsley 19.49 0.54 42.65 -1.32 

Celandine 20.77 0.63 37.87 -1.64 

Chestnut 7.54 0.47 10.15 -1.60 

Wood 

Anemone 

16.88 0.60 24.51 -1.47 

Oak 11.84 0.69 16.32 -1.20 

 
Finally, the PHASE model was calibrated with non-temporally biased observations. That is, observations 
that were considered as temporally-biased (Section 4.4.1) were discarded and non-biased observations sets 
were used to calibrate the model. The results of the PHASE model for non-biased calibration and 
validation observation sets are presented (Table 4.15).  
 

Table 4.15.Statistical analysis of the PHASE model after removal of temporally-biased phenological observations  

Name of 
Species 

Optimal 
DOY 

RMSE Efficiency RMSE Efficiency 

  Model Calibration          Model Validation 

Cow parsley 100 6.81 0.68 25.67 -0.34 

Celandine 68 7.04 0.78 21.65 -0.43 

Chestnut 100 3.03 0.88 8.35 -1.74 

Wood 
Anemone 

83 5.34 0.70 13.42 -3.32 

Oak 100 3.73 0.85 10.11 -1.16 

 
The removal of temporally-biased phenological observations improved the accuracy of the PHASE model 
(Table 4.15). The results showed an improvement in the RMSE and efficiency of the calibration and 
validation dataset. Similarly, new optimal starting DOY values were determined after removal of 
temporally-biased observations.  
 
In general, the PHASE model showed better prediction accuracy for the calibration dataset (with and 
without temporally-biased observations) than the SW model. But, due to over-fitting of the model, the 
PHASE model showed worse prediction on the validation dataset than SW model.  
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5. DISCUSSION 

5.1. Model Parameterization 

 Spring Warming 5.1.1.
The rate of forcing in SW model increased with higher daily temperature values (Figure 4.1). These agrees 
with other findings (Olsson et al., 2013). In addition, the SW model did not show a good predictive 
accuracy in terms of RMSE and efficiency. This could be because of the effect of noise (i.e. temporally-
biased observations) on parameterization of the model (Atkinson et al., 2012). For this reason, we assessed 
the performance of the SW model after removal of biased observations (Section 5.3.1) 

 UNIFORC 5.1.2.
Our results for the UNIFORC model showed great difference in the optimal parameter values of T0 and 
F* from that of the SW model.  The starting date (T0) was earlier and, consequently, the heat requirement 
(F*) became smaller.   

 UNICHILL  5.1.3.
The UNICHILL model has more parameters than the other two models for accounting the chilling 
requirements.  In line with other studies, the starting date of chill temperature accumulation was fixed to 1 
September (Parker et al., 2011).The RMSE, efficiency and correlation of the UNICHILL model were 
worse than the SW and UNIFORC model. This model has more parameters which might not be fitted 
with small dataset. This in turn can result in over-fitting of the model. This finding is in agreement with 
other studies (Vitasse et al., 2011). 
In general, we detected that all plant species had differing parameter values for the date of dormancy and 
phenological stage. This was because each species had differing sensitivity to climatic variation (Olsson et 
al., 2013). Similarly, the values of C* and F* were species-dependent and differed for the five plant species 
in the ‘Natuurkalender’ dataset. 

5.2. Model Performance and Comparison 
The model comparison in this study helped in choosing the modelling approaches that were suitable for 
the phenophases of the five plant species. The result of this research on the best performing model (i.e. 
SW) is in line with previous studies which discovered that forcing models perform better than models with 
a calculation of chilling requirement (Fu et al., 2012b; Richardson and O’Keefe, 2009). In addition, the SW 
model showed varying sensitivity among the five plant species. This is also supported by research findings 
of other scholars who mentioned the difficulties of building a model suitable for all species (Olsson et al., 
2013). In connection to that, the RMSE, efficiency and correlation values of each phenological model 
were species dependent and differed for each species (Chuine et al., 1998). Overall, this study suggests that 
under the current climate conditions, chilling temperatures does not have a major effect on the 
investigated plant species and phenological events. 
 
Although, smaller RMSE values were expected for the calibration dataset than the validation dataset (Fu et 
al., 2012b), we  obtained higher RMSE, smaller  efficiency and correlation values for the calibration dataset 
than the validation. This could be caused by noise (temporally-biased observations) in the data which 
could result in biased parameter values and lead to incorrect modelling results (Atkinson et al., 2012; Liu et 
al., 2004). However, these results are improved after the removal of temporally-biased observations from 
the calibration and validation dataset (Section 5.3).  Moreover, the model showed large differences 
between the RMSE of the calibration and validation dataset. These differences could be attributed to 
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differences between the calibration and validation dataset. This was supported by the ANOVA test, which 
indicated that the means of the calibration and validation dataset were different.  

5.3. Bias Identification 

 Temporal bias 5.3.1.
The model showed better efficiency and correlation values as more observations were removed. But, 
phenological observations with valuable information could be lost as several observations were removed 
from the dataset. Therefore, there was a trade-off between the number of observations removed and the 
desired efficiency and correlation values of the model. In addition, as the model had different adaptation 
to the plant species, the systematic and unsystematic RMSE of the model was different depending on the 
species. For this reason, the optimal normalized SD threshold differed among plant species. 
 
Moreover, temporally-biased observations were randomly spread throughout the study area. That is, for all 
plant species, biased observations were not only located in areas where there was high climatic variability. 
Although the years 2006 and 2007 had the highest climatic variability between 1.3 and 1.8 and -2.3 and -
1.9 respectively, there were more temporally-biased observations in the year 2005 where the SD ranged 
between -0.6 and 0.2. This indicated that the observations that were regarded as temporally-biased were 
not merely caused by the climatic variability in the area. This finding holds true for all of the plant species 
that were included in the investigation. Further, the biasedness could be linked to the quality of input data 
which might have been caused by the weekend (Żmihorski et al., 2012) or urban area effects (Bishr and 
Mantelas, 2008). 

 Parameterization of model after removal of temporal bias 5.3.2.
As expected, the temporally-biased observations were outliers which could not be captured by the model. 
These observations affected the optimal parameter values that were determined by simulated annealing. 
Once these observations were removed, different parameter values were obtained. Unlike other species, 
oak showed a significant change of parameter values after removal of biased observations. This could be 
associated with the existence of 4% temporally-biased observations among the limited number of 
phenological observations (269) that was used to calibrate the SW model. Hence, the results of the 
optimization algorithm were affected by 4% of the noise in the data.  In connection to this, oak showed a 
higher accuracy on the validation dataset than the calibration data after the removal of temporally-biased 
observations.  
For this reason, we performed a second round analysis of systematic RMSE, unsystematic RMSE and 
RMSE. Four of the species in the dataset has a systematic RMSE smaller than the unsystematic RMSE but 
Oak had a higher systematic RMSE than the unsystematic. This indicated that our model had good 
prediction power for four of the species but needed reworking for Oak. Therefore, we did a second round 
removal of temporally-biased observations and determined new optimal parameter values. With these 
values, the RMSE, efficiency and correlation of the model were better for the calibration dataset than the 
validation. Additionally, the removal of temporally-biased observations from all species minimized the 
difference between the prediction results of the calibration and validation dataset.  
 
We can conclude that the SW model had a better prediction precision for the calibration dataset of the 
five species than the validation dataset, as expected (Fu et al., 2012b). The results also confirmed the 
responsiveness of the phenological stages of the plants to temperature. In addition, the RMSE, efficiency 
and correlation of the model showed the ability of the models to adjust to variation in the data. Since there 
was no large difference between the RMSE of the calibration and validation dataset, we could assume that 
the parameters of the model were not dependent on the calibration dataset and the model was not over-
fitted (Linkosalo et al., 2008). 
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The current parameter values of SW model could be different from parameter values obtained in other 
study areas depending on the varieties of the species that were studied (Leinonen and Hänninen, 2002). 
For instance, the parameter values that were obtained for Chestnut (after removal of temporally-biased 
observations) were compared with parameter values from literature. The parameter values of Chestnut, 
which were determined by SW model, with pollen data for Tb, F* and T0 in France were 13.9, 20.1 and 3, 
respectively (Chuine et al., 1998). Those values that were obtained in France were different from the 
current values, which were 3.27, 290 and 57 for Tb, F* and T0, respectively, in our study. We run 
simulated annealing for the same species a number of times to check if the algorithm was trapped in local 
minima and giving different parameter values at each run. However, the algorithm found similar results 
for the optimal parameter values. This indicated that the algorithm was not trapped into local minima 
rather it was finding the global minimum. The differences in the data used for model calibration could be 
one reason for the difference in parameter values. Unlike the pollen data, which was obtained from the 
weekly average of pollen shedding in the atmosphere, we used volunteer phenological observations to 
calibrate the model. For the pollen data, the middle day of the pollination week was considered as the 
flowering date of the species. In this study, the DOY of the phenological event (flowering, leafing) was the 
date of phenological observation reported by the volunteers. Similarly, the climatic and topographic 
variations across different regions and varietal differences could account for the different parameter 
values.  
 
The model accounted the inter-annual variation but failed in elucidating good prediction for the annual 
variability. The differences in landscape and topography could account for climatic variations among the 
meteorological stations and the locations of the plants species that were explored (Fu et al., 2012b). In 
connection to that, the annual variability could be caused by the coarse temperature data, which was 
interpolated in 1km raster file, and used for model calibration. To this effect, the model couldn’t handle 
annual variations.  In addition, the inability of the model to consider other factors, like photoperiod, could 
have influenced the model from capturing the annual variability (Fu et al., 2012a; Menzel et al., 2006). 
Besides, the higher temperature in the southern part of The Netherlands than the northern part could 
affect the starting date of temperature accumulation. Consequently, an early starting date would enable the 
SW model to implicitly capture more chilling days in the north whilst the model would not enable to 
accumulate additional chilling days due to higher temperatures in the south (Olsson et al., 2013). This 
variation in the prediction results of the northern and southern part of The Netherlands could cause 
annual variations that could not be captured by the model. 

 Spatial bias 5.3.3.
Plants of the same species, which were growing in different locations, could have local adaptations to the 
DOY of the phenological stage when exposed to varying climatic conditions (Fu et al., 2012b). In 
agreement with this, the DOY of phenological event of the five plant species were different between the 
years 2003 and 2010 because of climatic variations.  
 
The SD of dates of phenological events among the years was used to detect climate change (Sparks et al., 
2011; Vilhar et al., 2013). In line with such studies, we used the SD of phenological events between 8 years 
to determine areas with climatic variability. Hence, phenology was used as a climate change indicator 
across the whole area of The Netherlands. Since there was higher temperature in the southern part, there 
was an earlier onset of phenological stage for all species. This is in line with the trends that have been 
encountered in Europe (Menzel et al., 2006; Olsson et al., 2013). In addition, inter-species variability in 
DOY of phenological phases of the five species showed the varying sensitivity of species to different 
climatic conditions. Moreover, as the medium variable areas were the average (mid-point) values, the 
existing numbers of observations in the medium variable areas were used to determine the expected 
number of observations in low and high variable areas. This is in agreement with other studies (Shi et al., 
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2012), which showed the importance of the number of phenological observations in an area and its effect 
on the DOY of the phenological event. 

5.4. PHASE 2.0 Model 

 Optimization 5.4.1.
The optimization of the PHASE model was not efficient because it was calculating psHU from date 1 up 
to the date of the maximum phase. Since there were outliers (temporally-biased observations) in the input 
phenological observations, the date of the maximum phase was not also accurate. Hence, the search space 
for the optimal starting DOY should be constrained based on the physiological behavior of the plants or 
the maximum date of phenophase of non-biased observation sets. For this reason, we have limited the 
search space between 1 and 100 by looking at the distribution of volunteer phenological observations.  
 
Moreover, choosing the optimal starting DOY of the model based on the efficiency values computed 
from the OOB data could result in incorrect results. As discussed in section 5.4.2, the PHASE model 
showed bad performance on an independent dataset. Hence, in addition to the efficiency of the OOB 
data, the efficiency and RMSE on the training data should have been considered to determine the optimal 
starting DOY. Besides, the over-fitting of the model should be prevented to enable it to work on an 
independent dataset.  

 Model Performance 5.4.2.
As the PHASE model does not make prior assumptions about the distribution of the data, it could learn 
from the data and make accurate predictions for the calibration data. However, the model showed higher 
RMSE and lower efficiency values for the validation dataset. This could be an “over fitting" problem 
which was caused by over-learning the training data and inability to make predications to an independent 
(test) data. In addition, the model might have fitted random noise in the data. Besides, there were large 
differences in the RMSE of the PHASE model between the calibration and validation dataset. These 
differences were caused by the over-fitting of the model on the calibration (training) dataset. This finding 
is in line with other studies (Linkosalo et al., 2008).  

5.5. Comparison of SW and PHASE 2.0 Model 
The optimal starting DOY of the PHASE model determined by the efficiency of the model on the OOB 
data resulted in incorrect values of optimal starting DOY. These in turn decreased the efficiency and 
RMSE of the PHASE model for the calibration and validation dataset. On the contrary, the optimal 
starting DOY determined by the SW model showed better results than the optimal DOY of the PHASE 
model for the calibration dataset. As the optimal starting DOY of PHASE model was determined by 
learning the training data, it showed better results for the validation dataset than the fixed starting DOY.  
 
Moreover, the results indicated that the PHASE model had better prediction accuracy for the calibration 
dataset (with temporally biased observations) than the SW model. This indicated that the PHASE model 
was more robust to outliers than the SW model. On the contrary, the PHASE model showed low accuracy 
on the validation dataset. This might be caused by over-fitting of the training data, which might occur if 
the regression trees grown at each generation were complex. The robustness of random forest regression 
for outliers and the case of over-fitting was also supported in other findings (Hastie et al., 2003). In the 
case of this data set, PHASE model appeared to be superior to SW model in terms of RMSE and 
efficiency for the calibration dataset. In contrast, the SW model performed well for the validation 
(independent) dataset than the PHASE model.  
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6. CONCLUSIONS AND RECOMMENDATIONS  

The main objective of this MSc thesis research was achieved by completing the sub-objectives. This 
section explains how the specific research objectives were achieved by answering the research questions.  

6.1. Conclusions 
 
1. Which statistical phenological modeling approach best fits the species/phenophase combinations of 

volunteered phenological observations? 
 
In our study, we tested the performance of SW, UNIFORC and UNICHILL models on volunteer 
phenological observations. The models were fitted by using a global optimization algorithm called 
simulated annealing. Simulated annealing could find the global optimum without getting trapped into a 
local optimum. The SW model was found to be the best model in predicting the phenological stages of the 
five plant species in the Natuurkalender dataset.  
 
The existence of temporally-biased observations caused biasedness in the parameter estimates as well as 
modelling results including RMSE, efficiency and correlation between observed and simulated values. 
Once these biased observations were removed, the quality (RMSE, efficiency and correlation) of the 
model was improved. On the other hand, the PHASE model used volunteer phenological observations to 
predict the phase-specific heat units and dates of phenological stages of the five plant species. This model 
was robust to outliers and could not easily be affected by the noise in the data. The performance of the 
model on the calibration dataset was better than the SW model. As a result of over-fitting, the prediction 
results of the PHASE model for the validation dataset were worse than the SW model. Eventually, the five 
plant species showed varying sensitivity to temperature and had different RMSE and efficiency. On the 
one hand, the SW and PHASE model showed better results in RMSE and efficiency for Chestnut and 
Oak, respectively. On the other hand, they showed worse results for Cow Parsley and Celandine. 
 
2. How can we systematically exclude erroneous observations from phenological models based on 

volunteered geo-information? 
 
The best statistical phenological model, SW, was used to detect and remove phenological observations 
that were temporally-biased. The SW model predicts the DOY of phenological event at locations of 
observations. The errors of each observation were computed and observations above a given normalized 
SD threshold were removed and the systematic and unsystematic RMSE of the model was checked. The 
normalized SD value by which the systematic RMSE of the model was smaller than the unsystematic 
RMSE and the smallest number of observations removed was selected as the threshold for removing 
temporally-biased observations. Hence, observations above the chosen species-specific threshold were 
regarded as erroneous (temporally-biased) observation sets. 
 
3. How can the temporal windows of monitoring a phenophase be determined from the modeling 

results? 
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The DOY of the phenological event in the whole area of The Netherlands between the years 2003 and 
2010 were different. In addition, a given year also showed variability in DOY at different locations. In 
connection to this, for each year, we determined the duration of phenological event (temporal windows). 
As there were climatic variations, the temporal windows had inter-annual variations. The general temporal 
windows that were exhibited between the 8 years period were between 85 and 127 for Cow parsley, 54 and 
100 for Celandine, 106 and 135 for Chestnut, 73 and 104 for Wood anemone and 101 and 128 for Oak. In 
general, volunteers could be recommended to start monitoring the phenological events of these species 
during these periods. Specifically, the maps showing the DOY of the phenological event could help in 
determining the temporal windows at locations of interest.  
 
4. How can phenological dynamics be used to determine sampling schemes? 
 
The phenological dynamics on the DOY of the phenological events of the five plant species between the 
years 2003 and 2010 helped in determining areas that were spatially-biased. For every year and species, the 
SW model predicted the DOY of the phenological event based on daily temperature values. Then, areas 
showing variability on the DOY of each species during eight years were determined and grouped into 
high, medium and low variable areas. Hence, areas showing variability were regarded as spatially-biased 
and they were different for each species. In connection to that, areas that need to have more monitoring 
volunteers were determined. This information could be useful to give recommendations for volunteers on 
the potential phenological monitoring areas.  

6.2. Recommendations 
Based on the research data that were generated, the following recommendations can be made for future 
research works: 
 

 Prevent the over-fitting of PHASE model by either using phenological observations of longer 
observation periods or by tuning parameters of the random forest regression. This could enable 
the model to make accurate predictions on an independent test dataset.  

 Improve the phenological models to account for annual variability by using local temperature that 
are interpolated using fine grid temperature data.  

 Incorporate other climatic factors (explanatory variables), which affect the timing of phenological 
events in the models. In connection to this, considering more climatic variables might improve 
modelling results and help determine accurate parameter values. In this case, volunteers should be 
made to provide details (metadata) about the location and phenological phase they are reporting.  

 Test the results of this research in another study area or use different data, like pollen data and 
make comparison with VGI data to assess the value of VGI for environmental monitoring. 

 The resulting maps showing the DOY of phenological event and SD maps showing climatic 
variations could be published in websites to be used by other users. 
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APPENDICIES  
APPENDIX A 

(1) Spatial distribution of year based temporally-biased volunteer phenological observations (circle 
symbols). The colour of the map indicates the variability in DOY of the phenological event 
between one year and all the other years. For each phenological observation, the sizes of the dot 
indicate the amount of normalized SD value.   
 
 
 

(a) Celandine 
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(b) Chestnut 
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(c) Wood anemone 
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(d) Oak 
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(2) Prediction results of the SW model from the year 2003 to 2010 in the whole area of The 
Netherlands 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Celandine 

(b) Chestnut 



 

72 

 
 
 

 
 
 

 

(c) Wood anemone  

(e) Oak 



 

73 

APPENDIX B 
R Scripts used  
 
1. Scripts used for SW model  

 
# optimized Parameters are: xx[1]=Tb, xx[2]=t0, xx[3]=F*                   
library(GenSA) 
library(raster) 
library(rgdal) 
#Read csv file 
inputdata = read.csv("Celandine_Calibration.csv") 
#Creates a matrix named data  
  data <-inputdata[,1:4] 
  data[,1] <-inputdata$Jaar #year 
  data[,2] <-inputdata$x  # x 
  data[,3] <-inputdata$y  # y 
  data[,4] <-inputdata$Date # Date of observation  
 
#set a lower and upper bounds for GenSA 
lower <- c(0,365-quantile(data[,4],0.50),50) 
upper <- c(10,quantile(data[,4],0.50)+365,2000) 
 
#Load Raster file of temperatures 
  for(year in 2003:2010) {      
    Tnam<-paste("T_", year, sep = "") 
 assign(Tnam, brick(paste("T_", year ,"_all_warp.bsq", sep="")))  }   
 
#Extract temperatures for locations year of observation and year before 
  for(year in 2003:2009) {      
    XY<-cbind(data[which(data[,1]==year+1),2], data[which(data[,1]==year+1),3]) 
    d1all = extract(get(paste("T_",year,sep="")), XY)[,1:365] 
    d2all = extract(get(paste("T_",year+1,sep="")), XY)[,1:365] 
    dall<-cbind(d1all,d2all) 
    if (year>2003){alld<-rbind(alld,dall)} 
    else {alld<-dall} 
  }  
 
funcSWModel_new <-function(xx){ 
  xx[2]<-round(xx[2]) 
  # substract base temperature and make negative values equal to 0   
  a<-alld-xx[1] 
  a[a<0]<-0 
  # cumulative sum of temperatures from starting date (xx[2]) to end 
  csa<-t(apply(a[,xx[2]:730], 1, cumsum)) 
  # find first date with tempsum above threshold (xx[3])   
     dop<-apply(csa>=xx[3]*1, 1,which.max)+xx[2]-1 
     dop[which(csa[,length(xx[2]:730)]< xx[3])]<- NA 
  if (sum(is.na(dop))> 10 ){ 
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      #print("F is too large for the selected starting day")    
      RMSE<- 10000 
      return (RMSE)  
  } 
 
# if there are less than 9 NA in the dataset 
dop[is.na(dop)]=999 
# if the dop is in the previous year 
  if (min(dop,na.rm=T)>365) { 
    dop<-(dop-365)}  
  else { 
    #print("Wrong combination; the predicted dop is too small") 
    RMSE<- 10000 
    return (RMSE)} 
  EFF = 1-((sum((dop-data[,4])^2))/(sum((data[,4]-mean(data[,4]))^2))) 
  RMSE<-sqrt(sum((dop-data[,4])^2)/length(dop)) 
   
} 
#Optimization 
out1 <- GenSA(lower = lower, upper = upper, fn = funcSWModel_new,control = list(smooth = 
FALSE, temperature=200000, max.time=1200)) 
out1[c("value","par","counts")] 

 
2) Scripts for UNIFORC model 
 
#optimized parameters are: xx[1]=d, xx[2]=e, xx[3]=T0, xx[4]=F*            
#set a lower and upper bounds for GenSA 
lower <- c(rep(-6),rep(1),365-quantile(data[,4],0.50),rep(50)) #  satisfy the constraint d<0 and e>0  
upper <- c(rep(-1), rep(20),quantile(data[,4],0.50)+365,rep(2000)) 
   funcUNIFORCModel_new <-function(xx){ 

xx[3]<-round(xx[3]) 
  # Calculate the sigmoidal dependency between daily temperature and rate of forcing  
    a<- 1/(1 + (exp(xx[1]*(alld-xx[2]))))   

a[a<0]<-0     
csa<-t(apply(a[,xx[3]:730], 1, cumsum))   
# find first date with tempsum above threshold (xx[3])   
dop<-apply(csa>=xx[4]*1, 1,which.max)+xx[3]-1 
dop[which(csa[,length(xx[3]:730)]< xx[4])]<- NA 
if (sum(is.na(dop))> 10 ){ 
#print("F is too large for the selected starting day")    
RMSE<- 10000 
return (RMSE) } 
# if there are less than 9 NA in the dataset 
dop[is.na(dop)]=999 
# if the dop is in the previous year 
if (min(dop,na.rm=T)>400) { 
dop<-(dop-365)}  
else { 
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#print("Wrong combination; the predicted dop is too small") 
RMSE<- 10000 
return (RMSE)} 
EFF = 1-((sum((dop-data[,4])^2))/(sum((data[,4]-mean(data[,4]))^2))) 
RMSE<-sqrt(sum((dop-data[,4])^2)/length(dop))} 

 
3. Scripts for UNICHILL model 

 
#parameters: a,b,c, C(state of chilling)           
#d, e, F(State of forcing),  t0: fixed   
#xx1=a, xx2=c, xx3=b, xx4=d, xx5=e, xx6=C*,xx7=F*                                           
lower <- c(rep(-6),rep(1),rep(-6),rep(-6),rep(1),rep(1),rep(10))  
upper <- c(rep(-1), rep(10),rep(-1),rep(-1),rep(20),rep(200),rep(1000)) 
funcUNICHILL_new <-function(xx){ 
    # sigmoidal dependency for rate of chilling (a) and rate of forcing (b)   
 a<-1/(1+exp((xx[1]*((alld-xx[2])^2)) + (xx[3]*(alld -xx[2])))) 
 b <- 1/(1 + (exp(xx[4]*(alld-xx[5]))))    
 a[a<0]<-0    
 b[b<0]<-0 
t0= 243  #starting DOY fixed to 1 September      
# cumulative sum of temperatures from starting date (t0) to date of dormancy 
csa<-t(apply(a[,t0:365], 1, cumsum))   
dod<-apply(csa>=xx[6]*1, 1,which.max)+t0-1 
dod[which(csa[,length(t0:365)]< xx[6])]<- NA 
if (sum(is.na(dod))> 0 ){ 
RMSE<- 10000 
return (RMSE) } 
cc<-b  
for(i in 1:length(dod)) 
{ 
cc[i,1:(dod[i]-1)] <- 0 
}  
csa2<-t(apply(cc[,1:730], 1, cumsum)) 
dop<-apply(csa2>=xx[7]*1, 1,which.max) 
dop[which(csa2[,length(1:730)]< xx[7])]<- NA 
if (sum(is.na(dop)>10)){ 
RMSE<- 10000 
return (RMSE) } 
dop[is.na(dop)]=999 
if (min(dop,na.rm=T)>365) { 
dop<-(dop-365) }  
else { 
RMSE<- 10000 
return (RMSE)  } 
if (length(which(dop>quantile(data[,4],0.75)))>10){ 
RMSE<- 10000 
return (RMSE) } 
RMSE<-sqrt(sum((dop-data[,4])^2)/length(dop))} 
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4. Scripts for removal of observations above a given normalized SD 

data2= read.csv("Celandine_Predicted.csv")   #reads a data that is predicted by the model 
#dev_col: is the column containing the normalized SD values, dev is the normalized SD value 
SD_filter <- function(data1,dev_col,dev) 
{ 
    # filt --- |sdev|>=dev 
    # left --- |sdev|<dev 
    filtdata  = matrix(nrow=0,ncol=7) 
    leftdata = matrix(nrow=0,ncol=7) 
            tmparr = matrix() 
    for(i in 1:length(data1[,1])) 
    { 
            tmparr[1:4] = data1[i,1:4] 
            tmparr[5:7] = data1[i,(dev_col-2):dev_col] 
        if ((abs(data1[i,dev_col]))>= dev) 
    filtdata = rbind(filtdata, tmparr) 
        else 
    leftdata = rbind(leftdata, tmparr) 
     } 
datapair <- list("Nfiltdata"=filtdata,"Nleftdata"=leftdata ) 
return(datapair) 
} 
filt_data <-SD_filter(data2,7,0.7) 
colnames(filt_data$Nfiltdata) <- c("Year","X", "Y", "Date","Predicted","Error", "S_Deviation")   
colnames(filt_data$Nleftdata) <- c("Year","X", "Y", "Date","Predicted","Error", "S_Deviation")   
write.csv(filt_data$Nfiltdata,"Removed_data.csv",row.names=FALSE) 
write.csv(filt_data$Nleftdata,"Left_data.csv",row.names=FALSE) 
 

5. Scripts used for calculating systematic and unsystematic RMSE 
 
Predicted_data=read.csv("Celandine_Predicted.csv")  # reads a csv file that contains all the records 
including predicted and observed values 
systematic.lm=lm(Predicted_data$Predicted ~ Predicted_data$Date) # makes a linear model between 
the predicted values and observed values 
obar = mean(Predicted_data$Date) #mean of observed values 
n=length(Predicted_data$Date) # length of observed 
a=systematic.lm$coefficients[[1]]      # reads the value of the intercept from linear model 
b=  systematic.lm$coefficients[[2]]    # reads slope from linear model 
p=a+(b*Predicted_data$Date)  #Calculates the pi, obtained by the linear relation between observed 
and predicted 
systematic_RMSE=sqrt(sum((p-Predicted_data$Date)^2)/n) 
unsystematic_RMSE=sqrt(sum((Predicted_data$PredictedDOY-p)^2)/n) 
RMSE=sqrt( sum((Predicted_data$PredictedDOY-Predicted_data$Date)^2)/n) 
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6. Scripts for predicting the DOY of the phenological event (for SW model) in the whole area of 
the Netherlands and calculating the SD of prediction between the years and plotting the SD 
map. 
 
#Load Raster file of temperatures 
for(year in 2003:2010) {  
Tnam<-paste("T_", year, sep = "") 
assign(Tnam, brick(paste("T_", year ,"_all_warp.bsq", sep="")))} 
#Extract temperatures for locations year of observation and year before 
spname <- 'Celandine' 
getYearLocs <- function(year) 
  { 
    Tnam<-paste("T_", year, sep = "") 
    assign(Tnam, brick(paste("T_", year ,"_all_warp.bsq", sep=""))) 
    ts <- get(Tnam)[["T_2003_all_warp.1"]] 
    yrRows <- dim(ts)[1] 
    locs <- matrix(nrow=0,ncol=2) 
    for(i in 1:yrRows){ 
      notna <- which((!is.na(ts[i,]))) 
      len <- length(notna) 
      ycoord <- yFromRow(ts, i) 
      cat("At row ",i," (with ",len,")\n") 
      for(j in 1:len){ 
        locs<-rbind(locs,c(xFromCol(ts, notna[j]),ycoord)) 
      } 
    } 
    return(locs) 
  } 
XY <- getYearLocs(2003) 
funcSWModel2 <-function(spname,year,XY,xx1,xx2,xx3){ 
  data = extract(get(paste("T_",year,sep="")), XY)[,1:365] 
  XY <-cbind(XY,c(rep(0,dim(XY)[1]))) 
  xx2<-round(xx2)   
  a<-data-xx1 
  a[a<0]<-0 
  csa<-t(apply(a[,xx2:365], 1, cumsum)) 
  dop<-apply(csa>=xx3*1, 1,which.max)+xx2-1 
  dop[which(csa[,length(xx2:365)]< xx3)]<- NA 
  XY[,3]<-dop 
  write.csv(XY,file=paste(spname,'_DOY_pred_',year,'.csv'),row.names=FALSE) 
  return(XY) 
} 
 
pop.sd <- function(x)(sqrt(var(x)*(length(x)-1)/length(x))) 
 
#calling...funcSWModel2(year,XY,xx1,xx2,xx3) for each year 
for(year in 2003:2010){ 
  yearXYZ <- funcSWModel2(spname,year,XY,0.7328072,20,183.3402861)#celandine 
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  png(paste(spname,'_DOY_plot_',year)) 
  yearRas <- rasterFromXYZ(yearXYZ) 
  plot(yearRas) 
  dev.off() 
  if (year==2003){ 
    allyearsRas <- yearRas 
    toSDVals <- yearXYZ[,3] 
  } 
  else { 
    allyearsRas <- addLayer(allyearsRas,yearRas) 
    toSDVals <- cbind(toSDVals,yearXYZ[,3]) 
  } 
} 
names(allyearsRas) <- c('Year 2003','Year 2004','Year 2005','Year 2006','Year 2007','Year 2008','Year 
2009','Year 2010') 
png(paste(spname,'_DOY_plot_all')) 
plot(allyearsRas) 
dev.off() 
allSDs<-apply(toSDVals, 1, pop.sd) 
SDLocs <- yearXYZ 
SDLocs[,3] <- allSDs 
allMns<-apply(toSDVals, 1, mean) 
NormSD <- toSDVals 
for(j in 1:length(allSDs)){ 
  NormSD[j,] <- (toSDVals[j,]-allMns[j])/allSDs[j] 
} 
SDnNormSD <- cbind(SDLocs,NormSD) 
write.csv(SDnNormSD,file=paste(spname,'_SDnNormSD_Vals.csv'),row.names=FALSE) 
png(paste(spname,'_SD_Vals_plot')) 
plot(rasterFromXYZ(SDLocs)) 
dev.off() 
 

7. Scripts for partitioning the areas showing climatic variability in to low, medium and high and 
overlaying the distribution of volunteers on the top of these areas 

 
spCals = read.csv("Celaninde_nonbiased_observations.csv") 
allSpXYs <- spCals[,2:3] # reads the coordinates (x,y) of non-biased observations 
spSDVals = read.csv("Celandine_SD_Vals.csv") 
#computing and plotting SD distribution 
minSD <- min(spSDVals[,3]) 
maxSD <- max(spSDVals[,3]) 
diff <- (maxSD-minSD)/3 
allSDs <- length(spSDVals[,3]) 
lowSD <- length(which(spSDVals[,3]<=(minSD+diff))) 
medSD <- length(which(spSDVals[,3]>(minSD+diff)&spSDVals[,3]<=(minSD+2*diff))) 
highSD <- length(which(spSDVals[,3]>(minSD+2*diff))) 
p1 <- round(lowSD*100/allSDs) 
p2 <- round(medSD*100/allSDs) 
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p3 <- round(highSD*100/allSDs) 
arg<-list(at=c(minSD,(minSD+diff),(minSD+2*diff),maxSD),labels=c(round(minSD,digits=1), 
+ round((minSD+diff),digits=1),round((minSD+2*diff),digits=1),round(maxSD,digits=1))) 
brk <- c(minSD,(minSD+diff),(minSD+2*diff),maxSD) 
plot(rasterFromXYZ(spSDVals),col=c("peachpuff"," yellow1","limegreen"),axis.arg=arg,breaks=brk) 
points(allSpXYs, pch=21,col="red",cex=0.6) 
 
8. Boxplots showing the DOY of phenological event vs the year 

boxplot(Date~Year, 
data=all_species,main=paste(""),ylim=c(range((all_species$V3))),xlab="DOY",ylab="YEAR", 
horizontal=TRUE) 
 

9. Scripts for drawing the graph between normalized SD (x-axis) and RMSE (systematic and 
unsystematic), efficiency and correlation (y-axis). The point where the optimal threshold 
value was obtained could also be seen on the graph 
 
# Read a csv file with SD, RMSE (systematic), RMSE (unsystematic), efficiency, correlation and n for 
each species 
Book3<-read.csv("Book3.csv") 
sp1 <- Book3[1:15,1:8] #Bosanemoon 
sp2 <- Book3[16:29,1:8] #Oak 
sp3 <- Book3[30:43,1:8] #Celandine 
sp4 <- Book3[44:57,1:8]#Cow parsley 
sp5 <- Book3[58:73,1:8]#chestnut 
gr1 <- function(sp,Nr) 
{ 
  par(ps = 11, cex = 1, cex.main = 1) 
  
plot(sp$RMSE.sys.,type="b",lwd=2,xaxt="n",ylim=c(floor(min(sp[,3:5])),ceiling(max(sp[,3:5]))),col="
black",xlab="Normalized Standard Deviation", 
       ylab="(Un)Systematic RMSE and RMSE",lty=1) 
  #title(main=paste('SD versus RMSE and for species: ',sp[1,1]),line=3) 
  axis(1,at=1:length(sp$SD),labels=sp$SD) 
  axis(1,at=1:length(sp$n),labels=round(((Nr-sp$n)*100)/Nr,0),side=3) 
  mtext("Percentage of Phenological Observations (Removed)", side=3, line=2) 
  lines(sp$RMSE.unsys.,type="b",lwd=2,lty=2) 
  lines(sp$RMSE,type="b",lwd=2,lty=3) 
  reqi<-max(which(sp$RMSE.sys.<sp$RMSE.unsys.)) 
  points(c(reqi,reqi,reqi), c(sp[reqi,3],sp[reqi,4],sp[reqi,5]), pch=7,col="red",cex=2) 
  
legend("bottomright",legend=c("RMSE(sys)","RMSE(unsys)","RMSE"),lty=c(1,2,3),lwd=2,ncol=1,bt
y="n",cex=0.8,inset=0.01) 
} 
gr2 <- function(sp) 
{ 
  plot(sp$Efficiency,type="b",lwd=2,xaxt="n",ylim=c(round((min(sp[,6:7])-
0.1),digits=1),round((max(sp[,6:7])+0.1),digits=1)),col="black",xlab="Normalized Standard 
Deviation", 
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  ylab="Efficiency and Correlation") 
  axis(1,at=1:length(sp$SD),labels=sp$SD) 
  lines(sp$Correlation,type="b",lwd=2,lty=2) 
  
legend("topright",legend=c("Efficiency","Correlation"),lty=c(1,2),lwd=2,ncol=1,bty="n",cex=0.8,inse
t=0.01) 
 } 
# Nr values: Wood anomale(Bosanemoon) = 532, Eik = 249, celandine = 1341, Cow_Parsley = 775, 
White_Horse_Chestnut = 390 
par( mfrow = c( 3, 2), mar=c(4,4,4,4)) 
gr1(sp4,776)#Cow parsley 
gr1(sp3,1341)#Celandine 
gr1(sp5,390)#Chestnut 
gr1(sp1,532) #Bosanemoon 
gr1(sp2,249) #Eik 
par( mfrow = c( 3, 2), mar=c(4,4,4,4)) 
gr2(sp4)#Cow parsley 
gr2(sp3)#Celandine 
gr2(sp5)#Chestnut 
gr2(sp1) #Bosanemoon 
gr2(sp2) #Eik 
  

10. Scripts for drawing scatter diagrams between the predicted and observed values. Temporally-
biased observations are shown in red dots and non-temporally biased are shown with black 
dots.  
 
data1= read.csv("Celandine_Predicted_non_biased.csv") 
data2=read.csv("Celandine_predicted_biased.csv") 
cor.tr <- cor.test(data1$Predicted,data1$Date, method="spearman") 
plot(data1$Date, data1$Predicted, xlab="Observation(DOY)", ylab="Prediction(DOY)", 
xlim=c(range(40,150)),ylim=c(range(40,150)),pch=1) 
abline(lsfit(data1$Date,data1$Predicted), lwd=1) 
legend("topleft",legend=c(paste("Correlation (rho) =",round(cor.tr$estimate,2), " RMSE = 
",round(sqrt(mean((data1$Date-data1$Predicted)^2)),2)))) 
points(data2$Date,data2$Predicted,pch=24,col='red',bg='red')  


