
DEVELOPMENT OF A MOVING
OBJECT DATA TYPE IN A DBMS

MULUGETA TADESE GUDECHA
February, 2014

SUPERVISORS:

Dr. Ir. R.A. de By
C. Piccinini MSc

DEVELOPMENT OF A MOVING
OBJECT DATA TYPE IN A DBMS

MULUGETA TADESE GUDECHA
Enschede, The Netherlands, February, 2014

Thesis submitted to the Faculty of Geo-information Science and Earth
Observation of the University of Twente in partial fulfilment of the requirements
for the degree of Master of Science in Geo-information Science and Earth
Observation.
Specialization: GFM

SUPERVISORS:

Dr. Ir. R.A. de By
C. Piccinini MSc

THESIS ASSESSMENT BOARD:

Dr. A.A. Voinov (chair)
V. de Graaff MSc

Disclaimer
This document describes work undertaken as part of a programme of study at the Faculty of Geo-information Science and Earth
Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and
do not necessarily represent those of the Faculty.

ABSTRACT

A spatiotemporal database allows its users to register space-time phenomena. The spatiotemporal
database research area has been open and active for a long time. However, its theory has grown
more rapidly than its implementation. Modeling of spatiotemporal objects, that change continu-
ously with time requires abstractions in different categories, i.e. moving points, lines, regions, and
etc. This research paper presents abstract and discrete designs used to represent moving points, ba-
sic abstraction if only the time-dependent change of position in the space of an object is important.
In this study, the data models resulted from the discrete and abstract designs are mapped into a data
structure that is implementable in a DBMS environment. This research succeeded to provide an
implemented moving point data type and operations that provide support for spatiotemporal ob-
jects in PostgreSQL database management system. Not only moving point data type, the paper
succeeded to provide design and implementation of other four auxiliary data types. On top of the
spatiotemporal DBMS extension, this research offers alternative interpolation techniques for mov-
ing points and also includes innovative algorithms and implementations for aggregation functions
that operates on sets of moving points.

Keywords

Spatiotemporal, DBMS, Data types, PostgreSQL, PostGIS, Moving Objects, Interpolation, Aggregation,
BNF, MPOINT, MREAL, MPERIOD, INTIME_MPOINT, INTIME_MREAL

i

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

ii

ACKNOWLEDGEMENTS

First and foremost, I wish to thank my parents. Your prayer for me was what sustained me to get
this far. Words cannot express how grateful I am for all the sacrifices you have made on my behalf.

I would like to gratefully and sincerely thank my supervisor Dr. Ir. R.A. de By for his guid-
ance, support, understanding, immense knowledge and especially for his confidence in me. You
have been a tremendous mentor for me. I would like to thank you for sharing your vast knowledge
of the field and well-rounded experience. I would also like to thank my second supervisor, C. Pic-
cinini M.Sc. for his brilliant comments and suggestions throughout the project. I would especially
like to thank Bas Retsios, who has always there to help me solve all my coding problems.

I would also like to thank my three younger sisters. They were always supporting me and
encouraging me with their wholehearted best wishes.

Finally, and most importantly, I would like to thank Tigist Abraham for her support to help
me achieve my goal and encouragement in my moments of crisis. Above all, I would like to thank
God for his unlimited blessing and everything he has done for me.

iii

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

iv

LIST OF FIGURES

1.1 Method adopted . 5

2.1 Movement of a Moving Car . 11

4.1 mpt_location . 32
4.2 mpt_trajectory . 34
4.3 mpt_atinstant . 36
4.4 mpt_atperiod . 39

5.1 Linear Interpolation . 56
5.2 Cubic Interpolation . 57

6.1 Resulting centroid based on the “shared interval” algorithm 65
6.2 Resulting centroid based on the “closure” algorithm 70
6.3 Resulting centroid based on the “dormant point” algorithm 71
6.4 Maximum trajectory result from the operation mpt_max_trajectory 72
6.5 Minimum trajectory result from the operation mpt_max_trajectory 73
6.6 Trajectory result of the operation mpt_makeline 74

v

vi

LIST OF TABLES

1.1 List of Aggregate Functions on Sets of Moving Points 6

2.1 Signature Describing the Abstract Type System [Güting et al., 2000] 7
2.2 Signature Describing the Discrete Type System [Erwig et al., 1999] 10

3.1 Platforms and languages used for building moving object library 21
3.2 Input and Output functions . 22

4.1 Classes of operations on Nontemporal types 27
4.2 Classes of operations on Temporal types . 28

vii

viii

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

List of Algorithms

4.1 mpt_deftime operation . 29
4.2 mpt_location operation . 31
4.3 mpt_trajectories operation . 33
4.4 mpt_atinstant operation . 35
4.5 mpt_present_atinstant operation . 38
4.6 mpt_atperiod operation . 40
4.7 mpt_present_atperiod operation . 42
4.8 mpt_initial operation . 43
4.9 mpt_final final . 44
4.10 mpt_distance operation . 47
4.11 mpt_speed operation . 49
6.1 The “shared interval” algorithm (Part_1) . 66
6.2 The “shared interval” algorithm (Part_2) . 67
6.3 The “shared interval” algorithm (Part_3) . 68

ix

x

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listings

2.1 Data structure for moving point type . 12
2.2 Data structure for moving real type . 12
2.3 Data structure for period type . 13
2.4 Data structure for intime point type . 14
2.5 Data structure for intime real type . 14
2.6 Common BNF specificaitons . 15
2.7 Context free free grammer for MPOINT input 15
2.8 Valid textual representation for moving points 16
2.9 Context free free grammar for MREAL input 17
2.10 Valid textual representation for moving reals 17
2.11 Context free free grammar for MPERIOD input 18
2.12 Valid textual representation for multiple periods 18
2.13 Context free grammar for INTIME_MPOINT input 18
2.14 Valid textual representation for intime points 19
2.15 Context free free grammar for INTIME_MREAL input 19
2.16 Valid textual representation for intime reals . 19
3.1 Query statments to create a moving point type in PostgreSQL 23
3.2 Query statements to demonstrate the use of the types MPOINT, MREAL, MPE-

RIOD, INTIME_MPOINT, and INTIME_MREAL 24
4.1 Query statments to create relations used in the research project 28
4.2 What are the times for bird “Belarus 1” movement is defined? 29
4.3 When did the bird “Belarus 1” start movement? 30
4.4 When did the bird “Belarus 1” stop its movement? 30
4.5 What are the locations registered for the bird “Nobert”? 31
4.6 Which route does the bird “Belarus 4” follows in the movement? 33
4.7 Where was the bird “Ludwig” on 2013-07-12 12:07:40? 36
4.8 “Where was the bird “Ludwig” on 2013-07-12 12:07:40? 37
4.9 When did the bird “Johannes” end the movement? 37
4.10 was “Ludwig” bird in movement on 2013-07-12 12:07:40? 38
4.11 Find bird “Anita” between 2013-07-12 12:07:40,2013-09-12 12:07:40? 41
4.12 Is the bird “Anita” was ever present between the dates 2013-07-12 12:07:40,2013-

09-12 12:07:40? . 43
4.13 When and where the bird “Johannes” start moving? 43
4.14 Where is the last know location of bird “Johannes”? 45
4.15 Find the SRID for the bird “Rolf”? . 45
4.16 Find the TZID for the bird “Rolf”? . 45
4.17 find the distance covered by the bird “Belarus 3”? 48
4.18 What is the speed of the bird “niederbayern1” throughout the movement? 48
4.19 find the initial distance value registered for the bird “Belarus 3”? 50
4.20 what is the total distance covered by the bird “Belarus 3”? 50
4.21 what is the total distance covered by the bird “Belarus 3”? 50

xi

4.22 When did the total distance for the “Belarus 3” was registered? 51
4.23 Are “Johannes” and “Rolf” moving birds are well formed? 51
4.24 Is the distance value measurement taken on different location for birds “Nobert”and

“Rolf” is well formed? . 52
4.25 Transform the moving bird “Nobert” from 4326 to 3857 52
5.1 Where was the bird “Belarus 2” on 2013-07-01 18:50:33 ? 59
5.2 Where was the bird “Belarus 2” on ‘2013-06-30 18:50:33 ’? 60
6.1 Data structure for support mpoint_a type . 64
6.2 Return the centroid of the moving birds? . 69
6.3 Return the centroid of the moving birds? . 69
6.4 Return the centroid of the moving birds? . 70
6.5 Return the maximum trajectory of the moving birds? 71
6.6 Return the minimum trajectory of the moving birds? 72
6.7 Return the total trajectory of the moving birds as a single geometry? 73
6.8 What is the average speed of the bird “Johannes”? 74
6.9 What is the maximum speed of the bird “Anita”? 75
6.10 What is the minimum speed of the bird “Anita”? 75

xii

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

List of Acronyms

BNF Backus Normal Form or BackusNaur Form

DBMS Database Management Systems

GIS Geographic Information Systems

LWGEOM Light Weight Geometry)

GNU GNU’s Not Unix

LWPOINT Light Weight Point

MON-tree Moving Objects in Networks Tree

OGC Open Geospatial Consortium

STDBMS Spatiotemporal Database Management Systems

WKB Well-Known Binary

xiii

TABLE OF CONTENTS

Abstract i

Acknowledgements iii

List of Figures v

List of Tables vii

List of Algorithims ix

List of Listings xii

List of Acronyms xiii

1 Introduction 1
1.1 Research identification . 1

1.1.1 Research objectives . 2
1.1.2 Research questions . 2
1.1.3 Innovation aimed at . 2
1.1.4 Literature review . 2
1.1.5 Related work . 3
1.1.6 Methodology . 3

2 Design for Representing Moving Points 7
2.1 Introduction . 7
2.2 Abstract representation of moving point data type 7

2.2.1 Base types . 8
2.2.2 Spatial types . 8
2.2.3 Time type . 8
2.2.4 Temporal types . 8
2.2.5 Range Types (Sets of Intervals) . 9

2.3 Discrete representation of moving point data type 9
2.4 Data Structure . 10

2.4.1 Data structure for the type moving point 11
2.4.2 Data structure for the type moving real 12
2.4.3 Data structure for the type period . 13
2.4.4 Data structure for the type intime point 14
2.4.5 Data structure for the type intime real 14

2.5 Language constructs and constraints . 14
2.5.1 Language construct and constraint for type MPOINT 15
2.5.2 Language construct and constraint for type MREAL 17
2.5.3 Language construct and constraint for type MPERIOD 18
2.5.4 Language construct and constraint for type INTIME_MPOINT 18
2.5.5 Language construct and constraint for type INTIME_MREAL 19

xiv

2.6 Conclusion . 19

3 Implementation and Setup 21
3.1 Introduction . 21
3.2 Environment and setup . 21
3.3 Implementation of moving object types . 22

3.3.1 Input and Output functions . 22
3.3.2 Creating types in PostgreSQL . 23

3.4 Demonstration of new types . 23

4 Operations on Moving Points 27
4.1 Introduction . 27
4.2 Operations for Projection to domain/range . 29

4.2.1 mpt_deftime . 29
4.2.2 period_initial . 30
4.2.3 period_final . 30
4.2.4 mpt_location . 30
4.2.5 mpt_trajectories . 32

4.3 Operations for Interaction with domain/range 33
4.3.1 mpt_atinstant . 33
4.3.2 val_intime_mpoint . 37
4.3.3 inst_intime_mpoint . 37
4.3.4 mpt_present_atinstant . 38
4.3.5 mpt_atperiod . 39
4.3.6 mpt_present_atperiod . 41
4.3.7 mpt_initial . 43
4.3.8 mpt_final . 44
4.3.9 mpt_srid . 45
4.3.10 mpt_tzid . 45

4.4 Operations for Rate of change . 46
4.4.1 mpt_distance . 46
4.4.2 mpt_speed . 48
4.4.3 mreal_initial . 48
4.4.4 mreal_final . 50
4.4.5 val_intime_mreal . 50
4.4.6 inst_intime_mreal . 51

4.5 Validation and transformation operations . 51
4.5.1 mpt_valid . 51
4.5.2 mpoint_mreal_valid . 51
4.5.3 mpt_transform . 52

4.6 Conclusion . 53

5 Interpolation Functions for Moving Points 55
5.1 Introduction . 55
5.2 Linear Interpolation . 55
5.3 Cubic Interpolation . 56
5.4 Last Known Interpolation . 58
5.5 Result and Discussion . 58
5.6 conclusion . 61

xv

6 Aggregate Functions on Moving Points 63
6.1 Introduction . 63
6.2 Implementation requirements of aggregation functions 63
6.3 Implementation of moving point aggregation functions 64

6.3.1 mpt_centroid . 64
6.3.2 mpt_max_trajectory . 71
6.3.3 mpt_min_trajectory . 72
6.3.4 mpt_makeline . 73
6.3.5 mpt_avg_speed . 74
6.3.6 mpt_max_speed . 75
6.3.7 mpt_min_speed . 75

6.4 Conclusion . 75

7 Conclusion and Recommendation 77
7.1 Introduction . 77
7.2 Conclusion . 77
7.3 Recommendation . 78

Bibliography 82

Appendix 83

A Type and operation initialization queries 83

xvi

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 1

Introduction

Spatiotemporal database management systems (STDBMSs) are becoming backbones of broad im-
portant applications such as Geographic Information Systems (GIS), multimedia, and environ-
mental information systems.A spatiotemporal database allows its users to register space-time phe-
nomena. Now and for the coming years, there is a need to store and manipulate changes of real
world objects. In recent years, theoretical work has taken place on geometries changing with time
to represent real world objects in a database. Different types of a spatiotemporal data model and
database emerged. New concepts and research areas have been reviewed by Pelekis et al. [2004] .
However, separate support for both spatial and temporal data in a database has remained one of
the problems to analyze changes in spatial objects.

To analyze change/movement of spatial objects, current database and GIS technology does
not suffice. Due to the complexity of spatial information caused by rapid growth of communica-
tion devices facilitating sharing of such information among users makes it difficult to use current
database and GIS technology [Schneider, 2009]. In parallel, with the maturity of GPS and wireless
technologies, large amount of data from various moving objects such as vehicles, mobile devices,
and animals can be collected. Computations and analysis on such data has broad applications in
movement pattern recognition, vehicle control, mobile communication control, and animal con-
trol. Therefore, there must be a mechanism to manage and manipulate, i.e., model, store, and
query, continuous and discrete positions or location changes of spatial objects over time. This
requires careful analysis due to the complexity introduced when the time dimension is added to
the data structure.

Modeling of spatiotemporal objects that change continuously with time requires abstraction
in different categories. This can be achieved by defining abstract data types for moving objects. In
general, there exist abstractions for moving points, lines, regions, multipoints, multilines, multi-
polygons, and gometrycollections. However, abstractions describing objects with location change
only (moving points), facilities with location and extent change for connection in space (moving
lines), and objects with both location and size change (moving regions) are basics for describing
the rest of moving objects [Güting et al., 2000]. Thus, spatiotemporal data models and query
languages capable to include those abstract data types need to be implemented.

Finally, DBMS data models and query languages can be extended to manage and manipulate
spatiotemporal objects (moving objects). Modeling and querying of spatiotemporal objects can
be achieved by embedding spatiotemporal data types in DBMS. Particularly, the development of
a function library for moving points requires incorporation of operations and procedures on the
data types. These libraries can be used to register space-time phenomena in a database to under-
stand their behavior with time and analyze their relations with other phenomena.

1.1 RESEARCH IDENTIFICATION

The aim of the research project is to develop a complete library package that extends a DBMS
with support for spatiotemporal data type. To achieve this, the research questions and research

1

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

objectives mentioned below are required to be addressed.

1.1.1 Research objectives

1. To improve moving point data type and operations implemented by Bezaye [2013], based
on the mathematical model developed by Güting et al. [2000].

2. To implement operations on moving points omitted by Bezaye [2013], based on the math-
ematical model developed by Güting et al. [2000] and algorithms developed by Lema et al.
[2003].

3. To extend moving point data type to support for alternative interpolation function other
than linear interpolation proposed by Güting et al. [2000].

4. To include aggregate functions on the Güting et al. [2000] operations, that allow to perform
computations on sets (cliques) of moving points.

1.1.2 Research questions

1. What are the weaknesses of the moving point data type and operations implementations by
Bezaye [2013]? How can these be addressed?

2. How to implement operations on moving points omitted by Bezaye [2013]?

3. Which alternative interpolation functions can be used to support for moving point data
type? And in which application contexts?

4. How to implement selected interpolation functions, based on the corresponding application
context?

5. How can aggregate functions be designed to perform computations over sets of moving
points?

6. How to implement the designed aggregate functions on moving points?

1.1.3 Innovation aimed at

The innovation of this research project is an implemented moving object data type for a major
DBMS. This includes implementation of alternative interpolation and aggregate functions as well
as improved and extended version of work done by Bezaye [2013]. The final implemented library
package for moving object data types contains fully tested new operations in addition to those
modeled by Güting et al. [2000].

1.1.4 Literature review

The spatiotemporal database research area has been open and active for a long time. It has grown
theory more rapidly than implemented systems. The suitability of methods and resources for
experimenting research in databases grant more advantages for publishing papers as mentioned
by Güting et al. [2000]. Throughout this period of time, different theoretical and mathematical
models were proposed to address spatiotemporal objects and databases.

Conceptual development and drawbacks on spatiotemporal databases and data models to rep-
resent objects that change discretely were reviewed by Pelekis et al. [2004]. Data models to rep-
resent spatiotemporal objects that change continuously in a database was first proposed by Erwig

2

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

et al. [1999]. The proposed model considers moving objects as 2D+T (time as the third dimension)
entities, while their behavior and structure is modeled through abstract data types. Later, Güting
et al. [2000]introduced such abstract data types for moving points and moving regions together
with operations on them. Again later, a discrete model for moving object data type was developed
for the corresponding abstract data models by Forlizzi et al. [2000] and algorithms for operations
on a moving object data type were developed by Lema et al. [2003]. All the authors from Güting
et al. [2000] and Erwig et al. [1999] reflected that this approach to represent both changes and
movements on spatiotemporal objects suits for most spatiotemporal queries. However, as men-
tioned in Güting et al. [2000], most of the models are not implemented, but rather were left in
paper only.

1.1.5 Related work

A research network named CHOROCHRONOS, mainly putting its objectives on the design,
implementation, and application of spatiotemporal DBMSs, was introduced in 1996 [Sellis, 1999].
CHOROCHRONOS allowed and supported researchers to work on spatiotemporal databases.
Designs and partial implementations of STDBMSs were results from this project. In 1995, the
University of Hagen started developing a prototype DBMS named SECONDO [Güting et al.,
2010]. Their main design goal was to obtain a clean extension and support for spatial and spa-
tiotemporal applications. Afterwards, SECONDO became an alternative for publishing research
implementations on moving objects, even though PostGIS and OracleSpatial also remained inter-
esting candidates. However, SECONDO was developed for high-level GIS and computer special-
ists to experiment with implementations of spatiotemporal research. As a consequence, it is not
widely used by non-professional GIS users.

In recent years, trials were conducted to develop a function library package that can be embed-
ded in PostgreSQL, to provide support for spatiotemporal moving data types. The first attempt
was made by Eftekhar [2012] in designing and implementing a moving point data type in Post-
greSQL. The research project by Eftekhar [2012], first reviewed theoretical foundations presented
in [Güting et al., 2000] as a basis for further designing the models as an abstract data types and their
follow up implementations. As a final result, the project succeeded to design and implement the
data types for moving points. However, many operations mentioned in [Güting et al., 2000], were
not fully implemented and refinement at design level also was one of the research project omis-
sions. Later in 2012, attempts were made to refine abstract and discrete representation of moving
points in PostgreSQL by [Bezaye, 2013] in her research project. And at the end, an implemen-
tation of a moving point data type was developed as an extension for PostgreSQL. This research
project, however, did not provide a full implementation of operations mentioned in [Güting et al.,
2000] for moving objects.

Currently, work on spatiotemporal databases can be extended in many directions. Let alone
lack of completeness on moving point data types, extension of data types and operations on them
to 3D and 4D spaces, boosting moving point data type for higher dimensional features like mov-
ing lines and regions, and incorporating new operations on moving features are possible ways of
extensions.

1.1.6 Methodology

In general, the research project starts by reviewing previous mathematical models and implemen-
tations for moving points. During this learning period, mathematical models described by Güt-
ing et al. [2000] were studied so that they can be extended and refined to support for alternative
interpolation function and include aggregate functions. Reviewing other mathematical models

3

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

described by Pelekis et al. [2004] were also found to be necessary to compare and validate mathe-
matical models with Güting et al. [2000]. Understanding implemented works from Bezaye [2013]
and Eftekhar [2012] is also vital in quality improvement and functional extensibility for later im-
plementations on the project.

After identifying the appropriate mathematical model and also identifying possible extension
mechanism for previously implemented works, the design phase follows. In the design phase,
mathematical definitions of moving objects and operations on them from [Güting et al., 2000],
is used to design corresponding data types and functions in mathematical language which later be
converted into implementable code. Afterward, algorithms developed by Lema et al. [2003] used
as a stepping stone for implementation of those operations that were omitted by Bezaye [2013].
The overall work flow is illustrated in Figure 1.1.

The abstract model developed by Güting et al. [2000] offers a type system built up from basic
types and type constructs. The semantics of types from the type system is defined by their carrier
set. In addition, a set of operations on types from the type system is designed and their syntax
is defined by signature. Güting et al. [2000] define operations separately for temporal types and
non-temporal types. However, operations on non-temporal types can later become operations on
temporal types, by a technique called operator lifting. From the set of operations, Bezaye [2013]
has only implemented operations from simple set theory and first-order logic query languages.
The rest of the operations are implemented in this research project, and their importance on dif-
ferent applications is also illustrated with examples in Chapter 4.

In this research project, discrete models (types) designed by Forlizzi et al. [2000] is used to
represent values of their corresponding types of the abstract model. Unlike the abstract model,
which domain is represented in terms of infinite representation, the discrete model restricts range
of values of the abstract model that can be represented. This allows discrete representation of types
to be simply translated to data structures. In this discrete representation, base types and instants
can be directly represented in terms of corresponding programming language types. Spatial types
also have their corresponding discrete representations. Most importantly, moving types are rep-
resented as “sliced representation”. This includes fragmenting a temporal development value over
time called “slices” that can be described by a simple interpolation function [Lema et al., 2003]. In
other words, object states are captured by a static geometry paired with a time stamp, and through
which a moving object gets represented as a list of time-ordered snapshots. In the sliced repre-
sentation, an interpolation function can be used to determine a location between two stored time
stamps.

In order to interpolate a value for moving point at the time for which we do not have stored
information, Bezaye [2013] used simple linear interpolation function in her work. In this case,
to compute the in-between value between two stored points (x0, y0) and (x1, y1) paired with
time stamps t0 and t1, a function f(t) = (x0 + x1t, y0 + y1t) is used, in which t(t1 − t0)
represents the time interval between the two ordered states of the moving point. As stated in
[Erwig et al., 1999], using higher-order polynomials in a piece-wise approximation of the curve
between two consecutive states of a moving object, is a way to more precisely approximate the
curve and fewer snapshots may be needed. The result obtained by computing derivatives of linear
functions for operations like speed and velocity makes linear approximation a bit unnatural. If
we take the derivative of such a result for operations like acceleration, it is either 0 or infinite.
However, curve-based representation models represent most natural moving objects like ships,
airplanes, boats, and vehicles that do not display sudden bends . A parametric cubic function
P (t) = a0 + a1t + a2t2 + a3t3 , is used to introduce curve-based interpolation [Yu et al., 2004]
assuming the acceleration changes linearly in one direction during the period. A parametric func-
tion of degree 5 P (t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 is used by Yu and Kim [2006] to

4

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Figure 1.1: Method adopted

5

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Table 1.1 List of Aggregate Functions on Sets of Moving Points

Method Description
mpt_centroid Returns the centroid (“center of gravity”) as a geometry from

the specified moving points within a given time interval.
mpt_mbb Returns the minimum bounding rectangle of the specified

Moving Points within a given time interval.
mpt_makeline Return a line string from a set of moving points within a given

time interval.
mpt_min_traj Returns the shortest trajectory in space from a set of moving

points. [Li et al., 2011]
mpt_max_traj Returns the geometry line from the longest trajectory in space

of a set of trajectories.[Li et al., 2011]
mpt_average Returns an average speed of moving points within a given time

interval.
mpt_array Returns an array of points from sets of moving points for a

given time instance.
mpt_outlier Returns moving points from set of moving points that are not

inside a given polygon for a given time instance.[Li et al., 2011]

consider speed, velocity, and acceleration of a moving object. However, the above-mentioned in-
terpolation functions assume moving objects moving on a free two-dimensional space. Depending
on the application scenario, movement of objects can be classified into unconstrained movement
(e.g. vessels at sea), constrained movement (e.g. pedestrians), and movement in transportation net-
works (e.g. trains and cars) [De Almeida and Güting, 2005]. There exist features in space that
hinder moving objects in their movement, and such feature “infrastructure” will have profound
impact on their movement. Therefore, any interpolation function that takes such infrastructure
into account requires a prior integration of background geographic information with the trajec-
tory data. To store and retrieve objects moving in networks, the Moving Objects in Networks
Tree (MON-tree) was proposed by Alvares et al. [2007]. In this research project, parametric cubic
interpolation function of degree 3 is used to provide alternative support aside of linear interpola-
tion function. Detailed explanation and also illustration with examples is provided in Chapter 5.

Non-temporal aggregate functions like min, max, avg, center, and count can be converted to
their corresponding temporal aggregate function to perform computations over sets of moving ob-
jects [Lema et al., 2003]. There is no doubt about the importance of such operations, average speed
as a time-dependent variable, center of a moving point sets as a time-dependent geometry are a few
computations required for application having high interest on aggregate information. The list of
aggregate functions realized in this research project is listed on Table 1.1. Detailed explanation and
illustration with examples on aggregating functions is provided on chapter (unkown).

6

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 2

Design for Representing Moving Points

2.1 INTRODUCTION

As it has been discussed on Chapter 1 of this research, geometries can display changes in both dis-
crete and continuous steps. In addition, three basic abstractions were also mentioned to represent
types of such geometries. To represent this change of value for spatial types with time, spatiotem-
poral models are required. Abstract and discrete models are used to represent objects that possess
continuous position change in time. This includes defining algebras that are suitable for querying
and storing spatiotemporal objects. The defined algebra consists of type system to introduce the
basic types and type constructs. This type system is defined in Section 2.2.

To represent Spatiotemporal objects, the value for the types in the type system used by the
model needs to be structured. From the type system, a data structure is designed for the mov-
ing point type. Moving real, moving period, intime real and intime point types are considered
and their appropriated data structure is also designed. These temporal types are used to represent
results from operations on moving point types or inputs to these operations. The next section
explains detailed abstract models for moving points followed by the corresponding discrete repre-
sentation and the data structure. This chapter also discusses implementation details and validation
rules for types listed in this paragraph.

2.2 ABSTRACT REPRESENTATION OF MOVING POINT DATA TYPE

Abstract models are used to define moving points in terms of infinite set points. An abstract
representation allows us to define moving point as a continuous curve in the 3-D space. A signature
is used to generate an abstract representation for moving points. Kinds and type constructs are
used to represent certain subsets of types and roles of operators, respectively. Table 2.1 shows
the signature for defining the type system, from which important types like int, real, instance,
moving(int), moving(real), moving(region), moving (point) and so on are generated. The focuses of
interest are spatiotemporal types representing moving objects as a moving point. moving(point),
moving(real), spatial types and few base types are included in the design. All the type definitions
and philosophies used in this section are generated from Güting et al. [2000].

Table 2.1 Signature Describing the Abstract Type System [Güting et al., 2000]

Type Constructor Signature
int,real,string,bool → BASE
point,points,line,region → SPATIAL
instant → TIME
moving,intime BASE ∪ SPATIAL → TEMPORAL
range BASE ∪ TIME → RANGE

7

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

2.2.1 Base types

All the base types specified in Table 2.1 have formal interpretation, except that they are extended
by the value ⊥ (undefined).

Definition 1. For a type α its carrier set is denoted by Aα. The carrier sets for the types int, real, string,
and bool, are defined as

Aint � � ∪ {⊥}

Areal � � ∪ {⊥}

Astring � V ∗ ∪ {⊥}, where V is a finite alphabet,

Abool � {FALSE , TRUE} ∪ {⊥}

2.2.2 Spatial types

Point, line, and regions are the basic abstraction of real world objects. In the design, two spatial
types point and points are used. A value for a type point represents a point in the Euclidean plane
or is undefined and a value for points represents a finite set of points. However, their mathemat-
ical definition is based on the point set paradigm which expresses the space as an infinite sets of
points and spatial objects as distinguished subsets of space. In addition, point set topology provides
concepts of continuity and closeness to express special topological structures of point set [Güting
et al., 2000].

Definition 2. The carrier sets for the types point and points are:

Apoint � �2 ∪ {⊥}

Apoints � {P ⊆ �2 | P is finite }

2.2.3 Time type

In general, time can be considered as linear or continuous and it can be modeled as bounded or
infinite. The type instant represents a point in time or undefined and it is isomorphic to the real
numbers.

Definition 3. The carrier set for instant is

Ainstant � � ∪ {⊥}.

2.2.4 Temporal types

To construct important temporal types from base and spatial types for this research project, the
type constructor moving is used. Given a spatial type point to describe a point in a 3D plane and
a base type real, temporal types moving (point) and moving (real) represents mapping from time to
space and base type real (whose value comes from one dimensional domain), respectively.

Definition 4. Let α be a data type to which the moving type constructor is applicable, with carrier set
Aα. Then the carrier set for moving(α), is defined as follows:

8

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Amoving(α) � { f |f : Ainstant → Aα is a partial function ∧ Γ (f) is finite}

Hence, a value f from the carrier set of moving (α) is a function describing the development
over time of a value from the carrier set of α. The condition “ Γ (f) is finite” says that f consists of
only a finite number of continuous components [Güting et al., 2000]. As a result, it is possible to
insert a point in time and ask for a position at a time between any two given times instances. The
temporal type moving (point) derived using the moving constructor is used to represent a moving
object that changes its point location with time. The other temporal type derived using the same
constructor moving(real) is used to represent a sequence of continuously changing time varying
real values. The importance of this temporal type is to support the moving(point) type to store
supplementary information in addition to what it is intended for in the first place. For example,
to store sensor reading associated with a particular moving object like speed and acceleration of
moving objects. The importance of those temporal types is described in Section 2.4 in detail.
Furthermore, to construct a type that associate instants of time with values of a given type α, the
intime type constructor is used.

Definition 5. Let α be a data type to which the intime type constructor is applicable with carrier set
Aα. Then the carrier set for intime(α), is defined as follows:

Aintime(α) � Ainstant × Aα.

based on the above definition, the intime type constructor is used to construct the new types
intime_mpoint and intime_mreal to represent a single (instant, value)-pair of the temporal types
moving(point) and moving(real), respectively.

2.2.5 Range Types (Sets of Intervals)

In this project, operations to project the moving(point) and moving(real) types into their domain
and range is implemented. Projections into the domain and range of the temporal types is repre-
sented as sets of intervals. For example, the temporal type moving(real) (whose values comes from
the one-dimensional domain) are represented as sets of intervals over one-dimensional domain.
The range type constructor is used to obtain types that represent these sets of intervals.

Definition 6. Let α be a data type to which the range type constructor is applicable and there exists a
total order. An α-interval is a set X ⊆ A(α) such that ∀ x, y ∈ X, ∀ z ∈ A(α) : x < z < y ⇒ z ∈ X .

Definition 7. Let α be any data type to which the range type constructor is applicable. Then the carrier
set for range(α) is

Arange(α) � X ⊆ A(α) | ∃ an α-range R : X = points(R).

2.3 DISCRETE REPRESENTATION OF MOVING POINT DATA TYPE

The associated problem with an abstract representation is that we cannot store and perform oper-
ations on them in computers. As a result, some corresponding discrete representations are needed.
To realize a moving point data type in a computer system, its discrete representation is modeled.
A discrete representation of moving point data type represents small finite set of values of the infi-
nite point sets that are used to design the data structures and algorithms for the type [Erwig et al.,
1999]. The moving type constructor does not automatically transform types into corresponding
temporal types at the discrete level of representation. As a result, a few new type constructs were

9

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Table 2.2 Signature Describing the Discrete Type System [Erwig et al., 1999]

Type Constructor Signature
int,real,string,bool → BASE
point,points,line,region → SPATIAL
instant → TIME
range, BASE ∪ TIME →RANGE
intime BASE ∪ SPATIAL →TEMPORAL
const BASE ∪ SPATIAL →UNIT
ureal,upoint,upoints,uline,uregion →UNIT
mapping MAPPING →UNIT

introduced to implement the moving constructor. The rest of type system for discrete model looks
similar to the abstract type. Table 2.2 shows the signature describing discrete type system.

The types that are available in a programming language determine the carrier sets of the dis-
crete models for base types and type for time. The base types int, real, string, bool can be im-
plemented using their corresponding representation in programming languages. Type instant is
also represented using the programming languages real numbers. Spatial types point and points
also have their own discrete representation as well. The discrete model to represent moving ob-
ject uses “slice representation” technique to represent temporal (“moving”) types as discussed in
Section 1.1.6.

2.4 DATA STRUCTURE

To design and implement data structures that store spatiotemporal objects as moving points, we
mainly set the focus on the movement of cars and birds. The movement of such objects is con-
sidered to be continuous; this indicates the continuous change of location through time. The
choice of the application domain was based on the nature of their movement and requirements of
different alternative interpolation functions. Different interpolation functions can be used to in-
terpolate locations in which actual measurements was not taken. The movement of cars is highly
restricted by the structure of the road infrastructure, which is mostly straight and do not show
sudden change in velocity. In contrast, the movement of birds is not limited by any infrastructure;
and their change in velocity through time is not linear. In this research project, “Linear interpo-
lation” and “ Cubic interpolation” are used to interpolate in between locations of moving birds.
Detailed explanation is provided in Chapter 5 of the research.

Now, let us assume a bird is flying from location A to location B for some period of time as
show in Figure 2.1. In the figure, continuous and discrete representation are provided. The contin-
uous representation approximates to render the exact movement of the bird on a continuous basis.
Since current GPS and telecommunication technologies only allow us to sample object position, a
discrete representation is required to create a data structure and store the movement in computers.
The list (12.38 48.90 25.0 2013-05-08 12:00:02 22.4) is used to represent the measurement taken
from a device which is equipped with GPS. The device measures spatial location and speed of the
bird at a time. Therefore, the first three floating point values of the list represents the spatial lo-
cation of the bird. The date and time values represent the time in which the measurement was
taken. The final floating value represents the speed of the moving bird. A sequential list of timely
ordered states of the bird, that are captured by the device approximates the continuous movement
to its corresponding discrete representation as shown in Figure 2.1.

The birds can have undefined positions in time throughout their movement. Birds are lightweight

10

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Figure 2.1: Movement of a Moving Car

animals that cannot carry around heavy equipments. As a consequence, the device installed ac-
quires low number of positions or sometimes fails to obtain positions. This challenged bird-
tracking with GPS, therefore, the data structure for moving point type is designed to consider
moments when there is undefined positions of the moving point.

2.4.1 Data structure for the type moving point

After we create a discrete representation for the continuous movement of the bird, we can now
easily define a data structure to represent a moving object (moving car and moving bird for our
particular application domain) as a moving point. To implement a data type that represents a
moving bird as a moving point, the structure defined in Listing 2.1 is used. The structure is highly
generic and considers all the possible scenarios a moving object encounters. As show in Figure 2.1,
a moving point is composed from an array of static geometries paired with a time stamp. In the
data structure, it is represented using the LWPOINT (light weight point) data structure defined
from LWGEOM (light weight geometry) of PostGIS. LWGEOM is much more like the original
PostGIS geometries with few a differences. LWGEOMS are much smaller, support native 2d, 3d,
and 4d points and they are internally very similar to OGC WKB representation.

The structure mpoint defined to represent moving points in Listing 2.1 consists of num_segts,
sr_id, tz_id, and an array of reference *mpt_sgts. sr_id represents spatial reference system identifier
(SRID) of the point geometry and tz_id represent the time zone identifier of the time stamp. The
pointer variable *mpt_sgts stores an array of pointers to the structure mpt_segment. The reason to
store segments of a moving point on a separate structure arises from the fact that, there might be
times in which the movement of the moving object is not defined. For example, when the GPS
device installed on the tracking device is switched off for several reasons. If the device acquires
positions in a given interval, the GPS device being off causes moments where the position of the
object is undefined. For example, as shown in Figure 2.1, to represent the movement of the point
from location A to location D two segments are required. we need to store both the segments
from location A to B and from location C to D separately as an array to define the movement
of the point. num_segts stores the number of segments used to represent the moving point. The
reason to count and store this information separately is that, the number of segments used to define

11

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

the movement of the point is unknown. This cause the type mpoint be defined as variable-length
type. PostgreSQL, requires all variable-length variables (types) begins with opaque length field of
4 bytes.This field contains the total length of the structure, which is calculated using the count of
segments used to represent the moving point [Lockhart, 2013].

Listing 2.1: Data structure for moving point type

1 t y p e d e f s t r u c t mpt_segment
2 {
3 i n t num_pts ;
4 LWPOINT ∗ geom_array ;
5 }mpt_segment ;
6

7 t y p e d e f s t r u c t mpoint
8 {
9 i n t num_segts ;

10 i n t s r _ i d ;
11 i n t t z _ i d ;
12 mpt_segment ∗mpt_sg t s ;
13 }mpoint ;

The structure mpt_segment defined to represent segments of a moving point in Listing 2.1 con-
tains num_pts and *geom_array. The pointer variable *geom_array stores references to LWPOINT
point geometries of PostGIS. LWPOINT geometry consists the x, y, z coordinates and time t as
the fourth dimension, in place of the M dimension specified by PostGIS. num_pts represents the
number of positions acquired for a single segment of the moving object. The number of positions
acquired for each segment of a moving point is different. The count information from this field
is used to calculate the total size to be allocated for each segment of the moving point. Later, this
size information is summed up to define the size of the moving point as a whole. Based on this
structure, the moving bird rendered in Figure 2.1 in total contains five discrete positions in the
first segment and three discrete positions for the second segment.

2.4.2 Data structure for the type moving real

The last floating point value (22.4), which represents the speed of the moving bird from the list
(12.38 48.90 25.0 2013-05-08 12:00:02 22.4) is not included in the designed data structure of moving
points. The reason behind is that, the speed of the moving bird may not be the only information
required or measured from the devices used. In addition, the number of parameters measured
from different devices and sensor readers is not always the same. In this situation, it is necessary
to design a separate data structure to store those additional parameter values. The structure in
Listing 2.2 is defined to store moving real values as MMREAL.

The structure MMREAL consists num_mreal, tz_id and an array of reference *mreal. The
pointer variable *mreal stores an array of references to the structure MREAL. The structure MREAL
in listing 2.2 contains num_instance and an array of reference *instance to the structure INTIME
which is composed of a variable val and time t. num_instance in the structure MREAL represent
the number of value-time pairs used to defined the moving real type. num_mreal in the structure
MMREAL represents the number of MREAL structures used to defined a collection of moving real
values. The variables size_mr and size_mmr of the type size_t (long int) are used to store the total
size allocated for the structures MREAL and MMREAL, respectively.

Listing 2.2: Data structure for moving real type

1 t y p e d e f s t r u c t INTIME{

12

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

2 double v a l ;
3 t i m e _ t t ;
4 } INTIME ;
5

6 t y p e d e f s t r u c t MREAL{
7 s i z e _ t s i ze_mr ;
8 i n t num_ins tant ;
9 INTIME ∗ i n s t a n t ;

10 }MREAL;
11

12 t y p e d e f s t r u c t MMREAL{
13 s i z e _ t size_mmr ;
14 i n t num_mreal ;
15 i n t t z i d ;
16 MREAL ∗mreal ;
17 }MMREAL;

The above structures defined for moving point and moving real types in combination can
enable us to store the list (12.38 48.90 25.0 2013-05-08 12:00:02 22.4). Now the list can be decom-
posed into parts MPOINT(12.38 48.90 25.0 2013-05-08) and MREAL(22.4 2013-05-08 12:00:02) to
make them suitable for their corresponding structure. Finally, the decomposed components can
be stored into a moving object database using two columns with the type MPOINT and MREAL.
Therefore, decomposing and managing the data will be the responsibility of the user and this can
be considers as one limitation of using moving reals to represent additional associated parameters
of moving points.

2.4.3 Data structure for the type period

In this research project, operations that yields domain and range values of the function used to de-
fine moving point type are implemented. The types to represent those values is obtained through
the range type constructor. The type PERIOD is used to represent ranges over the time domain,
i.e., an interval. A time period is marked by an initial and a final timestamp. The type MPERIOD
is defined for values that represent a collection of mutually non-overlapping PERIODs. For exam-
ple, the operation mpt_deftime in Section 4.2.1 returns time intervals in which the moving point
is defined. This value is represented by a collection of interval values of the type MPERIOD. The
structure MPERIOD consists size_p, tz_id, num_period and an array of pointer *period. In this
definition, size_p represents the memory size allocated for the structure MPERIOD, tz_id is the
time zone and num_period represents the number of PERIODs.

Listing 2.3: Data structure for period type

1 t y p e d e f s t r u c t PERIOD
2 {
3 t i m e _ t i n i t i a l ;
4 t i m e _ t f i n a l ;
5 }PERIOD ;
6

7 t y p e d e f s t r u c t MPERIOD
8 {
9 s i z e _ t s i z e _ p ;

10 i n t t z i d ;
11 i n t num_period ;
12 PERIOD ∗ p e r i o d ;
13 }MPERIOD;

13

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

2.4.4 Data structure for the type intime point

For all temporal types obtained from the moving type constructor, it’s important to have a type
that represents a single element from a set of value-instant pairs. To represent a single value of
a moving point type, the intime type constructor defined in Section 2.2.4 is used. The type IN-
TIME_MPOINT is the implementation of the theoretical notion of intime(mpoint). As a result,
functions that are interested in a single instance of a moving point can return or accept values
of the type INTIME_MPOINT. The structure INTIME_MPOINT in Listing 2.4 consists of a vari-
able t to represent a single instant of time, tz_id and a pointer *point referencing a value of type
LWGEOM.

Listing 2.4: Data structure for intime point type

1 t y p e d e f s t r u c t INTIME_MPOINT
2 {
3 LWGEOM ∗ po in t ;
4 t i m e _ t t ;
5 i n t t z i d ;
6 }INTIME_MPOINT;

2.4.5 Data structure for the type intime real

The type INTIME_REAL is implemented to represent a single element from the temporal type
moving real. Similar definitions and concepts are used from the type INTIME_MPOINT. The
structure INTIME_REAL in Listing 2.2 consists of a variable t to represent a single instant of time,
tz_id and val to represent single value of the type real.

Listing 2.5: Data structure for intime real type

1 t y p e d e f s t r u c t INTIME_REAL
2 {
3 double v a l ;
4 t i m e _ t t ;
5 i n t t z i d ;
6 }INTIME_REAL ;

2.5 LANGUAGE CONSTRUCTS AND CONSTRAINTS

For the moving point and other supporting data type types, a valid textual representation is re-
quired to construct a single instance of each of the types selected in Section 2.2. This can be
achieved in different ways: one is by specifying the context-free grammar (syntax) for each of the
types and setting a number of constraints on the values (semantics) of each type. The context-free
grammar used in this project is based on the OGC specification for a well-known text representa-
tion of simple features. Constraints defined for each type are be based on definitions from Güting
et al. [2000] and PostgreSQL implementation requirements for extensibility.

BNF (Backus Normal Form or BackusNaur Form) notation technique is used to describe the
syntax of languages used in computing. In this project, it is used to specify the context free gram-
mar for each types. This consists, set of derivation rules, written as the form of ‘<symbol> ::=
expression’. Symbols that appear on the left side are non-terminals and they are always enclosed
between the pair <>. Symbols that never appear on the left side are also called terminals, some-
times written in italics. The following notations are used for BNF grammars listed below.

1: “::=”- the notation denotes the right symbol is a possible substitution for the symbol on the
left.

14

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

2: “()” - this notation denotes a sequence of symbols into a single symbol or token.

3: “*” - denotes the optional use of multiple instances of the symbol enclosed in braces or curly
brackets.

4: “+” - denotes one or more instance of a symbol enclosed in braces or curly brackets.

5: “|” - denotes a choice between two symbols (used as OR conjunction) in a production.

6: “<>” - denotes a production defined elsewhere in the list or a basic type.

The General BNF specifications in Listing 2.6 are used and valid for all types in this project.

Listing 2.6: Common BNF specificaitons

1 <s i gn> : := <p l u s _ s i g n >|<minus_s ign>
2 <minus_s ign> : := −
3 <p l u s _ s i g n> : := +
4 <dec ima l_po in t> : := <per iod>
5 <per iod> : := .
6 <space> : := <" ">
7 < l e f t _ p a r e n> : := (
8 <r i g h t _ p a r e n> : :=)
9 <comma> : := ,

10 <colon> : := :
11

12 <u n s i g n e d _ i n t e g e r> : := (< d i g i t >)+
13 <d i g i t > : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
14 < s i g n e d _ n u m e r i c _ l i t e r a l > : := [< s i gn >]<u n s i g n e d _ n u m e r i c _ l i t e r a l>
15 <u n s i g n e d _ n u m e r i c _ l i t e r a l> : := <u n s i g n e d _ i n t e g e r>
16 [<dec ima l_po in t >[<u n s i g n e d _ i n t e g e r >]]
17 |<dec ima l_po in t><u n s i g n e d _ i n t e g e r>
18

19 <t i m e s t a m p _ s t r i n g> : := <f o r m a t e d _ t i m e _ s t r i n g>
20 <f o r m a t e d _ t i m e _ s t r i n g> : := <da te_ format><space><t ime_format>
21 <da te_ format> : := <u n s i g n e d _ i n t e g e r><minus_s ign>
22 <u n s i g n e d _ i n t e g e r><minus_s ign>
23 <u n s i g n e d _ i n t e g e r><space>
24 <t ime_format> : := <u n s i g n e d _ i n t e g e r><colon>
25 <u n s i g n e d _ i n t e g e r><colon>
26 <u n s i g n e d _ i n t e g e r>
27 <t imestamp_long> : := <u n s i g n e d _ i n t e g e r>

2.5.1 Language construct and constraint for type MPOINT

Listing 2.7: Context free free grammer for MPOINT input

1 <MPOINT_tagged_text> : := <SRID_text><TZID_text><MPOINT_text>
2 <SRID_text> : := SRID = <u n s i g n e d _ i n t e g e r >;
3 <TZID_text> : := TZID = <u n s i g n e d _ i n t e g e r >;
4

5 <MPOINT_text> : := MPOINT<l e f t _ p a r e n >(<MPOINT_SEGMENT_text>)+<r i g h t _ p a r e n >|
6 MPOINTT<l e f t _ p a r e n >(<MPOINTT_SEGMENT_text>)+<r i g h t _ p a r e n >|
7 MPOINTXY<l e f t _ p a r e n >(<MPOINTXY_SEGMENT_text>)+<r i g h t _ p a r e n >|
8 MPOINTXYT<l e f t _ p a r e n >(<MPOINTXYT_SEGMENT_text>)+<r i g h t _ p a r e n>
9

10 <MPOINT_SEGMENT_text> : := < l e f t _ p a r e n >(<POINTXYZM_TIMESTAMP_text>)∗< r i g h t _ p a r e n>
11 i f (<MPOINT_SEGMENT_text>!= l a s t)<comma>
12 <MPOINTT_SEGMENT_text> : := < l e f t _ p a r e n >(<POINTXYZMT_TIMELONG_text>)∗< r i g h t _ p a r e n>
13 i f (<MPOINTT_SEGMENT_text>!= l a s t)<comma>
14 <MPOINTXY_SEGMENT_text> : := < l e f t _ p a r e n >(<POINTXYM_TIMESTAMP_text>)∗< r i g h t _ p a r e n>
15 i f (<MPOINTXY_SEGMENT_text>!= l a s t)<comma>
16 <MPOINTXYT_SEGMENT_text> : := < l e f t _ p a r e n >(<POINTXYMT_TIMELONG_text>)∗< r i g h t _ p a r e n>

15

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

17 i f (<MPOINTXYT_SEGMENT_text>!= l a s t)<comma>
18

19 <POINTXYZM_TIMESTAMP_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
20 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
21 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
22 <t i m e s t a m p _ s t r i n g>
23 i f (<POINT_TIME_text>!= l a s t)<comma>
24 <POINTXYZMT_TIMELONG_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
25 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
26 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
27 <t imestamp_long>
28 <POINTXYM_TIMESTAMP_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
29 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
30 <t i m e s t a m p _ s t r i n g>
31 i f (<POINT_TIME_text>!= l a s t)<comma>
32 i f (<POINT_TIME_text>!= l a s t)<comma>
33 <POINTXYM_TIMELONG_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
34 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
35 <t imestamp_long>
36 i f (<POINT_TIME_text>!= l a s t)<comma>

Validation rules for moving points to express their semantics are as follows.

1: A moving point type must contain zero or more points in the same spatial reference system.

2: All time instants within a single moving point are registered against the same timezone.

3: A moving point must consist of zero or more segments. In case, the number of segments is
zero, then the moving pointis considered to be EMPTY.

4: Segments of a moving point must contain zero or more 3D or 4D points. If the segment
contains zero points and of consists only one segment, then the moving point is considered
as EMPTY.

5: The point elements of a moving segment must be chronologically ordered using their time
dimension represented as the third and fourth dimension of PostGIS LWPOINT for 3D or
4D points, respectively.

6: Segments of a moving point must be chronologically ordered.

7: Two different segments must not overlap in time.

Valid textual representation for the type MPOINT is provided in Listing 2.8.

Listing 2.8: Valid textual representation for moving points

1 " s r i d =4326; t z i d =1;MPOINT((1 2 . 3 8 4 8 . 9 0 2 5 . 0 2013−05−08 1 2 : 0 0 : 0 2 , 1 2 . 3 9 4 8 . 9 0 1 4 . 7 2013−05−10
2 2 : 3 6 : 5 3) , (1 2 . 4 6 4 8 . 9 0 1 3 . 2 2013−05−12 1 4 : 1 1 : 4 0 , 1 2 . 4 4 4 8 . 9 2 0 . 0 2013−05−14 1 7 : 4 7 : 1 3)

, (1 2 . 3 9 4 8 . 9 0 1 8 . 5 2013−05−16 2 3 : 5 5 : 5 7 , 1 2 . 3 7 4 8 . 9 1 1 4 . 7 2013−05−17 0 3 : 2 9 : 5 0 , 1 2 . 4 7
4 8 . 9 2 2 2 . 6 2013−05−19 1 5 : 5 7 : 3 3)) "

2

3 " s r i d =4326; t z i d =1;MPOINTT((1 2 . 3 8 4 8 . 9 0 2 5 . 0 1 3 7 3 7 7 3 6 2 3 , 1 2 . 3 9 4 8 . 9 0 1 4 . 7 1373986714) , (1 2 . 4 6
4 8 . 9 0 1 3 . 2 1 3 7 4 1 8 4 5 8 9 , 1 2 . 4 4 4 8 . 9 2 0 . 0 137 4415352) , (1 2 . 3 9 4 8 . 9 0 1 8 . 5 1 3 7 4 6 0 3 0 0 4 , 1 2 . 3 7

4 8 . 9 1 1 4 . 7 1 3 7 4 8 1 2 6 2 4 , 1 2 . 47 4 8 . 9 2 2 2 . 6 1375228242)) "
4

5 " s r i d =4326; t z i d =1;MPOINTXY((1 2 . 3 8 4 8 . 9 0 2013−05−08 1 2 : 0 0 : 0 2 , 1 2 . 3 9 4 8 . 9 0 2013−05−10
2 2 : 3 6 : 5 3) , (1 2 . 4 6 4 8 . 9 0 2013−05−12 1 4 : 1 1 : 4 0 , 1 2 . 4 4 4 8 . 9 2 2013−05−14 1 7 : 4 7 : 1 3) , (1 2 . 3 9
4 8 . 9 0 2013−05−16 2 3 : 5 5 : 5 7 , 1 2 . 3 7 4 8 . 9 1 2013−05−17 0 3 : 2 9 : 5 0 , 1 2 . 4 7 4 8 . 9 2 2013−05−19
1 5 : 5 7 : 3 3)) "

6

7 " s r i d =4326; t z i d =1;MPOINTTXYT((1 2 . 3 8 4 8 . 9 0 1 3 7 3 7 7 3 6 2 3 , 1 2 . 3 9 4 8 . 9 0 1373986714) , (1 2 . 4 6 4 8 . 9 0
1 3 7 4 1 8 4 5 8 9 , 1 2 . 4 4 4 8 . 9 2 1374415352) , (1 2 . 3 9 4 8 . 9 0 1 3 7 4 6 0 3 0 0 4 , 1 2 . 3 7 4 8 . 9 1

1 3 7 4 8 1 2 6 2 4 , 1 2 . 4 7 4 8 . 9 2 1375228242)) " ’

16

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

8

9 " s r i d =4326; t z i d =1;MPOINT((1 2 . 3 8 4 8 . 9 0 2 5 . 0 2013−05−08 1 2 : 0 0 : 0 2 , 1 2 . 3 9 4 8 . 9 0 1 4 . 7 2013−05−10
2 2 : 3 6 : 5 3)) "

10

11 " s r i d =4326; t z i d =1;MPOINT (()) "
12

13 " s r i d =4326; t z i d =1;MPOINT((NULL)) "

2.5.2 Language construct and constraint for type MREAL

Listing 2.9: Context free free grammar for MREAL input

1 <MREAL_tagged_text> : := <TZID_text> <MREAL_text>
2 <TZID_text> : := TZID =<u n s i g n e d _ i n t e g e r >;
3

4 <MREAL_text> : := MREAL<l e f t _ p a r e n >(<MREAL_SEGMENT_text>)∗< r i g h t _ p a r e n >|
5 MREALT<l e f t _ p a r e n >(<MREALT_SEGMENT_text>)∗< r i g h t _ p a r e n>
6

7 <MREAL_SEGMENT_text> : := < l e f t _ p a r e n >(<VALUE_TIME_text>)∗< r i g h t _ p a r e n>
8 i f (<MREAL_SEGMENT_text>!= l a s t)<comma>
9 <MREALT_SEGMENT_text> : := < l e f t _ p a r e n >(<VALUE_TIMET_text>)∗< r i g h t _ p a r e n>

10 i f (<MREAL_SEGMENT_text>!= l a s t)<comma>
11

12 <VALUE_TIME_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
13 <t i m e s t a m p _ s t r i n g>
14 i f (<VALUE_TIME_text>!= l a s t)<comma>
15 <VALUE_TIMET_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
16 <t imestamp_long>
17 i f (<VALUE_TIME_text>!= l a s t)<comma>

Validation rules for moving reals to express their semantics are as follows.

1: A moving real must consist zero or more value-time pairs. If there exists no value-time pair,
then the moving real type is EMPTY.

2: The value-time pairs must be chronologically ordered.

3: Collection of moving reals must not overlap in time.

4: If the moving real is used as a supporting for moving point, then the number of segment of
the moving point must be equal to the number of moving real collection.

5: If the moving real is used as a supporting for moving point, then the number of points in a
moving point segment must be equal to the number of value-time pairs of the corresponding
moving real.

6: If the moving real is used as a supporting for moving point, then the timestamp of a point
in a moving point segment must be equal to the timestamp from the value-time pair of the
corresponding moving real.

Valid textual representation for the type MREAL is provided in Listing 2.10.

Listing 2.10: Valid textual representation for moving reals

1 " t z i d =1;MREAL((0 . 0 0 0 0 0 0 2013−05−08 1 2 : 0 0 : 0 2 , 0 . 0 0 9 5 6 6 2013−05−10 2 2 : 3 6 : 5 3 , 0 . 0 7 6 2 7 7
2013−05−12 1 4 : 1 1 : 4 0) , (0 . 1 4 2 9 8 8 2013−05−14 1 7 : 4 7 : 1 3 , 0 . 2 0 9 6 9 9 2013−05−16
2 3 : 5 5 : 5 7 , 0 . 2 7 6 4 1 0 2013−05−17 0 3 : 2 9 : 5 0) , (0 . 3 7 9 2 8 7 2013−05−19 1 5 : 5 7 : 3 3 , 0 . 4 8 2 1 6 5
2013−05−21 2 2 : 1 2 : 2 2 , 0 . 5 8 5 0 4 2 2013−05−22 0 4 : 1 0 : 0 0 , 0 . 6 8 7 9 2 0 2013−05−24
0 7 : 2 1 : 0 8 , 4 0 . 6 9 3 5 7 3 2013−05−26 1 7 : 5 3 : 2 7)) "

17

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

2

3 " t z i d =1;MREALT((0 . 0 0 0 0 0 0 1 3 7 4 4 2 1 7 2 3 , 0 . 0 0 9 5 6 6 1 3 7 8 2 3 4 5 1 4 , 0 . 0 7 6 2 7 7 1 3 7 8 2 3 4 9 9 5) , (0 . 1 4 2 9 8 8
1 3 7 8 2 3 4 5 1 4 , 0 . 2 0 9 6 9 9 1 3 7 8 2 3 4 9 9 5 , 0 . 2 7 6 4 1 0 1 3 7 8 2 3 7 9 0 8) , (0 . 3 7 9 2 8 7 1 3 7 8 2 4 0 5 3 7 , 0 . 4 8 2 1 6 5
1 3 7 8 2 5 3 3 5 3 , 0 . 5 8 5 0 4 2 1 3 7 8 4 2 5 1 0 3 , 0 . 687920 1378445656 , 40 . 693573 1378451654)) "

4

5 " t z i d =1;MREAL(()) "
6

7 " s r i d =4326; t z i d =1;MREAL((NULL)) "

2.5.3 Language construct and constraint for type MPERIOD

Listing 2.11: Context free free grammar for MPERIOD input

1 <MPERIOD_tagged_text> : := <TZID_text> <MPERIOD_text>
2 <TZID_text> : := TZID = <u n s i g n e d _ i n t e g e r >;
3

4 <MPERIOD_text> : := MPERIOD<l e f t _ p a r e n >(<MPERIOD_SEGMENT_text>)∗< r i g h t _ p a r e n>
5

6 <MPERIOD_SEGMENT_text> : := < l e f t _ p a r e n >(<PERIOD_text>)∗< r i g h t _ p a r e n>
7 i f (<MPERIOD_SEGMENT_text>!= l a s t)<comma>
8

9 <PERIOD_text> : := <t i m e s t a m p _ s t r i n g><minus_s ign><t i m e s t a m p _ s t r i n g>

Validation rules for periods to express their semantics areas follows.

1: The start and end of a period must be chronological.

2: Two different instances of a multiple period must not overlap with one another.

Valid textual representation for the periods as MPERIOD is provided in Listing 2.12.

Listing 2.12: Valid textual representation for multiple periods

1 " t z i d =1;MPERIOD((2013 −05 −08 1 2 : 0 0 : 0 2 − 2013−09−19 0 2 : 5 3 : 5 8)) "
2

3 " t z i d =1;MPERIOD((2012 −03 −12 1 2 : 0 5 : 4 0 − 2012−03−12 1 2 : 0 9 : 4 0) ,(2012 −03 −12 1 2 : 1 2 : 4 5 −
2012−03−12 1 2 : 1 7 : 5 5) ,(2012 −03 −12 1 2 : 1 9 : 0 0 − 2012−03−12 1 2 : 2 4 : 4 0)) "

2.5.4 Language construct and constraint for type INTIME MPOINT

Listing 2.13: Context free grammar for INTIME_MPOINT input

1 <INTIME_MREAL_tagged_text> : := <SRID_text><TZID_text><INTIME_MPOINT_text>
2 <SRID_text> : := SRID = <u n s i g n e d _ i n t e g e r >;
3 <TZID_text> : := TZID = <u n s i g n e d _ i n t e g e r >;
4

5 <INTIME_MPOINT_text> : := INTIME_MPOINT<l e f t _ p a r e n><POINT_TIME_text><r i g h t _ p a r e n>
6

7 <POINT_TIME_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
8 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
9 < s i g n e d _ n u m e r i c _ l i t e r a l ><space>

10 <t i m e s t a m p _ s t r i n g>

Validation rules for intime points to express their semantics are as follows.

1: A single point-time pair of a moving point must be used to define the intime point type and
it must be between the range and domain of a moving point.

2: In case the point-time is not provided then it is assumed to have EMPTY value.

18

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Valid textual representations for the type INTIME_POINT is provided in Listing 2.14.

Listing 2.14: Valid textual representation for intime points

1 " s r i d =4326; t z i d =1;INTIME_MPOINT(8 . 2 9 5 1 5 9 4 5 . 1 8 8 8 4 5 2 4 . 7 2013−07−12 1 2 : 0 7 : 4 0) "
2

3 " s r i d =4326; t z i d =1;INTIME_MPOINTXY(8 . 2 9 5 1 5 9 4 5 . 1 8 8 8 4 5 2013−07−12 1 2 : 0 7 : 4 0) "

2.5.5 Language construct and constraint for type INTIME MREAL

Listing 2.15: Context free free grammar for INTIME_MREAL input

1 <INTIME_MREAL_tagged_text> : := <TZID_text> <INTIME_MREAL_text>
2 <TZID_text> : := TZID = <u n s i g n e d _ i n t e g e r >;
3

4 <INTIME_MREAL_text> : := INTIME_MREAL < l e f t _ p a r e n><VALUE_TIME_text><r i g h t _ p a r e n>
5

6 <VALUE_TIME_text> : := < s i g n e d _ n u m e r i c _ l i t e r a l ><space>
7 <t i m e s t a m p _ s t r i n g>

Validation rules for intime reals to express their semantics are as follows.

1: A single value-time pair from values of a moving real type must be used to define the intime
real type and it must be between the range and domain of a moving real type.

2: In case the value-time is not provided then it is assumed to have EMPTY value.

Valid textual representation for the type INTIME_REAL is provided in Listing 2.16.

Listing 2.16: Valid textual representation for intime reals

1 " t z i d =1;INTIME_MREAL(1 3 9 6 5 7 7 0 . 6 9 8 3 4 2 2013−09−19 0 2 : 5 3 : 5 8) "

2.6 CONCLUSION

In this chapter the abstract and discrete representation of moving point and its supporting types are
presented. In the abstract representation, the philosophy and mathematical basis for base, spatial,
time, temporal and range types are discussed. The rationale behind the discrete representation of
moving point type is also summarized in the chapter. Succeeding the theoretical basis for moving
point type, data structures for moving point and its supporting types are designed. In addition,
language constructs and constraints on moving point and supporting types are defined to provide
a valid textual representation and semantics of the representation. Generally, the designs defined
in this chapter is the base for the implementation of moving object data type and development of
algorithms that are going to be used in the realizations of operations on moving points.

19

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

20

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 3

Implementation and Setup

3.1 INTRODUCTION

This chapter discusses the setup, environment, implementation and demonstration of the new
types defining the moving object library. This includes: a brief explanation about the develop-
ment platform and the setup and build methods adopted on the research project. The motive for
selecting PostgreSQL as a DBMS and PostGIS as a library as extension is also explained.

3.2 ENVIRONMENT AND SETUP

The main objective of in this research project is the implementation of the moving objet data
type. To achieve this objective, we selected a database management system software which sup-
ports high level extensibility. We choose to use PostgreSQl which is a catalog driven, powerful
and open source database management system. PostgreSQL stores information about the tables,
columns, data types, functions, and access methods on the catalogues. This allow users to access
these informations and entertain the benefit of extensibility provided by the DBMS. In addition,
PostgreSQL can incorporate user defined shared library into itself, through dynamic loading. In
the research project C programming language was selected to build functions and types, arising for
the fact that both PostgreSQL and PostGIS have been developed using the open source program-
ming language GNU C.

After considering the implementation by Bezaye [2013], we decided to use the platforms and
languages listed in Table 3.1.

Table 3.1 Platforms and languages used for building moving object library

Platform and Languages Version
OS Windows 7
DBMS PostgreSQL 9.2
Compiler Microsoft Visual Studio 2010
Geometry library PostGIS 2.0.4
Programming language C
Query language SQL

PostGIS library is a spatial extension of PostgreSQL with spatial data types and enormous
number of functions, that is used to support the implementation of the moving object library.
We developed and compiled the moving object library with visual C++: the native development
toolset for windows. PostGIS requires three dependencies for building and usage, namely GEOS,
PROJ4, and GDAL. GEOS geometry library enhances topological expectations and improve ge-
ometry validation. PROJ4 library provides support for coordinate re-projection with in PostGIS.
GDAL is extension to PostGIS for raster support. However, for this research project native geom-
etry structures of PostGIS named LWGEOMs were used.

21

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Extending PostgreSQL for Moving object library requires the development of user-defined
data types and functions. As specified in PostgreSQL manual, user defined functions and types
can be written in C. These functions and types are compiled into a dynamically loadable object
(shared libraries) and are loaded by the server on demand [Lockhart, 2013]. Basically, PostgreSQL
provides two different calling convention : ’version 0’ and ’version 1’. We used the later by pre-
ceding every function implementation with the macro definition PG_FUNCTION_INFOR_V1().
PostgreSQL store data types as a “blob of memory” and for user defined types it requires func-
tions to operate on them. This indicates that PostgreSQL requires user defined input and output
functions to input and output the data. The input and output functions defined for types in the
moving object library is explained in Section 3.3.1.

3.3 IMPLEMENTATION OF MOVING OBJECT TYPES

3.3.1 Input and Output functions

Any user defined types for PostgreSQL must always have input and output function to determine
both the textual and in-memory type representation. Table 3.2 shows Input and Output functions
implemented for each type in the moving object library.

Table 3.2 Input and Output functions

Types Input and Output functions
MPOINT mpoint_in()

mpoint_out()
MMREAL mreal_in()

mreal_out()
MPERIOD mperiod_in()

mperiod_out()
INTIME_MPOINT intime_mpoint_in()

intime_mpoint_out()
INTIME_MREAL intime_in()

intime_out()

All of the input functions implemented for each type follow the same procedure. First, the
function take the null-terminated string representation of the types as an argument. Afterward,
Each input function has a complete and robust parser of the textual representation: This part of
the function is responsible for validating the textual representation with the BNF provided in Sec-
tion 2.5 of each type. If the null-terminated string violates any of the syntax provided as a grammar,
the function passes a command to terminate the execution of the function and report an error mes-
sage as a result. Otherwise the function stores the textual representation to the structure of each
type. The parsing part of the function will not check for violation of any semantic based errors.
To check for these semantic based errors the functions mpt_validate and mpt_mreal_validate are
available in Chapter 4.

Having all the values stored in the structure, the next step is to serialize them into memory.
The serialization process includes writing the content of the structures into memory and calcu-
lating the exact size of the values stored in the structure. The values of the structure are stored in
a sequence of memory to easily de-serialize them back for the output function of the type. For
this purpose, a special serialization function is written to be triggered by the input function after
parsing and storing the string representation of the type to the structure. If the values of the types

22

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

vary in size, PostgreSQL requires the structure of the types to contain a variable length of the type
size_t, that comes before any of the other variables in the structure. This variable holds the com-
puted size of the structure used to store the string representation of the type. This variable must
be set using the function SET_VARSIZE() and retrieved using the function VARSIZE(). Finally the
input function returns the initial memory address from the sequence of memories used to store
values of the type to PostgreSQL.

The output functions defined for each type in Table 3.2 accept the pointer value that refers to
the initial memory address of the type where the value is stored, de-serialize the information stored
in a sequence of memory and store them back into the structures defined for the type. Afterward,
from the values of the structures the textual representation of the types is constructed. And this
textual representation is returned as a null-terminated string value to PostgreSQL; therefore we
developed the input and output functions carefully to avoid several problems that might arise
while we dump the data into a file and read it back.

3.3.2 Creating types in PostgreSQL

PostgreSQL provides three ways to create types owned by the user who defines them. User defined
types compiled into a shared library can be defined in PostgreSQL using ‘CREATE TYPE’ SQL.
First, the ‘CREATE TYPE’ creates a placeholder type that allows us to reference the type while
defining input and output functions. After defining the Input/Output functions for the new user
defined types, we can finally provide the full definition of the type as shown in Listing 3.1. The
listing also shows the SQL statements used to initialize the type MPOINT in PostgreSQL. In
general, to create an extension on PostgreSQL for moving point and its supporting types, a separate
SQL file is written to contain all queries to initialize and register implemented types and functions
associated with them. Refer Appendix A for Query statements used to create all the implemented
types in PostgreSQL .

Listing 3.1: Query statments to create a moving point type in PostgreSQL

1 CREATE TYPE mpoint ;
2

3 CREATE OR REPLACE FUNCTION mpoint_in (c s t r i n g)
4 RETURNS mpoint AS
5 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpoint_in ’
6 LANGUAGE c IMMUTABLE STRICT ;
7

8 CREATE OR REPLACE FUNCTION mpoint_out (mpoint)
9 RETURNS c s t r i n g AS

10 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpoint_out ’
11 LANGUAGE c IMMUTABLE STRICT ;
12

13 CREATE TYPE mpoint (
14 inpu t = mpoint_in ,
15 output = mpoint_out ,
16 a l i gnment = double
17) ;

3.4 DEMONSTRATION OF NEW TYPES

Having all the types and their associated input and output functions registered in PostgreSQL,
we can now demonstrate the types by creating tables with fields of the types mpoint, mmreal,
mperiod, intime_mpoint, and intime_mreal. Listing 3.2 shows how to use the types to create a
table and insert values to them.

23

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 3.2: Query statements to demonstrate the use of the types MPOINT,
MREAL, MPERIOD, INTIME_MPOINT, and INTIME_MREAL

1 /∗ c r e a t i n g a t a b l e c o n t a i n i n g the t y p e s MPOINT and MREAL∗/
2

3 CREATE TABLE moving_birds
4 (
5 i n d _ i d v a r c h a r (8 0) ,
6 ind_can_name v a r c h a r (8 0) ,
7 l o c a t i o n s mpoint ,
8 d i s t a n c e mmreal
9) ;

10

11 /∗ f e e d i n g the d a t a to the t a b l e s (R e l a t i o n s) ∗/
12

13 INSERT INTO moving_birds (ind_ id , ind_can_name , l o c a t i o n s , d i s t a n c e)
14 VALUES(’ Anita ’ , ’ Cuculus canorus ’ , ’ s r i d =4326; t z i d =1;MPOINT((1 2 . 3 8 9 9 4 0 4 8 . 9 0 6 7 4 0 0 . 0 0 0 0 0 0
15 2013−05−08 1 2 : 0 0 : 0 2 , 1 2 . 3 9 9 3 7 0 4 8 . 9 0 5 1 3 0 0 . 0 0 0 0 0 0 2013−05−10 2 2 : 3 6 : 5 3 , 1 2 . 4 6 6 0 7 0 4 8 . 9 0 3 9 3 0
16 0 . 0 0 0 0 0 0 2013−05−12 1 4 : 1 1 : 4 0 , 7 . 7 3 1 8 7 0 9 . 8 0 5 5 2 0 0 . 0 0 0 0 0 0 2013−09−19 0 2 : 5 3 : 5 8)) ’ , ‘ t z i d =1;
17 MMREAL((0 . 0 0 0 0 0 0 2013−05−08 1 2 : 0 0 : 0 2 , 0 . 0 0 9 5 6 6 2013−05−10 2 2 : 3 6 : 5 3 , 0 . 0 7 6 2 7 7 2013−05−12 14
18 : 1 1 : 4 0 , 3 5 6 1 . 1 8 9 4 5 3 2013−09−16 1 9 : 4 8 : 5 4 , 3 6 0 1 . 1 9 5 3 1 3 2013−09−19 0 2 : 5 3 : 5 8)) ’) ;
19

20 /∗ r e t r i e v i n g the d a t a from t a b l e s (R e l a t i o n s) ∗/
21

22 SELECT ∗ FROM moving_birds ;
23

24 R e s u l t :
25

26 i n d _ i d | ind_can_name | l o c a t i o n s | d i s t a n c e
27 −−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 Anita | Cuculus canorus | s r i d =4326; t z i d =1;MPOINT((1 2 . 3 8 9 9 4 0 | t z i d =1;MMREAL((0 . 0 0
29 | |48 . 906740 0 . 0 0 2013−05−08 0 . 0 0 |2013−05−08 1 2 : 0 0 : 0 2 , 0 . 0 0 9 5 6 6
30 | |2013−05−10 2 2 : 3 6 : 5 3 , 1 2 . 4 6 6 0 7 0 48.903930|2013 −05 −10 2 2 : 3 6 : 5 3 , 0 . 0 7 6 2 7 7
31 | | 0 . 0 0 2013−05−12 1 4 : 1 1 : 4 0 , 7 . 7 3 1 8 7 0 |2013−05−12 1 4 : 1 1 : 4 0 , 3 5 6 1 . 1 8 9
32 | | 9 . 8 0 5 5 2 0 0 . 0 0 2013−09−19 0 2 : 5 3 : 5 8)) " |2013−09−16 1 9 : 4 8 : 5 4 , 3 6 0 1 . 1 9 5
33 | | |2013−09−19 0 2 : 5 3 : 5 8))
34

35 /∗ c r e a t i n g a t a b l e c o n t a i n i n g the type MPERIOD∗/
36

37 CREATE TABLE m p e r i o d _ t a b l e
38 (
39 i d in t ,
40 p e r i o d MPERIOD
41) ;
42

43 /∗ f e e d i n g the d a t a to the t a b l e s (R e l a t i o n s) ∗/
44

45 INSERT INTO m p e r i o d _ t a b l e (id , p e r i o d)
46 VALUES(1 2 , ’ t z i d =1;MPERIOD((2012 −03 −12 12:05:40 −2012 −03 −12 1 2 : 0 9 : 4 0) ,(2012 −03 −12 12:09 :45 −
47 2012−03−12 1 2 : 0 9 : 5 0) ,(2012 −03 −12 12:05:40 −2012 −03 −12 1 2 : 0 9 : 4 0) ,(2012 −03 −12

12:09:45 −2012 −03
48 −12 1 2 : 0 9 : 5 0)) ’) ;
49

50 /∗ r e t r i e v i n g the d a t a from t a b l e s (R e l a t i o n s) ∗/
51

52 SELECT ∗ FROM m p e r i o d _ t a b l e ;
53

54 R e s u l t :
55

56 i d | p e r i o d
57 −−+−−−
58 12| t z i d =1;MPERIOD((2012 −03 −12 1 2 : 0 5 : 4 0 − 2012−03−12 1 2 : 0 9 : 4 0) ,(2012 −03 −12 1 2 : 0 9 : 4 5 − 2012−
59 |03−12 1 2 : 0 9 : 5 0) ,(2012 −03 −12 1 2 : 0 5 : 4 0 − 2012−03−12 1 2 : 0 9 : 4 0) ,(2012 −03 −12 1 2 : 0 9 : 4 5 −
60 |2012−03−12 1 2 : 0 9 : 5 0))
61

62 /∗ c r e a t i n g a t a b l e c o n t a i n i n g the type INTIME_MPOINT∗/
63

64 CREATE TABLE i n t i m e _ t a b l e
65 (

24

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

66 i d in t ,
67 i n t i m e INTIME_MPOINT
68) ;
69

70 /∗ f e e d i n g the d a t a to the t a b l e s (R e l a t i o n s) ∗/
71

72 INSERT INTO i n t i m e _ t a b l e (id , i n t i m e)
73 VALUES(1 2 , ’ s r i d =4324;POINTZ(8 . 2 9 5 1 5 9 4 5 . 1 8 8 8 4 5 0 . 0 0 0 0 0 0) ,2013−07−12 1 2 : 0 7 : 4 0) ’) ;
74

75 /∗ r e t r i e v i n g the d a t a from t a b l e s (R e l a t i o n s) ∗/
76

77 SELECT ∗ FROM i n t i m e p _ t a b l e ;
78

79 R e s u l t :
80

81 i d | i n t i m e
82 −−+−−−
83 12| s r i d =4324;POINTZ(8 . 2 9 5 1 5 9 4 5 . 1 8 8 8 4 5 0 . 0 0 0 0 0 0) ,2013−07−12 1 2 : 0 7 : 4 0)
84

85 /∗ c r e a t i n g a t a b l e c o n t a i n i n g the type INTIME_MREAL∗/
86

87 CREATE TABLE i n t i m e _ m r e a l _ t a b l e
88 (
89 i d in t ,
90 i n t i m e INTIME_MREAL
91) ;
92

93 /∗ f e e d i n g the d a t a to the t a b l e s (R e l a t i o n s) ∗/
94

95 INSERT INTO int i m e _ m r e a L _ t a b l e (id , i n t i m e)
96 VALUES(1 2 , ’ i n t ime _mrea l (1 . 8 2012−03−12 1 2 : 0 5 : 4 0) ’) ;
97

98 /∗ r e t r i e v i n g the d a t a from t a b l e s (R e l a t i o n s) ∗/
99

100 SELECT ∗ FROM int ime_mreaL_ t ab l e ;
101

102 R e s u l t :
103

104 i d | i n t i m e
105 −−+−−−
106 12|INTIME_MREAL(1 . 7 9 9 9 9 9 2012−03−12 1 2 : 0 5 : 4 0)

25

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

26

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 4

Operations on Moving Points

4.1 INTRODUCTION

To represent entities that posses positional change in time like vehicles, aircraft’s, ships, animals,
peoples and etc., a data model, query language and corresponding DBMS implementation is re-
quired [Lema et al., 2003]. Based on the abstract and discrete representation of such entities, we
introduced new types from the set of temporal system of types: moving point and moving real.
In the next step, we designed and implemented the data structure for these types as an extension
of PostGIS library. Storing the movement information on the database is not the only goal of the
research project; rather it’s the first step to achieve the objectives of the research.

A useful library should store both the moving entities and a set of operations to study the
entities behavior. For example, we might be interested to know locations of a moving point at
any time, within the moving objects defined time. We want to represent the moving object in
different coordinate systems. In a car monitoring application, one might be interested to know
if a moving car is defined for some period of time. This and other practical operations must be
included in the moving object library. Therefore, we implemented such and other operations by
writing functions on moving point types that would manipulate stored records from the database.

Table 4.1 Classes of operations on Nontemporal types

Class Operations
Predicates isempty

=, ! =, intersects, inside
<, ≤, ≥, >, before
touches, attached, overlaps, on_border, in_interior

Set Operations intersection, union, minus
crossings, touch_points, common_border

Aggregation min, max, avg, center, single
Numeric no_components, size, perimeter, duration, length, area
Distance and Direction distance, direction
Base Type Specific and, or, not

The abstract model offers unlimited number of operations on moving objects. However, the
design and implementation of operations for the types introduced in the research was based on
classes of operations from Güting et al. [2000]. To include operations that are highly useful to
study the behavior of a moving entity, simple set theory and first order logic queries on moving
types are included. The operations are categorized into three classes: projection to domain/range,
interaction with domain/range and rate of change. The operations included in each of these classes
are listed in Table 4.2. In addition, operations that are not included in those classes are also de-
signed and implemented for moving point type. Such as: operations based on order relationship

27

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

(chronological order), topology and metric spaces are included, additionally, non-temporal oper-
ations are converted into temporal operations using the mechanism called operation lifting. The
list of non-temporal operations are listed in Table 4.1. For example, distance operation on non-
temporal types calculates the distance between two static geometries. This operation is lifted to
calculate the distance between points on a moving point and as a result it return value of the type
moving real. Non-temporal aggregating functions are also lifted (see Chapter 6).

Table 4.2 Classes of operations on Temporal types

Class Operations
Projection to domain/range deftime,rangevalues,

locations, trajectory,
routes,traversed,inst,

Interaction with domain/range atinstant,atperiods,
initial,final,present,
at,atmin,atmax,passed

Rate of change derivative,speed,
turn,velocity

Lifting (all new operations infered)

As mentioned in Güting et al. [2000], the design of operations on temporal types must ad-
heres to three principles: the design must be as generic as possible; achieve between temporal and
non-temporal types; and the operations must capture the interesting phenomena. The design and
implementation of the algorithms used for the operations was based on a systematic study on al-
gorithms from Lema et al. [2003]. Algorithms that are assumed to be straight forward are not
included in this chapter; only their practical use and results are discussed.

When defining the algorithms for those operations, we made an assumption about the reader
to have the preliminary knowledge on structures of the types MPOINT, MREAL, MPERIOD,
INTIME_MREAL, and INTIME_MPOINT that are presented in Section 2.4. Terms x, y, z, t,
num_pts, geom_array, num_sgts, sr_id, tz_id, mpt_sgts, val, num_inst, instant,num_mreal, mrea_initial,
final, num_period, period, and point have similar meaning and definition with the fields of the
structures defined for each type in Section 2.4. mpoint, mreal, mperiod, intime_mreal, and in-
time_mpoint represent a single instance of their corresponding type. inst represents time instance
of type INSTANT. The algorithms does not cover how values of each type are written into and
read from memory, as it has been discussed in Chapter 3.

This chapter provides a detailed explanation on algorithms, practical use, results and visualiza-
tion for the operations realized. The operations are also tested by a dataset of movement of birds.
Listing 4.1 shows the relations used to explain and test the types, and operations on them.

Listing 4.1: Query statments to create relations used in the research project

1 CREATE TABLE moving_birds (i n d _ i d v a r c h a r (8 0) , ind_can_name v a r c h a r (8 0) , l o c a t i o n s mpoint
, d i s t a n c e mmreal) ;

2 CREATE TABLE m o v i n g _ b i r d s _ t r a j e c t o r y p (i n d _ i d v a r c h a r (8 0) , ind_can_name v a r c h a r (8 0) ,
l o c a t i o n s geometry) ;

3 CREATE TABLE m o v i n g _ b i r d s a t i n s t a n t (i n d _ i d v a r c h a r (8 0) , ind_can_name v a r c h a r (8 0) ,
l o c a t i o n s geometry) ;

4 CREATE TABLE m o v i n g _ b i r d s _ a t p e r i o d (i n d _ i d v a r c h a r (8 0) , ind_can_name v a r c h a r (8 0) ,
l o c a t i o n s mpoint) ;

5 CREATE TABLE m o v i n g _ b i r d s _ a t p e r i o d _ t r a j e c t o r y (i n d _ i d v a r c h a r (8 0) , ind_can_name v a r c h a r
(8 0) , l o c a t i o n s geometry) ;

28

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

4.2 OPERATIONS FOR PROJECTION TO DOMAIN/RANGE

Operations explained in this section operate on values from moving point type. As a result, they
perform computations to return projections with respect to the temporal value (the domain) or
the function value (the range).

4.2.1 mpt deftime

The domain function mpt_deftime returns all the times for which a moving object is defined. The
function accepts a value of the type MPOINT as argument and returns the times the moving
point is defined as a value of the type MPERIOD. The function returns empty, if a moving point
is not defined. If a moving point have more than one segment, the function returns a collection
of periods that is equal to the number of segments in the moving point. The collection of periods
returned as a result are in the same time zone with the moving point, where the function is applied
to. For non-empty values of the type MPERIOD, initial and final attributes of each period, holds
the initial and final timestamp of the first and last value-time pairs of the segments in a moving
point. The algorithm used to implement the function is presented in Algorithm 4.1.

Algorithm 4.1mpt_deftime operation

INPUT TYPE: MPOINT
OUTPUT TYPE: MPERIOD

1: mperiod ← NULL
2: period ← NULL
3: for i = 0tompoint.num_sgts do
4: for j = 0tompt_sgts.num_pts do
5: if j == 0 then
6: period.initial ← mpt_segts[i].geom_array[j].m
7: else if j == mpt_segts[i].num_pts − 1 then
8: period.final ← mpt_segts[i].geom_array[j].m
9: end if

10: end for
11: mperiod[i].period ← period
12: end for
13: return mperiod

For example, from the dataset on moving birds, we might be interested to know the times for
which the movement of a particular bird is defined. For this we can write a query that answers
the question as follows in Listing 4.2.

Listing 4.2: What are the times for bird “Belarus 1” movement is defined?

1 Query 1 .
2

3 SELECT ind_ id , ind_can_name , mpt_def t ime (l o c a t i o n s) AS d e f t i m e
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 1 ’ ;
6

7 R e s u l t 1 .
8

9 i n d _ i d | ind_can_name | d e f t i m e

29

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

10 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 B e l a r u s 1 | Cuculus canorus | t z i d =1;MPERIOD((2013 −04 −30 1 2 : 5 6 : 2 5 − 2013−09−17 2 2 : 3 8 : 5 2))

4.2.2 period initial

The operation period_initial return the initial value of the type MPERIOD. The function accepts
a value of the type MPERIOD as argument and return a timestamp as a result. In cases, where the
type MPERIOD is composed of more than a single time interval(period), the function return the
initial value of the first period. Moving points can be queried to request the time their movement
has began. This can be achieved by combining the operations mpt_deftime and period_initial. The
query statement in Listing 4.3 requests the time for the bird “Belarus1” starts its movement.

Listing 4.3: When did the bird “Belarus 1” start movement?

1 Query 2 .
2

3 SELECT ind_ id , ind_can_name , p e r i o d _ i n i t i a l (mpt_def t ime (l o c a t i o n s)) AS i n i t i a l
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 1 ’ ;
6

7 R e s u l t 2 .
8

9 i n d _ i d | ind_can_name | i n i t i a l
10 −−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−
11 B e l a r u s 1 | Cuculus canorus | (2013−04−30 1 2 : 5 6 : 2 5)

4.2.3 period final

The period_final function return the final value of the type MPERIOD. The function takes a value
of the type MPERIOD as argument and return a timestamp as a result. For values of MPERIOD
that have more than one non-overlapping time intervals (periods), the function return the final
timestamp value of the last time interval (period). The query statement in Listing 4.4 return time
of the bird “Belarus 1” ends its movement.

Listing 4.4: When did the bird “Belarus 1” stop its movement?

1 Query 3 .
2

3 SELECT ind_ id , ind_can_name , p e r i o d _ f i n a l (mpt_def t ime (l o c a t i o n s)) AS f i n a l
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 1 ’ ;
6

7 R e s u l t 3 .
8

9 i n d _ i d | ind_can_name | f i n a l
10 −−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−
11 B e l a r u s 1 | Cuculus canorus | (2013−09−17 2 2 : 3 8 : 5 2)

4.2.4 mpt location

As mentioned in Güting et al. [2000], points and lines can be used to project moving points on the
plane. These points and lines can be obtained from operations location and trajectory, respectively.
Operation locations returns the projection as a multipoints value if the moving point changes its
position in discrete steps only. For moving points that change their position continuously, opera-
tion trajectory returns the projection as a multilinestring value.

30

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

The operation location returns only the registered locations from the (location-time) pairs of
a moving point as a type of points geometry value. The function implemented for this purpose,
first initializes a lightweight multi-point geometry. The location coordinates used in the (location-
time) pairs of each segment in the moving point are extracted to construct the newly initialized
multi-point geometry. If the moving point contains no registered (location-time) pair, then the
operation mpt_locations return the null geometry. This type of projection is useful when the
moving point changes its position in discrete steps only, or never changes its position at all. The
algorithm used for the implementation of the function is presented in Algorithm 4.2.

Algorithm 4.2mpt_location operation

INPUT TYPE: MPOINT
OUTPUT TYPE: MULTIPOINT

1: lwmultipoint ← NULL
2: for i = 0tompoint.num_sgts do
3: LWLINE ← NULL
4: for j = 0tompt_sgts.num_pts do
5: point.x ← mpt_segts[i].geom_array[j].x
6: point.y ← mpt_segts[i].geom_array[j].y
7: point.z ← mpt_segts[i].geom_array[j].z
8: lwmultipoint_add_point(lwmultipoint, point)
9: end for

10: end for
11: return lwmultipoint

In practical terms, we want to know and perform different spatial operations on the locations
extracted from a moving dataset. Let us say we planned to use this operation on service delivery
buses, cars or individuals moving datasets. The operation returns the registered locations of these
moving objects. This information in combination with few spatial queries can be used to decide
which moving entity to assign for a new service request. The query in Listing 4.5 asks for the
registered locations of a particular moving bird.

Listing 4.5: What are the locations registered for the bird “Nobert”?

1 Query 4 .
2

3 SELECT ind_ id , ind_can_name , mpt_ loca t ion (l o c a t i o n s) AS l o c a t i o n s
4 FROM moving_birds
5 WHERE i n d _ i d= ’Nobert ’ ;
6

7 R e s u l t 4 .
8

9 i n d _ i d | ind_can_name | l o c a t i o n s
10 −−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 Nobert | Cuculus canorus |SRID=4326;MULTIPOINT(1 2 . 2 8 5 9 1 0 4 8 . 9 8 5 9 0 0 0 . 0 0 0 0 0 0 , 1 2 . 2 6 4 9 8 0
12 | | 4 8 . 9 8 6 4 6 0 0 . 0 0 0 0 0 0 , 1 2 . 2 6 3 2 1 0 4 9 . 0 1 1 8 3 0 0 . 0 0 0 0 0 0 , 1 2 . 2 7 5 8 4 0
13 | | 4 8 . 9 8 5 2 4 0 0 . 0 0 0 0 0 0 , , 9 . 9 4 8 9 0 0 1 0 . 4 5 5 1 1 0 0 . 0 0 0 0 0 0)
14

15 Query 5 .
16

17 SELECT ind_ id , ind_can_name , mpt_ loca t ion (l o c a t i o n s) AS l o c a t i o n s
18 FROM moving_birds

31

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

The result of the query in Listing 4.5 is too large to be listed. However, Figure 4.1 visualizes
it. All the locations registered for each bird in the moving bird dataset are included and separated
by colors.

Figure 4.1: mpt_location

4.2.5 mpt trajectories

As discussed in the previous section, a more natural projection of a continuously moving point on
a plane is achieved with a trajectory operation. This operation returns the movement of the moving
object as a multilinestring geometry which is termed as a trajectory. In other words, the trajectory
refers to the trace of the moving point in time. In general, the function mpt_trajectories first initial-
izes a lightweight line and a lightweight multiline geometries. All the registered locations of the
segments in the moving point are used to construct the newly initialized line geometry. This line
geometry constructs the multilinestring which is returned as a result of this operation. In case,
there exists one or no point location registered for the moving point, the function returns null
multilinestring geometry as a result. If the moving point only contains a single segment with two
or more registered locations, a multilinestring with a single line segment is returned. The general
algorithm used for the implementation of this function is presented in Algorithm 4.3.

The operation trajectory is a more preferable way to visualize the movement of the object. The
trajectory that represent the path of the moving object in space is assumed to be linear, as a function
of time in space. For example, we may be interested to know where the moving object might be
within two registered locations. To answer this, we can use the interpolation methods discussed
in Chapter 5. However, to make sure that the newly interpolated positions are accurately located
on the trajectory of the moving object; we can use the result of this trajectory operation together
with the interpolated position. The query to return the trajectory of a single and multiple moving
birds is provided in Listing 4.6.

32

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 4.3mpt_trajectories operation

INPUT TYPE: MPOINT
OUTPUT TYPE: MULTILINESTRING

1: lwmline ← NULL
2: for i = 0tompoint.num_sgts do
3: lwline ← NULL
4: for j = 0tompt_sgts.num_pts do
5: point.x ← mpt_segts[i].geom_array[j].x
6: point.y ← mpt_segts[i].geom_array[j].y
7: point.z ← mpt_segts[i].geom_array[j].z
8: lwline_add_point(lwline, point)
9: end for

10: lwmline_add_line(lwmline, LWLINE)
11: end for
12: return lwmline

Listing 4.6: Which route does the bird “Belarus 4” follows in the movement?

1 Query 6 .
2

3 SELECT ind_ id , ind_can_name , m p t _ t r a j e c t o r i e s (l o c a t i o n s) AS t r a j e c t o r y
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 4 ’ ;
6

7 R e s u l t 5 .
8

9 i n d _ i d | ind_can_name | t r a j e c t o r y
10 −−−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 B e l a r u s 4| Cuculus canorus |SRID=4326;MULTILINESTRING((2 7 . 7 8 0 5 7 0 5 2 . 1 8 0 9 7 0 0 . 0 0 0 0 0 0
12 | | , 2 7 . 7 7 0 5 2 0 5 2 . 1 8 2 0 3 0 0 . 0 0 0 0 0 0 , 2 7 . 7 6 6 9 3 0 5 2 . 1 8 0 8 5 0
13 | | 0 . 0 0 0 0 0 0 , , 2 3 . 9 5 7 6 7 0 −10.141420 0 . 0 0 0 0 0 0))
14 Query 7 .
15

16 SELECT ind_ id , ind_can_name , m p t _ t r a j e c t o r i e s (l o c a t i o n s) AS t r a j e c t o r y
17 FROM moving_birds

Figure 4.2 visualizes the results from the operation mpt_trajectrory on moving birds dataset,
together with results from the operation mpt_location. This shows how the moving birds were
moving from one location to another and where they have spent more time in their movement.

4.3 OPERATIONS FOR INTERACTION WITH DOMAIN/RANGE

This section lists and explains operations that interact with points and point sets in the domain
and range of a moving point type. These types of operations relate the functional values of the
moving point either with the time or the range; which is their registered location. For example,
we can restrict a moving point for a given time interval. In addition, we can ask for a location of
a moving point at a given time.

4.3.1 mpt atinstant

The operation mpt_atinstant is similar to the timeslice operator found in different temporal rela-
tional algebras [Güting et al., 2000]. The operation restricts a moving point to a given instant to

33

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Figure 4.2: mpt_trajectory

return a value of the type INTIME_MPOINT. The operation takes a value of type mpoint and a
timestamp as argument. The function checks the timestamps used for the moving point and the in-
terpolation timestamp are in the same time zone. If the condition fails, it returns an error message.
The function works under the assumption that the units in the moving point are chronologically
ordered.

The function then searches for two consecutive registered locations, in which the timestamp
provided as argument is within the interval constructed from the timestamps of the two consecu-
tive locations. To do this, two lightweight point geometries are initialized. For each moving seg-
ment, two consecutive points are selected and assigned to the newly initialized point geometries to
represent points on the left and right. If the timestamp provided is less than the timestamp used for
point on the right and greater than point on the left, point on the left and right are used to inter-
polate the new location in between at a given time instant. Three different interpolation methods
are implemented for this function. The selection of the interpolation function clearly depends on
users’ preference. Details on algorithms and mathematical formulas used to implement the inter-
polation functions are discussed in Chapter 5. The newly interpolated location together with the
time instant provided as an argument, is returned as a value of the type INTIME_MPOINT. If
the timestamp value provided as an argument is not within the moving object defined time, the
operation return a null value. The algorithm used to implement this operation is presented in
Algorithm 4.4.

In practice, this function is one of the most useful and practical operation of moving points
because it satisfies the underlying principles for storing moving objects into the database. To store
moving objects into the database, their movement must be sampled; and from that their location
can be interpolated for those times we do not have a stored location. For example, in a taxi ser-
vice application, the owner of the company may receive an accusation of a robbery from one of

34

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 4.4mpt_atinstant operation

INPUT TYPE: MPOINT,INSTANCE
OUTPUT TYPE: INTIME_MPOINT

1: point_left ← NULL
2: point_right ← NULL
3: found ← false
4: i ← 0
5: if inst.tz_id == mpoint.tz_id then
6: continue
7: else
8: break
9: end if

10: while !finished&&i < mpoint.num_sgts do
11: for j = 0tompt_sgts.num_pts do
12: point_left.x ← mpt_segts[i].geom_array[j].x
13: point_left.y ← mpt_segts[i].geom_array[j].y
14: point_left.z ← mpt_segts[i].geom_array[j].z
15: point_left.m ← mpt_segts[i].geom_array[j].m
16: point_right.x ← mpt_segts[i].geom_array[j + 1].x
17: point_right.y ← mpt_segts[i].geom_array[j + 1].y
18: point_right.z ← mpt_segts[i].geom_array[j + 1].z
19: point_right.m ← mpt_segts[i].geom_array[j + 1].m
20: if point_left.m < inst.val&&point_right.m > inst.val then
21: intime_mpoint.point ← INTERPOLATE(point_left, point_right)
22: intime_mpoint.t ← inst.t
23: return intime_mpoint
24: else
25: continue
26: end if
27: end for
28: i ← i + 1
29: end while
30: intime_mpoint.point ← NULL
31: intime_mpoint.t ← NULL
32: return intime_mpoint

35

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

their customers, and the customers do not know which taxi was giving the service. However, the
customer exactly knows where and when the robbery happened. Based on this information, it is
possible to track the taxi which is responsible for the robbery. This can be done by performing the
operation mpt_atinstant on the dataset of the moving taxis for the time the robbery took place.
The result of the operation returns the interpolated locations, and this information can be used to
identify the taxi which is closet to the location of the robbery. However, for birds, we can write a
query to return the locations of all the moving birds at instant as it is presented in Listing 4.7.

Listing 4.7: Where was the bird “Ludwig” on 2013-07-12 12:07:40?

1 Query 8 .
2

3 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −07 −12 1 2 : 0 7 : 4 0 1 ’) AS a t i n s t a n t
4 FROM moving_birds
5 WHERE i n d _ i d= ’Ludwig ’ ;
6

7 R e s u l t 6 .
8

9 i n d _ i d | ind_can_name | a t i n s t a n t
10 −−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 Ludwig | Cuculus canorus | INTIME_MPOINT(POINT Z (2 0 . 5 7 9 9 2 1 1 . 4 0 9 1 8 6 0) ,2013−07−12 1 2 : 0 7 : 4 0

1)
12

13 Query 9 .
14

15 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ‘2013 −07 −12 1 2 : 0 7 : 4 0 1 ’) AS a t i n s t a n t
16 FROM moving_birds

Figure 4.3: mpt_atinstant

The result of the query in Listing 4.7 is visualized in Figure 4.3 together with the trajec-
tory of the moving birds. The location interpolated for each of the birds on the moving birds

36

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

dataset is clearly located on the trajectory of the moving point. It is because that the opera-
tion mpt_atinstant uses linear interpolation in default. The visualization approves that the im-
plemented operation returns correct interpolation result for interpolating locations between two
points of a moving point. If cubic interpolation function is used, the locations returned from the
operation mpt_atinstant, may not exactly be located on the trajectory of the moving bird. This
and other related explanations are included in Chapter 5.

4.3.2 val intime mpoint

The operation val_intime_mpoint yields the point component of the type INTIME_MPOINT.
The operation takes a values of the type INTIME_MPOINT and return a point geometry as a
result. An empty geometry is returned to a null argument. This operation can be used to extract
the newly interpolated location from the result of the operation mpt_atinstant. Therefore, the
query in Listing 4.7 can be rewritten as in Listing 4.8, only to return the location of the bird
“Ludwig” on 2013-07-12 12:07:40.

Listing 4.8: “Where was the bird “Ludwig” on 2013-07-12 12:07:40?

1 Query 1 0 .
2

3 SELECT ind_ id , ind_can_name , va l_ in t ime_mpoin t (m p t _ a t i n s t a n t (l o c a t i o n s , ‘2013 −07 −12 1 2 : 0 7 : 4 0
1 ’)) AS a t i n s t a n t

4 FROM moving_birds
5 WHERE i n d _ i d= ’Ludwig ’ ;
6

7 R e s u l t 7 .
8

9 i n d _ i d | ind_can_name | a t i n s t a n t
10 −−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 Ludwig | Cuculus canorus | s r i d =4326;POINTZ(2 0 . 5 7 9 9 2 0 1 1 . 4 0 9 1 8 6 0 . 0 0 0 0 0 0)

4.3.3 inst intime mpoint

The operation inst_intime_mpoint also yields the time component of the type INTIME_MPOINT.
The operation returns a timestamp string value as a result. This can be used to extract the time
component of the result from operations mpt_atinstant, mpt_initial and mpt_final. An emphnull
timestring is returned to a null argument. The query statement in Listing 4.7 can be rewritten to
return the time component of the final location for the moving bird ‘Johannes’ as it is presented
in Listing 4.9.

Listing 4.9: When did the bird “Johannes” end the movement?

1 Query 1 1 .
2

3 SELECT ind_ id , ind_can_name , i n s t _ i n t i m e _ m p o i n t (m p t _ f i n a l (l o c a t i o n s)) AS f i n a l
4 FROM moving_birds
5 WHERE i n d _ i d= ’ Johannes ’ ;
6

7 R e s u l t 8 .
8

9 i n d _ i d | ind_can_name | f i n a l
10 −−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−
11 Johannes | Cuculus canorus |2013−09−19 0 5 : 4 6 : 3 1

37

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

4.3.4 mpt present atinstant

The function mpt_atinstant can be extended to check only if a moving point is defined for a spec-
ified time instant or not. For this purpose, the operation is extended to mpt_present_instant. The
function accepts a value of the type mpoint and time instant as argument. The operation follows
the same procedure as its parent operation mpt_atinstant, but instead of returning a value of the
type INTIME_MPOINT, it returns a boolean value. If there exists two consecutive sampled posi-
tions of segments in a moving point and the timestamp provided as argument is within the time
interval of the sampled postions, the operation returns true as a result. Otherwise, it returns false.
The algorithm used to implement the function is provided in Algorithm 4.5.

Algorithm 4.5mpt_present_atinstant operation

INPUT TYPE: MPOINT,INSTANCE
OUTPUT TYPE: BOOL

1: point_left ← NULL
2: point_right ← NULL
3: found ← false
4: i ← 0
5: if inst.tz_id == mpoint.tz_id then
6: continue
7: else
8: break
9: end if

10: while !finished&&i < mpoint.num_sgts do
11: for j = 0tompt_sgts.num_pts do
12: point_left.x ← mpt_segts[i].geom_array[j].x
13: point_left.y ← mpt_segts[i].geom_array[j].y
14: point_left.z ← mpt_segts[i].geom_array[j].z
15: point_left.m ← mpt_segts[i].geom_array[j].m
16: point_right.x ← mpt_segts[i].geom_array[j + 1].x
17: point_right.y ← mpt_segts[i].geom_array[j + 1].y
18: point_right.z ← mpt_segts[i].geom_array[j + 1].z
19: point_right.m ← mpt_segts[i].geom_array[j + 1].m
20: if point_left.m < inst.val&&point_right.m > inst.val then
21: return true
22: else
23: continue
24: end if
25: end for
26: i ← i + 1
27: end while
28: return false

To know if a moving object was in movement for the time of interest, the query statement
from Listing 4.7 can be modified as of the query in Listing 4.10. The query allows us to check if a
moving bird is defined for the given timestamp.

38

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 4.10: was “Ludwig” bird in movement on 2013-07-12 12:07:40?

1 Query 1 2 .
2

3 SELECT ind_ id , ind_can_name , m p t _ p r e s n t _ a t i n s t a n t (l o c a t i o n s , ’2013 −07 −12 1 2 : 0 7 : 4 0 1 ’) AS
p r e s e n t _ a t i n s t a n t

4 FROM moving_birds
5 WHERE i n d _ i d= ’Ludwig ’ ;
6

7 R e s u l t 9 .
8

9 i n d _ i d | ind_can_name | p r e s e n t _ a t i n s t a n t
10 −−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 Ludwig | Cuculus canorus | t

4.3.5 mpt atperiod

The operation mpt_atperiod restricts the moving point to a specified set of time interval. This
operation accepts a value of type MPOINT and a period as an argument; and returns a new moving
point as a result. The operation checks if the time zone identifier used for the input period and
moving point is equal. Next to that, a new moving point is initialized. The registered timestamp
from the (location-time) pairs of each segment of the moving point is used to restrict the moving
point to the time interval provided as an argument. If the registered timestamp value for the
(location-time) pair of a moving segment is comprised between the initial and the final timestamp
value of the argument period, the (location-time) pair value is used to construct the segment of the
new moving point. The same thing also happens if they have the same value. If the moving point
has no registered location, the operation returns a null value of the type MPOINT. Algorithm 4.6
shows the the algorithm used to implement this operation.

Figure 4.4: mpt_atperiod

39

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 4.6mpt_atperiod operation

INPUT TYPE: MPOINT,PERIOD
OUTPUT TYPE: MPOINT

1: new_mpoint ← NULL
2: point ← NULL
3: new_num_sgts ← 0
4: new_num_pts ← 0
5: found ← false
6: if period.tz_id == mpoint.tz_id then
7: continue
8: else
9: break

10: end if
11: for i = 0tompoint.num_sgts do
12: for j = 0tompt_sgts.num_pts do
13: point.x ← mpt_segts[i].geom_array[j].x
14: point.y ← mpt_segts[i].geom_array[j].y
15: point.z ← mpt_segts[i].geom_array[j].z
16: point.m ← mpt_segts[i].geom_array[j].m
17: if period.initial <= point.m <= period.final then
18: new_mpoint.mpt_segts[new_num_sgts].geom_array[new_num_pts] ← point
19: new_num_pts ← new_num_pts + 1
20: found ← true
21: else
22: continue
23: end if
24: end for
25: if found == true then
26: new_mpoint.mpt_segts[new_num_sgts].num_pts ← new_num_pts
27: new_num_pts ← 0
28: new_num_sgts ← new_num_sgts + 1
29: found ← false
30: else
31: continue
32: end if
33: end for
34: new_mpoint.srid ← mpoint.srid
35: new_mpoint.tzid ← mpoint.tzid
36: new_mpoint.num_sgts ← mpoint.num_sgts
37: return new_mpoint

40

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

This operation can benefit different application in different ways. For example, we might
be interested to study the effect of seasonal variations on moving birds. Total distance covered,
the average speed and other questions can be asked for different seasons of the year. To do so,
the moving point that represents a moving bird must be restricted to the four different calendar
seasons of the year. And this can be achieved using the operation mpt_atperiod. When we apply
this operation on a moving point that represent a moving bird, the result is four different moving
points, each one representing a season of the year. The query statement in Listing 4.11 restricts
the moving bird into a certain specified time interval (period).

Listing 4.11: Find bird “Anita” between 2013-07-12 12:07:40,2013-09-12
12:07:40?

1 Query 1 3 .
2

3 SELECT ind_ id , ind_can_name , mpt_a tper iod (l o c a t i o n s , ‘2013 −07 −12 12:07:40 ,2013 −09 −12
1 2 : 0 7 : 4 0 , 1 ’) AS a t p e r i o d

4 FROM moving_birds
5 WHERE i n d _ i d= ’ Anita ’ ;
6

7 R e s u l t 1 0 .
8

9 i n d _ i d | ind_can_name | a t p e r i o d
10 −−−−−−−+−−−−−−−−−−−−−−−−+−−
11 Anita | Cuculus canorus | s r i d =4326; t z i d =1;MPOINT((8 . 3 3 2 7 6 0 4 5 . 1 8 4 0 5 0 0 . 0 0 0 0 0 0
12 | |2013−07−14 0 5 : 4 7 : 0 3 , 9 . 2 6 1 4 2 0 4 5 . 1 3 4 5 9 0 0 . 0 0 0 0 0 0 2013−07−16
13 | | 1 6 : 5 8 : 3 4 , . . , 7 . 7 2 7 3 3 0 9 . 7 8 1 0 8 0 0 . 0 0 0 0 0 0 2013−09−12 0 2 : 3 1 : 4 4))
14 Query 1 4 .
15

16 SELECT ind_ id , ind_can_name , mpt_a tper iod (l o c a t i o n s , ‘2013 −07 −12 12:07:40 ,2013 −09 −12
1 2 : 0 7 : 4 0 , 1 ’) AS a t p e r i o d

17 FROM moving_birds

The query statement in Listing 4.11 returns all the registered locations of the moving bird
“Anita” for the time interval provided as argument. If there exists any undefined moment of the
moving object between the time interval, the operation creates a new segment for the moving
point which is returned as a result. The result of query 14 in Listing 4.11 is visualized together
with the result from operation mpt_locations in Figure 4.4. From the visualization, we can ob-
serve that there are locations that are not placed on the trajectory of the result from the operation
mpt_atperiod. This infers that there are (location-time) pairs that are not defined for the input time
interval.

4.3.6 mpt present atperiod

The operation mpt_present_atperiod allows to check whether a moving point is ever present within
the time interval provided as argument. The interval is a value of the type MPERIOD. The function
follows similar principles with the operation mpt_atperiod. The major difference is that, if the
operation mpt_present_atperiod find a single registered location within the time interval, it then
automatically returns a true value of the type Boolean. If it fails to find a registered location, it
returns a false value as a result. Algorithm 4.7 shows the algorithm used for the implementation
of this function.

For example, we can query for birds that were present during the forest fire that has lasted
for three months in 2012. This and other related questions can be queried using the operation
mpt_present_atperiod. Listing 4.12 shows the query statement to check if a moving bird was ever
present between the time interval ‘2013-07-12 12:07:40,2013-09-12 12:07:40,1’.

41

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 4.7mpt_present_atperiod operation

INPUT TYPE: MPOINT,PERIOD
OUTPUT TYPE: BOOL

1: new_mpoint ← NULL
2: point ← NULL
3: new_num_sgts ← 0
4: new_num_pts ← 0
5: found ← false
6: present ← false
7: if period.tz_id == mpoint.tz_id then
8: continue
9: else

10: break
11: end if
12: for i = 0tompoint.num_sgts do
13: for j = 0tompt_sgts.num_pts do
14: point.x ← mpt_segts[i].geom_array[j].x
15: point.y ← mpt_segts[i].geom_array[j].y
16: point.z ← mpt_segts[i].geom_array[j].z
17: point.m ← mpt_segts[i].geom_array[j].m
18: if period.initial <= point.m <= period.final then
19: new_mpoint.mpt_segts[new_num_sgts].geom_array[new_num_pts] ← point
20: new_num_pts ← new_num_pts + 1
21: found ← true
22: if present! = true then
23: present ← true
24: else
25: continue
26: end if
27: else
28: continue
29: end if
30: end for
31: if found == true then
32: new_mpoint.mpt_segts[new_num_sgts].num_pts ← new_num_pts
33: new_num_pts ← 0
34: new_num_sgts ← new_num_sgts + 1
35: found ← false
36: else
37: continue
38: end if
39: end for
40: if present == true then
41: return true
42: else
43: return false
44: end if

42

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 4.12: Is the bird “Anita” was ever present between the dates
2013-07-12 12:07:40,2013-09-12 12:07:40?

1 Query 1 5 .
2

3 SELECT ind_ id , ind_can_name , m p t _ p r e s e n t _ a t p e r i o d (l o c a t i o n s , ‘2013 −07 −12 12:07:40 ,2013 −09 −12
1 2 : 0 7 : 4 0 , 1 ’) AS p r e s e n t _ p e r i o d

4 FROM moving_birds
5 WHERE i n d _ i d=Anita ;
6

7 R e s u l t 1 1 .
8

9 i n d _ i d | ind_can_name | p r e s e n t _ a t p e r i o d
10 −−−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 Anita | Cuculus canorus | t

4.3.7 mpt initial

The operation mpt_initial return the first registered location of a moving point together with the
time value as a type of INTIME_MPOINT. If a given moving point has no registered location,
null value of the type INTIME_MPOINT is returned. The algorithm used to implement this
operation is shown in Algorithm 4.8.

Algorithm 4.8mpt_initial operation

INPUT TYPE: MPOINT
OUTPUT TYPE: INTIME_MPOINT

1: if mpoint.num_sgts == 0 then
2: intime_mpoint.point ← NULL
3: intime_mpoint.t ← NULL
4: return intime_mpoint
5: else if mpt_sgts.num_pts == 0 then
6: intime_mpoint.point ← NULL
7: intime_mpoint.t ← NULL
8: return intime_mpoint
9: else

10: point.x ← mpt_segts[0].geom_array[0].x
11: point.y ← mpt_segts[0].geom_array[0].y
12: point.z ← mpt_segts[0].geom_array[0].z
13: intime_mpoint.point ← point
14: intime_mpoint.t ← mpt_segts[0].geom_array[0].m
15: return intime_mpoint
16: end if

This operation can be used to ask questions that involve the moving objects beginning. For
example, we might want to request where and when an object starts moving. The operation does
not return a separate result for questions of the form ‘where’ and ‘when’. However, the result of
the operation mpt_initial can be used as an input for other operations like val_intime_mpoint and
inst_intime_mpoint. The query statement in Listing 4.13 return the initial registered location of
the bird “Johannes” together with its time value.

43

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 4.13: When and where the bird “Johannes” start moving?

1 Query 1 6 .
2

3 SELECT ind_ id , ind_can_name , m p t _ i n i t i a l (l o c a t i o n s) AS i n i t i a l
4 FROM moving_birds
5 WHERE i n d _ i d= ’ Johannes ’ ;
6

7 R e s u l t 1 2 .
8

9 i n d _ i d | ind_can_name | i n i t i a l
10 −−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 Johannes | Cuculus canorus |INTIME_MPOINT(POINTZ(1 2 . 3 6 6 3 3 4 8 . 9 1 5 3 6 0) ,2013−04−27 0 7 : 5 4 : 2 5

4 3 2 6)

4.3.8 mpt final

The operation mpt_final returns the last registered location of a moving point together with the
timestamp as a type of INTIME_MPOINT. In the beginning, the function checks whether a mov-
ing point is empty or not. If the moving point does not have any registered location, null value of
the type INTIME_MPOINT is returned as a result. If a moving point only contains one registered
location, the operation returns a similar value as the operation mpt_initial. The algorithm used to
implement this operation is presented in Algorithm 4.9.

Algorithm 4.9mpt_final final

INPUT TYPE: MPOINT
OUTPUT TYPE: INTIME_MPOINT

1: last_seg ← 0
2: last_pt ← 0
3: if mpoint.num_sgts == 0 then
4: intime_mpoint.point ← NULL
5: intime_mpoint.t ← NULL
6: return intime_mpoint
7: else if mpt_sgts.num_pts == 0 then
8: intime_mpoint.point ← NULL
9: intime_mpoint.t ← NULL

10: return intime_mpoint
11: else
12: point.x ← mpt_segts[mpoint.num_sgts − 1].geom_array[mpt_sgts.num_pts − 1].x
13: point.y ← mpt_segts[mpoint.num_sgts − 1].geom_array[mpt_sgts.num_pts − 1].y
14: point.z ← mpt_segts[mpoint.num_sgts − 1].geom_array[mpt_sgts.num_pts − 1].z
15: last_seg ← mpoint.num_sgts − 1
16: last_pt ← mpt_sgts.num_pts − 1
17: intime_mpoint.point ← point
18: intime_mpoint.t ← mpt_segts[last].geom_array[lastpt].m
19: return intime_mpoint
20: end if

The query statment in Listing 4.14 return the last known position of the bird “Johannes”
together with its time value.

44

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 4.14: Where is the last know location of bird “Johannes”?

1 Query 1 7 .
2

3 SELECT ind_ id , ind_can_name , m p t _ f i n a l (l o c a t i o n s) AS f i n a l
4 FROM moving_birds
5 WHERE i n d _ i d= ’ Johannes ’ ;
6

7 R e s u l t 1 3 .
8

9 i n d _ i d | ind_can_name | f i n a l
10 −−−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 Johannes | Cuculus canorus |INTIME_MPOINT(POINTZ(2 2 . 4 7 7 7 8 1 2 . 9 3 9 6 0) ,2013−09−19 0 5 : 4 6 : 3 1

4 3 2 6)

4.3.9 mpt srid

The operation mpt_srid return the spatial reference system identifier of the point geometries com-
posing the moving point. For any moving point registered with invalid or no spatial reference
system, the error message “UNKNOWN_SRID” is returned as a result. Listing 4.15 shows the
query applied to get the spatial reference system used for the moving bird “Rolf”.

Listing 4.15: Find the SRID for the bird “Rolf”?

1 Query 1 8 .
2

3 SELECT ind_ id , ind_can_name , mpt_sr id (l o c a t i o n s) AS s r i d
4 FROM moving_birds
5 WHERE i n d _ i d= ’ Rolf ’ ;
6

7 R e s u l t 1 4 .
8

9 i n d _ i d | ind_can_name | s r i d
10 −−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−
11 Rol f | Cuculus canorus | 4326

4.3.10 mpt tzid

The operation mpt_tzid returns the time zone reference identifier used for the moving point. If
no or invalid time zone reference identifier is provided, the function returns an error message of
“UNKNOWN_TZID”. Listing 4.16 shows the query to get the time zone identifier used for the
moving bird “Rolf”.

Listing 4.16: Find the TZID for the bird “Rolf”?

1 Query 1 9 .
2

3 SELECT ind_ id , ind_can_name , mpt_tz id (l o c a t i o n s) AS t z i d
4 FROM moving_birds
5 WHERE i n d _ i d= ’ Rolf ’ ;
6

7 R e s u l t 1 5 .
8

9 i n d _ i d | ind_can_name | t z i d
10 −−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−
11 Rol f | Cuculus canorus | 1

45

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

4.4 OPERATIONS FOR RATE OF CHANGE

Rate of change is one important concept for any time-dependent moving object. Any operation
related to the rate of change can be applied to any of time dependent types. However, the range
value of these types must support a difference operation and division by real values. For a moving
point type, at least three operations can come in mind: the Euclidian distance, the direction be-
tween two points and the vector difference. This gives us functions mpt_distance, mpt_direction,
and mpt_speed, respectively. The rate of change for moving point is represented by the velocity
of the object as a vector value. This vector value provides the speed and direction of the move-
ment. The velocity of a moving point is defined by the velocity in both the X and Y coordinates
separately.

4.4.1 mpt distance

The operation mpt_distance returns the distance covered between two consecutive registered loca-
tions of a moving point as moving real value. The operation accepts a value of the type MPOINT
as an argument and returns the distance covered as a value of the type MREAL. The distance be-
tween two points is the euclidean distance in a two dimensional space, which is different from the
distance between two geodetic points. The formula to compute the distance between two geode-
tic points is also quite different from the corresponding euclidean distance. The formula used for
distance computation between Cartesian and geodetic points is shown in Equation 4.1. Since the
time type is isomorphic to the domain of real numbers, it inherit their arithmetic operation.

distance(Cartesian) ←
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (4.1)

PostGIS provides two alternatives to compute the distance between two point locations. The
first one is using Cartesian mathematics and straight line vector. The other one is using “geo-
graphic” coordinates. Geographic coordinates are spherical coordinates expressed in angular units
(degrees). The major constraint for geographic coordinates is that they only works for WGS 84
long lat (SRID=4321). Over larger areas, the spheroidal calculation is more accurate than any
calculation done on a projected plane.

The function first initializes a variable to hold for the total distance covered by the moving
point. In the beginning, this value is initialized to zero, considering the first registered location as
a starting position of the moving point. A new moving real value is also initialized. The function
iteratively computes the distance between two consecutive points of each segment and the result is
then summed with the total distance value covered by the moving object. For each iteration start-
ing from the beginning of the moving point, the newly initialized moving real value is constructed
from the value of the total distance covered and the time component of each points registered for
the moving point. The function returns a multiple moving real value that is equal to the number
of segments of the moving point. The algorithm used to implement this operation is provided in
Algorithm 4.10.

In practice, the operation is useful to perform different analysis on the rate of change of the
moving object. If we are interested to know the total traveled distance of the moving object, we
can use this operation together with the operation mreal_final and val_intime_mreal. A query
statement that requests for the distance covered by the moving bird “Belarus 3” throughout the
movement is provided in Listing 4.17.

46

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 4.10mpt_distance operation

INPUT TYPE: MPOINT
OUTPUT TYPE: MREAL

1: mreal ← NULL
2: distance_initial ← 0.0
3: distance_final ← 0.0
4: distance ← 0.0
5: spheroid ← NULL
6: t ← NULL
7: for i = 0tompoint.num_sgts do
8: for j = 0tompt_sgts.num_pts do
9: point_left ← NULL

10: point_right ← NULL
11: if j == 0 then
12: t ← mpt_segts[i].geom_array[j].m
13: else
14: t ← mpt_segts[i].geom_array[j].m
15: point_left.x ← mpt_segts[i].geom_array[j].x
16: point_left.y ← mpt_segts[i].geom_array[j].y
17: point_left.z ← mpt_segts[i].geom_array[j].z
18: point_right.x ← mpt_segts[i].geom_array[j + 1].x
19: point_right.y ← mpt_segts[i].geom_array[j + 1].y
20: point_right.z ← mpt_segts[i].geom_array[j + 1].z
21: t ← mpt_segts[i].geom_array[j + 1].m
22: initialize_spheroid_from_sridmpt.sr_id, &s
23: distance ← distance_spheriod(point_left, point_right, &s)
24: dist_final ← distance + dist_intial;
25: dist_intial ← dist_final;
26: end if
27: mreal[i].instant[j].val ← distance_final
28: mreal[i].instant[j].t ← t
29: end for
30: dist_initial ← 0.0
31: t ← NULL
32: end for
33: return mreal

47

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 4.17: find the distance covered by the bird “Belarus 3”?

1 Query 2 0 .
2

3 SELECT ind_ id , ind_can_name , m p t _ d i s t a n c e (l o c a t i o n s) AS D i s t a n c e
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 3 ’ ;
6

7 R e s u l t 1 6 .
8

9 I n d _ i d | ind_can_name | D i s t a n c e
10 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 B e l a r u s 3 | Cuculus canorus | t z i d =1;MMREAL((0 . 0 0 0 0 0 0 2013−04−30 1 9 : 5 9 : 3 5 , 1 8 6 5 . 6 1 2 6 6 9
12 | |2013−05−03 0 4 : 1 4 : 0 9 , . . . , 8 0 2 5 3 6 7 . 1 4 3 1 7 4 2013−09−15 1 4 : 4 2 : 3 6))

4.4.2 mpt speed

The operation mpt_speed takes a value of the type MPOINT and returns a moving real value as a
result. This operation returns the numeric speed of the moving point from the discrete locations
used to represent the moving point. The resulting moving real value consists of timely ordered
(value, instant) pairs. The speed of the moving object between two measured locations is constant.
The algorithm used to implement this operation is highly similar to the operation mpt_distance
and its presented in Algorithm 4.11.

The result of the operation mpt_distance is a prerequisite to calculate the speed of the moving
object as a moving real value. Since each point unit describes linear movement, distance between
two consecutive point locations per their time difference gives us the speed of the moving point.
The operation is much more meaningful and practically useful if they are operated on moving
points with SRID of 4326 (geographic or geodetic coordinates). The operation mpt_distance re-
turns the distance value in a unit of meter and the result of the operation mpt_speed is meters per
second. Query statement in Listing 4.18 returns the speed of the bird “niederbayern1”.

Listing 4.18: What is the speed of the bird “niederbayern1” throughout the
movement?

1 Query 2 1 .
2

3 SELECT ind_ id , ind_can_name , mpt_speed (l o c a t i o n s) AS Speed
4 FROM moving_birds
5 WHERE i n d _ i d= ’ n i ede rbayern1 ’ ;
6

7 R e s u l t 1 7 .
8

9 i n d _ i d | ind_can_name | Speed
10 −−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−
11 n i e d e r b a y e r n 1 | Cuculus canorus | t z i d =1;MMREAL((0 . 0 0 0 0 0 0 2013−06−01 1 6 : 5 4 : 4 5 , 0 . 0 1 7 2 0 9
12 | |2013−06−04 0 0 : 2 7 : 4 2 , . . . , 0 . 0 1 8 2 2 2 2013−09−18 0 3 : 5 0 : 0 2 ,
13 | |0 . 129754 2013−09−18 0 9 : 3 3 : 1 5))

4.4.3 mreal initial

The operation mreal_initial accepts a value of the type MREAL and return the first value-time pair
as a type of INTIME_MREAL. A null value is returned for moving real values that have no value-
time pairs. The algorithm used for this operation is highly similar as of the algorithm used for the
operation mpt_initial. In practice, this operation can also be used to return the first value-time
pair of the result from operation mpt_speed or mpt_distance. Listing 4.19 combines the operation
mpt_distance and mreal_initial to return the initial registered distance value for the bird “Belarus
3”.

48

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 4.11mpt_speed operation

INPUT TYPE: MPOINT
OUTPUT TYPE: MREAL

1: mreal ← NULL
2: distance_initial ← 0.0
3: distance_final ← 0.0
4: distance ← 0.0
5: spheroid ← NULL
6: time_duration ← 0
7: t_left ← NULL
8: t_right ← NULL
9: speed ← 0.0

10: for i = 0tompoint.num_sgts do
11: for j = 0tompt_sgts.num_pts do
12: point_left ← NULL
13: point_right ← NULL
14: if j == 0 then
15: t_right ← mpt_segts[i].geom_array[j].m
16: else
17: t ← mpt_segts[i].geom_array[j].m
18: point_left.x ← mpt_segts[i].geom_array[j].x
19: point_left.y ← mpt_segts[i].geom_array[j].y
20: point_left.z ← mpt_segts[i].geom_array[j].z
21: t_left ← mpt_segts[i].geom_array[j].m
22: point_right.x ← mpt_segts[i].geom_array[j + 1].x
23: point_right.y ← mpt_segts[i].geom_array[j + 1].y
24: point_right.z ← mpt_segts[i].geom_array[j + 1].z
25: t_right ← mpt_segts[i].geom_array[j + 1].m
26: initialize_spheroid_from_srid(mpt.sr_id, &s)
27: distance ← distance_spheriod(point_left, point_right, &s)
28: dist_final ← distance + dist_intial;
29: dist_intial ← dist_final;
30: time_duration ← t_right − t_left
31: speed ← distance/time_duration
32: end if
33: mreal[i].instant[j].val ← speed
34: mreal[i].instant[j].t ← t_right
35: end for
36: dist_initial ← 0.0
37: t ← NULL
38: end for
39: return mreal

49

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 4.19: find the initial distance value registered for the bird “Belarus
3”?

1 Query 2 2 .
2

3 SELECT ind_ id , ind_can_name , m r e a l _ i n i t i a l (m p t _ d i s t a n c e (l o c a t i o n s)) AS D i s t a n c e
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 3 ’ ;
6

7 R e s u l t 1 8 .
8

9 i n d _ i d | ind_can_name | D i s t a n c e
10 −−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 B e l a r u s 3 | Cuculus canorus | INTIME_MREAL(0 . 0 0 0 0 0 0 2013−04−30 1 9 : 5 9 : 3 5)

4.4.4 mreal final

The operation mreal_final takes a value of the type MMREAL as argument and return the last
(value-time) pair as a value of the type INTIME_MREAL. The algorithm used to implement the
operation is similar to the algorithm used for the operation mtp_initial. The operation can be
used to retrieve the last known value-time pair from a set of timely ordered value-time pairs of the
type MMREAL. For example, the operation can be used to request the total distance covered by
a moving object, from the results of operation mpt_distance. The query statement in Listing 4.20
returns the total distance covered by the bird “Belarus 3”.

Listing 4.20: what is the total distance covered by the bird “Belarus 3”?

1 Query 2 3 .
2

3 SELECT ind_ id , ind_can_name , m r e a l _ f i n a l (m p t _ d i s t a n c e (l o c a t i o n s)) AS D i s t a n c e
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 3 ’ ;
6

7 R e s u l t 1 9 .
8

9 i n d _ i d | ind_can_name | D i s t a n c e
10 −−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 B e l a r u s 3 | Cuculus canorus | INTIME_MREAL(8 0 2 5 3 6 7 . 1 4 3 1 7 4 2013−09−15 1 4 : 4 2 : 3 6)

4.4.5 val intime mreal

The val_intime_mreal operation takes a value of the type INTIME_MREAL as argument and
return the value component separately. This operation can be used with operations that returns
rate of change of a moving object. For example, query statement in Listing 4.21 returns the total
distance covered by the bird “Belarus 3” without the time component.

Listing 4.21: what is the total distance covered by the bird “Belarus 3”?

1 Query 2 4 .
2

3 SELECT ind_ id , ind_can_name , v a l _ i n t i m e _ m r e a l (m r e a l _ f i n a l (m p t _ d i s t a n c e (l o c a t i o n s))) AS
D i s t a n c e

4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 3 ’ ;
6

7 R e s u l t 2 0 .
8

9 i n d _ i d | ind_can_name | D i s t a n c e
10 −−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 B e l a r u s 3 | Cuculus canorus | 8025367 .143174

50

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

4.4.6 inst intime mreal

The operation inst_intime_mreal takes a value of the type INTIME_MREAL and return the time
component as a timestamp string. This operation can be used to extract the time component of
the results from operations mreal_initial and mreal_final. The query statement in Listing 4.20 is
modified to return the time component for the moving bird Belarus finishs its movement only as
shown in Listin 4.22.

Listing 4.22: When did the total distance for the “Belarus 3” was registered?

1 Query 2 5 .
2

3 SELECT ind_ id , ind_can_name , i n s t _ i n t i m e _ m r e a l (m r e a l _ f i n a l (m p t _ d i s t a n c e (l o c a t i o n s))) AS
D i s t a n c e

4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 3 ’ ;
6

7 R e s u l t 2 1 .
8

9 i n d _ i d | ind_can_name | D i s t a n c e
10 −−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−
11 B e l a r u s 3 | Cuculus canorus | 2013−09−15 1 4 : 4 2 : 3 6

4.5 VALIDATION AND TRANSFORMATION OPERATIONS

4.5.1 mpt valid

The operation mpt_valid takes a pointer of the type MPOINT and return a Boolean value. The
operation returns true if a moving point passes all the validation constraints set in Section 2.5.1.
In general, this operation makes sure points of a segment and segments of a moving point are
chronologically ordered. In addition, two consecutive segments should not overlap in time. This
operation is significant because most operations returns invalid result if any of the conditions
defined in Section 2.5.1 fails to be satisfied. For example, operation mpt_atinstant for cubic inter-
polation expects points of the moving point to be ordered chronologically. The query statement
in Listing 4.23 returns true if the moving bird “Johannes” and “Rolf” are well formed (valid).

Listing 4.23: Are “Johannes” and “Rolf” moving birds are well formed?

1 Query 2 6 .
2

3 SELECT ind_ id , ind_can_name , mpt_va l id (l o c a t i o n s) AS mpt_va l id
4 FROM moving_birds
5 WHERE i n d _ i d= ’ Johannes ’ or i n d _ i d= ’ Rolf ’ ;
6

7 R e s u l t 2 2 .
8

9 i n d _ i d | ind_can_name | mpt_va l id
10 −−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−
11 Johannes | Cuculus canorus | t
12 Rol f | Cuculus canorus | f

4.5.2 mpoint mreal valid

Section 2.5.2 discusses that moving real type is basically designed to store additional supporting
information of any moving point. The operation mpoint_mreal_valid takes a value of the type
MPOINT and MREAL as argument and returns a Boolean value as a result. For this operation
to return true, both the input arguments must be valid and symmetric. Symmetric in this case

51

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

refers that the number of segments of the moving point and the number of moving reals are equal.
Similarly the number of points in a segment and the number of (value-time) pairs of the corre-
sponding moving real must be equal. In addition, the timestamp of a point in a segment are equal
to the corresponding timestamp of the moving real type. A query statement in Listing 4.24 checks
whether the representation of moving birds “Nobert” and “Rike” is valid or not. This includes
to check if the associated distance value is well formed and symmetric with the location measured
for the moving birds.

Listing 4.24: Is the distance value measurement taken on different location
for birds “Nobert”and “Rolf” is well formed?

1 Query 2 7 .
2

3 SELECT ind_ id , ind_can_name , mpt_mrea l_va l id (l o c a t i o n s , d i s t a n c e) AS mpt_mrea l_va l id
4 FROM moving_birds
5 WHERE i n d _ i d= ’Rike ’ or i n d _ i d= ’Nobert ’ ;
6

7 R e s u l t 2 3 .
8

9 i n d _ i d | ind_can_name | mpt_mrea l_va l id
10 −−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−
11 Nobert | Cuculus canorus | f
12 Rike | Cuculus canorus | t

4.5.3 mpt transform

The operation mpt_transform accepts a moving point and a spatial reference identifier (SRID) as
argument and returns a moving point as a result. Selection of projection to transform the spherical
world onto a Cartesian coordinate system depends on how we are planning to use the data. In this
situation, the operation mpt_transform function allows us to transform between spatial references
systems used by the moving point types. Each point coordinate in the moving point is transformed
and used to instantiate a new moving point type with the transformed point coordinates. Finally
this result is returned to the user. This operation does not cause any change on the input moving
point. The query statements in Listing 4.25 returns the original moving point and the newly
transformed moving point for the bird “Nobert”.

Listing 4.25: Transform the moving bird “Nobert” from 4326 to 3857

1 Query 2 8 .
2

3 SELECT ind_ id , ind_can_name , l o c a t i o n s AS o r i g i n a l _ m p o i n t
4 FROM moving_birds
5 WHERE i n d _ i d= ’Nobert ’ ;
6

7 R e s u l t 2 4 .
8

9 i n d _ i d | ind_can_name | o r i g i n a l _ m p o i n t
10 −−−−−−−+−−−−−−−−−−−−−−−−−+−−
11 Nobert | Cuculus canorus | s r i d =4326; t z i d =1;MPOINT((1 2 . 2 8 5 9 1 0 4 8 . 9 8 5 9 0 0 0 . 0 0 0 0 0 0
12 | | 2013−04−26 0 7 : 0 1 : 1 0 , . . . , 9 . 9 4 8 9 0 0 1 0 . 4 5 5 1 1 0 0 . 0 0 0 0 0 0 2013−
13 | |08−16 0 6 : 3 8 : 4 8))
14

15 Query 2 9 .
16

17 SELECT ind_ id , ind_can_name , mpt_transform (l o c a t i o n s , 3 8 5 7) AS trans formed_mpoint
18 FROM moving_birds
19 WHERE i n d _ i d= ’Nobert ’ ;
20

21 R e s u l t 2 5 .
22

52

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

23 i n d _ i d | ind_can_name | trans formed_mpoint
24 −−−−−−+−−−−−−−−−−−−−−−−+−−
25 Nobert| Cuculus canorus | s r i d =3857; t z i d =1;MPOINT((1 3 6 7 6 6 1 . 2 4 5 1 3 2 6272469 .257576
26 | | 0 . 0 0 0 0 0 0 2013−04−26 0 7 : 0 1 : 1 0 , , 1 1 0 3 5 6 5 . 7 7 1 9 7 9
27 | | 117 10 40 . 886414 0 . 000000 2013−08−16 0 6 : 3 8 : 4 8))

4.6 CONCLUSION

In this chapter, operations for projection to domain/range, interaction with domain/range, rate of
change, and validation and transformation are discussed in detail. All the operations are designed
and implemented to study the behavior of moving points in a DBMS. Moving bird dataset is used
to test the functionality of the operation. The result gained from the queries used in moving bird
dataset was used to explain their practical application. The importance operations in combination
with one another was also explained and visualized in this chapter. In general, in addition to
the implementation of moving point type and its supporting types, the implementation of the
operations completes the moving object library for moving objects that possess changes in position
only.

53

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

54

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 5

Interpolation Functions for Moving Points

5.1 INTRODUCTION

For reasons of limited bandwidth and server database update performance, the trajectory of mov-
ing objects cannot be updated continuously in the database. However, we can represent the moving
objects by discretely reporting spatiotemporal attributes such as location, direction, and speed [Yu
et al., 2004]. This in principle means that we cannot query moving object movement for moments
in-between two discrete positions. In situations like this, using interpolation techniques give us the
entire movement. Different application domain requires different types of interpolation methods.
There are several types of interpolation method available; selection of the appropriate interpola-
tion method clearly relies on pre-knowledge we have about the moving object, such as the speed,
direction, acceleration and even higher-order derivatives for their rate of change.

The first and most commonly used approach is linear interpolation. Cubic and last known
measurement interpolations are also used as an alternative for linear interpolation. The use of
interpolation technique enhances the capability to represent moving objects with a lower num-
ber of sampled positions. The basic philosophy behind is that registered locations of the moving
point are correct and are on some unknown curve. Estimating a value of the curve at any position
between two registered locations gives the position of the moving object for timestamps at which
the location is unknown. The result causes a significant difference between the interpolation tech-
niques used for different application domains.

The implementation of mathematical formulas of each interpolation method is handled through
the operation mpt_atinstant which has been described in Chapter 4. The operation implicitly
makes a call to the corresponding interpolation function implementation that represents the math-
ematics behind each interpolation method. The functions linear_interpolation, cubic_interpolation,
and last_known_interpolation together with their results are discussed in Section 5.5.

The rest of the chapter is organized as follows: Section 5.2 presents linear interpolation method
with its drawbacks. Section 5.3 presents cubic interpolation with its benefits over linear interpo-
lation. Section 5.4 briefly describes the last known interpolation method. Finally, results of each
interpolation method is discussed and compared in Section 5.5.

5.2 LINEAR INTERPOLATION

A moving object trajectory can be represented using a sequence of connected line segments. Each
of the line segments connects two reported sample positions of the moving point. To interpolate
or estimate the trajectory of a moving object between two consecutive reported states, a linear in-
terpolation method can be used. For two given sampled consecutive positions of a moving object,
a linear interpolation method assumes the velocity of the moving object is constant (fixed) for the
time interval of the segment. In general, linear interpolation is used to approximate a value of the
function f for a moving point using two known results of the function. To interpolate a value of
a function at f(t), Equation 5.1 is used.

55

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

f(t) = f(t0) + f(t1) − f(t0)
t1 − t0

∗ (t − t0) (5.1)

Given two consecutive location of a moving point P0(x0, y0, z0, t0) and P1(x1, y1, z1, t1) as
shown in Figure 5.1, to interpolate the location of the moving point at time t, using linear inter-
polation, Equation 5.2 is used to compute each coordinates of the interpolated point.

X = x0 + x1 − x0
t1 − t0

∗ (t − t0) (5.2)

Y = y0 + y1 − y0
t1 − t0

∗ (t − t0) (5.3)

Z = z0 + z1 − z0
t1 − t0

∗ (t − t0) (5.4)

The results of the above mathematical equation are later used to initialize the approximate
location Pinterpolate = (X, Y, Z, t) of a moving point.

Figure 5.1: Linear Interpolation

Representing trajectories using line segments create unnatural turns and angles while represent-
ing the movement of a continuously moving point. The disadvantage of using linear interpolation
is that the first-order derivative of the trajectory of a moving object only show changes in discrete
positions [Becker et al., 2004]. In addition, the interpolation method is not much of use to capture
non-zero acceleration in moving objects. The second-order derivative of the trajectory is always
zero. For some application domains, this may be unwanted.

5.3 CUBIC INTERPOLATION

Curve-based interpolation is used to represent trajectories of real world moving objects using a
sequence of curved segments. This approach requires fewer sample positions than the trajectory
using line segments. Trajectories of this type are viewed as splines,1, composed of a sequence of low
degree curves [Yu et al., 2004]. Each sampled position from the continuous movement is used as a

1http://en.wikipedia.org/wiki/Spline_%28mathematics%29

56

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

joint between two adjacent curve segments. This provides a higher degree of continuity on every
joint. Yu et al. [2004] proposed to use parametric cubic functions of degree three to obtain splines
that pass through any given consecutive sampled points. For this research project, a polynomial
function of degree three is used to represent a specialized parametric cubic function. In general,
the idea of cubic interpolation is to draw a curve of the form f(t) = a0 + a1t + a2t2 + a3t3 that
passes through four sampled positions of the moving point. The equation f(t) = a0 + a1t +
a2t2 + a3t3 requires four consecutive sampled positions to estimate the coefficients a0, a1, a2 and
a3. Having the values of the coefficients enables us to interpolate for moments in-between two
sampled positions based on two before and after positions of a moving point. Figure 5.2 shows
the difference between parametric cubic and linear interpolation. Cubic interpolation technique
assumes the acceleration changes linearly in one direction for the time interval of the segment [Yu
and Kim, 2006].

Figure 5.2: Cubic Interpolation

Given a sequence of chronologically ordered locations of a moving object P0(x0, y0, z0, t0),
P1(x1, y1, z1, t1), P2(x2, y2, z2, t2), and P3(x3, y3, z3, t3), depicting a nonlinear change of velocity,
one can use the cubic interpolation function to interpolate for f(t), where t0 < t1 < t < t2 < t3.
Therefore, the interpolated Pinterpolate(X, Y, Z, t) is computed as follows. To interpolate the X
coordinate of the new location, we use xi values (x0, x1, x2, and x3) from the four reported states
of the moving object. In practice the function f(t) = a0 + a1t + a2t2 + a3t3 gives (X,Y,Z) and
the coefficients a0, a1, a2 and a3 are vectors of length three. The function f(t).x = a0 + a1t +
a2t2 +a3t3 results (x0, x1, x2, and x3) for timestamps t0, t1, t2 and t3, respectively. Then, we need
to find a function of the form f(t).x = a0 + a1t + a2t2 + a3t3 that satisfies the condition. This
can be rewritten as follows:

x0 = a0 + a1t0 + a2t2
0 + a3t3

0 (5.5)

x1 = a0 + a1t1 + a2t2
1 + a3t3

1 (5.6)

x2 = a0 + a1t2 + a2t2
2 + a3t3

2 (5.7)

x3 = a0 + a1t3 + a2t2
3 + a3t3

3 (5.8)

The above equation can be solved using substitution and matrix method. However, the later
is selected and the four equations are rewritten in a matrix form as follow:

57

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

⎡
⎢⎢⎢⎣

1 t0 t2
0 t3

0
1 t1 t2

1 t3
1

1 t2 t2
2 t3

2
1 t3 t2

3 t3
3

⎤
⎥⎥⎥⎦ ∗

⎡
⎢⎢⎢⎣

a0
a1
a2
a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x0
x1
x2
x3

⎤
⎥⎥⎥⎦ (5.9)

Solving the above equation results in the coefficient values a0, a1, a2, and a3. Hence, by sub-
stituting the computed coefficients into the cubic function that defines the curve that pass though
coordinates (x0, x1, x2, andx3), the X coordinate of the interpolated location can be computed
for timestamp t. The Gaussian elimination method2 is used to solve Equation 5.9.

The Y and Z coordinates can also be computed from (y0, y1, y2, and y3), and (z0, z1, z2, and
z3), respectively. Using Equations 5.5 - 5.8 and 5.9, following the same procedure, we can calcu-
late the coefficients a0, a1, a2, and a3 of the function f(t) = a0 + a1t + a2t2 + a3t3 for both
coordinates. Later, by substituting the timestamp value into the functions formulated using the
computed coefficients, the values for the coordinates X and Y are interpolated. The interpolation
method is much more useful when we want to enforce a smooth change of speed and direction.
Cubic interpolation method creates a smooth and balanced distribution on change of speed and
direction between sampled positions of a moving point. Cubic interpolation requires registered
positions to be ordered chronologically. If that fails to satisfy, the result of the interpolation may
deviate significantly from the exact location of the moving point for a given timestamp.

5.4 LAST KNOWN INTERPOLATION

Unlike the two other interpolation techniques, this approach does not require any mathematical
formula to interpolate positions of the moving point. It only takes temporally nearest sampled
(registered) location between the start and end nodes of the segment. The main task in this in-
terpolation method is to identify the two consecutive sampled locations, where the interpolation
timestamp is within the time interval of the segment formed by the sampled locations. From the
two sampled locations, the location with the timestamp temporally closest to the interpolating
timestamp is returned as a result. This type of interpolation technique is important when we
want to set the focus to the sampled locations of the moving point. For example, a transporta-
tion bus that only halts at bus stops is a good example to apply this interpolation method. The
buses have sampled locations to represent the discrete positions they have stopped. If we are in-
terested to know nearest bust-stop station in time, we can apply this interpolation method. This
interpolation method is also essential to identify frequent patterns on moving points.

5.5 RESULT AND DISCUSSION

The functions linear_interpolate, cubic_interpolate and last_known_interpolate are only accessible
through the operation mpt_atinstant. As discussed in Chaper 4, the operation comes with two
interfaces that accept two different arguments. The first interface ‘mpt_atinstant(mpoint,cstring)’
only accepts a value of the type mpoint and timestamp to interpolate the location. This implicitly
indicates that the interpolation method to be applied is the default linear interpolation. The other
interface ‘mpt_atinstant(mpoint,cstring,bool)’ accepts a value of the type mpoint, timestamp and
boolean value. This notifies that we are interested to apply the other two interpolation methods:
namely cubic and last known interpolations methods. The choice between the two interpola-
tions depends on the boolean value passed as an argument. If the value is true, the operation uses
cubic interpolation method. Otherwise, last known interpolation method is used to interpolate

2http://en.wikipedia.org/wiki/Gaussian_elimination

58

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

the position of the moving point at a given timestamp. Query statements in Listing 5.1 exhibit
the use of the three interpolation method based on the two interfaces provided for the function
mpt_atinstance.

The implementation of the linear_interpolate function is simpler compared to that of the cu-
bic_interpolate function. The function uses the operation point_interpolate operation as available
in the LWGEOM library of PostGIS. The function accepts two point locations and an interpo-
lation value which is used to define the ratio between the two locations. Therefore, the func-
tion linear_interpolation finds the two sampled locations and passes them as arguments to the
function point_interpolate together with the interpolation timestamp. As a result the operation
point_interpolate returns the interpolated location of the moving point. However, the implemen-
tation of the cubic_interpolation function is much more complicated and requires the implementa-
tion of every mathematical formula described in Section 5.3. This includes solving four simultane-
ous equations, that results with estimated value for the coefficients a0, a1, a2, and a3. The function
uses linear interpolation instead, if the interpolation timestamp passed as an argument is between
the time interval of the first or last segment for the trajectory of the moving point. The imple-
mentation of the last_known_interpolate function only requires identifying the right segment that
contains the time instant value accepted as an argument. Subsequently, the node of the segment
with a timestamp closest to interpolating timestamp is returned as a result of the function.

To compare linear interpolation and cubic interpolation methods, two testing mechanisms
are applied on the moving bird dataset. First, to simply interpolate the location of the moving
bird “Belarus 2” on a given timestamp; and observe that all interpolation methods applied return
relatively similar result. This only infers that the mathematical basis and implementation of the
functions for each interpolation method are correct. It neither perform performance analysis nor
accuracy of the result. Second, to interpolate the moving point at a timestamp with an already
know position of the moving bird. To achieve this, it is necessary to remove a single discrete
location used to represent the movement of the moving bird and interpolate for the associated
timestamp. The results gained from this approach tells the deviation of the interpolated location
from the actual sampled position of the bird. In addition, it tells which interpolation method
is suitable to use for the trajectory the moving bird. Query 1 from Listing 5.1 shows the result
of the operation mpt_atinstant for the timestamp ‘2013-07-01 18:50:33’ using linear interpolation
method. Query 2 shows the result using cubic interpolation for the same timestamp. Query 3 also
shows the result of the operation mpt_atinstnt using last_known_location interpolation technique.
The results of the queries surmise that all the interpolation techniques are showing relatively simi-
lar interpolation results with significant differences that can cause a potential problem in different
applications. When we consider the the number of sampled positions per bird, it is obvious that
we do not have sufficient amount of data that allows us to determine any type of higher-order
speed/direction component. the sampling has been orders of magnitude too small for this. For
now, while studying the behaviors of birds, linear interpolation has to be the norm. This may
have been different when we monitor cars, which allows us to sample positions may times per
second. In that application determining acceleration is a sensible and doable thing.

Listing 5.1: Where was the bird “Belarus 2” on 2013-07-01 18:50:33 ?

1 Query 1 .
2

3 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −07 −01 1 8 : 5 0 : 3 3 1 ’) AS a t i n s t a n t
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 2 ’ ;
6

7 R e s u l t 1 .
8

9 i n d _ i d | ind_can_name | a t i n s t a n t

59

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

10 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 B e l a r u s 2 | Cuculus canorus | INTIME_MPOINT(POINT Z (3 3 . 8 0 4 9 8 1 3 4 . 5 9 5 5 6 1 0) ,2013−07−01

1 8 : 5 0 : 3 3 1)
12

13 Query 2 .
14

15 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −07 −01 1 8 : 5 0 : 3 3 1 ’ , t r u e) AS
a t i n s t a n t

16 FROM moving_birds
17 WHERE i n d _ i d= ’ B e l a r u s 2 ’ ;
18

19 R e s u l t 2 .
20

21 i n d _ i d | ind_can_name | a t i n s t a n t
22 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
23 B e l a r u s 2 | Cuculus canorus | INTIME_MPOINT(POINT Z (4 4 . 3 1 3 7 4 19 . 85662212 0) ,2013−07−01

1 8 : 5 0 : 3 3 1)
24

25 Query 3 .
26

27 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −07 −01 1 8 : 5 0 : 3 3 1 ’ , f a l s e) AS
a t i n s t a n t

28 FROM moving_birds
29 WHERE i n d _ i d= ’ B e l a r u s 2 ’ ;
30

31 R e s u l t 3 .
32

33 i n d _ i d | ind_can_name | a t i n s t a n t
34 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
35 B e l a r u s 2 | Cuculus canorus | INTIME_MPOINT(POINT Z (2 9 . 9 7 7 5 6 4 1 . 1 2 4 5 2 0) ,2013−07−01

1 8 : 5 0 : 3 3 1)

The other mechanism applied to test the interpolation methods is to remove a true sampled
location of a moving bird. To progress on this, the location of the moving bird “Belarus 2” at a
timestamp ‘2013-06-30 18:50:33’ is removed from the sampled discrete locations. The bird “Belarus
2” was in the location ‘29.977560, 41.124520, 0.000000’ on the given timestamp. Afterwards, the
operation mpt_atinstant is used to interpolate the location of the moving bird at a time instant
removed from the list. Query 4, 5, and 6 in Listing 5.2 are executed to interpolate the location of
the bird using the three interpolation method.

Listing 5.2: Where was the bird “Belarus 2” on ‘2013-06-30 18:50:33 ’?

1 Query 4 .
2

3 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −06 −30 1 8 : 5 0 : 3 3 1 ’) AS a t i n s t a n t
4 FROM moving_birds
5 WHERE i n d _ i d= ’ B e l a r u s 2 ’ ;
6

7 R e s u l t 4 .
8

9 i n d _ i d | ind_can_name | a t i n s t a n t
10 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
11 B e l a r u s 2 | Cuculus canorus | INTIME_MPOINT(POINT Z (3 6 . 0 8 9 7 2 5 3 2 . 5 5 2 3 2 2 0) ,2013−06−30

1 8 : 5 0 : 3 3 1)
12

13 Query 5 .
14

15 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −06 −30 1 8 : 5 0 : 3 3 1 ’ , t r u e) AS
a t i n s t a n t

16 FROM moving_birds
17 WHERE i n d _ i d= ’ B e l a r u s 2 ’ ;
18

19 R e s u l t 5 .
20

21 i n d _ i d | ind_can_name | a t i n s t a n t
22 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−

60

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

23 B e l a r u s 2 | Cuculus canorus | INTIME_MPOINT(POINT Z (3 8 . 5 9 9 6 2 6 . 5 1 9 0 8 1 6 0) ,2013−06−30
1 8 : 5 0 : 3 3 1)

24

25 Query 6 .
26

27 SELECT ind_ id , ind_can_name , m p t _ a t i n s t a n t (l o c a t i o n s , ’2013 −06 −30 1 8 : 5 0 : 3 3 1 ’ , f a l s e) AS
a t i n s t a n t

28 FROM moving_birds
29 WHERE i n d _ i d= ’ B e l a r u s 2 ’ ;
30

31 R e s u l t 6 .
32

33 i n d _ i d | ind_can_name | a t i n s t a n t
34 −−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−
35 B e l a r u s 2 | Cuculus canorus | INTIME_MPOINT(POINT Z (3 8 . 7 3 9 2 1 2 6 . 1 7 8 5 7 0) ,2013−06−30

1 8 : 5 0 : 3 3 1)

When we investigate the results of the queries in Listing 5.2, all location interpolation devi-
ate from the sampled position of the moving bird. In general, the difference becomes smaller for
linear and cubic interpolation if the moving object is moving along a linear infrastructure. For
example, for a car moving in a straight road, the difference is smaller than for a bird that flies in
the air. In all cases, the curved-based approach performs better than the linear interpolation ap-
proach as stated in [Yu et al., 2004]. Given similar sampled points of a moving point, curved based
interpolation provides relatively more precise approximation than that of the linear interpolation
and last_known_interpolation techniques.

5.6 CONCLUSION

In general, the preference for interpolation techniques strongly depend on the the domain of appli-
cations, and actually with that, also on the technology that has been used for positioning. In birds,
hardware constraints are the cause of very low positioning frequency, which essentially means that
higher-order interpolations are meaningless. Where the hardware constraints have less impact,
think of planes, cars, your positioning frequency is much better, and then estimating higher-order
movement parameters may be possible and actually also useful.

61

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

62

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 6

Aggregate Functions on Moving Points

6.1 INTRODUCTION

It is common to use built-in aggregate functions (operators) in database queries. Aggregation func-
tions on moving points are also important to understand the collective behavior of moving objects.
This chapter includes detailed explanation on aggregation functions that are introduced briefly in
Chapter 1. The design method and implementation detail for each aggregate function is presented
Section 6.3. The functions are also tested and demonstrated with examples using subsets of moving
bird data sets.

The data set used to experiment on the functions is structured and cropped to represent all
possible states of moving points. Aggregation function execution over sets of moving points that
have different number of segments and time segments causes such functions to return different
result using similar algorithms. For example, the algorithms used for the aggregation function
mpt_centroid return the moving point centroid that have different number of segments, and this
depends on the number of segments and shared time interval of each of the moving points on the
set.

6.2 IMPLEMENTATION REQUIREMENTS OF AGGREGATION FUNCTIONS

Implementation of aggregation functions in PostgreSQL requires state values and state transition
functions [Lockhart, 2013]. A final function must also be implemented, if the data that needs
to be returned as a result of the aggregation function is different from the data that is stored as
an intermediate state value. The state transition function1 is invoked every time a successive row
is processed. If defined, a final function is executed when there is no other row left to be pro-
cessed. The state value can have a data type that is similar to the base type and also it requires an
initial value. Therefore, to implement the aggregate functions on moving points, a support type
mpoint_a is developed to store the state value. Every time a successive row is processed, the state
value is passed to the state transition function along with the base type value. The state transition
function then performs the necessary aggregation operation and returns a modified state value for
the next successive state transition function or final function.

The support type mpoint_a is designed and implemented to store intermediate state values
that results from the centroid computation between the state and current moving point. The data
structure in Listing 6.1 is used to represent the internal structure of the type. The structure consists
of num_segts, sr_id, tz_id, and an array of reference *mpt_sgts. The pointer variable *mpt_sgts
stores an array of pointers to the structure mpt_segment. The structure mpt_segment defined to
represent segments of a moving point contains num_pts and *geom_array. The pointer variable
*geom_array stores references to LWPOINT point geometries of PostGIS. All the varibales used
to define the structure of the type mpoint_a have similar definitions to the structure of mpoint
defined in Section 2.4. The only difference is the variable count which is defined to store additional

1http://www.postgresql.org/docs/8.3/static/xaggr.html

63

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

intermediate state value other than the computed centroid moving point. The value to be stored
in the variable count becomes different depending on the aggregate function which is using the
state type mpoint_a. For example, the count variable is used to store the number of moving points
that are already participated on the computation of the centroid moving point for the operation
mpt_centroid. For the operation mpt_max_trajectory, it stores the maximum traveling distance
value of the moving point.

Listing 6.1: Data structure for support mpoint_a type

1

2 t y p e d e f s t r u c t mpt_segment
3 {
4 i n t num_pts ;
5 LWPOINT ∗ geom_array ;
6 }mpt_segment ;
7

8 t y p e d e f s t r u c t mpoint_a
9 {

10 double count ;
11 i n t num_segts ;
12 i n t s r _ i d ;
13 i n t t z _ i d ;
14 mpt_segment ∗mpt_sg t s ;
15 }mpoint_a ;

6.3 IMPLEMENTATION OF MOVING POINT AGGREGATION FUNCTIONS

6.3.1 mpt centroid

The aggregation operation mpt_centroid returns the center of gravity (“Centroid”) for the set of
moving points. The operation takes an mpoint value and an optional boolean value. The opera-
tion returns the centroid as a moving point representing a set of individual moving points. The
centroid over a set of moving points can be computed using different algorithms. In this research
project, three different algorithms are developed and implemented to compute the centroid. These
are “shared interval”, “closure” and “dormant point” algorithms. To use these algorithms the
operation mpt_centroid provides two interfaces. The first interface mpt_centroid(mpoint) uses the
default “shared interval” algorithm. The second interface mpt_centroid(mpoint,bool) allows to
select the other two algorithms. If the boolean argument value is true, the operation uses the
“closure” algorithm; otherwise, it uses the “dormant point” algorithm. The operation uses the
functions mpt_agg and mpt_agg_final as a state transition final function, respectively.

The support type mpoint_a is implemented to store the aggregated state value. The aggregated
state value in the mpt_centroid operation includes the centroid moving point and the count value
that represents the number of moving points that have already participated in the computation.
The state transition function takes a moving point, the aggregated state value and a boolean value
(if provided) as argument and returns the next aggregated state value of the type mpoint_a. In the
first call of this function, the aggregated state value is passed as a null argument and the first non-
empty moving point is returned as the next aggregated centroid moving point along with the count
value. For the rest of successive functions calls, based on the choice of algorithm, the state transi-
tion functions passes the aggregated state moving point segments, current moving point segments,
aggregated state moving point segment number, current moving point segment number and count
value as an argument to the function implemented to realize the algorithms. To exactly represent
the final centroid result, depending on the algorithm selected, every (location-time) pair of the
aggregated and successive moving points have to contribute to the computation of the centroid

64

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

result. The final function takes the aggregated state value and returns the centroid as a moving
point. The philosophy used for the development of the three algorithms is explained below.

The “shared interval” algorithm

As the name indicates the algorithm “shared interval” focuses on the overlapping (shared) time
intervals between the aggregated state moving point and current moving point. The algorithm
computes the aggregation operation on all positions that are defined within the shared time in-
tervals of the two input moving points. No (position-time) pair that is not defined within the
shared time intervals participates in the computation of the centroid moving point. As illustrated
in Figure 6.1, all (postion-time) pairs of both the aggregated state and current moving point that
are defined within the shared time interval are participated on the construction of the (position-
time) pairs of the resulting moving point centroid. The aggregated state value in this algorithm
represents the centroid between N numbers of moving points that are bounded by their shared
time intervals.

Figure 6.1: Resulting centroid based on the “shared interval” algorithm

For better explanation the algorithm is divided into three parts. Algorithms 6.1, 6.2 and 6.3
are used to to implement the three parts of the “shared interval” algorithm. The first part of
the algorithm uses the timestamp of all (position-time) pairs of the aggregated state moving point
that are defined within the shared time intervals of the two input moving points. The timestamps
are used to interpolate positions of the current moving point. The interpolation happens when
there is no (position-time) pair of the current moving point that have a timestamp equal to the
interpolation time instant. This enforces the basic philosophy that every (position-time) pair of the
two input moving points needs to contribute for the computation of the centroid. The resulting
interpolated positions along with the original (position-time) pairs of the current moving point
are used to construct a temporary moving point that is bounded to the shared time intervals. This
temporary moving point representing the time bounded current moving point is used in the third
part of the algorithm.

65

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 6.1The “shared interval” algorithm (Part_1)

INPUT TYPE: current_num_sgts,mpoint_current_sgt,state_num_sgts,mpoint_state_sgt,count
OUTPUT TYPE: mpoint_a

1: temp_num_points ← 0
2: temp_num_segments ← 0
3: current_segment ← 0
4: state_segment ← 0
5: for i = 0 to current_num_sgts do
6: for j = 0 to mpoint_current_sgt[i].num_pts − 1 do
7: temp_point_left ← mpoint_current_sgt[i].geom_array[j]
8: temp_point_right ← mpoint_current_sgt[i].geom_array[j + 1]
9: temp_time_left ← temp_point_left.m

10: temp_time_right ← temp_point_right.m
11: if j == 0 then
12: temp_geom_current[temp_num_points] ← temp_point_left
13: temp_num_points + +
14: end if
15: for l = 0 to state_num_sgts do
16: for k = 0 to mpoint_state_sgt[l].num_pts do
17: temp_point_search ← mpoint_state_sgt[l].geom_array[k]
18: temp_time_search ← temp_point_search.m
19: if (temp_time_search > temp_time_left) AND (temp_time_search <

temp_time_right) then
20: temp_geom_current[temp_num_points] ← temp_point_left
21: LWPOINT _INTERPOLATED ← INTERPOLATE(temp_point_left,

temp_point_right,temp_time_search)
22: temp_geom_current[temp_num_points] ← LWPOINT _INTERPOLATED

23: temp_num_points + +
24: end if
25: end for
26: end for
27: temp_geom_current[temp_num_points] ← temp_point_right
28: temp_num_points + +
29: end for
30: temp_current_segments[temp_num_segments] ← tempgeomcurrent
31: temp_num_segments + +
32: end for

The second part of the algorithm is similar to the first one. The only difference is that the
time component of all (position-time) pairs of the current moving point are used to interpolate
the positions of the aggregated state moving point. The resulting interpolated locations along
with the original (position-time) pairs of the aggregated state moving point are used to construct
a temporary moving point that is bounded by the shared time intervals. The next step in between
is to chronologically order the resulting temporary moving points of the two algorithm parts.

66

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Algorithm 6.2The “shared interval” algorithm (Part_2)

INPUT TYPE: current_num_sgts,mpoint_current_sgt,state_num_sgts,mpoint_state_sgt,count
OUTPUT TYPE: mpoint_a

1: current_segment ← temp_num_segments
2: temp_num_points ← 0
3: temp_num_segments ← 0
4: for i = 0 to state_num_sgts do
5: for j = 0 to mpoint_state_sgt[i].num_pts − 1 do
6: temp_point_left ← mpoint_state_sgt[i].geom_array[j]
7: temp_point_right ← mpoint_state_sgt[i].geom_array[j + 1]
8: temp_time_left ← temp_point_left.m
9: temp_time_right ← temp_point_right.m

10: if j == 0 then
11: temp_geom_state[temp_num_points] ← temp_point_left
12: temp_num_points + +
13: end if
14: for l = 0 to current_num_sgts do
15: for k = 0 to mpoint_current_sgt[l].num_pts do
16: temp_point_search ← mpoint_current_sgt[l].geom_array[k]
17: temp_time_search ← temp_point_search.m
18: if (temp_time_search > temp_time_left) && (temptimesearch <

temptimeright) then
19: temp_geom_current[temp_num_points] ← temp_point_left
20: lwpoint_interpolated ← INTERPOLATE(temppointleft,

temppointright,temptimesearch)
21: temp_geom_state[temp_num_points] ← LWPOINT _INTERPOLATED

22: temp_num_points + +
23: end if
24: end for
25: end for
26: temp_geom_state[temp_num_points] ← temp_point_right
27: temp_num_points + +
28: end for
29: temp_state_segments[temp_num_segments] ← tempgeomcurrent
30: temp_num_segments + +
31: end for

The final part of the algorithm takes the resulting chronologically ordered moving points and
computes the spatial average between (position-time) pairs of the two temporary moving points.
The spatial averaging is computed between two (position-time) pairs of the temporary moving
points that have equal timestamps. One is from the temporary moving point that represent the
aggregated state moving point and the other is from the temporary moving point that represent
the current moving point. To compute the (position-time) pair of the resulting centroid moving
point, the position from the aggregated temporary state moving point is multiplied by the count
value that represent the number of moving points that have already participated on previous cen-

67

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

troid computations. The result is then summed up to the position of the current temporary mov-
ing point. The result divided by the count plus one value represents the centroid position. This
process is iterative and the resulting centroid positions are used to construct the centroid moving
point between the input aggregated state moving point and current moving point. Finally the op-
eration mpt_centroid returns the state value composed of the centroid moving point along with
the incremented count value as a type of mpoint_a.

Algorithm 6.3The “shared interval” algorithm (Part_3)

INPUT TYPE: current_num_sgts,mpoint_current_sgt,state_num_sgts,mpoint_state_sgt,count
OUTPUT TYPE: mpoint_a

1: state_segment ← temp_num_segments
2: temp_num_points ← 0
3: temp_num_segments ← 0
4: for i = 0 to state_segment do
5: for j = 0 to tempstatesegment[i].num_pts do
6: temp_point_left ← temp_state_segment.geom_array[j]
7: temptimeleft ← temp_point_left.m
8: for l = 0 to current_segment do
9: for k = 0 to tempcurrentsegment[l].num_pts do

10: temp_point_right ← temp_curernt_segment.geom_array[k]
11: temp_time_right ← temp_point_right.m
12: if temp_time_left = temp_time_right then
13: aggregated_x ← (count × temp_point_left.x + temp_point_right.x) /

(count + 1)
14: aggregated_y ← (count × temp_point_left.y + temp_point_right.y) /

(count + 1)
15: aggregated_z ← (count × temp_point_left.z + temp_point_right.z) /

(count + 1)
16: lwpoint4d ← make_new_4d_point(srid, aggregated_x, aggregated_y, aggregated_z, temp_time_le

17: temp_geom_agg[temp_num_points] ← lwpoint4d
18: temp_num_points + +
19: end if
20: end for
21: end for
22: end for
23: temp_agg_segments[temp_num_segments] ← tempgeomagg
24: temp_num_segments + +
25: end for
26: mpoint_return ← gserialized_from_mpointa(temp_agg_segments, temp_num_segments, count+

1)
27: return mpoint_return

The illustrative Figure 6.1 shows the result of the aggregation operation using the algorithm
“shared interval”. In the computation of the centroid, the aggregated state moving point con-
tributes five positions in total and the current moving point contributed four positions in total.

68

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Therefore, the resulting centroid moving point have ten (postion-time) pairs distributed in two
segments.

Listing 6.2 shows query results of the operation mpoint_centroid using the “shared interval”
algorithm for four moving birds.

Listing 6.2: Return the centroid of the moving birds?

1 Query 8 .
2

3 SELECT mpt_centro id (l o c a t i o n s) from a g g t e s t a s mp t s_cen t ro i d ;
4

5 R e s u l t 6 .
6

7 m p t s _ c e n t r o i d
8 −−−−−−−−−−−−−−−−−−−−−−−−+−−−
9 " s r i d =4326; t z i d =1;MPOINT((1 3 . 3 8 7 7 7 6 1 9 . 7 6 3 1 6 5 0 . 0 0 0 0 0 0 2013−09−03 0 2 : 2 3 : 5 8 , 1 3 . 4 0 4 6 6 5

10 1 9 . 7 0 2 9 0 1 0 . 0 0 0 0 0 0 2013−09−03 0 3 : 1 5 : 5 3 , 1 3 . 8 1 3 2 3 3 1 8 . 5 1 0 8 9 7 0 . 0 0 0 0 0 0
11 2013−09−03 1 9 : 5 7 : 4 5 , . , 1 3 . 8 7 6 2 4 3 1 8 . 3 2 4 5 6 7 0 . 0 0 0 0 0 0 2013−09−03
12 2 2 : 3 4 : 4 6 , , 1 3 . 8 9 0 3 3 2 1 1 . 2 0 5 5 8 5 0 . 0 0 0 0 0 0 2013−09−14 2 2 : 0 6 : 0 6)) "

The “closure” algorithm

For moving objects that have undefined moments during their movement, the closure operator
on a moving point is used to fill the gap between the segments that defines their movement. For
example, the aggregated state and current moving points in Figure 6.2 represents the closure of the
aggregated state and current moving points from Figure 6.1. The “closure” algorithm computes
the centroid for sets of moving points after the closure operator is applied on them. The “closure”
algorithm works in combination with the function implemented for the algorithm “shared inter-
val”. The closure operator is implemented for the state transition function mpt_average to join
every segment of a moving point that is passed to the function as argument and it results a single
segment moving point. To compute the actual centroid for sets of moving points, the function
mpt_average passes the result gained from the closure operator to the previous “shared interval”
algorithm function. As illustrated in Figure 6.2, the result of the operation mpt_centroid using the
“closure” algorithm is a centroid moving point of single segment.

From the illustration in Figure 6.2, we can observe that for equal number of (position-time)
pairs of the aggregated state and current moving points, the centroid moving point that is resulted
from the operation mpt_centroid using the “closure” algorithm participates more locations than
the “shared interval” algorithm. Listing 6.3 shows the results of the operation mpt_centroid based
on the “closure” algorithm in four moving birds.

Listing 6.3: Return the centroid of the moving birds?

1 Query 8 .
2

3 SELECT mpt_centro id (l o c a t i o n s , t r u e) from a g g t e s t a s mp t s_cen t ro i d ;
4

5 R e s u l t 6 .
6

7 m p t s _ c e n t r o i d
8 −−−−−−−−−−−−−−−−−−−−−−−−+−−−
9 " s r i d =4326; t z i d =1;MPOINT((1 8 . 0 7 3 6 9 0 4 5 . 7 8 2 5 2 0 0 . 0 0 0 0 0 0 2013−08−21 2 2 : 0 9 : 2 0 , 1 4 . 0 4 6 0 5 5

10 3 4 . 7 6 2 0 8 2 0 . 0 0 0 0 0 0 2013−08−22 2 3 : 2 4 : 0 9 , 1 4 . 0 1 1 6 0 6 3 4 . 8 2 5 2 6 9 0 . 0 0 0 0 0 0 2013−08−23 0 2 : 4 2 : 2 4 ,
11 . , 1 1 . 9 5 0 4 0 5 1 1 . 0 7 8 3 9 5 0 . 0 0 0 0 0 0 2013−09−16 0 4 : 1 2 : 2 5)) "

69

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Figure 6.2: Resulting centroid based on the “closure” algorithm

The “dormant point” algorithm

The “dormant point” algorithm computes the centroid (average) between the aggregated state
and current moving point. The algorithm assumes that (position-time) pairs that are not defined
within the shared time intervals of the aggregated state and current moving point are present and
sleeping (not-changing position in time). This indicates that all the (position-time) pairs of the
two input moving points participate on the computation of the centroid, unlike the “shared in-
terval” algorithm which only participates (position-time) pairs that are defined within the shared
time intervals of the two input moving points. As illustrated in Figure 6.3, the “dormant point”
algorithm results similar moving point segments as of the “shared interval” algorithm.

The algorithm used to realize the function implementation of the “dormant point” algorithm
is similar to Algorithms 6.1, 6.2 and 6.3 for (position-time) pairs that are defined within the shared
time intervals of the two input moving points. The final result gained from the parts of the “shared
interval” algorithm is merged with segments formed from (position-time) pairs that are not de-
fined within the shared time intervals. The resulting collection of segments from this merging is
then used to construct chronologically ordered segments of the centroid moving point.

As illustrated in Figure 6.3, the “dormant point” algorithm participates all (position-time)
pairs of the aggregated state and current moving points. The resulting moving point centroid
contains 15 (postion-time) pairs distributed over 5 segments of the moving point. Listing 6.4 shows
the result of the operation mpt_centroid using “dormant point” algorithm on four moving birds.

Listing 6.4: Return the centroid of the moving birds?

1 Query 8 .
2

3 SELECT mpt_centro id (l o c a t i o n s , f a l s e) from a g g t e s t a s mp t s_cen t ro i d ;
4

5 R e s u l t 6 .
6

7 m p t s _ c e n t r o i d
8 −−−−−−−−−−−−−−−−−−−−−−−−+−−−
9 " s r i d =4326; t z i d =1;MPOINT((1 8 . 1 0 7 8 9 0 4 5 . 8 1 9 9 9 0 0 . 0 0 0 0 0 0 2013−08−19 1 1 : 0 6 : 0 0 , 1 8 . 0 7 3 6 9 0

70

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Figure 6.3: Resulting centroid based on the “dormant point” algorithm

10 4 5 . 7 8 2 5 2 0 0 . 0 0 0 0 0 0 2013−08−21 2 2 : 0 9 : 2 0 , 1 4 . 0 4 6 0 5 5 3 4 . 7 6 2 0 8 2 0 . 0 0 0 0 0 0 2013−08−22 2 3 : 2 4 : 0 9
11 , 1 4 . 0 1 1 6 0 6 3 4 . 8 2 5 2 6 9 0 . 0 0 0 0 0 0 2013−08−23 0 2 : 4 2 : 2 4 , , 1 3 . 5 7 0 4 4 5 3 5 . 6 2 9 7 7 1 0 . 0 0 0 0 0 0
12 2013−08−24 2 2 : 4 6 : 4 6 , , 1 1 . 9 5 0 4 0 5 1 1 . 0 7 8 3 9 5 0 . 0 0 0 0 0 0 2013−09−16 0 4 : 1 2 : 2 5)) "

6.3.2 mpt max trajectory

The aggregation operation mpt_max_trajectory runs over a set of moving points, and returns the
trajectory of the moving point that have a maximum distance covered. The result of the opera-
tion is returned as a multilinestring. The philosophy used to implement the operation is to cal-
culate the distance covered by each moving point. Later, to return the moving point that have
the maximum computed distance value. For example, in a racing sport, while monitoring the
movement of the cars that have similar initial and final destination, we might be interested to
know the path of the moving car that shows maximum driving distance. we can use the operation
mpt_max_trajectory over moving cars that have already participated on the racing. The operation
uses mpt_max_trajectory as a state transition function and the function mpt_trajectory_final as a fi-
nal function. The state transition function takes the next moving point and a state transition value
as an argument. The state transition value in this operation consists of the aggregated moving point
with a maximum traveling (movement) distance and the computed distance value of the state mov-
ing point. When the function is called for the first time, the state transition value of null is passed as
argument along with the first moving point. As a result, the first moving point with its calculated
traveled distance is returned as the next state transition value. While the operation iterates on the
moving points, the state transition function compares the calculated distance of the current mov-
ing point with the stored maximum distance of the state moving point. If the calculated distance
is greater than the the store state maximum value, the state transition function returns the current
moving point along with the calculated distance value as a state transition value. Otherwise, the
previous state transition value is returned for the next state transition function. The final function
takes the state transition value and returns the trajectory of the state moving point as a result of
the operation. Listing 6.5 displays the query statement that returns the trajectory of a moving
bird with the maximum distance covered.

71

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 6.5: Return the maximum trajectory of the moving birds?

1 Query 8 .
2

3 SELECT mpt_t ra j e c tory_max (l o c a t i o n s)
4 FROM a g g t e s t a s m p t _ m a x _ t r a j e c t o r y _ r e s u l t ;
5

6 R e s u l t 6 .
7

8 m p t _ m a x _ t r a j e c t o r y _ r e s u l t
9 −−−−−−−−−−−−−−−−−−−−−−−−+−−−

10 "SRID=4326;MULTILINESTRING((1 8 . 1 0 7 8 9 0 4 5 . 8 1 9 9 9 0 0 . 0 0 0 0 0 0 , 1 8 . 0 7 3 6 9 0 4 5 . 7 8 2 5 2 0 0 . 0 0 0 0 0 0 ,
11 1 6 . 9 7 3 3 2 0 4 7 . 8 1 6 4 9 0 0 . 0 0 0 0 0 0 , . , 1 8 . 4 8 1 4 0 0 1 3 . 2 7 4 5 8 0 0 . 0 0 0 0 0 0) , (
12 1 8 . 7 1 8 6 9 0 1 1 . 7 8 0 7 3 0 0 . 0 0 0 0 0 0 , , 2 2 . 0 1 3 2 1 0 1 2 . 3 2 8 6 8 0 0 . 0 0 0 0 0 0)) "

The maximum trajectory of the moving bird returned from the operation mpt_max_trajectory
in Listing 6.5 is visualized in Figure 6.4.

Figure 6.4: Maximum trajectory result from the operation mpt_max_trajectory

6.3.3 mpt min trajectory

The aggregation operation mpt_min_trajectory runs over a set of moving points, and returns the
trajectory of the moving point that have a maximum distance covered. This operation follows a
similar strategy as of the operation mpt_max_trajectory. It consists of the function mpt_min_trajectory
as a state transition and mpt_trajectory_final as a final function. Listing 6.6 presents query state-
ment that returns the trajectory of the moving bird with the minimum distance covered from the
set of moving birds.

72

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Listing 6.6: Return the minimum trajectory of the moving birds?

1 Query 8 .
2

3 SELECT mpt_ t r a j e c to ry_min (l o c a t i o n s) from a g g t e s t a s m p t _ m i n _ t r a j e c t o r y _ r e s u l t ;
4

5 R e s u l t 6 .
6

7 m p t _ m i n _ t r a j e c t o r y _ r e s u l t
8 −−−−−−−−−−−−−−−−−−−−−−−−+−−−
9 "SRID=4326;MULTILINESTRING((7 . 5 0 7 3 8 0 9 . 7 7 2 6 3 0 0 . 0 0 0 0 0 0 , 7 . 5 1 3 7 2 0 9 . 7 7 5 7 6 0 0 . 0 0 0 0 0 0 , 7 . 4 2 0 9 0 0

10 9 . 7 9 0 0 2 0 0 . 0 0 0 0 0 0 , , 7 . 5 6 3 4 4 0 9 . 7 5 9 1 8 0 0 . 0 0 0 0 0 0 , 7 . 7 2 6 4 9 0 9 . 7 8 9 6 8 0 0 . 0 0 0 0 0 0 ,
11 7 . 7 0 4 9 9 0 9 . 8 0 2 6 3 0 0 . 0 0 0 0 0 0 , . . . , 7 . 6 9 4 9 5 0 9 . 8 0 1 0 7 0 0 . 0 0 0 0 0 0) , (7 . 7 2 7 4 7 0 9 . 8 0 1 4 0 0 0 . 0 0 0 0 0 0 ,
12 7 . 7 3 9 2 7 0 9 . 8 0 8 3 7 0 0 . 0 0 0 0 0 0 , 7 . 7 3 5 4 5 0 9 . 8 0 3 6 6 0 0 . 0 0 0 0 0 0)) "

The minimum trajectory returned from the operation mpt_min_trajectory in Listing 6.6 is
visualized in Figure 6.5.

Figure 6.5: Minimum trajectory result from the operation mpt_max_trajectory

6.3.4 mpt makeline

The aggregation operation mpt_makeline takes a set of moving points and returns the trajectory
of every moving point as a single multilinestring. To implement the operation, every segment of
each moving point is used to construct a single state moving point value. Each segment of the
moving point on the set is represented by a line geometry which later is used to construct the
multilinestring. The operation is composed of a state transition and final function. The state tran-
sition function mpt_makeline takes two arguments, a state value of the temporary type mpoint_a
and the value of the type mpoint to be aggregated by the operation. A null value for the state
type is passed as an argument for the first function call. For the rest of iterative function calls the
constructed state value is used as argument. The function modifies the state value to include every
segment of the input moving point and returns the modified state value for the next function call.
The final function mpt_trajectory_final takes the final state value as an argument and returns the
aggregated trajectory as a multilinestring. Listing 6.7 returns the trajectory of the moving birds
using the operation mpt_makeline.

Listing 6.7: Return the total trajectory of the moving birds as a single
geometry?

73

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

1 Query 8 .
2

3 SELECT mpt_makeline (l o c a t i o n s) from a g g t e s t a s m p t _ m a k e l i n e _ r e s u l t ;
4

5 R e s u l t 6 .
6

7 m p t _ m a k e l i n e _ r e s u l t
8 −−−−−−−−−−−−−−−−−−−−−−−−+−−−
9 "SRID=4326;MULTILINESTRING((7 . 5 0 7 3 8 0 9 . 7 7 2 6 3 0 0 . 0 0 0 0 0 0 , 7 . 5 1 3 7 2 0 9 . 7 7 5 7 6 0 0 . 0 0 0 0 0 0 , 7 . 4 2 0 9 0 0

10 9 . 7 9 0 0 2 0 0 . 0 0 0 0 0 0 , , 7 . 6 9 4 9 5 0 9 . 8 0 1 0 7 0 0 . 0 0 0 0 0 0) , (7 . 7 2 7 4 7 0 9 . 8 0 1 4 0 0 0 . 0 0 0 0 0 0 ,
11 , 2 1 . 3 5 6 2 9 0 1 2 . 0 1 0 0 8 0 0 . 0 0 0 0 0 0)) "

The result of the query in Listing 6.7 is visualized in Figure 6.6.

Figure 6.6: Trajectory result of the operation mpt_makeline

6.3.5 mpt avg speed

The operation mpt_avg_speed takes a moving point as an argument and returns the average speed
as a result. The value returned is of type double. Therefore, any built-in aggregation function
for base types can operate on the result. For example, to compute the average speed for a set of
moving points, the built in average function of PostgreSQL can be used on top of the results from
the operation mpt_avg_speed. The operations follows a similar strategy as the operation mpt_speed.
The basic difference is that the speed of the moving point computed for every registered location is
summed to the total speed variable, instead of constructing a moving real type. Simultaneously, the
count value is also incremented by one. Finally, the operation returns the final speed by dividing
the summed speed of the moving point by the count of the registered location. Listing 6.8 presents
a query statement that returns the average speed of the moving birds “Johannes”.

Listing 6.8: What is the average speed of the bird “Johannes”?

74

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

1 Query 8 .
2

3 SELECT ind_ id , mpt_avg_speed (l o c a t i o n s) a s a v e r a g e _ s p e e d
4 FROM a g g t e s t
5 WHERE i n d _ i d= ’ Johannes ’ ;
6

7 R e s u l t 6 .
8

9 i n d _ i d | a v e r a g e _ s p e e d
10 −−−−−−−−−−−−−−−−−−−−−−−+−−−
11 " Johannes " | 2 . 2 9 1 8 5

6.3.6 mpt max speed

The operation mpt_max_speed takes a moving point as an argument and returns the maximum
speed as a result. The implementation of the operation follows a similar strategy with the operation
mpt_avg_speed. The state variable max is initialized to zero and updated with the maximum speed,
computed for each registered location of the moving point. Listing 6.9 presents a query statement
that returns the maximum speed of the moving bird “Anita”.

Listing 6.9: What is the maximum speed of the bird “Anita”?

1 Query 8 .
2

3 SELECT ind_ id , mpt_max_speed (l o c a t i o n s) a s max_speed
4 FROM a g g t e s t
5 WHERE i n d _ i d= ’ Anita ’ ;
6

7 R e s u l t 6 .
8

9 i n d _ i d | max_speed
10 −−−−−−−−−−−−−−−−−−−−−−−+−−−
11 " Anita " | 2 . 6 8 9 6 1

6.3.7 mpt min speed

The operation mpt_min_speed takes a moving point as an argument and returns the minimum
speed as a double value. Like the other operations, it initializes a variable minimum, to store the
minimum speed of the moving point from the computed speed for each registered location. List-
ing 6.10 presents a query statement that returns the minimum speed of the moving bird “Anita”.

Listing 6.10: What is the minimum speed of the bird “Anita”?

1 Query 8 .
2

3 SELECT ind_ id , mpt_min_speed (l o c a t i o n s) a s min_speed
4 FROM a g g t e s t
5 WHERE i n d _ i d= ’ Anita ’ ;
6

7 R e s u l t 6 .
8

9 i n d _ i d | min_speed
10 −−−−−−−−−−−−−−−−−−−−−−−−+−−−
11 " Anita " |0 . 00404072

6.4 CONCLUSION

Built-in aggregate functions perform a computation on a set of values to return a single value of
the standard (base) type. In this chapter, aggregation functions that runs over a set of moving

75

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

points are designed and implemented. All PostgreSQL aggregate functions require state transition
functions and a state type. The optional final function is required for those aggregated functions
that stores more than one state value or return a single value that does not have similar type with
the base type. All aggregate functions other than the mpt_centroid designed and implemented
in this chapter are deterministic. Inferring that the operation mpt_centroid could return different
result based on the algorithm that has been selected. The operation returns a moving centroid with
different number of (postion-time) pairs and segments for the three algorithms implemented. The
“closure” algorithm always returns a single segment moving centroid independent of the input set
of moving points. For the reset of the algorithms, the resulting number of segment and (position-
time) pairs depends on the segment number and defined time intervals of the input moving points.

76

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Chapter 7

Conclusion and Recommendation

7.1 INTRODUCTION

In this chapter, the achievements of this research which contributes in advance to the area of spa-
tiotemporal database are reviewed. To achieve the predefined objectives defined in Chapter 1 sev-
eral questions have been addressed. The research objectives and questions are reviewed in Sec-
tion 7.2. In the final section, suggestions for further related works are presented.

7.2 CONCLUSION

The main objective of this research was to develop a moving object data type for a DBMS. This was
achieved by developing a complete library package that extends PostgreSQL DBMS. To develop
the moving object library the first objective was to critically examine the work of Bezaye [2013].
The study was mainly focused on identifying weakness of the research philosophy adopted and
realization of the moving object library. Weakness of Bezaye [2013] and Eftekhar [2012] on the
implementation of the moving object library has been depicted in Chapter 1. Similar to other re-
lated researches, motivated by current and upcoming needs of spatiotemporal databases, we mainly
focused on the design and implementation of moving point data type as an extension to a DBMS.

The design part of moving point type was based on the theoretical foundations for moving
objects presented by Güting et al. [2000]. From all the data models and abstractions provided by
Güting et al. [2000], abstractions describing objects with time-dependent positional changes only
have been used to represent moving objects. This allowed us to generate clearly defined abstract
and discrete representations of moving point and four other supporting types such as: moving real,
moving period, intime moving point, and intime moving real as presented in Chapter 2. Based on
the theoretical and mathematical philosophies we studied, the data structure for moving point,
moving real, moving period, intime moving point and intime moving real data types has been
designed and realized. In addition, a valid textual representation and validation rule for all moving
types realized in this research has been provided in Chapter 2 .

The implementation of the types was done as an extension to PostgreSQL DBMS and it is based
on PostGIS library. To implement the types, platform and build methods have been selected in
Chapter 3 taking previous and upcoming related researches into consideration. The first step in
the implementation of the moving types was the development of the input and output functions.
The development of the function used the textual representations and validation rules provided for
moving point and its supporting types. The input and output functions are those responsible for
storing the moving objects in memory and retrieve them. In total, 14 input and output functions
have been developed and presented in Chapter 3. Only storing moving objects into the database
was not sufficient enough to study the behavior of moving objects. The Second objective of the
research was the implementation of operations on moving point data type. To achieve this objec-
tive, a set of useful operations are selected and designed from the unlimited number of operations
available and feasible to undertake on spatiotemporal objects.

77

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

The selection was mainly based on set theory, first order logic and metric spaces. The theoret-
ical foundation and design of the operation was based on Güting et al. [2000] which is depicted in
Chapter 4. The algorithms used for the implementation of the operations were designed carefully
based on algorithms on moving objects by Lema et al. [2003]. In total, 32 operations have been
implemented to study the behaviors of moving objects. Those operations have implicit access to
other 48 local function implementations that are not directly accessed through PostgreSQL SQL.
The operations mpt_atinstant and mpt_centroid comes with three different calling interfaces rep-
resenting different methods used for the same operation. Each of the interface provided for the
operation mpt_atinstant allows to use the three different interpolation techniques that have been
designed and implemented in this research. The interfaces for the operation mpt_centroid allows
to use three different algorithms that are developed and realized to compute the centroid (average)
for sets of moving points. Chapter 4 illustrated implementation of all the operations. This chapter
also presented algorithms used for the implementation of selected operations. All the operations
are tested on moving birds dataset and the results are depicted in the same chapter. Their practical
use in real world application was also discussed and Visualization of the results was also provided
for selected operations.

The third objective of the research was to provide alternative interpolation techniques. To
achieve the objective, in addition to the linear interpolation which is common in most spatiotem-
poral databases; cubic and last known interpolation techniques are designed and implemented.
The selection of interpolation techniques was motivated by several requirements of different real
world application domains. The mathematical definitions and equations behind were discussed
in Chapter 5. The implementation of the interpolation technique was achieved by implementing
functions that are accessed through the operation mpt_atinstant. The results of the queries based
on those interpolation techniques were also discussed and their drawback was presented in the
same chapter.

Separate chapter was dedicated to discuss the design and implementation of aggregation op-
erations that are used to query sets of moving points. The design and implementation of the
operations in Chapter 6 allowed us to achieve the last objectives of the research. Selected aggre-
gation functions from the list described briefly in Table 1.1 that are applied on a set of moving
points are implemented. The algorithm and implementation detail used for the realization of the
operations was discussed in the same chapter. The operation mpt_centroid which computes the
centroid moving point between set of moving points was implemented to provide three different
alternative calling interfaces. Those interfaces provides access to the three algorithms (“shared
point”, “closure” and “dormant point”) used to compute the centroid. From the list in Table 1.1,
operations mpt_outlier and mpt_array were not implemented since they can be obtained using few
formal PostGIS operations. The aggregation operations were also tested and their result is pre-
sented in the same chapter. Visualization of results for selected aggregation operations was also
provided.

In general, the research project was successful in the implementation of moving point type
and operations on them. Furthermore, all initial expectations regarding the implementation of
alternative interpolation functions and aggregating functions have been fulfilled entirely.

7.3 RECOMMENDATION

This research project was successful to contribute a library package that allowed to store moving
objects in a DBMS and perform operations on them to the wider spatiotemporal database research
area. However, our research still is the initial phase to the development of a complete library pack-
age that supports changes in both location and extent. In line with final products of the research,

78

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

design and implementation of moving lines, moving regions and other abstract representations is
highly advisable for further research work. Furthermore, all the design and implementation of
the moving point data type and operations was based on moving points from three-dimensional
spaces. We managed to include only the representation of the type in a two-dimensional space.
One simple extension is to extend this research to support for operations on moving points from
two dimensional spaces. In line with or independent of this research, infrastructure based interpo-
lation method is potential extensions to the spatiotemporal databases. The operations were tested
on real world moving object datasets. However, no performance analysis is done for the opera-
tions. Testing the performance of the operations and algorithms implemented for this research
using larger datasets is one possible extension to this research.

79

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

80

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Bibliography

Luis Otavio Alvares, Vania Bogorny, Bart Kuijpers, Jose Antonio Fernandes de Macedo, Bart Moe-
lans, and Alejandro Vaisman. A model for enriching trajectories with semantic geographical
information. In Proceedings of the 15th annual ACM international symposium on Advances in
geographic information systems, page 22. ACM, 2007.

Ludger Becker, Henrik Blunck, Klaus Hinrichs, and Jan Vahrenhold. A Framework for Repre-
senting Moving Objects, volume 3180 of Lecture Notes in Computer Science, book section 82,
pages 854–863. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22936-0. doi: 10.1007/
978-3-540-30075-5_82. URL http://dx.doi.org/10.1007/978-3-540-30075-5_82.

Tesfaye Bezaye. Embedding data types for continuously evolving objects in a dbms, 2013.

Victor Teixeira De Almeida and Ralf Hartmut Güting. Indexing the trajectories of moving objects
in networks*. GeoInformatica, 9(1):33–60, 2005.

Afshin Eftekhar. Development of moving feature data types in a major dbms, 2012.

Martin Erwig, Ralf Hartmut Güting, Markus Schneider, Michalis Vazirgiannis, et al. Spatio-
temporal data types: An approach to modeling and querying moving objects in databases.
GeoInformatica, 3(3):269–296, 1999.

Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, and Markus Schneider. A data model and
data structures for moving objects databases, volume 29. ACM, 2000.

Ralf Hartmut Güting, Michael H Böhlen, Martin Erwig, Christian S Jensen, Nikos A Lorent-
zos, Markus Schneider, and Michalis Vazirgiannis. A foundation for representing and querying
moving objects. ACM Transactions on Database Systems (TODS), 25(1):1–42, 2000.

Ralf Hartmut Güting, Thomas Behr, and Christian Düntgen. SECONDO: A Platform for Mov-
ing Objects Database Research and for Publishing and Integrating Research Implementations. Fer-
nuniv., Fak. für Mathematik u. Informatik, 2010.

José Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, and Markus
Schneider. Algorithms for moving objects databases. The Computer Journal, 46(6):680–712,
2003.

Zhenhui Li, Jiawei Han, Ming Ji, Lu-An Tang, Yintao Yu, Bolin Ding, Jae-Gil Lee, and Roland
Kays. Movemine: Mining moving object data for discovery of animal movement patterns. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(4):37, 2011.

Thomas Lockhart. Postgresql user’s guide. PostgreSQL Inc, 2013.

Nikos Pelekis, Babis Theodoulidis, Ioannis Kopanakis, and Yannis Theodoridis. Literature review
of spatio-temporal database models. The Knowledge Engineering Review, 19(03):235–274, 2004.

81

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Markus Schneider. Moving objects in databases and gis: State-of-the-art and open problems. In
Research Trends in Geographic Information Science, pages 169–187. Springer, 2009.

Timos Sellis. Research issues in spatio-temporal database systems. In Advances in Spatial Databases,
pages 5–11. Springer, 1999.

Byunggu Yu and Seon Ho Kim. Interpolating and using most likely trajectories in moving-objects
databases. In Database and Expert Systems Applications, pages 718–727. Springer, 2006.

Byunggu Yu, Seon Ho Kim, Thomas Bailey, and Ruben Gamboa. Curve-based representation
of moving object trajectories. In Database Engineering and Applications Symposium, 2004.
IDEAS’04. Proceedings. International, pages 419–425. IEEE, 2004.

82

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

Appendix A

Type and operation initialization queries

1 /∗ TYPE AND FUNCTION INITIALIZATION QUERY STATMENTS ∗/
2

3 /∗ ___ ∗/
4 /∗ ____________________ MPOINT type f o r PostgreSQL STATMENTS _______________________ ∗/
5 /∗ ___ ∗/
6

7 CREATE TYPE mpoint ;
8

9 CREATE OR REPLACE FUNCTION mpoint_in (c s t r i n g)
10 RETURNS mpoint AS
11 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpoint_in ’
12 LANGUAGE c IMMUTABLE STRICT ;
13

14 CREATE OR REPLACE FUNCTION mpoint_out (mpoint)
15 RETURNS c s t r i n g AS
16 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpoint_out ’
17 LANGUAGE c IMMUTABLE STRICT ;
18

19 CREATE TYPE mpoint (
20 inpu t = mpoint_in ,
21 output = mpoint_out ,
22 a l i gnment = double
23) ;
24

25

26 /∗ ___ ∗/
27 /∗ _____________________ MREAL type f o r PostgreSQL STATMENTS _______________________ ∗/
28 /∗ ___ ∗/
29

30 CREATE TYPE MMREAL;
31

32 CREATE OR REPLACE FUNCTION mrea l_ in (c s t r i n g)
33 RETURNS MMREAL AS
34 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mrea l_ in ’
35 LANGUAGE c IMMUTABLE STRICT ;
36

37 CREATE OR REPLACE FUNCTION mrea l_out (MMREAL)
38 RETURNS c s t r i n g AS
39 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mreal_out ’
40 LANGUAGE c IMMUTABLE STRICT ;
41

42 CREATE TYPE MMREAL(
43 inpu t = mrea l_ in ,
44 output = mreal_out ,
45 a l i gnment = double
46) ;
47

48 /∗ ___ ∗/
49 /∗ ____________________ MPERIOD type f o r PostgreSQL STATMENTS ______________________ ∗/
50 /∗ ___ ∗/
51

52 CREATE TYPE MPERIOD;
53

54 CREATE OR REPLACE FUNCTION mperiod_in (c s t r i n g)
55 RETURNS MPERIOD AS
56 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mperiod_in ’

83

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

57 LANGUAGE c IMMUTABLE STRICT ;
58

59 CREATE OR REPLACE FUNCTION mperiod_out (MPERIOD)
60 RETURNS c s t r i n g AS
61 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mperiod_out ’
62 LANGUAGE c IMMUTABLE STRICT ;
63

64 CREATE TYPE MPERIOD(
65 inpu t = mperiod_in ,
66 output = mperiod_out ,
67 a l i gnment = double
68) ;
69

70 /∗ ___ ∗/
71 /∗ _____________Type INTIME_REAL type f o r PostgreSQL STATMENTS _____________________ ∗/
72 /∗ ___ ∗/
73

74 CREATE TYPE INTIME_REAL ;
75

76 CREATE OR REPLACE FUNCTION i n t i m e _ i n (c s t r i n g)
77 RETURNS INTIME_REAL AS
78 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ i n t ime_ in ’
79 LANGUAGE c IMMUTABLE STRICT ;
80

81 CREATE OR REPLACE FUNCTION int ime_out (INTIME_REAL)
82 RETURNS c s t r i n g AS
83 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ in t ime_out ’
84 LANGUAGE c IMMUTABLE STRICT ;
85

86 CREATE TYPE INTIME_REAL(
87 inpu t = i n t ime_ in ,
88 output = in t ime_out ,
89 a l i gnment = double
90) ;
91

92 /∗ ___ ∗/
93 /∗ ____________Type INTIME_MPOINT type f o r PostgreSQL STATMENTS ____________________ ∗/
94 /∗ ___ ∗/
95

96

97 CREATE TYPE INTIME_MPOINT;
98

99 CREATE OR REPLACE FUNCTION int ime_mpoint_ in (c s t r i n g)
100 RETURNS INTIME_MPOINT AS
101 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ int ime_mpoint_ in ’
102 LANGUAGE c IMMUTABLE STRICT ;
103

104 CREATE OR REPLACE FUNCTION int ime_mpoint_out (INTIME_MPOINT)
105 RETURNS c s t r i n g AS
106 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ int ime_mpoint_out ’
107 LANGUAGE c IMMUTABLE STRICT ;
108

109 CREATE TYPE INTIME_mpoint (
110 inpu t = in t ime_mpoint_ in ,
111 output = int ime_mpoint_out ,
112 a l i gnment = double
113) ;
114

115 /∗ ___ ∗/
116 /∗ ____________________mpt_deft ime (mpoint) f u n c t i o n SQL STATMENTS __________________ ∗/
117 /∗ ___ ∗/
118

119 CREATE OR REPLACE FUNCTION mpt_deft ime (mpoint)
120 RETURNS c s t r i n g AS
121 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_deft ime ’
122 LANGUAGE c IMMUTABLE STRICT ;
123

124 /∗ ___ ∗/
125 /∗ ____________________mpt_locat ion (mpoint) f u n c t i o n SQL STATMENTS _________________ ∗/

84

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

126 /∗ ___ ∗/
127

128 CREATE OR REPLACE FUNCTION mpt_ loca t ion (mpoint)
129 RETURNS c s t r i n g AS
130 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_ loca t ion ’
131 LANGUAGE c IMMUTABLE STRICT ;
132

133 /∗ ___ ∗/
134 /∗ ____________________mpt_sr id (mpoint) f u n c t i o n SQL STATMENTS _____________________ ∗/
135 /∗ ___ ∗/
136

137 CREATE OR REPLACE FUNCTION mpt_sr id (mpoint)
138 RETURNS INT AS
139 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_sr id ’
140 LANGUAGE c IMMUTABLE STRICT ;
141

142 /∗ ___ ∗/
143 /∗ ____________________mpt_tzid (mpoint) f u n c t i o n SQL STATMENTS _____________________ ∗/
144 /∗ ___ ∗/
145

146 CREATE OR REPLACE FUNCTION mpt_tz id (mpoint)
147 RETURNS INT AS
148 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_tzid ’
149 LANGUAGE c IMMUTABLE STRICT ;
150

151 /∗ ___ ∗/
152 /∗ ___________func t ion i n s t _ i n t i m e _ m p o i n t (INTIME_REAL) f u n c t i o n SQL STATMENTS ______ ∗/
153 /∗ ___ ∗/
154

155 CREATE OR REPLACE FUNCTION i n s t _ i n t i m e _ m p o i n t (CSTRING)
156 RETURNS CSTRING AS
157 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ i n s t_ in t ime_mpo in t ’
158 LANGUAGE c IMMUTABLE STRICT ;
159

160 /∗ ___ ∗/
161 /∗ ___________func t ion va l_ in t ime_mpoin t (INTIME_REAL) f u n c t i o n SQL STATMENTS _______ ∗/
162 /∗ ___ ∗/
163

164 CREATE OR REPLACE FUNCTION va l_ in t ime_mpoin t (CSTRING)
165 RETURNS CSTRING AS
166 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ va l_ in t ime_mpoint ’
167 LANGUAGE c IMMUTABLE STRICT ;
168

169 /∗ ___ ∗/
170 /∗ ___________func t ion v a l _ i n t i m e _ m r e a l (INTIME_REAL) f u n c t i o n SQL STATMENTS ________ ∗/
171 /∗ ___ ∗/
172

173 CREATE OR REPLACE FUNCTION v a l _ i n t i m e _ m r e a l (CSTRING)
174 RETURNS CSTRING AS
175 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ v a l _ i n t i m e _ m r e a l ’
176 LANGUAGE c IMMUTABLE STRICT ;
177

178 /∗ ___ ∗/
179 /∗ ___________func t ion i n s t _ i n t i m e _ m r e a l (INTIME_REAL) f u n c t i o n SQL STATMENTS _______ ∗/
180 /∗ ___ ∗/
181

182 CREATE OR REPLACE FUNCTION i n s t _ i n t i m e _ m r e a l (CSTRING)
183 RETURNS CSTRING AS
184 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ i n s t _ i n t i m e _ m r e a l ’
185 LANGUAGE c IMMUTABLE STRICT ;
186

187 /∗ ___ ∗/
188 /∗ ___________func t ion i n t i m e _ i n s t (INTIME_REAL) f u n c t i o n SQL STATMENTS _____________ ∗/
189 /∗ ___ ∗/
190

191 CREATE OR REPLACE FUNCTION i n t i m e _ i n s t (INTIME_REAL)
192 RETURNS CSTRING AS
193 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ i n t i m e _ i n s t ’
194 LANGUAGE c IMMUTABLE STRICT ;

85

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

195

196 /∗ ___ ∗/
197 /∗ ____________funct ion i n t i m e _ v a l (INTIME_REAL) f u n c t i o n SQL STATMENTS _____________ ∗/
198 /∗ ___ ∗/
199

200 CREATE OR REPLACE FUNCTION i n t i m e _ v a l (INTIME_REAL)
201 RETURNS CSTRING AS
202 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ i n t i m e _ v a l ’
203 LANGUAGE c IMMUTABLE STRICT ;
204

205 /∗ ___ ∗/
206 /∗ _________ func t ion MPT_ATINSTANT(mpoint) f u n c t i o n SQL STATMENTS __________________ ∗/
207 /∗ ___ ∗/
208

209 CREATE OR REPLACE FUNCTION m p t _ a t i n s t a n t (mpoint , c s t r i n g)
210 RETURNS c s t r i n g AS
211 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m p t _ a t i n s t a n t ’
212 LANGUAGE c IMMUTABLE STRICT ;
213

214 /∗ ___ ∗/
215 /∗ _________ func t ion MPT_ATINSTANT(mpoint) CUBIC f u n c t i o n SQL STATMENTS ____________ ∗/
216 /∗ ___ ∗/
217

218 CREATE OR REPLACE FUNCTION m p t _ a t i n s t a n t (mpoint , c s t r i n g , bool)
219 RETURNS c s t r i n g AS
220 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m p t _ a t i n s t a n t ’
221 LANGUAGE c IMMUTABLE STRICT ;
222

223 /∗ ___ ∗/
224 /∗ _________ func t ion MPT_INTIAL (mpoint) f u n c t i o n SQL STATMENTS______________________ ∗/
225 /∗ ___ ∗/
226

227 CREATE OR REPLACE FUNCTION m p t _ i n i t i a l (mpoint)
228 RETURNS c s t r i n g AS
229 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m p t _ i n i t i a l ’
230 LANGUAGE c IMMUTABLE STRICT ;
231

232 /∗ ___ ∗/
233 /∗ _________ func t ion MPT_FINAL(mpoint) f u n c t i o n SQL STATMENTS ______________________ ∗/
234 /∗ ___ ∗/
235

236 CREATE OR REPLACE FUNCTION m p t _ f i n a l (mpoint)
237 RETURNS c s t r i n g AS
238 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_ f ina l ’
239 LANGUAGE c IMMUTABLE STRICT ;
240

241 /∗ ___ ∗/
242 /∗ _________ func t ion PERIOD_FINAL(mpoint) f u n c t i o n SQL STATMENTS ___________________ ∗/
243 /∗ ___ ∗/
244

245 CREATE OR REPLACE FUNCTION p e r i o d _ f i n a l (CSTRING)
246 RETURNS c s t r i n g AS
247 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ p e r i o d _ f i n a l ’
248 LANGUAGE c IMMUTABLE STRICT ;
249

250 /∗ ___ ∗/
251 /∗ _________ func t ion PERIOD_INITIAL (mpoint) f u n c t i o n SQL STATMENTS _________________ ∗/
252 /∗ ___ ∗/
253

254 CREATE OR REPLACE FUNCTION p e r i o d _ i n i t i a l (CSTRING)
255 RETURNS c s t r i n g AS
256 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ p e r i o d _ i n i t i a l ’
257 LANGUAGE c IMMUTABLE STRICT ;
258

259 /∗ ___ ∗/
260 /∗ _________ func t ion MREAL_FINAL(mpoint) f u n c t i o n SQL STATMENTS ____________________ ∗/
261 /∗ ___ ∗/
262

263 CREATE OR REPLACE FUNCTION m r e a l _ f i n a l (CSTRING)

86

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

264 RETURNS c s t r i n g AS
265 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m r e a l _ f i n a l ’
266 LANGUAGE c IMMUTABLE STRICT ;
267

268 /∗ ___ ∗/
269 /∗ _________ func t ion MREAL_INITIAL (mpoint) f u n c t i o n SQL STATMENTS __________________ ∗/
270 /∗ ___ ∗/
271

272 CREATE OR REPLACE FUNCTION m r e a l _ i n i t i a l (CSTRING)
273 RETURNS c s t r i n g AS
274 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m r e a l _ i n i t i a l ’
275 LANGUAGE c IMMUTABLE STRICT ;
276

277 /∗ ___ ∗/
278 /∗ _____ func t ion MPT_PRESENT_ATINSTANT(mpoint) f u n c t i o n SQL STATMENTS ______________ ∗/
279 /∗ ___ ∗/
280

281 CREATE OR REPLACE FUNCTION m p t _ p r e s e n t _ a t i n s t a n t (mpoint , c s t r i n g)
282 RETURNS bool AS
283 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m p t _ p r e s e n t _ a t i n s t a n t ’
284 LANGUAGE c IMMUTABLE STRICT ;
285

286 /∗ ___ ∗/
287 /∗ _____ func t ion MPT_ATPERIOD(mpoint) f u n c t i o n SQL STATMENTS _______________________ ∗/
288 /∗ ___ ∗/
289

290 CREATE OR REPLACE FUNCTION mpt_a tper iod (mpoint , c s t r i n g)
291 RETURNS c s t r i n g AS
292 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_atper iod ’
293 LANGUAGE c IMMUTABLE STRICT ;
294

295 /∗ ___ ∗/
296 /∗ _____ func t ion MPT_PRESENT_ATPERIOD(mpoint) f u n c t i o n SQL STATMENTS _______________ ∗/
297 /∗ ___ ∗/
298

299 CREATE OR REPLACE FUNCTION m p t _ p r e s e n t _ a t p e r i o d (mpoint , c s t r i n g)
300 RETURNS bool AS
301 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m p t _ p r e s e n t _ a t p e r i o d ’
302 LANGUAGE c IMMUTABLE STRICT ;
303

304 /∗ ___ ∗/
305 /∗ _____ func t ion MPT_TRAJECTORIES(mpoint) f u n c t i o n SQL STATMENTS ___________________ ∗/
306 /∗ ___ ∗/
307

308 CREATE OR REPLACE FUNCTION m p t _ t r a j e c t o r i e s (mpoint)
309 RETURNS CSTRING AS
310 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ m p t _ t r a j e c t o r i e s ’
311 LANGUAGE c IMMUTABLE STRICT ;
312

313 /∗ ___ ∗/
314 /∗ _________ func t ion MPT_DISTANCE(mpoint) f u n c t i o n SQL STATMENTS ___________________ ∗/
315 /∗ ___ ∗/
316

317 CREATE OR REPLACE FUNCTION m p t _ d i s t a n c e (mpoint)
318 RETURNS c s t r i n g AS
319 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_d i s t ance ’
320 LANGUAGE c IMMUTABLE STRICT ;
321

322 /∗ ___ ∗/
323 /∗ _________ func t ion MPT_SPEED(mpoint) f u n c t i o n SQL STATMENTS ______________________ ∗/
324 /∗ ___ ∗/
325

326 CREATE OR REPLACE FUNCTION mpt_speed (mpoint)
327 RETURNS c s t r i n g AS
328 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_speed ’
329 LANGUAGE c IMMUTABLE STRICT ;
330

331 /∗ ___ ∗/
332 /∗ _________ func t ion MPT_VALID(mpoint) f u n c t i o n SQL STATMENTS ______________________ ∗/

87

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

333 /∗ ___ ∗/
334

335 CREATE OR REPLACE FUNCTION mpt_va l id (mpoint)
336 RETURNS bool AS
337 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_va l id ’
338 LANGUAGE c IMMUTABLE STRICT ;
339

340 /∗ ___ ∗/
341 /∗ _________ func t ion MPT_MREAL_VALID(mpoint) f u n c t i o n SQL STATMENTS ________________ ∗/
342 /∗ ___ ∗/
343

344 CREATE OR REPLACE FUNCTION mpt_mrea l_va l id (mpoint , mmreal)
345 RETURNS bool AS
346 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_mrea l_va l id ’
347 LANGUAGE c IMMUTABLE STRICT ;
348

349 /∗ ___ ∗/
350 /∗ _________ func t ion MPT_TRANSFORM(mpoint) f u n c t i o n SQL STATMENTS ________________ ∗/
351 /∗ ___ ∗/
352

353 CREATE OR REPLACE FUNCTION mpt_transform (mpoint , i n t e g e r)
354 RETURNS CSTRING AS
355 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_transform ’
356 LANGUAGE c IMMUTABLE STRICT ;
357

358

359 /∗ ___ ∗/
360 /∗ ______ mpt_centro id AGGREGATE f u n c t i o n f o r PostgreSQL STATMENTS _________________ ∗/
361 /∗ ___ ∗/
362

363 /∗ Crea t ion of the dummy mpoint type f o r mpt_centro id ∗/
364

365 CREATE TYPE mpointa ;
366

367 CREATE OR REPLACE FUNCTION mpt_in (c s t r i n g)
368 RETURNS mpointa AS
369 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpa_in ’
370 LANGUAGE c IMMUTABLE STRICT ;
371

372 CREATE OR REPLACE FUNCTION mpt_out (mpointa)
373 RETURNS c s t r i n g AS
374 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpa_out ’
375 LANGUAGE c IMMUTABLE STRICT ;
376

377 CREATE TYPE mpointa (
378 inpu t = mpt_in ,
379 output = mpt_out ,
380 a l i gnment = double
381) ;
382

383

384 /∗ I n i t i a l i z a t i o n of s t a t e t r a n s i t i o n f u n c t i o n and f i n a l f u n c t i o n f o r a g g r e g a t e f u n c t i o n
mpt_centro id ∗/

385

386 CREATE OR REPLACE FUNCTION mpt_avg (mpointa , mpoint , bool)
387 RETURNS mpointa AS
388 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_avg ’
389 LANGUAGE c IMMUTABLE;
390

391 CREATE OR REPLACE FUNCTION mpt_avg (mpointa , mpoint)
392 RETURNS mpointa AS
393 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_avg ’
394 LANGUAGE c IMMUTABLE;
395

396 CREATE OR REPLACE FUNCTION m p t _ a v g _ f i n a l (mpointa)
397 RETURNS c s t r i n g AS
398 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_avg_ f ina l ’
399 LANGUAGE c IMMUTABLE;
400

88

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

401

402 /∗ Crea t ion of the Aggrega t e f u n c t i o n mpt_centro id f o r moving p o i n t s ∗/
403

404 CREATE AGGREGATE mpt_centro id (mpoint , bool) (
405 SFUNC = mpt_avg ,
406 STYPE = mpointa ,
407 FINALFUNC = m p t _ a v g _ f i n a l
408) ;
409

410 CREATE AGGREGATE mpt_centro id (mpoint) (
411 SFUNC = mpt_avg ,
412 STYPE = mpointa ,
413 FINALFUNC = m p t _ a v g _ f i n a l
414) ;
415

416

417 /∗ ___ ∗/
418 /∗ ______ mpt_makeline AGGREGATE f u n c t i o n f o r PostgreSQL STATMENTS _________________ ∗/
419 /∗ ___ ∗/
420

421 /∗ I n i t i a l i z a t i o n of s t a t e t r a n s i t i o n f u n c t i o n and f i n a l f u n c t i o n f o r a g g r e g a t e f u n c t i o n
mpt_centro id ∗/

422

423 CREATE OR REPLACE FUNCTION m p t _ m a k e l i n e _ f i n a l (mpointa)
424 RETURNS c s t r i n g AS
425 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_make l ine_ f ina l ’
426 LANGUAGE c IMMUTABLE;
427

428

429 CREATE OR REPLACE FUNCTION mpt_makeline (mpointa , mpoint)
430 RETURNS mpointa AS
431 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_makeline ’
432 LANGUAGE c IMMUTABLE;
433

434 /∗ Crea t ion of the Aggrega t e f u n c t i o n mpt_centro id f o r moving p o i n t s ∗/
435

436

437

438 CREATE AGGREGATE mpt_makeline (mpoint) (
439 SFUNC = mpt_makeline ,
440 STYPE = mpointa ,
441 FINALFUNC = m p t _ m a k e l i n e _ f i n a l
442) ;
443

444 /∗ ___ ∗/
445 /∗ ______ mpt_ t r a j e c to ry_min AGGREGATE f u n c t i o n f o r PostgreSQL STATMENTS _________________

∗/
446 /∗ ___ ∗/
447

448

449 /∗ I n i t i a l i z a t i o n of s t a t e t r a n s i t i o n f u n c t i o n and f i n a l f u n c t i o n f o r a g g r e g a t e f u n c t i o n
mpt_centro id ∗/

450

451

452

453 CREATE OR REPLACE FUNCTION m p t _ m a k e l i n e _ f i n a l (mpointa)
454 RETURNS c s t r i n g AS
455 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_make l ine_ f ina l ’
456 LANGUAGE c IMMUTABLE;
457

458

459 CREATE OR REPLACE FUNCTION mpt_min_ta j e c tory (mpointa , mpoint)
460 RETURNS mpointa AS
461 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_min_ta j ec tory ’
462 LANGUAGE c IMMUTABLE;
463

464 /∗ Crea t ion of the Aggrega t e f u n c t i o n mpt_centro id f o r moving p o i n t s ∗/
465

466

89

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

467

468 CREATE AGGREGATE mpt_ t r a j e c to ry_min (
469 SFUNC = mpt_min_ta j ec tory ,
470 BASETYPE=mpoint ,
471 STYPE = mpointa ,
472 FINALFUNC = m p t _ m a k e l i n e _ f i n a l
473) ;
474

475

476 /∗ ___ ∗/
477 /∗ ______ mpt_max_ta j ec tory AGGREGATE f u n c t i o n f o r PostgreSQL STATMENTS _________________

∗/
478 /∗ ___ ∗/
479

480

481 /∗ I n i t i a l i z a t i o n of s t a t e t r a n s i t i o n f u n c t i o n and f i n a l f u n c t i o n f o r a g g r e g a t e f u n c t i o n
mpt_centro id ∗/

482

483

484

485 CREATE OR REPLACE FUNCTION m p t _ m a k e l i n e _ f i n a l (mpointa)
486 RETURNS c s t r i n g AS
487 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_make l ine_ f ina l ’
488 LANGUAGE c IMMUTABLE;
489

490

491 CREATE OR REPLACE FUNCTION mpt_max_ta j ec tory (mpointa , mpoint)
492 RETURNS mpointa AS
493 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_max_ta jec tory ’
494 LANGUAGE c IMMUTABLE;
495

496 /∗ Crea t ion of the Aggrega t e f u n c t i o n mpt_centro id f o r moving p o i n t s ∗/
497

498

499

500 CREATE AGGREGATE mpt_t ra j e c tory_max (
501 SFUNC = mpt_max_ta jec tory ,
502 BASETYPE=mpoint ,
503 STYPE = mpointa ,
504 FINALFUNC = m p t _ m a k e l i n e _ f i n a l
505) ;
506

507

508 /∗ ___ ∗/
509 /∗ _________ func t ion MPT_AVG_SPEED(mpoint) f u n c t i o n SQL STATMENTS ______________________

∗/
510 /∗ ___ ∗/
511

512 CREATE OR REPLACE FUNCTION mpt_avg_speed (mpoint)
513 RETURNS r e a l AS
514 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_avg_speed ’
515 LANGUAGE c IMMUTABLE STRICT ;
516

517

518

519 /∗ ___ ∗/
520 /∗ _________ func t ion MPT_MAX_SPEED(mpoint) f u n c t i o n SQL STATMENTS ______________________

∗/
521 /∗ ___ ∗/
522

523 CREATE OR REPLACE FUNCTION mpt_max_speed (mpoint)
524 RETURNS r e a l AS
525 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_max_speed ’
526 LANGUAGE c IMMUTABLE STRICT ;
527

528

529 /∗ ___ ∗/
530 /∗ _________ func t ion MAX_MAX_SPEED(mpoint) f u n c t i o n SQL STATMENTS ______________________

∗/

90

DEVELOPMENT OF A MOVING OBJECT DATA TYPE IN A DBMS

531 /∗ ___ ∗/
532

533 CREATE OR REPLACE FUNCTION mpt_min_speed (mpoint)
534 RETURNS r e a l AS
535 ’D: / p o s t g i s / p o s t g i s p r o j e c t /Debug/ P o s t g i s R a s t e r ’ , ’ mpt_min_speed ’
536 LANGUAGE c IMMUTABLE STRICT ;

91

