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ABSTRACT  

Three dimensional models have been widely used for various purposes ranging from urban 
planning to 3D gaming applications. Reconstruction of three dimensional models has been 
achieved through various datasets like aerial/terrestrial laser scanning and aerial/ terrestrial 
images. A lot of work has been done in this field applying various approaches. Most of it focuses 
either on estimation of primitives or uses prior information about the structure. If we focus on 
the case of Image-based modeling, reconstructed outputs are largely in the form of mesh models.  

In this research thesis, simple geometric model of a building is created using many overlapping 
images. Digital camera is used to capture several images of the building to be reconstructed. A 
point cloud is reconstructed by applying Structure from Motion (SfM). The reconstructed point 
cloud thus obtained is in an arbitrary coordinate system and is required to be transformed to 
Global coordinate system. This is achieved by applying 3D similarity transform. On the 
transformed point cloud, RANSAC-based plane segmentation is implemented for the detection 
of dominant planes. This approach was chosen over other segmentation approaches because of 
its robustness to outliers and simplicity. Since the data may consist of many outliers, these are 
removed using statistical filter. The identified dominant planes represent the building wall. 
However, if ground has sufficient texture, a plane corresponding to ground will also get detected. 
The intersection of ground plane and all the other planes that are perpendicular to ground plane, 
are used to estimate two dimensional boundary of the building. The obtained two dimensional 
boundaries are then extruded to an estimated height of the building. The model is tested against 
two datasets the accuracy of which is discussed. The models created are a close approximation of 
the actual structure. However, given the poor accuracy of the digital camera GPS, the positional 
accuracy of the model does get affected. 

 

Keywords: Image-based Modeling, Three dimensional modeling, Structure from motion, Plane segmentation, 
3D Similarity transform. 
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1. INTRODUCTION 

1.1. Background 

Three dimensional models have been widely used for several applications such as urban 
planning, photo tourism [1] and cultural heritage documentation [2]. In recent years, aerial and 
terrestrial laser scanning has been found to produce most accurate three dimensional models. 
However, the cost of acquisition could be a limiting factor for some applications. Another 
limitation of aerial laser scanning is the unavailability of facade details. It mainly provides roof 
information and has very less or no data corresponding to the vertical walls. Although, it can be 
combined with terrestrial laser scanning for facade details [4], but, this further increases the cost 
of acquisition. Instead, Image based modeling could be exploited as a low cost alternative to laser 
scanning, especially for applications that do not require high accuracy and want to save on 
acquisition cost. 

Image based modeling is a process by which information from two or more images is extracted 
to create a three dimensional model for an object. Image based model provides flexibility in 
terms of different viewing angles and positions while being very economic. Color and texture 
information is also captured in the data. Images can be acquired using complex cameras or 
sensors applied in photogrammetry or using consumer cameras. With advancement in 
technology, even the consumer cameras are capable of capturing images at high resolution. Some 
cameras have additional feature of Geo-tagging the images.  Although the accuracy of the GPS 
camera is quite low (approximately 10 metres), yet they can be satisfactorily used for applications 
with low accuracy requirement.  

Softwares like Autodesk 123D catch and Image modeler are capable of creating three 
dimensional models automatically. Autodesk 123D catch automatically orients the images in 
arbitrary coordinate system and creates a mesh model. User interaction may be required for 
stitching the images if the software is not able to identify common features in the input images 
and, to specify the scale. It does not support geometric modeling. Image modeler supports 
geometric modelling but the buildings have to be modeled manually. User interaction increases 
the time and effort. An automated system is better suited when rapid reconstruction of a large 
area is to be achieved quickly. The models created automatically might be less accurate but could 
be helpful in disaster response systems to assess the situation quickly. 

Three dimensional reconstructions are commonly visualised as mesh models. These models may 
have jagged boundaries in case of sparse point cloud, resulting in a model that is difficult to edit. 
In Laser scanning, three dimensional models have been derived using the plane-based 
segmentation approach along with prior knowledge of the scene [5]. Similar approach can also be 
implemented for SfM point clouds. Additional properties of color and texture which are not 
available in laser scanning may also be exploited that can increase the accuracy of the results. 
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Instead of computing the model from the planes extracted, two dimensional lines computed by 
intersection of the planes can be a possible solution for reconstructing three dimensional models. 
These intersection lines can help extract the two dimensional boundary of urban structures based 
on which three dimensional models can be reconstructed. 

1.2. Motivation and Problem Statement 

Image based modeling has been a popular topic of research [6, 7]. It can reconstruct significantly 
accurate models at low cost [8] as compared to laser scanning. The initial cost of equipment itself 
is quite high in case of laser scanning, whereas, image-based modeling requires only a good 
quality camera. Image-based modelling is not restricted to terrestrial images. Aerial images, 
satellite images, videos and airborne LIDAR have also been used in some researches. The main 
drawback with aerial and satellite based images is that they largely capture roof information with 
a very limited view of vertical walls of the buildings. On the contrary, ground based images at 
high resolution can effectively recover facade information.  

3D point cloud from images can be extracted through Structure from Motion (SfM) and 
subsequent dense image matching. In traditional photogrammetric approach, 3D location and 
camera pose were required as a priori information. SfM solves this problem by using key points 
in the images for estimating scene geometry, camera position and orientation. The key points are 
the common features invariant to scale and illumination that could be identified in the image 
pairs by applying a method called SIFT [9]. However, SfM results in a point cloud in an arbitrary 
coordinate system with no scale information. Hence, transformation to absolute coordinate 
system is achieved by 3D similarity transform using the Ground Control Points (GCP).  

Most often the three dimensional model, from point cloud, are produced as polygonal mesh 
model also referred as Poisson Surface Reconstruction which are complex and difficult to store, 
index or render efficiently [10]. They do not follow the architectural constraints of the scene. 
Therefore, if simplified geometry is derived from the mesh models, we risk increasing the already 
existent error on further processing. Moreover, mesh models tend to look unpleasant when input 
point cloud has high noise level [11]. Another approach explored by Furukawa et al. [3] is by 
segmentation of point cloud obtained through SfM to derive a front facing model. The 
intersection of planes was used to calculate the dominant lines in the scene. These lines were 
used in depth map to implement structural constraints. This approach was primarily aimed at 
reconstruction of a single depth map, however, it does not discuss about defining the complete 
boundary of a structure. Our approach exploits these dominant lines to obtain the boundary of 
buildings on ground and derive a box-like model by extruding the two dimensional building 
boundary to an estimated height of the building. 
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1.3. Research Identification 

1.3.1. Research Objective  

My research topic focuses on reconstruction of three dimensional building models from 
geotagged images captured using low cost consumer cameras. The main objective of this study is 
to automatically identify the two dimensional boundary of buildings, extrude it to the estimated 
height of the building resulting in a three dimensional geometric model of the building and 
further use the GPS coordinates from images to transform it to global coordinate system and 
assess the quality of the model. 

Sub-Objectives: 

 To use the GPS location from geo tag in images to transform it to global coordinate system, 

and assess the quality of the model. 

 To automatically identify the two dimensional boundary of buildings from the point cloud 

generated through SfM using the plane-based segmentation approach. 

 To extrude the building plane to the estimated height of the building resulting in a 3D 

geometric model of the building. 

1.3.2.   Research questions 

1. What considerations should be taken into account for acquiring images? 

2. What is the effect on modeling due to error in point cloud as they are reconstructed from 

images by SfM software? 

3. How is the accuracy of the model affected when Helmert transformation (7 – parameter 

transformation) is applied for transforming it to global coordinate system using GPS 

coordinates with low accuracy? 

4. Which segmentation approach is suitable for planer point cloud segmentation? 

5. How are occlusions and absence of data handled? 

6. Under what conditions this modeling approach would be successful or fail? 

1.4. Innovation Aimed at 

Innovation of this research is to develop a low cost automatic method to derive three 
dimensional models from Geo-tagged images by using structure from motion and dense image 
matching techniques. Plane based segmentation method or surface extraction method is explored 
to extract the two dimensional boundary information. The two dimensional line retrieved by 
intersection of the planes are used to define the boundary of buildings. 
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1.5. Thesis Structure 

The research work is organized as follows:  

Chapter 1: Introduction, this section presents general overview about the research work. It 
describes the basic idea of topic, motivation, problem statement, research objectives, and 
research questions.  

Chapter 2: Literature Review, this chapter deals with theoretical background of the study and 
literature review. It also explains various components of computer vision and digital 
photogrammetry.  

Chapter 3: Methodology, this chapter describes the complete workflow of the study and 
description in details, about data used, hardware and software tools used.  

Chapter 4: Results and Discussion, this chapter describe the experiments on the selected data, 
achieved results, its discussion and analysis.  

Chapter 5: Conclusion and Recommendation, this section describes the answer of the research 
questions in concluded form and recommendations for further study. 
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2. LITERATURE REVIEW 

2.1. Introduction 

Three dimensional modeling has been described by Remondino and El-Hakim [6] as a process 
that begins with data collection and finally results in three dimensional models capable of being 
visualized and analyzed interactively on a computer and hence facilitating user friendliness to 
various operations. Three dimensional models are being actively used in various fields like urban 
planning, emergency response systems and cultural heritage documentation, to name a handful 
few.  A large variety of data from different sources is utilized for the reconstructing these models 
such as aerial and terrestrial laser scanning, stereo image pairs, range images and set of 
overlapping images. Our research on “Automated 3D feature extraction for simple geometry 
buildings using images for GIS data collection” focuses on the automation of the modeling 
process using point clouds obtained through structure from motion to reconstruct building 
geometry. This has been a topic of research for very long in both computer vision and 
photogrammetry but, there is still a long way to go in making the process completely free from 
user interaction. Some existing approaches are reviewed below.  

2.2. Point cloud reconstruction 

Point Cloud data is used as input in our research to reconstruct the building geometry. This 
Point cloud is obtained through a sequence of images. In this section we discuss the process of 
generating point cloud from sequence of photographs. 

A sparse three dimensional scene structure is derived from a sequence of overlapping images 
through Structure from Motion (SfM). Westoby et al.[8] have described in their paper 
implementation of SfM in geosciences applications for generating DEM from overlapping 
images. Traditionally, 3D location and camera pose were required as a priori information for 
scene reconstruction. SfM solves this problem by automatically estimating scene geometry, 
camera position and orientation. This is achieved by indentifying common features across image 
pairs. These features, also called key points, are detected by applying robust feature-point 
detection algorithms, like Scale Invariant Feature Transform (SIFT)[9] and Speeded Up Robust 
Features (SURF)[12]. Both algorithms can detect features without being affected by variation in 
scale, rotation, translation and illumination. The detected features are matched in image pairs 
using Approximate Nearest Neighbours (ANN) algorithm and outliers are removed by Random 
Sample Consensus (RANSAC). More about RANSAC is discussed in the later part of this 
section.   Using these detected features in image pairs; image or camera orientation is recovered 
by applying epipolar geometry (Fig 2.1(a)). This relationship between the two views is 
represented in matrix form, referred as Fundamental matrix. Fundamental matrix can be 
computed by 8 point correspondence algorithm (linear solution) or 7-point correspondence 
algorithm (non-linear solution). Using fundamental matrix we can compute relative projection 
(rotation and translation) matrix for each camera pose. The location of common features after 
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applying the projection matrix is triangulated which results in a sparse 3D scene reconstruction. 
The described process could be scaled to generate sparse cloud for multiple photographs, as 
shown in the figure 2.1(b). This is referred as Structure from Motion as 3D scene structure is 
created from images taken by a camera in motion [13, 14]. The 3D data reconstructed through 
SfM is in arbitrary coordinate system with no scale information. Transformation to absolute 
coordinate system is achieved by 3D similarity transform using Ground Control Points (GCP). 
3D similarity transformation requires seven parameters which consist of three rotation angles, 
three translations and one scale parameter. 

 

Fathi and Brilakis[15] have proposed a method to represent the geometry of the infrastructure 
using two video cameras. The point cloud is derived using two video streams captured 
simultaneously by two calibrated cameras. Speeded Up Robust Features (SURF)[12] algorithm is 
used to detect and match common features between stereo frames. Epipolar geometry 
constraints are utilized for finding good feature matches, and thus reducing the geometric error. 
Outliers from image matching are removed using RANSAC algorithm in which fundamental 
matrix is considered as the mathematical model. To increase the efficiency of RANSAC, 
Euclidean distance is used as constraint for selecting the matched pair of points. Triangulation is 
carried out on the matched features to generate the point cloud.  Sparse point cloud obtained 
from both the cameras is then registered using the quaternion motion estimation method to 
estimate the camera motion. Reconstruction of point cloud is an incremental process as image 
frames are added one by one for camera pose estimation. Small errors can get introduced in the 
data due to errors in camera calibration, pixel size, resolution of the image or due to 
environmental factors (ambient light) and object properties (surface reflectivity) [14]. These small 
errors get accumulated and result in significant amounts of error after each processing step. To 
minimize this error, global optimization method such as Sparse Bundle Adjustment (SBA) is 
essential.  

In the above discussion, feature matching was carried out using SIFT and SURF. Both of these 
approaches use RANSAC for outlier removal. RANSAC is an iterative process for estimating 

(a) (b) 

Figure 2.1: (a) Epipolar geometry in a nutshell [13], (b) Sparse point cloud generated from several thousand 
unordered photographs [1]. 
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parameters of a mathematical model such as plane or cylinder in a dataset which may contain 
outliers. Random Sample Consensus was first discussed by Fischler and Bolles[16] in 1981. Their 
paper describes one of the many applications of RANSAC i.e., smoothing data consisting of 
large amount of gross errors. Gross errors are mainly due to classification errors. Instead of 
working on the complete data at once, RANSAC selects a smallest possible initial data set and 
adds consistent data to the initial dataset wherever possible. There are three important 
parameters of RANSAC: error tolerance (to determine compatibility of point with the model), 
number of iterations and threshold t (number of compatible points for terminating the 
iterations). Schnabel et al. [17] have discussed another application of RANSAC for detecting 
various shapes in the point data set with high noise level. In their method, a primitive shape is 
identified in every iteration of the algorithm, among these the highest scoring candidate is found 
applying lazy score evaluation scheme. Probability of this highest scoring primitive shape is 
evaluated as size of shape (in number of points) over total number of shapes detected. Primitive 
shape is accepted only if its probability is high enough which signifies that no better shape was 
overlooked during sampling process. Once the candidate shape is accepted, points 
corresponding to this candidate are removed from the set of input point cloud. The process is 
repeated until all points have been removed or when it is not possible to extract any more 
shapes. 

Point cloud generated by structure from motion using images of videos is very sparse, and does 
not always give a clear idea about the structure of the object. A dense reconstruction is therefore, 
required for the same. A dense point cloud reconstruction can be achieved by implementing 
Patch-based Multi-view Stereo (PMVS2)[18] algorithm, in which information is extracted from 
all pixels of the input image. PMVS identifies patches in the scene structure, back-projects it 
onto the images and expands the patches to nearby pixels to obtain a dense set of patches. These 
patches are then filtered to remove incorrect matches[19]. Other approaches for dense 
reconstruction include semi global matching and window-based matching algorithm. Semi global 
matching has been discussed by Hirschmüller[20]. It uses Mutual Information for matching 
individual pixels. However, pixel-wise matching can result in erroneous matches; therefore, 
smoothness constraint is also used. It penalizes the change in disparity of neighbouring pixels. 
Semi global matching is faster, more robust and minimizes both cost and constraints. Variation 
in image characteristics such as change in illumination, vignetting effect, etc, and properties of 
reflecting surface like non-lambertian surfaces can cause radiometric differences and increase the 
cost of matching. Mutual information based matching is capable of handling such radiometric 
differences reducing the matching cost.  Goesele et al[21] has discussed Window based dense 
matching. Their approach first generates depth maps for each view individually. These depth 
maps are then merged to reconstruct a single mesh representation.  

2.3. Automated Three dimensional Modeling 

Poullis[22] presented a framework for automatically reconstructing three dimensional models 
from LIDAR point cloud. The process has been divided into three major steps: unsupervised 
clustering of the point cloud, boundary extraction of the roof surfaces and extrusion of these 
boundaries to obtain 3D polygonal models. A common problem faced in reconstruction of large 



Page | 8 

areas is processing of large amount of data altogether at once.  Therefore, as a pre-processing 
step, point cloud is further divided into subcubes. These subcubes are processed parallely and 
independently from the other subcubes. This is performed by structuring the data as octree. 
Bounding cube is computed for complete point cloud and subdivided into memory manageable 
cubes. Points are then assigned to these cubes. Each cube can be further subdivided if maximum 
limit is attained.  Surface is detected using P2C clustering algorithm which exploits the 
geometrical properties of the point cloud.  It can be divided into two parts:  extracting patches 
from point cloud and then extracting surface from these patches.  Points are clustered into 
patches based on local height variation and normal variation of each point with respect to eight 
neighbouring points. In other words, Points exhibiting similar changes in height and normal with 
respect to the neighbouring points are grouped together. This is especially useful in extracting 
slant linear surfaces and uniform non linear surfaces.  Patches exhibiting similar geometric 
properties are clustered together, by comparing normal distribution of adjacent patches. Finally, 
boundary of the resulting surfaces are extracted using the contour finding algorithm [23]. This is 
accomplished by calculating the orientation of the surface. Due to noise present in the data there 
are more orientations than actually possible. Energy minimization through graph cutting is used 
to extract the dominant orientation. Orientations of the boundaries are computed and iteratively 
refined to result in dominant orientations for each surface boundary. Since the data is divided 
and processed in parallel computation significantly less time is taken as compared to sequential 
processing. 

In a paper by Furukawa et al.[3], Manhattan world assumption [24] is employed, i.e., all the 
surfaces are assumed to be aligned with X, Y and Z axes or in other words piecewise-axis-
aligned-planer. This approach can help overcome the issue of matching features in surfaces that 
lack texture as is the case with many urban structures painted in single color. A dense point cloud 
is generated from sequence of images using freely available multiview stereo software. To begin 
with, calibrated photographs are given as input to freely available patch-based MVS software[18]. 
Output obtained is a set of oriented points consisting of 3D location and surface normal 
information along with photometric consistency score and a set of visible images. The output, 
however, is unreliable in case for surfaces with less texture. Further dominant axes are extracted 
making use of normals computed by PMVS. The resultant axes were found to be within 2 
degrees of perpendicular to each other even in the presence of possible errors in camera intrinsic 
and given that urban structure may not have perfect orthogonal planes. In further processing, set 
of candidate planes are generated. These planes are used to recover the depth map for each 
image by assigning most suited plane hypothesis to each pixel in the image. This approach also 
utilizes the dominant lines, found at the intersection of two planes, for implementing structural 
constraints on the depth map. These dominant lines are computed using edge filters and used as 
cue for intersection of two surfaces. Author has also compared the final output, i.e., the depth 
map with mesh models as shown in the figure below. The depth maps give a clean 
reconstruction of the scene even in the absence of texture on the surface. On the other hand, 
mesh models, generated by Poisson Surface Reconstruction software [25], do not respect the 
architectural structure of the scene as they fill holes with curved surfaces where planer surfaces 
might have existed. In figure 2.2 we can see the difference in output produced. 
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The above approach produces a simple planer model that is easier to render, store and transmit. 
It performs well in the presence of planer surfaces but for non-planer surfaces it might produce 
incorrect results. Gallup et al. [26] handled both planer and non-planer surfaces in their modeling 
approach. A set of images, camera poses and depth maps are given as input. These are generated 
by Structure from Motion. Random Sample Consensus (RANSAC) is used to obtain planer 
hypotheses for each image. Multiple planer hypotheses are created and placed in the memory to 
be accessible to all the images. Planer surface spanning several images generates different plane 
hypothesis. All these planes are linked and fused together to give a single planar estimate.  
Subsequently, pixel-wise labelling is performed to label pixels of each image as planer, non-
planer or discard on the basis of planer hypotheses, resulting in planar surfaces. A Planar 
classifier, that has been trained using training data based on image color and texture, is used for 
the same. Training data consisted of image segments that were labelled by the author as either 
planar or non-planar. Each image is processed individually without being affected by other 
images making the process scalable. This algorithm works well with textureless and specular 
surfaces. 

2.4. Point Cloud Segmentation 

 Most of the modeling approaches use segmentation of point cloud into planes as an integral part 
of the methodology. In the following paragraphs, commonly employed segmentation approaches 
are discussed. 

The paper by Dorninger and Nothegger  [27] defines a highly robust method for modeling 
buildings from large, unstructured three dimensional point cloud using the segmentation 
approach. The point cloud is obtained by Image matching and Aerial laser scanning that result in 
high density data. In this approach, primitives are used to model the building and the task of 
segmentation and extraction of primitives is carried out simultaneously. The segments are 
selected or rejected based on constraints such as disjointing of every segment, connectivity to 
one another or distance from a threshold. Planes are detected using method based on Fast 

                            (a)                                                     (b)                                                        (c) 
Figure 2.2: Comparison between the described approach and the mesh model generated by Poisson surface 
reconstruction. (a) PMVS + Poisson Surface Reconstruction, (b) single depth map, and (c) single depth map 
with texture. [3] 
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Minimum Covariance Determinant (FMCD) approach. The author advocates the use of planes 
instead of point cloud as it reduces the time complexity of the algorithm. Clustering of point 
cloud is done in feature space to determine the seed clusters. Then region growing is performed 
by comparing the normal distance between the points from seed cluster plane against a threshold 
distance. If the distance is less than the threshold, the points are assigned to the plane. 
Subsequently, the connected component analysis is carried in object space and planes exhibiting 
similarity are merged considering both object and feature space. Since in the data collected was 
of high density and the flight height was also low, significant amount of points of vertical walls 
were captured as well. This aided in accurately estimate the position of wall in case of roof over 
hangs. In the absence of point data for walls, these are estimated based on boundary of roof.  

Rabbani et al. [28] discussed in their paper Region growing approach using smoothness 
constraint for segmenting planes. This approach is considered suitable for plane fitting and not 
very useful for higher order surfaces, which are prone to errors in case of noisy data. The author 
starts with estimating the normal for each point by fitting plane to the surrounding points. For 
this purpose either K Nearest neighbour (KNN) or Fixed Distance Neighbours (FDN) can be 
used. Both of these approaches give similar results. Depending upon the density of point cloud, 
KNN varies the Area of interest, while FDN varies number of points. In KNN, a bigger area of 
interest is chosen in case of low density and vice-versa for high point density. Similarly more 
points are chosen in FDN in areas of low density or in the presence of high noise in the data. 
The second phase of the approach is Region growing, which uses the normals calculated before. 
Region growing is based on the closeness of the points with each another and with the fact that 
points in a segment should be smooth. Smoothness constraint can be ensured by checking that 
angle between normals within a segment do not vary more than an acceptable threshold. This 
approach was tested in an industrial environment where a lot of planer and curved surfaces exist. 
This approach also focuses on avoiding over segmentation or under segmentation of point cloud 
by setting appropriate parameters.  

Hough transform has been used innumerable times for successful detection of lines and circles 
in previous researches. Most of them focused on two-dimensional dataset. Borrmann et al. [29] 
evaluated variants of Hough Transform with respect to their applicability in robotics. In 
Standard Hough Transform (SHT), each point is transformed to Hough space and score for 
each cell (plane) is incremented if the point lies on the plane. This incrementing of cell is referred 
as voting. In the end, cells with maximum votes represent the plane which comprises of 
maximum points on it. However, computational cost is directly proportional to size of point 
cloud in SHT as Hough Transform is performed on all points. Larger point clouds would incur 
higher computational cost. Probabilistic Hough Transform (PHT) selects a small part of the 
point cloud to reduce this computational cost. Number of points selected depends on the 
problem and should be optimally chosen. Another variation to this Adaptive PHT allows 
selecting larger subset of point cloud as compared to PHT and monitors the planes after each 
voting process. As soon as stable planer structures are detected, voting process is concluded. 
Randomized Hough Transform (RHT) differs in selecting of points from point cloud. In RHT, 
three points are randomly selected for defining a plane. These points should be close enough to 
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be selected. Closeness of other points to this detected plane is checked. If it is more than a given 
threshold the plane is accepted otherwise again three random points are chosen and the process 
is repeated. It is shown in the results that Random Hough Transform outperforms other variants 
of Hough Transform with respect to runtime, satisfactorily detecting planes and also performs 
better than Region growing and Hierarchical fitting of primitives in detecting larger planes. 

Lari and Habib[30] discuss in their paper a hybrid approach for extracting linear cylindrical 
features from laser scanning data. Their hybrid approach combines techniques based on spatial 
and parameter domain.  In the spatial domain based techniques, feature detection is dependent 
on the size of the neighbourhood. Region growing is one such technique the results of which 
may vary based on the seed points selected. Whereas, parameter-based techniques can be time 
and memory consuming for structures as simple as cylinder which has five dimensions resulting 
in 5-D attribute space for feature extraction. Existing hybrid approaches classify features in 
parameter domain and model them by applying least square fitting in spatial domain. This often 
yields unreliable results in detecting features aligned in same direction but with different radius 
values. The approach discussed by Lari and Habib[30] differs in detecting the features first in 
spatial domain and then extracting them in parameter domain. The implementation is divided in 
three parts. First part is classification of laser scanned points using Principal Component analysis 
(PCA). This classification is based on geometric properties of the points. A spherical 
neighbourhood is considered for the same. PCA results in Eigen values which are used for 
selecting representation models for each feature. The Eigen vector gives the approximate 
orientation of a feature and normalized Eigen values help classifying points into 
linear/cylindrical features. Larger Eigen values represent linear neighbourhood. In the second 
part, an iterative line and cylinder fitting is used to estimate geometric attributes and define 
appropriate representation model for each detected feature. Using the representation model, 
position and direction parameter is computed. Position parameter is the point of intersection of 
the features and the plane to which it is not parallel. And direction parameter is the direction of 
cylindrical axis of the feature. Finally, features are segmented in parameter domain which is 
reduced to low dimensional positional and directional subspace. Cluster extraction is carried out 
sequentially first in directional attribute subspace and then in positional attribute subspace. These 
segments represent the linear cylindrical features. This approach gave errors only in case of low 
point density and for points found on edges of planer features. 

2.5. Literature Review Summary 

Three dimensional modeling has been a popular research topic in both computer vision and 
photogrammetry. Some approaches are completely based on user interaction and others are semi 
or fully automated approaches. Interactive modeling produces quite accurate models but it is 
cumbersome with large amount of data. Although automatic modeling scales well with large data 
but it requires setting up a large number of parameters. Estimating these parameters can be time 
consuming and may require user inputs. Another aspect of three dimensional modeling is the 
type of data being used.  Aerial and terrestrial laser scanners are usually equipped with GNSS and 
INS to produce point data with relatively high accuracy.  On the other hand, MVS data is in 
arbitrary coordinate system and its positional accuracy depends on the accuracy of the GCP 
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points. It consists of high noise, outliers or holes due to lack of texture, occlusions, brightness 
change etc. These differences in LIDAR and MVS data may not allow applying the same 
methodology to both these datasets. Manhattan world assumption or estimating planer 
primitives have been used in some methods to overcome the problem of high noise in MVS 
data. Assuming the buildings to be planar reduces the problem to identification of planes in the 
point data. These approaches reconstruct three dimensional models by estimating planer 
primitives representing each surface. 
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3. METHODOLOGY 

This chapter is divided into two sections; the first describes the data used and the study area. The 
second section describes in detail the methodology adopted in order to achieve the research 
objective.  

3.1. Dataset and Software used 

The data used in this project is a set of overlapping photographs taken from Sony Digital Still 
Camera DSC-HX10V camera. Camera is GPS enabled, i.e., the photographs have the location of 
exposure station logged as Exchangeable Image File (EXIF) data. Additionally, GPS data is 
compared with a planimetric map with accuracy of approximately 50cm. VisualSFM, freely 
available software, is used for creating point cloud data from the images. Table 3.1 lists all the 
softwares used in the project. 

Table 3.1: Software and Instruments Used. 

NO. Software/Packages Use 

1. VisualSFM Point Cloud reconstruction and 
calculation of camera orientation 

2. XnView Image pre-processing 

3. Visual Studio 2010 Implementing the methodology. 

4. Point Cloud Library Point cloud handling and processing 

5. Sony Digital Camera(DSC-
HX10V) 

Capturing Images 

6. KML Storage and Visualization of generated 
models. 

 

3.2. Methodology 

In this section, the adopted methodology is described in detail.  

It starts with image acquisition using a digital still camera. Uncalibrated images are used to 
reconstruct a three dimensional model as these images are the most easily available images and 
requires minimum knowledge about the camera parameters for acquisition. Sparse Point cloud is 
generated applying the Structure from Motion approach, using freely available software 
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VisualSFM. A dense reconstruction is obtained through the PMVS binaries implemented 
through VisualSFM. This dense reconstruction is used as an input for our three dimensional 
modelling approach. The point cloud is in an arbitrary coordinate system, therefore, 
transformation parameters are computed and a 3D similarity transform is applied to transform 
the point cloud to global coordinate system. This data is then segmented into clusters 
representing building or ground plane. Intersection lines between building and ground planes are 
computed which define the two dimensional boundary of the building. This 2D boundary is then 
extruded to an estimated height resulting in a two dimensional boundary of the building. The 
output is stored as KML file which is visualized in Google Earth. Figure 3.1 shows the outline of 
the proposed methodology. Following it is a detailed description of each implementation step.  
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3.2.1. Planning for Data Acquisition 

The first part of the project is data planning and acquisition which includes taking photographs 
of buildings along with their GPS location. ISPRS close range photogrammetry report[31] 
provides a brief guidance for terrestrial photography. The following are few suggestions stated in 
the report. If possible, we should visit the site or review the object and take photographs prior to 
actual data acquisition to get a better understanding of the scene. Field work should be planned 
and the camera settings configured according to the working conditions such as weather, 

Capture images with consideration to 
depth, baseline and height of camera  

Construction of Point Cloud using 
Visual SfM  

Compute Transformation parameters using the 
coordinates of camera centre computed by 
VisualSFM and corresponding location of camera in 
UTM

Convert the GPS coordinates obtained 
from geo tagged images to UTM 
projection of target area  

Transform the model to UTM projection 
system using the transformation 
parameters 

Compute the 2D boundary of building 
by intersection of ground and building 
plane  

Compute the height of building by 
intersection of building and roof plane  

Extrude the 2D boundary up to the 
height computed  

Segment the point cloud to ground, 
building and roof planes  

Figure 3.1: Methodology Workflow Diagram 
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visibility, sun or shadows, equipment, assistance and safety regulations. The output depends on 
the quality of the imagery; therefore photographic skill should be developed for consistently 
taking sharp images. Some points that should be considered for acquiring photos are as follows: 

 Sharpest aperture setting should be used for the lens (often f/8). 

 Lens should be fixed to infinity focus. 

 Fastest Shutter speed should be used. 

 In case of low light condition, ISO should be increased as necessary. 

 Approximately 80% overlap should be ensured to obtain good quality output. 

Although our methodology does not call for camera calibration requirements, yet the images 
should be sharp and with significant overlap such that a feature is visible in a minimum of three 
photographs, preferably more than three. Photographs should cover maximum possible faces of 
the building. Better approximations of the building shape can be achieved by photographing 
more faces of the building. The photographs should preferably be of high resolution as they 
provide better results. If required these high resolution images can be down-sampled to lower 
resolution but the vice versa is not possible. Another requirement is the GPS location of the 
exposure stations. This will be captured by the camera which Geo-tags the images. The GPS 
location is recorded in the EXIF tags along with other information about the camera and the 
image, such as focal length, model and make of camera, etc. In addition to this, GPS location 
should be captured with a more accurate GPS devise such as Differential GPS and tape 
measurements of the building should be taken to compare the accuracy of the model at a later 
stage. 

3.2.2. Point Cloud Reconstruction 

Once we have all the images, we reconstruct the point cloud using free software, VisualSFM[32]. 
Falkingham [33]has provided a brief overview about working with VisualSFM.  Images 
resolution is selected depending upon the available memory for processing. If very high 
resolution images are used, memory consumption will be more which causes slow processing of 
images. Most suitable image dimension is 3200 resulting in sufficient information extraction 
without taking a lot of time. Once all the images are added in the software, GPU-accelerated 
feature matching is performed that is based on SIFT[34]. Next processing step in VisualSFM is 
to reconstruct a sparse point cloud, which is followed by dense cloud reconstruction using the 
PMVS binary files[18]. VisualSFM outputs other information as well along with the dense cloud 
data, such as, coordinates of camera centre in arbitrary system, corresponding GPS location, 
focal length, principal point, etc for each image. If all the images have sufficiently large overlap 
and features are matched effectively, then VisualSFM results in single model. Otherwise, it may 
result in multiple models.  
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3.2.3. 3D Similarity Transform 

The dense point cloud obtained as above is in an arbitrary coordinate system without scale 
information. However to compare the measurements of the model in real world, we need to 
convert this model to global coordinate system. This can be achieved by 3D similarity 
transformation. The GPS locations obtained from EXIF tags of each image are in Geographic 
Coordinate System (GCS) WGS84 (latitude, longitude and ellipsoidal height). Since this is a 
spherical coordinate system, we need to convert it to Cartesian coordinate system. We will 
transform the data to Universal Transverse Mercator (UTM). This is a two dimensional 
coordinate system with height same as GCS, i.e. ellipsoidal height. The following parameters are 
used for converting the latitude longitude values to UTM projection. 

Equatorial Radius (meters), a = 6,378,137, 

Polar Radius (meters), b = 6,356,752.3142, 

Scale along central meridian of zone, k = 0.9996. 

Once all the GPS locations of camera centres are converted to UTM projection, we use 3D 
similarity transformation to transform the model from one coordinate system to another. In 
similarity transformation, scale parameter is same in all the directions and shape of the model is 
preserved. 3D similarity transformation uses seven parameters that can be subdivided as three 
rotation parameters and three translation parameters along x, y and z direction, and one scale 
parameter. The algorithm requires at least three point correspondences. If we have more than 
three correspondences, then a least square adjustment is used to reduce the errors. The relation 
between the two sets is shown by the Bursa-Wolf formula for 3D Helmert transformation in 
equation 3.1.  

                            (3.1) 

Where:  

 : represent camera centres in arbitrary coordinate system computed by MVS software; 

: represent camera coordinates in global coordinate system captured in EXIF tag of 

images; 

  : are the three translation parameters along x-,y- and z-axis respectively, 
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 : are the three rotation angles about x-, y- and z- axis respectively. 

S is the scale factor, and R is the rotation matrix, that is the product of three rotation matrices as 
shown given in equation 3.2 and 3.3. 

                           (3.2) 

 (3.3) 

A geo-referenced point cloud is generated by applying the estimated parameters on the complete 
point data. Although, camera GPS accuracy is quite poor, approximately 10 metres, yet the 
model will not be affected in terms of shape as 3D similarity transformation is a rigid 
transformation. The residual error and RMSE are calculated for the transformation by back –
transforming the points to validate the transformation parameters. 

The geo-referenced point data is further used for plane segmentation. 

3.2.4. RANSAC-based segmentation 

Most of the urban structures exhibit a common property of being planar and orthogonal to the 
ground. This assumption is called Manhattan world assumption [24]. Each wall of a building and 
ground can be represented by planes. The data will also consist of points representing other 
features like trees, cars and structures that are not part of the building. Additionally, error in 
measurements introduces outliers in the data. These points are usually sparsely distributed. This 
property can be exploited to remove such points by applying Statistical filter. A neighbourhood 
of size k points is selected for each point and sum of distances between each point and its 
neighbouring point is calculated. Assuming Gaussian distribution of points, mean and standard 
deviation are calculated. Points falling outside the first standard deviation are considered as 
outlier and trimmed out from the dataset.  

This dataset is further used for plane detection using RANSAC. RANSAC is robust to outliers 
and is simple to implement. RANSAC randomly selects minimum required sample points to 
estimate a model. Since we want to detect planes, the minimum number of points required is 
three. Points that are within a threshold distance from the estimated model are counted. The 
process of estimating plane and counting points is repeated for a fixed number of iterations, n. 
The plane with maximum number of points closer to it is selected as the best candidate. The 
points that are within the threshold distance to the best candidate are termed as inliers. These 
points are removed from the complete point dataset. RANSAC is again applied on the remaining 
points to extract remaining dominant planes. The process is repeated until no further planes 
could be estimated from the remaining points or if the remaining points are less than a threshold 
number. This process is briefly shown in the Figure 3.2. Applying RANSAC iteratively results in 
a set of planes defined in Hessian Normal Form as, 
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                                 (3.4) 

 

Planes corresponding to building walls will have dense neighbouring points. Whereas, points 
other than those on the building surface, might have been reconstructed due to presence of trees 
and other smaller objects in the scene. Points on such features are usually sparse. These points 
can be removed by applying statistical filter. A neighbourhood of size k points is selected for 
each point and sum of distances between each point and neighbouring point is calculated. 
Assuming Gaussian distribution of points, mean and standard deviation is computed. Points 
falling outside the first standard deviation are considered as outlier and trimmed out from the 
dataset.  

Input Point data, P 

Select any 3 points randomly and 
estimate planar model 

Count the number of points within 
threshold distance d (inliers) 

Yes 

Select plane with maximum 
number of inliers

Remove the inliers from P 

 Number of 
iterations < i 

 Number of points in P < 
minimum Number of points 
required for plane detection 

No

End process 

Yes 

No

Figure 3.2: RANSAC flowchart 
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Now we have a set of planes, which most likely represent the building walls. Since the points are 
in UTM projection system, X and Y value gives the position of the point on the earth surface 
and Z value gives height of the point. Therefore we can assume X-Y plane to represent the 
ground surface. Height of the ground can be assumed by the average of a considerable number 
of minimum Z-values in the point cloud. If the ground has sufficient texture, a plane 
corresponding to ground might also exist. Hence, in order to find the actual ground plane, angle 
between this assumed ground plane and all existing planes is calculated as shown in Figure 3.3. A 
plane is considered as actual ground plane if it makes angle smaller than 20 degrees. 20 degrees is 
chosen as the actual ground will not be perfectly parallel to the X-Y plane. If no such plane 
exists, the X-Y plane is assumed as the ground plane. Next we find the planes corresponding to 
walls of the building which should be orthogonal to the ground plane. Given the presence of 
noise and outliers we will allow a variation of 10 degrees in the angle between ground and wall.  

 

3.2.5. 2D boundary estimation 

Once we have classified the building and ground planes, we will define the 2D boundary of the 
building as on ground. The lines formed by the intersection of ground plane and building walls 
give the 2D boundary of building. Line equations are computed by applying method based on 
Lagrange multipliers[35]. However, these line equations define infinite lines. In to extract the line 
segment forming the building boundary, we need to know the end points of the line segment or 
building corners. Building corners are the point of intersection between the two adjacent lines. 
Since there are many lines possible, we should have the information about walls that are adjacent 
to each other. 

The information about adjacent walls can be extracted by estimating the density of points along 
the edges of the walls with respect to other walls. In other words, adjacent planes will have a 
significant number of points on the vertical edges that are quite close to the other plane as 
shown in figure 3.4. Therefore, we count the number of points of one planer segment that are 
within a minimum possible distance to the plane of another planer segment. It is based on 

X 

Y 

Z 

Zmin 
θ  

Assumed Ground Plane 

Actual Ground plane 

Figure 3.3: Angle between assumed and ground plane 
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calculation of point to plane distance which is the dot product of point coordinates and plane 
normal. Distance from all the points of each planer segment to another plane is calculated. For 
every point that is within the specified distance, count of points is increased by 1. If the count of 
points is large enough then the planes are considered adjacent. The process is repeated for all 
possible combinations of planes. The outputs of this step are pairs of adjacent planes. Another 
constraint applied here is that the planes should have an angle not less than 80 degrees. This is in 
accordance with the Manhattan world assumption that urban structures usually have a block like 
structure where walls are perpendicular to each other.  

                      

 

Using plane adjacency information, building corners are calculated. Point of intersection is 
calculated between boundary lines of adjacent planes. If a plane has two corresponding adjacent 
planes, then that building wall is completely defined. If however, a plane has only one 
corresponding adjacent plane, then at least one side of building was not captured in images and 
hence was not reconstructed in the point cloud. For this wall we have only one corner defined 
and we need to find the other corner. If we project all the points of this plane on the ground 
plane, then the farthest point from the defined corner will be the other corner of the wall on 
ground as shown in Figure 3.5. Projecting the point cloud on ground plane removes the height 
component of point cloud and the problem of finding a point in three dimensional space 
reduces to finding a point in two dimensional space. Each point cloud segment that has only one 
wall adjacent to it is projected on the ground plane. One corner of the planer segment that is 
obtained from line intersection is used as pivot and the point farthest from pivot point becomes 
the other corner. But this point could be an outlier. Therefore to reduce the probability of point 
being an outlier, the farthest point should have some significant number of neighbouring points. 
This will ensure that the point was part of the wall. 

Figure 3.4: Adjacent planes. Red circle shows that the points on the edge one wall are very close to the plane of 
adjacent wall. 
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Now we have the approximate corners of the building on the ground. These points define the 
2D boundary of the building. Our final implementation step is to create a 3D dimensional model 
of building by extruding the 2D boundary of building to the estimated height of the building. 
The height of a building could be estimated from the height of the individual segments. The 
height of each individual segment is estimated by calculating mean of at least 100 maximum Z-
values in the point cloud. This is done so as to get a better approximation of height. Finally we 
create the KML output file using the corner coordinates and extruding it to estimated height. 
The results are discussed in the next section. 

 

Figure 3.5: Projected Planes. The figure shows the point cloud of walls projected on ground plane. Plane having 
only one adjacent wall and the farthest point from the estimated corner of the wall. 

Corner estimated by 
intersection of lines 

Other farthest point 

X 

Y 

Z 

Ground plane 
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4. RESULTS AND DISCUSSION 

This section discusses the results obtained through the methodology explained in the previous 
chapter. In first part of the section, results are discussed and in the second part, accuracy 
assessment of the models is carried out. 

4.1. Point Cloud Reconstruction 

Main building of IIRS was chosen as the test scene. Images of three sides of the building were 
taken. Similarly, the images of another building (gym) in IIRS was used to verify if the process 
works with a different dataset. A total number of 228 images of main building and 176 images of 
gym were used. Large number of images ensured larger overlap for a better model 
reconstruction. Point cloud was reconstructed using VisualSFM as shown in figure 4.1 and figure 
4.2. The figures show sparse and dense point cloud reconstruction. Model reconstructed for gym 
building is shown in Appendix-1. 

 

(a)                                                                                     (b) 
 

Figure 4.1: Sparse reconstruction obtained using Visual SFM. It also shows the camera locations. (a) front view, 
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4.2. 3D Similarity Transformation 

3D similarity transformation requires seven parameters, i.e., three rotation and three translation 
parameters along X-, Y- AND Z-direction, and one scale parameter. Camera centres in arbitrary 
coordinate system and the corresponding GPS locations captured in EXIF tags were provided as 
input for computing the seven parameters. The following table shows the parameters computed: 

Table 4.1 : Values of seven transformation parameters 

Parameter Value 

Rotation along x-axis, rX 1.73451 

Rotation along y-axis, rY 0.196378 

Rotation along z-axis, rZ 3.6842 

Translation along x-axis, TX 215821 

Translation along y-axis, TY 3.36027e+6 

Translation along z-axis, TZ 693.684 

Scale, S 0.11565 

(a) 

(b) (c) 

Figure 4.2: Dense reconstruction obtained using Visual SFM. (a) front view (b) & (c) side view on both side of 
building. 
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RMSE error was calculated by transforming the camera centre coordinates that are in arbitrary 
coordinate system to global coordinate system and then calculating the residual by subtracting 
the transformed coordinates and the coordinates obtained from Camera GPS. Approximate 
RMSE error in easting, northing and height values is 2.089 metres, 4.399 metres and 1.507 
metres respectively. The error in transformation is quite high. This will further affect the 
positional accuracy. Although there is not significant influence on shape estimation as 3D 
similarity transformation is rigid transformation, i.e., it does not change the shape of the model. 

4.3. RANSAC-based Segmentation 

RANSAC based plane estimation requires us to set two parameters, first is the distance threshold 
and second one is the minimum number of points on which RANSAC can be applied. The 
distance threshold instructs the RANSAC to look for points that are within this specified 
distance from the estimated model. This parameter should neither have large or very small value, 
as both will result in incorrect results. In case of very large values, the number of planes 
identified will be less than expected and, in case of small values; the number of planes will be 
more. The value of this parameter for test scene was chosen as 0.55. The second parameter 
specifies the minimum number of points on which RANSAC is applied. This parameter is 
required to restrict the search to identifying only dominant planes. It will help ignore all the 
unnecessary planes that might exist. The value of this parameter for test scene was set as 10% of 
size of complete cloud. The planes detected in the cloud are shown in figure 4.3. 

 

The same methodology was also applied for the gym building dataset. All the parameters were 
kept same except the distance threshold. It was changed to 0.30. There is no standard way to 

(a) (b) 

(c) 

(d) 

(e) 

(f) 

Figure 4.3: Plane segments obtained from RANSAC, (a), (c), (d), (e), (f), and (g) are the planes from building walls 
and, (b) is the plane segment for ground. 

(g) 
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determine the value of this parameter. Results using different values were compared and the one 
giving the best planer models was used.  

4.4. Three Dimensional Modeling 

The final output obtained is the corner points of the building that define the boundary of the 
building. The output is exported as a KML file that forms the building model using the corner 
points, ground height and height of the building. Corner points define the boundary and are 
extruded to the height of building. The output is shown in Figure 4.4. From the figure we can 
see that the position and shape of the model closely fits the actual structure in Google Earth. 
However, dimensions of the model and the actual dimensions of the building do not match. 
Comparison between the dimensions of the model and building are shown in table 4.2. The 
distance between the points does not consider the height, i.e., Z value is not considered for 
calculating the distance. 

 

Corner 1 

Corner 2 
Corner 3 

Corner 4 

Figure 4.5: Distribution of corners of the building 

          (a)                                                                                         (b) 
Figure 4.4: Three dimensional box-like model of main building of IIRS viewed in Google Earth. (a) The actual 
location of main building marked in red circle, (b) the three dimensional model imported as KML file. 
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Table 4.2: Comparison between dimensions of building and model 

Dimension Survey measurements 
(metres) 

Model measurements 
(metres) 

Difference 

Length 72 73.076 1.076 

Side wall 1 9.8 15.52 5.72 

Side wall 2 10.1 18.84 8.74 

Height 11.7 18.6 6.9 

 

Table 4.3: Comparison between coordinates of the corner points 

Coordin
ates 

Survey measurements 
(metres) 

Model measurements (metres) Distance 

        (metres) 
 Easting Northing Easting Northing 

Corner 1 215852.515 3360225.997 215847.7344 3360217.75 9.5324 

Corner 2 215858.441 3360235.81 215855.7188 3360231 5.5269 

Corner 3 215798.135 3360274.436 215793.0156 3360266.25 9.6549 

Corner 4 215792.084 3360264.786 215783.625 3360250 17.0346 

 

4.5. Accuracy Assessment  

Theoretical Accuracy: 

Following are the camera and building structure parameters: 

 Focal length, = 4.3mm 

 Height of the building, = 11.5m 

 Physical sensor size = 7.76mm 

 Pixel size, sx = 7.76/3200=2.425μm 

 Double, the pixel size of the camera, Spx = 4.85μm 

 Baseline length, b = 0.8m 

Following are the calculations from [14]: 
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 Spx  ≈ 2 * sx ≈ 2 * pixelsize = 4.85μm 

 Scale, Mb = H/c ≈ 2675 

 sH = (H/b) * Mb * spx = (11.5/0.8) * 2675 * 4.85 = 18.64 cm 

 sX = mb * sx = 6.49 mm 

Depth accuracy, sH = 18.64 cm 

Parallel accuracy, sX = 6.49 mm 

 

As shown in Figure 4.4, the model appears similar in shape to the actual structure. Additionally, 
it is positioned very close to the actual position of the building in Google Earth. Table 4.2 shows 
the measurements taken along the building wall and the reconstructed model. It also shows the 
difference in measurements.  Figure 4.5 shows the corners of the building that were estimated in 
the process. GPS locations of these corners estimated from our approach and as obtained from 
the planimetric map of accuracy approximately 50 cm are compared in table 4.3. The table also 
highlights the distance between the coordinates. . The variation in the length of wall having two 
adjacent walls in the input point cloud, i.e., wall between corner 2 and corner 3 is small as 
compared to the variation in length for walls with only one adjacent wall, i.e., wall between 
corner 1 and corner 2 and wall between corner 3 and corner 4. This large difference in length is 
due to the presence of outliers in the data that is explained in the following paragraphs. The shift 
in the position of the model is within the accuracy of the camera GPS. Similar, comparisons 
were also made for gym building and the results are shown in Appendix-2. 

Large difference in length of side-wall can be explained as follows. The two side-walls have only 
one wall adjacent to it in input point cloud, i.e., wall between corner 2 and 3, and corner point 
associated with this adjacent wall was calculated using line intersection. However, due to absence 
of adjacent wall along the other edge in the point dataset, an assumption was made for 
calculating other corner of the wall. The assumption made was that the other corner will be the 
point on the wall (or point cloud) that is farthest from the already calculated corner of the wall. 
This point cloud was projected on the ground plane to ignore height of the wall. Since the data 
consists of outliers, the farthest point may not necessarily be part of the wall, causing an increase 
in the length of the wall.  

The difference in height is due to method applied for estimation of ground and building height. 
Ground and building heights were estimated by taking average of minimum and maximum of z-
values respectively. However, the test scene also consisted of trees, few of which resulted in 
dense point cloud reconstruction. These points could not be removed using statistical filter as it 
removes points having sparse neighbourhood. This caused the overall increase in height of the 
model. However taking the average of the maximum possible number of values did reduce the 
influence due to the presence of the trees in the scene, however at the cost of increased 
processing time. 
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4.6. Limitation of  the process 

The modeling process gives satisfactory results if at least 3 faces of a building are covered. 
However, if only 2 faces are captured then the resultant shape may not match the actual structure 
as the result will be a triangular block.  

The output of the modeling process depends on the input point cloud. If the input data consists 
of sparsely distributed points, then RANSAC will not be able to detect the correct planes, 
resulting in an incorrect or no result at all. Sparse point data is usually resulted from texture less 
surfaces or if there was less overlap in image pairs. 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

Image-based modeling is widely used for reconstruction of three dimensional models from two 
dimensional images. In this research thesis, a new approach to reconstruction of 3D models was 
described and implemented. Instead of estimation of primitives for planer surfaces, intersection 
of planes was used as the basis for defining two dimensional boundary of building. Further the 
boundary was extruded to the estimated height of building. No prior information about the 
structure was used. Although the positional and shape accuracy was not very high, yet final 
models satisfactorily resembled the actual structure as viewed in Google Earth. Positional 
accuracy suffered because of the inaccuracy in the GPS locations captured by the digital cameras. 
If in future, cameras are equipped with better location estimation, accuracy of the process will 
also increase. Processing was fast and is beneficial for applications which require quick results. 
This methodology is suitable for applications that do not require high accuracy and have low 
data acquisition budget. The process is independent of data but does require an approximate 
estimation of distance between points for providing the value of distance threshold required in 
RANSAC-based plane segmentation. Moreover, at least three faces of the structure are required 
to be visible in the data for good results. Shape accuracy will also increase if all the faces of the 
structure are covered in images. 

5.1.1. Answers of Research Questions 

1) What considerations should be taken into account for acquiring images? 

The images should have maximum possible overlap to reconstruct a good point cloud. 
Approximately 80-90% overlap is required. A good overlap covers up for the textureless 
surfaces. While acquiring images consideration to environmental conditions such as direction of 
sun, etc, should be given. Images should be sharp. 

2) What is the effect on modeling due to error in point cloud as they are reconstructed from images by SfM 

software? 

Point cloud reconstructed using MVS software consists of high amount of outliers. The points 
corresponding to a wall do not exactly lie on a plane. This might cause detection of wrong planes 
thus resulting in incorrect models. Another problem with outliers is caused while height 
estimation of the building. High amount of outliers will increase or decrease the height of the 
building from the actual measurement.  

3) How is the accuracy of the model affected when Helmert transformation (7 – parameter transformation) is 

applied for transforming it to global coordinate system using GPS coordinates with low accuracy? 

Seven-parameter transformation is a rigid transformation producing no effect to the shape of the 
model even if the accuracy of GPS device is low. However, the positional accuracy of model is 
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affected as even a slight error gets propagated and increases with every processing step. Error in 
transformation parameters is less when the number of images is more as compared to when 
number of images is less. While computing the transformation parameters the error in least 
square estimation step reduces with increase in the number of camera centres. 

4) Which segmentation approach is suitable for planer point cloud segmentation? 

RANSAC-based segmentation was chosen in this research thesis because of its simplicity and 
robustness. Even in the presence of outliers it estimates planes with good accuracy. However, 
the result is dependent on the choice of sample points selected for estimating the plane model. 
Greater number of iterations allowed for selection of different combinations of random sample 
points increasing the probability of getting better planes. But increase in the number of iterations 
will also increase the processing time. 

5) How are occlusions and absence of data handled? 

Points that represent the trees and other small objects are removed using the Statistical filter. 
Partial occlusion does not affect plane detection as it is based on distance of points from the 
estimated plane model and not point to point distance. However, if a part of building is 
completely occluded, for example by a fence, slight errors in modeling may get introduced due as 
there would be no ground plane obtained and the ground plane will have to be assumed.   
Similarly, absence of data also does not affect the model.  

6) Under what conditions this modeling approach would be successful or fail? 

The modeling approach will give good results in the following conditions: 

 All the walls of the building are visible in the point cloud data. 

 All the building walls have high point density, which makes detection of planes easier and 

more accurate. 

 Outliers are less in the data. This enhances the height estimation accuracy. 

The modeling approach will fail in the following conditions: 

 If the number of walls visible in point data is less than three. 

 If the point density is very less, i.e. points are sparsely distributed. Plane detection becomes 

difficult under this condition. 

 High error in GPS coordinates. 

 High level of outliers. 
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5.2. Recommendations 

 In the present work, no prior information about the structure or scene was used. However, 

height information about the building and ground could be used to obtain more accurate 

models.  

 

 In some cases, it might not be possible to obtain images of the all sides of building. In such 

a situation, shapefiles can be used to estimate the complete boundary.  

 

 Combining the camera with more accurate GPS device will increase the accuracy of the 

model in terms of its position. 

 

 This methodology is independent of data, therefore, can be used with crowd sourcing 

application where people provide images that are geo-tagged.
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APPENDICES 

Appendix 1: Another dataset used and the parameters provided. 

The photographs were taken of gym building in IIRS campus. 
 

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) 

(d) (e) 

Figure 1: Gym building, (a) and (b) are sparse point cloud reconstruction; (c), (d) and (e) are dense point cloud 
reconstruction. 
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Final model obtained. 

 

 
All the parameters were unchanged except RANSAC distance threshold. Value for RANSAC 
distance threshold was given as 0.30. 

          (a)                                                                                      (b) 
Figure 3: Three dimensional box-like model of main building of IIRS viewed in Google Earth. (a) the actual 
location of main building marked in red circle, (b) the three dimensional model imported as KML file. 

(a) (b) 

(c) (d) 

Figure 2: RANSAC-based segmentation; (a), (b), (c) and (d) are the planes extracted using the same 
methodology. 
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Appendix 2: Comparison of  dimensions and coordinates of  gym building.

Table 1: Comparison between dimensions of building and model 

Dimension Survey measurements 
(metres) 

Model measurements 
(metres) 

Difference 

Length 22 20.96 -1.04 
Side wall 1 7.10 7.770 0.67 
Side wall 2 7 8.04 1.04 

Height 9.00 9.72 0.72 
 
 

Table 2: Comparison between coordinates of the corner points 

Coordin
ates 

Survey measurements 
(metres) 

Model measurements (metres) Distance(m) 
 

 Easting Northing Easting Northing  
Corner 1 216033.704 3360270.525 216035.6875 3360283.25 12.87866 
Corner 2 216036.598 3360276.853 216037.7188 3360290.75 13.94212 
Corner 3 216016.175 3360286.159 216017.9531 3360295.75 9.754435 
Corner 4 216013.425 3360279.772 216015.7969 3360288 8.563047 
 
 

Figure 3: Distribution of corner points as used in table 2. 

Corner 3 

Corner 4 
Corner 1 

Corner 2 


