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ABSTRACT

Automatic geological lineament mapping is a task related to edge detection, since these structures
are linear features that appear as such on satellite images. There have been many efforts to establish
an automatic method, as field studies are time consuming and costly. All those efforts involve the
use of a standard edge detection algorithm.
This study is a research on the application of a novel edge detection method for automatic geo-
logical lineament mapping from remotely sensed data. This method is based on models of human
visual perception described by Gestalt theory and incorporates them in the line detection process.
The Helmholtz principle is a new condition introduced in the method that distinguishes the de-
tections into those that represent real object images and false ones. Segment detection algorithms
based on these principles have been applied the last years in ordinary images. This research ex-
plores the use of such an algorithm in order to solve a Geo-information problem.
The applied method starts with a classic line segment detection based on the image gradient. In
the next step, all the detected segments are evaluated on the basis of a probabilistic model of the
Helmholtz principle and only those that prove to not be result of noise (artefacts) are accepted.
This research explored the optimal values of the internal algorithm parameters that best suit the
particular application. For this purpose, a novel validation method was developed. The method
considers distance and local orientation measures for the comparison of the result with a reference
dataset. The outcome of the validation method was a description of the error patterns, false and
missing detections, for several parameter values. The optimal values were selected by combining
the validation results with visual interpretation.
Some of the optimal parameter values proved to be different from the ones used in ordinary im-
ages. The reason is the nature of the geological edges and their appearance on Remotely Sensed
data. Lineaments are fuzzy edges, whose gradient angle is more noisy than this of solid lines on
close-range imagery. Another challenge of edge detection in this application is the distinction be-
tween the actual lineament and the opposite edge of the crusting, which along with the lineament
define the fault scarp. The presence of the scarp on the images many times results in the detection
of narrow polygon features which deviate from clear lines.
The relationship of the detected segments with the lines delineated in the reference dataset was
explored on the basis of a detailed analysis. Anisotropy was observed in the distribution of de-
tected segment’s points along the two sides of the reference lineaments, which was explained by
the appearance of the lineament and its associated slope on the image.
The geometrical characteristics of the current detection can be exploited towards the establish-
ment of a relationship between the appearance of geological lineaments on satellite images and the
product of visual interpretation and geological experience. Subjectivity in geological interpreta-
tion remains a challenge related to the certainty of automatic detection results.
The imagery used in this study was an ASTER scene of the Lake Magadi area in Kenya. The
algorithm was developed in the open source platform R.
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Chapter 1

Introduction

1.1 BACKGROUND

In image processing and computer vision we refer to edges as discontinuities in the pixel intensi-
ties. Edge detection deals with the tracking and identification of abrupt changes in the grey values
of the image (Ziou and Tabbone, 1998). The product is an edge map which usually constitutes an
intermediate product for automatic object extraction.
Several edge detection algorithms have been developed and the majority of them uses linear mod-
els to identify those changes in the brightness values (Khomyakov, 2012). Two main categories of
linear edge detection algorithms are gradient and second order derivative operators. Sobel, Pre-
witt, Roberts, Robinson, Kirsch and Laplacian or LOG (Laplacian on Gaussian) are examples of
the first and the second category respectively. Furthermore, several methods that are based on
the Hough transform, which is a feature extraction technique, have been proposed (Guru et al.,
2004). Moreover, a widely used algorithm is the one presented originally by Burns et al. (1986)
and explores the gradient magnitude and orientation of the pixels for edge detection.
Most edge detection algorithms encounter difficulties. The main issue is the effect of noise in
the images, which obstructs the task of the operator. For this reason, several algorithms perform
smoothing of the image for noise reduction before the actual edge detection. Such smoothing has
a significant negative effect on the image, that of information loss (Ziou and Tabbone, 1998), since
the discontinuity in magnitude is reduced. Inability to detect the edge direction, double edges,
false and missing true detections often occur and restrict the performance of the algorithms.
Recent work (Desolneux et al., 2001; Grompone von Gioi et al., 2012) in edge detection for image
processing is based on Gestalt theory and the Helmholtz principle. Gestalt theory is a scientific
effort to describe the laws of human visual reconstruction. Similarly, the Helmholtz principle ex-
plains when individual geometrical structures form a single object, based on a single quality, e.g.
color (Desolneux et al., 2000). Desolneux et al. (2008) described these laws in terms of a proba-
bilistic model that could be used in computer vision and image analysis.
The advantage of using this theory for edge detection is that no a priori knowledge is needed and
that a Number of False Alarms (NFA) can be computed. According to a basic principle of per-
ception due to Helmholtz, a geometric element is defined as “meaningful” if it would hardly ever
occur in a randomly created image (Desolneux et al., 2001). This brings us back to the main prob-
lem of edge detection algorithms, the noise. In practice, in a noisy image with no line segments
present, a detection algorithm could return as a result a structure that is not really there. NFA
is a variable that can be used to prevent this kind of errors, by considering the expectation of the
number of occurrences of the detected event (Desolneux et al., 2008, chap.3)

1
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1.2 PROBLEM STATEMENT AND MOTIVATION

Application of edge detection is relevant for geological interpretation and lineament extraction
from remotely sensed data. The term geological lineament has been defined by several authors.
Hobbs (1904) proposed the term lineament for linear forms of the landscape triggered by joints
and faults, that reveal the architecture of the rock basement. O’Leary et al. (1976) defined the lin-
eaments as “a mappable, simple or composite linear feature of a surface, whose parts are aligned
in a rectilinear or slightly curvilinear relationship” which indicates a phenomenon below the sur-
face. This definition has been widely used in the coming years (Hung et al., 2005; Thannoun,
2013). In the same lines, Clark and Wilson (1994) described lineaments as linear features on the
surface, that depict a geological or geomorphological phenomena. More recently, Vassilas et al.
(2002) expressed lineaments in terms of an image, as lines or linear formations with pixels that
have prevailing intensities as compared to the background.
In situ geological surveys for lineament mapping involve drilling and the use of geophysical data.
There the cost is high and the full extraction of geological structures is not guaranteed, unless high
resolution data is available. Therefore, the use of remote sensing for automatic lineament extrac-
tion is preferred (Hung et al., 2005). Several algorithms have been used and tested in satellite images
for automatic lineament extraction (Karnieli et al., 1993; Lee and Moon, 2002). Examples are the
Canny algorithm, Laplacian, Ford, directional filters, Sobel and Kirsch operators and Rothwell
edge detector (Mavrantza and Argialas, 2002).
The aim of the present research is to apply an edge detection algorithm based on Gestalt theory and
the Helmholtz principle for the task of automatic geological lineament extraction, from remotely
sensed data. It is intended to introduce this method for Remote Sensing problems and particularly
automatic geological lineament mapping. Several parameters and functions of the algorithm are
tuned and adjusted in order to comply with the the properties of the phenomenon to be mapped
and the characteristics of the image. Finally, a method to assess the quality of the extraction results
is developed and it is examined whether this method is suitable for this application.

1.3 RESEARCH IDENTIFICATION

The present study aims at implementing and testing the potential of a line segment detection algo-
rithm based on Gestalt theory and the Helmholtz principle for a problem of Remote Sensing, that
of automatic geological lineament mapping. The main objective is to examine the performance of
such an algorithm for the detection of geological structures on a satellite image and improve the
method accordingly to better serve the data and the purpose. The research objectives and questions
are listed below.

1.3.1 Research objectives

• Adjust and extend a line segment detection algorithm, based on Gestalt theory and the
Helmholtz principle

• Perform automatic lineament mapping, using the line segment detection algorithm

• Develop a validation method for the evaluation of the result

1.3.2 Research questions

• What are the optimal parameter values of the internal parameters of the algorithm for this
application?

2
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• What should be the geometrical representation of lineaments?

• Are the produced results plausible for the particular application?

1.4 RESEARCH APPROACH

The starting point of the adopted methodology is the Line Segment Detector (LSD) algorithm,
developed by Grompone von Gioi et al. (2012). This LSD algorithm is based on Burns, Hanson
and Riseman’s method (Burns et al., 1986). It uses an a contrario validation model and detects
meaningful alignments, based on the NFA.
This algorithm in C is provided by the authors in Grompone von Gioi et al. (2012). However,
my intention is to develop the algorithm in R. The reasons behind this is that R is a well suited
programming language for probabilistic and image processing computations. For a conversion
step from C to R is, first, some modifications have to be done.
Further, a novel validation method is developed for the assessment of the quality of the results,
based on a reference lineament map. The method introduces two error ratios, those of missing
and false detections. These ratios are used for the tuning of the algorithm parameters and the
accuracy assessment of the result.

1.5 THESIS STRUCTURE

Chapter 2 is a literature review on Gestalt theory for image processing, automatic lineament map-
ping and evaluation of automatically extracted features from images.

Chapter 3 presents the image and the reference data used in this research.

Chapter 4 describes all steps of the detection and validation methodology.

Chapter 5 presents the detection and validation results.

Chapter 6 introduces discussion points that were raised during all stages of the research.

Chapter 7 summarizes the conclusions and recommendations for future research.

3
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Chapter 2

Literature review

2.1 GESTALT THEORY AND THE HELMHOLTZ PRINCIPLE

Gestalt theory is a branch of psychology which is one of the few that have attempted to describe
the laws of human visual perception of images (Desolneux et al., 2008). It initiated by the defini-
tion of the gestalt laws by Max Wertheimer in 1923. Grouping laws is one of the main categories of
Gestalt laws’ list. These grouping laws define whether a set of points that share one or more sim-
ilar characteristics, is perceived by a human as a coherent object, called gestalt (Desolneux et al.,
2003a). In image analysis, these points are pixels of the image and the characteristic can be any
property of the pixels, such as the colour or intensity.
The Helmholtz principle, along the same lines, asserts that no object is perceived in a random im-
age (Desolneux et al., 2008). Therefore, it claims that only objects that deviate from randomness
are perceived by humans. When a particular configuration of points with a common characteristic
is observed, the Helmholtz principle examines whether this configuration is happening by chance
or whether those points form indeed one object. For this validation, it is assumed that the par-
ticular feature of the points is randomly and uniformly distributed. That is called the a-contrario
assumption (Desolneux et al., 2008). Under this assumption, from the tail of the binomial distri-
bution it is inferred that the probability that at least k points out of a total number of n points
share the same property is

B(n, k, p) =
n∑

i=k

(
n

i

)
· pi · (1− p)n−i (2.1)

where p is the probability that a point has the certain property (Desolneux et al., 2008). Suppose
the examined property is the pixel intensity, which varies in the range [0,255]. If the intensity is
assumed to be randomly and uniformly distributed, then the probability that a pixel has a partic-
ular intensity is p = 1/256 = 0.004. The probability that at least 10 over a total number of 100
pixels have a particular intensity value is B(100, 10, 0.004) = 1.3 · 10−11.

2.2 NUMBER OF FALSE ALARMS AND MEANINGFUL ALIGNMENTS

A particular point configuration is named an event and the event is called ε-meaningful if the
expectation of its occurrence in random image is below a threshold ε (Desolneux et al., 2008). If
the total number of potential point configurations isN , then the Number of False Alarms (NFA)
of the event is defined as

NFA = N ·B(n, k, p). (2.2)

The NFA is the probability of occurrence of this point configuration in a random image. The
lower the NFA, the lower the probability in the white noise image and the more certain we can be

5
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that the observed configuration is not a random event. The event is called ε-meaningful if NFA< ε
(Desolneux et al., 2008).
This concept is directly applicable to linear segments, where the quality of interest is the point
orientation. In a segment of length l, that contains k points with the same orientation, the NFA
associated with the segment is

NFA = N4 ·
l∑

j=k

(
l

j

)
· pi · (1− p)l−j (2.3)

where N4 is an approximation of the total number of possible segments in a N ×N image (Des-
olneux et al., 2000).

2.3 RELATED WORK

Desolneux and co-workers have extensively studied the laws of Gestalt theory in image analysis.
The mathematical framework of object detection on an image, without the need of any a-priori
information is presented. It is applied for the detection of alignments and the notion of meaningful
alignments is introduced. In (Desolneux et al., 2001) the use of the Helmholtz principle for object
detection was described and two methods of edge and boundary detection were presented. Built
upon the concept of meaningful segments, the notion of maximal meaningful segments in image
analysis and its mathematical properties were discussed in (Desolneux et al., 2003b). Furthermore,
the application of more grouping laws of Gestalt theory was demonstrated in (Desolneux et al.,
2003a). Moreover, the same group of authors carried out a psychophysical experiment in order to
examine whether the qualitative perception thresholds that are used in their method correspond
to human perception. Finally, all the above work with more topics on Gestalt theory in image
analysis are collected in Desolneux et al. (2008).
All the work of the aforementioned group of authors is applied in ordinary images. The single
application, to our knowledge, of such an algorithm for a geo-information problem is the work of
Michaelsen (2012) on automatic object extraction in aerial Near Infra-Red (NIR) images of urban
terrain. In addition, Fallatah (2011) explored the applicability of the LSD algorithm (see next
paragraph) for multi-spectral satellite images.
The Line Segment Detector (LSD) algorithm is a recent implementation of line segment detection
based on the Helmholtz principle (Grompone von Gioi et al., 2012). It is based on the method
of Burns et al. (1986) for the extraction of straight lines, which detects edges by grouping pixels
with similar gradient orientation. It follows a line segment evaluation approach introduced by
Desolneux et al. (2000), Desolneux et al. (2008), that assesses all detected segments. A Number
of False Alarms is calculated for all the detected segments and the authors argue it works on any
image without the need of parameter tuning. This is one of the issues of this research. The code
is provided in C, in (Grompone von Gioi et al., 2012). This is the implementation on which the
algorithm development of the current research is based.

2.4 AUTOMATIC LINEAMENT MAPPING

First attempts for automatic mapping of geological lineaments include the use of the Hough trans-
form (Wang and Howarth, 1990), implementation of a Segment Tracing Algorithm (STA) for au-
tomatic detection on LANDSAT TM images (Koike et al., 1995) and an approach to combine the
use of digital elevation models with second derivative filters (Wladis, 1999). Later, Mavrantza and
Argialas (2002) compared the performance of various edge detection algorithms and operators,
including Laplacian, Sobel and Kirsch operators, for LANDSAT 7 TM images. In Mavrantza and
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Argialas (2008) an object-oriented image analysis approach for geological lineament identification
was presented. In more recent work (Marghany and Hashim, 2010; Marghany et al., 2009) the
Canny algorithm has been applied for automatic mapping from LANDSAT images and 3D image
reconstruction in combination with SRTM data.

2.5 EVALUATION OF AUTOMATICALLY EXTRACTED FEATURES

Validation methods of automatically extracted geological lineaments are not encountered in liter-
ature. However, there are several methods presented in the broader framework of automatically
extracted features from images. There is abundant literature on the evaluation of automatically
extracted roads (Péteri et al., 2004; Song et al., 2001). Heipke et al. (1997) explore ways to de-
scribe the level of correspondence between automatically extracted road networks and a reference
dataset. They describe a set of quality measures, where correctness and completeness are the two
prominent ones. Evaluation consists of two steps, one to find matching features between reference
and extraction, followed by measure calculation. Both extracted and reference lines are first grown
by a buffer and then the length of the extracted or reference lines that fall inside the buffer zone
and the total length of the extracted lines is measured. The same measures have been used by Song
et al. (2001) for automatic road extraction evaluation, and in addition for building extraction as
well as classification accuracy assessment by McKeown et al. (2000). The same set of quality mea-
sures have been applied twice for the evaluation of the LSD detection results and the exploration
of the effect of parameter values on the detection result. Mwakisunga (2010) assessed the quality
of the LSD detection result on a LANDSAT 7 ETM image of agricultural fields. Fallatah (2011)
validated the detection result from a Geo-Eye-1 image of urban area.
In a more general and not application specific approach, Goodchild and Jeansoulin (1998) describe
a new method for the comparison of two sets of lines. They suggest that for each point in a line
A we can define its closest Euclidean distance to a line B and obtain a measure of relative accuracy
between them. The same applies in the other direction, from line B to line A. Those distance
functions can then be represented in a histogram (Goodchild and Jeansoulin, 1998).
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Chapter 3

Data

This chapter locates the study area of this project. It describes the imagery used for the study and
the vector reference data used for the validation of the result.

3.1 STUDY AREA

Figure 3.1: Location of the African Rift in Kenya, with major fault traces (top). Lake Magadi region
(bottom), reprinted from Sequar (2009).

The region considered for this study is part of the southern Kenyan Rift, situated north of lake
Magadi in Kenya (Figure 3.1). It is part of the East African Rift System (EARS), that extends from
the Red Sea down to Mozambique (Kuria, 2011). The Kenyan rift is regarded as one of the first
occurrences of tectonic activity in the continent (Achauer and Masson, 2002). In particular, the
Magadi area is a region where rifting is still observed.
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Table 3.1 Spectral range of ASTER VNIR bands (ERSDAC (2005))

Band no Spectral range (µm)

VNIR
1 0.52 - 0.60
2 0.63 - 0.69

3N 0.78 - 0.86

3.2 IMAGES

The image used for the study is an ASTER scene of the Magadi area, acquired in 2007. The area
covered by the scene is approximately 4000 km2. For this study, the three bands in the visible
near-infrared (VNIR) spectrum were used, since those are the ones usually exploited for geological
interpretation. The spectral range of each band is presented in Table 3.1. The spatial resolution
of all VNIR bands is 15 m. The coordinate system is the Universal Transverse Mercator (UTM),
Zone 37 South, and the datum World Geodetic System (WGS) 1984. The image is a Level B1
ASTER product. Level 1B products are radiometrically calibrated and geometrically co-registered
data for all image bands (ERSDAC, 2005).

Figure 3.2: ASTER Image AST-L1B-00301232007080046-20131023124004-21811. The area marked as blue
was selected as a test area for parameter tuning.

Due to demanding computations, a subset of the scene was used for the parameter tuning. The
subset has an extent of 61 km2 and is indicated in Figure 3.2. The subset was selected such that it
is representative of the surrounding area and contains most of the characteristic lineament forms
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that exist in the region. Major and long lineaments, as well as minor ones are encountered over
the subset.

Figure 3.3: Reference lineament map, draped over Band 1 of ASTER image

3.3 REFERENCE DATA

The reference data is a vector lineament map (Figure 3.3). It is a product of manual interpreta-
tion (Woldai, October 2013), over the whole scene. The respective parts of the dataset were used
for tuning and validation. The rose diagram of the reference data depicts one main direction N-
NNE/S-SSW, with some lineaments in a NW/SE (Figure 3.4).
Figure 3.5 illustrates the interpretation process of the lineament position on two characteristic
structures of the study area, a graben (3.5a) and a horst (3.5b). The position of the lineament is
indicated in green. The delineation of the lineament is often obstructed by shadow. If the sun is at
such an angle that it faces the scarp (Figure 3.5a) then the lineament is clearly visible and can be de-
lineated. In the opposite case, the shadow of the fault scarp covers the position where the crusting
is happening. In those cases, the delineation is performed on the opposite edge of the fault plane,
indicated in blue in Figure 3.5. Since this study did not include identification of the lineaments
in order to determine whether those are faults or other rift structures, the term lineament will be
used throughout.
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Figure 3.4: Rose diagram of the lineaments in the reference dataset

(a) (b)

Figure 3.5: Illustration of fault trace, scarp and plane. Green lines indicate the lineament (possibly a fault),
where the crusting is happening. When the lineament is obstructed by shadow the delineation is carried out
on the opposite edge of the scarp, indicated in blue. (a) Graben structure, (b) Horst structure (Illustration
from Woldai (October 2013), background image reprinted from E.R.S. (2014))
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Chapter 4

Method

4.1 SEGMENT DETECTION ALGORITHM

The presented algorithm is a line segment detection algorithm based on pixel gradient. It initiates
by calculating a level-line angle for every pixel (Section 4.1.3). This angle stems from the gradient
of the pixel and depicts the direction of the edge that is encountered in each position. These angles
are used to form regions that consist of neighbouring pixels with similar level-line angles, which
are called line-support regions (Section 4.1.5). Each line-support region is a candidate for a segment.
Every region is validated against an a contrario model. This model is an image where gradient
angles are randomly and uniformly distributed around the image. The validation is based on the
calculation of a Number of False Alarms (NFA), which shows the probability that a particular
event (line-support region) would occur in the a contrario model (Section 4.1.7). If this probability
is low, then the segment is validated as meaningful and, therefore, considered a true detection.
The algorithm has a number of internal parameters involved in some of its parts. Their values are
not dicussed in this section. The selection of their values was based on a novel tuning method that
was developped and is presented in section 4.2.

4.1.1 Multispectral data

The segment detection algorithm takes as input a single band (grey-scale) image. However, Re-
mote Sensing commonly involves multi-spectral data. The image data used in this research is an
ASTER image. Using only one of the available bands it means that spectral information con-
tained in other bands is ignored and does not contribute in the result. In order to concentrate all
the available spectral information in a single band, Principal Components Analysis (PCA) is per-
formed on the image. If k < n, PCA is a linear transformation of an n-dimensional vector into a
k-dimensional vector with minimum correlation between its components (Du and Swamy, 2014).
The spectral bands that are commonly used for the task of geological interpretation and lineament
mapping are the ones in the visible spectrum (Woldai, October 2013). Hence, the PCA was per-
formed on the three ASTER bands of the visible and near-infrared spectrum. The first component
was selected because it explained the maximum variability of the data.

4.1.2 Image scaling

The first step of the process is a rescaling of the image to a lower spatial resolution, with a scale
factor S. There are two reasons for this. The first is to tackle problems of aliasing and quantization
artefacts (Grompone von Gioi et al., 2012). Secondly, it is important to rescale the image in such a
scale that facilitates the automatic extraction of features of interest. The optimal value of this scale
factor is one of the research questions this research intents to answer.
Image sub-sampling is performed in two steps. First, a Gaussian filter is applied for smoothing, in
order to avoid aliasing (Grompone von Gioi et al., 2012). The kernel size is 5× 5 and the standard
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deviation σ = 0.8/S. These two values were selected via a series of trials and visual inspection of
the result. After the filtering, the sub-sampling is performed on the smoothed image.

4.1.3 Gradient computation

Figure 4.1: Gradient calculation mask, reprinted from Grompone von Gioi et al. (2012)

The gradient computation considers a 2× 2 neighbourhood (Figure 4.1).

Figure 4.2: Level-line angle. It is zero for perfectly horizontal edges, here φ = 90◦. It depicts the direction
of the edge, reprinted from Grompone von Gioi et al. (2012)

If i(x, y) is the gray level value at (x, y), the pixel gradient at (x, y) is calculated as

gx(x, y) = i(x+ 1, y) + i(x+ 1, y + 1)− i(x, y)− i(x, y + 1)
2 (4.1)

gy(x, y) = i(x, y + 1) + i(x+ 1, y + 1)− i(x, y)− i(x+ 1, y)
2 (4.2)

The gradient magnitude is

G(x, y) =
√
g2

x(x, y) + g2
y(x, y). (4.3)

The gradients in two directions (gx and gy) are also used to calculate the level-line angle (Figure 4.3b)

φi = arctan
(
gx

−gy

)
(4.4)

(Grompone von Gioi et al., 2012). The level-line angle is perpendicular to the gradient direction
and describes the direction of the edge (Figure 4.2).
The size of the used mask is the smallest possible, so that the dependence between the resulting
gradient values is minimum and the assumption that the image gradient is randomly and uniformly
distributed is not rebutted. In theory, in a noisy image, there is no dependence between the values
of the pixels.
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(a) Gradient magnitude (b) Level-line angle

Figure 4.3: Gradient Images

4.1.4 Gradient ordering and threshold

The formation of line-support regions of potential segments (Section 4.1.5) is based on the level-
line angles of the pixels. Starting from one seed pixel, the region is grown by adding more pixels
with similar angles. It is expected that pixels with high gradient magnitudes are pixels that lie on
edges. Therefore, it is reasonable to use pixels with large magnitudes as seed pixels for the region
growing process. For this reason, pixels are ordered descending, on the basis of their gradient mag-
nitude. This list is the one from which seed pixels are drawn consecutively.
The higher the gradient magnitude, the more likely it is that the pixel is member of an edge on
the image. Pixels with very low magnitudes, on the other hand, represent flat zones or smooth
transitions. For this reason, pixels with low gradient magnitude are rejected and not used in the for-
mation of line support regions. Hence, according to Grompone von Gioi et al. (2012), a threshold
is applied to the magnitude:

ρ = q

sin τ . (4.5)

The parameter q is related to the possible error of the gradient, due to quantization effects and is
set equal to 2. The parameter τ is the angle tolerance used in region growing (Section 4.1.5). From
Equation 4.5 it is inferred that the gradient magnitude threshold is inversely proportional to sin τ .
The idea behind this relationship is that pixels whose angle error is larger than the angle tolerance
should be rejected.

4.1.5 Region growing

The region growing algorithm, takes as input iteratively a seed pixel and its level-line angle, looks
for neighbouring pixels with similar angles and groups them together. Starting from the first pixel
in the sorted list of gradient magnitudes, the algorithm is looking for neighbouring pixels whose
level-line angle is equal to the angle of the region, up to a tolerance τ . These pixels will form the line
support region of the potential segment. Each pixel can only be member of a single line-support
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region (Figure 4.4).
For the growing, an 8-connected neighbourhood system is used. The initial region angle θregion is

Figure 4.4: Example of a line-support region, neighbouring pixels with similar level-line angles get grouped
together. The algorithm is using an 8-connected neighbourhood system.

the level-line angle of the seed pixel. Each time a pixel is added to the region the region angle is
updated as follows

θregion = arctan
(∑

j sinφj∑
j cosφj

)
(4.6)

where φj is the level line angle of the added point. The process terminates when no other pixel
can be subjoined to the region.
The result of the region growing algorithm is a set of segments, that are composed of pixels with
similar level-line angles and whose magnitudes are above the magnitude threshold. Each one of
these segments is a line segment candidate with an associated region angle.
Before proceeding, regions with no more than two pixels are deleted.

4.1.6 Rectangle approximation

Line-support regions are structures that need to be approximated by a geometrical event, in order to
be evaluated as meaningful or not. Here line-support regions are approximated by rectangles, which
is a shape that resembles the appearance of a line segment on an image, considering a relatively
small width.
Each pixel is assigned a weight proportional its gradient magnitude and that is called the “mass”
of the pixel. Then, the centre of the rectangle is the mass centre of the region and the rectangle
direction is the first inertia axis of the region. The mass centre (cx, cy) is calculated as follows:

cx =
∑

j∈regionG(j) · x(j)∑
j∈regionG(j) (4.7)

cy =
∑

j∈regionG(j) · y(j)∑
j∈regionG(j) (4.8)

where G(j) is the gradient magnitude of the pixel j ∈region and j runs over all region pixels.
The rectangle direction is, in reality, defined after a Principal Components Analysis (PCA) on
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the gradient magnitudes of the region pixels. The direction coincides with the direction of the
minimum variance of gradient magnitudes (Figure 4.5).

Figure 4.5: PCA transformation, reprinted from Du and Swamy (2014)

This direction is the eigenvector angle linked to the smallest eigenvalue of the matrix

M=

(
mxx mxy

mxy myy

)

where

mxx =
∑

j∈RegionG(j) · (x(j)− cx)2∑
j∈RegionG(j) (4.9)

myy =
∑

j∈RegionG(j) · (y(j)− cy)2∑
j∈RegionG(j) (4.10)

mxy =
∑

j∈RegionG(j) · (x(j)− cx) · (y(j)− cy)∑
j∈RegionG(j) (4.11)

Finally, the resulting object is the minimum rectangle that contains all the pixels of the line-support
region (Figure 4.6).

4.1.7 Number of False Alarms (NFA) calculation

For the validation of the detected segments an a contrario model is used. That is, it is assumed that
the observations, the gradient angles, are realizations of a uniformly distributed variable. Then,
a configuration of pixels with an associated quality(gradient angle) is specified. In our case, this
is a group of neighbouring pixels that have similar level line angles, a line-support region. For
this particular configuration, its probability of occurrence in the a contrario model, that of white
noise, can be calculated. The lower this probability, the more certain it is that our configuration
represents an actual object in the image and that the detection is not an artefact of noise. The
probability of occurrence is directly related to the NFA, which is calculated considering how many
of the pixels that form a potential segment are aligned, given a precision p (Figure 4.6). The NFA
calculation is based on the binomial tail, over the random uniform distribution.
In order to decide whether a segment is significant, this probability is bounded by a value ε. The
lower the value of ε, the stricter we are with defining “meaningfulness” (Figure 4.7). Hence, only
segments that would very hardly occur in a random image are accepted. The ε variable is strongly
related to the concept of significance level in statistics and, therefore, usually it is set to values
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(a) (b)

Figure 4.6: Examples of associated rectangles: the minimum rectangle that contains all the pixels of the
line-support region. (a) High density of aligned points, low NFA. (b) Lower density of aligned points, higher
NFA. Pixels in color are aligned points of the region.

ε � 1 (Desolneux et al., 2000). Here, the null hypothesis is a random distribution of the image
gradient. Based on a choice of significance level,the null hypothesis is rejected when the probability
(NFA) of a particular object is lower than this significance level.
The NFA calculation considers three values:

• total number of aligned points in the rectangle (k)

• total number of pixels in the rectangle (n)

• precision (p)

The precision p is the probability that a pixel has a certain orientation in the a contrario model
and is set to p = τ/π (Grompone von Gioi et al., 2012). Clearly, this value is related to the angle
tolerance τ and the precision with which angles are considered.
The NFA associated with a rectangle is

NFA(r) = (N ·M)
5
2 · γ ·B(n, k, p) (4.12)

B(n, k, p) =
n∑

j=k

(
n

j

)
· pj · (1− p)n−j (4.13)

whereN andM are the image dimensions and (N ·M)
5
2 the total number of rectangles considered

on the image (Grompone von Gioi et al., 2012). The parameter γ is the total number of p values
tested. Here, only the value p = τ/π was used, hence γ = 1.
The NFA is then bounded by the threshold ε and only the rectangles for which NFA(r) < ε
are validated as ε-meaningful segments. The value of the parameter ε is among the ones that are
examined in the tuning process (Section 4.2).

4.2 PARAMETER TUNING AND VALIDATION

In this section, the validation method developed for parameter tuning is presented. The method
is applied firstly to calibrate the internal parameters of the algorithm. Secondly, once the param-
eters are fixed, the method can be used to evaluate the result obtained from any subset in terms
of missing and false detections. In addition, a measure of the positional accuracy of the successful
detections is provided.
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(a) (b)

Figure 4.7: Meaningful Segments for different values of ε. (a) Meaningful segments for ε = 1, (b) Meaning-
ful segments for ε = 10−10. Small ε values imply stricter threshold to the NFA. As a result, fewer segments
are accepted as meaningful, those with very low probability of occurence in the white noise image model.

Parameter tuning is performed on a small subset of the study area, due to large computational
requirements. The algorithm parameters that are tuned are the scale factor S, the angle tolerance
τ and the NFA threshold ε.
The present method is a novel scheme for the assessment of the relative positional accuracy be-
tween a reference dataset of linear features and an automatic extraction of the respective features.
It is based on the method of Goodchild and Jeansoulin (1998) for the comparison of two sets of
lines. As a measure of similarity between two sets of lines they suggest that for each point in a line
A we can define its shortest Euclidean distance to a line B and obtain a measure of relative accu-
racy between them. The same applies in the other direction, from lineB to lineA. Those distance
functions can then be represented in a histogram. This approach was adjusted to the geometrical
characteristics of our result. Comparison in this case has to be applied between a set of lines (ref-
erence) and a set of points (extraction). The extraction result of the detection algorithm is a set of
meaningful segments, which consist of a number of pixels. In addition, the method is extended
and apart from distance measures between reference and extraction, considers also differences in
local orientations.
This method exploits the distance and difference in orientation between a reference and an ex-
tracted dataset to assess the level of correspondence and similarity among them. The distinctive-
ness of the method is that it handles two datasets that represent the same feature (lineaments) under
a different geometrical type; lines from the reference dataset and points from the extraction. The
approach establishes measures between sample points on the lines and the detected points.

4.2.1 Interval points on reference lines

For the reference lines, sampling points are selected on equal distances along their total extent.
The sampling distance is set equal to 2 × R, where R is the pixel size. R depends on the scale
factor S and is equal to R = r/S, where r is the original pixel size r = 15 m. Pixels are square.
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(a) (b)

Figure 4.8: Interval points and local orientation. (a) Sample and interval points on a reference line, (b)
Local orientation at interval points

Sample points are located on equal intervals on all lines. In between each pair of sample points an
interval point Mi is defined, in the middle of the distance of the sample points (Figure 4.8a). Such
short segments can be considered as straight line segments and, hence the coordinates and local
orientation of the interval points are

xMi = xi + xi+1
2 , yMi = yi + yi+1

2 (4.14)

αi = arctan yi+1 − yi

xi+1 − xi
(4.15)

where xi, yi are the coordinates of the sample points.

4.2.2 Local orientation of detected points

Each one of the detected points belongs to a single segment which has an orientation, the global
level-line angle of the segment. This angle is calculated as

θregion = arctan
∑

j∈region sinφj∑
j∈region cosφj

(4.16)

where φj is the level-line angle and j a running index on all region pixels.
From the equation above we see that all points participate equally to this global measure of orien-
tation of the segment. However, since the detected segments are not perfectly straight lines, but
rather slightly curvilinear features we are more interested in a local orientation measure at each
segment point (Figure 4.10). In order to achieve this, the local angle computation assigns to all
region points weights proportional to the distance from the point in question (Hastie et al., 2009).
Here, a Gaussian kernel is used and the local angle calculation is as follows

θl = arctan
∑k

i=1 e
(−di/d0)2

· sinφi∑k
i=1 e

(−di/d0)2 · cosφi

(4.17)

where di is the distance of the pixel i from the pixel l at which the local orientation is calculated,
d0 controls the weights assigned to the pixels and k = k2

s , where ks is the kernel size.
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Figure 4.9: Reference lines and interval points. Reference lines are plotted in yellow and interval points,
at intervals of two pixels are shown in red.

4.2.3 Distance measures and accuracy assessment

Once local orientations are calculated, corresponding points between reference and detection are
sought. A pair of points is considered a correspondence when the two points are close and share
similar local orientations. The same measures are applied both starting from reference and detected
points respectively. The conditions for two points to be considered corresponding are:

S < dr,e (4.18)

| α− θl |< θ0 (4.19)

where S is the distance between the two points, dr and de two distance thresholds and θ0 the angle
threshold.
The condition on the local angles prevents from finding false correspondences between points that
are very close, but belong to objects with distinct orientations (Figure 4.10b).

From reference to detection

If a corresponding point is found for the interval point of the reference line, then this is counted
as a successful detection. If such point does not exist, then it is counted as a missing one. The
following rations of missing (NM ) and successful (NSr ) detections are defined:

NM = total number of interval points with no correspondence
total number of interval points

(4.20)

NSr = 1−NM (4.21)
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(a) (b)

Figure 4.10: Local angle calculation of detected points. The local computation makes use of a 3× 3 kernel
(red). Example level-line angles are shown with black segments inside the pixels. (a) Similar segment and
line orientations. There is correspondence among the local orientation of the line and segment points. (b)
Different segment and line orientations. The method will not indicate a corresponding pair of line and
segment point, due to difference in local orientations, despite the intersection.

Here, the percentage of successful and missing detections is a measure of completeness of the result,
with respect to the reference. High NSr values would imply that the line intersects with many
detected points that are also aligned.

From detection to reference

The same procedure is repeated from the detected points to the interval points of the reference
lines. If a corresponding interval point is found for the extracted point, then the detection is
considered successful. If not, then this extracted point is a false detection. The respective ratios of
false (NF ) and successful (NSe ) detections will now be:

NF = total number of detected points with no correspondence
total number of detected points

(4.22)

NSe = 1−NF (4.23)

In this case, the correctness of the result is assessed. False detections represent false positives and
successful detections are true positives. High NF ratios imply that either the detected points are
mispositioned, in relation to the lines, or that they don’t have similar orientations.

Accuracy assessment

Once the successful detections are assorted, then they can be used in order to examine the posi-
tional accuracy of the result. For this purpose, the mean and the standard deviation of the distances
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of corresponding points are calculated for all successful detections. These values express the devi-
ation between reference and detection, in terms of distance.

4.2.4 Implementation

The validation method involves a number of additional parameters. First, distance thresholds
distinguish the detections that have passed the NFA control into successful and unsuccessful and
counts false and missing detections. Second, the angle threshold (θ0) that defines when an extracted
and a point on the reference line are aligned, based on their local orientations. Finally, the size and
the standard deviation of the Gaussian kernel, used as an averaging tool for the local angle calcula-
tion of the segment points.
The distance threshold should be different for the distance measures from the reference to the ex-
traction (dr) and from the extraction to the reference (de) (Eq. 4.18). The reason is the nature of the
objects to be compared. The sample reference points are points that lie on lines, those of geologi-
cal interpretation. The extracted points are those of the segments formed during region growing.
As it has been observed from the results these segments are objects that cover an area, rather than
strict linear objects. An example of such a comparison between a reference and a detected object
is shown in Figure 4.11. Starting from a point on the line to find the closest aligned point in the
set of extracted points, it is expected and required to find one within one to two pixels, in order
to consider that the particular sample point has been detected. When starting from the segment
points, we are dealing with points all over the area of the segment. For the points on the edges of
the segment the resulting distances can be larger than two pixels although they have correctly been
assigned to the segment, which in the image appears as a wide object rather than a line. Therefore,
there is a need to set a higher distance threshold for the calculation that starts from the extraction
and moves towards the reference points.
The distance threshold from reference to detection (dr) (Eq. 4.18) is linked to the relative posi-
tional accuracy of the detected segments and the reference lines. For this distance a deviation of
1-2 pixels is acceptable (Woldai, October 2013) and, hence, the threshold was set equal to two pix-
els. Therefore, it is different for every value of S. The resulting distance threshold values for every
S value are reported in Table 5.1. Once the scale factor is fixed, the distance threshold dr is fixed
as well.
The distance threshold from detection to reference is related to the width of the detected segments,
which is different for every S. For this study, the distance threshold from extraction to reference
(de) is set equal to the first quantile of the width of the detected segments (in practice, this width
is approximated by the width of the associated rectangles of the segments). Table 5.1 shows that
this threshold value is different for coarse and fine scales. This is explained by the nature of the
segments that are formed. The region growing method applied here is a pixel-based method and,
hence, the shape and size of the resulting segments is very much scale dependent. It is observed
that the coarser the scale, the wider the final objects. It is also expected that the detection precision
cannot be equally small in coarse and fine resolutions.
The angle threshold (θ0) is related to the precision with which the lineament orientation is de-
tected. Moreover, it strongly connects to the question: “When can we say that two lineaments
share the same orientation?”.
Frequently, lineament orientations are classified in intervals of 10◦ (Singhal and Gupta, 2010).
Here an additional error in the orientation estimation due to image smoothing was considered
and the angle threshold was set to 12.5◦ (Eq. 4.19).
For the Gaussian kernel, the size is ks = 3 (3 × 3), since the average width of the segments is
not much larger than this length. Also, the standard deviation of the exponential function (d0) is
chosen to be equal to the first quantile of the segments’ length divided by the pixel size (again the
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Figure 4.11: Example of a detected segment and its corresponding reference line. The distance of the points
of the core of the segment from the line is very small. The distance of the points along the segment edges
from the line is larger, although the segment they belong to has a clear correspondence to the reference.
Image is rotated.

segment length is approximated by the rectangle’s main axis length). This parameter is associated
with the window size of the kernel (Hastie et al., 2009).

4.3 ASSESSMENT OF THE DETECTED SEGMENTS

This section presents a simple method of describing the nature of the detected segments and their
relationship with the reference lineaments. It is based on the intersection of the segment with its
corresponding reference lineament. The assumption that the lineaments have a N-S orientation
is made for simplification reasons. This assumption does not deviate much from reality since the
main direction of lineaments in the area is N-NNE/S-SSW (Figure 3.4). The assumption is not
restrictive, since the method can be easily adjusted for different lineament orientations.
On each line, sample points at interval of one pixel are drawn. Sample points that intersect with
a segment are called hits (Figure 4.12). When a hit is found then the number of segment points
that lie on a horizontal line crossing the hit point are counted, both on the left and right side. The
horizontal line is used based on the N-S direction assumption. The ratio of the sum of distances of
points lying on the two sides of the line is calculated. Further, the mean distance of the hit points
from the detected points that have been counted is computed, along with the standard deviation.
Finally, the ratio of hits over the total number of sample points on the line is recorded.
The goal of this analysis is to provide a detailed insight in the geometrical relationship between
reference lineaments and automatically detected segments. The analysis was applied on a single
segment.
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Figure 4.12: Points of intersection of the reference lineament with its corresponding detected segment.
Intersection points are called hits (red). The points lying on the respective horizontal line are counted
(green).
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Chapter 5

Results

5.1 INTRODUCTION

In this section the tuning results for the three internal algorithm parameters are presented. Those
parameters are the scale factor (S), the angle tolerance (τ ) and the Number of False Alarms (NFA)
threshold (ε). Each parameter is estimated individually. In all cases, tuning is performed by vary-
ing the value of the parameter in question, while the other two are fixed. Tuning runs over a line
parallel to the parameter that is being tuned, in 2D space (Figure 5.1b). The final goal is to spot
the point in 3D space, where each parameter has its optimal value (Figure 5.1a).
The sequence in which the parameters are tuned is based on their order of appearance in the al-
gorithm but also their influence. The first parameter to be tuned is the scale factor S. Image sub-
sampling precedes all other algorithm steps. Consequently, the resulting spatial resolution of the
sub-sampling has an impact on the smoothing that follows. In addition, during region growing, the
total number of pixels that form a line support region is directly related to the spatial resolution.
The coarser the resolution, the smaller the number of pixels per region will become. Therefore,
the scale parameter is fixed first.
Following is the angle tolerance parameter. This parameter is determinant in the region growing
algorithm, which runs over the sub-sampled image. The angle tolerance influences the final shape
and size (in pixels) of the line-support-regions, which in turn will be evaluated with the calculation
of NFA.
NFA calculation and the selection of meaningful segments happens last. The distinction between
true detections and false alarms is controlled by the parameter ε.

5.2 TUNING OF SCALE PARAMETER

Values in the range [0.1, 1] at intervals of 0.1 were tested. If an abrupt change was noticed between
two consecutive values in the missing or the false detections’ ratios, additional S values were tested,
in order to obtain a clear description of the trend in the errors. For this reason, tests for the values
0.05, 0.125 and 0.15 were added. The results are presented in Table 5.1. Low S implies coarse ,
while high S fine spatial resolution.
The fixed parameters of the other two values were τ = 20◦ and ε = 1, which seem to be close to
the optimal from visual inspection of multiple test results.
An illustration of the trend of false (NF ) and missing (NM ) detections for varying scale factors

is presented in Figure 5.2a. In the tested range of scale factor values, NF shows a larger variation
than NM . The first varies from values of 0.02 to 0.72, whereas NM is limited in the value range
[0.38,0.55]. On the function of missing detections, a minimum is observed for S=0.2 and S=0.3,
where the ratio values are equal. For S<0.2, the ratio of missing detections follows an increasing
pattern. The same happens for S>0.3. The maximum value of 0.55 is observed for S=1, which
is the original image scale. The function of false detections shows a different trend. The ratio of
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(a) Parameters in 3D space (b) Parameters in 2D space

Figure 5.1: The set of the optimal parameter values of the algorithm is a point in the 3D space (a). Each
parameter is tuned while the other two are fixed. The tuning process is represented by a line in 2D space
(b).

Table 5.1 Distance thresholds dr(m), de(m) and error ratios NM , NF for varying scale factor S.
Small S values indicate coarse spatial resolution. Higher S values result in finer spatial resolution.

S dr(m) de(m) NM NF

0.05 643 5029 0.53 0.10
0.1 322 1315 0.51 0.02
0.15 214 524 0.38 0.21
0.2 161 475 0.39 0.22
0.25 129 320 0.40 0.26
0.3 107 279 0.39 0.27
0.4 80 164 0.43 0.39
0.5 64 84 0.49 0.58
0.6 54 79 0.50 0.57
0.7 46 68 0.52 0.59
0.8 40 60 0.51 0.66
0.9 36 57 0.53 0.70
1 32 51 0.55 0.72
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(a) (b)

Figure 5.2: Ratio of missing (NM ) and false (NF ) detections for varying scale factor S. (a)NM (open circles)
andNF (closed circles), lines are added to assist interpretation. (b)NM againstNF . An optimum is observed
in the interval 0.2-0.3

false detections starts from a minimum of 0.02 for S=0.1 and steadily increases for S>0.1, with
an exception at S=0.05, where the ratio is larger than the one observed at S=0.1. The maximum
value (0.72) is again noticed at S=1.
Figure 5.2b is a plot of NM against NF . In the graph, an optimum is observed at the interval
(0.2,0.3). This interval is also a break point of the function. The trends observed for values of
S larger than 0.3 and smaller than 0.2 are contrasting. Therefore, the choice is left between the
values 0.2 and 0.3. The value S=0.25 was also tested. It does not indicate a new optimum, since it
lies on the line defined by points 0.2 and 0.3 of Figure 5.2b. The point is excluded from the graph
for presentation reasons.
NM is the same for both values, while NF is smaller for S=0.2. In principal, that points to the
value S=0.2. Nevertheless, from visual inspection of the result, an important difference is observed
between the result for S=0.2 and S=0.3. For S=0.2, as well as for all values S<0.3, the result is de-
teriorated and the nature of the detected segments is lost. The individual segments are merged into
one extended object ( Figures 5.3a and 5.3b). So, the value for which false detections are minimum
and, at the same time, the result is visually correct is 0.3 (Figure 5.3c), which coincides with the
minimum of missing detections. The final pixel size for this scale is 50× 50 m (15/0.3 = 50).
It is concluded that in fine resolutions the result consists of multiple, small segments (Figure 5.3d).
In coarse resolutions, the number of detected segments is smaller, as small ones are coerced into
larger ones.

5.3 TUNING OF ANGLE TOLERANCE

This section contains the tuning of the angle tolerance. The scale factor is now fixed at a value of
0.3 and ε is kept fixed at 1. Since the scale factor is fixed, the distance threshold dr is constant.
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(a) (b)

(c) (d)

Figure 5.3: Detection results for different values of the scale factor S. (a) S=0.1 All the lineaments are
merged and detected in five, wide segments. There is no semantic correspondence between reference and
extraction. (b) S=0.2 The same phenomenon as in (a) is observed, but limited. (c) S=0.3 The coarser scale
at which the detected segments have correspondence to the reference. (d) S=0.9 Many small segments are
detected. Many false detections are also observed. Each segment is represented by a different colour. The
reference lines are overlaid in black. As we move from coarse to finer scales, the detection consists of more,
shorter and smaller segments. In coarse scales, multiple lineaments tend to be grouped in a wide segment.
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Table 5.2 Distance threshold de and error ratios for varying angle tolerance (τ )

τ◦ de(m) NM NF

10 146 0.71 0.30
12.5 196 0.62 0.24
15 223 0.54 0.25

17.5 260 0.43 0.21
20 279 0.37 0.24

22.5 298 0.33 0.25
25 300 0.29 0.27

27.5 325 0.26 0.26
30 353 0.21 0.25

32.5 510 0.20 0.14
35 584 0.18 0.13

The tested values of angle tolerance were in the range [10◦, 35◦] at intervals of 2.5◦. The choice of
the range was such that the angles grouped together can always be considered aligned, in a strict
or less strict frame. Again, the intervals were densified where there was need for more points in
order to obtain a clear representation of the error functions. Results are presented in Table 5.2.
The plot of missing and false detections for the several values of τ (Figure 5.4) helps understand the
pattern of each type of error in relation to the angle tolerance. To start with,NM has a decreasing
pattern, moving from low to higher values of angle tolerance. That means, the stricter the angle
threshold, the larger the NM . Very few missing detections occur for large angle tolerance values.
NF is within a smaller range, with less variation. The lower values are observed for τ > 30◦.
The point at which the two ratios have minimum values and, at the same time, the result proves
to be acceptable from visual interpretation is sought. From the graph of Figure 5.4, the minimum
point for both ratios is at τ = 35◦. NM might be even lower for larger values of τ , as the trend
seems to have a constant descending tenor. NF , on the other hand, has a more irregular shape.
Visual inspection of the result depicts that for large values of τ the segmentation result is distorted.
Lineaments that are close and have similar orientations are detected in fewer, wide segments ( Fig-
ures 5.5c and 5.5d). That means that the object correspondence between reference and extraction
is lost. Hence, the decision cannot be exclusively based on the diagram of Figure 5.4, but it also
has to be combined with visual assessment of the result, since the error ratios can be misleading. A
characteristic example is that for τ = 35◦, where both NM and NF are low, but visual inspection
depicts a deteriorated result.
The value of τ for which missing and false ratios are as low as possible, while the correspondence
between reference and extraction is preserved is 25◦ (Figure 5.5b). This correspondence is lost for
all higher values of angle tolerance. Angle tolerance is fixed at τ = 25◦. The maximum difference
in angles at which a pixel is still assigned to the line-support region is illustrated in Figure 5.6.
In general, small angle tolerance values result in narrower segments. For low τ values, there are
many missing detections. The size of the objects and particularly the width increases for large
angle tolerance values. For values above 27.5◦ the result is a single or very few segments that con-
dense all lines in one object. It is clear that at those cases the nature of the segments is lost, since
the result are extended polygon segments that have no correspondence to the reference lines.

31



MAPPING RIFT TECTONICS USING GESTALT PSYCHOLOGY AND STATISTICS

Figure 5.4: Missing (NM ) and false detections’ ratio (NF ) for varying angle tolerance (τ◦). Open circles:
NM , closed circles: NF , lines are added to assist interpretation.

5.4 SCALE FACTOR REVISITED

It has been explained in Section 5.1 that parameters are treated individually. For this reason, once
the value of angle tolerance is tuned, there is a need to confirm that the choice of the scale factor
value (S) that was made earlier is the optimal. So, the rations of missing and false detections were
recorded for τ = 25◦. The results are summarized in Table 5.3. Figure 5.7 presents both ratios in
a graph.
From the graph it is inferred that the S value for which both NM and NF are minimum is 0.2.
In Section 5.2 it has been observed that S values lower than 0.3 deteriorate the result and distort
the nature of the mapped linear segments. The same phenomenon can be confirmed here visually
from Figure 5.8. From this figure the value 0.3 is clearly preferred over 0.2, since the detected
segments resemble the form of the reference lines. Hence, the choice of S=0.3 is confirmed.

5.5 TUNING OF THE NFA THRESHOLD PARAMETER ε

The third parameter to be tuned is the NFA threshold ε. Usually this value is set to 1 with no
further tests (Desolneux et al., 2001; Desolneux et al., 2003). It is interesting to observe the trends
of the errors with the variation of this parameter and decide whether the value 1 is indeed the
optimal for this application. The intention is to check the result of allowing segments with high
probability of occurrence in a white noise image to pass the NFA check. On the other hand, it
is desirable to inspect the result when strict thresholds are imposed and only segments with low
probability in the a contrario model are accepted. So, some values above 1 were tested, as well as
some very small ones, below 1. The results are presented in Table 5.4.
In Figure 5.9 we see the behaviour of the two kinds of errors for the tested ε values. As it was
expected, for values below one, the percentage of missing detections goes up and the opposite
happens for false detections. High ε values mean less strict threshold, which allows less meaningful
segments to pass the NFA control (Figure 5.10). Many of these detections, however, are false.
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(a) (b)

(c) (d)

Figure 5.5: Detection results for different values of the angle tolerance (τ ). (a) τ = 10◦ Many missing
detections. (b) τ = 25◦ Correspondence between reference and extraction is observed. (c) τ = 27.5◦ Close
and parallel lineaments start to be merged in big segments. (d) τ = 35◦ Very few and large segments are
formed. Low values of angle tolerance result in many missing detections. Very large values produce few
and big segments, where individual lineaments are coerced in one object.
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Figure 5.6: The figure shows the maximum accepted angle difference for the region growing. The solid line
represents the region angle and the dashed line the level-line angle of the pixel to be added in the line-support
region.

Table 5.3 Distance thresholds and error ratios for varying scale factor S and fixed angle tolerance
at τ = 25◦

S dr(m) de(m) NM NF

0.1 322 986 0.37 0.06
0.2 161 446 0.22 0.21
0.3 107 300 0.29 0.27
0.4 80 196 0.36 0.37
0.5 64 98 0.42 0.54
0.6 54 101 0.57 0.51
0.7 46 82 0.46 0.55
0.8 40 66 0.45 0.63
0.9 36 58 0.49 0.69
1 32 55 0.47 0.70

Further, we note that for values in the range [1, 4] the ratios of missing and false detections are
almost equal. For values above 4 missing detections are reduced and false ones increase. The
opposite pattern is observed for values of ε below 1, where false detections are limited and more
missing are recorded. The ratios of missing and false detections are equal for ε = 2.
The number of accepted segments for some ε values is presented in Table 5.5. The lower the value
of the threshold, the less segments are accepted. The number of accepted segments for ε = 1 and
2 is 37 and 38 respectively. We note that the difference is only one segment.
In principle, any of the values in the range [1, 4] can be selected. If a value above 1, however, is
selected, then segments that could also occur in a random image will be accepted. The value of ε
is, therefore, fixed at 1.

5.6 ACCURACY OF THE RESULT

The resulting image after the tuning of all three parameters is found in Figure 5.11b. The ratios of
missing and false detections for this parameter values areNM = 0.28 andNF = 0.27 respectively.
The two ratios are in balance.
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Table 5.4 Distance threshold de and error ratios for varying ε for fixed scale factor at S=0.3 and
angle tolerance at τ = 25◦

ε de(m) NM NF

10−10 574 0.56 0.06
0.001 373 0.33 0.19
0.01 332 0.28 0.23
0.1 322 0.28 0.25
0.5 322 0.29 0.25
0.75 300 0.29 0.27

1 300 0.28 0.27
2 307 0.26 0.26
3 299 0.26 0.27
4 291 0.26 0.28
5 291 0.27 0.28
6 294 0.27 0.28
8 288 0.26 0.29
10 288 0.26 0.29
50 261 0.25 0.32
100 235 0.24 0.36

Table 5.5 Number of ε-meaningful segments for some ε values

ε Number of ε-meaningful segments
10−10 10

1 37
2 38
50 47
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Figure 5.7: Missing (NM ) and false detections’ ratio (NF ) for varying scale factor S and τ = 25◦. Open
circles: NM , closed circles: NF , lines are added to assist interpretation.

Table 5.6 Mean and standard deviation of distances

Mean distance(m) stdv of distance
from reference 40 23
from detection 121 77

After the parameter tuning, the values of the distance thresholds have also been fixed to dr = 107 m
and de = 300m. The calculation of those thresholds is explained in Section 4.2.4. In Figure 5.12
the histogram of the distances of points between extraction and reference are shown. A line in-
dicates the two threshold values. Points on the left of the threshold line are considered successful
detections . The differences in local orientations are treated respectively. Finally, successful detec-
tions are those points that fall below both the distance and the angle thresholds and for those the
mean distance and its standard deviation are computed (Table 5.6).
The mean distance from the sample reference points to the detected points is smaller than the one
measured in the opposite direction. The same holds for the respective standard deviations. Same
conclusions are drawn from the histogram, since the frequencies of long distances are much higher
when measuring from extracted points (Figure 5.12(b)). This difference is explained by the nature
of the objects, which was referred to in section 4.2.4. When starting from reference, the mean
distance from the detected points is less than a pixel (50m). Starting from detection, the mean
distance does not exceed three pixels.

5.7 ERROR VISUALIZATION

In this section, a visualization of the two kinds of errors, missing and false detections, is presented.
Successful and unsuccessful detections are illustrated in two maps (Figures 5.13 and 5.14). The
first map (Figure 5.13) is a visualization of successful and missing in detections with regard to the
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(a) S=0.2 (b) S=0.3

Figure 5.8: Comparison of the detection results for S=0.2,0.3 and τ = 25◦

reference lines. As it has been explained in section 4.2.1, interval points have been selected on the
lines for the purpose of accuracy assessment. On the map, we see in green interval points for which
a corresponding point has been found in the set of detected points. Correspondence premises
at least one point in close distance, with similar local orientation. It implies that the particular
interval point has indeed been detected. In red are the points for which no correspondence was
found. This map is a presentation of the completeness of the final detection result.
The second map (Figure 5.14) is a plot of true and false detections and concerns the detected points.
In green are the detected points for which a corresponding point has been found with the reference.
Correspondence is mentioned in the same context as before. Green points indicate true detections.
Red points have not matched with any interval point of the reference and are, consequently, false
detections. This map is a visualization of the correctness of the result.
Next, the most prominent error cases are pointed out by some plots on the image (Figure 5.15).
To start with, several cases were missing detections are pointed out have been identified. The most
prominent concerns a lineament that is not represented by a line, at the particular region of the
image (plots A and F, Figures 5.13 and 5.15). Another frequent case, which is a sub-category of
the previous case, concerns lineaments that do not correspond to an edge and have been delineated
by the interpreter based on experience (plots C and E). Geological experience allowed to connect
individual lines that are likely to belong to the same structure (Woldai, October 2013). Missing
detections are also observed where lines have strong curvature, and the line detector fails (plot B).
Finally, weak edges also are sometimes not detected (plot D).
The causes of false detections are fewer. The most clear case is that of edges that do not represent
lineaments (plots 1 and 2, Figure 5.14). It is expected that on the image several edges are visible.
Not all of them point to a geological feature or are considered to be such from the interpreter.
Secondly, false detections occur where the whole fault plane or even the sediment that has covered
the part between two lineaments is detected (plots 3 and 4).
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Figure 5.9: Missing (NM ) and false detections’ ratio (NF ) for varying ε (plotted in log scale). Open circles:
NM , closed circles: NF , lines are added to assist interpretation.

5.8 DETAILED ASSESSMENT OF THE DETECTED SEGMENTS

In the previous sections it has been deduced that the present method cannot provide a standalone
measure of the quality of the result and it always has to be assisted by visual interpretation of the
result. The main problem that is tackled here is the comparison of two sets of objects with different
geometrical properties. Lines from the reference dataset and groups of points from the detection.
For this reason, in this section the relationship between the two sets of objects is explored, by
focusing on one example. A pair of a reference line and its corresponding segment was selected for
this purpose (Figure 5.16). The selected lineament is a clear edge that represents a major structure.
In addition, it is being detected by a single segment, which means that there is an one-to-one cor-
respondence between reference and detection. For these reasons, the particular pair was selected
as a starting case for a simple example towards the description of the correspondence between the
two objects. If further analysis is to be performed, then more complicated relationships should be
explored, such as the cases where one reference line is detected by multiple segments or where a
segment is representing more than one reference lineaments.
The applied approach and measures are described in Section 4.3. The example here refers to cer-
tain parameter values that have proven to be critical from the analysis in the previous sections.
First, the result for some scale factor (S) values is explored. The results are presented in Table 5.7.

Segment points are usually distributed on both sides of the line. The distribution of the distances,
however, is never equal. There are cases that the difference is not great (S=0.2, 0.6) and others
where one side is obviously favoured over the other (S=0.3, 0.4, 0.9). In general, the ratio of hits
in the Table 5.7 indicates successful detections. That was expected, since the line and segment were
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(a) ε = 10−10 (b) ε = 1

(c) ε = 50

Figure 5.10: Detection results for different values of the NFA threshold (ε). Very low thresholds result in
the acceptance of less segments. For high values, more segments are accepted, since segments with higher
NFA pass the control, and false detections occur.

Table 5.7 Distribution of the distances between reference and detected points and ratio of hits for
some scale factor values. All distances reported in meters.

Mean distance Ratio Standard deviation
S Left Right Left Right Left Right no points hits

0.2 147 173 0.46 0.54 67 122 45 1
0.3 110 81 0.58 0.42 70 55 67 0.91
0.4 102 66 0.61 0.39 53 40 92 0.99
0.6 65 53 0.55 0.45 33 23 137 0.99
0.9 53 38 0.59 0.41 35 25 206 0.88
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(a) (b)

Figure 5.11: (a) Sub-sampled image with S=0.3 and (b) Final detection result

chosen for showing clear correspondence. The lowest ratio of hits occurs for S=0.9. The order of
magnitude of the mean distance is the same for all scale factor values. Some results are illustrated
in Figure 5.16.
The most important observation is that, in almost all cases, the ratio of distances on the left is
higher than the one on the right. This relationship between the two objects can be explained on
the basis of the manual interpretation explained in Section 3.3. The present example is a typical
case of interpreting the actual position of the lineament, where both the lineament and scarp are
visible on the image. The dark part of Figure 5.16a represents the fault scarp, which is narrow and
has two bounding edges (Figure 3.5b). One of them is the actual lineament and this is where the
reference was delineated. In image analysis terms, on the other hand, both edges are detected and
since they are parallel and close together they are detected by a single segment. This is the reason
why the particular relation between the two objects is observed.
Next, the scale factor parameter is fixed at S=0.3 and some angle tolerance values are tested. The
results are presented in Table 5.8. The same pattern is observed here; the ratio of distances on the
left is constantly higher than the ratio of distances on the right. Some differences in the magnitude
of the mean distance is observed. For the values τ ∈ [22.5◦, 27.5◦] the mean distances are almost
equal. For extreme low or high values those change. It has been stated before that for such extreme
values the result is being distorted. Two examples are shown in Figure 5.17.
From all the above it is deduced that geological experience is essential in order to translate an
automatically detected segment into a line that corresponds to a lineament. In particular, this
knowledge will define the respective position of the segment at which the lineament is located.
On the other hand, the geometry of the detected segment can testify about the characteristics of
the lineament. Specifically, the width of the detected segment is related to the steepness of the
plane of the crusting. The steeper the plane, the narrower the segment that is apparent on the
image.

There are a few points that can be discussed on the comparison of these results to the previous
accuracy measures. First, this assessment method, in contrast to the validation method, exploits
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(a) From reference to detection (b) From detection to reference

Figure 5.12: Histogram of distances measured from reference to detected points and vice versa. A threshold
is applied to distinguish successful and unsuccessful detections. The threshold is illustrated with a red line
corresponds to dr and de for (a) and (b) respectively. Points on the left of the threshold lines are considered
successful detections.

Table 5.8 Distribution of the distances between reference and detected points and ratio of hits for
some angle tolerance values. All distances reported in meters.

Mean distance Ratio Standard deviation
τ(◦) Left Right Left Right Left Right no points hits
12.5 57 57 0.50 0.50 57 47 68 0.88
22.5 107 80 0.57 0.43 69 54 67 0.91
25 110 81 0.58 0.42 70 55 67 0.91

27.5 111 89 0.56 0.44 70 60 67 0.91
35 229 110 0.68 0.32 255 67 68 0.99

only distance and not orientation measures. On the distance measures, if the mean distances re-
sulting here are compared to the distance thresholds applied previously (dr, Table 5.1) it is derived
that there are very few points on the left of the lineament that would have been rejected by the
validation method. These are the points at the greater distances. Note that the distance thresh-
old dr for scale factor S=0.3 was 107m and the mean distance of the points on the left is 110m.
Both mean distances on the left and on the right (110 and 81m respectively) are close or below the
threshold dr, which confirms that this threshold accepts clearly corresponding detections, like the
one presented in this example.
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Figure 5.13: Successful and Missing detections. The measure concerns the interval points drawn on the
reference lines. In green, reference points that have been detected. In red, reference points that have not
been captured by the detection. The distance threshold dr is illustrated with the blue buffer around the
reference points.
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Figure 5.14: True and False detections. In green are detected points that correspond to the reference. In
red, false detections.
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Figure 5.15: PC1 of the ASTER image. Regions of missing detections are indicated with the letters A-F.
Regions of false detections are indicated with the numbers 1-4.

(a)

197000 198000 199000 200000 201000

98
17

00
0

98
18

00
0

98
19

00
0

98
20

00
0

98
21

00
0

(b) S=0.3
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(c) S=0.9

Figure 5.16: (a): Lineament and the interpretation. The fault plane is also visible in the image in dark
colors. (b),(c): Detection result and reference line. The reference line is drawn on the right, in the transition
from light to dark (right to left), where the crusting is happening. Hits are corresponding points between
reference(blue) and detection(green) and are indicated in red.
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(b) τ = 27.5◦

Figure 5.17: The distribution of extracted points around the reference lines, for two different angle toler-
ance values.
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Chapter 6

Discussion

6.1 LINEAMENTS ON REMOTELY SENSED IMAGES

All geological lineament definitions encountered in literature speak of linear features (Hobbs,
1904; O’Leary et al., 1976; Clark and Wilson, 1994; Hung et al., 2005). When it comes to lin-
eament interpretation from satellite images, however, this definition is not directly applicable.
Depending upon the spatial resolution, the topography, the satellite viewing angle, the sun angle,
as well as the type of lineament, the outline of the lineament might differ from a discrete line and
be part of a planar feature. This is mainly encountered for normal faults, which are the preva-
lent structures of the area around Lake Magadi (Atmaoui and Hollnack, 2003). If the slope of the
faulting is shallow and the viewing angle is almost perpendicular to the plane of the fault, then the
latter is projected and clearly visible on the image. In the opposite case, where the fault scarp is
not visible (e.g. on the other side of the graben), the slope may create a wide shadow that extends
further from the fault trace. In both cases, in the image a polygon appears that stands out from
the background landscape and it is hard to distinguish the fault scarp from the fault trace, which is
in fact where the crusting happens. This issue concerns both automatic lineament extraction and
manual interpretation. It is expert knowledge that helps overcome those ambiguities and delin-
eate the geological feature on its accurate position. This problem cannot be completely solved by
experts either, and interpretation is still dependent on those conditions.
This problem is related as well to the spatial resolution of the image and the scale of the represen-
tation. The coarser the resolution, the representation of the lineaments is closer to a line. Yet, the
extent of those planar features varies. A downscaling factor should be defined for the image, such
that no wide polygon features are observable and still all lineaments are detectable. Downscaling
of the image to the resolution that would result in the most complete and correct detection was
one of the main points this research tackled. The selection of the optimal scale was carried out
with the tuning of the scale factor S. The resulting spatial resolution was 50 m, over the original
of 15 m.
The result of the segmentation algorithm in our case is line support regions, which potentially
represent geological lineaments. The effect of the factors described here is that those regions are
in most cases polygon features, rather than lines, since the scarp or its shadow are also detected as
components of the segment.
The relationship between reference lines and detected segments was explored for a selected seg-
ment. It is inferred that geological knowledge can be exploited in these cases in order to relate the
detected polygon features with the actual position of the lineament. The set of criteria for geo-
logical interpretation can be used in order to transform the image result into linear features and
place them in the respective location of the lineaments. The detection result, on the other hand,
can provide useful information about the characteristics of the geological structures. The width
of the segments is directly related to the steepness of the slope of the fault scarp. A shallow slope is
projected as a wide polygon feature on the image and produces wider segments. Steep slopes have
a narrow shape and the detection result is closer to a line, rather than a polygon.
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The Line Segment Detector (LSD) algorithm, that was used as a starting point for this study has
been tested in close range images that contain mainly man-made objects. In close range imagery,
the boundaries of solid objects are usually straight, clear and narrow lines. This is not the case for
natural objects on images of moderate spatial resolution. The boundaries and the lines are rather
fuzzy. The evaluation of the detected segments against the a-contrario model uses an associated
geometrical shape that describes the geometry of the first. Here, a rectangle was used to represent
each segment and the NFA was calculated on this basis. It is understood, however, that the more
the segments deviate from straight lines, the less a rectangle describes its shape. Depending on the
shape and form of the objects to be detected, either those are geological lineaments or not, the
shape used for the evaluation step of NFA can be chosen accordingly in future research.
Another characteristic of Remotely Sensed images is the presence of noise. This relates also to the
definition of the orientation, which is encoded by the level-line angle. According to Grompone von
Gioi et al. (2012), the level-line angle points the direction of the edge that crosses the pixel in ques-
tion. This assumption can be proven to hold for clear lines in close range imagery. Geological
edges, as in this study, however are much more noisy, resulting in noise in the level-line angles.
Their use for the rectangle approximation was satisfactory, judging the result visually. Their use
for local orientation calculation of the segment points was more challenging. The effect of the
noise on them was stronger. For this reason, it is suggested that the use of the level-line angles in
the validation method, as a means of extracting the local direction of the segment points is revis-
ited and that alternative direction measures are explored.

In this study, the three bands in the visible and Near Infra-red (VNIR) range of the ASTER image
were used, since these are those most commonly used in literature for lineament interpretation
(Woldai, October 2013). The contribution of bands in the Short Wave and Thermal Infra-red
(SWIR and TIR) spectrum can be explored in the future. Multispectral information was exploited
by performing Principal Components Analysis (PCA) of these three bands. Sum of gradients of
all available bands is an alternative option for multi-spectral data handling, but was not explored
in this research due to time constraints.

6.2 UNCERTAINTY IN LINEAMENT INTERPRETATION AND AUTOMATIC DETECTION

Expert knowledge and experience are essential in geological lineament mapping tasks. Subjectiv-
ity commonly plays a role and different experts may produce controversial results (Gómez and
Kavzoglu, 2005). Subjectivity in the lineament identification is related to the extent as well as the
existence of the lineaments (Ramli et al., 2010). Differences can also be noted if the same observer
is asked to interpret the same image in different points in time (Mabee et al., 1994). Thus, it is sug-
gested that the more object coincidences we get from different observers, the more confident we
can be that the extracted lineaments correspond to a geological structure in reality (Mabee et al.,
1994).
There is clearly no definite and unambiguous interpretation of geological lineaments. Instead,
there can be several different interpretations of the same area, from different geologists. Therefore
the results obtained in this study are inside the limitations that a single reference dataset (interpre-
tation) implies. Parameter tuning was based on parts of a single interpreted lineament map. One
can expect to get slightly different results if a separate interpretation is used.
Particularly for the formation of objects, geologists use their experience to connect individual
segments on the image and form longer lineament units (Wang and Howarth, 1990). The set of
criteria used for delineation and connection differs between experts (Wladis, 1999). Therefore, the
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definition of a lineament unit is not solid and definitive. The starting and end point of a lineament
as well as its connectivity to others, in terms of geological significance is not certain.
Another important factor related to the definition of a lineament unit and its connectivity to oth-
ers is the scale of the image. Short lineaments that have similar directions and occur in sequence
with breaks in between will eventually appear as a single long lineament if the image is rescaled to
a lower spatial resolution. It is again hard to decide on the extent of a complete lineament unit.
Besides, the delineation of the reference dataset used in this study was carried out in a particular
image scale which is not necessarily the optimal for automatic mapping.
We conclude that the effort to link our result to the reference, by establishing an one-to-one rela-
tionship of the features would run the risk of over-fitting the procedure to the particular dataset,
without assuring that the formed objects are best representing the geological setting in question.
For this reason, the method developed for validation did not incorporate any step of feature match-
ing between reference and extraction. Such an approach would force the result to fit as much as
possible to the given reference data, without any gain in the detection method.

At this point it should be noted that the current method aims at detecting all edges on the image.
As a result, even edges that do not represent geological lineaments can be detected and give false
detections for the purpose of this application. In our study area, this is not a major problem once
the drainage network is not dense and no transport (roads, railway) network is present. In areas
where such linear features exist the algorithm will not make a distinction between those. A way
to deal with this interference is to extract all other linear networks from the image before the de-
tection.

6.3 VALIDATION METHOD

One of the main parts of this research has been to develop a validation method that would provide
quality measures of the result and would allow to quantitatively estimate the optimal parameter
values for the specific application. Several validation methods exist in literature for the comparison
of automatically extracted lines and a reference. The challenge of this research, however, has been
that the comparison had to be implemented between two objects of different geometrical type. As
a result, none of the standard methods could be used. The idea of the validation methodology was
based on a positional accuracy measure by Goodchild and Jeansoulin (1998). The approach was
further extended and instead of using only distance measures, a measure of the difference of the
orientations of the compared objects was added. The result is assessing not only the positional, but
also the directional accuracy of the result. Furthermore, since the lineaments were not perfectly
straight lines, the global measures were replaced by local ones, such that the orientation of the
objects was sufficiently described at every point.
Two error ratios were defined, the ratio of missing and false detections. These rations were used
for the estimation of the optimal parameter values in parameter tuning. The sequence at which the
three parameters were tuned is scale factor S, angle tolerance τ and NFA threshold ε respectively.
The reasons behind the order selection are described in section 5.1. Moreover, since the parame-
ters were estimated individually, the scale factor was revisited after the tuning of angle tolerance
in order to confirm that the previous choice of S was indeed the one that minimizes both error
ratios.
If the selected parameter values are compared to those suggested by Grompone von Gioi et al.
(2012) some similarities, as well as some differences are observed. The scale factor that produced
minimum errors in this study is S = 0.3, while the one suggested by the LSD authors is S = 0.8.
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It is understood that in this study image sub-sampling is not only applied to eliminate quantiza-
tion and aliasing problems, but it also relates to the geometrical representation of the geological
lineaments on the image and the spatial resolution at which the lineaments are most successfully
detected. The difference between the τ value suggested in the LSD implementation and the one
resulting from parameter tuning here is small, 22.5◦ and 25◦ respectively. Finally, the ε value
was fixed here at 1, same as in LSD. It was observed, though, that the error ratios were stable for
ε ∈ [1, 4].
The question that arises is to which extent the error ratios give insight on the geometrical rela-
tionship between the detected objects and the reference lines. It is clear so far that the detected
segments are closer to polygon objects rather to lines. The ratios do not give full information on
the structure of the objects, with regard to the reference. It was observed in many images that
parallel lineaments that have a high density are sometimes detected in a single and wide segment.
In those cases, the ratio of missing detections would be low and only the false detections’ ratio
could inform about the expansion of the segment in big distances from the reference line, stem-
ming from a large sum of the distances. This phenomenon was reduced but not fully eliminated
after the parameter tuning.
If the study is to be further extended, there can be an effort to transform the segments into linear
features, such that they correspond to standard lineament maps. This could be possibly achieved
with the incorporation of knowledge on the geological interpretation that would indicate suitable
morphological operations for the skeletonization of the result and its transformation to lines.
For the distinction between successful and unsuccessful detections some thresholds were intro-
duced in the process. The choice of the threshold values was based on the nature and the geometry
of the detected segments. Those values can be modified, depending on the required positional and
directional accuracy of the extracted segments. The absolute ratios of false and missing detections
are indications of the quality of the result, but not strict measures. They have been mainly used as
relative measures, in order to pick the optimal parameter values of the algorithm for the particular
task.
The error ratios derived from the validation method have described the pattern and have allowed
the quantitative comparison of the result for different parameter values. Some challenges were
encountered for extreme parameter values, where some error ratios were misleading. Therefore,
the method, as it is formed so far, cannot be used as an automatic procedure for validation. It
should also be accompanied by visual inspection of the result. Hence, the methodology can be
characterised as semi-automatic, assisted by visual interpretation.
The method was built in such a way that it would allow the comparison of the results obtained
for different values of the algorithm parameters. Overall, this study explored, on one hand, the
nature of the mapped phenomenon and its appearance on satellite images and, on the other hand,
their relation to the algorithm elements, such as the scale and the NFA threshold. Consequently,
the goal of using an algorithm based on Gestalt theory and the Helmholtz principle for a real GIS
application has been accomplished.
The validation method that was developed provides statistical measures that allow parameter tun-
ing and describe the completeness, correctness and positional accuracy of the result. It is a stand-
alone method that can be applied for the comparison between automatically extracted lines or
polygons and a reference set of lines.
At this point, the dependence of the result on the study area should also be highlighted. The
parameter tuning was carried out on a particular scene. The algorithm was not further tested else-
where. Therefore, the chosen parameter values, as well as the measures of accuracy are inferred
from the characteristics of the geological features of the particular area. It cannot be ascertained
that the algorithm will produce results of equal accuracy in areas where lineaments have different
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geometrical characteristics. It was ascertained, however, that the selected subset contains most of
the characteristic geological structures encountered in the area.

6.4 COMPUTATIONAL EFFICIENCY

The algorithm is fully implemented in R. An approximate time for complete run, with the final
parameter settings and an image size of 460x520 pixels, is 2 minutes. This time increases signifi-
cantly for finer spatial resolutions and larger image size. The most computationally demanding
steps are the region growing algorithm and the distance calculations for validation.
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Chapter 7

Conclusions & Recommendations

7.1 PARAMETER TUNING

After the completion of the tuning process, the algorithm parameters were fixed at certain val-
ues based on the results of the validation method and visual interpretation. The measures of the
developed methodology provided a description of the trend of the errors for varying parameter
values. The quantification of these trends served for the parameter value choice, on the basis of
minimizing the errors and keeping, as much as possible, a balance between false and missing de-
tections. It was shown, however, that the tuning method cannot itself provide a fully automatic
estimation. There is still a need for visual interpretation of the result, in order to confirm that
the value indicated by the method corresponds to an acceptable result. There have been cases, for
extreme parameter values, were the error ratios have been misleading.
The choice of the scale factor parameter (S) proved to be critical, since the effect of the scale on
the result is strong. This parameter is related to the ratio of false detections. Many false detections
occur for scale factors S>0.5. This parameter also controls the number of detected segments. In
coarse resolutions this number is small and it increases at fine scales. Finally, its effect is evident
on the size of the detected segments. The latter is inversely proportional to the scale factor.
The angle tolerance τ dominates the ratio of missing detections. This ratio is decreasing for higher
τ values. It was shown, though, that from a certain τ value and on, although the missing detec-
tions’ ratio is low, the result is distorted. Further, angle tolerance proved to be strongly related to
the shape of the detected segments. Small and narrow segments emerge from low τ values, while
wide ones arise from high angle tolerances.
The role of the ε parameter that defines the Number of False Alarms (NFA) control was explored,
although in most studies it is set to 1 with no further tests. This parameter defines the number of
segments that will be accepted as meaningful. The resulting patterns of the errors were as expected.
Values of ε below 1 yield very few false and many more missing detections. Values much larger
than 1 generate the opposite pattern. In addition, it was observed that for a particular range of ε
values ([1,4]) the error ratios, as well as, the number of accepted segments was stable.
Further, the relationship between the detected and the reference features was explored, towards
the establishment of a coherence between “what a geologist sees as a lineament” and what “the
algorithm sees as a meaningful line segment”. This relationship was explored on the basis of an
example. From that, it occurred that there is an anisotropy in the distribution of the extracted
points along the reference line. More examples should be examined, to get a better insight on the
correspondence between features.

7.2 ASSESSMENT OF THE DETECTION RESULTS

According to the adopted methodology, the ratios of missing and false detections derived are 0.28
and 0.27 respectively. It should be stated that these ratios refer to the image subset on which the
tuning was performed.
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The cases where missing and false detections occur were explored. Missing detections, in most
cases, are noticed where parts of lineaments do not appear as edges on the image. Several times,
long lineaments are broken into smaller sub-parts, since the part in between is covered by sedi-
ment, which is not an edge on the image. The experience of the interpreter allows him to decide
whether these sub-parts belong to the same lineament and connect them with a continuous line.
This problem cannot be eliminated with the present algorithm, since it is out of the frame of edge
detection. Weak lineament edges also often fail to be detected. Finally, lineaments with strong cur-
vature are troubling the detection algorithm, since the latter is a detector of straight segments. A
possible way of treating with the particular problem is with a modified region growing algorithm
that does not strictly seek straight lines.
False detections mainly occur on edges of the image that do not correspond to any geological fea-
ture. In our case, the identity of these lines has not been defined. In general, it would be wise,
before proceeding, to extract from the image all the irrelevant linear networks, such as drainage
and roads, in order to avoid confusion in the detection. Last, cases where the whole plane of the
crusting, that includes both its edges, is detected, more false detections occur. This issue directly
connects to the relationship of between the detected object and the actual position of the linea-
ment, as it is found in the reference data (Section 5.8). From one example that was examined in
this study, anisotropy was observed in the distribution of the segment points in the two sides of the
reference lineament. That means that the reference line does not fall in the middle of the segment
but lies closer on one of its edges. This relationship should be further explored and be related to
the appearance of the feature on the image (Section 6.1). The conclusions of this exploration can
be incorporated in the algorithm and exploited for the establishment of a better correspondence
between the automatically extracted segments and the actual position of the lineament.

7.3 RECOMMENDATIONS

For the best understanding and interpretation of the detection result, further exploration of the
geometrical correspondence between the detected segments and the reference lines is needed. The
conclusions of this exploration along with the incorporation of more elements of geological knowl-
edge on the interpretation could establish a strong connection between automatic detection and
manual digitization. The incorporation of this knowledge can serve as a guideline if the result
needs to be transformed into linear features. One possible approach would be the application of
morphological operations.
The result of the algorithm and the parameter tuning process would be enhanced if more images
of neighbouring areas, that contain similar features, were to be used. In addition, it is important
to explore the results produced given a different or even several more geological interpretations
of the same areas. This way, it is guaranteed that the algorithm is not over-fitted to a particular
dataset.
Finally, it is important to compare the results of this algorithm to other standard edge detection
methods that are used for automatic lineament mapping purposes.
The present algorithm is not restricted to geological lineament detection. Its scope is linear seg-
ment detection on Remotely Sensed images. Examples of such linear features are rivers and roads
and the algorithm can be applied for their detection, if adequately adjusted. Parameter settings can
be modified and new optimal values can be sought for each particular application using the cur-
rent validation method. Further, the region growing algorithm is now formed to detect straight
linear features. It can be modified according to the specific shape of the objects to be detected and
provide an updated algorithm for more detection applications.
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