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ABSTRACT

This research used legacy and lesser quality airborne geophysical data set of the Western Harz
Mountains which was acquired in 1985 and originally published in contour map form by Germany
Geological Survey (BGR). The contour maps were previously digitized and the new digital dataset
had not been tested to determine to what extent it can be used for mapping of lithological units.
The research aimed at finding out how to grid the legacy airborne geophysical data and get useful
geological information out of it, and to know what kind of information about the geology could be
obtained by improving this data set. A remote predictive mapping approach was used to extract
information from the data. This involved Supervised and Unsupervised classification methods as
well as visual interpretation. Maximum likelihood and isodata classifications were applied.

It was found that isodata unsupervised classification on the legacy airborne gamma ray data, can
map low radioelement rocks such as Limestone, Gabbro and Diabase but it cannot differentiate
these lithological units. It can also map medium radioelement rocks such as Greywacke and
Eckergneiss and again has the limitation that it cannot differentiate these lithologies. Furthermore
the classification is able to map high radioelement rocks such as Granite, Shale and Devonian
sandstone but cannot differentiate these lithological units because they have similar gamma ray
spectral signatures. It was also found out that it is able to map out marsh areas and the lakes. These
also have low radioelement content and the classification could not differentiate these water logged
areas, lakes and the low radioelement rocks like Limestone, Gabbro and Diabase.

Performing maximum likelihood supervised classification based on both legacy airborne gamma ray
and magnetic data can map high magnetic susceptibility and low radioelement content rocks like
Gabbro and Diabase but cannot differentiate these rocks. Furthermore it can map low radioelement
and low magnetic susceptibility rocks such as Limestone. In addition to this, it can map high
gamma ray spectral signature and high magnetic susceptibility rocks like Granite. Also is able to
map lithological units with medium radioelement content and low magnetic susceptibility like
Greywacke and Eckergneiss but it could not differentiate these units. Similarly it can also map
lithological units with high Th and K content and low magnetic susceptibility like Shale and
Devonian sandstone but it cannot separate the units. It was also found out that classification
accuracy varied from 40% when only gamma ray data was used to 42% when both gamma ray and
magnetic data were used. The low accuracy is due to variability within the classes. The research
concluded that major lithological units could be identified and mapped with this data set and this
shows that though this dataset is very old, it is still very useful.
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1. INTRODUCTION

11. Background to the research

This research assesses the geological information content of legacy airborne geophysical data. A
Remote Predictive Mapping (RPM) approach was used to extract geological information from the
legacy airborne geophysical data. This approach involves deriving geological information from any
available geoscience data (Harris, 2012; Harris, 2008). The methods of information extraction from
these datasets involve visual interpretation of enhanced images or computer assisted supervised and
unsupervised classification techniques (Schetselaar, Harris, Lynds, and Kemp, 2007). Supervised and
unsupervised classifications provides means of extracting geological information in a systematic and
unbiased way (Schetselaar et al., 2007). The output is mostly commonly a map showing predicted
lithological units which serve as first order source for geological information which to base future
mapping or exploration (Harris, Schetselaar, & Behnia, 2004). The predictive maps show areas
where the predicted geology agrees or disagrees with the existing geological information.

Remote Predictive Mapping (RPM) has been implemented since 2004 in pilot projects by the
Geological Survey of Canada (Harris, Schetselaar, Lynds, and Kemp, 2008). Schetselaar et al., (2007)
used this method to map different lithological units and structures in the north of Canada. Using
the method they were able to map the area with great detail. Harris, Pilkington, Lynds, and
Mcgregor, (2008) used this approach to update the geoscience knowledge of the southwestern Baffin
Island region of eastern Nunavut, Canada. In their project, RPM techniques were employed to
assist in the geological interpretation of this area in order to expand the possibilities that may be
used to identify tectonic features and distinctive structural domains, to target field mapping areas,
and to contribute to existing geological map compilations. Harris, et al., (2008) used this technique
under the Snowbird Lake mapping project in NW Canada in order to produce a predictive map of
bedrock units and geologic structures from available geoscience data in order to assist field mapping
and logistical planning within the overall context of developing a better understanding of the
geology of the snowbird tectonic zone. They concluded that the RPM process was largely
successful, as major lithological domains and major structural trends were identified and mapped.
Complex areas requiring more field follow-up were delineated. Also, areas of poor exposure were
identified, which facilitated targeted field mapping. Onge & Harris, (2008) used the technique to
show the advantages of higher resolution remote sensors, specifically airborne hyper spectral data
sensors, for geological mapping in southeastern Baffin Island. Harris and Wickert, (2008) used the
method with the aim of demonstrating the value of gamma-ray spectrometry data in conjunction
with magnetic and Landsat data for mapping lithology in a mountainous environment of the Sekwi
Mountain under a mapping project initiated by the Northwest Territories Geoscience Office in
collaboration with, the Geological Survey of Canada (GSC). Their study indicated that airborne
data, given the right geological conditions and rock types, can play a significant role in the remote
predictive mapping of different lithologies. In the study, a wide range of units, including Granite,
Shale, sandstone, and carbonate, were identified based on characteristic radioelement signatures.
Based on these findings, this research aims at using Remote Predictive Mapping approach in order
to assess the geological information content of legacy airborne geophysical data of the western Harz
Mountains.




1.2, Research problem

The Harz is a mountain range in central Germany of Palaeozoic rocks and was formed by uplift
during the Cretaceous, which affected the whole area. The area is known for its long history of
mining, and contains large and numerous small mineralizations. These include the world-class
Rammelsberg massive sulphide deposit(SEDEX) and several vein type deposits (Anderson, 1975).
Because the area hosts several types of mineral deposits, and also that on a small area enormous
amount of different and important geologic features are found makes it an interesting study area.
The area now is densely forested and rock outcrops are mostly covered by vegetation. An old and
lesser quality airborne geophysical data set of the western Harz Mountain which was acquired in
1985 and originally published in contour map form by Germany Geological Survey (BGR) is
available. The contour maps have been digitized and the new digital dataset has not been tested to
determine to what extent it can be used for mapping of lithological units. This research aims at
finding out how to processes the legacy airborne geophysical data and get sensible information out
of it, and to know what kind of information about the geology could be obtained by improving
this data set.

1.3. Objectives and Research questions

1.3.1.  Main Objective

The main objective of this research is to determine the best method of gridding of the
digitized legacy airborne geophysical data and to extract geological information from it.

1.3.2.  Specific objectives

e To characterize geological units in the western Harz Mountains using ground field
instruments data in combination with airborne geophysical data

e To determine the extent to which the available legacy geophysical airborne dataset can be
used to map geology

e To determine which gridding method can work best in mapping the geology from the
geophysical dataset

e To compare field measurements data of the different geological units with those obtained
from the airborne geophysical data in order to characterize the geology in terms of
chemical and mineralogical composition.

14. Research questions

e What is the relationship between the rock composition obtained by ground field
measurement data with that obtained by the legacy airborne data

e What is the geological information content of this legacy airborne geophysical dataset

e To what extent can the available legacy geophysical dataset be used to map the lithological
units of the western Harz

e Which aspects of the geology (lithologies and structures) of western Harz can be mapped or
identified by integrating the geophysical enhancements results with available field datasets.




1.5.

1.6.

1.7.

Research hypothesis

Using remote predictive mapping approach it is possible to map, interpret and characterize
different lithological units and structures from even noisy airborne geophysical datasets.

General methodology

The study was carried out in three stages. Stage one involved characterization of different
lithological units of the study area using ground field data which was collected using a
gamma ray spectrometer, EDA Scintillometer, Portable XRF, Analytical Spectral Device
(ASD) and magnetic susceptibility meter (kappa meter). Stage two involved the processing
of the airborne data in which gridding methods were compared and best and best
gridding for this dataset was determined. Stage three involved extraction of geological
information from the data sets in which both visual interpretation and computer assisted
interpretation which involves supervised and unsupervised classification were applied.

Thesis structure

This thesis is comprised of seven chapters. Chapter one introduces the background to the
research, problem statement, objectives, questions and general methodology. General
literature study on geology of the western Harz and dataset used are emphasized in chapter
two. Chapter three describes methodology used in this research. Chapter four is comprised
of results of data analysis and interpretation of ground field data in characterizing different
lithological units. Chapter five deals with results on processing of airborne magnetic and
radiometric data. Chapter six deals with extraction of geological information from the
airborne geophysical data. Chapter seven gives general conclusion and recommendations of
the study.
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2. STUDY AREA AND DATASETS

2.1. Location

The Harz is a mountain range, 180 km long and 30km wide in Germany. It occupies an area of
2,226 square kilometres. The Harz was formed by uplift, during the lower Cretaceous (140-97Ma)
and consists of old, mainly Devonian rocks which are heavily altered and faulted by old orogenies.
The area is known for its history in mining. Mining in the Harz has been going on for centuries
and was of great economic importance. Secondary copper minerals were mined first, probably
around two thousand years ago, in the weathering zone above the Rammelsberg SEDEX deposit.
Silver-rich galena was mined from near vertical hydrothermal veins from medieval times till around
1960, iron ore was mined from 10th century AD till 1970. From 1936 till 1988 Pyrite, Copper,
Lead and Zinc were mined from the world class Rammelsberg deposit (Mueller, 2008). Other
minerals that were mined in the area were barite, Limestone, slate buddingtonite, road metal and
peat. Currently only road metal and Limestone are being quarried and there is no base metal
mining these days anymore in the Harz Mountains (Scandinavian Highlands, 2009). Because the
area hosts several types of mineral deposits, and also that on a small area enormous amount of
different and important geologic features are found makes it suitable for this study.
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2.2

23.

Regional Geology

The Paleozoic (Silurian-Upper Carboniferous) volcano-sedimentary rocks of the Harz
mountains were deposited in a rift basin associated with extensional tectonics and form an
uplifted block of the variscan structural belt characterized by NE-SW trending fualts and
thrust belt (Large & Walcher, 1999). It is fault bounded to the north and west and covered
by Paleozoic sediments to the south and east. The Harz massif is divided into three
geological zones: upper, middle and lower Harz. The study area is located in the upper
Harz and is characterized by a continuous sedimentary succession from the Devonian -
carboniferous

General geology

The Harz Mountain range varies in its geological composition and it is divided into the
upper Harz, the middle Harz and the lower Harz. The upper Harz comprises the Oker
Granite, the Harzburgite Gabbro, Basalts and the western part of the Brocken Granite
complex. The middle Harz consists of Carboniferic intrusions, Devonian Schists, Basalts
and Greywacke as well as the eastern part of the Brocken Granite and the Ramberg
Granite. Ordovician and Devonian Greywacke formations and molasse basins of the lower
Permian form the lower Harz (Zech, Ries, and Faust, 2010). The most important
economic mineralization is the Massive Sulphide type deposit, stratiform within the
Wissenbach Shale and consisting of pyrite, chalcopyrite, sphalerite, galena as well as some
barite (Large and Walcher, 1999). The mineralization was formed during a period of quiet
sedimentation in a marine basin, (Large and Walcher, 1999).
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Figure2-2 geological map of the study area (Wikipedia, 2014)
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24.

2.5.

2.6.

2.6.1.

Sedimentary Sequence

The oldest rocks of the upper Harz (lower Devonian) form the anticlinal hinge of the
Devonian carboniferous succession and are characterized by sandstones, siltstones,
quartzites probably deposited in high energy oxidizing environment. The transition from
the lower to the middle Devonian is very abrupt and marked by a carbonaceous Shale units
typical of the deep quiet submarine environment. Large & Walcher, (1999) believe that this
phase may mark the transition from initial rift to the sag phases of the basin evolution
where differential rates of subsidence during the period of tensional tectonics gave rise to
the basin and rise sequence explaining the lateral facies changes and thickness variation. The
upper Devonian sequence directly follow on from the Middle Devonian and consists of
micritic Limestone and banded Shale in Goslar trough (Anderson, 1975), marked by an
absence of volcanic and igneous activity. The upper sequences are dominantly pelitic,
gradually becoming more oxidized reflecting a relatively quiet sedimentary basin
environment that gradually shallowed during the final phases of thermal subsidence. The
lower Carboniferous is characterized by a distinctive pyritic black Shale unit overlying
chert sequence. The Shale and cherts are overlain by Greywacke which are considered to
represent the onset of the compressive tectonics.

Generalised tectonic setting

The Harz is part of the Variscan belt (Zech et al., 2010). The Devonian Carboniferous
succession in the Harz Massif was deformed during the Variscan orogeny, which reached its
climax during the Upper Carboniferous and was accompanied by low-grade regional
metamorphism (Mueller, 2008). The dominant fault direction in the Harz is NE-SW and
NW-SE direction. The mineralization in the Harz is spatially associated to these faults,
which were developed subsequent to the Variscan orogeny, and were active during the
generation of vein-type mineralization in the Mesozoic (Large and Walcher, 1999). The
Sedimentary Hosted Massive Sulphide mineralization (e.g. Rammelsberg) is associated with
tectonic extensional pulses associated with mafic volcanics and syn-sedimentary faulting at
specific horizons during the post-rift thermal subsidence phase (Middle Devonian) of the
basin evolution (Large and Walcher, 1999)

Dataset used

Airborne geophysical data

Low resolution legacy airborne geophysical data which was digitized from contour maps
that were produced after a helicopter survey in 1985 by the Germany Geological Survey
was used in this study. The data was measured at 200m line spacing and at an average height
of 60m above ground. It was originally present in hard copy maps and was recently
digitized, now is available in database form. These include: Potassium (K), Thorium (Th),
Uranium (U) and Total count (TC) channels.

Total Magnetic Intensity (TMI) channel, was measured with Geometric G803 proton
magnetometer at an average flying height of 60m above ground and line spacing of 200m. It
was corrected for the International Geomagnetic reference Field (IGRF)

The geophysical data is projected to WGS 84 UTM zone 32N which is the projection
system for the study area.
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2.6.2.

2.6.3.

2.7.

Ground Field Data

Ground field data which was collected using portable gamma ray Spectrometer
Exploranium GR 320, Scintillometer (GRS-500 Differential Spectrometer), Portable XRF,
Analytical Spectral Device (ASD) FieldSpec Pro and Magnetic Susceptibility meter by
Earth Resource Exploration ITC students in 2011 till 2014 from Harz was used in
characterizing different lithological units. The variables that were measured in the field
were K, Th, U and TC using Gamma ray Spectrometer and Scintillometer. Portable XRF
measured K, U, Th, Fe, Cu, Pb, Zn, Ba and Ag. Magnetic Susceptibility (Kappa Meter)
measured magnetic susceptibility of the rocks. The data was collected on selected outcrops
on slate, Greywacke, Wissenbach Shale, Limestone, Granite, Eckergneiss, Gabbro,
Diabase, Hornfels, and Harzburgite. Measurements were taken per outcrop per instrument

Geologic and topographical maps

One sheet of scanned Geological map at 1: 100,000 produced in 1998 by Geological Survey
of Germany.
7 sheets of Scanned Topographical maps at 1: 50,000.

Remote sensing data

1 scene of Landsat TM image with spatial resolution of 30m acquired on 18 June 1986.

1 scene of ASTER image acquired on 17 October 2003.

1 scene of Alos image with spatial resolution of 2.5m for Prism and 10m AVNIR obtained
may 2009.

SRTM DEM (90m resolution) no date of acquisition given.

Software used

ENVI, for processing and analysis of satellite image data.

ARC GIS, for digitizing, processing and analysis geological and geophysical data
Oasis Montaj, for processing and analysis of airborne geophysical data.

SPSS, for statistical analysis.

ERDAS Imagine for image classification

Ilwis for cross tabulation
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3. RESEARCH METHODOLOGY

3.1. Introduction

In order to achieve the aim and objectives as well as to answer the research questions, the following
steps were carried out. The field data was used to characterize the lithological units using gamma
ray spectrometry and elemental composition. Gamma ray spectrometry provides a method of
measuring individual radioactive elements Potassium, Thorium and Uranium. Naturally all rocks
are radioactive and contain K, Th and U in most rock forming minerals. K which is abundant and
is a prominent component of most rocks occurs mainly in feldspars, biotite and muscovite. Th and
U are generally present in low concentrations in wide range of minerals like zircon and alunite.
Distributions of these radioactive elements provide information about mineralogical and
geochemical properties of rocks. The digitized legacy airborne data were gridded and then
Supervised and unsupervised classification as well as visual interpretation were done on the data.

3.2, Charecterization of lithological units

3.21. Field data

The field radiometric and magnetic data from 2011-2014 was combined in order to have an average
representation measurements of the area. The average concentration of the elements per lithology
was made in Excel. Box plots as well as scatter plots were used in interpretation in order to see the
distribution and correlation of various elements in the lithological units. The Box plots were made
using SPSS software.

The spectra that were collected from the field were averaged into single spectra in ENVI software
using the Spectral math algorithm. This was done because at sample points, three spectral
measurements were taken. So the three spectral measurements were averaged into single spectra.
The averaged spectra was then interpreted by comparing it with the USGS spectral library in
ENVL The USGS library was resampled to the same wave length as the field spectra for easy
comparison, i.e. converted from micrometer to nanometre.

3.2.2. Laboratory data

The laboratory measurements were done in order to validate the field measurements. Rock samples
were measured in the laboratory using portable XRF and ASD. First the samples were crushed into
powder using Jaw crusher and Ball mill. The rocks were crushed into powder in order to measure a
homogenized sample which gives more representative results than measuring the whole uncrushed
rock. The powdered rock samples were measured with the pXRF using soil mode. The parameter
settings that were used were 30 seconds for main filter, 30 seconds for low filter and 10 seconds for
high filter. The variables that were measured were K, U, Th, Cu, Pb, Zn. Box plots as well as
scatter plots were used in interpretation in order to see the distribution and correlation of various
elements in the lithological units. The Box plots were made using SPSS software.

Mineral spectra were measured using the Analytical Spectra Device (ASD) on the powdered
samples. This was done because the powdered rock samples give a more representative and
homogenized spectra than the whole rock. The measured spectra were exported as ASCII and its
spectral library was made using ENVI software. The measured spectra were interpreted by
comparing with USGS spectral library in ENVL
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Magnetic susceptibility was measured on all the rock samples using kappa meter. Magnetic
susceptibility is the degree to which a material can be magnetized in an external field.

3.23. Comparison between ground field radiometric data and legacy airborne radiometric data

Airborne radiometric values were extracted for K, Th, U and TC from potassium, Thorium,
Uranium and Total Count grids using Oasis Montaj software on the same location from where the
ground measurements were collected. All these measurements were compared with the field data
derived by the gamma ray spectrometer and portable XRF in order to characterize the geology in
terms of chemical and mineralogical composition. Box plots and scatter plots were used in order to
see the relationship and distribution of the data in different lithologies extracted from the grid and
that obtained from the field

3.3. Gridding and geophysical data processing

Gridding refers to the process of interpolating data onto an equally spaced grid of cells in a specified
coordinate system, such as X-Y. Minimum Curvature, Kriging and Inverse Distance Weighting
(IDW) gridding techniques were applied and their results compared. This was done in order to find
the best gridding algorithm for this kind of dataset. Oasis Montaj software was used to grid the
data.

The Minimum curvature gridding method fits a minimum curvature surface to the data points. It
first estimates grid values at the nodes of a coarse grid (usually 8 times the final grid cell size). This
estimate is based upon the inverse distance average of the actual data within a specified search
radius. If there is no data within that radius, the average of all data points in the grid is used. An
iterative method is then employed to adjust the grid to fit the actual data points nearest the coarse
grid nodes (Geosoft, 2013).

Kriging is a statistical gridding technique for random data, non-parallel line data or orthogonal line
data. Kriging is usually used when the XYZ data is not sampled along lines that run in roughly the
same direction. Such data are often called random, because they give a random appearance when the
data locations are plotted. The Kriging statistical gridding method determines a value at each grid
node based on the XYZ data. Kriging first calculates a variogram of the data, which shows the
correlation of the data as a function of distance (Geosoft, 2013).

The Inverse Distance Weighting (IDW) algorithm is a moving-average interpolation  algorithm
that is usually applied to highly variable data. It calculates a value for each grid node by examining
surrounding data points that lie within a user defined search radius. The node value is calculated by
averaging the weighted sum of all the points, where the weighting inversely corresponds to distance
from the grid node (Geosoft, 2013).

Grid cell size of 50 m was used. A grid cell size of 50m was used because the data was collected at
200m line spacing so a formula of 1/4%200 i.e. (1/4*line spacing) was applied for optimum grid cell
size. The gridded data was exported to ARCGIS in ER Mapper form. ER Mapper was chosen
because it preserves grid values. In ARCGIS grid values from the gridded data were extracted using
extract values to point tool in order to compare the gridded values with the original values before
gridding. The results were then exported to SPSS software for statistical analysis. The gridded
values for each method were subtracted from the original values in order to see how close the
gridded data differ from the original data. The residuals (differences) were plotted as histograms
showing normal distribution. The data was split into two parts, one data set was used for gridding
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34.

3.5.

3.6.

3.6.1.

3.6.2.

3.6.3.

3.7.

and the other was used for validation. The gridding technique that shows low standard
deviation and root mean square error was taken to be the best technique to grid the data set.

Supervised and Unsupervised Classification

Supervised classification was done on the gridded data in order to extract geologic
information in a systematic manner according to Lillesand, Kiefer, & Chipman, (2000).
Geological field data where rock samples were taken were used during the training stage of
the classification. Maximum likelihood classification was used. Unsupervised classification
was done in order to find the natural grouping of the pixels in the data and Isodata
clustering algorithm was used. Clustering was done by testing different number of classes
and see the pattern.

Visual Image Interpretation

In addition to the Supervised and unsupervised classification, visual analysis of the legacy
airborne geophysical data was done. A number of enhancements were applied to the
geophysical data in order to highlight different geological characteristics of the data

Gamma ray data enhancements

A wide range of processing and enhancements for gamma ray data were used to facilitate
extraction of geological information. Geological feature extraction on the enhanced gamma
ray images were done by visual interpretation of geologic units based on tone and/or
colour, texture, patterns, shape, size, shadow, and association (Drury, 2001).

Single Band

The single band Potassium (K), Thorium (Th), Uranium (U) pseudo color images were
used for interpretation because they show areas where a particular radio-element can be
directly correlated with the geochemical properties of the surface lithology and regolith

(Wilford, 1997).

Ratio images
Radioactive element ratios of U/Th, U/K (ppm/%), and Th/K (ppm/%) were made in
Oasis Montaj using grid math algorithm. The Ratio images were made because they

enhance subtle features that are not apparent on the original grids. (Tourliere, Perrin,
Leberre and Pasquet, 2003)

Ternary image

Gamma-ray channels (bands) were displayed as ternary colour composite image allowing
for the interpretation of three channels of data using an additive mix of the primary colors
(red-green-blue) of the computer. The ternary map was produced by assigning Th grid to
green, K grid to red and U grid to blue in order to qualitatively interpret the various
lithologies and compare them with the ground based measurements. This image helped in
highlighting different lithological units (Harris, 2008).

Aeromagnetic enhancements

A wide range of magnetic enhancements were also used to facilitate extraction of geological
information. These include:
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3.7.1.

3.7.2.

3.7.3.

3.74.

3.7.5.

Reduced to pole (RTP)

A reduction to the pole using the pseudo inclination method developed by MacLeod, Jones,
Dai, (1993) and discussed in detail by Li, (2008) was applied to the total magnetic dataset.
The reduced to pole image was prepared because it helps in getting rid of the dipolar nature
in magnetic field. This facilitated the extraction of geological information. Geological
feature extraction on the reduced to pole image was done by Visual interpretation of
geologic units based on tone and/or colour, texture, patterns, shape, size, shadow, and
association (Drury, 2001).

Shaded relief

This was done by displaying the total magnetic intensity grid RTP as a colour shaded grid
in Oasis Montaj. This enhancement was done because it gives more detail on geological
information than the raw unenhanced total magnetic intensity. This facilitated extraction of
geological information on fine details. Geological feature extraction on the enhanced shaded
relief image was done by Visual interpretation of geologic units based on tone and/or
colour, texture, patterns, shape, size, shadow, and association (Drury, 2001).

Vertical derivative

Vertical derivative was calculated from the Total Magnetic Intensity RTP grid in Oasis
Montaj. This enhancement was done because it highlights geological structures and also
anomalies produced by near-surface geological features which are emphasized relative to
those associated with deeper features as regional scale anomalies tend to be suppressed
(Dobrin and Savit, 1988). Geological feature extraction on the enhanced vertical derivative
image was done by Visual interpretation of geologic units and structures based on tone
and/or colour, texture, patterns, shape, size, shadow, and association (Drury, 2001)

Tilt derivative

Tilt derivative was calculated from the Total Magnetic Intensity (RTP) in Oasis Montaj.
This derivative was used because it enhances linear geological features, such as faults, dykes
and provides an excellent base for the structural interpretation (AlSaud, 2008).The tilt
derivative gives a better contrast than a normal vertical derivative image. The derivative was
displayed as gray scale for good visualization. Geological feature extraction on the enhanced
tilt derivative image was done by Visual interpretation of geologic units and structures

based on tone and/or colour, texture, patterns, shape, size, shadow, and association (Drury,
2001).

Analytic signal

The analytic signal was calculated in Oasis Montaj software from the total magnetic
intensity. This enhancement was made because it provides much improved resolution of
prominent magnetic boundaries (Dobrin and Savit, 1988; Harris, 2012) and it was used to
delineate the edges of the magnetic anomalies. Geological feature extraction on the
enhanced analytic signal image was done by visual interpretation of geologic units based
on tone and/or colour, texture, patterns, shape, size, shadow, and association (Drury, 2001)
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41.

CHARECTERIZATION OF LITHOLOGICAL UNITS
USING FIELD DATA

Introduction

This chapter gives an analysis of the ground field data that was collected in the Harz from
2011-2014. The data was collected using (1) Analytical Spectral Device (ASD) which
measures reflectance spectra of the minerals in rocks, (2) Kappa meter, which measures
magnetic susceptibility of rocks and (3) Gamma ray spectrometer which was used to
measure the concentration gamma ray radiation K, Th, U and TC. The area has a lot of
vegetation and this made it not possible to see different lithological units and structures
using remote sensing imagery. The figure 4-1 below show locations of the sampling points
on the geological map.
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Figure 4-1 Locations of the sampling points on the geological map
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4.2, Results on Magnetic Susceptability

The figure 4-2 below show magnetic susceptibility readings for the different types of rocks
that were measured. From the figure it shows that Shale Orkertal, Slate, Shale, Hornfels
Gneiss and Limestone all are characterized by low magnetic susceptibility which is
expected in these rock units. Limestone has the lowest magnetic susceptibility.
Harzburgite show the highest magnetic susceptibility. Diabase, Gabbro and Granite also
show high magnetic susceptibility but not high as Harzburgite. This high reading is
attributed to the presence of Magnetite and iron sulphide mineral Pyrrhotite. Magnetite
has the highest susceptibility of all naturally occurring minerals. It contains a combination
of ferric and ferrous iron. Low magnetic susceptibilities in the rest of the other units are
due to absence of these magnetic minerals in them. Magnetic susceptibility measurements
that were made in the laboratory also found similar results (refer to annex 1).
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Figure 4-2 Box plot grouped by lithology showing magnetic Susceptibility that were measured in
the field.

4.3. K content of rock samples measured by gamma ray spectrometer

Gamma ray spectrometer is an instrument that integrates radiation relatively over a larger area and
it normally gives reliable results. Figure 4-3 shows K distribution measured by this instrument
which indicates that Shale, Slate, Shale Orkertal and Granite have high K content. Harzburgite
Limestone Diabase, Gabbro, Eckergneiss have low K content. Greywacke and Hornfel have
medium K content according to the results from the gamma ray spectrometer readings. High K
concentration in Shale, Slate and Shale Orkertal is due to the presence of mica and clay minerals
that contribute significantly to high K content. Granite has high K content due to the presence of
alkali feldspar, biotite, and muscovite. Low K content in the other rocks is due to the absence of
these minerals in them. Portable XRF measurements that were made in the laboratory on
powdered rock samples also found similar results for K distribution in these lithological units (refer
to annex 1).
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Figure 4-3 K concentration in all lithological units measured by Gamma ray spectrometer

44, Comparison between K measured by gamma ray spectrometer and pXRF in the lab

Comparison between the K measurements obtained by the gamma ray spectrometer and that
obtained by pXRF on the powdered rock samples shows very good positive correlation. This
means that the gamma ray spectrometer determinations of K can be reproduced using the pXRF.
The scatter plot below shows the correlation between K concentration measured by gamma ray
spectrometer and K concentration measured by pXRF in the lab.
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Figure 4-4 Scatter plot showing correlation between potassium measured by gamma ray spectrometer and potassium

measured by pXRF in the laboratory
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4.5.  Thcontent of rock samples

The gamma ray spectrometer readings in figure 4-5 show that Granite, Shale, Slate and Shale
Orkertal have high Th concentration. Harzburgite, Limestone and Diabase have very low Th
concentration. Gabbro, Greywacke, Eckergneiss, Hornfels has low-medium Th concentration.
High Th concentration in Shale, Slate and Shale Orkertal is due to the presence of monazite and
zircon minerals that contribute significantly to high Th content. Granite have high Th content due
to the presence of zircon and low Th content in the other rocks is due to the absence of these
minerals in them. Portable XRF measurements that were made on powdered rock samples in the
laboratory also found similar results (refer to annex 1).
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Figure 4-5 Th concentration in all lithological units measured by Gamma ray spectrometer

4.6. Uranium content of rock samples

The gamma ray spectrometer readings for U show that Shale, Shale Orkertal and Greywacke are
having relatively high U concentration and Granite has medium concentration of uranium while
the rest of the lithological units are characterized by low uranium concentration. Portable XRF
measurements that were made in the laboratory on powdered rock samples found that U
concentration show high values in Granite and Greywacke (figure4-6b). Limestone, Harzburgite,
Gabbro, Shale, Slate and Shale Orkertal and Diabase show low U concentration. High U
concentration in Granite is due to presence of zircon and monazite. The other lithological units are
characterized by low uranium concentration because of absence of these minerals in them.
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Figure 4-6 U concentration in all lithological units measured by Gamma ray spectrometer and (b) U concentration
in all lithological units measured by pXRF.

4.7.  Cu-Pb-Zn Distribution

The elements of economic interest minerals Cu-Pb-Zn were also analyzed. The graphs were
converted to logarithmic scale in order to see the variation better. Cu-Pb-Zn content in Shale is
higher than in all other lithologies as seen in the box plots in figure 4-7 below. There are also
elevated values for Pb and Zn in Slate and Shale Orkertal but not as high as the Shale. This is
expected because the Shale is the host for the Cu-Pb-Zn Rammelsberg mine in the study area.
Portable XRF measurements that were made in the laboratory also found similar results.
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Figure 4-7 Cu-Pb-Zn concentration in all lithological units (a) Cu , (b) Pb and (c) Zn
4.8. Discussion of the results on radioelement and magnetic susceptability distribution

Greywacke is showing low-medium levels of Th and U because heavy minerals such as monazite,
sphene and zircon which contribute significantly to Th and U concentration are absent. Similarly
the low-medium level of K concentration is due to the low levels of alkali feldspar, hornblend and
biotite which contribute significantly to the high levels of K. The distribution of radioelement K,U
and Th in sedimentary rocks such as Greywacke is influenced by the composition of the parent
rock (Dentith & Mudge, 2014). Greywacke have radioelement concentration similar to their
source, but as sediment maturity increases, quartz becomes increasingly dominant with an
associated decrease in radioelement content. The magnetic susceptibility is low, this indicates that
Greywacke has no strong magnetic properties. Greywacke is characterized by low magnetic
susceptibility because of the absence of magnetic minerals such as magnetite, monoclinic pyrrhotite,

maghemite and ilmenite.

K, Th and U contents measured using gamma ray spectrometer are low in Limestone. Carbonate
rocks have low radioactivity but when they contain organic matter they may have relatively high
levels of U. Th content in Limestone is low because it cannot enter the carbonate lattice easily
(Dentith & Mudge, 2014). K content is low due to the absence of alkali feldspar, mica and clay
minerals which significantly contribute to increased concentration of K. The magnetic
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susceptibility show low readings in this outcrop because of the absence of magnetic minerals like
magnetite and pyrrhotite.

Gabbro is characterized by low radiometric value because of very low levels of alkali feldspar and
micas which are responsible for K concentration in rocks. Minerals such as zircon, monazite that
are responsible for Th and U concentration are not abundant in maffic rocks like Gabbro. Because
of the absence of these minerals Gabbro is being characterized by low radioelement concentration.

Low magnetic susceptibility in Eckergneiss is due to absence of magnetic mineral magnetite. Low
levels of K, U and Th in gneiss is due to fluid loss and increased mobility of these elements at high
temperature and pressure during metamorphism (Dentith & Mudge, 2014).

Harzburgite is characterized by high magnetic susceptibility because of the presence of magnetite
and iron sulphide mineral pyrrhotite. Magnetite has the highest susceptibility of all naturally
occurring minerals. It contains a combination of ferric and ferrous iron and has the highest
susceptibility of all naturally occurring minerals. The decrease in radioelement concentration in
Harzburgite is due to less abundance of alkali feldspars and micas. Concentration of U and Th are
extremely low in mafic and ultramafic rocks because accessory minerals like zircon, monazite and
allanite, which contributes to increased abundance of U and Th are not present. This is why gamma
ray readings show low values for radioelement concentration for K, U and Th.

High K content in Granite is attributed to greater abundance of alkali feldspars, clay minerals and
micas which are responsible for increased K concentration. High U and Th are attributed to the
presence of zircon and monazite which are common in felsic rocks like Granite. The average
magnetic susceptibility measured by the Kappa meter, show low-medium magnetic values as
expected for magnetite poor Granite.

Shale, Slate and Shale Orkertal are characterized by low magnetic values because of the absence of
magnetic minerals magnetite and pyrhotite which are responsible for high magnetic susceptibility
in rocks. The ground data show high Potassium and thorium concentration and low concentration
of uranium on the Shale. High K concentration in Shale is due to the presence of muscovite mica
and clay minerals. High Th concentration is due to presence of monazite and zircon.

The low radioelement concentration in Diabase is due to low presence of alkali feldspar, muscovite
mica and accessory minerals like zircon and monazite which are responsible for K, Th, and U
concentration. The high magnetic values may be attributed to presence of magnetic minerals
magnetite and pyrhotite in Diabase.

4.9. Results and discussion on ASD Spectrometer ( refer to annex 1 for spectra)

ASD field spectrometer allowed the identification of some infrared active minerals for different
lithological units. Interpreted minerals can be related with rock forming and alteration processes. In
Greywacke muscovite and illite (white Mica) are present in the fine grained facies, muscovite has
water absorption feature at 1400 and 1900nm and clay feature at 2205nm and 2208nm. Illite has an
absorption feature at 2200nm. In the Limestone lithological unit only calcite was identified. The
carbonate absorption feature at 2300nm is conclusive and characterizes the Limestone. In Shale
chlorite was recognized with an absorption feature at 2355nm which indicates the presence of Mg-
OH bonds. Other minerals identified are muscovite and illite (white Mica) with Al-OH absorption
features at 2211-2213nm and 2200nm respectively. White mica consists of minerals like muscovite,
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illite, phengite and paragonite. Illite is a K-deficient muscovite and can be formed by the alteration
of K feldspar, muscovite and phengite minerals or due to smectite to illite transition in low grade
metarmophic rocks. Slate has white mica Al-OH absorption feature ranging from 2216 - 2220 nm.
Eckergneiss also has muscovite and illite (white mica) with AI-OH absorption features at 2200 -
2201nm. The wave length position of AI-OH feature for white mica (Muscovite and Illite) is not
the same in these lithological units for these minerals. The wavelength position of the Al-OH
feature is changing due to grade of metamorphism and mineralization process. For example, the
mineralized Rammelsberg Shale has an AI-OH absorption feature between 2211 - 2213 nm and slate
has Al-OH feature between 2216 - 2220nm. Eckergneiss has a wavelength position for white mica
between 2200 - 2201nm. The results show that the high the metamorphic grade the shorter the
wavelength positions of AL-OH feature. Dominant spectra detected in the Granite were muscovite
with an absorption feature at 2210 nm and halloysite which has the wavelength position at 2205nm.
Halloysite is a clay mineral and indicates weathering in the Granite rock unit. Gabbro contains
diagnostic features for chlorite, and Prehnite. Prehnite is a secondary Ca-Al phyllosilicate mineral
usually found in mafic volcanic and low grade metamorphic rocks. The presence of Prehnite
indicates that the rock has been slightly metamorphosed. The main spectral absorption features of
Prehnite are found around 1470nm and 2340nm. Harzburgite shows diagnostic features for
Chlorite and Serpentine. Chlorite has an absorption feature at 2355 nm and Serpentine with an
absorption feature at 2326nm. Chlorite is a group of phyllosilicate minerals containing Al, Mg and
Fe end members. Mg and Fe can be identified as Mg-OH and Fe-OH absorption features. The
spectral position of Mg-OH and Fe-OH absorption feature depend on iron content as such more or
less iron content leads to displacement of the absorption features position to longer or short
wavelength respectively. The main diagnostic spectral position of the Mg-OH and Fe-OH
absorption features are 2325nm and 2245nm for Mg chlorite respectively and 2355nm and 2261nm
for Iron chlorite respectively. The 2355nm chlorite absorption feature show that this lithological
unit contains a lot of iron.

4.10. Conclusion

In general Harzburgite, Diabase and Gabbro are characterized with high magnetic susceptibilities
and low radiometric signatures. The high magnetic susceptibilities indicate the presence of magnetic
minerals such as magnetite in these lithological units. Low radiometric signatures is due to low
presence of alkali feldspar, muscovite mica and accessory minerals like zircon and monazite which
are responsible for K, Th, and U concentration. Limestone, Slate, Shale, Shale Orkertal,
Greywacke, Eckergneiss and Granite are characterized with low magnetic susceptibilities because of
the absence of magnetic minerals. Out of these low magnetic susceptibility units, Shale, Slate, Shale
Orkertal and Granite are characterised by high K, Th and low U concentration because of the
presence of micas, K feldspar while Limestone has low radiometric signatures due to low presence
of alkali feldspar, muscovite mica and accessory minerals like zircon and monazite. ASD results
have shown that wave length position of Al-OH feature for white mica (muscovite and illite) is not
the same in these lithological units. It is changing due to grade of metamorphism and
mineralization process. The results have shown that the high the metamorphic grade the shorter
the wavelength positions of AL-OH feature. Laboratory measurements measured by pXRF, Kappa
meter and ASD give similar results as the field measurements. These results validate the field
measurements to be true and are reproducible. The results show that the rock units can potentially
be mapped using the legacy airborne magnetic data and radiometric data because there are contrast
magnetic susceptibility and radiometric readings among the different rock types.
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5. GEOPHYSICAL DATA PROCESSING

5.1. Introduction

The geophysical data consists of Potassium, Thorium, Uranium, Total count and Total Magnetic
Intensity. The data was originally published on contour map form as shown in (figure 5-1 a) and
was flown in North South direction. It was digitized from the original map form, the actual
measurements cannot be recovered, and instead the intersections of the contours with the flight
lines were digitized (figure5-1b). The intersections were digitized as points (figure5-1c) and the
digitized points were saved as database which was exported into ASCII xyz file that is compatible
with Oasis Montaj.
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Figures-1 (a) showing the original contour map form for Potassium, (b) showing digitisation of
intersection of contours (red dots) and flight lines ( black dots), (c) showing digitized points for Potassium

as shape file

The data was then gridded using minimum curvature, kriging and IDW as discussed in chapter 3.
Figure5-2 shows the results of the three gridding algorithms for potassium.
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Figure5-2 showing results for gridding for potassium using Minimum curvature, Kriging and IDW and

(d) shows a variogram from the Kriging gridding method
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5.2. Comparison of gridding algorithms

5.2.1.  Visual comparison

All the three gridding algorithms show high K content in the western and north east sides of the
grids, medium to low K concentration at the centre and a band of very low K concentration at the
centre running SW-NE. Closer comparison of the grids show that there is a strange artefact which
is very visible in the minimum curvature gridding method marked in the circle. This anomaly is
also visible in the kriging method but it is not sharper as in the minimum curvature. In IDW this
strange anomaly is not visible at all. The narrow linear feature marked in ellipse which corresponds
to Diabase lithological unit on a geological map shows a sharper/crisp boundary in the kriging
method while on the minimum curvature this feature (lithological unit) shows a fuzzy boundary
and also in IDW it shows a fuzzy boundary as well. This shows the effects of the gridding
algorithms on this legacy airborne data.

5.3. Statistical comparison

The gridded data was exported to ARCGIS in ER Mapper form. ER Mapper was chosen because it
preserves grid values. In ARCGIS grid values from the gridded data were extracted using extract
values to point tool in order to compare the gridded values with the original values before gridding.
The table below shows part of the values that were extracted from the gridded data in the Raster
value column and the original potassium values in the K column.

JS—
ODBJECTID ™ Shape = Comments Line_MHo LS ¥ K RASTERWVALU
[ 1 Point 300 502919.563131 ST49956.53303 20 19.948126
2 | Point 300 S502923.286909 S7T49758.21125 23 21.979452
3 | Point 300 602930. 734455 S5T49672 56436 20 195 488846
4 | Point start of line 300 802530 734485 5750115 65351 18 18 22015
S | Point 300 602830.734465 ST49577.53041 18 18.581381
& | Point 300 S02518.563131 ST745481.16218 18 17.72578
7 | Point 300 502915.839354 S749231.66908 20 20.043821
& | Point 300 602915.839354 ST49216.77397 Z0 19.730665
S | Point 300 602934 458242 5749060 37531 18 17 60458
10 | Point 300 502938 18202 5748589 62353 16 16.230215
11 | Point 300 802841 905753 5748526 31931 14 14 380752
12 | Point 300 502949.353353 ST45306. 73887 12 11.311136
13 | Point 300 S02853.077131 ST48779.60247 8 8.8596814
14 | Point 300 S502956.800909 ST4A8Z54.54581 12 12.188502
15 | Point 300 S020967.972242 ST48146.56025 14 14.031977
16 | Point 300 602964 2484654 5747957 60915 16 15.839327
17 | Point 300 802560 5246886 57475908 23848 16 15.781002
1& | Point 300 602638.18202 S57T47585.44115 14 13.960764
15 | Point 300 SO2538.18202 ST74T7T185.08085 12 12.02718
20 | Point 300 502545.353353 ST46561.65418 12 12.27553
21 | Point 300 6025945.353353 ST46831.32196 14 14.001479
22 | Point 300 602953 077131 5746648 85686 14 14 055509
23 | Point 300 602960 524686 5746414 25886 14 14 122653
24 | Point 300 B02575. 419797 ST7T485224 3482 14 13.528432
25 | Point 300 502949.353353 ST47069.64374 12 12.087857
26 | Point 300 S02875. 143575 ST45084.33215 12 12147182
27 | Point 300 S02986.59113 ST745860.90549 12 11.985843
28 | Point 300 S02082.867353 S7T45652.37304 12 11.826136
29 | Point 300 602986 59113 5745505 38087 10 5 800437
30 | Point 300 802582 867353 5745271 0551 10 10.073829
31 | Point 300 602886.59113 5744760.890155 12 12.355004
32 | Point 300 S02854. 93502 S744354. 48183 14 14.02521
33 | Point 300 5025945.6259575 S744159.88383 14 13.841511
34 | Point 300 S02538.18202 S5T7T43558.79983 12 12.026653
35 | Point 300 602930 734455 5743502 594317 12 12142224
36 | Point 300 602945 353353 5744257 6636 18 17 8572342
37 | Point 300 802623 288509 5743742 82072 15 14 5406885
38 | Point 300 502841.905798 S743385.76464 12 11.996818
35 | Point 300 SO02875. 419757 ST4Z5ET.5302 12 12.648914
40 | Point 300 S02997. 762464 ST42684.5231 12 12.02759
41 | Point 300 S502990.314908 STA4ZET4 43578 AT 16.364195
42 | Point 300 602982 867353 5742555 40417 10 9 931754
43 | Point 300 802538 18202 5742257 77817 10 10 040728
44 | Point 300 602518.563131 STATF7.41084 10 10.603457
45 | Point 300 S02545.353353 S7T41550.2604 10 10.018758

Table 1showing part of the original potassium values K and extracted Gridded values (Raster values)
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The results were then exported to SPSS software for statistical analysis. The gridded values for each
method were subtracted from the original values in order to see how close the gridded data differ
from the original data. The residuals (differences) were plotted as histograms showing normal
distribution. The data was split into two parts, one data set was used for gridding and the other was
used for validation. In total there were about 25000 points in which one third of the points which is
17000 points were randomly selected for gridding and the remaining 8000 points were used for
validation. These values were chosen because they are representative of the whole dataset. The
results below show the histograms of the residuals of each of the three gridding methods.
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Figure 5-3 showing normal distribution curves for minimum curvature, kriging and IDW gridding
methods for potassium and (d) shows validation distribution curve for minimum curvature

The curve of the distribution of minimum curvature shows a standard deviation from the mean of
0.53, kriging shows standard deviation of 0.58 and inverse distance weighting (IDW) shows a
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standard deviation of 1.2. minimum curvature and kriging show low standard deviation 0.53 and
0.59 respectively which means that these methods have less variability and that the results from
these methods are closer to the true original values. The difference between the original and gridded
values is not much as compared to IDW. On the other hand IDW shows the highest standard
deviation 1.2 which means it has high variability i.e. there is a big difference between the original
values and the gridded values. From the results it shows that minimum curvature and kriging
gridding methods have values close to the original values evidenced by less variability of their
standard deviations. The difference between minimum curvature and kriging is small, this shows
that both methods are producing satisfying results.

5.4. Correlation matrix

K original Minimum Kriging IDW
Curvature
K original 1 0.993 0.991 0.77

Table 2 shows correlation matrix among the minimum curvature, kriging and IDW gridding methods

Correlation of original potassium values and potassium values from the minimum curvature show
very high positive correlation of 0.993, with kriging method it is 0.991, and with IDW it is 0.77.
The high positive correlation of original potassium values and those obtained from minimum
curvature and kriging gridding indicates that values of these methods are more close to the original
potassium values. These results are also in agreement with the normal distribution curves above.
This confirms that the minimum curvature and kriging gridding are the best in this data set.

5.5. Root Mean Square Error (RMSE)

RMSE is used to assess the probability that a particular set of measurements does not deviate too
much from true values. It provides an estimate of the spread of a series of measurements around
their assumed true values. RMSE was used to assess the quality of the three gridding algorithms and
this formula was applied.

RMSE = \/E?:ll:gf - yr)?'_
n

Minimum curvature gridding has an RMSE of 0.53 kriging has an RMSE of 0.55 and IDW has an
RMSE of 1.11. Minimum curvature and kriging are very close all have low RMSE and this shows
that their values are close to the original values. On the other hand IDW has an RMSE of 1.11
which is a bit high compared to minimum curvature and kriging and this shows that the values
from IDW are not very close to the original values as is the case with minimum curvature and
kriging.

5.6. Validation

In order to assess the quality of the above output results the gridded values were compared with the
validation data. The original dataset was divided into two parts. One part was used for gridding and
the other part was used to compare and validate the output gridded data. The data was divided by
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generating random values. Two thirds of the data was used for gridding and the other one third was
used for validation. In total there were about 25000 points and out of these 17000 points were used
for gridding and 8000 points were used for validation. This was done in order to get better
representative samples for the whole dataset without bias.

— Mormal

Histogram showing normal distribution curve for kriging validation data
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Figure 5-4 shows the results of the histograms for normal distribution curves of the validation dataset for
potassium

From the normal distribution curves, minimum curvature (figure 5-3d) shows a standard deviation
from the mean of 0.51, kriging has standard deviation of 0.54 and inverse distance weighting (IDW)
has a standard deviation of 1.3 (figure 5-4). Minimum curvature and kriging show low standard
deviation 0.51 and 0.6 respectively which means that these methods have less variability and that
the results from these methods are closer to the true original values. The difference between the
original and gridded values is not much as compared to IDW. On the contrary, IDW shows the
highest standard deviation 1.3 which means it has high variability i.e. there is a big difference
between the original values and the gridded values. From the results it shows that Minimum
Curvature and Kriging gridding methods have values close to the original values evidenced by less
variability of their standard deviation.

The results from this data set show similar pattern with the dataset used for gridding. This indicates
that what was observed in gridding data set is also reflected in the validation data. In order to be
more certain of the results, root mean square error was calculated from the validation data set in
order to see if similar pattern from the gridding data will be observed.

5.7. Root Mean Square Error (RMSE)

RMSE was used to assess and validate the quality of the three gridding algorithms. Using validation
data that was picked randomly, minimum curvature gridding has an RMSE of 0.54 kriging has an
RMSE of 0.61 and IDW has an RMSE of 1.11. Minimum curvature and kriging are still very close
all have low RMSE and this shows that their values are close to the original values. IDW has an
RMSE of 1.11 which is a bit high compared to minimum curvature and kriging and this shows that
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the values from IDW are not very close to the original values as is the case with minimum
curvature and kriging.

These results are similar with the results on the gridding data, what was observed in the gridding
data has been reflected on the validation data set and the results can validate the results obtained on
gridding data to be true. The same principal has been applied for Thorium, Uranium, Total count
and magnetic grids and the results show that minimum curvature and kriging are producing close to
true values than IDW, refer to annex 2.

5.8. Conclusion

The precision required in the geophysical data field measurement is irrelevant if we use a grid
interpolator that does not represent the reality of the geophysical anomaly spatial variability. The
choice of the interpolator is important for estimating the anomaly caused by the sources. Minimum
curvature and kriging gridding have shown to be the best gridding algorithm because their values
are close to the original values than IDW gridding method. Normal distribution curves for kriging
and minimum curvature show low standard deviations and also RMSE for these methods is low
than the IDW. Minimum curvature and kriging all have produced very close results as such visual
analysis of the individual grids was done in order to find best gridding between them. Visual
comparison of kriging and minimum curvature showed that minimum curvature has got
pronounced artefacts than kriging and also the boundary for Diabase dyke in minimum curvature
is fuzzy while kriging shows crisp/sharp boundary in the potassium grid. Bearing in mind that this
can have an impact on interpreting the data later, therefore the grid that has shown less artefacts by
visual analysis is taken to be good and in this case Kriging has been chosen. Visual analysis of the
magnetic grids for Analytic Signal, (Annex 2 ) show that kriging is producing good results which
are crisp and clear seconded by minimum curvature and in IDW the grids are fuzzy. These results
are similar to the results of Arfaoui & Inoubli, (2012) in which they did a comparative study on
two interpolator methods for Bouguer anomaly mapping in the El Kef-Ouargha region, Tunisia.
They compared the results of minimum curvature gridding and kriging using a geostatistical
approach. They found out that kriging closely approximates the measured gravity data than
minimum curvature. Hosseini & Marcotte, (2014) also conducted a study to determine
interpolation methods that are best suited to map soil salinity. They compared methods of kriging,
inverse-distance, and minimum curvature and they found out kriging and minimum curvature were
the most precise methods, whereas IDW was the least precise. Similary Schloeder, Zimmerman, &
Jacobs, (2001) investigated whether it was appropriate to use spatial interpolation methods with
limited coarse-scaled soils data from a vertisol plain. They compared ordinary kriging, inverse-
distance weighting, and minimum curvature. Comparison was based on accuracy and effectiveness
measures, and analyzed using ANOVA and pair wise comparison rtests. Results indicated that
spatial interpolation ordinary kriging was accurate and effective method. Among the spatial
interpolation methods compared, kriging appeared to outperform or be more accurate which is also
the case with the results obtained in this research.
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6. ASSESSMENT OF GEOLOGICAL INFORMATION
CONTENT OF THE LEGACY AIRBORNE
GEOPHYSICAL DATA

6.1. Introduction

This chapter aims at trying to define the extent to which the legacy airborne geophysical data set
can be used to map lithological units and to see the aspects of the lithological units and structures
that can be mapped or identified using this dataset. Both visual analysis and computer-assisted
techniques which include supervised and unsupervised classification were employed to produce
predictive maps. The relationship between ground field data and airborne data was assessed in the
last part of this chapter in order to compare the composition of rocks as to what is seen in the
airborne geophysical data.

6.2. Unsupervised classification

Unsupervised classification classifies an image based on natural groupings of the spectral properties
of the pixels, without the user specifying how to classify any portion of the image (Schetselaar et
al., 2007). The user specifies the number of classes to be used in the classification. This classification
was used in this research in order to find natural groupings of the spectral properties of the pixels in
the data set.

6.2.1. Data preparation

Gamma ray data Potassium, Thorium, Uranium and Total count channels were used as input to the
unsupervised classification. All these radioelement channels were layer stacked into one composite
image and were used as input into the classification. A subset was made on the data, the left side of
the area where it shows the high counts in all the grids was masked out because this area was not
covered during field work.

6.2.2.  Clustering

The isodata clustering algorithm was applied to the layer stacked image for classification in erdas
imagine software. Clustering was done by testing different numbers of classes and see the pattern of
the classes. The Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised
classification calculates class means evenly distributed in the data space then iteratively clusters the
remaining pixels using minimum distance techniques. Each iteration recalculates means and
reclassifies pixels with respect to the new means. This process continues until the number of pixels
in each class changes by less than the selected pixel change threshold or the maximum number of
iterations is reached. The figure 6-1 below show the data set used in the unsupervised classification
and figure 6-2 show the classified images result.
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Figure 6-2 results of unsupervised classification obtained by testing different numbers of classes that was
done in order ro determine optimal number of classes to use. (a) with four classes, (b) with six classes, (c)
with eight classes, (d) with twelve classes. The one with four classes was found to be good and was used in

the interpretation.

It was observed that increasing the number of classes from four to six and then eight the
information content of the data was not really changing only small subclasses are coming in that are
not relevant. Increasing the number of classes to twelve a lot of noise was introduced. In order to
select the best number of classes from which geological information can be extracted, the classified
maps were overlain with the geological map with the aim of trying to understand which classes
coincide with the geological map and to qualitatively assess the classification outcome. It was
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observed that with only four classes, the classified map correlates with certain units in the
geological map. Increasing the number of classes from four to six and then eight, it was observed
that there is still sensible correlation with the overlaid geological map only that the lithological
units are just being split into sub units. Increasing further the classes to twelve the results did not
make sense as there was not much correlation with the geological units on the geological map.
Sensible correlation with the geological map is seen using four classes because classes in this image
are more separable than in the other classified maps and have not been split into sub classes. The
image with four classes was used in the interpretation (figure 6-3).

In order to obtain the radiometric statistics of the classes the classified map with four classes was
exported to oasis montaj software as geotiff. Point values were extracted for each class on the
classified image with all the four layers of Potassium, Thorium, Uranium and Total count grids as
background images. After obtaining the statistics for each class, they were exported to SPSS
software and box plots for each radioelement per class were plotted (figure6-4).
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Figure 6-3 geological polygons overlain on the unsupervised classified maps with with four classes..
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6.3. Interpretation of the unsupervised classification results (with four classes)

Doing unsupervised classification on the legacy gamma ray data we get a group of pixels that have
been classified as class 1 (figure 6-3). These pixels have the lowest radiometric count, (figure6-4).
These pixels coincide with the mafic rocks Gabbro and Diabase, Limestone, and the water logged
marsh areas on the geological map. The mafic rocks and Limestone are rock units that have the
same gamma ray spectral signature and they form one class. This shows that unsupervised
classification based on the legacy gamma ray data can map low radioelement rocks but it is not able
to differentiate Limestone, the mafic rocks, the water logged areas and the lakes.

Similarly a group of pixels that have been classified as class 2 and 3 are observed in the data (figure
6-3). These pixels have high radiometric content with the class 2 pixels being the highest and
followed by the class 3 pixels (figure6-4). These pixels coincide with Granite, Shale and Devonian
sandstone on the geological map. These are rock units that have high Th and K contents. This
shows that unsupervised classification on the legacy gamma ray data can map high Th and K
radioelement rocks but is not able to differentiate between Granite, Shale and Devonian sandstone.
Granite can be differentiated from Shale and Devonian sandstone based on uranium because
Granite has high uranium content while Shale and Devonian sandstone have low uranium content.
In addition it is also observed that there is a group of high radioelement content pixels at the middle
that have been classified into the same class. Comparing these pixels with Landsat image (annex 3)
they coincide with a town of Claustal. The town is registering high radio element content but this
is not related to lithology. This is because building materials do also radiate. This shows that
unsupervised classification based on the legacy data can map gamma-ray responses that are not
related to bedrock geology.

The other group of pixels observed in the classified map is group of pixels which form class 4.
These pixels have medium radioelement signatures (figure6-4). These pixels coincide with the
Greywacke and Eckergneiss units on the geological map. These are rocks that contain medium
radio element content. This shows that unsupervised classification based on the legacy gamma ray
data can map medium radioelement rocks but cannot differentiate Greywacke and Eckergneiss.
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Figure 6-4 box plots showing radioelement content per class (a) Potassium, (b) Thorium, (c) Uranium, (d)
Total count

6.4. Area cross tabulation between geological map and the unsupervised classified map with
four classes

In order to see the spatial correlation of the geological map and the classified map cross tabulation
between the geological map and the unsupervised classified map with four classes was performed.
The cross operation performed an overlay of the geological map and the unsupervised classified
map by comparing pixels at the same position in both maps. The geological map was rasterised and
exported to Ilwis software and also the unsupervised classified map was exported to Ilwis. The two
maps were georeferenced to the same georeference using georeference corners in Ilwis. This was
done because for maps to be crossed need to have same georeference. Table 2 below shows the
output of the cross tabulation between geological map and the unsupervised classified map with
four classes, the area units are in m?.
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GEQLOGICAL MAF LITHOLOSY | UMSUPERYISED CLASSIFIED MAF MNpis frea
Diabase " Class1 Diabasze Class1 15446600
Diabaze " Class2 Diabase Clazs2 153000
Diabase " Class3 Diabase Class3 4241300
Diabaze " Classd Diabase Claz=zd 5365500
Granite * Clas=1 Granite Claz=1 157584600
Granite " Class2 Grarite Clazs2 12577500
Granite * Class3 Granite Claz=3 30327000
Grarnite " Claszd Grarite Claz=sd 5450000
Shale " Class1 Shale Clazs1 G455500
Shale " Class2 Shale Clazs2 4205100
Shale * Class3 Shale Clazs3 23523000
Shale " Classd Shale Claz=sd 5352600
Dewanian sandstone " Class1 Devanian sandstans Clazs1 F755600
Devanian sandstane " Clazss Devaonian sandstane Clazs2 350200
Dewvanian sandstane ” Clazs3 Devaonian sandstans Clazs3 15526600
Dewvanian sandstane " Clazsd Devaonian sandstans Claz=d 13325600
Gabbra " Claz:d Gabbra Clazs1 3357300
Gabbro " Class3 Gabbro Class3 405800
Gabbrs * Claszd Gabbra Claz=zd 1352000
Ecker gneiss " Clazs1 Ecker gneiss Class1 2332200
Ecker gneiss " Classz Ecker gneiss Class2 33800
Ecker gneiss " Class3 Ecker gneiss Class3 155300
Ecker gneiss " Classd Ecker gneiss Classd 1402700
Greywacke " Clazs1 Greywacke Claz=1 1525631500
Greuwacke " Class2 Greuwwacke Classz SO70000
Greywacke " Class3 Greywacke Claz=3 35400500
Greuwacke " Classd Greww acke Classd 130750300
Limestone " Class1 Limestane Clazs1 1064700
Limestone " Class3 Limestane Clazs3 4500
Limestone " Classd Limestans Clazsd FF1E00

Table 3 cross tabulation between the geological map and the unsupervised classified map with four classes

The relationship between the geological map units and the unsupervised classified map units are
apparent on the cross tabulation. From the table 1 it is observed that Diabase of the geological map
and Class 1 of the unsupervised classified map are spatially associated and coincide with 914 pixels
in common. This shows that Class 1 corresponds best with Diabase and it means for a large part
class 1 represents Diabase. Similarly Gabbro is associated and coincides with class 1 with 591 pixels.
This means that class 1 represents Gabbro. Likewise it can be observed that Limestone from
geological map is associated with Class 1 with 63 pixels in common. This means that also class 1 is
representing Limestone. These results confirm the results obtained from the unsupervised classified
image in which Limestone, Gabbro and Diabase have low radioelement signatures and were all
classified into same class 1. This shows that unsupervised classification based on the legacy gamma
ray data can map these low radioelement rocks but it cannot differentiate them.

Strong association can also be observed on high radioelement content rocks. Granite on the
geological map coincides with Class 3 on the unsupervised classified map with a total of 1830 pixels.
This means that for a large part class 3 represents Granite. Similarly Shale coincides with class 3 on
the unsupervised classified map with 1410 pixels and also Devonian sandstone coincides with class 3
unsupervised classified map with 1114 pixels. This means that class 3 is also represented by Shale
and also Devonian Sandstone. These results confirms the one obtained from the classified image in
which Granite, Shale and Devonian sandstone were all classified into one class 3. This shows that
unsupervised classification on the legacy airborne gamma ray data can map these high radioelement
content rocks but it cannot differentiate them.

Greywacke on the geological map show strong correlation and is coinciding with class 4 on the
unsupervised classified map with a total of 11287 pixels. This means that for a large part of class 4
represents Greywacke. The Greywacke has medium radioelement content and this show that
unsupervised classification on the legacy airborne gamma ray data is able to map medium
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radioelement content rocks. However Greywacke is also associated with class 1 with 9035 pixels
which indicates that it is being confused with class 1.

6.5. Validation

Based on the cross tabulation data, a confusion matrix was used to assess the accuracy of the
unsupervised classified map with four classes as an addition to the qualitative assessment that was
made by comparing the unsupervised classified map with the overlain geological polygons. The
geological map was used as the reference data. The columns represent the reference data and the
rows represent the classified map. In normal circumstances for easy comparison, the geological map
and the classified map need to have the same legend. But in this case the legends are different, the
classified map has only four classes and the geological map has eight lithological units. Because of
this, the normal confusion matrix in which diagonal elements represents areas that are in agreement
with the reference data was not possible. To solve this problem, areas that had a lot of pixels in the
cross table (table 3 above) were considered to be the class that make up that particular lithological
unit on the geological map. For example Diabase has a lot of pixels in class 1 so class 1 is considered
that one lithological unit in it is Diabase. Similarly Gabbro has many pixels in class 1 and it was
considered that class1 also contains Gabbro as another lithological unit in this class and so on.
Greywacke has many pixels in class 4 so class 4 contains Greywacke as lithological unit.

To calculate the overall accuracy, the highlighted pixels were added and divided by the total
number of pixels and this shows an overall accuracy of 46.1%.

Error of User
Devonid Diabasq Ecker g| Gabbro| Granite| GreywalLimestong Shale |TOTAL |commissio|Acuracy
n rA
Class1 224 314 138 531 934 3035 E3 382 12281 87.23 12.77
Class2 o] 10 2 0 762 300 ] 243 1381 44 52 55.18
Class3 1114 251 1 24 1830 SE45 5 1410| 10230 57.63 42,31
Classd 24 455 83 &0 Son| 1287 22 354 13645 16.67 83.33

Total 2220| 1670 234 695%| 4026| 26267 90| 2395 37ngv

Error of Ommission 43.52] 45.27] 64.53] 14.96| 54.55| 57.03 30.00( 4113
Producer Accuracy % | 50.18| 54.73| 35.47| 8504| 4545| 4257 70.00| 58 87
Overall accuracy > 46.1

Table 4 Confusion matrix between geological map and the unsupervised classified map with four classes.
The reference data pixels (geological map) are listed in columns and the classification results are listed in
rows. The highlighted pixels represent the pixels that are in agreement with the geological map.

The matrix shows that class 1 is confused with Diabase, Gabbro and Limestone as most pixels of
these lithological units were classified into this class. This is so because these lithological units have
same gamma ray spectral signatures. Similarly class 3 is mostly confused with Devonian sandstone,
Granite and Shale because most pixels of these lithological units were classified into this class. These
units have all high potassium and thorium content and this explains for the confusion. Overall
accuracy is low 46.1% because there is a lot of variability and overlap within the classes which is
confusing the classification.

6.6. Conclusion

From this analysis it has been observed that performing isodata unsupervised classification on the
legacy airborne gamma ray data, it can map low radioelement rocks such as Limestone, Gabbro and
Diabase but cannot differentiate these lithological units. It can also map medium radioelement
rocks such as Greywacke and Eckergneiss and again has the limitation that it cannot differentiate
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these lithologies. Furthermore the classification is able to map high radioelement rocks such as
Granite, Shale and Devonian sandstone but cannot differentiate these lithological units because they
have similar gamma ray spectral signatures. It has also been found out that it is able to map out
marsh areas and the lakes. These also have low radioelement content and the classification could
not differentiate these water logged areas, lakes from the low radioelement rocks like Limestone,
Gabbro and Diabase. The southern part of the classified map does not correlate very well with the
overlain geological map while the rest of the map apart from the southern part does correlate. This
is because there is a lot of variability and overlap within the classes which is confusing the
classification. These results are similar to the results of Schetselaar et al., (2007) in which they used
unsupervised classification on gamma ray data K, Th and U channels in the Melville Penisula,
Nanavut and they found that there were places that distinct radioelement domains correlated with
mapped units and also there were areas that differ appreciably from the geological map.

6.7. Supervised classification

In addition to the unsupervised classification discussed above, supervised classification was also used
to further understand the information content of this legacy airborne data. Supervised classification
is done by an operator who defines spectral characteristics of the classes by identifying training
areas. It requires that the operator is familiar with the area of interest, needs to know where to find
the classes of interest in the scene (Richards, 2013). In this research this information was derived
from general knowledge of the scene and field observations. The same layer stacked image that was
used in the unsupervised classification was also used in the supervised classification.

6.7.1. Training of samples

The selection of training sites was based on the geological map and the lithological code was based
on the name of the unit on the map. The number of pixels that were used for training ranged from
14-25 and areas that were homogeneous were selected for sampling. A total of 8 training areas were
used. Refer to annex 3 for areas where training samples were taken.

6.7.2. Seperability analysis

Seperability is a statistical measure of distance between two classes. This distance is used to
determine how distinct the classes are from each other. Assessment of the statistical separation of
each class was done to determine whether classification would be feasible. In order to get
radioelement statistics per lithological unit the geological polygons were overlain on the input grids
and point value extraction tool was used to extract radioelement contents for each lithology. To
assess the statistical seperability of the different lithological unit classes, box and whisker plots were
used. Granite, Shale, and Devonian sandstone are not separable. Similarly Diabase, Gabbro and
Limestone are overlapping and this show that they are not well separable. The statistical separation
indicates that reasonable results can still be expected from supervised classification even though the
seperability is not very good (figure 6-5).
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Figure 6-5 Showing seperability analysis results by lithological class (a) Potassium, (b) Thorium, (c)
Uranium

6.7.3. Clustering

The image was classified using maximum likelihood algorithm in Erdas Imagine software. This
algorithm was chosen because research has shown that it gives more accurate results (Schetselaar,
2000). The way this algorithm works is that it calculates statistical distance based on the mean
values of the clusters. This statistical distance is a probability value and a cell is assigned to the class
to which it has the highest probability ( Schetselaar, 2000).
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6.8. Results of supervised classification
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Figure 6-6 showing results of supervised classification based on legacy gamma ray data only

The classified map was overlain with the geological map with the aim of trying to understand

which classes coincide with the geological map as shown in the figure 6-7. In order to get

radioelement statistics per lithological unit the geological polygons were overlain on the input grids

and point value extraction tool was used to extract radioelement contents for each lithology

according to the geological polygons. Box plots were plotted indicating the content of radioelement

per lithological unit (figure 6-8).
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Figure 6-7 geological polygons overlain on the supervised classified map

6.9. Interpretation of supervised classification results

In the supervised classification, there are pixels that have been classified as Granite, Shale and
Devonian sandstone (figure 6-7). These pixels have high radiometric content (figure 6-8). On the
eastern side of the map they coincide with Granite on the overlaid geological map and in the north
they coincide with Shale and Devonian sandstone. These are rock units that have same gamma ray
spectral signature and the algorithm could not differentiate them. This shows that supervised
classification based on the legacy airborne gamma ray data can map high radioelement rocks but it
is not able to differentiate Granite, Shale and Devonian sandstone since all have high K and Th
content.

Similarly there are pixels that have been classified as Limestone, Gabbro and Diabase in the
supervised classified map. These pixels have low radioelement content (figure 6-8). On the north
western side of the map, they coincide with Limestone lithological unit on the overlaid geological
map and on the eastern they coincide with Gabbro and Diabase on the overlaid geological map
(figure 6-7). These are rock units that have on average low gamma ray spectral signature (figure 6-8).
The marsh area at the middle (blue band running SW-NE at the middle of the classified map in
figure 6-7) are being confused with Limestone and the mafic rocks, Gabbro and Diabase because
these water areas also have low radioelement signatures. This shows that supervised classification on
the legacy airborne gamma ray data is able to map low radioelement content rocks but cannot
differentiate Limestone, Gabbro and Diabase. It also shows that it can map the water logged areas
and the lakes but it cannot differentiate them from the mafic rocks and Limestone.
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Also there are pixels that have been classified as Greywacke and Eckergneiss. The pixels of these
rocks have medium gamma ray spectral signature. The classified Greywacke and Eckergneiss pixels
coincide with Greywacke unit on the overlaid geological map and also on the east coincide with
Eckergneiss lithological unit on the overlain geological map. These are lithological units that have
medium radioelement content. This shows that supervised classification based on the legacy
airborne gamma ray data is able to map lithological units with medium radioelement content but
cannot differentiate Greywacke and Eckergneiss lithologies.
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Figure 6-8 radioelement content for the lithological units (a) Potassium, (b) Thorium, (c) Uranium
(d) Magnetic susceptibility

6.10. Accuracy Assessment

An error matrix was calculated to assess the quality of the supervised classification results. It shows
the relationship between the known reference data and the corresponding cluster/classes of the
clustering results. An existing lithological map (figure 4-1) was used as the reference data for this
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research. From the error matrix the overall accuracy was calculated to assess the classification
outcome. Overall accuracy is a ratio of total number of correctly classified pixel to the total pixel
number. As was done in section 6.4 and 6.5, area cross tabulation of the geological map and the
supervised classified map was performed in order to come up with the error matrix shown in table
5 below.

Devanian Exeorof :'39'
Dizbase Eckergneiss |Gabbra Granite  [Grewwacke [Limestory Shale | Total | ommissi o
sandstone o acy
onx =
Devonian sandstone 53 7 176 13 128 576 13 1254 | 2220 37.E1 2.39
Diabase 2 123 62 115 Gd EES 360 273 | 1BTO 9263 737
Ecker gnieiss 1 18 109 5 2 g6 u] 13 234 53.42 [ dB.58
Gabbro 0 170 165 240 2 T 5] 35 5395 65.47 [ 34.53
Granite 403 153 241 415 396 ddd 52 1310 | 4026 T5.26 [ 24.74
Greww acke =] 356 2177 Z0EE 155 12252 1540 | B455 | 26080| 5302 | 46.98
Limestone 0 0 B 15 0 4 23 5 a0 7d.4d4 [ 2556
Shale 243 v E3 36 266 373 14 1257 | 2395 47.52 [ 5248
Tatal Ta0 310 2939 2965 2613 14514 2008 | 10611 | 37410
Error of commission 3 93.29 86.48 96.37 919 E1.88 15.58 98.85 | 8815
user Accuracy % E.71 13.52 363 &.03 38,12 5d.42 115 1.85
DOverall Acuracy > 40.24

Table 5 Confusion matrix berween the geological map and the supervised classified map obtained by cross
tabulation. The elements on the diagonal marked in grey represents areas of agreement between the classified map
and the geological map. The off diagonal elements represent or show where the maps are in conflict. The columns
represent classes of the classified map and the rows represents ground truth geological map pixels. The matrix show
an overall accuracy of 40%

From the matrix in table 5, it can be observed that Devonian sandstone is mainly confused with
Granite and Shale. This is because these lithological units have the same gamma ray spectral
signatures. Diabase is confused with Gabbro and Greywacke. The marsh area on the reference
geological map is part of the Greywacke unit and most pixels of Diabase were falling on this part.
This marsh area has low radioelement gamma ray signature and Diabase has also low gamma ray
spectral signature. This is the reason why Diabase is confusing with Gabbro and Greywacke.
Similarly Eckergneiss is mostly being confused with Greywacke as most pixels of Eckergneiss were
classified as Greywacke. This happened because Greywacke has almost similar gamma ray
radiometric content as Eckergneiss. Limestone is being confused with Diabase and Greywacke
especially at the marsh region because they both have a low radioelement gamma ray spectral
signature which is the same as Limestone. Overall accuracy is low 40% because there is a lot of
variability and overlap within the classes which is confusing the classification.

6.11. Classification based on gamma ray data and magnetic data

In order to get more detail regarding the information content the legacy airborne data can provide,
another classification was done using gamma ray data and magnetic data. The gamma ray channels
K, Th, U and Apparent Magnetic Susceptibility were used. The Total Magnetic Intensity grid was
converted to Apparent Magnetic Susceptibility. The same training areas as shown in annex 3 were
used. The figure below show the result of classification using maximum likelihood.
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Figure 6-9 results of supervised classification using gamma ray data and magnetic susceptibility

6.12. Interpretation

The classified map was overlain with the geological map with the aim of trying to understand
which classes coincides with the geological map as shown in the figure 6-10. In order to get
radioelement statistics per lithological unit the geological polygons were overlain on the input grids
and point value extraction tool was used to extract radioelement contents for each lithology
according to the geological polygons. Box plots were plotted indicating the content of radioelement
per lithological unit (figure 6-8)
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Figure 6-10 geological polygons overlain on the supervised classified map using gamma ray and magnetic
susceptibility

There are group of pixels that have been classified as Diabase and Gabbro on the supervised
classified map. The pixels of these units have high magnetic susceptibility and low radiometric
content (figure 6-8). These pixels coincide with Diabase and Gabbro on the overlaid geological
units. This shows that supervised classification based on legacy airborne gamma ray and magnetic
susceptibility data can map high magnetic susceptibility and low gamma ray spectral signature rocks
but cannot differentiate Gabbro and Diabase.

Limestone can also be identified in the supervised classified map. Classified Limestone pixels
coincide with the Limestone lithological unit on the overlaid geological map. Limestone has low
gamma ray spectral signature and also low magnetic susceptibility (figure 6-8). Limestone has been
separated from the mafic rocks because it has low magnetic susceptibility. This shows that
supervised classification on the legacy airborne gamma ray and magnetic data can map low
radioelement and low magnetic susceptibility rocks like Limestone. Again it shows that using both
magnetic susceptibility and gamma ray channels it is possible to separate Limestone from the mafic
rocks which was not possible when only gamma ray data was used.

There are also pixels that have been classified as Granite on the supervised classified map. Classified
Granite pixels coincide with Granite from the overlaid geological polygons. This lithological unit
has high gamma ray radioelement content and also high magnetic susceptibility (figure 6-8). Granite
has been separated from Shale and Devonian sandstone because it has high radioelement content
and also high magnetic susceptibility. This shows that supervised classification on the legacy
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airborne gamma ray and magnetic data can map high gamma ray spectral signature and high
magnetic susceptibility rocks such as Granite. Using both gamma ray and magnetic susceptibility
Granite can be separated from Shale and Devonian sandstone which was not possible when only
gamma ray data was used.

Group of pixels that have been classified as Greywacke and Eckergneiss can be identified on the
classified map. These pixels coincide with Greywacke unit and Eckergneiss on the overlaid
geological map. These are lithological unit that have medium radioelement content and low
magnetic susceptibility (figure6-8). This show that supervised classification based on the legacy
airborne gamma ray and magnetic data is able to map lithological units with medium radioelement
content and low magnetic susceptibility such as Greywacke and Eckergneiss but it cannot
differentiate these lithologies.

Group of pixels that have been classified as Shale and Devonian sandstone can also be observed in
the classified map. The classified Shale and Devonian sandstone pixels coincide with Shale and
Devonian sandstone on the overlaid geological map. These are lithological units that have high
potassium and thorium content and low magnetic susceptibility (figure 6-8). This shows that
supervised classification on the legacy airborne gamma ray and magnetic data can map lithological
units with high Th and K content and low magnetic susceptibility like Shale and Devonian
sandstone but cannot separate them.

Pixels for the marsh area can also be observed in the classified map. This area has low magnetic
susceptibility and low gamma ray spectral signature just like Limestone. This area is being confused
with Limestone since they all have same low magnetic susceptibility and gamma ray spectral
signatures.

6.13. Accuracy assessment

Error matrix was calculated to assess the quality of the classification results. This was done by cross
tabulating the classified map and the geological map which was used as the reference. Table 6 shows
overall accuracy of 42 %. Overall accuracy is low 42% because there is a lot of variability and
overlap within the classes which is confusing the classification.

Error of |Producer
Dewvonian sandst| Diabase |Ecker gneiss| Gabbro | Granite | Greywackd Limesto| Shale  [TOTAL] ommissi | Acuracy

onz k4

Clewonian sandstone 136 59 3 I 190 B33 0 526 1545 9.2 2.8
Diabase 1 358 24 221 513 991 1 £l 2123 23.2 16.2
Eckergneiss 135 40 a3 a7 123 1708 1 &1 2328 360 4.0
Gabbro 1] 57 2 263 205 265 0 12 205 ET4 32.5
Granite 13 32 0 32 ez 291 0 L] h4a9 E1.3 387
Greywacke hall 381 g5 E0 3T 10056 ] 395 12034 6.9 831
Limestane 55 241 0 2 25 2482 42 142 2929 985 1.4
Shale 1103 k2 g 1 320 3917 4 1 EG32 &30 17.0
Total 2219 1520 215 686 3882 | 22983 86 2346 | 33917
Ermor of commission ¥ 3387 764G 56.74 E1GE 45.34 56.21 5116 52.64

User Accuracy E13 23.55 43.26 3824 54 65 43.79 45.824 | 47.38
Overall acuracy 41.81

Table 6 Confusion matrix berween the geological map and the supervised classified map using both
gamma ray and magnetic data obtained by cross tabulation. The elements on the diagonal marked in
grey represents areas of agreement between the classified map and the geological map. The off diagonal
elements represent or show where the maps are in conflict. The columns represent classes of the classified
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map and the rows represents ground truth geological map pixels. The matrix show an overall accuracy of
42%

From the matrix it can be observed that Devonian sandstone is mainly confused with Shale. This is
because these lithological units have the same gamma ray spectral signatures and magnetic
susceptibility. Diabase is confused with Gabbro, Granite and Greywacke. The marsh area on the
reference geological map is part of the Greywacke unit and some pixels of Diabase were also falling
on this part. This marsh area has low radioelement gamma ray signature and Diabase has also low
gamma ray spectral signature. It is confused with Gabbro and Granite because all have high
magnetic susceptibilities. Similarly Eckergneiss is mostly being confused with Greywacke as most
pixels of Eckergneiss were classified as Greywacke. This happened because Greywacke has almost
similar gamma ray radiometric signature and magnetic susceptibility as Eckergneiss. Limestone is
being confused with Greywacke especially of the marsh region. This is so because they have both
low radioelement gamma ray spectral signatures and low magnetic susceptibility. The low accuracy
is due to the overlap of classes causing the classification to be confused.

6.14. Conclusion

Performing maximum likelihood supervised classification on the legacy gamma ray data is able to
map low radioelement rocks such as Limestone, Gabbro and Diabase but it cannot differentiate
these lithological units. It can also map medium radioelement rocks such as Greywacke and
Eckergneiss and again has the limitation that it cannot differentiate these lithological units.
Furthermore the classification is able to map high radioelement rocks such as Granite, Shale and
Devonian sandstone but cannot differentiate these lithological units because they have similar
gamma ray spectral signatures. It was also found out that it is able to map out marsh areas and the
lakes. These also have low radioelement content and the classification could not differentiate these
water logged areas, lakes and the low radioelement rocks like Limestone, Gabbro and Diabase.

Performing maximum likelihood supervised classification based on both legacy airborne gamma ray
and magnetic data has shown that it can map high magnetic susceptibility and low radioelement
content rocks like Gabbro and Diabase but it cannot differentiate these lithological units.
Furthermore it can map low radioelement and low magnetic susceptibility rocks such as Limestone.
Again it showed that using both magnetic susceptibility and gamma ray data it is possible to
separate Limestone from the mafic rocks which was not possible when only gamma ray data was
used. In addition to this, the classification can map high gamma ray spectral signature and high
magnetic susceptibility rocks like Granite. Using both gamma ray and magnetic susceptibility
Granite can be separated from Shale and Devonian sandstone which was not possible when gamma
ray data only was used. Also based the gamma ray and magnetic data the classification can map
lithological units with medium radioelement content and low magnetic susceptibility but could not
differentiate Greywacke and Eckergneiss. It can also map lithological units with high Th and K
content and low magnetic susceptibility such as Shale and Devonian sandstone but cannot separate
these units. Using both gamma ray and magnetic susceptibility, Shale and Devonian sandstone can
be separated from Granite which was not possible with gamma ray data only.

The classified maps do not correspond very well with the overlaid geological map on the southern
part, but on the other hand apart from this part the rest do corresponds. This is because of noise
factor in the data. There is a lot of variability and overlap within the classes which is confusing the
classification. Classification accuracy varied from 40% when only gamma ray data was used to 42%
when both gamma ray and magnetic data were used. The low accuracy is due to a lot of variability
within the classes which is confusing the classification. These results are similar to the results of
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Schetselaar et al., (2007) in which they did supervised classification on gamma ray data using
maximum likelihood over Melville Peninsula with the aim of determining whether geological units
could be successfully mapped using gamma ray data in combination with magnetic data. Their
results found out that there were areas that show good correspondence with the geological map and
other areas that differed from the mapped geology and also observed that classification accuracy
increased when both gamma ray and magnetic data were used in the classification. Similarly Harris
et al., (2008) used gamma ray and magnetic data and did supervised classification using maximum
likelihood to map different lithologies in Sekwi region of Canada with the aim of demonstrating
the value of gamma ray data in conjunction with magnetic data . They found that best map was
produced from using both gamma ray data and magnetic data than only using gamma ray data.

6.15. Visual Image Interpretation

In addition to the Supervised and unsupervised classification, visual analysis of the airborne data
was done. In order to get insight of the data to see if different lithologies can be differentiated,
statistical analysis was carried out to depict the concentration of each radioelement per lithological
unit. To get values per lithological unit, a point value extraction tool in Oasis Montaj was used to
extract values from each lithological unit. Mean values were calculated and the results were plotted
as box plots. The mean values per lithological unit suggest that it is possible to discriminate
lithological units based on their contrast radiometric and magnetic signatures (figure 6-11).
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Figure 6-11 Box plots showing the distribution of radioelement per lithological unit

A number of enhancements were applied to the geophysical data in order to highlight to facilitate
extraction of geological information from the data.

6.16. Gamma ray image enhancements

The gamma ray data was enhanced in various ways in order to increase interpretation for geological
information extraction. The data was presented in pseudo colour single band images, ratio images
and Ternary colour composite image. These provided good enhancements possibilities to
discriminate different surface lithologies. The single band pseudo colour images show areas where a
particular radioelement has relatively higher concentration which can be directly correlated with
the geochemical properties of the surface lithology and regolith (Wilford, 1997). Ratio image of the
individual radioelement (Th/K) helped in enhancing subtle features that were not apparent in the
original images. The ternary colour composite image provided an overall pattern of radioelement
distribution over the study area. The radiometric data were also integrated with the STRM DEM
data to add topographic information. The ternary image was pan sharpened with the SRTM DEM
in ARC GIS using pan sharpening tool. This resulted in a better enhanced image in comparison to
the original ternary image.

6.17.  Visual Interpretation on gamma ray data

Qualitative photo geological interpretations were applied in order to get geological information
from the data. Lithological units were discriminated based on their tonal/ colour, texture, shape,
size and association. Close inspection was made on the K image and revealed that there are distinct
lithologies which can easily be discerned. Greywacke covering most of the central part of the study
area is discriminated by its medium K concentration. Limestone lithological unit in the north
western area of the Greywacke unit is discriminated by its very low K content. Similarly Gabbro
and Diabase in the eastern part of the study area are discriminated by their low K content. Shale
and Devonian sandstone in the north eastern part are discriminated by their high K content.
Similarly Granite in the central eastern part of the study area is discriminated by its high K content
(figure 6-12a). In addition, interesting radiometric distributions were obtained from the ratio images
mainly Th/K. The Greywacke lithology covering the central part of the area (figure 6-12b)
including the Limestone in the western part of Greywacke and Eckergneiss covering the eastern
part can be discriminated by their relatively high Th/K ratio values. Shale in the north eastern part
can be delineated due to its very low Th/K values. Gabbro and Diabase in the east and the central
(linear feature) are discriminated by their low Th/K ratio values; similarly Granite in the east can
be delineated by its medium Th/K ratio values (figure 6-12b).

Interpretations were also made on the ternary (figure6-12c) image. Ternary image discriminate best
the different lithological units of the area. Shale covering the north east part is discriminated by its
higher Th and K content displaying yellow colour on the image. Granite and Devonian sandstone
are also discriminated from other lithologies by their elevated Th and K concentration also
appearing yellow in the image. Greywacke covering the central part is clearly identified having
black-greenish colour which indicates medium concentration of K, Th and U. The boundary of this
unit is also clearly outlined in the K image. Gabbro covering the eastern part is delineated by its
low levels of K, U and Th and on the ternary image is shown having dark colour which indicates
low levels of these elements. Eckergneiss is discriminated from Gabbro by its medium level of Th
and K concentration appearing green to bluish green in the image. Diabase which appears as dyke
in the geological map is discriminated on the ternary image by elevated levels of K (appearing red)
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and elongated on the central part and in the eastern part close to Gabbro. The pan sharpened image
(figure 6-12d) has confirmed most of the above interpretations extracted from the radiometric data.
It has provided clearer and sharp lithology contact. Lithological units are apparent and easily
identified on the ternary image pan-sharpened by SRTM hill shade DEM.
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Figure 6-12 delineated lithological units on K grid and Th/K ratio grid, black lines indicate lithological
boundaries (c and d) delineated lithological units on ternary image, white lines indicate lithological boundaries
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6.18.  Aeromagnetic data enhancements
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Figure 6-13 enhanced Aeromagnetic images of the study area, (a) Reduced to pole (RTP) of Total Magnetic
Intensity, (b) Analytic Signal, (c) Vertical derivative and (d) Tilt derivative

6.19.  Interpretation Aeromagnetic data

The reduced to pole image in figure 6-13a; show that the study area can be divided into two sections
and this has been done using line JJ. Western part of this line is characterised by low magnetic
signatures and the eastern part is characterised by high magnetic signatures. The low magnetic
signatures in the western part of the study area are mainly underlain by Greywacke, Limestone,
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Shale, Devonian sandstone and Slate. The localised high magnetic signatures in that area can be
attributed to variation in amounts of magnetite bearing minerals in the respective lithological units.

Gabbro and Diabase can be delineated in the east due to their high magnetic signatures. The
presence of high magnetic signature is due to the presence of magnetite in these lithological units.
These high magnetic signatures are related to the Brocken intrusive complex which consists of

Brocken and Oker Granite and the Gabbro that occurred after the variscan orogeny (Large &
Walcher, 1999).

Another high magnetic signature from south east to central eastern part is observed in the data.
This area is mainly characterized by post tectonic granitic intrusion which occurred in the Harz
after the variscan orogeny. The lithological units identified under this area are Granite, Diabase and
Tannegreywacke. The high magnetic signature is attributed to the presence of iron mineral such as
magnetite.

The south eastern corner shows medium magnetic signature. This area is underlain by sudharz
Greywacke lithological unit. Similarly this moderate magnetic signature indicates the presence of
magnetite in this unit.

The elongated linear feature on the centre trending NE-SW which shows high magnetic signature is
associated with Diabase on the geological map. The high magnetic susceptibility is due to presence
of magnetic minerals such as magnetite in the Diabase. This lithological unit is also related to the
Brocken intrusive complex that occurred in the study area after the variscan orogeny (Large &
Walcher, 1999).

Analysis of the analytic signal revealed the existence of various anomaly peaks and boundaries of
the mafic intrusive rocks Diabase and Gabbro can be clearly delineated using the analytic signal.
Anomalies with high magnitude in the eastern part of the study area which is underlain by mafic
rocks Gabbro, Diabase and their boundaries are clearly outlined. Two prominent Diabase dykes on
the centre trending NE-SW can be clearly seen from the analytic signal (figure 6-13 b).

Granite is well delineated in the vertical and Tilt derivatives due to its course texture, Diabase dykes
on the centre are well delineated on both vertical and Tilt derivatives as elongated linear features
trending NE-SW. Tannegreywacke in the south eastern part is delineated due to its smooth texture
Intrusive mafic rocks Gabbro and Diabase are recognised by their circular shapes on both vertical
and tilt derivatives (figure 6-13 ¢ & d).

6.20. Visual Intepreted geological map

The interpretations made on gamma ray data and the aeromagnetic data has resulted in extraction
of valuable information regarding lithology. The information has been integrated to form the
geological map in the figure 6-14 below.
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Figure 6-14 Geological map made from visual interpretation of the legacy airborne gamma ray and
magnetic data

6.21. Conclusion

Visual interpretation, based on the legacy airborne gamma ray and magnetic data has shown that
can map high magnetic susceptible and low radioelement content rocks like Gabbro and Diabase.
The boundaries of these units can be clearly delineated using the analytic signal image and also the
vertical and tilt derivative images. Furthermore is able to map low radioelement and low magnetic
susceptibility rocks such as Limestone. Limestone can be well delineated on the K grid due to its
very low radioelement content. It can also map high radioelement and high magnetic susceptible
rocks like Granite. In the tilt and vertical derivative Granite has course texture which makes it to
be easily differentiated from other units. It is also able to map lithological units with medium
radioelement content and low magnetic susceptibility like Greywacke and Eckergneiss. These units
can be easily delineated on the K grid as well as the Ternary image. Similarly visual interpretation
on the legacy data can also map lithological units with high Th and K content and low magnetic
susceptibility like Shale and Devonian sandstone. Shale can be differentiated from Devonian
sandstone using Th/K ratio image. Shale has very low Th/k than Devonian sandstone. This shows
that this data is very useful as all major lithological units could be identified using this legacy
dataset.
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6.22. Comparison between field data and legacy airborne geophysical data

In order to see relationship between the ground field data and the airborne data, comparison was
made between these data sets. This was done in order find out if the rock signatures depicted using
ground instruments can be observed in the airborne data and vice versa.

Ground magnetic readings shows that Intrusive rocks Harzburgite, Diabase and Gabbro show the
highest magnetic susceptibility due to the presence of magnetite and iron sulphide mineral
pyrrhotite. Shale Orkertal, Slate, Shale, Hornfels gneiss and Limestone all are characterized by low
magnetic susceptibilities. These results compared with the Magnetic map on figure 6-13b also show
that the intrusive rocks Harzburgite, Diabase and Gabbro have high magnetic susceptibilities and
all other rocks indicate low magnetic susceptibilities which is in agreement with the ground field
measurements. This shows that what is measured in the airborne data is reflected in the rocks
themselves and shows that the legacy airborne magnetic data is very useful for mapping.

Ground magnetic susceptabilities of different lithological units
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Figure 6-15 Comparison between ground field magnetic data and airborne magnetic data refer to figure
6-13b for airborne magnetic data

Similarly K and Th ground measurements show that Shale, Slate, Shale Orkertal and Granite in
black circles have high K and Th content while Harzburgite Limestone, Diabase, Gabbro,
Eckergneiss have low levels of K, and Th. Greywacke has medium K and Th content. The same
trend is also seen in the airborne data. The airborne data also show high K and Th content for
Shale, Slate, Shale Orkertal and Granite. Intrusive rocks Gabbro, Diabase and Harzburgite as well
as Limestone, and Eckergneiss have low content of K and Th radioelements. These results show
correlation and are in agreement with the ground field measurements and it shows that what is seen
in airborne data is also reflected in rocks themselves.
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Potassium concentration in different lithological units from Potassium concentration in different lithological units from
ground gamma ray spectrometer legacy airborne geophysical data
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Figure 6-16 comparison between ground potassium data and airborne potassium data, black circle indicates high
concentration, dashed circle indicates low concentration.
Thorium concentration in different lithological units from ground Thorium concentration in different lithological units from legacy

gamma ray spectrometer airborne geophysical data
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Figure 6-17 comparison between ground Thorium data and airborne Thorium data black circle indicates

high concentration, dashed circle indicates low concentration.

6.23.  Conclusion

The radioelement and magnetic signatures derived from the ground measurements show correlation
with the airborne signatures. This shows that what is seen in the airborne data is also reflected in
the rocks. This again shows that the airborne geophysical data is very useful as the composition of
the rocks obtained by ground field instruments is the same with the legacy airborne data. Harris,
Ford, Charbonneau, & Buckle, (2008) did similar comparison on ground gamma ray data
measurements obtained by gamma ray spectrometer in Sekwi region, Canada (which they used to
characterize signatures of major lithologies) and the airborne data and found that there was also a
correlation.

From this chapter it can be concluded that performing isodata unsupervised classification on the
legacy airborne gamma ray data, it can map low radioelement rocks such as Limestone, Gabbro and
Diabase but it cannot differentiate these lithological units. It can also map medium radioelement

rocks such as Greywacke and Eckergneiss and again has the limitation that it cannot differentiate
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these lithologies. Furthermore the classification is able to map high radioelement rocks such as
Granite, Shale and Devonian sandstone but cannot differentiate them because they have similar
gamma ray spectral signatures. Maximum likelihood and Isodata classifications based on gamma ray
data give similar results. When both magnetic and gamma ray data are used in the supervised
classification, more classes can be separated but however the classification accuracy does not
improve much. It only changed by 2% i.e. from 40% to 42%, this low accuracy is due to overlap
within the classes and this is confusing the classification. Visual interpretation worked better than
classification because we see a lot more than the classifier. The classifier only look at distance from
the signature in feature space while in visual interpretation we see a lot more like texture, colour,
tone, association, these things the classifier does not see as it only looks at pixel level. As a result the
overlap within the classes confused the classification. However the results have shown that the

legacy airborne geophysical data is still very useful.
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7. CONCLUSION AND RECOMMENDATIONS

This research used legacy airborne geophysical data set which was digitised from contour maps.
The research aimed at finding out how to grid the legacy airborne geophysical data and get useful
geological information out of it, and to know what kind of information about the geology could be
obtained by improving this data set.

Minimum curvature, IDW and kriging gridding algorithms were compared and kriging was found
to be the best gridding algorithm for this legacy airborne geophysical dataset. It was found out that
normal distribution curves for Kriging had low standard deviations and RMSE. In addition visual
analysis of the output grids showed that kriging has sharp and crisp boundaries and less artefacts
which were not the same with minimum curvature and IDW.

Maximum likelihood supervised classification and isodata unsupervised classification were used to
extract geological information content from this legacy airborne geophysical dataset. Visual
interpretation was also used to support the classification.

This research has found out that performing isodata unsupervised classification on the legacy
airborne gamma ray data, it can map low radioelement rocks such as Limestone, Gabbro and
Diabase but cannot differentiate them because they have same radiometric signatures. It can also
map medium radioelement rocks such as Greywacke and Eckergneiss and again has the limitation
that it cannot differentiate these lithologies. Furthermore the classification is able to map high
radioelement rocks such as Granite, Shale and Devonian sandstone but cannot differentiate these
lithologies because they have similar gamma ray spectral signatures. It was also found out that it is
able to map out marsh areas and the lakes. These also have low radioelement content and the
classification could not distinguish these water logged areas, lakes from the low radioelement rocks,
Limestone, Gabbro and Diabase.

Similarly performing maximum likelihood supervised classification on the legacy airborne gamma
ray data, the results were the same with the isodata classification. Maximum likelihood can map
low radioelement rocks such as Limestone, Gabbro and Diabase but also it cannot differentiate
them because they have similar gamma ray radiometric signatures. It can also map medium
radioelement rocks such as Greywacke and Eckergneiss and again has the limitation that it cannot
differentiate these lithologies. Furthermore the classification is able to map high radioelement rocks
such as Granite, Shale and Devonian sandstone but cannot differentiate these lithological units
because they have similar gamma ray spectral signatures. It was also found out that it is able to map
out marsh areas and the lakes. These also have low radioelement content and the classification
could not differentiate these water logged areas, lakes from the low radioelement rocks Limestone,
Gabbro and Diabase.

Performing maximum likelithood Supervised classification based on both legacy airborne gamma
ray and magnetic data has shown that it can map high magnetic susceptibility and low radioelement
content rocks like Gabbro and Diabase but it cannot differentiate these lithological units because
they all have high magnetic susceptibilities and low radioelement content. Furthermore it can map
low radioelement and low magnetic susceptibility rocks such as Limestone. Again it showed that
using both magnetic susceptibility and gamma ray data it is possible to separate Limestone from the
mafic rocks which was not possible when only gamma ray data was used. In addition to this, the
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classification can map high gamma ray spectral signature and high magnetic susceptibility rocks like
Granite. Using both gamma ray and magnetic susceptibility Granite can be separated from Shale
and Devonian sandstone which was not possible when gamma ray data only was used. Also based
the gamma ray and magnetic data the classification is able to map lithological units with medium
radioelement content and low magnetic susceptibility like Greywacke and Eckergneiss but again
could not differentiate these lithological units. It can also map lithological units with high Th and K
content and low magnetic susceptibility like Shale and Devonian sandstone but it cannot separate
them. Using both gamma ray and magnetic susceptibility, Shale and Devonian sandstone can be
separated from Granite which was not possible with gamma ray data only

Classification accuracy varied from 40% when only gamma ray data was used to 42% when both
gamma ray and magnetic data were used. This low accuracy is due to variability within the classes.
There is a lot of overlap within the classes and this confused the classification. (For instance looking
at the Ternary image, there is a lot of variability within the classes). There are areas that are dark
(low radioelement content) and also bright areas within the dark lithologies. This confuses the
classification and explains why classification is not good.

Visual interpretation, based on the legacy airborne gamma ray and magnetic data has shown that
can map high magnetic susceptible and low radioelement content rocks like Gabbro and Diabase.
The boundaries of these units can be clearly delineated using the analytic signal image and also the
vertical and tilt derivative images. Furthermore is able to map low radioelement and low magnetic
susceptibility rocks such as Limestone. Limestone can be well delineated on the K grid due to its
very low radioelement content. It can also map high radioelement and high magnetic susceptible
rocks like Granite. In the tilt and vertical derivative Granite has course texture which makes it to
be easily differentiated from other units. It is also able to map lithological units with medium
radioelement content and low magnetic susceptibility like Greywacke and Eckergneiss. These units
can be easily delineated on the K grid as well as the Ternary image. Similarly visual interpretation
on the legacy data can also map lithological units with high Th and K content and low magnetic
susceptibility like Shale and Devonian sandstone. Shale can be differentiated from Devonian
sandstone using Th/K ratio image. Shale has very low Th/K than Devonian sandstone.

Comparison of the ground field data and airborne data has shown that there is correlation between
the datasets. The radioelement and magnetic signatures derived from the ground measurements
show good correlation with the airborne signatures sampled at the same geographic locations as the
ground measurements. This shows that what is seen in the airborne data is also reflected in the
rocks.

The research has found that major lithological units could be identified using this data set and this
shows that though this dataset is very old (1985), it is still very useful. Performing supervised and
unsupervised classification on the gamma ray data gives similar kind of geological information.
More information is obtained when both gamma ray data and magnetic data are used.

7.1.  Recommendation

e Other processing steps useful in obtaining more information about the study area such as
correcting for the effect of vegetation on gamma ray data should be considered as this could
help to have more insight into the data.
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7.2. Annex1 Boxplots showing portable XRF laboratory measurements for K and Th , magnetic
susceptability measured by the kappa meter and ASD field spectra
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Figure 7-1 K, Th , Concentration and magnetic susceptibility measured in the laboratory (a) Potassium,
(b) Thorium, (c) magnetic susceptibiliry
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7.3. Annex 2 showing results of geophysical data processing , this annex is linked to chapter 5

Thorium
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Figure 7-2 shows the results of the histograms for normal distribution curves for thorium gridding data (a)
Minimum Curvature, (b) Kriging and (c) IDW
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Histogram showing normal distribution curve for Th minimum curvature

validation data
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Figure 7-3 shows the results of the histograms for normal distribution curves for thorium validation data

(@) Minimum Curvature, (b) Kriging and (¢) IDW
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Uranium

Histogram showing normal distribution curve for U minimum curvature Histogram showing normal distribution curve for U kriging
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Figure 7-4 shows the results of the histograms for normal distribution curves for Uranium gridding data

(@) Minimum Curvature, (b) Kriging and (c) IDW
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Histogram showing normal distribution curve for U minimum curvature Histogram showing normal distribution curve for U kriging validation data
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Figure 7-5 shows the results of the histograms for normal distribution curves for uranium validation data

(@) Minimum Curvature, (b) Kriging and (¢) IDW
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Total count

Histogram showing normal distribution curve for TC minimum curvature

Histogram showing normal distribution data for TC kriging gridding
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Figure 7-6 shows the results of the histograms for normal distribution curves for Total count (a) Minimum

Curvature, (b) Kriging and (c) IDW
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Histogram showing normal distribution curve for TC, minimum curvature
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Figure 7-7 shows the results of the histograms for normal distribution curves for Total count validation

data (a) Minimum Curvature, (b) Kriging and (c) IDW
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Total Magnetic Intensity
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Figure7-8 shows the results of the histograms for normal distribution curves for Total magnetic
Intensity(a) Minimum Curvature, (b) Kriging and (c) IDW
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Histogram showing normal distribution curve for total magnetic intensity

Histogram showing normal distribution curve for total magnetic intensity
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Jfigure7-9 shows the results of the histograms for normal distribution curves for Total magnetic
Intensity(a) Minimum Curvature, (b) Kriging and (c) IDW
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Figure 7-10 shows Analytic Signal grids for Minimum curvature, Kriging and IDW for Total magnetic
Intensity (a) Minimum Curvature, (b) Kriging and (c) IDW. Kriging grid is crisp and sharp seconded by

minimum curvature while IDW is a bit fuzzy.
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74.

Annex 3 showing landsat image, areas where training samples were taken and geological

polygons overlain on unsupervised classified maps, this annex is linked to chapter 6
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