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Abstract 
Federated Learning is a new form of Machine Learning where a central model is trained 
decentrally on multiple distributed devices, while still keeping data on-device for privacy-
preservation. Organizations who want to tap into the potential of having more data available for 
their predictive machine learning models, while still adhering to recent data protection regulations, 
will see a good fit in Federated Learning, as privacy-preservation is one of its main pillars. 
However, the research area is relatively new and the information fragmented. Therefore, this study 
provides a comprehensive review on the state-of-the-art in Federated Learning research. It sets 
an agreed-upon definition for Federated Learning, presents a comprehensive list of available 
Federated Learning algorithms, and purposefully investigates their main differences. All this 
information is then consolidated and used to design a methodology that supports organizations in 
making an informed decision in choosing among the myriad of Federated Learning algorithms 
available, based on their data-related characteristics, privacy-requirements, and business goals. 
This method has been successfully validated by means of a real-world case study in the financial 
industry, and positively been evaluated by means of a demonstration to experts. Also the resulting  
choice of the designed method, a Federated Learning algorithm, has been implemented by 
means of another case study. In order to show the practicality and partly validate the choice 
based on empirical results, not just on literature insights. All of this has been conducted in a 
methodological and scientific way. The overall study follows the design science research 
methodology (DSRM), the literature insights are collected methodologically by means of a 
Systematic Literature Review, the method is designed by means of a meta-methodology called 
Situational Method Engineering, and has been evaluated by using the Unified Theory of 
Acceptance and Use of Technology model. The resulting Federated Learning model has been 
developed by means of the CRISP-DM research methodology, a leading methodology in data 
science. This gives the study both scientific backing and practical relevance. 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1. Introduction 

This study is part of the researcher’s final project in the master program Business Information 
Technology at the University of Twente in Enschede. The master thesis will be conducted in 
collaboration with the software company Topicus in Deventer. This chapter first introduces 

the problem context and motivation, introduces solution objectives, as it is a design study. From 
this, relevant research questions are devised. The mapping of these research questions to the 
remainder of this report and the associated research methodologies are given at the end of this 
chapter.


1.1 Problem Context and Motivation 
LeCun et al’s (2015) highly influential paper showed that the advent of increased data set sizes of 
eliminated most of the need of manual work in setting up and tuning conventional machine 
learning models, and basically started the concept of Deep Learning. Taking advantage of the 
larger amount of available data increased the usefulness and effectiveness of the machine 
learning models. So, having available more data is an advantage. However, unlike big 
corporations like Facebook and Google, which generate massive data sets on their own, other 
organizations are many orders of magnitude smaller and do not have these same capabilities. 
Other smaller organizations could, however, also make use of the same advantages stated before. 
By partnering up with similar organizations, they could construct larger available data sets and 
leverage the same advantages that these large corporations have. 


However, when using traditional machine learning techniques, data need to be transferred from 
one party to another, usually to one central party, which will become responsible for this data 
(Yang et al, 2019). Consequently, constructing a joint data in such a way with traditional machine 
learning techniques generates additional privacy challenges, both from a legal and a competitive-
interest perspective. Yang et al (2019) state that there is an increasing awareness of large 
companies compromising on data security and user privacy. In addition, they even affirm that 
emphasis on data privacy and security has become a worldwide major issue. 


Many of the privacy concerns will have a legal origin. As of 2016 the European Union passed the 
General Data Protection Regulation (GDPR) (Zarsky and Tal, 2017). This regulation, among other 
things, impedes the sharing of data, and especially that of personal information. Which would 
complicate the traditional machine learning approach. Zarsky and Tal (2017) even call the GDPR 
incompatible with the advent of large data sets. Especially because they state that these data sets 
are mostly of a personal nature and the stringent data protection laws impede the flow of this 
data. In addition, they state that these laws will compromise the growth of the Big Data industry, 
and with it the added benefits. 


Especially in healthcare this privacy aspect is important, as hospitals generate and store very 
personal and sensitive data, namely electronic health records. Also it is difficult to collect this 
medical data, as they exist in isolated spaces; essentially data islands, one for each hospital.  
Rumbold and Pierscionek (2017) raise concerns about the improvements in healthcare due to the 
strict data regulation laws, as the process of doing data science is impeded. But especially in this 
case, utilizing the joint information potential is crucial in improving healthcare predictions;  
hospitals on their own often have smaller data sets, are sometimes narrowly specialized, and have 
differences in their patient base (Deist et al, 2017). Yang et al (2019) even state that the 
insufficiency of data sources led to unsatisfactory machine learning model performances. The 
potential of learning from each other, and developing some sort of a joint data set is great. It could 
be a major technique in improving the performance of machine learning models. By combining 
the data sets, more accurate and robust machine learning models could be made, and, thus, 
better predictions can be made. 


In addition, other industries face similar problems. Yang et al (2019) name the financial sector as a 
potential sector which could benefit from utilizing from a joint data set. As in the case of 
healthcare Yang et al (2019) state that also in the financial sector the data is isolated from each 
other, due to privacy and competitive-interest concerns. Lastly, the same goes for the mobile 
software industry. Hard et al (2018) seek a way to improve keyboard type prediction for its mobile 
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Google keyboard. However, the data is generated by many different users, all isolated from each 
other. The data generated can be of highly privacy-sensitive nature as the user can type personal 
information, passwords, and more. 


Thus, given the fact that many industries struggle with data sharing concerns - due to privacy, 
legal, and competitive-interest considerations - organizations struggle in utilizing potential larger 
joint data sets for improving machine learning models. 


As investigated in a preceding study (Teunissen, 2020), Federated Learning is a good solution fit 
to this problem context. Federated Learning can be defined as: a form of distributed machine 
learning where a global model is trained on a central server utilizing multiple separate 
heterogenous edge devices, while still preserving privacy by not permitting the data to leave their 
origin devices. 


Especially because Federated Learning is focused primarily on privacy-preservation while still 
utilizing a distributed architecture, it addresses the previously raised concerns. Federated 
Learning does not permit data to leave its origin device by only sharing partial model updates to a 
central server. In this way, privacy sensitive information is protected, as no raw data is shared. 
Both addressing competitive-interest concerns, and data sharing prohibitions by GDPR.


However, the research area of Federated Learning is still relatively new, and the information is 
fragmented. Federated Learning methods (i.e. techniques) are usually introduced on a one-per-
paper basis, making the information fragmented. Because there are a myriad of distinct Federated 
Learning methods it makes it especially difficult to choose the best approach. In addition, each 
Federated Learning method has its own characteristics, requirements, and performs better or 
worse depending on the data set used, its privacy requirements, and other facets.


Therefore, there is an apparent need for organizations and in research to consolidate this 
information and provide guidance in what Federated Learning method is suitable given a 
particular situation within the stated general problem context. This fragmented information 
introduces a problem for organizations who want to implement Federated Learning in the best 
way possible. Therefore, this study will create a method which guides organizations in the process 
of deciding upon the best suited Federated Learning method based on their organizational 
characteristics regarding its data and the privacy considerations of this data. 


Concluding, the problem statement of this research can be summarized as: organizations are 
increasingly aware of challenges regarding privacy issues in machine learning, due to recent data 
protection regulations and competitive-interest considerations. While at the same time are aware 
of the potential of using larger data sets for machine learning, which are currently not accessible 
for data sharing due to privacy and competitive-interest considerations, i.e. the data are 
separated at different data silos. Also, the research area of Federated Learning, which is a good 
solution-fit for this problem context, is relatively new and fragmented. The best possible method 
per given company-specific situation is not clear without synthesizing the information in different 
sets of studies. Organizations who want to implement Federated Learning will have difficulty in 
choosing the best Federated Learning method that fits their specific situation.


1.2 Solution Objectives 
In this section the solution objectives are described, i.e what artifact is to be created. These 
solution objectives are constructed based on the stated problem context. Also, in addition, a 
small stakeholder analysis is conducted, which is part of Wieringa’s (2014) Design Science 
methodology.   


Based on the problem statement the following to-be-designed artifact is chosen for this study: a 
method that organizations can use to decide upon which Federated Learning method fits their 
specific situation - regarding their objectives, data characteristics, and privacy - in the best 
possible way. These organizations are all scoped to be in a situation of having multiple separated 
data sites (i.e. data silos) [Appendix E: Definition 2] where data sharing is limited or even 
prohibited due to privacy and/or competitive-interest considerations, while still wanting to utilize 
the potential of the joint data as input for a machine learning objective.
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Next are explicit exclusions from this stated scope of the study. This study does not concern itself 
with the more technical aspect of Federated Learning, such as communication protocols, 
technical infrastructure, technical implementation, and implementation costs of these Federated 
Learning methods. As machine learning and distributed machine learning already include a subset 
of the problems Federated Learning has, such as the implementation details, infrastructure, 
communication protocols, this is excluded in this study. Only the part that makes Federated 
Learning distinct from other distributed machine learning is considered: the properties of the 
fragmented data sets, the privacy aspect, and other differentiating characteristics of Federated 
Learning related to these aspects. Thus, the to designed method in this study should be seen to 
precede the actual implementation itself. 


Next, Wieringa (2014) suggest to do a stakeholder analysis of the problem context. As the to-be-
designed artifact will be evaluated on utility, there need to be one or more stakeholders on which 
this value can be measured. Wieringa states that: "a stakeholder of a problem is a person, group 
of persons, or institution affected by treating the problem". From this definition and the drawn 
problem context, the following list of stakeholders are identified:

- Domain experts (i.e. developers) in organizations who want to implement Federated Learning. 

These are classified as normal operators in terms of Wieringa’s possible stakeholder list. They 
have a technical conflict, not having the knowledge to choose an appropriate Federated 
Learning method;


- The beneficiaries of those organizations’ resulting applications and services, whose data will be 
used, and who will receive (part of) the benefits. (Can be the original organization itself, or a 
client). These stakeholders are classified as functional beneficiaries (indirect stakeholder);


- The subjects of the data, the data owners, whose data is being used. These stakeholders are 
classified as negative stakeholders (indirect stakeholder). The could have a legal conflict with 
the proposed solution. 


1.3 Research Objectives 
From the solution objectives stated before, research objectives can be constructed. 


The research objective of this study is the following: to design a method that organizations can 
use to decide upon which Federated Learning method fits their specific situation - regarding their 
objectives, data characteristics, and privacy - in the best possible way. These organizations are all 
scoped to be in a situation of having multiple separated data sites (i.e. data silos) where data 
sharing is limited or even prohibited due to privacy and/or competitive-interest considerations, 
while still wanting to utilize the potential of the joint data as input for a machine learning objective.


From this main research objectives, several sub research objectives are drawn:

- To define what Federated Learning is (i.e., a definition) and what its defining characteristics are;

- To find out which Federated Learning methods are available in the literature;

- To find out the characteristics of and the differences between these Federated Learning 

methods;

- Designing a method to make an informed choice between these Federated Learning methods;

- Validation and evaluation of the designed method.


1.4 Research Questions 
Main research question (MRQ):

What is an appropriate methodology to help organizations choose the most suitable 
Federated Learning method given their situation regarding data-related characteristics and 
privacy requirements? 

Sub research questions (RQs):


Knowledge questions:

1. What is the definition of Federated Learning according to the literature? 
2. What Federated Learning methods exist in the literature? 

3



3. What are the main differentiating characteristics of the Federated Learning methods 
found in the literature? 

4. What are the differences in predictive performance among Federated Learning 
methods? 

5. What is the effect of Federated Learning’s consolidation technique of utilizing multiple 
data sites on predictive performance? 

6. What is an appropriate method for identifying non-iid data sets in the context of 
Federated Learning?  

Design questions:

7. How to design a methodology that fits the goal of the main research question? 
8. How to evaluate the designed methodology? 

Next, the reasoning why these research questions are chosen is explained.


RQ1. The first research question is initiated to serve as background information to the topic, both 
for the reader and the researcher. Its goal is to investigate what the literature defines as Federated 
Learning and what its characteristics are, to set the basis for the remainder of this study. During 
the exploratory pre-mapping phase of the literature review (see the next chapter for this), it 
became apparent that the research area is still relatively new, the definition of Federated Learning 
differs, and the research area is fragmented. This research question will, therefore, provide 
context for the remaining research questions, providing a thorough and complete definition of 
what Federated Learning is in this study.


RQ2. For the second research question the most prevalent methods of Federated Learning will be 
identified by means of a systematic literature review. As it became apparent that many different 
methods exist in the literature during the pre-mapping phase, it is useful to make inventory of 
these methods. It is likely they have different characteristics and use cases. In order to be able to 
identify which Federated Learning method is the right fit for a particular (sub-)problem context, the 
first step is identifying which Federated Learning methods exist. 


RQ3. The third research question is chosen because of the following. In order to be able to make 
an informed decision about the choice of a suitable Federated Learning method, their 
differentiating characteristics [Appendix E: Definition 3] need to be known. Only when you know 
the differences between available options, a decision can be made. More specifically, only the 
differentiating characteristics that are relevant to the organization using the to-be-designed 
methodology have to be considered. Relevant characteristics to these organizations are those 
which may limit options or impact the desired outcome regarding the organization’s data-related 
characteristics and privacy considerations. The latter being a result of the set scope of the study 
in the introduction. Therefore, identifying these differentiating characteristics contributes to 
knowledge needed to create the to-be-designed methodology.

	 This research question is also answered by means of conducting a Systematic Literature 
Review (SLR), as described in the methodology section 2.3. For this specific research question, all 
studies which are mainly about introducing or describing one or more Federated Learning 
methods are included.


RQ4. After identifying which Federated Learning methods are out there, a comparison in terms of 
predictive performance among them is made in the third research question. Like stated before, 
the right method for a particular problem context is likely to be different, and their predictive 
performance is of utmost importance in this. In addition, a comparison to local-only methods is 
done where possible, to make a comprehensive comparison. Local-only methods refers to 
standard machine learning, learned on merely one local data set.


RQ5. The fourth and last research question was initiated because of the assumption made earlier 
that these different data sites may hold data of different nature. These data sites may contain the 
same type of data (fields) but may have significantly different characteristics in terms of size, 
distribution. For example, when a large disparity of number of data points exists between data 
sites, it may be the case that one data site overshadows another one. To investigate this 
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assumption, the way in which Federated Learning methods consolidate methods is investigated, 
and its impact on predictive performance is reviewed.


RQ6. The sixth research question, and also last knowledge question is chosen because of the 
following reasoning. During the conduction of the Systematic Literature Review, none of the 
studies which were used to answer research questions 4 and 5 gave a clear definition of what 
they regarded as non-iid data. It was assumed to be implicit knowledge. The definition of what 
non-iid data is in the context of Federated Learning is not easily obtainable from the studies 
found. This information can be regarded as implicit knowledge in this research area. However, 
making this knowledge explicit not only gives readers from outside this area a better 
understanding on what they are reading, but it also forces studies on Federated Learning to be as 
clear as possible on what non-iid data exactly is. Also, only when having clearly defined what 
non-iid data is a potential method to identify it can be found or even developed.


An example of the confusion this implicit definition of non-iid data cause can be found in 
this very study. As found earlier in research question 5, there are contradicting claims on whether 
standard Federated Learning methods work well on non-iid data or not. A more clearly defined 
definition of what non-iid data is could make these contradictions easier to evaluate, as right now 
both sides could have a slightly different conception of what non-iid data is. 

	 Therefore, this research question will make this definition more explicit. Therefore, this 
research question will aim to define explicitly what non-iid data is, in terms of a definition and its 
challenges. When explicitly defined, a method fragment which can identify whether the data is 
non-iid or iid can be constructed, which will contribute to the overall research goal of this study. 
Without a clear definition this is not possible.


1.5 Structure of the Study 
In this section the structure of the study is described. First on a per chapter basis. Second, the 
phases of the overall research methodology of this study, Design Science Research Methodology 
of Peffers et al. (2008) (DSMR) are mapped to the chapters and other research methodologies 
used in Table 1.5.1. Lastly, a mapping of each research question to the used research 
methodology is made in Table 1.5.2. These research methodology will be explained in depth in the 
next chapter.


The mapping of this research methodology to the chapters in this report is the following:

- Chapter 1 describes the problem identification and motivation, the solution objectives, the 

research objectives, and the research questions;

- Chapter 2 elaborates on the research methodologies used;

- In Chapter 3 the knowledge questions are answered by means of a Systematic Literature 

Review;

- In Chapter 4 the artifact will be designed, i.e. the method will be constructed, based on 

Harmsen’s Situational Method Engineering (SME);

- Chapter 5 will provide the validation of the designed method, by means of a case 

demonstration;

- Chapter 6 will provide the evaluation of the designed method, by means of the UTAUT model 

by Venkatesh et al. (2003), the Unified Theory of Acceptance and Use of Technology model;

- Chapter 7 provides an evaluation on the result of the designed method by means of 

implementing the resulting Federated Learning algorithm in a case study; 

- Chapter 8 will provide the conclusion, discussion of the results, contributions of this study, its 

limitations, and possible future work.
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Table 1.5.1 - Mapping of DSRM phases to Report Chapters and Other Research Methodologies

DSRM phase Specific Research Methodology Report

1. Problem Identification & Motivation - Ch.1

2. Define Objectives of a solution - Ch.1

3. Design & Development Systematic Literature Review Ch. 3

Situational Method Engineering Ch. 4

4. Demonstration Case study demonstration (DSRM) Ch. 5

5. Evaluation UTAUT

CRISP-DM

Ch. 6

Table 1.5.2 - Mapping of RQs to Research Methodologies

Research Question Research Methodology Type of question Report

RQ1. What is the definition of 
Federated Learning according to the 
literature?

Systematic Literature Review Knowledge question Ch. 3.1

RQ2. What Federated Learning 
methods exist in the literature?

Systematic Literature Review Knowledge question Ch. 3.2

RQ3. What are the main differentiating 
characteristics of the Federated 
Learning methods found in the 
literature?

Systematic Literature Review Knowledge question Ch. 3.3

RQ4. What are the differences in 
predictive performance among 
Federated Learning and local-only 
methods?

Systematic Literature Review Knowledge question Ch. 3.4

RQ5. What is the effect on predictive 
performance effect of utilizing multiple 
data sites in Federated Learning by the 
means of consolidating this data?

Systematic Literature Review Knowledge question Ch. 3.5

RQ6. What is an appropriate method 
for identifying non-iid data sets in the 
context of Federated Learning?

Systematic Literature Review Knowledge question Ch. 3.6

RQ7. How to design a methodology 
that fits the goal of the main research 
question?

Situational Method Engineering Design question Ch. 4

RQ8. How to evaluate the designed 
methodology?

DSRM Case Study

UTAUT

CRISP-DM

Design question Ch. 
5,6,7
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2. Research Methodology 
In this chapter the research methodology of this study is stated. The research methodology is 
constructed by a multitude of methodologies, from coarse granularity for the overall structure to a 
more fine-grained and applied approach, supplementing each other. The overall research 
methodology will follow the Design Science Research Methodology (DSRM) of Peffers et al. 
(2008). It is supplemented by Wieringa’s (2014) Design Cycle. A Systematic Literature Review by 
Kitchenham and Charters (2007) is used to answer knowledge questions in part of the design 
phase. For the Method Design phase Situational Method Engineering by Harmsen (1997) is 
chosen as a more detailed and applied approach. By combining these methodologies, each 
phase of the study will have the most relevant fit regarding both the objective and the granularity 
of the task at hand. In this chapter this approach is described in more detail starting with the 
overall research methodology: DSRM.


2.1 Design Science Research Methodology 
This study will follow the research area of Design Science for its overall research methodology. 
More specifically, it will feature DSRM, complimented by Design Science by Wieringa. First, an 
explanation is given as to why Design Science is chosen, then the research methodology is briefly 
explained.


A research methodology with a good fit to the problem statement and the resulting research goal 
should be used in order to successfully conduct this study. For this, Design Science is chosen. 
Design Science is a good fit because of the following reasons. Firstly, the research goal calls upon 
creating an artifact which helps stakeholders in a specific problem context. This is primarily in the 
realm of Design Science. Secondly, there is not one solution design possible to solve this 
problem, but multiple. Therefore, a choice as to what is the best possible solution should be 
made, which is particularly the case in Design Science. 


DSRM by Peffers et al. (2008) will be used as the overall research methodology of this study. This 
methodology features 6 phases. These phases are: (i) problem identification and motivation, (ii) 
define objectives for a solution, (iii) design and development, (iv) demonstration, (v) evaluation, 
and (vi) communication. See Figure 2.1.1 for a visual representation of this.


This methodology is supplemented by Wieringa’s take on Design Science. Parts from Wieringa’s 
theory which is used in this study is the following. It features a more detailed stakeholder analysis, 
a view that a to-be-created artifact should be designed by requirements, which in turn should 
have a contribution argument to the stakeholder or research goals. Lastly, Wieringa states that the 
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artifact is evaluated by utility. From this view more detailed metrics and methods to validate and 
evaluate the to-be-designed method will be chosen. For this study the UTAUT model will be used 
as a way to evaluate the utility of the to-be-designed method.


2.2 Method Engineering 
In the design phase an artifact has to be created. For this study it is chosen to design a method. 
In this section it is first defined what a method is, and then a more detailed (meta) methodology is 
chosen to guide the design of the proposed method.


In TOGAF, in the research area of Enterprise Architecture, a method or methodology is defined as: 
"a defined, repeatable series of steps to address a particular type of problem, which typically 
centers on a defined process, but may also include definition of content" (TOGAF, 2011). 
Important is this definition is that a method is a defined series of steps. Therefore, it is not only 
important what method steps are defined, but also the order of these steps is of importance. 
From this definition several parameters of a method can be stated: a set of method steps, the 
contents or process of each distinct step, the goal of each step, and the ordering of these method 
steps. However, from this definition alone it is still not well-defined how to design a method; a 
meta-methodology is needed. 


Harmsen (1997) provides such a meta-methodology and introduces the concept of Situational 
Method Engineering (SME). SME is used in this study for a more fine-grained implementation of 
the design phase. SME is summarized in Figure 2.2.1. It is briefly explained next.


The Method Base stores method fragments containing all types of method fragments, their 
relationships, properties, and constraints (Harmsen, 1997). It can be seen as a repository of all 
possible method fragments which can construct a new situational method. Method fragments can 
roughly be seen as (uncharacterized, 'template') parts of a method, i.e. the distinct steps in a 
method before the method itself is constructed. They should be able to describe every aspect of a 
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method, it has relationships with other method fragments, e.g. processes may precede each 
other, products consist of other products, processes produce and require products (Harmsen, 
1997).


Next is the selection of method fragments. The selection is based upon the characterization of the 
situation at hand. This situation characterization corresponds in this study to the Problem 
identification and the objective definition phases of the Design Science research methodology. 
The guidelines Harmsen gives for this situation characterization are, however, created specifically 
for information system (IS) project development and are not relevant for this study. Instead, the 
already established guidelines provided by Peffers et al. will be used for this.


Meaningful selection of the right method fragments require a thorough characterization of method 
fragments in a structured way in order to maintain comparability and consistency (Harmsen, 
1997). For this, this study will devise a standard template which characterizes method fragments 
in terms of relevant properties. Because, with only a method fragment name and description 
selection cannot be standardized and consistent. For this study these properties are chosen to be 
the following: method fragment name, description, goal, input, prerequisites, actions to be 
undertaken, output. This is summarized in Table 2.2.1. Using these relevant properties, method 
fragments which support the solution objective can be selected.


The last relevant step of SME for this study is method assembly. Here the objective is to combine 
the method fragments and design the resulting method. Harmsen (1997) suggests using a 
strategy, guidelines, and assembly rules in order to perform method assembly in a consistent and 
sensible manner. In a general sense, the method should fit the situation (suitability), but also some 
quality criteria are used: completeness, consistency, efficiency, soundness, and applicability. In 
this way the method fragments can be used to design the resulting method in a structured an 
sound way.


The steps characterization of the situation and project performance can both be incorporated in 
the preceding and succeeding steps of the DSRM. In the problem identification and motivation, 
and the solution objectives definition steps, the characterization of the situation takes place, but 
merely has another name. In addition the project performance step is there to validate and 
improve the created methodology by validating it on a project basis. In this study, the project view 
is not relevant, but the validation part still stands, as it is also part of the DSRM. In this way the 
research methodologies can be consistently linked to each other. More on this is described in 
section 2.4.


Table 2.2.1 - Method Fragment Properties

Method Fragment Property Explanation

Name Name of the method fragment

Description Description of the method fragment in freeform text

Goal The goal of this method fragment. It should contribute to 
the overal solution objective goal

Input Input needed for this method fragment, such as: data, 
knowledge, resources

Prerequisites Required other method fragments which need to be 
completed before this method fragment

Actions The actions this method fragment will undertake

Output The output this method fragment produces. Such as: 
new insights, data, knowledge
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2.3 Systematic Literature Review 
The research methodology for this study is a Systematic Literature Review (SLR), as based on the 
paper of Kitchenham and Charters (2007). With this research methodology, the results of the 
study have several advantages over traditional studies. First of all, the results are less likely to be 
biased, and, second of all, the study is more transferable. As the SLR is based on a defined 
search strategy, which uses multiple sources, it is designed to give a more comprehensive picture 
of the current literature than standard literature studies, aiming to include as much relevant 
literature as possible. In addition, as the search is well-documented and systematic, the study 
becomes more transparent and replicable (Kitchenham and Charters, 2007). The SLR constitutes 
three phases: planning (i.e., design), execution, and results analysis. This process is summarized 
in Figure 2.3.1.


2.3.1 Pre-mapping phase 
Kitchenham and Charters (2007) propose a pre-mapping phase, in order to make the reviewer 
more familiar with the topic, to help shape the research questions, provide a basis for the search 
keywords, and to help narrow down the search research space. The pre-mapping in this study 
includes an initial exploratory search in these scientific databases, reading relevant literature, both 
merely reading the abstract as well as reading the full text of the paper, and incorporating expert 
opinion. From this pre-mapping phase, the initial search keywords are defined.  


The expertise of people knowledgeable in the field is utilized in the expert opinion incorporated in 
this pre-mapping phase. This is done in order to get a grasp on the research field and include 
papers and keywords that might be of interest. The interviews were informal, unstructured, and 
not transcribed, as this only serves as additional knowledge in a very early step of the research. 
The experts inquired were two people working at the company, and had domain knowledge about 
machine learning and the business problem, mentioned in the problem context, and two 
researchers of the university which facilitates this research.


After the expert opinion, an exploratory literature review is conducted, incorporating the results of 
the expert opinion stage. The goal of this stage is to become familiar with the field of study, find 
an initial set of papers in order to extract relevant concepts and their accompanying keywords, 
which in turn will translate to the initial search queries.


2.3.2 Scoping the Research to Federated Learning 
Some of the goals of the pre-mapping phase is to become familiar with the research area and to 
scope the research with this gained knowledge. For this problem context, a more general 
question was asked: what is the most prevalent method of utilizing multiple data sources in 
machine learning? 


During the pre-mapping phase this question was answered. It quickly became apparent that 
Federated Learning is a prevalent method utilizing multiple data sources in machine learning. This 
is because early on in the exploratory literature review, and by provided studies from expert 
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opinion, Federated Learning was identified as a clear and distinct research 
area, suitable for this problem context. Additionally, Federated Learning also 
concerns itself with privacy-preservation, which is also one of the mentioned 
aspects in the identified problem context. The privacy aspect was mentioned 
in all the papers found in the exploratory pre-mapping phase.      


Therefore, this study is scoped to be solely concerned with Federated 
Learning (and, formerly known as, Distributed Learning) as the method of 
utilizing multiple data sources in machine learning. The research questions in 
chapter 1.2 have incorporated this.


2.3.3 Search Process 
In order to find relevant literature, relevant sources should be selected. This 
SLR includes multiple sources in order to make the study more thorough and 
have more rigor. For this study, the following scientific databases are queried:

- Scopus;

- Science Direct (Elsevier);

- Web of Science.


The keywords query used in these databases is the following: 

	 ("Federated Learning" OR "Distributed Learning") AND "Machine 
Learning"

The query is quite broad and encompasses all research questions. The 
addition of Distributed Learning as a term is added because the concept of 
Federated Learning is sometimes also referred to as Distributed Learning. 
Before 2017 it was always referred to as a form of Distributed Learning. This 
comprehensive and broad search is possible because the research area is 
still relatively new and small, and in this way does not exclude potential 
papers for the sake of a more narrow and practical search. The results will 
next be manually filtered out based on exclusion criteria. The complete 
queries per search engine can be found in Appendix A.


As there are multiple research questions, one can ask why there was only 
one search query used in this SLR. The reasoning behind this is as follows. 
Firstly, Federated Learning is a relatively new research area (as can also be 
seen in the histogram, Figure 2.3.2) and the number of papers are still very 
limited. It is therefore still practically possible to manually select studies 
based on the exclusion criteria, instead of using a more narrow search term. 
Secondly, an initial exploratory search showed that most papers found 
include: an explanation of a (new of existing) Federated Learning method, a 
definition of Federated Learning, a literature review, and an experiment or 
case study where this method is tested and evaluated. So there is an 
overlap in the papers’ contents and the research questions. Thirdly, making 
the search term more narrow yielded in the exclusion of some of the earlier 
found relevant and valuable papers (in the exploratory search). Lastly, 
adding more keywords (like: data skew, local context, local sphere, feature 
consolidation, feature fusion, over-fitting, and more) did not expand the search to more found 
studies. Therefore, one broad search is conducted, which is later manually refined and 
categorized per research question, as can be seen in Figure 2.2.


Next to finding studies by means of query-based search, Wolfswinkel et al. (2013) additional 
propose to conduct a backward citation search to also include cited studies, which were not 
included in the initial search, but are relevant in answering the research questions. The process 
conducted in this SLR is as follows. While reading the full texts of the selected studies and 
extracting the information in the extraction form (mentioned in the next paragraph), relevant 
citations are added to the extraction form based on reading their title, then abstract and lastly the 
full text. Provided, of course, they meet the inclusion and exclusion criteria specified.
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Figure 2.3.2 
SLR search process



In the SLR the initial search of papers is filtered down to include only relevant papers to this study. 
In Figure 2.2 this process of filtering papers from the initial search to only relevant papers is 
shown.


2.3.4 Inclusion and Exclusion criteria 
In this study papers which are relevant to the specified research questions are included, i.e. where 
the main topic of the research is Federated Learning. Especially those who include both a 
description of a (new of existing) Federated Learning method, and an experiment or case study 
which evaluates and/or compares this method. These studies provide the most comprehensive 
view and provide information for multiple research questions, and therefore take precedence. In 
the pre-mapping phase it became clear that experiments and case studies often both introduce a 
new method, compare it to other methods, and perform some evaluation, which is primarily the 
information this study is about.


In order to exclude non-relevant papers in the broad search specified before, exclusion criteria are 
specified. These criteria provide a systematic way for the researcher to exclude those papers not 
relevant to the research questions. This is done by either looking at the title, the abstract, or the 
full text of the paper, and is conduced in subsequent stages, each with a more in-depth view of 
the paper, for speed and practicality.  


Next to the inclusion criteria, exclusion criteria should also be defined, as these are used to filter 
out papers which are not relevant to this study. The exclusion criteria in this SLR are defined as:

- Papers not related to the research questions;

- Publications which are leaflet papers;

- Papers not in English;

- Papers published before 2011; 

- Duplicate papers;

- Very technical papers, related to: 


- Adapting a (sub-)algorithm for ML;

- Image Recognition;

- Constraint problems;

- Communication efficiency, optimization problems;

- Processor optimization;

- Network optimization;

- Wireless network efficiency, bandwidth optimization; and

- Optimization for distributed processing;

- Privacy-preserving algorithm development is the main topic; and


- Blockchain is the main topic;

- Big data is the main topic;

- Privacy considerations from a legal perspective is the main topic;

- Not related to Federated or distributed learning as the main topic of the paper in the title, 

abstract, full-text. 


The reasoning for these exclusion criteria is the following. Leaflets are left out because they 
typically are very short and therefore provide not enough explanation. Non-english papers are left 
out because the researcher is not familiar with other languages. 


In the pre-mapping phase it became clear that the research area of Federated Learning is still 
relatively new. The earliest mention of Federated Learning is from McMahan et al (2017). Papers 
before that did mention the concept of Federated Learning but the term was still different, i.e. a 
form of privacy-preserving Distributed Learning. The earliest paper for this found in the pre-
mapping phase was from 2012, therefore it was of no use to include papers in the search from 
before that time. Also, these earlier papers mostly only contained information useful for historical 
context, the main interests of this research were mostly addressed from papers of 2015 and later. 
Therefore, papers before 2011 are not included.


During the filtering phases by title, abstract, and full-text it became apparent that many of the 
found papers were of very technical nature. Mostly about optimizing a part of an algorithm, 
processing optimization, (wireless) network optimization and more. These are excluded from the 
study as they focus too much on technical details not relevant to the research questions. 
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Next, papers primarily concerned with Blockchain and Big Data are also excluded, as they only 
mention Federated Learning as a side-case. They do not concern themselves with any of the 
research questions. The same goes for papers which take a primarily legal perspective on 
Federated Learning.


2.3.5 Quality Assessment 
From the output of the previous step, a collection of selected studies, the next step of the SLR is 
conducted; the quality of each paper is assessed. This is done by evaluating these studies by 
making use of some quality assessment questions, which are an adaptation of the proposed 
questions of Kitchenham and Charters (2007). As stated in the previous section, studies which 
both include the definition of a Federated Learning method, and an experiment/case study which 
evaluates this method take precedence, as they provide information for multiple research 
questions. The quality assessment questions used in this SLR are:

- Relevance of study to the research questions. (yes, partial, little, none);

- How well are the practices or factors defined? (Yes, partial, not);

- How clearly is the research process established? (yes, partially, not);

- How clearly are limitations of the work documented? (yes, partially, not).


The quality assessment helps in a subsequent step, the data synthesis. When two conflicting 
statements are made, this quality assessment can be used to differentiate between statements, 
giving precedence to high quality studies. Additionally, while presenting the results, can be used 
as a form of discussion, doubting the results and validity of poor quality studies. The quality 
assessments are recorded in the data extraction form.


2.3.6 Data Extraction  
The next step in the SLR is extracting the data in a systematic way. This process is done by 
making use of a data extraction form while reading the full text of each study, as suggested by 
Kitchenham and Charters (2007). The data extraction form template used can be found in 
appendix B. 


In this data extraction form, the information of each research question is stated in a structured 
manner. In addition, to allow for some unstructured thinking, a freeform column is added to write 
down potential topics of interest about this paper. Next to this, for each paper, it is recorded what 
kind of study this paper encompasses, what the main goal, main contribution, and main finding of 
the study is, and what kind is research method is used. This structured way of extracting 
information gives a practical and systematic starting point for the next step, the data synthesis.


2.3.7 Synthesis and reporting 
This study aims at structuring the results in a concept-centric way where possible, and fall back 
on the author-centric approach when concepts cannot be clustered in a more granular manner, 
which is a recommendation stated by Webster and Watson (2002). The approach in order to 
cluster the found papers in concepts and to provide a practical overview of the information in 
each paper per research question is chosen to be performed by using an extraction form 
(Kitchenham and Charters, 2007). It extracts information on a per-paper basis in a structured way, 
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clustering relevant information in specified columns, in order to be able to answer the research 
questions (Rouhani et al, 2015). 

In Figure 2.3.3 a histogram is plotted to show the distribution of the publication dates of the 
papers used. Most literature is from last year (2019) and only 12% of this research is based on 
books, which indicates the newness of this topic in research. The fact that only one included 
paper is from 2020 is because this study is conducted in March 2020, the papers of this year are 
still being written.


The spike in 2019 could indicate that the research area is gaining momentum. As the first study 
which formally defined Federated Learning was published in 2017 (McMahan et al, 2017), and can 
be seen as the formal start of this research area. It could be the case that from that point onwards 
other researched started building on top of this knowledge. The fact that 9 out of the 12 papers 
published in 2019 refer to McMahan et al (2017) strengthens this hypothesis. The two-year gap 
could be explained by the fact that research still had to be performed and published. It would be 
interesting to replicate this study at the end of the year, and see whether even more papers are 
published in 2020.


Next, in Table 2.3.1 the distribution and percentage of the used paper’s study type are presented. 
As can be seen, the majority of the studies are journal papers, following by a small percentage of 
conference proceedings, and with even a smaller percentage book chapters. The low number of 
book chapters could be explained by the fact that the research area is still relatively new, and a 
book is usually published after the research area begins to mature. Also the publishing time of 
books could be longer and therefore are underrepresented. It is, however, peculiar that the 
number of journal papers overshadows the number of conference proceedings, given also the fact 
of the newness of the research area. One could argue that conference proceedings are published 
quicker than the more elaborate publishing in a journal. However, when diving deeper into the 
data, it shows that the papers from 2017 and before (8 cases) are mostly journal papers (6) and a 
book (1). While almost half (5) of the research published in 2019 are conference proceedings. With 
this more detailed breakdown the statistics confirming the newness of the research area is less 
peculiar.


2.4 UTAUT Model 
The fifth phase of the DSRM constitutes the evaluation of the proposed method. The evaluation 
survey questions will be based on the UTAUT model by Venkatesh et al. (2003), the Unified Theory 
of Acceptance and Use of Technology model. This model provides a way to assess the likelihood 
for a new system to be accepted successfully in an organization and therefore fits the purpose of 
this evaluation. The UTAUT model and its usage in this study are described in Chapter 6.


2.5 CRISP-DM 
In the case study, the method results in a choice for a Federated Learning algorithm. To validate 
the applicability and practicality of this result, another case study is executed where the this 
Federated Learning is implemented (alongside the development of two local Machine Learning 
models and a Centralized approach for comparison). This case study is presented in Chapter 7.


To execute the development of these Machine Learning model the CRISP-DM research 
methodology of Chapman et al. (2000) is used. This is a leading methodology for doing data 
science-related research (Kurgan & Musilek, 2006). It provides an academically-backed and 

Table 2.3.1 - Study types

Study Count Percentage

Journal paper 18 69%

Conference proceeding 5 19%

Book section 3 12%
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structured way to perform data science-related research. It provides the researcher with a method 
to work in a systematic manner, both advancing the documentation and the reproducibility. 


CRISP-DM consists of 6 phases: business understanding, data understanding, data preparation, 
modeling, evaluation, and deployment. The methodology model is shown in Figure 2.5.1. For each 
of the phases, guidelines are provided. The methodology does not follow a strict order; usually 
earlier phases are revisited as more knowledge has been obtained in later phases. The 
documentation of the method is, however, shown in the shown order for structure and readability.


Next, the 6 phases are shortly described (Chapman et al., 2000):

- Business understanding: focuses on the objectives from a business perspective;

- Data understanding: to get familiar with the data, and do a data quality assessment;

- Data preparation: to construct the input data set for the model from the raw data, this involves 

data transformation and data cleaning;

- Modeling: models are selected, applied, and their parameters are calibrated to attain optimal 

values;

- Evaluation: the model results are evaluated and discussed;

- Deployment: communicating the results to the target users (i.e. via this report).


Each of these phases are executed in the case study in Chapter 7.
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3. Literature Review 
In this chapter the results of the Systematic Literature Review (SLR) are presented. The used 
research methodology is that of Kitchenham and Charters (2007), which is described in detail in 
chapter 2.3. Each research questions is answered per paragraph. Each research question is first 
introduced, its additional reasoning is added, if available, then the results are given, and lastly 
each research question has a conclusion and discussion.  


3.1 Research Question 1 - Federated Learning Definition 
What is the definition of Federated Learning according to the literature? 

As Federated Learning is quite a new area of research, definitions of the topic can still be less 
formally defined and some deviations from definitions may occur between papers, these matters 
will be discussed. 


This research question will be answered by synthesizing and consolidating definitions stated in 
the papers included in the SLR. The aim is to understand what Federated Learning is from a 
definition standpoint. The definitions of multiple authors are laid out and synthesized. In addition, 
the major characteristics of Federated Learning are identified in papers who do not formally define 
Federated Learning. The purpose of this research question is to gain insight into this new field of 
study, to gain a clear and thorough definition, and to provide context to the next research 
questions. For this, first, context is added by means of investigating Federated Learning’s history. 
In this way a comprehensive view of Federated Learning will be laid out in order to understand 
this area of research better.


3.1.1 Federated Learning history 
Federated Learning is a relatively new term. In this section the history of Federated Learning is 
laid out. 


The first paper to introduce and formally define what Federated Learning is that of McMahan et al 
(2017) and can therefore be seen as the origin. To be more thorough, Federated Learning goes 
even further back, as McMahan et al. also published an earlier paper that laid out the technical 
groundwork of Federated Optimization in 2015, but Federated Learning itself was yet to be 
defined. This earlier paper was mainly concerned with designing a communication-efficient 
optimization algorithm in a federated setting and is therefore not included further in this study.


Besides that, the concepts and practices preceding the formal definition of Federated Learning 
already existed before this paper was published. The academic need for what Federated Learning 
currently represents was already there, and the papers mentioned in the next paragraph indicate 
this. These papers laid out the preliminary groundwork of what would later become known as 
Federated Learning.


Before Federated Learning was formally defined by McMahan et al., 2017, it was known as a form 
of Distributed Learning. Distributed Learning can therefore be seen as a precursor to Federated 
Learning. Peteiro-Barral et al. (2013) perform a survey on existing algorithms in Distributed 
Learning, which are all predominantly concerned with how to combine separately learned models. 
Allende-Cid et al. (2013) show that Distributed Learning can be utilized to make better predictions 
in weather forecasting than local-only models, by designing their own distributed adaptation of an 
ensemble learner. Privacy protection of the data is not considered a concern still, but is, however, 
a major factor in the newly designed Distributed Learning approaches by Gong et al. (2016), 
Jochems et al. (2016). Gong et al, 2016, adapt an existing logistic regression algorithm, by 
decomposing it via a mathematical technique called the alternating direction method of multipliers 
(ADMM) [Appendix E: Definition 7]. With the usage of ADMM the model is split up into smaller 
subproblems which can be distributed over multiple clients. These authors are the first to be 
concerned about privacy-preservation of the distributed data, as it is healthcare data which is of 
highly sensitive nature.   
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The difference between Federated Learning and Distributed Learning is not clearly defined, but 
papers such as McMahan et al. (2015, 2017), suggest that Distributed Learning is mainly 
concerned with increasing processing power by parallel computation, which is a more technical 
perspective on Machine Learning. McMahan et al (2017) even lists four key properties that 
differentiate federated learning from distributed learning, which are: data is non-iid, unbalanced, 
massively distributed, and there is limited communication available with edge devices/clients.    


Data which is iid means that the data is independent and identically distributed, whereas non-iid 
is the negative of this. This means that for iid data each data point is drawn without relation to the 
previously drawn data point(s).  


3.1.2 FL definition 
What exactly is federated learning? A good starting point is to look at the definition of federated 
learning. However, as multiple authors define this differently, the definitions of federated learning 
from multiple authors are listed and briefly discussed.


Yang et al (2019) give an informal definition of federated learning: "Their main idea [of federated 
learning] is to build machine learning models based on data sets that are distributed across 
multiple devices while preventing data leakage". To put it plainly, federated learning is a 
distributed form of machine learning which takes privacy considerations in mind. Stating both the 
distributed nature and the importance of privacy, which is a common theme in the literature.


Li and Smith (2019) define the federated learning problem as follows: "The canonical federated 
learning problem involves learning a single, global statistical model from data stored on tens to 
potentially millions of remote devices. We aim to learn this model under the constraint that device-
generated data is stored and processed locally, with only intermediate updates being 
communicated periodically with a central server." and add that the goal is to optimize an objective 
function. This function makes a sum of the local objective function over all devices, and minimizes 
this function. They describe federated learning in a more technical way, and the importance of 
local computation and only sharing model updates, which is essentially a privacy concern.


McMahan et al’s (2017) definition states Federated Learning as: "a learning task solved by a loose 
federation of clients which are coordinated by a central server. Each client has a local training 
dataset which is never uploaded to the server. Instead, each client computes an update to the 
current global model maintained by the server, and only this update is communicated". They later 
make the distinction with Distributed Learning by stating: "It’s not completely distributed learning, 
as there is still a central server, and some trust in this central server is required."


It is also important to make the distinction between the term federated learning and Federated 
Optimization. Federated Optimization was first introduced by McMahan et al (2015). Federated 
Optimization is the task that solves the federated learning problem, presented in an algorithm. 
Formally, Federated Optimization is merely the algorithm and part of the concept of Federated 
Learning, the latter includes more facets like design, privacy, etc. The term Federated Learning is, 
however, also used instead of Federated Optimization in other papers.


This Federated Optimization problem can be seen as the cost function in traditional Machine 
Learning. So, in the same manner, a minimum for this cost function needs to be found. This is, for 
example, done by (stochastic) Gradient Descent in traditional Machine Learning, and some 
implementations of Federated Learning (Duan, 2019). In these terms, the cost function of 
Federated Learning can be explained in a simplified manner  as: the summation of each local data 
site’s cost function aggregated. In other words, a minimum should be found when the sum of 
each of the locally situated cost functions is at some minimum.


The formula of Li and Smith (2019) could make this clearer. They state that the goal of Federated 
Learning is to minimize the following objective function: 
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where m is the total number of devices, w is the input parameter (i.e. input training data), Fk is the 
local objective function, and pk specifies the relative impact of each device. This relative impact is 
usually set as: pk = 1/n or pk = nk/n, where n is the total number of training examples, and nk is the 
number of training examples of a particular local device k. (Li and Smith, 2019)


Next to these given definitions, other characteristics of Federated Learning are identified by 
papers who do not give a formal, explicit definition of Federated Learning. This is done to reflect 
the overlap in the characteristics of all definitions in the literature. In the literature, Federated 
Learning is often typed by its topology and challenges, which can be easily translated into 
characteristics. 

3.1.3 Topology 
Almost all papers in this study mention a central server to be in the system design. This central 
server both coordinates the initialization, communication of the algorithm, and serves as the 
central place for the aggregation of the model updates. In this design the local nodes have some 
degree of trust in this central server, but still maintain independent and have their own degree on 
control of whether they participate and take ownership over their local data, the central server 
does not have access to the original local data.


Li and Smith (2019) confirms this and mention that a star topology, with one centralized 
coordinating server is the most common architecture used. However, they also mention that some 
decentralized topologies exist where no central server is present. 


Sun et al (2019) explain what Federated Learning is by making the topology with a central server a 
central theme in the definition: "Usually in federated learning, a server moderates several data 
sites to carry out optimization iterations, like gradient descent updates, on each data site. Each 
data site then sends an intermediate result to the server. The server side aggregates the results 
and distributes it, so that each data site obtains an updated model."


A visual representation of the architecture design with a central server, created by synthesizing the 
information in the literature study, is given in Figure 3.1.1.
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Figure 3.1.1 - Federated Learning’s Architecture Design with Central Server



3.1.4 Core Characteristics  
To paint a complete picture, major discerning characteristics of Federated Learning are identified 
in this section. To look at what the major characteristics are, this study takes a look at the core 
challenges, as these are often stated explicitly, clearly, and can be translated to core 
characteristics. Li and Smith (2019) list four core challenges associated with Federated Learning:

1. Expensive communication. As the communication overhead is networked and can be several 

orders of magnitude slower than local computation. Key is (i) to reduce the total number of 
communication rounds, or (ii) to reduce the size of the transmitted messages.


2. System heterogeneity. Systems, connection types included in the system have high variability.

3. Statistical heterogeneity. Data is often non-iid.

4. Privacy concerns. Cited to be often a major concern in federated learning applications.


While conducting the Systematic Literature Review, these core challenges were prevalently 
observed. These four challenges of Li and Smith reflect these findings and summarize them well. 
Below, each challenge is discussed and their support in this literature study is given.


Communication strain 
McMahan et al (2017) names communication costs as the major constraint in Federated Learning.  
Although no primary data is shared there are still communication costs in Federated Learning. The 
'data' that is shared are model (or parameter) updates in the training of the Federated model. A 
(Federated) Machine Learning model requires many iterations of training. For example, by finding 
the minimum of a cost function via gradient descent. Therefore, there are potentially many 
communication rounds, which also need to be communicated to potentially a large number of 
edge-devices. So, although the data itself is not shared, but merely the models updates, the 
communication costs are predominantly due to the many iterations of training and the the large 
number of devices this needs to be communicated to. 


Li and Smith (2019) acknowledge this as one of the core challenges of federated learning, stating 
the importance of reducing the communication overhead. Zhao et al (2018) mention that 
communication cost in Federated Learning is a major challenge. The paper of Sattler et al (2019) 
goes a step further and adapts the FedAvg algorithm of McMahan to be even more efficient. They 
do this by designing a sparse ternary compression (STC) framework, which is specifically 
designed to better compress the communication rounds than standard FedAvg. Which also 
indicates that Sattler et al (2019) regard communication strain as a major factor in Federated 
Learning.


Contrary to this, Gong et al (2016), Jochems et al (2016), and Deist et al (2017) do not mention 
communication strain as a major factor explicitly. However, they do touch upon this issue as they 
adapt the standard machine learning algorithm to work in a distributed environment. But they all 
solve this relatively small issue themselves. 


The pre-McMahan et al (2017) papers on federated learning (still called distributed learning at this 
point), like Gong et al. (2016) and Jochems et al. (2016), are case studies in the healthcare sector. 
The federated learning methods are often only concerned with only a handful of hospitals (the 
clients). In contrast papers published after McMahan are typically concerned with a vast number 
of clients. Hard et al (2018) mention their application being tested on 1.5 million clients, end-
users’ mobile phones in this case. Nilsson et al (2018) mention that clients can be very large in 
number. This large disparity in the number of clients may be the case why the papers pre-
McMahan do not mention communication costs as a major concern, while the main design 
characteristic of McMahan et al’s (2017) Federated Learning algorithm was concerned with 
reducing communication overhead. Also Sattler et al (2019) names communication overhead as 
the largest disadvantage of federated learning. To this we may conclude that Federated Learning 
is designed to work with a vast number of distributed clients, up to (at least) millions, and thus 
communication strain is a major challenge in Federated Learning. 


System heterogeneity 
Hard et al (2018) mention that the number of devices can reach up to millions and, in addition, 
these devices are heterogeneous in nature: they have different characteristics in hardware 
capabilities and connection types. Nilsson et al (2018) speak of 'a heterogeneous ecosystem of 
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edge devices' as one of the motivations for the development of Federated Learning, confirming 
this as a major challenge.   


In the literature, a distinction often made is that of horizontal and vertical partitioned (or 
distributed) data. Yang et al (2019), Gong et al (2016), and others touch upon this distinction. The 
following definitions can be set. Horizontal distribution means that the data at each data site have 
the same features, i.e. columns, but include different subjects, i.e. rows. Vertical distribution 
constitutes the opposite: the data of one subject, i.e. row, is present at multiple data sites. Each 
data site, therefore, has a different set of features, i.e. columns. 


The importance of this distinction lies in what Federated Learning algorithms can be used for that 
particular case. Some Federated Learning methods include algorithms which can only work with 
one case, and some work with both. For example, Jochems et al (2016) develop a method which 
works only for horizontally partitioned data, as previous literature was limited to only vertically 
partitioned cases. While Gong et all (2016) develop a method which works with both horizontally 
and vertically partitioned data.


Given the fact that all papers mentioned above list system heterogeneity either explicitly or 
implicitly, system heterogeneity can be seen as a major challenge. 


Statistical heterogeneity 
Statistical heterogeneity is also referred to as the use of Federated Learning on non-iid data. It 
was seen as 'solved' by McMahan et al (2017), and one could therefore argue that it should be 
disregarded as a core challenge. However, as can be seen in chapter 3.4.5, Zhao et al (2018), 
Duan (2019), Verma et al (2019), and Huang et al (2019) all criticize this claim of McMahan and see 
statistical heterogeneity as a major challenge. A more in-depth review on this disparity of views in 
the literature should be performed to conclude which claim has the best support.  


Privacy 
Privacy-preservation is mentioned by all papers in this study as being an important factor in 
Federated Learning. McMahan et al (2017) says privacy is a major concern in sharing real-world 
data sets. So by providing privacy-preservation, in practice, more parties would be willing to share 
their data, and can be seen as a major distinguishing advantage for Federated Learning. Privacy 
is here preserved by removing the need of sharing the data of local nodes, and replacing this by 
only sharing necessary model training updates with a central server. 


Gong et al (2019), Jochems et al (2016), Deist et al (2017, 2020), Brisimi et al (2018), and Huang et 
al (2019) are all concerned with Federated Learning in the context of healthcare. As this involves 
working with sensitive patient data, they all list the privacy aspect in their algorithms as of utmost 
importance.   


Hard et al (2018), Huang et al (2019), Sattler et al (2019), Yang et al (2019), and Sun et al (2019) all 
mention the privacy aspect of Federated Learning too, by not making the data leave the original 
client. Hard et al (2018) is concerned with keyboard type prediction, and therefore privacy is 
important as clients can type sensitive information. Sun et al (2019) state: "this distributed model 
training process circumvents the bottleneck of data transmission and prevents private data from 
leaving the data center.", marking the central theme of privacy in Federated Learning. Yang et al 
(2019) even state that data privacy protection of the data owner is a major factor in discerning 
Federated Learning from Distributed Learning.


While all papers above mention that they do not permit data leaving the original device it’s on, 
some papers do mention the sharing of data. For example, Zhao et al (2018) mention that their 
adapted Federated Learning method does share data. However, this is only done to show the 
accuracy difference of sharing data in Federated Learning or not, and is discouraged to do so if 
not needed. Only Allende-Cid et al (2013) do not concern themselves with privacy. The data used 
in this research is, however, merely weather data that is from one organization. In addition, this is 
the oldest study in this literature review, all other papers after this one did concern themselves 
with privacy.    
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There is, however, some discussion on what is enough privacy. While some researchers argue that 
merely not letting data leave its origin provides enough privacy (by only sharing model updates), 
others counter this by stating that even model updates can contain sensitive information about 
the global context, e.g. when even aggregate data is sensitive information, and that additional 
privacy mechanisms should be added. 


Gong et al (2016) suggests that privacy by relying on just model updates may not be enough, and 
privacy sensitive information could be extracted from these aggregated results, and therefore 
provides suggestions for additional privacy like a secure summation protocol or homomorphic 
encryption. Hard et al (2018) confirms this and states that Federated Learning is complementary 
to privacy-preserving techniques such as secure aggregation and differential privacy. The 
literature review study of Yang et al (2019) classify this as indirect information leakage, and argue 
that the intermediate results, like parameter updates, which are shared and communicated, 
provide no guarantee that sensitive information is protected. To mitigate this, Yang et al (2019) 
give recommendations of three additional security models: (i) Secure Multi-party Computation 
(SMC), (ii) Differential Privacy, and (iii) Homomorphic Encryption. 


Thus, privacy preservation by not sharing edge devices’ raw data, but only model updates is 
present in all Federated Learning methods. Additional privacy-preserving techniques are optional 
and complementary; their necessity is dependent on the specification of what privacy-sensitive 
information is and on implementation trade-offs. 


Concluding, the core challenges listed by Li and Smith (2019) are a good representation of what is 
found in this study. These core challenges will therefore be seen as discerning factors and be 
included as main characteristics in defining Federated Learning. For this study, the latter two 
challenges are especially of interest, as the former two are of a more technical nature, which is out 
of scope for this study. Moreover, especially the third challenge about non-iid data is of main 
importance, as the research shows a discussion, and will be investigated in detail in research 
question 4.  

3.1.5 Conclusion 
Given the extracted information stated in this section, a summary can be made about what 
federated learning is. Here the main characteristics of Federation Learning are synthesized and 
summarized as the following characteristics: 

(i) Federated learning is a distributed form of machine learning, typically utilizing a vast number 

of heterogenous client-side edge devices as data facilitators;

(ii) Federated learning is conducted by solving a federated optimization problem, by means of a 

federated optimization algorithm (like Google’s FedAvg algorithm);

(iii) Privacy considerations are important, as it typically concerns a vast number of heterogenous 

clients, and also potentially making use of previously non-accessible data due to privacy 
concerns;


(iv) Data is kept locally at the client, only model updates are shared; 

(v) Data can be horizontally or vertically distributed, Federated Learning methods are not 

necessarily suited to handle either or both;

(vi) Usually a star topology is used, where there is one central server which takes care of 

aggregating the model updates, and coordinating the communication with the edge devices;

(vii) The edge devices have some degree of autonomy to the central server, hence the term 

federated, e.g. autonomy over their own data, processing power;

(viii) An additional optional layer of privacy can be added, like Secure Multi-party Computation 

(SMC),  Differential Privacy, or Homomorphic Encryption, in the case that even the aggregated 
information in the form of model updates may also contain privacy-sensitive information;


(ix) Next to privacy, communication overhead and data heterogeneity are major challenges in 
federated learning.


For this study, based on the aforementioned characteristics, topology, history, and other 
definitions the following definition of Federated Learning is synthesized [Appendix E: Definition 1]: 
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Federated Learning is a form of distributed machine learning where a global model is trained on a 
central server utilizing multiple separate heterogenous edge devices, while still preserving privacy 
by not permitting the data to leave their origin devices. 

This study will refer to this definition when it talks about Federated Learning. It includes the origin 
(distributed learning), topology (central server), system heterogeneity (edge devices), and its major 
discerning factor from distributed learning: the privacy aspect by means of keeping data local at 
the edge client. The aspect of communication strain is implicitly included, as this is also inherent 
to distributed learning. In this way both the topology and all major characteristics mentioned 
before are included in this definition.


3.2 Research Question 2 - Federated Learning Methods 
What Federated Learning methods exist in the literature? 
  
As mentioned in the previous RQ, Federated Learning can be seen as the overarching term which 
constitutes the architecture design, a federated optimization algorithm, a way of preserving 
privacy, with sometimes an additional layer of privacy (e.g. differential privacy, homomorphic 
encryption) added, and more. Only in this context, as discovered in the previous RQ, this RQ can 
be answered. This RQ is answered by doing a systematic literature review, as stated in the 
methodology chapter of this report. From all relevant papers found, the Federated Learning 
method is extracted by summarizing and categorizing it via the previously mentioned extraction 
form.


After analyzing the results of the literature review mainly two types of methods can be identified, 
and this is inherent to the research area’s short history, mainly: (i) Federated Learning which are 
either an adaptation of, improvement upon, addition of, or new application of the first proclaimed 
Federated Learning (Federated Averaging) method of McMahan et al. in 2017 at Google, or (ii) 
adapted versions of existing Machine Learning algorithms to make them work in a federated 
setting, but are not referring or building upon the first line of research. The second category, for 
sake of convenience, will be called proto-federated learning in this study, because the first papers 
where written before the introduction of the paper of McMahan et al. in 2017, or a continuation of 
that line of research already in place. The federated learning methods are either named, or on the 
cases that they are not named, named after the author of the paper.


3.2.1 Proto-Federated Learning Methods 
Allende-Cid et al already spoke about 'building a general model by fusing in some manner 
distributed information' for predicting wind speed forecasts in 2013, and is the oldest paper in this 
systematic literature review to do so. Their objective being to build a general model that 
outperforms local models that only have access to local data. For this they created an adapted 
regression algorithm to a (horizontally) distributed context. This algorithm is adapted by an 
ensemble approach, or more specifically: bagging. The algorithm works, broadly, as follows: all 
local models (or, optionally, just their outputs, to preserve privacy better) are shared with each  
local data site, these local models are then trained into a global model, where they - simply put - 
take the average of the preceding local models. This global model is trained by many iterations of 
model updates, which are computed locally per edge-device, to find the minimum of some cost 
function.


Next to weather forecasting, Federated Learning was already touched upon before its formal 
definition in healthcare research. This branch even continued to deviate from this branch of 
research after the publication of McMahan et al (2017).


Gong et al (2016) adapt a logistic regression algorithm into smaller subproblems, so it can be 
distributed over multiple clients and locally computed. This splitting into subproblems is based on 
the mathematical alternating direction method of multipliers (ADMM) technique. The algorithm’s 
aim is to predict dichotomous outcomes in medical diagnosis and prognosis. The algorithm is 
reportedly also privacy-preserving, by the fact that the logistic regression problem is decomposed 
in a way that the central server only has to simply average over local classifiers. In order to 
preserve privacy even more, in the case that even the averages are privacy-sensitive, Gong et al 
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propose two additional techniques: a naive approach and a modified approach. The naive 
approach preserves privacy more by using a secure summation protocol. The modified approach 
involves homomorphic encryption, which increases privacy-preservation even more. Moreover, 
the algorithm is evaluated empirically, with real-world medical data, and show similar results with 
a centralized approach, after 40 iterations.  


Deist et al (2017) also base their adapted approach on ADMM, but applied to a support vector 
machine (SVM), and later continues this line of research by also using an adapted (based on, 
again, ADMM) logistic regression model to predict post-treatment survival in lung cancer patients 
(Deist et al, 2020). The algorithm also preserves privacy by ensuring that no data leaves the local 
data sites. They evaluate their algorithm empirically, and show that it provides similar results 
compared to a centralized approach, while preserving privacy.  


Jochems et al (2016) take on this problem without using ADMM as a basis to make the machine 
learning algorithm work in a distributed context, like the previous research line, but instead adapt 
a Bayesian network model themselves to be suitable for distributed use. The aim is to predict 
dyspnea, with data like tumor location, lung function tests, and more. Just as in the previously 
presented algorithms, Jochem’s algorithm also states that it provides privacy by not letting the 
data leave local data sites (i.e. the individual hospitals). The algorithm is evaluated empirically, on 
medical data, and compared to locally trained models. The area under the curve (AUC) 
performance is 0.67. In addition, the results show that the model performs better in some 
hospitals (Eindhoven and Liege), and worse in others (Maastro, Aachen, Jessa).


Lastly, Brisimi et al (2018) also do not base their adapted SVM for distributed usage on ADMM, 
but instead use their own custom approach. They develop an iterative cluster Primal Dual Splitting 
(cPDS) algorithm for solving the large-scale sSVM problem in a decentralized fashion. The aim is 
to solve a binary classification problem to predict hospitalizations for cardiac events. 


3.2.2 Federated Learning after McMahan 
McMahan et al (2017) first introduced the formal definition of Federated Learning. Important is the 
separation made between Federated Learning as the overarching term, and Federated 
Optimization, the optimization task, embodied in an algorithm, which is inherent to Federated 
Learning. It performs the logic of training the local models, communicating and combining the 
training steps into a global model. In this RQ Federated Optimization is seen as the method. 


The method that McMahan et al (2017) introduce is called FederatedAveraging (FedAvg). It is an 
algorithm that combines stochastic gradient descent (SGD) on each client with a server that 
performs model averaging, such that the largest stated bottleneck of Federated Learning, the 
communication overhead, is reduced by a factor of 10 to 100. The FedAvg optimization algorithm 
is applied to a neural network model in this case. Hard et al (2018) use this same FedAvg 
algorithm and apply it to a practical case of mobile keyboard prediction, in which is shows better 
prediction recall than the set baseline. As stated in the introduction paragraph, most other papers 
are adaptations of this FedAvg algorithm, which will be discussed next.


Next is the Federated Stochastic Block Coordinate Descent (FedBCD) method of Liu et al (2019). 
The researcher developed a method which is one of the only Federated Learning methods to 
support vertically partitioned data. They evaluated the results on multiple data sets with good 
AUC results (84% and 99,7%).


Nilsson et al (2018) discuss both Federated Stochastic Variance Reduced Gradient (FSVRG) and 
CO-OP as alternative methods to FedAvg. FSVRG is based on the idea that it performs one 
expensive full gradient computation centrally, followed by many distributed stochastic updates on 
each of the local clients. A stochastic update is then performed by iterating through a random 
permutation of the local data. CO-OP differentiates itself from both FedAvg and FSVRG as being 
an asynchronous approach, instead of a model with synchronous model updates. This approach 
immediately merges any received client model update with the global model, where the age 
difference of the model keeps track of how to compute the weights. 


Sun et al (2019) develop a rather different approach where local data influence is seen as most 
important for the training process. They introduce the Restrictive Federated Model Selection 
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(RFMS) method in which the local data sites are only trained on their local data, but a federated 
approach is used for hyper-parameter optimization. They justify this approach in stating that 
empirical results confirm the importance of globally tuned hyper-parameters, as locally tuned 
hyper-parameters generalize poorly over data sites. This is one of the few papers to give 
precedence to local training, which merely uses Federated Learning as a preliminary step. A direct 
comparison on predictive performance to conventional Federated Learning methods is not made.


A federated recommender system is developed by Jalalirad et al (2019). The main difference with 
other federated learning methods is that they seek to achieve a new balance between local and 
global training, essentially shifting more responsibility to the local clients by allowing them to give 
more importance to the local client’s data. After the global training is completed, each edge 
device trains a local version too, fine-tuning the globally trained vector based on personalized 
data. The paper states that their model outperforms traditional federated learning methods. In the 
case of non-iid (non-independent and identically distributed) data, the method does not perform 
at the same level of accuracy as a centralized method, indicating that the increase in privacy 
comes at a cost of accuracy in this case. 


This performance problem with non-iid cases is also addressed by Zhao et al (2018). They 
developed an adapted federated learning method, with the main aim of addressing this reduced 
accuracy in non-iid settings. In short, the method initializes, before the start of the FedAvg 
algorithm, an initial well-balanced model is used, instead of a random one. This creation of this 
initial model involves a preliminary step of creating a globally, well-balanced, data set which they 
then mix into local data sites which have a different data distribution. This method does 
unfortunately introduces the need to share data once again, and may not be suitable in many 
cases where privacy is important. 


Other researchers also acknowledge this problem and create their own adapted federated 
learning method. Like Shaoxiong et al’s (2019) Attentive Federated Aggregation algorithm 
(FedAtt), Duan’s (2019) automatic self-balancing Astraea framework (sic, method is a better term), 
Huang et al’s (2019) CBFL clustering approach, and Verma et al’s (2019) unnamed model to better 
perform on skewed data. In addition, the papers of Sattler et al (2019), Schmid et al (2019), and 
Wang et al (2019) also address the problem of non-iid setting in federated learning. This topic of 
non-iid settings in federated learning deserves to be investigated in more detail, and will therefore 
be addressed in the next and especially in the fourth research question, as it is better suited there.

The found Federated Learning methods are listed and summarized in Table 3.2.1.


3.2.3 Higher-level methods 
Additionally, there is a category identified in this study which does not develop a new federated 
learning algorithm itself, but concerns itself with the method around it, essentially providing a 
higher-level overview of how to improve existing or to-be developed federated learning 
algorithms. For completeness these higher-level methods are also discussed in this subsection. 


A high-level method, although named a framework by the authors, to improve federated learning 
models is presented by Ilias and Georgios (2019). They identify existing problems with federated 
learning, which are: privacy, management of participating nodes, and (data) integrity. For each 
they provide a methodology in how to address this problem and a recommended practical 
solution. For privacy they recommend the usage of homomorphic encryption, in addition to the 
current practice of not sharing data beyond its owner. Next, they address the management 
problem by using smart contracts in blockchain. Lastly, on the data integrity problem they also 
suggest using blockchain as a solution. In this way a distributed validation system can be created 
in order to test whether false data is added, or wether a node is not participating equally in the 
processing power distribution. The paper does, however, not evaluate its method empirically, 
questioning its real-world usefulness. 


Next, the paper of Malle et al (2017) proposes a workflow architecture to better design future 
federated learning methods and systems. The main elements Malle et al consider to be important, 
and should be included into the workflow are: (i) client-side machine learning, (ii) privacy, (iii) 
interactive machine learning, and (iv) distributed bagging. The main contribution of this paper is, 
however, the introduction of a local sphere. Which originated from the old technique of bagging, 
but adapted to a distributed context. This method is, like the previous one, not evaluated 
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empirically. The overlap between the two methods is, however, that the current privacy preserving 
approaches of federated learning methods are lacking, and should be improved. 


3.2.4 Conclusion and discussion 
Concluding, there are a myriad of federated learning methods, each developed in their own 
context. The discovered methods are listed in Table 3.2.1. The plethora of federated learning 
methods can be divided into origin: the proto-federated method, and the federated learning 
methods after McMahan. The proto-federated methods can be described as existing machine 
learning methods, decomposed and adapted for distributed usage. Privacy in these methods is 
usually preserved by not sharing the data of the edge devices (local data sites), but merely sharing 
the local model updates, which can also be said about the federated learning methods after 
McMahan. An additional, optional, layer of privacy via homomorphic encryption or secure 
aggregation is also often introduced, also mentioned in both types of federated learning. 
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Table 3.2.1 - Federated Learning (FL) Methods

Method Description Type of FL

Allende-Cid et al’s (2013) method Adapted regression algorithm, for distributed use. Adapted 
by an ensemble approach

Proto-
Federated 
Learning 
methods

Gong et al’s (2016) method Logistic regression model (local ML model) adapted for 
distributed use by ADMM

Deist et al’s (2017) method Support vector machine, adapted for distributed use by 
ADMM

Deist et al’s (2020) method Logistic regression model, adapted for distributed use by 
ADMM

Jochems et al’s (2016) method Bayesian network model, adapted for distributed use (no 
ADMM)

Brisimi et al’s (2018) method Adapted SVM for distributed usage

Federated Averaging (FedAvg) - 
McMahan et al (2017)

First formal method. Used as baseline in most papers

FL 
methods 

for iid data

Federated Stochastic  
Block Coordinate Descent 
(FedBCD) - Liu et al (2019)

One of the few Federated Learning methods that primarily 
supports vertically partitioned data.

Federated Stochastic Variance 
Reduced Gradient (FSVRG) - 
Nilsson et al (2018)

Main difference with FedAvg: one expensive full gradient is 
computed centrally, then next local iteration randomly

CO-OP - Nilsson et al (2018) Asynchronous algorithm

Restrictive Federated Model 
Selection (RFMS) -  Sun et al (2019)

local data sites trained only on local data, only federated 
approach for hyperparameter optimization

Federated recommender system - 
Jalalirad et al (2019)

New balance made between local and global training, 
shifting more responsibility to the local clients

Zhao et al’s (2018) method Adapted FL method for non-iid data settings. Needs data 
sharing

FL 
methods 

for non-iid 
data

Astraea method - Duan (2019) Adapted for non-iid usage. No data sharing needed

Attentive Federated Aggregation 
algorithm (FedAtt) - Shaoxiong et al 
(2019)

Adapted for non-iid usage. No data sharing needed

CBFL - Huang et al (2019) Clustering approach for non-iid settings

Verma et al’s (2019) method Method adapted to work for skewed data



The federated learning methods after McMahan, are typically an adapted version of the original  
FedAvg algorithm. Also, to make these federated learning methods work better with non-iid data, 
which is an often mentioned problem, an extra initial step which includes some type of balancing 
mechanism can be added. Federated Learning can therefore be seen as a three-layered system: 
(i) an optional initial balancing mechanism (to suit non-iid data better), (ii) the federated 
optimization algorithm itself, either before of after McMahan, and (iii) an optional privacy-layer of 
homomorphic encryption or secure aggregation, which alters the algorithm. Lastly, high-level 
methods can be used to develop better federated learning algorithms in the future, but, however, 
are not yet tested empirically so their real-world value still has to be tested.


It should also be noted that typically each author claims that their newly-developed federated 
learning method performs at least similarly or better than some other method, and usually 
evaluate and test their method on a newly introduced data set. The latter is exactly the case why 
these contradicting claims can be made; the performance is likely dependent on the data set 
used. Therefore, it is essential for the evaluation of these methods to be tested by a third-party on 
the same data set. More on this comparison of performance will be discussed in the next research 
question. Also, this research question was intended to only identify existing methods in the 
literature. It is advised to identify more relevant characteristics of these methods in a later study.


3.3 Research Question 3 - Differentiating Characteristics Introduction 
What are the main differentiating characteristics of Federated Learning methods found in 
the literature? 

This research question is answered by means of conducting a Systematic Literature Review 
(SLR), as described in the methodology section 2.3. For this specific research question, all studies 
which are mainly about introducing or describing one or more Federated Learning methods are 
included. These are, therefore, the same set of studies used in research question 2. The relevant 
information is extracted and documented in three rows of the data extraction form, each 
extracting information of one of the 3 differentiating characteristics identified. Those differentiating 
characteristics are identified and described next.


3.3.1 Differentiating Characteristics 
First, the differentiating characteristics types need to be identified. For this, a clear definition has 
be be constructed first. The differentiating characteristics of Federated Learning methods are 
defined as: characteristics of Federated Learning methods which both (i) limit options or impact 
the desired outcome regarding a organization’s data-related characteristics and privacy 
considerations, i.e. those that are relevant to the to-be-designed method, and (ii) have variation in 
implementation among the Federated Learning methods, i.e. not all Federated Learning methods 
have the same implementation regarding this characteristic. [Appendix E: Definition 3]


This definition contributes to the overall research goal of designing a method to choose the most 
suitable Federated Learning method, as a choice should be relevant. Relevant characteristics to 
these organizations are those which may limit options or impact the desired outcome regarding 
the organization’s data-related characteristics and privacy considerations, which is addressed by 
criterium (i). Also, when there is no variation in the implementation of these characteristics, they 
can be regarded as static and inherent to Federated Learning itself. They are, then, not relevant to 
making an informed choice, which is addressed by criterium (ii). Given this definition the 
differentiating characteristics can be identified in the literature.


Looking back at the results of research question 1, the definition of Federated Learning, four core 
challenges of Federated Learning were identified: (i) expensive communication, (ii) system 
heterogeneity, (iii) statistical heterogeneity, (iv) privacy concerns. These four challenges can be 
regarded as differentiating Federated Learning, as a concept, from traditional machine learning. 
This will be the starting point of identifying the differentiating characteristics. From this several 
alterations are made. The first alterations are to expand this list of potential differentiating 
characteristics, as it might not be inclusive enough for its purpose. After that, all found 
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characteristics are tested to the definition drawn and those who do not meet the definition are 
excluded.


The first addition will be the underlying machine learning model and machine learning problem 
type. It was prevalently mentioned in each of the used studies from the literature review used to 
answer Research Question 2. Looking at the definition, it fits both criteria. There is found to be a 
large variation among the used machine learning models used, i.e. many different machine 
learning models are used to developed Federated Learning methods, satisfying the second 
criterium. Next, there is also an impact on the choice, as an organization will be limited in its 
choice if it wants to solve a specific machine learning problem. Then, not all machine learning 
methods support this problem type (e.g. when it wants to solve a clustering problem, a linear 
regression model will not suffice).


The second addition that was considered was the supported topology of the Federated Learning 
method. As found in Research Question 1, there are two main types of topologies in Federated 
Learning: centralized (star topology) and decentralized. It fits the first requirement of a 
differentiating characteristic: it has impact on the choice as it can limit options. However, all found 
Federated Learning methods in this study used the centralized star-topology and it does, 
therefore, not satisfy the second requirement of a differentiating characteristic of having variation. 
Therefore, topology is not added as a differentiating characteristic.


The third addition that was considered was the characteristic of communication costs in 
Federated Learning. It was, however, excluded because of the following. Although this 
characteristic will have an impact on performance, results do not show any variation among 
Federated Learning methods of this characteristics. Essentially all Federated Learning methods 
cope with expensive communication with largely the same impact. So, it is of no use to choose 
one Federated Learning method over the other because of large communication costs. Therefore, 
it does not satisfy both requirements of differentiating characteristics and is excluded.


Next, system heterogeneity is about differences and variation among used edge devices and data 
set partitioning, as identified in research question 1. For the purpose of refitting it to a 
differentiating characteristic, only the data set partitioning is extracted from this. This is because 
this facet can be clearly defined and therefore the differences can also be stated clearly. Which is 
not the case in variation among edge devices. Furthermore, data set partitioning has a clear 
impact on the choice of a Federated Learning method, as data set partitioning can be seen as a 
static, unchangeable characteristic of an organization’s data landscape, i.e. an organization 
cannot easily change the current partitioning type, especially not if data sharing is limited or 
prohibited, identifying what type of data partitioning is present is crucial in the development of the 
artifact of this study. As options to what Federated Learning method is then available will be 
limited. Also, there is variation observed in which type of dat partitioning each Federated Learning 
method supports.


Next up is statistical heterogeneity, which can also be stated as non-iid data support. Non-iid data 
stands for non-identically distributed and independent data, this will be elaborated more later in 
this study. It fits both criteria, as there are Federated Learning methods which are found to be 
better suited for non-iid data sets in terms of predictive performance or having a higher accuracy 
of the resulting model (addressed both the impact and variability criteria). Predictive performance 
will, with the same reasoning, and because it is tied to non-iid data support, also be added as a 
differentiating characteristic. 


Lastly, privacy concerns are tested to the definition of differentiating characteristic. There are 
Federated Learning models which are found to violate the non-data sharing guarantee which 
almost all Federated Learning methods do support, which organizations expect to rely on to 
protect their data. Which addresses both criteria.


Given this analysis, the following list of differentiating characteristics of Federated Learning 
methods is constructed:

1. Data partitioning, i.e. system heterogeneity;

2. Underlying machine learning models;

3. Privacy guarantees;
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4. Performance (accuracy, predictive performance);

5. Non-iid data support, i.e. statistical heterogeneity.


The first three differentiating characteristics (1-3) are investigated in this research question and 
chapter, as they can be observed independently. Characteristics 4 and 5 are observed to have 
some interrelationship with each other; a trade-off can be made to satisfy one or the other more. 
There is not a Federated Learning method which completely supports non-iid data, but there are 
methods which perform, to some extend, better than others. Therefore, these characteristics will 
be  investigated in their own research questions. For these characteristics, an analysis will also be 
conducted how it relates to the consolidation technique, which is unique and defining to 
Federated Learning, to explain this interrelationship between performance and non-iid data better.


The remainder of this section is structured as follows: first, definitions for the differentiating 
characteristics (1) data partitioning, (2) underlying machine leaning model, and (3) privacy 
guarantee, will be constructed. After that, the results are described, summarized in a table, and 
conclusions are drawn. 


3.3.2 Differentiating Characteristic 1: Data Partitioning 
This section discusses the first differentiating characteristic of Federated Learning: data 
partitioning. First, the reasoning as to why data partitioning is a differentiating characteristic is 
shortly revisited. Second, the methodology of information extraction for the type of data 
partitioning is described. Third, a definition and distinction between two types of data partitioning 
in Federated Learning is given. Lastly, in the next section the results of the systematic literature 
study are shown.


As already identified, data partitioning can be classified as a differentiating characteristic of 
Federated Learning methods. It both: has an impact on the limiting of options organizations have, 
and have variation in implementation among the Federated Learning methods, satisfying the 
requirements of the definition. This is because some methods, such as Jochems et al’s (2016) 
Federated Learning method, only work with one type of partitioned data (horizontal or vertical). 
The data characteristics of an organization should therefore be explicitly defined, as this 
characteristic is defining in which Federated Learning methods are available to this organization. 
In this way a new method fragment can be constructed, which contributes to the overall research 
goal of helping the organization to choose a good fit between the Federated Learning method 
available and the organization’s specific situation. 


Before the information about data partitioning can be extracted, a clear definition has to be given. 
Only with a clear definition the data partitioning information can be extracted. Studies could, for 
example, not mention it explicitly or use another term for the same concept. Relying on just those 
specific keywords alone will not suffice. Therefore, a definition of horizontally and vertically 
partitioned (or sometimes called: distributed) data in the context of Federated Learning is given. 
This definition is synthesized by the definitions of Yang et al (2019) and Gong et al (2016).


Definition horizontally partitioned data: [Definition 5.1, Appendix E]

Horizontally partitioned data means that the data at each data site have the same features, i.e. 
attributes or columns in traditional data base terms, but include different subjects, i.e. rows. For 
example, imagine a software company who sells software to small businesses to conduct their 
administration digitally. Each subject (i.e. small business) uses exactly the same type of software 
and generated the same types of data, i.e. the columns of the domain model are the same.


Definition vertically partitioned data: [Definition 5.2, Appendix E]

Vertically partitioned data constitutes the opposite: the data of one subject, i.e. row, is present at 
multiple data sites. Each data site, therefore, has a different set of features, i.e. columns or 
attributes. For example, in the case of hospitals, where a patient’s health records are scattered 
across many hospitals. One hospital has data about his blood work, while another specialized 
hospital only stores the results of a lung scan. The different hospitals store data about the same 
subject (the patient), but have different data features or columns of that patient.
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3.3.3 Differentiating Characteristic 2: Underlying Machine Learning Model 
This section discusses the second differentiating characteristic of Federated Learning: the 
underlying machine learning model. First, the reasoning as to why privacy is a differentiating 
characteristic is shortly revisited. Second, the methodology of information extraction is described. 
Third, an inventorization and categorization of underlying machine learning models in Federated 
Learning is given. Lastly, in the next section the results of the systematic literature study are 
shown.


The underlying machine learning models of each Federated Learning method and their inherent 
supported machine learning problem types will limit the options organizations have. Therefore, it 
is relevant as a differentiating characteristic.


In order to extract information regarding this differentiating characteristic, a list of all options 
regarding underlying machine learning models and problems is constructed. This is done by both 
citing what the literature lists as option, and by doing categorization by means of listing all types 
of machine learning models and problem (types) found in this study’s systematic literature review.


Verma et al (2019) list the following machine learning models in Federated Learning: "among 
these models are: decision trees, clustering, rule-engines, Gaussian Mixture Models, SVM 
[Support Vector Machines], NN [Neural Networks]". In addition, by looking at the studies found in 
this study’s systematic literature review the following models were also encountered: linear 
models and Bayesian Network models. From this the following lists of options for the data 
extraction form is synthesized. These options are added to the template of the data extraction 
form, see Appendix A - Extraction Form 1. The machine learning problem types are synthesized 
by listing and categorizing all encountered problem types in the studies found in this SLR. 


Underlying Machine Learning model list: Linear model, Bayesian network model, Decision Tree, 
Clustering model, Rule-engines, Gaussian mixture models, Support Vector Machine (SVM), Neural 
Network (NN). [Definition 4.1, Appendix E]

Machine learning problem type list: Linear/Regression problem, Classification problem, Rule-
learning problem, Clustering problem (unsupervised), Language modeling problem. [Definition 4.2, 
Appendix E]


These options will be used to categorize the found underlying machine learning model and 
problem for each Federated Learning method in the data extraction form.


3.3.4 Differentiating Characteristic 3: Privacy Guarantee 
This section discusses the third differentiating characteristic of Federated Learning: the privacy 
guarantee. First, the reasoning as to why privacy is a differentiating characteristic is shortly 
revisited. Second, the methodology of information extraction for this privacy guarantee is 
described. Third, a categorization of privacy guarantee levels in Federated Learning is given. 
Lastly, in the next section the results of the systematic literature study are shown.


The privacy guarantee is a differentiating characteristic, as there is variation in the levels of privacy 
guarantees among Federated Learning methods and the choice of an organization is impacted by 
this. For example, an organization’s distributed data set could be privacy sensitive in such a way 
that no data is allowed to leave its original location. In this way it limits the choices this 
organization has regarding Federated Learning methods.


In this section the privacy guarantees of Federated Learning are investigated. This in done in the 
following way. For each of the aforementioned Federated Learning methods and the studies they 
are introduced in, claims and descriptions about privacy of that method are extracted. After all 
information is extracted, the results are synthesized and common themes are deduced. Then, 
broad privacy guarantee categories are chosen to categorize each Federated Learning method. 
This categorization will be based on practicality and relevancy to the overall goal of the study: to 
fit an organization’s needs relating to the privacy considerations of their data.


This study categorizes three broad levels of privacy guarantees in Federated Learning (in order):
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1. Violates the no data sharing principle  
In this category the Federated Learning methods give no guarantee whatsoever about the no 
data sharing pillar of Federated Learning. Although Federated Learning is founded on the idea 
of no data sharing, in this category, each local data site does not have control over their data. 
The data of each local data site can be shared with other data sites or the central server.


2. Privacy by no data sharing  
This category can be seen as a standard of Federated Learning. Federated Learning is 
founded by the principle of local data sites having ownership over their own data. In this 
category privacy is upheld by not allowing the data itself leave each local data site. Instead, 
only aggregates in the form of partial model updates (i.e. parameter updates during model 
training) are shared with a central server. 


3. Additional privacy mechanism  
In addition to privacy by no data-sharing, some studies indicate that this privacy guarantee 
level is still not enough. In fact, they claim that even the aggregate data, i.e. the parameter 
updates that are communicated with the central server, are private information. In addition, 
when the central server of other local data sites cannot be trusted, additional privacy 
mechanisms are also of importance. Both claimed by Gong et al (2016) and Jochems et al 
(2016). The additional privacy mechanisms mentioned in the studies used in this systematic 
literature review are: Anonymization, Differential Privacy, Secure Multi-Party Computation, 
Homomorphic Encryption. Each of these are described later in this section.


These levels can also be found in [Definition 5, Appendix E].


These three privacy guarantee levels are categorized in this way because of the following. The 
second privacy guarantee can be seen as a standard for Federated Learning. As seen in the 
definition research question, one of the main pillars of Federated Learning is privacy. Privacy is by 
standard guaranteed in a 'Federated' manner; where each of the local data sites has ownership 
over their own data, the raw data will not be permitted to leave the original data site. Therefore, 
this will be the standard category. However, two deviation are made from this standard, both in a 
decreased and heightened privacy guarantee level. 


First, some Federated Learning methods try to up the predictive performance, especially in non-
iid settings, by sharing data among data sites (e.g. Zhao et al’s (2018) method). This violates the 
no data sharing principle of Federated Learning and these method should be categorized 
differently. See category 1, violates no data sharing principle.


Second, some studies argue that privacy by not sharing the raw data with others may not even be 
enough in some cases. That, in fact, additional privacy measures should be implemented. In 
Federated Learning methods, although no raw data is shared, local models updates are shared, 
which are comprised of aggregates of this data, where a local minimum is to be found. If it is the 
case that not only the primary data is privacy sensitive, but also aggregates, then the no data 
sharing principle is not enough. For example, one could imagine a data set of a company’s 
clients. This stores a client’s file: its name, category, revenue. From this an aggregate could be the 
number of clients this data set has, or the total revenue generated, which could in fact be privacy 
sensitive and could be shared to a central server in the form of parameter updates. Gong et al 
(2016) has the same concerns, in the healthcare domain, and mentions that "local regression 
parameters are trained on individual private data, and may leak sensitive information about 
patients". Jochems et al (2016) confirms this by saying that the central server should be a trusted 
party, otherwise the privacy guarantee does not always hold. Also, Yang et al (2019) address this 
indirect information leakage, and argue that the intermediate results, like parameter updates, 
which are shared and communicated, provide no guarantee that sensitive information is 
protected. In addition, Gong et al (2016) mentions collusion attacks, where multiple data sites may 
collude together to infer previously communicated private data about patients. So, this indicates 
that just relying on the no data sharing principle alone may not be enough in all cases. Additional 
privacy mechanisms could be used to mitigate this.


There are several additional privacy mechanisms mentioned in the studies of Gong et al (2016),  
Liu et al (2019), Yang et al (2019), Jalalirad et al (2019), and Shaoxiong et al (2019), which can 
mitigate such privacy concerns. The additional privacy mechanisms mentioned in the studies 
used in this systematic literature review are: Anonymization, Differential Privacy, Secure Multi-
Party Computation, Homomorphic Encryption. Each of these are described, in short, next.
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Anonymization 
Described by Gong er al (2016) as a popular way to preserve privacy. It anonymizes the data by 
hiding the identity of the data source. It can be classified as an easy implementation. However, 
concerns. are also raised, as it is possible to re-identify the data source in some cases.


Differential Privacy 
The main approach of this technique is to add noise to the data during model computation (Gong 
et al, 2016) (Yang et al, 2019). In this way, a higher level of privacy is reached where the 
aforementioned problems are addressed. On the flip side, it is said by Gong er al (2016) and Yang 
et al (2019) to impact the predictive performance of models in a negative way, albeit relatively 
small. So, it does come with a cost, and therefore this trade-off between predictive performance 
and privacy should be taken into account.


Secure Multi-Party Computation

Gong et al (2016) describes Secure Multi-Party Computation as: "Secure multi-party computation-
based approach is a conventional approach to training classifiers based on private data owned by 
multiple parties. A combination of cryptographic techniques is used to compute a function of their 
private data. This approach usually guarantees that none parties can learn anything beyond what 
is contained in the final result.". But also states that the algorithm is not efficient and computation 
costs will be high. 


Homomorphic Encryption 

Yang et al (2019) describes it as follows: "Homomorphic Encryption is also adopted to protect 
user data privacy through parameter exchange under the encryption mechanism during machine 
learning". It is also said to be a stronger form of privacy preservation as the data cannot be 
guessed like in the case of differential privacy. However, Gong er al (2016) mention that 
homomorphic encryption is not efficient, especially when the training data set size increases. 


Summarized, additional privacy mechanisms are all founded upon the assumptions that the 
central server and/or the other local data sites cannot be trusted or that aggregate data, 
contained in model updates to the central server may also be of sensitive nature. In those cases, 
an organization should attempt to choose a Federated Learning method which supports an 
appropriate additional privacy mechanism. An organization should look at these categorizations, 
reason what the relation is to their data sets and privacy requirements, and ask what privacy type 
is appropriate for their use case.


3.3.5 Results 
This research question can be summarized by Table 3.3.1, found at the end of this section. It lists, 
for all Federated Learning methods, their first three differentiating characteristics: (i) data 
partitioning, whether it supports horizontally partitioned data (HPD) and/or vertically partitioned 
data (VPD), (ii) underlying machine learning model and inherent machine learning problem type, 
and (iii) privacy guarantee. The extracted results are presented in Table 3.3.1, the results, where 
relevant, are described in more detail below.


The results for data partitioning are extracted by either looking for the exact terms HPD or VPD, 
or, if those terms are not mentioned, by identifying the concept they represent. This is done by 
identifying characteristics in the data model descriptions or looking at how the Federated 
Learning algorithm works, and linking them to working with either or both horizontal or vertical 
partitioned data. The results regarding the underlying machine learning model were more 
straightforward. Each study did mention it explicitly. The results could be easily extracted by 
making used of the earlier constructed categorization. Therefore, the results are only stated in 
Table 3.3.1. Regarding the privacy guarantee level, each of the studies’ Federated Learning 
methods are evaluated to have one of the three identified privacy categorizations: (1) Violates no 
data sharing principle, (2) Privacy by no data sharing, (3) Additional privacy mechanism. First, data 
partitioning results are described and the privacy guarantee results are next.


One of the first Federated Learning methods of Allende-Cid et al (2013) works only with HPD. It is, 
however, not explicitly mentioned, as the definition of HPD and VPD were not introduced yet. This 
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information is, thus, deduced by looking at the domain models for the distributed data sites; 
which have exactly the same structure, i.e. columns, indicating HPD.


Next are the studies related to Federated Learning in healthcare. Gong et al (2016) and Jochems 
et al (2016) mention explicitly what partitioning their Federated Learning methods support. Both 
HPD and VPD for Gong’s method, and only HPD for Jochem’s method. The other healthcare 
studies do not mention it explicitly, but all only support HPD. This fact is deduced in the case of 
Deist et al. (2017) by its data description: all hospitals supply the same variables as data input, i.e. 
all have the same data attributes. The same goes for their 2020 study, which mentions that the 
data sites (the hospitals) have to agree upon a common data model. Lastly, Brisimi et al (2018) 
also only support HPD, which is deduced from the fact that the patients’ (the subjects’) data is not 
fragmented across data sites. So, one subjects’ data is only present at one data site.


The popular FedAvg method of McMahan et al (2017) supports only HPD. While this paper was 
published after other studies already explicitly defined HPD and VPD, it does not give an explicit 
description of which data partitioning type it supports. Deducing from the algorithm description 
and the performance results evaluation (which mentions the data used) it becomes clear that it 
only supports HPD. Because Zhao et al (2018) and Duan (2019) base their method on FedAvg and 
use similar evaluation, they can also be categorized to only support HPD.


Federated Stochastic Variance Reduced Gradient (FSVRG) also only supports HPD. This is 
deduced from the algorithm description and especially based on the characteristics of the used 
data set (MNIST) for evaluation, which is standardly HPD. The same goes from the CO-OP 
method, based on the study of Nilsson et al (2018).


The Restrictive Federated Model Selection (RFMS) by Sun et al (2019) also only supports HPD. 
Deduced from the used data set, the GEO database. This database features breast cancer data. 
The researchers filtered out duplicate patients across artificially created distinct data sites, 
therefore they did not support VPD. The same reasoning can be used for the Federated 
recommender system by Jalalirad et al (2019). Deduced from the evaluation experiment 
description. They used the movieLens100k dataset, which contains movie ratings from users. The 
study partitioned the data per user, so this indicates HPD.


The Attentive Federated Aggregation algorithm (FedAtt) of Shaoxiong et al (2019) did not mention 
which type of data partitioning they support. It could also not be easily deduced from the data 
description or the algorithm description. An estimated guess would be HPD, as it is the most 
common and apparently more easy to implement. Also it compares it results directly to FedAvg 
who only supports HPD.


The CBFL method of Huang et al (2019) only HPD. Which is deduced from data description and 
the partitioning description. The data sites contained the same features, indicating HPD. Lastly 
Verma et al’s (2019) method also only support HPD. Also deduced from description on how the 
data is partitioned.


3.3.6 Conclusions and discussion 
Differentiating characteristics 
In this research question the term differentiating characteristics for Federated Learning methods is 
defined. Differentiating characteristics both (i) are relevant to the to-be-designed method, i.e. 
those facets which may limit options or impact the desired outcome regarding a organization’s 
data-related characteristics and privacy considerations, and (ii) have variation in implementation 
among the Federated Learning methods. These differentiating characteristics will define the 
relevant differences between Federated Learning methods, and contribute to the overall research 
objective of designing a method to make an informed choice among these Federated Learning 
method.


The resulting list of differentiating characteristics of Federated Learning methods is constructed:

1. Data partitioning, i.e. system heterogeneity;

2. Underlying machine learning models;

3. Privacy guarantees;

4. Non-iid data support, i.e. statistical heterogeneity;
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5. Performance (accuracy, predictive performance).

Of this list, the first three differentiating characteristics (1-3) are addressed in this research 
question. The remainder are addressed in separate research questions, as they require more 
knowledge and are larger.


Data Partitioning 
A distinction between two data partitioning types is made: horizontally partitioned data (HPD) and 
vertical partitioned data (VPD). By looking at the results, the following can be concluded. Not all 
Federated Learning methods support both (horizontal and vertical) data partitioning methods, 
confirming the need to identify what data partitioning type a specific situation has. Moreover, VPD 
support is very rare, and is only observed twice. Which means that the options for organizations 
with VPD have limited options. Future research should investigate whether there is a need for 
more VPD support in Federated Learning, and if so, it is recommended that more Federated 
Learning methods be developed which support VPD. Consequently, the overwhelming majority 
supports HPD. 


Next, the relation to a potential method fragment is discussed. Given the fact that a organization’s 
data landscape is static, i.e. an organization cannot easily change the current partitioning type, 
especially not if data sharing is limited or prohibited, identifying what type of data partitioning is 
present is crucial in the development of the artifact of this study. As options to what Federated 
Learning method is then available will be limited. Because it limits options and makes the 
organization aware of their specific landscape, it contributes to the overall goal.


A method fragment which main goal is to identify the data partitioning type is therefore 
recommended. This identification will be based upon the synthesized definitions of HPD and VPD, 
and the method of extracting the information (by either explicitly defined terms of by looking for 
characteristics similar to either definition) in this research question.


Underlying Machine Learning Models

Each federated learning method has an underlying machine learning model. The following 
common themes can be extracted from the results. First, contrary to the Federated Learning 
methods after McMahan, the proto-Federated Learning methods use a wide variety of machine 
learning models, such as: linear models, support vector machines, and bayesian network models. 
This could be because in this stage Federated Learning was still in its infancy and many different 
approaches were tested, as no common standard was available yet. Also, more than half of the 
found Federated Learning methods are concerned with classification. This could be explained 
because these studies are concerned with healthcare, where classification of diseases is 
prevalent. Second, the Federated Learning methods after McMahan are predominately based on 
neural networks. Mainly because many methods are based on FedAvg of McMahan, which is 
itself based on a neural network model.  


Next, regarding the overall research goal of this study, the following can be said. The used 
underlying machine learning models and their inherent supported machine learning problem types 
will limit the options organizations have regarding the usage of available Federated Learning 
methods. Therefore, it is relevant to design a method fragment which categorizes the desired 
solution to one of these categories.


However, this should not be seen as an inherently static characteristic of an organization’s specific 
situation. Because an organization could be in the stage of discovery where it is still exploring its 
options regarding Federated Learning and has no predetermined goal. Then, a bottom-up 
approach could be preferred: looking at the available data landscape and from there determine 
what is possible and feasible. If, however, the specific machine learning objective is already set (or 
if the data does not support a specific problem), then it should be seen as a static characteristic. 
Which will limit the organization’s options. 

Privacy Guarantees

In this study three privacy guarantee categorizations are distinguished: (1) Violates no data sharing 
principle, (2) Privacy by no data sharing, (3) Additional privacy mechanism. Regarding the third 
type, several additional privacy mechanisms are used in Federated Learning, namely: 
Anonymization, Differential Privacy, Secure Multi-party Computation, and Homomorphic 
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Encryption. Each of the Federated Learning methods identified are categorized in their respective 
privacy guarantee level. From this, common themes are extracted. 


The vast majority of Federated Learning methods support the privacy by no data sharing 
principle. This is not surprising, as it can be seen as the default privacy level upon which 
Federated Learning was founded. Only a few deviations are spotted, both to a lower and higher 
privacy level. The privacy level was lowered, by violating the no data sharing principle in studies 
that were concerned with low accuracies for non-iid data sets. To improve the predictive 
performance, data sharing among data sites was introduced. On the other hand, some studies 
argued that privacy by no data sharing was not even enough, that, in fact, even the 
communicated model/parameter updates to the central server, which are aggregates, could 
contain sensitive information. A few Federated Learning methods, therefore, support additional 
privacy mechanisms, such as homomorphic encryption and differential privacy.


These privacy levels are of importance to the main goal of the research. This is because it allows  
organizations to categorize their needs regarding the privacy requirements of their data sets in the 
context of Federated Learning. This organization can then, by means of the extracted and 
summarized information in Table 3.3.1, choose an appropriate Federated Learning methods that 
suits their needs.
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Table 3.3.1 - Differentiating Characteristics (1-3) of Federated Learning Methods

FL Method Data 
partitioning

Type of ML model & problem Privacy Guarantee

Allende-Cid et al’s 
(2013) method

HPD Linear model. 

Linear/regression problem.

(Regression)

Privacy by no data sharing

Gong et al’s (2016) 
method

HPD & VPD Linear model.

Classification problem.

(Logistic regression)

Additional privacy 
mechanism (homomorphic 
encryption)

Deist et al’s (2017) 
method

HPD SVM.

Classification problem.

Privacy by no data sharing

Deist et al’s (2020) 
method

HPD Linear model.

Classification problem.

(Logistic regression)

Privacy by no data sharing

Jochems et al’s (2016) 
method

HPD Bayesian network model.

Linear/regression problem.

Privacy by no data sharing

Brisimi et al’s (2018) 
method

HPD SVM.

(Binary) classification problem.

Privacy by no data sharing

Federated Averaging 
(FedAvg) - McMahan et 
al (2017)

HPD Neural Network.

Classification & linear/regression 
problems.

Privacy by no data sharing

Federated Stochastic  
Block Coordinate 
Descent (FedBCD) - Liu 
et al (2019)

VPD Neural Network.

Classification & linear/prediction 
problems.


Privacy by no data sharing

Federated Stochastic 
Variance Reduced 
Gradient (FSVRG) - 
Nilsson et al (2018)

HPD Based on FedAvg. So NN. 

Classification & linear/regression 
problems.

Privacy by no data sharing

CO-OP - Nilsson et al 
(2018)

HPD Based on FedAvg. So NN. 

Classification & linear/regression 
problems.

Privacy by no data sharing

Restrictive Federated 
Model Selection (RFMS) 
-  Sun et al (2019)

HPD Bayesian model.

(Binary) classification problem.

Privacy by no data sharing

Federated 
recommender system - 
Jalalirad et al (2019)

HPD Neural Network.

Classification & linear/prediction 
problems.

(Recommender system)


Privacy by no data sharing

Zhao et al’s (2018) 
method

HPD Neural Network.

classification & linear/regression 
problems.

Violates no data sharing 
principle

Astraea method - Duan 
(2019)

HPD Neural Network. 

Classification & linear/regression 
problems.

Privacy by no data sharing

Attentive Federated 
Aggregation algorithm 
(FedAtt) - Shaoxiong et 
al (2019)

Not mentioned. 
Estimated 
guess: HPD*

Neural Network.  
Language modeling problem.

Additional privacy 
mechanism (differential 
privacy)

CBFL - Huang et al 
(2019)

HPD Clustering model.

Classification problem. (Unsupervised 
learning)

Privacy by no data sharing

Verma et al’s (2019) 
method

HPD Neural Network.

Classification problem.

Privacy by no data sharing
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3.4 Research Question 4 - Predictive Performance Differences 
What are the differences in predictive performance among these Federated Learning and 
local-only methods?


Google introduced Federated Learning as a formal definition through the paper of McMahan et al 
(2017) and proposed their FedAvg algorithm to be a new standard for performing Federated 
Learning. However, how well does this method actually perform in relation to the other (newly 
developed) Federated Learning methods, to centralized methods, and to local-only methods? To 
examine this, the predictive performance of Federated Learning methods will be discussed and 
compared in this section. 


3.4.1 Federated Learning Comparisons 
Allende-Cid et al (2013) state that their ensemble distributed method outperforms a local model in 
almost every case, as measured by the standard deviation from the actual weather forecast 
predictions. The data is stated to be identically distributed and from the same data distribution. 
Meaning that in this case more available data for the global model makes every local prediction 
perform better.


Gong et al (2016) states that their custom federated algorithm achieves the same accuracy as a 
centralized approach, while their algorithm preserves privacy by not sharing data among data 
sites. Thus it can be stated that in this case the same accuracy as a centralized approach can be 
achieved while preserving privacy. They also make a comparison with a local-only approach and 
show that the prediction accuracy is worse than with the globally trained model. However, this 
comparison simply states that a particular locally-trained model does not generalize well to other 
data sites, they do not compare a locally trained model to that respective local data site, which 
would be a more practical comparison.


Brisimi et al (2018) develops a Federated Learning algorithm for the purpose of solving a binary 
classification problem, predicting hospitalizations for cardiac events. A comparison between a 
centralized approach is made based on the Area Under the Curve (AUC) accuracy, which states 
that similar accuracy is achieved. Confirming Gong et al (2016) and Deist et al’s (2017) findings.


Deist et al (2017) developed their own federated learning algorithm, instead of using a version of 
FedAvg. The main contribution of this paper to this research question is the provision of a detailed 
comparison between the custom federated algorithm and a centralized approach (where all local 
data is transferred to a central server and a model is trained centrally). The results show that the 
federated and centralized methods both show very similar results (0.66 AUC), indicating that the 
federated approach does not impede predictive performance.


In the field of keyboard prediction, Federated Learning even achieves better performance than 
earlier used methods. Hard et al (2018) state that the baseline method of making keyboard type 
predictions (a word n-gram finite state transducer, which was up to this point the practical choice 
for doing keyboard type predictions) performs worse than the Federated Learning method, 
FedAvg in this case. This would indicate that, instead of performing similarly, as stated before, 
Federated Learning does indeed perform better. However, this claim is arbitrary, as it compares it 
to a very use case specific method, not to a standard centralized approach.


Nilsson et al (2018) compare three Federated Learning methods: FedAvg, Federated Stochastic 
Variance Reduced Gradient (FSVRG), and CO-OP. These methods were already identified and 
explained in research question 2. Of these methods FedAvg performed better than both FSVRG 
and CO-OP in both iid and non-iid settings. However, a centralized approach performed better in 
all cases, except for the comparison between FedAvg in a iid setting, there the centralized 
approach performed similar to FedAvg. Meaning that a centralized approach, based on only the 
predictive performance measure, is always preferred in a non-iid setting, and both FedAvg and a 
centralized approach are equally as good in a iid setting. These results are summarized by Nilsson 
et al (2018) in the Table 3.4.1. More about the effect of non-iid will be discussed next.
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3.4.2 Non-iid and Imbalanced Data Set Considerations 
A research branch within Federated Learning questions the statements made by McMahan et al 
(2017) that Federated Averaging (FedAvg) algorithm also performs well on non-iid and imbalanced 
data sets. A more in-depth analysis on this topic will be discussed later, in the next research 
question, as it is more suited there. For now, a brief overview of the numerical results will be 
discussed next.


Zhao et al (2018) show that non-iid data can reduce the accuracy of a federated neural network 
by up to 55%, contradicting McMahan et al’s (2017) claim. Duan (2019) shows a more modest 
potential decrease in accuracy due to imbalanced training of 7.92% compared to FedAvg, but a 
decrease nonetheless. With his Astraea framework he managed to improve the accuracy by 
5.59% on the imbalanced EMNIST data set and 5.89% on the imbalanced CINIC-10 data set. 
Therefore both claiming that predictive performance gains can be made with their proposed 
solutions.


Shaoxion et al (2019) makes a comparison between their Attentive Federated Aggregation 
(FedAtt) method and the already existing methods FedAvg and Federated Stochastic Gradient 
Descent (FedSGD) in a non-iid setting. The results show that their FedAtt algorithm either has 
similar predictive performance to FedAvg and FedSGD to in some cases better predictive 
performance. This means that FedAtt performs worse than the previously mentioned algorithms, 
who already perform better than FedAvg. 


Jalalirad et al (2019) developed a custom Federate Learning recommender system, which 
reportedly outperformed earlier developed mainstream Federated Learning methods. However, 
the data set used was non-idd. The system was evaluated and compared to a centralized 
approach. They state that "[their] distributed algorithm does not reach the lowest error rates 
reported by centralized algorithms on the same dataset". Which means that in cases where the 
data is non-iid and accuracy is of utmost importance, a centralized method is preferred over a 
Federated Learning method.


3.4.3 Discussion 
Federated Learning’s most common method, FedAvg, is stated by its creators to work well with 
both iid and non-iid data. Although this statement is made and tested by means of an evaluation 
on some artificial data sets, many papers dispute this and validate this finding by showing 
(potential) predictive performance losses when applied to some other data sets. The reason for 
this being that the data distributions of particular data sites are not the same. When adding more 
data to a global model from different distribution does not necessarily produce better models for 
all. This could also be because almost all Federated Learning methods consolidate this data in a 
naive manner, by simply giving all data points from all data sites the same weight in the model. 
The fact that there are multiple empirically-backed papers that dispute the claims made for 
FedAvg working well on non-iid data is, could mean that this claim for FedAvg is unfounded.
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Table 3.4.1 - Summary of algorithm comparisons, showing if the 
algorithm in a row is better (+), worse (−), or practically equivalent 

(=) compared to the algorithm in a column. Nilsson et al (2018)



Federated Learning methods adapted specially for non-iid settings exist, which claim to perform 
better than FedAvg. Those are therefore preferred over FedAvg in non-iid settings. The methods 
proposed by Zhao et al (2018) still include some data sharing. Although they claim only a small 
percentage of data need to be shared, it still circumvents a main pillar of Federated Learning: the 
strict non-data sharing privacy aspect. It is therefore of little value if privacy-preservation is 
important. Zhao’s method does claim a much higher improvement in accuracy (of up to 55% 
compared to FedAvg) than Duan’s (2019) Astraea method (of about 6% improvement) in non-idd 
settings. However, the Astraea method does not need data sharing, unlike Zhao’s method. 


Next, it has been shown that centralized training performs better than FedAvg in non-idd settings. 
A comparison between a centralized approach and the aforementioned (non-iid) adapted 
methods is, unfortunately, not made, and no clear recommendation between the two can be 
made. However, in non-iid settings the data can be highly skewed at some data sites. A 
centralized approach provides no balancing mechanism like the non-iid adapted federated 
learning methods provide. A calculated assumption can me made that the non-idd federated 
learning methods perform better. This should, however, be investigated in the future research to 
confirm this. 


Lastly, it has become apparent that many studies both develop a new Federated Learning 
method, and then perform an evaluation and comparison with another Federated Learning 
method. It is always claimed to be better than the compared method. Most of these comparisons 
are made by predominantly 'primary studies'; studies which both first introduce the novel 
Federated Learning method and then also evaluate and compare it themselves. These primary 
studies usually use a non-standard data set in evaluating their newly developed method. This, of 
course, could lead to potential bias, as the method is developed in order to attain the best results 
on that particular data set, and not on other standard data sets. For a proper comparison to 
investigate which Federated Learning method is truly the best for a given context, more external 
comparisons should be made, preferably on the same data set(s). Only a few studies found in this 
literature review did that, so it is difficult to state the best performing Federated Learning method 
with certainty. 


A good example of such an external study is that of Nilsson et al (2018), which compares multiple 
Federated Learning methods, and a centralized method. This research is more independent; it did 
not develop the compared algorithms itself, but rather evaluates others’ algorithms. Therefore this 
research shows less bias than papers who are presenting and evaluating their own algorithm, 
which is highly dependent on the data set used. It is, therefore, a good source to evaluate the 
performance of these Federated Learning methods. Nilsson states that FedAvg is the best 
performing Federated Learning algorithm compared to FSVRG and CO-OP. However, for non-iid 
settings, a centralized approach performs even better than FedAvg, for non-iid settings FedAvg 
and a centralized approach perform similarly.


3.4.4 Conclusion 
Concluding, a common theme is that most Federated Learning methods (custom ones and 
FedAvg) achieve similar predictive performance results compared to a centralized approach. 
Meaning that the privacy-preserving mechanisms of non-data sharing in Federated Learning do 
not significantly impede model accuracy. Also, multiple researchers claim that their Federated 
Learning method outperforms a local-only approach. Lastly, among the Federated Learning 
methods, the best known results are that of the FedAvg method, at least, in an iid data context.


As the last caveat made clear, a clear distinction should be made between non-iid and iid data 
sets in comparing the predictive performance. As many studies evaluate their Federated Learning 
method on an iid data set, the comparisons are not transferable to all real-world settings. There 
are specialized Federated Learning methods which improve model accuracy in non-iid settings. 
Of these methods Zhao et al’s (2018) method shows the greatest improvement in accuracy of up 
to 55%, but does, however, require data sharing. The Astraea method does not require this, but 
only shows a modest increase in accuracy of about 6%. A more detailed investigation of the 
effect of non-iid data on Federated Learning is included in the next research question, in Section 
3.5.
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Therefore, it is dependent on the specific scenario, as the best performing methods differ. One of 
these scenarios is whether it involves iid or non-iid data. For iid data, the FedAvg method is the 
best choice. For non-iid data it depends on whether data sharing is accepted, to what extend, 
how much data and how often. If it, for example, can share data then Zhao et al’s (2018) method 
is the preferred choice in non-iid settings, as it shows much higher accuracy gains than the 
Astraea method which does involve data sharing. As the latter is still not clearly explained enough, 
the effect of non-iid data on predictive performance in Federated Learning models will be 
investigated in the next research question in more detail.


These findings are briefly summarized in Table 3.4.2.


3.5 Research Question 5 - Predictive Performance and Non-iid Data 
What is the effect on predictive performance effect of utilizing multiple data sites in 
Federated Learning by the means of consolidating this data? 

3.5.1 Introduction 
This research question is answered by, again, the results of the systematic literature review, and 
can be viewed as the main contribution of this study in a theoretical sense. For each paper 
deemed relevant to this research question the relevant information of that paper was extracted 
into the aforementioned extraction form. This was done by either looking at how the researchers 
described the federated optimization algorithms workings, or by looking at the algorithm itself if it 
was provided. In this section the extracted data is listed, analyzed, and conclusions are made 
from these findings.


To understand this research question better, the problem formulation of Li and Smith (2019) is 
revisited. The goal of federated learning is to minimize the following objective function: 


where m is the total number of devices, w is the input parameter (i.e. input training data), Fk is the 
local objective function, and pk specifies the relative impact of each device. This relative impact is 
usually set as: pk = 1/n or pk = nk/n, where n is the total number of training examples, and nk is the 
number of training examples of a particular local device k (Li and Smith, 2019).


This objective function, and especially the relative impact term, is the main topic of this research 
question. As this is the technique how federated learning consolidates local information into a 
global context. Where the relative impact term 1/n gives each local data site the same 
importance, independent of the number of training examples provided, and nk/n gives each local 
data site an importance based on the number of training examples provided. Both relative impact 
terms can be viewed as taking a (simple) average. The hypothesis of this research question is that 

Table 3.4.2 - Best Performing Federated Learning Methods per Situation

Method Situation

FedAvg, McMahan (2017) Best-performing method in an iid data context.

Zhao et al’s (2018) method Best-performing method in a non-iid data context (55% increase in 
accuracy compared to baseline). Requires data sharing between data 
sites.

Astraea method, Duan (2019) Adapted method for non-idd data context. Shows a 6% increase in 
accuracy compared to baseline. Does not require data sharing.
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this simple averaging may not be the most effective method for every federated learning use case 
in terms of maximizing the predictive performance.


This section is divided as follows. First, the proto-Federated Learning algorithms will be 
discussed. Next, the Federated Learning method from the line of McMahan will be examined. As 
most researchers develop their own Federated Learning algorithm, instead of evaluating a new 
one, the examination of each algorithm will be mainly on a paper-to-paper basis. After the 
assessment of the Federated Learning algorithms’ mechanism to consolidate local data into a 
global context, an extensive discussion is presented, which is the main contribution of this 
research question. 


3.5.2 Federated Learning Methods’ Approach to Consolidation 
Federated Learning deviates from traditional machine learning, as been made clear in the 
previous research questions, in that it is a form of a distributed approach. A central server learns a 
global model based on the partial model updates each local data site provides to it. The 
mechanism with which these model updates are consolidated into the global model potentially 
has a large influence on the resulting model and its predictive performance. Questions like how 
Federated Learning deals with particular data sites with much more data than others, or how it 
deals with data sites who have a different data distribution are particularly interesting. How 
exactly these model updates are consolidated in the global model is discussed in this section, 
starting with the proto-Federated Learning methods.   


Allende-Cid et al’s (2013) distributed algorithm consolidates the weather prediction data by simply 
aggregating the training examples with equal weights. A local data site’s contribution to the global 
model is thus proportional to the number of training examples it has, data sites with more data 
examples have, therefore, a higher impact on the global model. The data is, however, iid and has 
the same data distribution over all data sites. 


All other proto-Federated Learning algorithms, except Deist et al’s (2020) method, also use simple 
aggregation, proportional to the number of data points contributed to the global model, as a 
means of consolidating data to the global model. Jochems et al’s (2016) custom distributed 
Bayesian network model performs simple averaging, as does Gong et al’s (2016) custom 
distributed algorithm, and Brisimi et al’s (2018) does the same. Deist et al’s (2017) first developed 
an adapted SVM for distributed use, by using ADMM, as mentioned earlier. This method does 
also performs simple averaging as a means of consolidation, however show that the performance 
per data site has a high variation. In a later paper, Deist et al (2020) mention data skew as a 
potential problem in their approach and mention calibration as a means to alleviate this problem. 
However, they do not share the workings of the used calibration method, apart from that it is 
manual work. 


Next, FedAvg is discussed, the mainstream method presented by McMahan et al (2017). Both 
from the papers of McMahan et al (2019) and Nilsson et al (2018) it is clear that FedAvg 
consolidates data by taking an average, as can be deduced from the provided algorithms. In 
McMahan’s paper nk, the number of training examples added by a local batch, is divided by n, the 
total number of training examples already added to the central server, to determine the (weighted) 
contribution of this local batch to the global model. This creates a ratio exactly proportional to the 
number of training examples added per local client, a local client with many training examples has 
therefore a higher influence on the model than local clients with few training examples. 


Next is FSVRG. The aim of FSVRG is being primarily concerned with sparse data, meaning that it 
concerns itself with features that are poorly presented in the dataset. (Nilsson et al, 2019) 
However, looking at the algorithm (algorithm 2, line 12), the update to the global model just simple 
averages out the new training examples to the global model like in the case of FedAvg. No 
weighting or balancing is applied.


CO-OP is one of the only Federated Learning methods that does appear to apply balancing, 
instead of just taking the average of all provided data samples. However, this is due to the 
algorithm’s nature of being asynchronous. It appears that the balancing mechanism is only there 
on a technical level, not tot balance the data set itself. So on a fundamental level, this algorithm 
also just averages the training examples provided by each local data site.
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3.5.3 Questioning the Effectiveness of Federated Learning on Non-iid and 
Imbalanced Data Sets 
Given these results, the majority of the Federated Learning methods consolidate the local context 
into a global one by taking the average of all locally added data examples. Does, however, simply 
taking the average produce the best results in real-world settings, where data can be messy, 
unevenly distributed, non-iid, or highly skewed? McMahan et al (2017) state with confidence that 
two of the fundamental properties of Federated Optimization are that it works in non-iid contexts 
and on unbalanced data. A clear empirical demonstration of this is, however, not given at this 
point. In many cases, an artificially distributed dataset is generated instead of a real-world one for 
evaluation. For example, McMahan (2017) and Nilsson (2018) use the MNIST dataset to evaluate 
the effectiveness of Federated Learning, instead of a real-world setting. Other papers that are 
mentioned in the previous research question are adaptations of McMahan’s algorithm also make 
this (implicit) assumption that Federated Learning works well with non-identically distributed or 
heavily skewed data. 


It turns out that there are researchers questioning and even contradicting these claims. One of the 
more fundamental and, in this study, oldest statements is made by Allende-Cid et al (2013), who 
state: "the general model is built under the assumption that there is a global context, and that 
[another assumption, this general] model is valid in every one of the distributed sources". 
Indicating that there may exist cases where there is no one overarching general model, and that 
the general model is not always applicable to all local contexts. Although this paper predates the 
formal definition of Federated Learning in 2017, the assumption is rarely discussed or even 
mentioned in later papers. Some more recent papers, published after 2017, revisit this 
assumption and contest the claim made by McMahan (2017) that Federated Learning is always 
suitable in a non-iid and unbalanced data context, and will be discussed next.


3.5.4 Data Skew Problem Already Noted by Proto-Federated Learning Papers  
Deist et al (2017) predates the mainstream FedAvg algorithm, and therefore developed their own 
federated learning algorithm instead of an adapted version of the FedAvg algorithm. The main 
contribution of this paper to this research question is the provision of a detailed comparison 
between the custom federated algorithm and a centralized approach (where all local data is 
transferred to a central server and a model is trained centrally). The results show that the 
federated and centralized methods both show very similar results (0.66 AUC), indicating that the 
federated approach does not impede predictive performance. However, the authors also gave a 
breakdown of the validation AUC performance by excluding one data site (in this case hospitals) 
at a time. By doing this, the variation in the AUC performance became substantial, giving a spread 
of 0.57 AUC for one case to as high as 0.77 AUC for another. Such a high variability by only 
excluding one data site shows the sensitivity of learning a global model (either centrally or 
federally). This reflects back on the assumption discussed earlier by Allende-Cid et al (2013). If the 
results vary this much by only removing or adding one data site, it might be that some local data 
sites do not gain benefit from a global model, because their data distribution differs too much 
from this global model. 


In a later study of Deist et al (2020), they revisit these considerations and conduct another study 
based on their earlier developed custom federated learning algorithm. The results in this study 
show similar results. The spread between predictive performance results between different local 
data sites is again high: with 0.61 AUC to 0.85 AUC for different data sites gives a spread of 0.24. 
In addition, as can be seen in Table 6 of Deist et al (2020) the variation in data points is large: 706 
for one data site up to 16.260 for another. One can imagine that the former data site has less 
influence on the global model than the latter. If the data distributions of both data sites differ 
substantially, it may be the case that the former data site yields worse results than if they just 
trained a local model, given that simple aggregation is used like suggested by the FedAvg 
approach. However, as the number of data points are low for the former data site, it also has less 
impact on the the validation results, which are often an average of the whole federated system


Deist et al (2020) acknowledge this problem. They argue that data skew and bias based on 
combining data from all data sites is indeed a problem. They also show this by describing their 
data. The statistical differences between data sites are significant, and show this by providing 
insight into the data distributions of each data site. For example,  they mention that. some data 
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sites have an excess of a certain type of cancer, that can skew the results of that particular sites 
as an average is used in the federated approach. Deist et al mention calibration of each data site 
as a solution. The method they proposed is, however, manual work and not automatic, and should 
be performed each time data is added, diminishing the practically of this solution.


Jochems et al (2016), also from a healthcare perspective, see a similar problem in their results. 
They mention that the AUC performance is 0.67 across the line, there are, however, major 
differences in per-site local performance. They state that the model used in this study performs 
better in some hospitals (Eindhoven and Liege), but worse in others (Maastro, Aachen, Jessa). To 
which we may conclude that training a global model does not necessarily lead to better local 
performance. On top of that, if the local sites would have relatively low number of data points, 
their significance may be overshadowed by other data sites, as validation of the results are 
ultimately captured in an average.


To summarize, these papers not following the mainstream FedAvg approach provide in-depth 
results on predictive performance with a breakdown on a per-site local basis. Other papers 
usually only give an average of all sites together, and don’t provide this detailed breakdown. Only 
when performing this in-depth breakdown are the large variations of predictive performance 
between local data sites visible. This is not merely due to Federated Learning, as Deist et al (2017) 
show that a centralized approach yields very similar results, and also contain this spread in 
variation between data sites. 


3.5.5 Criticisms on Claims Made by FedAvg Advocates 
Zhao et al (2018) provide a comprehensive and empirically backed paper on this topic of the 
impact of non-iid data sets in Federated Learning. Zhao et al show that non-iid data can reduce 
the accuracy of a federated neural network by up to 55%, directly contradicting the claim made 
by McMahan (2017), and therefore accuracy gains can be made. For this, they develop a new 
method, based on the FedAvg algorithm. The main difference is that initially, at the start of the 
FedAvg algorithm, instead of a randomly initialized model, a centrally trained initialization model is 
used, based on a shared data set. 


The paper of Zhao et al (2018) demonstrates that there is a trade-off between the test accuracy 
and the size of the globally shared dataset (G), and also with the weight, i.e. relative importance, 
of G and the test accuracy of the model. It states that an increase in the importance of a globally 
shared dataset in the algorithm can improve accuracy results. A good trade-off point of only 
sharing 5% global data in order to increase accuracy by 30% is found, providing a large jump in 
accuracy for only sharing a relatively little amount of (potentially privacy-sensitive) data.


However, as a result of the introduction of a globally shared model, one of the pillars of federated 
learning is breached; data sharing between data sites is again introduced. Although this sharing of 
data is done manually and as a preliminary step even before the initialization of the algorithm, this 
approach may not be a suitable practical solution for many federated settings where privacy is of 
utmost importance. Nonetheless, it does show, on a more fundamental level, that Federated 
Learning does not always provide the best results in a non-iid setting, directly contradicting 
McMahan’s (2017) aforementioned claim.


Duan (2019) builds upon this insight of Zhao et al (2018) and develops a self-balancing 
framework, called Astraea, which among others, eliminates the need for manually creating a 
globally shared dataset. Duan shows, experimentally, by making use of an imbalanced subset 
from EMNIST dataset, a more modest potential decrease in accuracy due to imbalanced training 
of 7.92% compared to FedAvg, but a decrease nonetheless. With his Astraea framework he 
managed to improve the accuracy by 5.59% on the imbalanced EMNIST data set and 5.89% on 
the imbalanced CINIC-10 data set. 


The Astraea framework is described by Duan (2019) as follows: "the Astraea framework 
counterweights the training of Federate Learning with imbalanced datasets by two strategies. 
First, before training the model, Astraea performs data augmentation to alleviate global 
imbalance. Second, Astraea proposes to use some mediators to reschedule the training of clients 
according to the KLD between the mediators and the uniform distribution. By combining the 
training of skewed clients, the mediators may be able to achieve a new partial equilibrium". KLD 
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here means the Kullback Leibler divergence, a measure to test the difference between two data/
probability distributions.


Duan (2019) essentially revisits the same assumption made by Allende-Cid et al (2013). Duan 
states that existing studies make the assumption that the global data distribution of a federated 
network is balanced, even though the volume of data on the devices may be disproportionate. In 
real-world scenarios, however, the global data distribution can be imbalanced. 


On top of empirically demonstrating the accuracy loss by class imbalance on imbalanced data 
sets, Duan also gives mathematical proof that the imbalance of distributed training data can lead 
to a decrease in accuracy of Federated Learning.


To sum up, Zhao et al (2018) and Duan (2019) still use the simple averaging of FedAvg in the end. 
However, due to the preliminary (and intermediate) balancing steps it cannot be simply stated that 
they take an average as to how they consolidate the local context into a global model. On top of 
this, they preliminarily balance local clients by making use of a globally shared data set, and, in 
the case of Duan, take an intermediate step by making use of mediators to balance the local 
clients even more when necessary. 


Federated Learning in non-iid settings: a visual explanation 
A visually illustrated error of training a federated model with a skewed data set is demonstrated by 
Verma et al (2019), see Figure 3.5.1 below. The problem arises in a situation where different sites 
are estimating the function on only a (concentrated) portion of the data range, which can happen 
with skewedly distributed data. The estimated local function does not represent the ground truth 
function, and simply averaging the two out will result in an erroneous estimated function. 

To combat this problem, Verma et al (2019) propose a new federated learning method which 
differs from traditional federated learning in two ways. The first is bounds-aware fusion, where the 
aggregation estimates the bounds of each local data site, trying to find overlap with other data 
sites, in order to estimate functions based on their aggregate bounds. The second is bounds 
expanding data exchange, where data is shared among local data sites, in order to expand their 
data range, mitigating the aforementioned problem of concentrated data ranges in particular data 
sites. 


The mentioned custom federated model is, however, not documented in detail, and not 
empirically tested with a real-world data set. This questions the validity of the claims made about 
the effectiveness of their new federated learning method, and should be investigated in further 
research.


A clustering approach 
Another alternative approach to consolidating local data comes from the healthcare sector. As 
hospitals are particularly prone to non-identically distributed data, due to geographic placement 
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Figure 3.5.1 - Problem with function estimation in Federated Learning with data skew.  
By Verma et al. (2019)



and medical specialization, Huang et al (2019) proposed a novel community-based federated 
learning (CBFL) algorithm. They acknowledge that Federated Learning may underperform when 
data is non-identically in-dependently distributed, which is especially the case in hospitals. To 
mitigate this they add a preliminary step which clusters hospital data into several similar 
communities (based on patient age, ethnicity, and more), and a separate model is trained on each 
cluster. (As opposed to earlier alternative methods, without data sharing.) The reasoning behind 
this is similar as discussed earlier in this section: it is in this context easier to train multiple models 
per cluster, than to learn one general model which over-fits or under-fits several local data sites. 
They evaluate their model and concluded that CBFL outperformed baseline Federated Learning, 
confirming their hypothesis of the underperforming of federated learning in non-iid settings. 


Keyboard type prediction revisited and wrap-up 
Shaoxiong et al (2019) also questions the assumption made by regular Federated Learning of 
aggregating all local client’s data by simply averaging the results on the aggregation server. They 
state that, in the case of keyboard type prediction, as is also the case study in Hard et al’s paper 
(2018), this assumption could lead to worse predictive performance, because the clients can have 
very subjective and specific behavior. They provide a solution to this by adapting the FedAvg 
algorithm, by making use of attentive weights. "The method minimizes the weighted distance 
between the server model and client models by iteratively updating parameters while attending to 
the distance between the server model and client models", as stated by Shaoxiong et al (2019).


Lastly, the two remaining authors in this study who question the approach of simple averaging are 
stated next. Wang et al (2019) propose a control algorithm that determines the best trade-off 
between local update and global parameter aggregation to minimize the loss function. Schmid et 
al (2019) question whether just consolidating data of various clients is actually improving the 
quality of the objective (i.e. classification or prediction). It states that the quality improvement is 
not a guarantee, and depends on the aggregation method used, but in general it does hold true 
that more data input is better for learning. In this case the authors suggested using ensemble 
methods, like bagging and boosting, in the context of federated learning.


To summarize, the alternative methods which take into account the data skew problem, still 
perform, in most of the cases, simple averaging of local data into the global model. However, this 
averaging is often preceded by a preliminary step of data sharing among the local clients, 
clustering of similar local data sites, or by some other balancing mechanism which may or may 
not involve data sharing.


3.5.6 Conclusion and Discussion 
Concluding, almost all Federated Learning methods consolidate features by merely taking the 
average of each local data site’s contribution to the global model in terms of data points (i.e. 
number of data points provided by a particular data site divided by the total number of data 
points in the global model). Studies mentioned in the earlier part of this section proclaim that 
these methods of consolidating local data also work well on non-iid and imbalanced data. 
However, a substantial number of papers, discussed later in this section, differ from this approach 
and mention that just taking an average is not be the right course of action for imbalanced data 
sets. Predictive performance can actually be improved if another balance between local and 
global context is set and should be taking into account when working with non-iid and 
imbalanced data sets. 


On top of that, one should take the objective of performing machine learning - federated or not - 
in mind. As concluded earlier, based on the papers of Deist et al (2017, 2020) and Jochems et al 
(2016), the per-site predictive performance shows a large spread, both in the federated and 
centralized case. If a local data site (e.g. a hospital) where to embark on a journey of implementing 
machine learning in order to perform some prediction (e.g. on predicting cancer), they should 
seriously question whether a centralized or federated approach would be useful for them. While 
the assumption of federated learning is that more available data leads to a better model is true in 
many cases, it is not for a local data site whose data distribution does not match that of the global 
model, i.e. if there is data skew. In this case a locally trained model could be a better fit. To test 
this, an in-depth review of the results, and in particular a breakdown of the data distributions and 
the results (after training the model) on a per-site basis, should be performed.
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Whether Federated Learning is the right approach is context dependent. First a separation should 
be made between iid and non-iid contexts. The majority of the findings state that Federated 
Learning, and especially FedAvg, has similar predictive performance compared to a centralized 
approach in iid settings, and better performance compared to a model trained on only local data, 
due to the increased data set size. Therefore, the advantages of using Federated Leaning are 
clear: it performs similarly to a centralized approach and due to its privacy-preserving 
mechanisms even has the potential of attaining data that were previously not accessible. For non-
iid settings it is, however, a different story, as standard algorithms like FedAvg perform worse than 
a centralized, or even a local approach in some cases. For non-iid settings the choice is 
dependent on importance of privacy-concerns. A Federated Learning method adapted for non-iid 
usage like Zhao et al’s (2018) method, the Astraea framework, or others mentioned in this section 
has preference over FedAvg. A centralized method is preferred over FedAvg if there are no privacy 
concerns and data is available readily. A comparison between a centralized approach and the 
non-iid Federated Learning methods has not been made yet, and should be investigated in the 
future. Also, a local-only approach should be considered in some cases, as discussed in the 
previous paragraph.  


3.6 Research Question 6 - Non-iid Data Identification 
RQ6:

What is an appropriate method for identifying non-iid data sets in the context of Federated 
Learning?


3.6.1 Introduction  
The importance of this research question is clearly demonstrated in the previous research 
question. Where it became clear that non-iid data has a significant impact on the predictive 
performance of Federated Learning methods. When faced with non-iid data sets, Federated 
Learning methods which are tailored to working with non-iid data should be used as they yield 
better predictive performance overall. Therefore, it is important to find a method which can detect 
non-iid data in a Federated Learning context.


To answer this research question, first, a definition of non-iid data in the context of Federated 
Learning will be constructed, as it is yet to be clearly defined. Only when a clear definition is 
drawn, a method to identify non-iid data sets can be found. When explicitly defined, a method 
fragment which can identify whether the data sets are non-iid or iid can be constructed, which will 
contribute to the overall research goal of this study. Without a clear definition this is not possible.

 

The first part is answered by the following method. It is conduced by extracting already found 
papers in the SLR, and filtering them based on the inclusion criterium of 'having relevance to iid, 
non-iid data'. First based on the title and abstract (9 studies), then on full-text (4 studies). Also, 
this process is repeated by backwards citation search, which brings the total number of studies 
used to answer this research question to 7. From these filtered relevant studies, relevant  
information about non-iid data is extracted and synthesized by making use of a data extraction 
form (See Appendix B - Data extraction form 2), as well as searching for methods or references to 
methods which can identify non-iid data in a Federated Learning context. For the second part, a 
regular literature study is conducted. For this, references found in the studies about non-iid data 
in the already done SLR are added. In addition, the studies used to construct the non-iid data 
definition in Federated Learning are also used. If they describe or reference a method to 
determine non-iid data, it is also included.


3.6.3 Non-iid Definition in Federated Learning 
In this section a definition of non-iid data sets in the context of Federated Learning will be 
constructed. The definition of non-iid data in the general sense is not applicable to a Federated 
Learning context because of its infrastructure and privacy-properties. Whereas in the general 
sense a data set can be assessed to be non-iid, in Federated Learning this is not the case. There 
is by definition not one (global) data set in Federated Learning; there are merely several separated 
data sets, which cannot be combined due to the main purpose of Federated Learning: privacy 
preservation. Combining the data sets to assess non-iidness would defeat the foundation of why 
Federated Learning was founded. Therefore, the existing techniques and methodologies cannot 
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be used to assess non-iidness in the context of Federated Learning. Instead, it should be 
assessed incrementally on a per-data set basis, comparing each data set individually to the 
others, to hypothesize what a combined data set would entail. Next, to understand the basics, the 
definition of non-iid is briefly discussed from a general perspective first, then the definition is 
tailored to what is relevant to the context of Federated Learning.


In statistics, iid data is data where observations are independent and identically distributed. It is a 
very common assumption that is often made in the field of statistics and data science (Clauset 
and Aaron, 2011). Here, independence means that the probability of observing two values (x1 and 
x2) is the same as the probability of observing this one observation multiplied by the other  
P(x1, x2) = P(x1) * P(x2) (Clauset and Aaron, 2011). Basically, the covariance of the observations 
are, and should be by this rule, zero. In simpler terms, this means that observing the first 
observation will not influence the probability of the subsequent observation(s). Identically 
distributed, then, means that two observations are from the same probability distribution. Non-iid 
data is then the opposite, i.e. data sets that are not identically distributed and independent. This 
definition is, however, very general and applied in statistics. Next, the definition of non-iid data is 
reflected to the context of Federated Learning.


Similar as in statistics, the field of traditional machine learning is also, in theory, built upon the 
assumption of having random variables that are iid (Dagstuhl, 2015). This also confirms the 
findings in the previous research question, which states that many authors assume that their 
Federated Learning methods will be used only on iid data sets. Cao (2015) confirms Dagstuhl’s 
statement by stating that: "most of the classic theoretical systems and tools in statistics, data 
mining and machine learning are built on the fundamental assumption of IIDness, which assumes 
the independence and identical distribution of underlying objects, attributes and/or values". 
Indicating that, as in the definition from Clauset and Aaron (2011), data is non-iid when two 
observations come from different data distributions. 


Does, however, this assumption of iidness hold in Federated Learning? Dagstuhl (2015) is clear on 
this and states that the assumption can only be made in theory. In practice it is often violated, 
where training data is likely to to come from different distributions, because the used data is 
Federated Learning is likely to come from a heterogeneous set of devices. This means that the 
data distributions of different devices depends on their usages [in data generation], which are 
likely to be different (Duan, 2019). (Usage here references to data generation patterns, for example 
the usage of a mobile phone keyboard will influence the data generation pattern in terms of words 
typed and the frequency.) This means that in Federated Learning iidness of data set cannot be 
assumed, and in some use cases with heterogeneous devices is even likely to be non-iid as 
opposed to iid. This indicates that there is a need to identify non-iid data sets in the context of 
Federated Learning. 


To identify non-iid data sets the term non-iid will be divided into smaller problem parts. Such a 
practical list is constructed by Duan (2019). Duan states that in Federated Learning non-iid data 
sets can be caused by:

1. Size Imbalance, where the data size on each device (or client) is uneven;

2. Local Imbalance, where each device does not follow a common data distribution;

3. Global Imbalance, means that the collection of data in all devices is class imbalanced.


This list is more specific to Federated Learning, and overlaps with Dagstuhl’s (2015) earlier 
statement that non-iid data sets come from different data distributions (overlaps with point 2). 
Also, it is likely for point 1 to occur in Federated Learning. As just stated earlier, the 
heterogeneous nature of devices in Federated Learning is likely to cause different data generation 
patterns, due to the fact that the edge devices have different usage patterns. In more practical 
terms, some edge devices could generate much more data than others. Due to the fact that 
Federated Learning weights each data point equally at the consolidation, as investigated in the 
previous research question, a few devices may influence the model disproportionally. Lastly, Sun 
et al (2019) confirm both the local imbalance and the global imbalance as a problem in Federated 
Learning. Global imbalance, or class imbalance, occurs when features with categorial values are 
heavily skewed towards one class, such that one class has a large number of examples and the 
other only a few (Japkowicz & Stephen, 2002)
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This list of criteria can be used to assess non-iidness in Federated Learning. It can be used to 
compare (sample) data sets that will be used in a Federated Learning system, in an incremental 
way. In this way the new data set is to be assessed and compared by the existing data sets to be 
similar in size, having no different data distribution, and contain no class imbalance. 


To conclude, non-iid data sets in the context of Federated Learning are primarily concerned with 
differences in data distributions between the data sets of edge devices, as the individual data sets 
will form a theoretical consolidated data set in the end. As has been made clear, the assumption 
that data is iid cannot be made in Federated Learning. More practically, non-iid data sets can be 
caused in Federated Learning by adding new data sets which area assessed to be adversarial to 
the existing data sets on the basis of three factors: (1) size imbalance, (2) local imbalance, and (3) 
global imbalance. Now the definition of non-iid data in Federated Learning is clear, a method 
which can detect non-iid data sets in Federated Learning is introduced.


3.6.4 Identifying Non-iid Data Sets 
In this section the method of Rabanser et al. (2018) is presented. It is a high-level methodology 
which guides in identifying non-iid data sets in the context of Federated Learning. The 
methodology is supplemented by the earlier drawn definition, some more technical and lower-
level methods, and the three criteria by Duan (2019). 




The method of Rabanser et al. (2018) contains three steps: (1) Dimensionality Reduction, (2) a 
Two-Sample Test(s), and (3) Making an assessment and a conclusion from these insights. The 
method is visualized in Figure 3.6.1. The first step, dimensionality reduction, or feature selection,  
is used to filter out unnecessary features from the data set, i.e. features which are assessed to not 
contribute to predictive performance of the model. Feature selection is important to help in 
understanding the data, but also to increase the predictive performance of the prospective model, 
as stated by Chandrashekar and Sahin (2014). This is also done for practicality, as too many 
features would make the assessment time intensive. 


The second step is performing a two-sample test. These tests result in a metric which determines 
the likelihood of the two data sets to be of the same or of a different distribution. This is what 
determines whether the data sets are non-iid or iid in the context of Federated Learning. 
Rabanser et al (2018) suggests several tests, such as: the Maximum Mean Discrepancy (MMD) 
test, Kolmogorov-Smirnov (KS) Test, and the Chi-Squared Test.


To provide an alternative to the two-sample test, Nilsson (2018) and McMahan et al. (2016) show 
another approach. They divide the data into shards and plot these shards on a simple bar charts 
(histograms) and compare them visually to determine non-iidness. These shards are constructed 
in the following way. The data is sorted, then it is divided up into equally sized shards, and lastly a 
randomly assigned number of these is given to each client (Nilsson, 2018). The bar charts used 
are shown in Figure 3.6.2. This test could also be used to determine non-iidness in data sets for 
Federated Learning application. It could be used as an alternative the two-sample tests.



To make this second step of Rabanser more general, a different approach is presented. Next to 
merely testing whether the newly assessed method differs in data distribution from the existing 
method via the aforementioned tests, the three criteria of Duan (2019) are used in this step. These 
criteria are: (1) size imbalance, (2) local imbalance, and (3) global imbalance. Here the second 
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Figure 3.6.1 - Method for identifying distribution differences between two data 
sets. Rabanser et al. (2018)



criterium coincides with the two-sample tests, as they test differences in distribution, which is 
another term for local imbalance.


Lastly, the method is concluded by making an professional assessment and taking conclusions on 
the insights provided in the previous step. 


A shortcoming of this method for Federated Learning is that is only compares two data sets at a 
time. Whereas Federated Learning has the potential of having a large number of separate data 
sets. The number of combination might grow large very quickly as more data sets are added. A 
possible solution could be to merely take a sample of the data sets involved and/or select data 
sets which have a higher likelihood of differing from the other distributions. 


3.6.5 Conclusion 
To conclude, non-iidness in the context of Federated Learning has a slightly different definition 
and way of assessing than in the traditional definition. As in Federated Learning there is not one 
data set, but multiple separated data sets which by principle cannot be combined, non-iidness 
cannot be assessed by means of an evaluation on one data set. Instead, it should be assessed by 
comparing each potential new data set incrementally to the existing data sets. For this, the 
methodology of Rabanser et al. (2018) is used and altered. The proposed method consists of 
three steps:

1. Dimensionality reduction, i.e. feature selection, to reduce the number of features to a 

manageable number with only relevant features;

2. A three-criteria test on non-iidness; and lastly,

3. A final assessment, where conclusions are drawn based on the findings in the previous step.   

 

For the second step the three criteria of causes of non-iidness in Federated Learning by Duan 
(2019) is used:

1. Size Imbalance, where the data size on each device (or client) is uneven;

2. Local Imbalance, where each device does not follow a common data distribution;

3. Global Imbalance, means that the collection of data in all devices is class imbalanced.


In this way, an assessment on the non-iidness of a newly added data set to a Federated Learning 
system can be made. 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Figure 3.6.2 - Determining non-iid data sets by shards. 
Nilsson (2018)



4. Method Design 
In this chapter the artifact, i.e. the method, will be designed. The method will be designed  
according to the research methodology Situational Method Engineering (SME) of Harmsen (1997), 
as also specified in chapter 2.2. This will also constitute the third phase of the overall research 
methodology DSRM: design and development. 


4.1 Characterization of Situation 
A situation is the combination of circumstances at a given organization (Harmsen, 1997). The to 
be designed method will, then, be tailored to this specific situation to achieve its set goal. It is, 
therefore, an important first step to define the situation, as all other parts of this research 
methodology are dependent on this. Looking at the already executed first two phases of DSRM, 
problem identification & motivation and define objectives of a solution, a similarity can be 
observed between the characterization of situation step in SME. Moreover, the similarity reaches 
to such an extent that this phase will make use of the already drawn problem context.


The situation where this method will be applied can be characterized by the following description: 
This method is intended for organizations who (i) want to implement Federated Learning, (ii) are 
unaware of the best possible Federated Learning method regarding their data-related 
characteristics, (iii) have a data landscape with multiple distinct data silos, and (iv) data sharing 
between data silos is limited due to privacy considerations. These privacy considerations have 
their origin in a legal and a competitive-interest perspective. Organizations who can identify with 
this situation characterization are a potential fit for this method.


The goal of the method is to find the best solution-fit for this organization given the organization’s 
data-related characteristics (and privacy requirements, which can also be seen as a data-related 
characteristic) which are relevant to the choice of a Federated Learning method. This method will 
precede any actual implementation of a Federated Learning method, but does, however, lay the 
groundwork for an informed choice. As it requires technical expertise in the field of machine 
learning and data science, the actors executing this method should have professional skills 
relating to these fields. These actors are already identified in the brief stakeholder analysis in the 
introduction of this report.


The situation characterization is scoped to be narrow and not too complex, which is exactly what 
Harmsen (1997) suggests as a good practice. The project characterization should not be to 
include all possible factors as it would make the project characterization process too complex. 
However, this characterization does include several key factors, as suggested by Harmsen: the 
goal of the situation, the skill of the actors needed, project related factors, and knowledge and 
expertise of the users. In this way all four situational factor types are included in this 
characterization.


4.2 Selection of Method Fragments 
In this section the next step of Harmsen’s Situational Method Engineering is conducted: the 
selection of method fragments, and as an extension also the method base is described. The 
characterization of the situation, drawn in the previous section, is used as a basis for the selection 
and creation of method fragments. Meaningful selection of the right method fragments require a 
thorough characterization of method fragments in a formal way in order to maintain comparability 
and consistency (Harmsen, 1997). To account for this, method fragments are defined by using the 
already drawn template in Chapter 2.2, Table 2.2.1.


Relation to Literature Review 
The already conducted literature review is used as a basis for creating and selecting method 
fragments. More specifically, the earlier determined differentiating characteristics of Federated 
Learning are used as the main way of shaping the method. This is used as a basis because of the 
definition of differentiating characteristics. Differentiating characteristics are characteristics of 
Federated Learning methods which both (i) are relevant to the to-be-designed method, i.e. those 
which may limit options or impact the desired outcome regarding a organization’s data-related 
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characteristics and privacy considerations, and (ii) have variation in implementation among the 
Federated Learning methods, i.e. not all Federated Learning methods. 


These differentiating characteristics are used as the basis for the method fragments, because 
they are in line with the goal of the method: to make an informed choice between Federated 
Learning methods. These differentiating characteristics allow for a sensible and definition-based 
decomposition of the problem at hand. This makes sure that the reasoning is clear, explicit, 
reproducible, and, above all, that it contributes directly to the overall goal. In addition, this 
decomposition makes sure that the methods do not overlap but also, together, provide a 
complete solution, as is suggested by Harmsen (1997). 


The five differentiating characteristics of Federated Learning methods, determined earlier, are: 

1. Data partitioning, i.e. system heterogeneity;

2. Underlying machine learning models;

3. Privacy guarantees;

4. Performance (accuracy, predictive performance);

5. Non-iid data support, i.e. statistical heterogeneity.


Next, the relation between the method fragment selection process and the already conducted 
literature study is explained.


Research question 2 takes inventory of existing Federated Learning methods in the literature. This 
list determines what the possible options are in making an informed choice, it is used as the basis 
for the remainder of the selection process.


Research question 3 (and in extension, 4 and 5) determines the relevant and differentiating (data-
related) characteristics of Federated Learning. It asks what are unique and relevant characteristics 
of Federated Learning methods which have an impact on the to be made choice. In this way an 
informed selection can be made of the characteristics of Federated Learning which truly matter to 
achieve the goal of this method. Instead of including all possible characteristics of Federated 
Learning, which may not be relevant, a small but relevant selection is made. Each of the identified 
differentiating characteristics can be translated to (selected) method fragments, as the relevancy 
is already determined.  


Research Question 6 is more fine-grained. The impact of non-iid data on Federated Learning is so 
significant that it is appropriate to find an additional, lower-level method for determining non-
iidness. As non-iidness determines to a large extend which Federated Learning method is more 
suitable for that situation. Some Federated Learning methods are created specifically to work  
better with non-iid data. Therefore, a way of determining the non-iidness of a data set should be 
included. For this, a small literature study is conducted, to make a selection within the myriad of 
possible ways of identifying non-iidness in Federated Learning. This identification of non-iidness 
is then used as a method fragment, but on a lower and more fine-grained level than the previous 
five.


Method Fragments

In this section the method fragments, which will be the building blocks of the overall method, are 
described. The method fragments are selected mainly based upon the 5 identified differentiating 
characteristics of Federated Learning methods. The template for each method fragment was 
given in Chapter 2.2 in Table 2.2.1, and is repeated here for convenience in Table 4.2.1. The goal 
of the method fragment also represents the contribution argument, in terms of Wieringa’s Design 
Cycle (Wieringa, 2014). It is a way of reasoning why it is feasible that this method fragment would 
contribute to stakeholder and research goals and, in turn, the overall goal of the methods.


Table 4.2.1 - Method Fragment Properties Template

Method Fragment Property Explanation

Name Name of the method fragment

Description Description of the method fragment in freeform text

Method Fragment Property
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Method Fragment 1: Determine Underlying Machine Learning Problem Type 

The goal of this method fragment is to determine or choose the Machine Learning problem type 
that underlies the prospective Federated Learning application. As each Federated Learning 
method only supports a certain Machine Learning model, the choice to what is suitable for a given 
situation is limited. For example, if the underlying machine learning model only supports the 
problem type of classification it is of no use if the intent was to solve a linear/regression problem. 
Therefore, it is of significance to know which problem type should be supported.


The method fragment requires the organization to already have set the business objective 
regarding the prospective Federated Learning system. This is also the input of the method 
fragment. This business objective is required because it determines the Machine Learning 
problem type. 


The users of the method fragment are tasked to determine the machine learning problem type 
that the prospective Federated Learning application should support. The users are supported by 
provided definitions. As provided input, several types of Machine Learning model types and 
problem types are listed, which are extracted from the literature. These can be found in Appendix 
E: definition 4.1 and 4.2.


The user of the method fragment should, by means of analyzing the problem statement of the 
prospective Federated Learning application, and by means of this list, identify which problem type 

Goal The goal of this method fragment. It should contribute to 
the overal solution objective goal

Input Input needed for this method fragment, such as: data, 
knowledge, resources

Prerequisites Required other method fragments which need to be 
completed before this method fragment

Actions The actions this method fragment will undertake

Output The output this method fragment produces. Such as: 
new insights, data, knowledge

ExplanationMethod Fragment Property

Table 4.2.2 - Method Fragment 1: Determine Underlying Machine Learning Problem Type

Method Fragment 
Property

Description

Name Determine Underlying Machine Learning Problem Type

Description In this method fragment the underlying Machine Learning Problem Type will be either chosen, 
if there is still flexibility in this, or determined

Goal To determine the Machine Learning Problem Type

Input - Business objective regarding Federated Learning system goals 
- (Provided by the method) Machine Learning Problem Type List [Definition 4.1 and 4.2]

Prerequisites Business objective for Federated Learning system is set

Actions Investigate or make an informed choice about the underlying Machine Learning model of the 
prospective Federated Learning application

Output Knowledge about the Machine Learning problem type is clear
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supports the defined problem objective best. This result will later be used to figure out which 
Federated Learning method supports this problem type.


Method Fragment 2: Data Partitioning 

The goal of this method fragment is to determine whether the data set that is intended to be used 
in a prospective Federated Learning application is either HPD or VPD. This is an important piece 
of knowledge needed to determine which Federated Learning methods are applicable to this data 
set. Some Federated Learning methods have restrictions in what type of data partitioning they 
support; most support only HPD, some only VPD or both. Therefore, this piece of knowledge is 
vital to the overall goal of the method.  


The actors of this method fragment will analyze the (distributed) data set, intended to be used for 
a prospective Federated Learning application, and will determine whether the data set is 
horizontally (HPD) or vertically (VPD) partitioned. This analysis is accompanied by the already 
drawn definitions of HPD and VPD. These definitions will provide the the user of this method the 
knowledge to determine themselves what the data partitioning type of the data sets are. As the 
situation characterization already stated, the executers of this method will be professionals in the 
area of data science and machine learning. It can therefore be assumed that the users of this 
method will be able to determine the right type of data partitioning of the data sets by using their 
professional expertise supplemented by the definitions of HPD and VPD. These definitions can be 
found in Appendix E: Definition 5.1 (HPD) and Definition 5.2 (VPD).


The method fragment uses the prospective data sets as input. Characteristics of these data sets 
will be used to test against the definitions of HPD and VPD. If a domain model (diagram) is 
available it can also be used as an addition, as it can speed up the process. Otherwise a domain 
model can also be constructed by inference from the data sets itself. As a guideline, if the domain 
models per data site are (practically) identical, then it is an indication that each data site stores the 
same features for different subjects. This is then a strong indication for HPD. However, the data 
itself should also be analyzed to confirm this assumption, by means of identifying whether 
subjects are indeed not fragmented across data sites.


It is recommended that the data partitioning type is documented for later purposes, it represents 
the knowledge output of this method fragment.


Table 4.2.3 - Method Fragment 1: Determine Data Partitioning Type

Method Fragment 
Property

Description

Name Determine Data Partitioning Type

Description This method fragment is used to determine the data partitioning type (HPD or VPD) of the data 
sets which will be used in the prospective Federated Learning model.

Goal To determine the Data Partitioning type: HPD or VPD (Horizontally or Vertically Partitioned 
Data), which will limit options.

Input - Prospective data set(s)

- Domain model (optional) 
- Data partitioning definitions and guidelines [Definitions 4.1 and 4.2, Appendix E]

Prerequisites -

Actions The data set is analyzed and determined, by their definitions, to be HPD or VPD.

Output Knowledge about the type of data partitioning

52



Method Fragment 3: Determine Privacy Guarantee


The goal of this method fragment is to determine what the required privacy guarantee level is of 
the data set(s) used. This, in turn, contributes to the higher-level goal of the overall method: it 
ultimately helps the user of the method in making a choice between the Federated Learning 
methods available. For this, the privacy guarantee is important. It is a hard requirement, i.e. it 
cannot be changed by the user of the method itself, as it originates from a legal or competitive-
interest source. Therefore, only Federated Learning methods which can at least support the 
minimum required level of privacy can be considered viable options.


The users of this method fragment will assess the privacy guarantee level of the data sets 
involved in the prospective Federated Learning application. As the users’ have experience in data 
science and/or machine learning, they will have sufficient knowledge on how to assess this on a 
technical level. In addition, in Federated Learning three levels of privacy guarantees are 
distinguished and described. This piece of knowledge together with the already inherent expertise 
of the users will provide enough context to determine the privacy guarantee level, given legal and 
competitive-interest requirements are set. These requirements are assumed to be non-
changeable as the user of the method has nog influence over them, they are set by management 
or the legal system. 


In the previously conducted literature study 3 privacy guarantee levels were identified in 
Federated Learning. These levels can be found in Appendix E: Definition 6.


These categories and their descriptions should provide information for the user to determine the 
appropriate category. To further help users determine the privacy level of the data sets, the 
following guidelines supplementing the descriptions of the three privacy guarantee levels are 
given next.


First the legal ramifications are discussed. The literature references to the European GDPR 
prevalently (Yang et al, 2019; Sun et al, 2019; Liu et al., 2019; Nilsson et al., 2018), indicating that 
this piece of legislation is new and strict. The GDPR will therefore be used as a leading example 
for privacy requirements from a legal perspective. Yang et al. (2019), Nilsson et al. (2018), and Sun 
et al. (2019) indicate that the no data sharing principle of Federated Learning does not pose any 
additional violations of this regulation, and can therefore be seen as  compliant to GDPR. This is 
under the assumption that the organization was already compliant with the GDPR before the 
implementation of Federated Learning. A full GDPR compliance assessment is out of scope of 
this study. This study only considers the implications Federated Learning has on these 
regulations. This line of reasoning, therefore, only holds when the organization was already GDPR 
compliant in the first place. Concluding, the need for compliance with privacy regulations is well-
addressed by the standard Federated Learning privacy guarantee level (2) of no data sharing 

Table 4.2.4 - Method Fragment 3: Determine Privacy Guarantee

Method Fragment 
Property

Description

Name Determine Privacy Guarantee

Description This method fragment is used to determine the privacy guarantee level required by the 
organization on data sets that will be used by a prospective Federated Learning method.

Goal To determine the required privacy guarantee level of the data set(s) used

Input - Prospective data set(s) or Domain Model (optional) 
- Privacy Level Definitions and Guidelines [Definition 6, Appendix E]

Prerequisites Organization has assessed privacy requirements of the data sets

Actions Data set(s) get categorized in their privacy guarantee level

Output Knowledge about the Privacy guarantee level of a data set
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between data sites, given that privacy regulations were already met before the implementation of 
Federated Learning in the first place.


This also implies that the need for a higher level of privacy guarantee, the additional privacy 
mechanism, does not originate from general privacy regulations, but from competitive-interest 
considerations or specific privacy laws for specific industries. The information that has the 
potential of being leaked at the privacy level up to this one, is merely aggregate data instead of 
raw data. If competitive-interest considerations are of such importance that even aggregate data 
is of utmost importance to remain private (to other parties/data sites involved in the prospective 
Federated Learning application), then this additional privacy mechanism level is the right choice. 


Lastly, the least protective privacy guarantee is discussed. Given these previous guidelines, it 
seems as if the first privacy guarantee level (violates the no data sharing principle) does not apply 
at all. However, it is recommended that an organization chooses the least restrictive privacy 
guarantee, as this limits choices of Federated Learning methods the least. An example of a 
context in which this level is viable would be when the organization has control over all data sites 
involved, but does not want to transfer all data to a central server. In this way, both the 
competitive-interest considerations and the privacy regulations do not apply. 


It is recommended that the resulting privacy guarantee level is documented for later purposes, it 
represents the knowledge output of this method fragment.


Method Fragment 4: Non-iid Data Identification


The goal of this method fragment is to determine whether the data sets used for the prospective 
Federated Learning application are non-iid or iid. The contribution argument that is made for the 
justification of this method fragment is the following. There are several Federated Learning 
methods which perform sub-optimally in terms of predictive performance in a non-iid context. 
Whereas several other Federated Learning methods exist which are specialized to optimize the 
predictive performance results in a non-iid context. Therefore, to make an informed choice of the 
Federated Learning methods, which is the overall goal of the method, it is of added value to know 
whether the data sets in question are non-iid. 


The users of this method fragment will analyze the prospective data sets and determine whether 
they are non-iid or iid in the context of Federated Learning. As non-iidness in the context of 
Federated Learning is not something that can be assumed to be knowledge the user possesses, a 
definition of non-iid data sets is extracted from the literature study. 


Table 4.2.5 - Method Fragment 4: Non-iid Data Identification

Method Fragment 
Property

Description

Name Non-iid Data Identification

Description The prospective data sets are tested whether they classify for non-iidness in the context of 
Federated Learning

Goal To determine whether the prospective data sets are non-iid or not

Input - Prospective data sets 
- Non-iid definition, sub-method, and guidelines (provided by method)

Prerequisites Privacy guarantee level known (output of method fragment 3) & data partitioning type known 
(output of method fragment 2)

Actions The data sets are assessed to be non-iid or idd, via a three-step sub method.

Output Knowledge about whether the data sets are iid or non-iid
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The provided input of this method, the three-step non-iid identification sub-method, alongside the 
definition of non-iid data in the context of Federated Learning can be found in the conclusion of 
research question 6, in Chapter 3.6.5.


This method requires an iterative approach when more than two data sets are used in the 
evaluation, as the method only compares two data sets at a time. This can quickly become very 
time consuming as the number of combinations quickly rises the more data sets are involved. For 
this scenario, a sample of some of these data sets can be used.


The prerequisites of this method fragment are that the privacy guarantee level is known and that 
the data partitioning type is known. This is important for the sake of the method’s efficiency, as 
the outcomes in terms of the most applicable Federated Learning methods are limited to such an 
extend that the non-iid identification method fragment does not provide more useful information 
to make an informed choice.


Method Fragment 5: Predictive Performance Trade-Off


The goal of this method fragment is to assess the importance of predictive performance and 
possibly make a trade-of with privacy. 


This method fragment is only applicable for situation where it is assessed to have data partitioning 
type HPD, an underlying Machine Learning problem type which is supported by Neural Networks, 
and no additional privacy mechanism is needed. If these criteria are met, a more informed choice 
regarding predictive performance can be made. For the other cases the literature is not clear, and 
nothing valuable can be said about the expected predictive performance of the Federated 
Learning method compared to others.  


First, the literature study shows a clear distinction between non-iid and iid data sets regarding 
performance. It shows that standard Federated Learning methods are not well-adapted to work 
well with non-iid data. If the data is non-iid traditional Federated Learning methods do not create 
a model that is generalizable among all data sites, resulting in lower accuracy. This is due to the 
fact that the data sites have different data distributions, thus a common model is not feasible. 
Specialized Federated Learning methods, such as Zhao et al’s (2018) method or the Astraea 

Table 4.2.6 - Method Fragment 5: Predictive Performance

Method Fragment 
Property

Description

Name Predictive Performance Trade-off

Description In this method fragment the importance of predictive performance is assessed. If the data sets 
are non-iid a trade-off analysis between performance and privacy is to be assessed. 

Goal To choose the Federated Learning method which, according to the literature, has the best 
predictive performance opportunity for this scenario. A trade-off between privacy and 
accuracy is made for non-iid data contexts.

Input - Machine Learning Problem Type

- Data partitioning type of the data sets 
- Privacy guarantee level 
- Non-iid assessment 
- Federated Learning methods performance lookup table (provided by method)

Prerequisites - Underlying Machine Learning Problem Type known (output of method fragment 1)

- Data partitioning type known (output of method fragment 2)

- Privacy guarantee level known (output of method fragment 3)

- Data sets are analyzed to be non-idd or iid (output of method fragment 4)

Actions Trade-off between privacy and accuracy is made, and related to whether the data sets are iid 
or non-iid. The most applicable Federated Learning method is chosen for the situation.

Output Decision of the most applicable Federated Learning method
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method of Duan (2019) use balancing mechanisms to mitigate this problem. It is, therefore, 
recommended to implement such a specialized Federated Learning method for a non-iid context.


In the case of the data sets being non-iid, two Federated Learning methods should be 
considered: Zhao et al’s (2018) method and the Astraea method of Duan (2019). Both apply 
balancing techniques to attain higher predictive performances in non-iid contexts. To decide 
between these two a trade-off should be made between privacy and predictive performance. If 
the goal is to build the best-performing model possible and privacy is not an issue, i.e. the privacy 
requirements allow for data sharing among data sites and to a central server, then Zhao et al.’s 
(2018) Federated Learning method should be chosen. It is the best-performing methods in a non-
iid context, up to a 55% increase in accuracy compared to baseline. If, however, data sharing is 
not permitted and this requirement is non-changeable, then the Astraea method of Duan (2019) 
should be chosen, as it does not violate the no data sharing principle of Federated Learning. In 
addition, it does show a modest increase in accuracy of 6% in non-iid context compared to 
baseline.  


If the data sets are found to be iid, then the FedAvg method of McMahan (2017) is to be selected. 
This is the Federated Learning method which in a comprehensive and fair comparison shows the 
best performance according to the literature, compared to other Federated Learning methods 
which support HPD data partitioning only, are built upon a Neural Network model, and do no 
provide an additional privacy mechanism. It is therefore recommended to choose this Federated 
Learning method in this scenario. See Appendix F - Table F.1 Best Performing Federated Learning 
Methods per Situation for a summary of the above. 


Method Fragment 6: Lookup Table


The goal of this method fragment is to make the final decision for the most applicable Federated 
Learning method for the organization’s particular situation. For this method fragment the user 
should use the knowledge gained in the previous method fragments regarding the data 
partitioning type, the underlying machine learning problem type, and the minimum privacy 
guarantee level. 


For situations which do not identify with the previous section, the look-up Table F.2 in Appendix F 
should be used. Here the user is tasked with going through all listed Federated Learning methods 
and comparing their differentiating characteristics with the knowledge gained from previous 

Table 4.2.7 - Method Fragment 6: Lookup Table

Method Fragment 
Property

Description

Name Lookup table

Description This method fragment generally constitutes the last step of the method, where the resulting 
Federated Learning method is chosen by means of a lookup table

Goal To choose the Federated Learning method which matches the situational factors, i.e. matches 
the organization’s data- and privacy-related characteristics and requirements.

Input - Machine Learning Problem Type

- Data partitioning type of the data sets 
- Privacy guarantee level 
- Non-iid assessment 
- Federated Learning methods lookup table (provided by method)

Prerequisites - Underlying Machine Learning Problem Type known (output of method fragment 1)

- Data partitioning type known (output of method fragment 2)

- Privacy guarantee level known (output of method fragment 3)

Actions A Federated Learning method will be chosen by the user according to the earlier determined 
characteristics 

Output Decision of the most applicable Federated Learning method
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method fragments regarding the data partitioning type, the underlying machine learning problem 
type, the privacy guarantee, and whether the data sets are iid or non-iid. The user should pick the 
Federated Learning methods which complies with all previously stated. Per differentiating 
characteristics some guidelines are set for this process: 

- For data partitioning, a Federated Learning method rows should be selected which include the 

determined data partitioning type of the prospective data sets.

- Mapping should be conducted for the Machine Learning problem type. As certain Machine 

Learning models can solve multiple problem types (e.g. a linear model can be adapted to work 
both with linear/regression problems and classification problems. But a classification-type 
model cannot be used to solve a linear/regression problem.) It is assumed, by means of the 
prerequisite knowledge of the user of this method, that the user can make this mapping itself.


- For the privacy guarantee, Federated Learning method which are at least on the identified 
privacy guarantee level or higher should be selected.  


The result of this method fragment is the selected and most applicable Federated Learning 
method given the organization’s data- and privacy-related characteristics and requirements, 
which matches the overall goal of the full method.


Now all method fragments are identified and selected, the method assembly is discussed next.


4.3 Method Assembly 
In this section, the method assembly is conducted. The objective here is to combine the method 
fragments and design the resulting method, but in such a way that it does not contain any defects 
or inconstancies. This is done by using a strategy, guidelines, and assembly rules, to perform it in 
a consistent and sensible manner. In general, the method should fit the situation (suitability), i.e. all 
steps should contribute to the overall goal. To help achieve this, Harmsen (1997) formulated 
situational dependent and situational independent quality criteria. The situational dependent 
criteria are formulated in the S3 model: success, situation, scenario. The independent quality 
criteria are: completeness, consistency, efficiency, soundness, and applicability. The resulting 
method is assessed according to these quality criteria in this section.


4.3.1 Situational dependent criteria 
Situational dependent quality criteria are formulated according to the S3 model, as suggested by 
Harmsen (1997). The S3 model is, however, adapted to work well for Information System project 
design, not necessarily design science. A similar concept as the S3 model can be seen in Design 
Science. The S3 model’s goal is to justify the design steps of the method. As stated earlier, in 
Design Science the artifact - in this case the method - is evaluated by utility (Wieringa, 2014). To 
justify the method design beforehand, contribution arguments are made before the evaluation 
takes place. A contribution argument takes the form of: <context assumptions C> AND 
<requirements R) IMPLY <contribution to stakeholder G> (Wieringa, 2014). This is similar to the  
S3  model, only the project success factors are substituted by contribution to stakeholder goals. 
This study will therefore use the contribution arguments by Wieringa instead of the S3 model. 
These contribution arguments are already included in each method fragment, as the goal of each 
method fragment is stated explicitly. These method fragment goals, can then be seen as sub 
goals which realize the overall goal of designing the method, which are all evaluated by utility.


4.3.2 Situational independent criteria 
Situational independent quality criteria are formulated in terms of: completeness, consistency, 
efficiency, soundness, and applicability. These criteria are used as assembly rules for the resulting 
method.


Completeness 
Completeness is the requirement that the situational method contains all the method fragments 
referred to by the method fragments in the situational method. It can be split up into: input/output 
completeness, contents completeness, process completeness, association completeness, and 
support completeness (Harmsen, 1997). Each of these requirements will be discussed next.
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Input/output completeness is adhered to by making sure that the method fragments which require 
pieces of knowledge or product inputs are documented. The method fragments use a template 
which included an input and an output column. For example, method fragment 2, determining the 
data partitioning type, requires as input the prospective data sets of the Federated Learning 
application. Whenever a product is involved in the action column of the method fragment, this 
product is also included in the input column. Which is also the justification for both association 
completeness and support completeness.


In the same manner, contents completeness is adhered to by ensuring that each method 
fragment’s required provided content is present in the description. The contents of this method 
fragment are all pieces of knowledge, definitions, and sub methodologies. These are all added in 
text form.


Process completeness is adhered to in the following way. The resulting outputs, i.e. the products, 
are all pieces of knowledge in this method. To ensure that each method fragment’s output is 
produced, each method fragment has an associated goal, which is then realized by the resulting 
actions from this goal. This way of working ensures the process completeness. 

Consistency 
Consistency of a situational method addresses the requirement that situational methods do not 
contain contradictions and are thus mutually consistent. This criterium can be fragmented into 
multiple sub-criteria (Harmsen, 1997). The justification of the resulting method for this is given 
next.


The method does adhere to precedence consistency, i.e. method fragments are placed in the 
right order. This is guaranteed by the inclusion of the prerequisite column in the method fragment 
template; any method fragment that requires any other method fragment to be completed first is 
documented. In this way the order of the method fragments is secured to have no consistency 
breaches. For example, method fragment 5 cannot start unless all other method fragments have 
completed.


Support consistency and perspective consistency are adhered to by including the right tools and 
pieces of knowledge per method fragment when it cannot be assumed anymore that the user can 
execute this task by prerequisite knowledge alone. For example, in method fragment 1, the 
definition of data partitioning in the context of Federated Learning is given as a piece of 
knowledge, to assist the user in making a assessment of the data sets. Without this piece of 
knowledge these consistencies would be broken; the user of the method would be able to 
complete the task.


Granularity consistency is secured in this method by making all method fragments to be of similar 
granularity. The method fragments are roughly equal in size (time to complete) and have the same 
technical level. One challenging method fragment regarding this criterium was method fragment 4. 
It contains a sub methodology to identify non-iid data. This method fragment encapsulates these 
sub methodologies, which are of lower granularity and of a more technical nature. The latter is 
also another example of support and perspective consistency.


Lastly, Concurrence consistency is guaranteed, because no parallel execution of the method 
fragments are introduced.


Efficiency 
Efficiency addresses issues that can be decided on without taking into account the situation. 
When it is taken into account time and money can be saved. Efficiency is the requirement that the 
situational method fulfill its duty at minimal cost and effort (Harmsen, 1997).


The resulting method takes efficiency into account in the following way. It takes shortcuts in the 
decision process where applicable. As there are only a finite number of Federated Learning 
methods available, each with a limited number of combinations of supported differentiating 
characteristics, not all differentiating characteristics need to be known in certain situation. Thus, 
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not all method fragments need to be executed to come to an informed decision, saving time. For 
this a coupling with the data and the method is made, i.e. the method is dependent on the data.


Let’s illustrate this with an example. There are only two Federated Learning methods which 
support the data partitioning type of VPD. Because of this, the resulting differentiating 
characteristics (underlying machine learning model, privacy guarantee, non-iidness, and 
performance) have a limited number of remaining combinations available. For this example, there 
is no difference (at least known difference) between in the performance of non-iid vs iid data sets. 
Both methods are not characterized to be adapted to work well with non-iid data sets. Given this, 
it is no benefit to execute method fragment 4, identifying whether the data sets are non-iid or iid. 
Which can be a time consuming method. In this way efficiency is improved. This way of improving 
efficiency by coupling the method with the data is used where applicable. 


Soundness 
Soundness is the requirement that the situational method is semantically correct and meaningful 
(Harmsen, 1997). In other words, the input and output of a method fragment should fit with each 
other.


In the resulting method soundness is guaranteed by using the input and output columns in the 
method fragment tables, and only sequentially combining them when these fit (e.g. by not 
ignoring the prerequisites of the method fragment). Each association of the method fragment is 
tested to have compatible input and output parameters.


Applicability

Applicability is the requirement that actors are able to apply the situational method. Thus, for each 
technical method fragment, there should be at least one actor capable of working with it 
(Harmsen, 1997).


For the designed method applicability is adhered to by designing all method fragments in such a 
way that prerequisite knowledge of the actors is taken in mind. The actors, i.e. the users of this 
method, are the same for every method fragment. They are professional experts in the field of 
data science or machine learning wanting to apply Federated Learning. They therefore do already 
have knowledge about building and implementing traditional machine learning models, and all 
indirect associated knowledge. Therefore, all method fragments are designed to take into account 
this assumption. Thus, whenever a user is tasked with a concept which requires knowledge that is 
particular to Federated Learning, pieces of knowledge, definitions, or sub methods are provided 
to give context. In this way, applicability is adhered to. 

Given the justification of the method assembly process by means of all of these situational 
dependent and independent quality criteria, the method is designed by making use of these 
assembly rules and the earlier constructed method fragments. The resulting method is introduced 
in the next section.


4.4 Resulting Method 
In this section the resulting method is presented visually. The method fragments identified in 
section 4.2, together with the method assembly rules and quality criteria from section 4.3 are used 
to design this resulting method. The method is visualized in BPMN, Business Process Model and 
Notation (bpmn.org), and can be seen in Figure 4.4.1 at the end of this chapter.


Each method fragment has been converted to a task activity in terms of BPMN. Each task activity 
is further connected via access-relations to (data) input and output objects. There correspond to 
the earlier identified input and outputs in the method fragment tables. For example, the first 
method fragment Determine Underlying Machine Learning Problem Type has two input objects 
(Federated Learning Business Objective & Machine Learning Problem Type List) and one output 
object (Machine Learning Problem Type). The grey fill color of some of the input objects, such as 
the Machine Learning Problem Type List input, indicate that these inputs are provided by the 
method itself. 
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The first logic gate check whether the Data Partitioning type is VPD or if the organization requires 
the privacy level to be of the highest level (3). This distinction is made because of the efficiency 
situational independent criterium. Situations with these characteristics are so unique that one a 
very limited number of Federated Learning methods are available; further characterizing the 
situation (e.g. for it to be non-iid or the performance trade-off task) does not provide more 
relevant information. Therefore, those unnecessary tasks are skipped.


If the logic gate follows the false path an assessment will be made regarding the non-iidness of 
the data sets. This task activity is comprised of a sub method. A sub method is provided as input 
by the method, i.e. the method of Rabanser et al. (2018).


The second logic gate check whether the Machine Learning Problem Type, identified earlier, is 
supported by using a Neural Network. This is because the literature supporting the predictive 
performance trade-off step is scoped to only say something meaningful in the context of neural 
network Federated Learning models. Out of this scope, the predictive performances have not 
been thoroughly compared, and no meaningful choice based on better predictive performance 
can be made. Therefore, the other cases default to the general Federated Learning methods 
lookup table. Both task activities result to the output of a chosen Federated Learning method for 
the organization’s specific situation, which is also the end of this method.
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5. Evaluation - Demonstration by Case Study 
In this chapter the designed method is demonstrated by means of a real-world case study at the 
software company Topicus. This intent of this demonstration by case study is to show that the 
method can work and is useful in a real-world setting. This demonstration constitutes the fourth 
phase of DSRM and comprises the validation of the artifact. 


The case study is structured as follows. First, a general description of the company is given to 
provide context. Then, the company-specific problem statement is given and compared to the 
general problem statement and scope of this research. After that, the designed method is 
executed and described. Real-world data sets are included in this case study; several Dutch 
banks provided mortgage application data for this case study. 


5.1 Company Description 
The company where this case study will be executed is Topicus. Topicus is a software 
development company, founded in 1998, with various locations throughout The Netherlands, and, 
as of writing, has more than a thousand employees. Topicus is divided into five departments: 
Finance, Healthcare, Education, Government/Social domain, and Core and is consequently also 
active in the first four similarly named sectors. Topicus provides software and services to each of 
these four domains. 


The department in which this case study takes place is the Finance department. The main 
customers of the Finance department are some of the big financial institutions (for simplicity also 
referred to as banks) in The Netherlands. At Topicus Finance a software product called the Force 
Product Suite (FPS) is developed and provided to these banks. The FPS incorporates a myriad of 
services, but the common denominator is that it supports the lending processes at these banks, 
especially the mortgage application process. The software provides mostly back-end, but also 
some front-end solutions to support the mortgage application process, like: data entry, integration 
with third-party services, decision making, but also analytics and reporting. 
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Figure 5.1.1 - Problem context at Topicus. Multiple separate data silos with private data





One of the services FPS offers is Staging-out (STO). The FPS generates operational and 
heterogeneous data. Because of this, the data is vast and not readily useable for the clients to use 
for (internal and external) reporting and analysis. To help in this need, STO is developed. STO is a 
data warehousing service which provides structured and relevant input for reporting and analytics 
tools. The sub-department where STO is developed is where the case study is situated. 


Infrastructure 
The FPS is typically hosted at the client itself, as a SaaS-on premise (Software-as-a-Service). 
Consequently, the software at these clients are not identical. Each instantiation can contain a 
subset of the complete landscape of the software services FPS offers; some banks only acquire 
some parts of the services provided.  In addition, different versions of the software are made, with 
minor modifications to suit the business context of a client better. All in all, the main features and 
fundamentals of the software suite will roughly still be the same, but not completely identical.


The applications and data are, due to privacy considerations, strictly separated. These privacy 
considerations constitute both the company’s own interests as juridical, as they feature sensitive 
(financial) customer data. This is also part of the reasoning why the infrastructure is separated, by 
means of the SaaS-on premise concept. In Figure 5.1.1 a visual representation of this 
infrastructure is shown.


Data Description 
A sample of the data in the data warehouse of this STO service is obtained, and the data model of 
this is shown in Figure 5.1.2. This data model is a blueprint for each STO service and is 
instantiated almost identically at each of Topicus’ clients. Important to note is that the data is 
strictly separated and resides in distinct data silos at each client. Topicus does not store this data 
on its own servers, it only pushes new versions of the domain model and the software to those 
clients. 


5.2 Problem Statement 
At Topicus Finance, next to providing operational software to mortgage lenders (i.e. banks), 
Topicus also develops reporting and analytics services. On the frontier of these analytical services 
are the development of predictive models based on machine learning. Especially, there is an 
apparent wish at Topicus to predict the lead times of mortgage applications (i.e. the time it takes 
for a mortgage application to finalize from the moment is is initialized). As of right now, these 
predictive models are being built merely locally at one mortgage lender at a time. However, 
Topicus seeks to utilize the potential of combining the vast amount of data of all its mortgage 
lenders, making a more reliable 'super' model, not just from one data site. They assume that more 
data leads to better predictive models in this context. 


However, in this problem context, combining data from multiple banks is not possible in practice: 
the financial data is privacy-sensitive. Privacy considerations from both the legal sphere, mainly 
GDPR, and from competitive interest considerations, banks do not want to share customer 
information with competitor banks, play a role. These privacy considerations prevent the 
extraction of the data. Also, no known algorithm in traditional machine learning accounts for the 
usage of training on this heterogeneous distributed network. Next, the assumption that more data 
leads to better results can be questioned because the data is generated in different quantities at 
those mortgage lenders: some produce more quantities of data and possible have another 
distribution (different types of workflows or customers). A concern here is that some mortgage 
lenders’ data will overshadow the others’ and produce worse results for some mortgage lenders 
instead of better results. Topicus is therefore searching for a method which can make use of these 
separated data islands and train a global model while also not violating the privacy concerns. 


Federated Learning is a good fit for this problem context. It fits both with the need of utilizing 
multiple separated data sites for training a global model, and doing so in a privacy-preserving 
manner; the two main requirements Topicus has. However, at Topicus the data scientists have 
only been recently introduced to the concept of Federated Learning and are unaware of the 
possibilities in Federated Learning. 
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Given this problem statement, Topicus is a perfect candidate for the proposed method of this 
research. It has an apparent need to utilize the potential of using multiple separated data sites in a 
privacy-preserving manner through Federated Learning. However, it is not familiar with Federated 
Learning and its myriad of different Federated Learning method. This is exactly what this research 
is for. 


5.3 Case Study Execution 
The company has provided the researcher with the resources needed to execute the method. It 
has provided real-world data from two of its clients, two mortgage providing banks active in The 
Netherlands. In this section the designed method is applied to and executed on this case study. 
The researcher is executing the method at the company. It is split up in each method phase. 
Starting with the Determine Underlying Machine Learning Problem Type phase and continuing 
along the specific path of this instance of the method.  


5.3.1 Determine Underlying Machine Learning Problem Type 

The goal of the first phase of the method is to determine the machine learning problem type from 
the problem context. It is important to know this, as Federated Learning methods are all built 
upon an underlying machine learning model (for example a Neural Network). Because of this, the 
Federated Learning method are limited in only solving problem types which are supported by 
these machine learning models.   


As specified in the problem context description of this case study, Topicus aims at providing 
predictive machine learning models for its clients. More specifically, in this case study it aims at 
predicting mortgage application lead times. This is the time it takes for a mortgage application 
process to reach the status 'Binding Offer Sent', starting from the instantiation of this application 
process, which has the status 'Start New Application'. From this description a machine learning 
problem type is chosen.


The document that supports this method phase provides a list of machine learning problem types. 
These problem types are: Linear/Regression problem, Classification problem, Rule-learning 
problem, Clustering problem (unsupervised), Language modeling problem. The user of this 
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Figure 5.3.1 - First Execution Step of the 
Method in this Case Study



method is assumed to be a professional in the field of data science and/or machine learning and 
should be able to identify the problem type by this list alone. 


The each problem type in this list is compared to the prospective aim of predicting mortgage 
application lead times. First, the problem type is not a classification problem. There is a need to 
predict a real number, with possibly infinite output options, not a finite set of classes. A rule-
learning problem is also not applicable, as it also outputs a finite set of classes. It could be a 
clustering problem, as it could be useful to identify different kinds of features which drive 
deviations in mortgage lead times. However, the apparent wish of Topicus is to provide 
predictions beforehand, which is not the purpose of this problem type. Also a language modeling 
problem is not applicable as it does not concern text but numeric data. The option that fits best is 
the linear/regression problem type. It fits the aim of predicting a real number, i.e. a lead time. 


The resulting machine learning problem type of this case study is therefore found to be the linear/
regression problem type.


5.3.2 Determine Data Partitioning Phase 

In this phase the data partitioning type is determined. Its goal is to determine whether the data 
sets used in this case study are HPD (horizontally partitioned data) or VPD (vertically partitioned 
data). This is an important fact to know, as it has implications on what Federated Learning 
methods are available for Topicus.


The data partitioning type is determined by comparing the prospective data sets used with the 
definitions of HPD and VPD (provided by the method as a document). The definition that fits best 
with the characteristics of the data sets will constitute the type of data partitioning. These data 
sets are required as input for this method phase. The characteristics of this data set will determine 
the data partitioning type. In addition, the optional input, a domain model, is also available and will 
be used too. 
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Figure 5.3.2 - Second Execution Step of the Method in this Case Study



First, the domain models are analyzed. A domain model diagram is available at Topicus’ 
documentation repository. It is shown in Figure 5.1.2. The domain models at each data site are 
found to be identical for the 2 banks in question. This implies that the features of all subject types 
are the same across all data sets. Which then implies the data being horizontally partitioned 
(HPD). For example, the subject Consumer in the domain model has the same features across all 
banks, all have the features: id, ConsumerNumber, ConsumerRole, TaxObligationsAbroad, 
DeathBenefitAmount, and Application_id. This is found to be true for all tables (subject types) in 
the domain model. 


The data sets in question are stored as a relational database in MS SQL Server. A database client 
is used to gain access to these databases. Because the documentation of this database at 
Topicus included a domain model diagram it does not need to be inferred. Instead, a check is 
performed whether the data acknowledges the finding that the domain models are indeed the 
same and do not store different features of the same subjects.


It is, however, possible that the same customer could have multiple mortgages at different banks. 
No instances where found in these data sets, as the data sets were anonymized to only include 
database specific customer id’s, not cross reference information. Nevertheless, this is not a cause 
for invalidating the previous findings. Practically, the customers (who can be classified as 
subjects) are different subjects, as they instantiate a new mortgage and the data cannot be linked. 


Concluding, the data partitioning type is determined to be HPD (horizontally partitioned data). The 
same features are stored across the banks’ data sets and data of an individual subject is stored at 
one data site only. 


5.3.3 Determine Privacy Guarantee Level Phase 

This phase of the method is intended to determine the privacy guarantee level of the data sets. 
The data sets can be at one of three levels: (1) violates the no data sharing principle, (2) privacy by 
no data sharing, or the most stringent, (3) additional privacy mechanism. It is important to have 
clear what privacy level of the data sets are, because some Federated Learning methods may not 
guarantee the level of privacy required. 


In Federated Learning there are three levels of privacy guarantee distinguished. These levels and 
their definitions are provided by the method as a document. These definitions provide information 
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Figure 5.3.3 - Third Execution Step of the Method in this Case Study



to the user of the method to distinguish the three privacy guarantee levels and compare it to its 
situation. These definitions can be found in section 4.2, method fragment 3, and are not repeated 
here. In addition, the provided guidelines are followed were applicable. 


The only input of this phase are the prospective data sets. These data sets are analyzed for 
containing privacy sensitive data, both from a legal as a competitive-interest perspective. The 
case study description already mentioned the presence of sensitive personal data. This can be  
acknowledged by testing it to the GDPR definition of personal data: "personal data means any 
information relating to an identified or identifiable natural person (‘data subject’); an identifiable 
natural person is one who can be identified, directly or indirectly, in particular by reference to an 
identifier such as a name, an identification number, location data, an online identifier or to one or 
more factors specific to the physical, physiological, genetic, mental, economic, cultural or social 
identity of that natural person" (EU GDPR Regulation, 2016). As the customer data in the data 
sets contains identification numbers and location data, it is classified to be personal data. 


Therefore, it is subjected to limitations in processing and sharing this data. Processing in this 
regulation is defined as: "processing means any operation or set of operations which is performed 
on personal data or on sets of personal data, whether or not by automated means, such as 
collection, recording, organisation, structuring, storage, adaptation or alteration, retrieval, 
consultation, use, disclosure by transmission, dissemination or otherwise making available, 
alignment or combination, restriction, erasure or destruction" (EU GDPR Regulation, 2016). 
Looking at this definition, training a model which shares data as specified in level 1 of the privacy 
guarantee levels does imply data processing, which is not compliant to this regulation. As 
specified in the guidelines of this method phase, the privacy level should at least be level 2: 
privacy by no data sharing. 


This level also suits the competitive interest considerations of the participating banks. At this 
privacy level their raw data does not leave their premises. As no additional requirements are set 
by Topicus or the company in terms of encryption or any other additional privacy mechanisms, 
the privacy level is not elevated any higher.  It is, therefore, determined that the privacy guarantee 
level is (2) privacy by no data sharing. 


For the next step, a conditional branch is encountered. As the data partitioning type is found to be 
HPD and the privacy level 2, privacy by no data sharing, the 'false' branch of the method is 
followed. So the next phase will be the Non-iid Data Identification phase. 


5.3.4 Non-iid Data Identification Phase 

For this phase an assessment will be made whether the two data sets would be non-iid when 
combined. The data sets are used as input for this method step. Alongside this, the non-iid 
definition and the the three-step method devised in Chapter 3.6 (research question 6) are used as 
provided inputs.


The data sets are from 2 banks in The Netherlands, and stored in MSSQL relational databases.  It 
includes real-world mortgage application data, and are both from the same time period. The data 
are extracted by means of SQL queries. Also, the data sets are anonymized, they do not include 
any identifiable customer data, identifiable addresses, and the contract dates are changed by a 
random value. 


Next, the 3-step sub-method is executed.


1. Dimensionality Reduction 

The first step in the submethod of this phase is dimensionality reduction. The goal of this step is 
to reduce the number of features that are potential inputs for the model. Only features which have 
a predictive performance potential are included in this assessment. This feature selection is 
important to help in understanding the data, but also to increase the predictive performance of 
the prospective model (Chandrashekar & Sahin, 2014). This predictive performance expectancy 
assessment has been conducted with the help of an expert working on the STO application at the 
company.
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The objective of a future model is to predict mortgage lead times, i.e. the time it takes for a 
mortgage application to reach the completion status. To find relevant features in this domain 
model, all features which have an impact on the underlying business rules and business 
processes of the mortgage application process are assessed. Thus, features which have an 
impact on the mortgage application lead time. The included features are assumed to have the 
potential of being predictive features. For example, the application process will be different for a 
borrower who is self-employed compared to a borrower who has a stable employment contract at 
a company, which will have impact on the lead time. Other features which do not meet this 
criterium are disregarded. This assessment is done by an expert at the company, who has the 
knowledge about the business rules and business processes of the mortgage application. This 
domain knowledge is important in understanding the impact features have on a machine learning 
model.


Next, each relevant table in the domain model is discussed. Each relevant feature is briefly 
described and the reasoning why it is assumed to be a predictive feature is given.


Process 
In the Process table, PrimaryHandler is a potential predictive feature for a machine learning model. 
This feature represents the employee who issues and administrates the mortgage application. It 
would have been a potentially predictive feature in a normal machine learning model. However, 
this cannot be used to determine differences in distribution or non-iidness in a Federated 
Learning setting, as the employees are unique for each bank. There is no overlap in 
PrimaryHandler instances in both data sites. Therefore, this feature is excluded in this 
assessment. Therefore, no features are used from this table.


No features from this table are extracted as relevant features.


ProcessType 
ProcessTypeName is a potentially predictive feature, as this denotes the type of mortgage. For 
example, whether it is a first time mortgage or an extension. Due to the business rules, for 
example, an extension has to undergo fewer steps in assessing the risk than a first time 
mortgage. Therefore, this is an expected predictive feature.
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Figure 5.3.4 - Fourth Execution Step of the Method in this Case Study



Extracted features:

ProcessTypeName 

Process Status 
The column Code denotes the step this process is at in the overall application process. The 
application process, simplified, starts with the status code 'Start New Application' and ends with 
'Binding Offer Sent'. Each of these have available a date-time stamp. By taking the differences 
between the date-time stamp of the beginning of the process and the end of the process, the lead 
time is constructed. The lead time will be used in the assessment as a calculated feature, which 
will constitute the predicted value of the model. The lead time feature is also the target feature of 
this model.   


Extracted features (the target feature):

LeadTime 

Application 
This table denotes the mortgage application itself. It has several features which are assessed to 
be potentially predictive. First is the column RequestType, which denotes whether the borrower is 
self-employed or on payroll (two options: OndernemerInPrive or Particulier). This is assumed to 
have a impact on the lead time, as the mortgage application process has different (and additional) 
steps for self-employed borrowers. Next is the LoanToValue column. This column denotes the 
ratio between the borrowed amount and the value of the property, a value of 1,0 means that the 
entire amount is borrowed with no own money added from the borrower itself. As this feature 
impacts the risk of an application (1,0 having a high-risk), and mortgage applications are primarily 
used to standardize risk mitigation, this feature is assumed to have an impact on the lead time. A 
higher risk induces the need for extra risk management, which prolongs the application process. 
Next, the RemainingPartial feature denotes the principal amount of the mortgage. This is also 
assumed to have an impact on the process and therefore the lead times. 


The Product_ProductNumber is the type of mortgage. This is assumed to be a predictive feature 
in a machine learning model, as the type of mortgage also impacts the application process. 
However, the actual categories are tied to the data site itself, there is no overlap between banks. 
Therefore, this feature cannot be used in a Federated Learning setting.  


Extracted features:

RequestType 
LoanToValue

RemainingPartial


Consumer 
This table includes features about the consumer, i.e. the borrower of the mortgage. No relevant 
features are identified here. However, one mortgage application could be associated with multiple 
consumers/borrowers. The business rules imply that each borrower is evaluated separately. 
Therefore, the number of borrowers per mortgage application is also an impactful feature, as it 
prolongs the application process. 


Calculated field:

Number of consumers per application 

Income 
GrossIncome denotes the gross income of the mortgage borrower. The IncomeType is the type of 
income the borrower has. Such as the employment contract (flexible or guaranteed hours), 
whether the borrower is an entrepreneur, or might be receiving their pension income already. Both 
are features expected to be predictive of a machine learning model, as they both have an impact 
on the business rules regarding the acceptance of the application. 
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Extracted features:

GrossIncome 
IncomeType 

Determined Market Value 
Assessed to not be predictive, as the information is already incorporated in the loan to value 
feature in the Application table. 


Interest Composition 
InterestRatePeriod is the period the interest component is active. This is assessed to be a 
potentially predictive feature, as it has impact on the business rules in the application process. 


Extracted features:

InterestRatePeriod 

RealEstate 
The property which is used as collateral on the mortgage. Here it is assessed that the features 
YearOfConstruction and PurchaseAmount are potentially predictive features, as both have an 
impact on the associated risk of the lender. 


Extracted features:

YearOfConstruction 

PurchaseAmount  

Next, each of the extracted relevant features are input for the next phase, the testing phase. For 
practicality, only a subset of the extracted features is tested.


2. Non-iidness Three-Criteria Test

In this phase, each of the extracted features are tested to be non-iid. For this, three criteria are 
used. First an assessment based on Duan’s (2019) specification of non-iidness in Federated 
Learning is conducted. It is checked, for the relevant features whether they have a (1) size 
imbalance, a (2) local imbalance, and a (3) global imbalance. For the local imbalance an  
assessment based on visualization via box plots is performed. As there are only two distinct data 
sets in this case study, only one comparison needs to be made.


First, it is checked whether there is a size imbalance between the two data sites of the two banks. 
This is done by assessing the difference in the number of rows in the primary tables Process and 
Process Status. The difference between data points generated between the two banks is a factor 
4,2 and 3,3 respectively. Other features follow a similar difference ratio. This indicates that bank A 
has a larger impact on the model than bank B with traditional Federated Learning methods.  
However, although the there is no 1:1 ratio, the difference is still below an order of magnitude of 
10. A size imbalance is not overly clear in this case, but probable. See Figure 5.3.5 for a visual 
representation of this, the x-axis represents the number of data points per attribute. The count 
values on the x-axis are redacted due to privacy considerations.
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ProcessStatus Count

Data Site A Data Site B

Figure 5.3.5 - Size Imbalance Check on Process and ProcessStatus Attributes



Second, it is checked whether there is a local imbalance, i.e. if there is a difference in data 
distributions between the data sets. As the user of this method is not an expert in statistics, the 
suggested two-sample statistical test skipped, and the assessment will be solely based on visual 
plots. These distribution plots are made for the feature PurchaseAmount. 

When plotted in a histogram, both data sets follow a similar pattern. See Figure 5.3.6 and 5.3.7 for 
this. (Both the frequency and bin sizes are redacted, as it contains competitively sensitive 
information).  Next to the distribution shape, the median values are also almost the same. The 
only differences are observed are at the minimum and maximum values. However, when excluding 
only 6 data points, which can be considered outliers, the minimum and maximum values of both 
data sets are similar again. Therefore, it is assessed that both data sets follow a similar data 
distribution regarding PurchaseAmount. This means that the houses the clientele of both banks 
purchase is roughly the same regarding purchase prices. This indicates that, when combined, the 
data sets will be iid. 


Lastly, global imbalance, i.e. class imbalance, in both data sites is checked. Class imbalance 
occurs when features with categorial values are heavily skewed towards one class, such that one 

class has a large number of example and the other only a few (Japkowicz & Stephen, 2002). In 
this case study, relevant extracted features with categorial values are tested for class imbalance. 
The features which have categorial values are RequestType from the Application table, 
IncomeType from the Income table, and ProcessTypeName from the ProcessType table.


The results are obtained by querying the two databases (via a group by clause on the categorial 
attribute). The results are visualized in Figure 5.3.8 for the feature RequestType, which has 2 
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Figure 5.3.6 and 5.3.7 - Histograms of the PurchaseAmount Attribute in Data Set A 
and Data Set B 



categorial values, and Figure 5.3.9 for the feature ProcessTypeName, which has 5 categorial 
values. The count values are represented on the x-axis. RequestType does not have a class 
imbalance, as the differences in count for the categorial values exists, but is not overwhelming. 
For ProcessTypeName the differences are clearer. There is a heavy skew for the categorial value 
'Acceptance', constituting almost all values. For some of the categorial values, the count is even 
so low that it barely shows on the figure. A class imbalance is certainly observed here. However, 
due to the nature of the feature, the model can be scoped to only train on 'Acceptance' 
applications. IncomeType is not visualized, as it contains 36 categorial values. Here, no class 
imbalances are observed here. 








3. Assessment 
Given the tests performed in the previous steps, the results need to be interpreted to come to a 
final assessment whether the combined data set will be non-iid or iid. 


It is assessed that there is no substantial size imbalance between the data sets, which indicates 
that the combined data sets will likely be iid. Next, the data distribution of the feature 
PurchaseAmount follows a similar data distribution among the data sets. It is therefore unlikely 
that there will be a local imbalance which can cause non-iidness when combining the data sets. 
Lastly, there is no class imbalance found for 2 of the 3 assessed features. As the feature 
ProcessTypeName does contain a class imbalance, it is recommend to limit the scope of the 
Federated Learning model to only work with 'Acceptance’ data. Given these points, it is 
concluded that the data sets, when combined, will likely be iid.
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Figure 5.3.8 - Class Imbalance Check for Attribute RequestType 
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Figure 5.3.9 - Class Imbalance Check for Attribute ProcessTypeName



5.3.5 Predictive Performance Trade-Off Phase 
The next phase in the method is 5: the Predictive Performance Trade-Off phase, as the earlier 
identified machine learning problem type is a linear problem. This problem type is assessed to be 
supported by a Neural Network, and therefore the true path of the decision node is followed.


Here the Federated Learning methods Performance lookup table in Appendix F.1 is used as 
provided input. As the data partitioning type is HPD, the privacy guarantee level is 2, the Machine 
Learning problem type is supported by a Neural Network, and the data is assessed to be iid, the 
resulting most applicable Federated Learning method is Federated Averaging (FedAvg) of 
McMahan. Which is the output of this phase and also constitutes the end of the method.


5.4 Conclusion 
In this chapter the designed method was validated to work in a real-world scenario by means of a 
case study. The case study was executed at Topicus, which has a problem context fitting to the 
method’s scope and goal. The case study has shown that the method can be applied to a real-
world case. Also, in this way a practical example of the execution of the method is given, which 
further enhances the understanding of the method. 
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Figure 5.3.10 - Fifth and Last Execution Step of the Method in this Case Study



6. Evaluation - Case Study Demonstration 
This chapter presents the evaluation of the proposed method, and thereby constitutes the fifth 
phase of the DSRM. The goal of this phase is to evaluate the utility of the method, as an artifact’s 
assessment should be based on utility according to Wieringa (2014). This evaluation is done by 
conducting a workshop at a company which fits the problem context of this study. In this 
workshop the method and its usage by means of the case study is presented to experts. 
Afterwards, the experts are asked to evaluate the utility of the method by means of a survey. The 
evaluation survey questions are based on the UTAUT model by Venkatesh et al. (2003), the Unified 
Theory of Acceptance and Use of Technology model. This model provides a way to assess the 
likelihood for a new system to be accepted successfully at an organization and therefore fits the 
purpose of this evaluation.


In this chapter, first, the UTAUT model and its relation to this study are explained in more detail. 
Next, the workshop set-up is presented. Lastly, the results of the survey are described and 
discussed.


6.1 UTAUT model  
The UTAUT model is a unified theory which aims at predicting the usage intention and actual 
usage of some system. The model formulates four determinants (Performance Expectancy, Effort 
Expectancy, Social Influence, Facilitating Conditions) and four moderating factors on those 
determinants (Gender, Age, Experience, and Voluntariness of Use). The interrelationships between 
these determinants and factors are visualized in Figure 6.1.1. Each determinant and factor in the 
model is measured by means of standardized survey questions to prospective users (Venkatesh et 
al, 2003). Due to its relevant characteristics, this model is used in determining the utility of the 
designed method. Next, each of the determinants are explained in more detail.





Performance Expectancy 
Performance expectancy is the degree to which a prospective user believes that using a system 
will help them gain attain gains in job performance (Venkatesh et al, 2003). It is the strongest 
predictor of behavioral intention. Performance expectancy is moderated by the factors gender 
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Figure 6.1.1 - UTAUT Research Model (Venkatesh et al, 2003)



and age. The effect of this determinant will be larger for men and especially for younger men 
(Venkatesh et al, 2003). 


The survey items that are used in this study to measure this determinant are listed in Table 6.1.1.


These are the questionnaire items that are used and validated in the original study of Venkatesh et 
al (2003). The item code denotes the item code from the original study. The items are altered to be 
as specific as possible for this use case, substituting the generic terms of system with method, and 
specifying the company name where the generic term organization is used. The items will be 
measured on a 1-5 Likert scale, with the values: strongly disagree, disagree, neutral, agree, and 
strongly agree.

Effort Expectancy 
Effort expectancy is the degree of ease associated with the use of the system (Venkatesh et al, 
2003). It is moderated by gender, age, and experience. Those indicate that the effect of effort 
expectancy is larger when someone is female, is younger, and has little experience (Venkatesh et 
al, 2003).


The survey items that are used to measure this determinant are listed in Table 6.1.2.


Social Influence 
Social influence is the degree to which an individual perceives that important others believe they 
should use the new system. It is moderated by all factors, gender, age, experience, and 
voluntariness of use. The effect of this determinant is stronger for women, particularly older 
women, and especially in mandatory settings when experience is low (Venkatesh et al, 2003).


The survey items that are used to measure this determinant are listed in Table 6.1.3.


Table 6.1.1 - Survey Items to Measure Performance Expectancy

Item code from original study Survey item

U6 I would find the method (or: way of working) useful in implementing a Federated 
Learning system

RA1 Using the method enables me to accomplish tasks more quickly

RA5 Using the method increases my productivity when implementing a Federated 
Learning system

Table 6.1.2 - Survey Items to Measure Effort Expectancy

Item code from original study Survey item

EOU3 My interaction with the method would be clear and understandable

EOU5 It would be easy for me to become skillful at using the method

EOU6 I would find the method easy to use

EU4 Learning to use the method will be easy for me

Table 6.1.3 - Survey Items to Measure Social Influence

Item code from original study Survey item

SN1 People who influence my behavior think that I should use the method

SN2 People who are important to me think that I should use the method

SF2 I expect my seniors/management at Topicus to be helpful in the use of the method

Item code from original study
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Facilitating Conditions 
The last determinant is facilitating conditions. It is the degree to which an individual believes than 
an organization and technical infrastructure exists to support the use of this system. It is the only 
determinant that does directly influence use behavior and not the behavioral intention. Next is is 
moderated by the factors age and experience. The effects are especially stronger for older 
workers with more experience (Venkatesh et al, 2003).


The survey items used to measure this determinant are listed in Table 6.1.4.


Next to the main determinants, also survey items are used to measure the intermediate 
determinant Behavioral Intent and the moderating factors: gender, age, experience, and 
voluntariness of use. These items can be found in the full survey in Appendix C.


6.2 Workshop Set-Up  
The method is demonstrated to experts in the field of Data Science at the company Topicus. 
These experts were selected by means of their job description, relating to data science or 
machine learning. A workshop is organized where the participants are introduced to the earlier 
performed case study. Here the problem context is drawn, essential concepts are explained, such 
as Federated Learning, non-iid data, and  other definitions, and the method is explained. To help 
the participants prepare, the case study description, the method description, alongside a list of 
definitions are sent to them. The researcher was available to provide further explanation and 
context on the problem statement and the nature of the study, not for explaining the method more 
than described in the provided document. This document is a slightly altered version of Chapters 
4 and 5. 


At the end of the workshop a survey is held where the aforementioned UTAUT model survey items 
are presented. The survey questions, adapted for this study, can be found in Appendix C. The 
following is altered. All questions including a negative form were turned to a positive form 
question, so the answers are on the same scale. Also all instances of the term 'system' in the 
questions are substituted by the term 'method', as this represent a more specified term of system 
that is being investigated. Also where a generic organization is mentioned, it is substituted by the 
specific company name.


6.3 Results  
In this section the survey results are described and discussed. First, an analysis on the 
respondents’ descriptive statistics is given, alongside the moderating factors. Second, the results 
of the UTAUT survey items are analyzed and discussed. The full survey results can be found in 
Appendix G. 


SF4 In general, I expect the organization to support the use of the method

Survey itemItem code from original study

Table 6.1.4 - Survey Items to Measure Facilitating Conditions

Item code from original study Survey item

PBC2 Topicus will provide the resources necessary to use the method

PBC3 I have the knowledge necessary to use the method (given the guidelines and input 
documents provided)

PBC4 I have the resources necessary to use the method

PBC5 The method is compatible with other systems or ways of working I use

FC3 Support from an individual/a group, or a service is available when problems are 
encountered using this method
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Descriptive Statistics 
The workshop and the corresponding survey was executed by 5 respondents. To check the 
selection criteria of having experience in the field of data science and/or machine learning, some 
questions about (work) experience are asked. These also serve to measure the moderating factor 
Experience.


Respondents were asked about their experience, by posing questions about their formal 
education, work experience, and familiarity with the concepts of machine learning and data 
science. All respondents are well educated, having a college or university degree in a related field. 
Also all respondents have a job description relating to the experience criterium of this study. The 
median work experience bracket is 3-5 years work experience, which is not particularly high. Next 
respondents were asked about their familiarity with the concepts of data science and machine 
learning. With a Likert-scale of: no experience, beginner, medium, senior, expert, which are then 
translated to numerical values of 1-5. The average for data science is 3,4, which is slightly above 
the medium value. The average for machine learning is lower, it is 2,8, which is slightly below the 
medium value. Meaning that the respondents are less familiar with machine learning. Next, the 
respondents frequency of working with a machine learning (related) concept is on average 3,0, 
which represents 'sometimes'. All in all, the experience level is assessed to be of medium value. 
Visual representations of these results can be found in the Figures 6.3.1 and 6.3.2 below.





The survey was filled in by 4 males and 1 female. This shows an overwhelming majority of the 
respondents being male. This has implications on the determinants performance expectancy, 
effort expectancy, and social influence, as each of them are moderated by gender. The effect on 
performance expectancy is higher for males, while the effect on effort expectancy and social 
influence is higher for females. See figure 6.3.3 for a visual representation of this.


Next is age. The average age of the respondents is low. All respondents were between the age of 
21 and 35 years old. The same number of respondents were in the age brackets of 21-25 years 
old as 31-35 years old. See Figure 6.3.4 for the distribution. This has implications on all 
determinants, as all are moderated by age. This means that the expected effect of performance 
expectancy and effort expectancy will be higher, and lower for social influence and facilitating 
conditions. This is favorable, as will be presented later in Table 6.3.1, because the average scores 
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Figure 6.3.1 - Work Experience Distribution (n=5)
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for performance expectancy and effort expectancy are the highest, and social influence and 
facilitating conditions the lowest. In other words, the highest scoring determinants get leveraged 
up and the lowest scoring determinants have a lower than normal impact on the use behavior, all 
due to the demographics of the respondents. This of course, only translates to a real-world 
setting if the respondents are a representative group, which was not the setup for this survey. 


UTAUT Determinants 
Next, the aforementioned survey items for measuring the determinants in the UTAUT model are 

given. Each of these are measured on a 5-point Likert scale, with the values: strongly disagree, 
disagree, neutral, agree, and strongly agree. These values are, for the sake of analysis, 
transformed to numerical values ranging from 1 to 5. Aggregated and summarized data of the 5 
respondents are given in Table 6.3.1. These results and the impact is has on the evaluation of the 
method are discussed next.


Performance Expectancy and Effort Expectancy show the highest average (mean) values of 4,33 
and 4,45. An interesting remark to be made is that, looking at the raw survey data, both 
experienced and less experienced respondents mark the method as high in performance 
expectancy. This can be derived from the low standard deviation of 0,30, and the minimum and 
maximum values of 4 (agree) and 5 (strongly agree) in performance expectancy. This could 
indicate that the method both provides enough depth and perceived productivity gain for more 
experienced users, while still being easy enough to be understood and provides enough 
guidelines for less experienced users. The least experienced respondent (also a female), however, 
scored an average of 3,75 on effort expectancy, while higher values are attributed to more 
experienced respondents. This is in line with the theory, which suggest that the effect on 
performance expectancy is higher among users which are younger, female, and have little 
experience (Venkatesh et al, 2003). This shows that the method does indeed have a higher 
chance of actually being used by more experienced users, but less experienced users are 
predicted to still to use this method, as they still rate it favorably.
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Figure 6.3.3 - Male to Female Ratio
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Of the four determinants, Facilitating Conditions has the lowest average score of 3,8. Essentially 
scoring between a 'neutral' and an 'agree' level. This could indicate that the experts are not 
familiar with the concepts behind the method and the company does not provide enough support 
in that case. Which is not surprising, given the fact that Federated Learning is a new research 
area. This also further confirms the need for the literature review part of this study; showing that 
there is indeed a need to consolidate information and resources regarding Federated Learning. 
Also, to further improve the score on this facilitating conditions determinant, a more 
comprehensive guideline could be written to give the experts better tools at hand, as item PBC4 - 
relating to having available the right resources - had a low score. Also, item PBC5 was particularly 
low, with an average score of 3,4, indicating that the way of working in practice at the company 
does not directly fit with the method’s way of working. 


Social Influence has an average score of 3,8, which is the second lowest score, just behind 
facilitating conditions. This is largely due to the low average score on item SN2 of 3,6, stating that 
superiors oblige the usage of the method, i.e. a mandatory environment. As Federated Learning is 
largely new, it could be the case that the potential of Federated Learning has not reached their 
attention, and therefore are also not starting (investigative) projects on it. The scores have higher 
values for the items citing a hypothetical situation where a Federated Learning project would start. 
So, essentially, the average score of social influence is lower, because there is no mandatory 

Table 6.3.1. UTAUT Evaluation Survey Summarized Results  
(n=5. PE: Performance Expectancy. EE: Effort Expectancy. A: Attitude Towards Technology. SI: Social 

Influence. FC: Facilitating Conditions. BI: Behavioral Intent.)

Determinant Item Code Average Min Max St. Dev.
PE U6 4,8 4 5 0,45

RA1 4,2 4 5 0,45
RA5 4 4 4 0,00

PE avg 4,33 4,00 4,67 0,30
EE EOU3 4 3 5 1,00

EOU5 4,6 4 5 0,55
EOU6 4,6 4 5 0,55
EU4 4,6 4 5 0,55

EE avg 4,45 3,75 5,00 0,66
SI SN1 3,8 3 4 0,45

SN2 3,6 3 4 0,55
SF2 4,2 3 5 0,84
SF4 4 3 5 0,71

SI avg 3,90 3,00 4,50 0,63
FC PBC2 4,4 4 5 0,55

PBC3 4,4 4 5 0,55
PBC4 3,4 3 5 0,89
PBC5 3,4 2 4 0,89
PC3 3,4 3 4 0,55

FC avg 3,80 3,20 4,60 0,69
A A1 4,6 4 5 0,55

AF1 3,6 2 5 1,14
AF2 4,2 3 5 0,84
Affect1 4,4 4 5 0,55

A avg 4,20 3,25 5,00 0,77
BI BI1 4,2 4 5 0,45

BI2 4 3 5 0,71
BI3 4,4 4 5 0,55

BI avg 4,20 3,67 5,00 0,57
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environment yet. The respondents give higher scores in the hypothetical situation if a (mandatory) 
project were to be undertaken.


Next, the intermediate determinant Behavioral Intent, influenced by the determinants performance 
expectancy, effort expectancy, and social influence, show a similar score. The average of the 
latter combined being 4,23, and of the former 4,20. As these determinants are related and the 
three mentioned determinants influence behavioral intent, they should score similarly. If the two 
would deviate greatly, it could indicate that the survey was not properly understood or executed. 
As they do show similar results here, it provides extra confidence in the validity of the results. As 
all of these determinants show a high score, it is expected that the method will be used in a real-
world setting, as users see utility in this method. 


All in all, in general, the results are positive and further confirms the utility of the designed method 
by evaluating that the method would indeed be likely to be used in the real world by experts. 
Although the results are positive overall, the method could still be improved by better adapting to 
the practical way of working at companies and providing more resources and guidelines, as the 
score on facilitating conditions is the lowest. These two lower scoring determinants are, however, 
of less importance than the higher scoring because the respondents are predominantly male and 
young. These descriptive statistics leverage the effect on the high scoring determinants 
performance expectancy and effort expectancy, while having a lowing effect on the low scoring 
determinants social influence and facilitating conditions. This effect is only applicable if the survey 
respondents are a representative sample for other organizations. 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7. Case Study - Local Neural Network & FedAvg 
Implementation 
In the previous chapters the method to choose a Federated Learning approach has been 
designed, presented, and evaluated. During the evaluation by case study the method was 
executed. Its resulting choice for a Federated Learning algorithm for the case study company was 
Federated Averaging (FedAvg) by McMahan et al. This choice has been solely based on insights 
from the literature study. But, does the result of the method also translate to be a practical 
implementation in the real world? To answer this, this chapter presents a case study to implement 
the resulting Federated Learning algorithm at the same company with the same problem context 
where the method was executed. 


The goal of this is to show the applicability and practicality of Federated Learning at an 
organization which fits the earlier stated problem context. Earlier, the method itself was evaluated 
for utility by stakeholders, not on the results of the method. Therefore, this supplemental case 
study  serves as a (partial) empirical validation on the results of the designed method. Next, this 
also presents the opportunity to perform a comparison between locally trained Machine Learning 
models, a joint Centralized approach, and a Federated Learning model, as has been identified 
gaps in research. To accomplish this in a structured and academically-backed manner, this 
chapter will follow the research methodology of CRISP-DM; a leading methodology for doing data 
science-related research (Chapman et al., 2000; Kurgan & Musilek, 2006). 


This case study will not attempt to build an exhaustive and fully optimized model due to time 
constraints. The scope here is to perform a pilot study which shows the feasibility and practicality 
of implementing the decided Federated Learning algorithm. Also it serves to compare FedAvg,  
local Machine Learning models, and a Centralized approach to each other. As FedAvg is Neural 
Network based, only a Neural Network model has been chosen, to provide a fair comparison.


7.1 Business Understanding 
This section describes the first phase of CRISP-DM, the business understanding phase. 


This case study is executed at the same company as the previous case study in Chapter 5. 
Consequently, the same company description and problem statement are used. These are not 
repeated here. Only additional information needed for the purpose of this CRISP-DM phase is 
presented. 


7.1.1 Business Objective  
The business objective of this case study is synthesized to be the following. At Topicus there is an 
apparent wish to provide their clients (mortgage lenders, i.e. banks) with better information 
regarding the mortgage application process, which in turn will be used to optimize the business 
processes at these clients. 


One aspect of this process optimization is regarding the lead time of the mortgage applications. 
The lead time is defined as: the time it takes for a mortgage application to reach an (practical) end 
status, counting from the start of the process. Topicus’ role is to help the banks provide better 
customer service by giving an indication of the expected lead time of an application, to provide 
better insight in upcoming workload, and to help pave the way to shorten this application 
process. To accomplish this, Topicus wants to predict the lead times of the mortgage application 
process. In addition, Topicus is exploring options to create a global model by means of Federated 
Learning, combining information from different banks, in order to improve the individual models at 
each back. 


Business objective: Predict mortgage application process lead times based on customer and 
mortgage application data to provide better services to the clients of the business.
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7.1.2 Situation Assessment 
To accomplish this Topicus has provided the researcher with resources and tools. First of all, 
domain experts are readily available for informal interviews and other forms of knowledge 
gathering. Next, the researcher has access to the official documentation of the STO application,  
the business processes generating the data for this application, and the data models. Lastly, the 
researcher has been given access to real-world data from two of Topicus’ clients: two banks 
operating in The Netherlands. Some attributed of the data have been anonymized, such as all 
information that could identify an individual consumer. Hardware and software to access and 
interface with this data has also been provided by means of a remote desktop which hosts a MS 
SQL database. 


The scope of this case study is to show the applicability and practicality of predicting lead times 
at Topicus with Machine Learning and Federated Learning, not to create a fully optimized model. 
This is due to the initial set scope for this study and the limited time frame. This case study should 
be seen as a pilot study which the company can further iterate on.


Assessed situation: A short pilot study to assess the applicability and practicality of Machine 
Learning and Federated Learning. Necessary resources to accomplish this task are available.


7.1.3 Data Mining Goal 
From the business goal, a more technical data science-related goal is formulated. To accomplish 
the stated business objective two local Machine Learning models are developed at each bank. 
Next, a Federated Learning is developed to utilize the combined information of both banks. Also, 
a centralized model is trained to make a comparison with the Federated model. As the objective is 
to predict lead times this problem can be categorized as a regression problem in the context of 
Machine Learning. Only models that support this type of problem should be selected. For this 
purposes of this study only a Neural Network is chosen, as the resulting FedAvg algorithm is 
Neural Network based. This makes the comparison more valuable.


Data Mining Goal: Develop a local Machine Learning model to predict mortgage application lead 
times at each bank and compare the results to a Federated Learning model on the joint data sets.


7.1.4 Tool Selection 
Chapman et al. (2000) suggest to decide upon which toolset to use early on in the process. 
Therefore, tools are already selected in this stage. Also, it is worth noting that the choice of a 
toolset is not of major importance, other than that it fits the purposes of the set goals. The toolset 
choice is mainly based on the personal preference of the researcher, as the differences between 
the tools are minimal (Meka and Patil, 2015). The choice of tools are documented for 
reproducibility.


For data extraction, SQL will be used as the interfacing language, as the data are being stored on 
a MS SQL database server. The provided data model to purposefully execute these queries is 
available. Next, SQL will also be partly be used for data cleaning. As SQL has practical limitations, 
also the programming language Python will be used, with the Pandas library, a Python data 
analysis library (https://pandas.pydata.org). To develop both the Machine Learning and Federated 
Learning models, Python is again used. In addition to this, TensorFlow, the open source machine 
learning platform (https://www.tensorflow.org) is used as an additional library for Python. 
TensorFlow is used to develop machine learning models more systematically and in a quicker 
way. Also, TensorFlow has the FederatedAveraging (FedAvg) algorithm and a way to simulate 
Federated Learning on one device built-in, in the TensorFlow Federated library. 


7.2 Data Understanding 
In this section the actual data and data model of the STO data warehouse are described, put intro 
context by domain knowledge, and the quality is assessed.
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7.2.1 Data Description 
The data made available for this case study is production data from two instances of the STO 
database at two Dutch banks. The data are anonymized such that no data is traceable to 
individual consumers. Also, the two obtained data sets are from the same time period, so they are 
comparable. As already described in the case study in Chapter 5, there is a data size imbalance 
between the two data sets in the order of magnitude of a ~4:1 ratio. 

 

Next the STO database is described. STO is a data warehouse that consolidates and summarizes 
operational data from the application Force (the product suite used for administrative purposes for 
the mortgage application process). Each bank hosts its own instance of their own STO database, 
these are thus strictly separated.

At Topicus, extensive documentation on STO is available. The most important part of this 
documentation is the data model and its supplementary description. A visual representation of the 
data model can been found in Figure 5.1.2. This data model is described next.


The main table of this data model is regarded to be the Process table, i.e. the main fact table. The 
process status changes can be deduced by the associated ProcessStatus label, which includes 
the status code and a timestamp. From this the lead time can be constructed. Also included in 
this table is the Primary Handler, the unit that is responsible for processing this application. Next, 
the Team table denotes the team at the company that is responsible for this process. The 
Whitelabel table is used to differentiate between different brands present within one company. 


Next is the table ProcessType. This denotes the distinction between 'Acceptation'/'Acceptatie' 
and 'Administration'/'Beheer' processes. The Acceptation processes should be seen as the main 
processes of the mortgage application process. The Administration process denotes 
supplementary processes to alter an existing mortgage contract after it has been initialized. These 
do not follow the standard process path and are therefore not representative. The scope of this 
case study is, thus, set to only include the Acceptation processes.


The table Application denotes the mortgage application itself. One of the most interesting features 
in this table is LoanToValue. It is a features which incorporates the ratio between the mortgage 
amount and the market value of the piece of real estate. When this ratio is high it indicates a 
higher risk for the bank, and could therefore prolong the process with extra steps to mitigate this 
risk. 


Associates tables to Application are Consumer, the applicant of multiple applicants of the 
mortgage, and its associated table Income. The latter includes the feature GrossIncome, the 
income each applicant receives. The height of this income partly determines the maximum height 
of the mortgage amount this applicant can receive and can thus be a relevant feature for the 
model. It is also important to note that one application can have multiple consumers associated to 
it (in this data set only 1 or 2 consumers per application), and the consumer can have multiple 
incomes. For the purposes of this case study the gross incomes will be aggregated by taking the 
sum of all associated values, as this denotes the total income that is covering the mortgage 
payments. 


Lastly, other noteworthy associated tables to Application are HandlingParty and RealEstate. The 
latter denotes the data from the piece of real estate this mortgage application is about. It includes 
many features describing the real estate, such as the year of construction, the purchase amount, 
building type, the address, and more. The addresses are, however, anonymized in this data set. 
Next, the Handling Party denotes either an internal or external 'mortgage advisor', which can act 
as an intermediary between the consumer and the bank. 


The ConstructionAccount tables are not included in this case study, as these tables store data 
from the 'Adminstration’ processes, not the main 'Acceptation' processes, which is out of scope 
for this study.


Next to official documentation provided by the company, knowledge discovery with several 
domain experts of the STO application at Topicus has been conducted. This knowledge discovery 
took place iteratively during the data understanding process, and has also been applied at a later 
stage during data cleaning and modeling activities. The purpose being to understand data 
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features better, but also the data itself. For example, domain knowledge has been of utmost 
importance during the data cleaning stage, as outliers could not be interpreted without this 
knowledge. One example on this was the high occurrence of the year 1900 in the feature of year 
of construction, which apparently is a default value if the real year of construction is not yet 
known in the application process.


All in all, the STO data model is vast, well documented, and includes a lot of possible features that 
can be included in a Machine Learning model to predict the lead time. 


Lead Time definition 
In the business understanding phase it has been determined to predict the lead time of the 
mortgage application process. However, defining what the lead time actually constitutes to is not 
a trivial question. The mortgage application process goes through several process statuses during 
its lifetime. A simplified general overall process overview is shown in Figure 7.2.1. It should be 
noted that this is a stark simplification of the real mortgage application process, only the most 
practically relevant process statuses are included in this simplified model. There, all states a 
process can go through and the flow of possible state changes is shown. The table in the domain 
model ProcessStatus keeps track of these state changes by storing, among others, the process 
status code and a timestamp the change occurred.


All mortgage application processes start with 'Start New Application' ('StartNieuweAanvraag'), 
and has three possible end points, based on whether the mortgage was accepted and granted or 
not ('Passed' / 'Gepasseerd', 'Application Declined'/'Aanvraag Afgewezen', and 'Application 
Canceled'/'Aanvraag Geannuleerd'). To scope this case study all applications that were denied or 
canceled are excluded. 


The lead time could now be defined as the time it takes to reach 'Passed' from the points of 'Start 
New Application'. However, the phases after 'Binding Offer Sent' show a large degree of 
uncontrollable variability. These phases represent the time it takes for the mortgage contract to 
actually go into service. For example, a consumer might already want a mortgage contract set, 
while the house (s)he wants to buy is still under construction. The mortgage will only be legally  
activated and set to 'Passed' after the actual legal transfer of the deed and the transfer of funds 
have taken place, which can be months later. Meanwhile, the bank does have to allocate 
personnel as no significant work is done in the meantime. As the bank has little influence over this 
process and the bulk of the administrative work has to be executed in the phases leading up to 
'Binding Offer Sent', this status should represent the end of the application process from the 
bank’s perspective. This also fits the purpose from a business objective perspective; to better 
allocate resources. As the bank does not have any influence on this, and does not have to 
allocate personnel in the last process states, it has no added value. 


During data exploration it has also been observed that the process can reach 'Binding Offer Sent' 
multiple times per application: 816 times in Data set A, and 201 times in Data set B. This 
happens, for example, when the consumer declines this specific offer and wants another one. 
Then the process is not terminated, but instead, some steps are executed again before it reaches 
the status 'Binding Offer Sent' again. It has been chosen to only regard the first occurrence of the 
status 'Binding Offer Sent', not the subsequent ones. In the second iteration of this, the standard 
process flow is not strictly followed, which will introduce variability.   


The lead time is thus defined as: the time it takes for the process to reach the first occurrence of 
the process status 'Binding Offer Sent' from the moment the process started, marked by the 
process status 'Start New Application'. 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7.2.2 Data Quality Assessment 
In this section the data quality of the provides data sets is assessed, as part of CRISP-DM. 


The data sets provided are originating from the STO database, which is a data warehouse, 
summarizing data from the operational application Force. As it is a data warehouse, the data are 
already cleaned to a higher standard than the operational database. The quality of the data, 
regarding missing values, data formatting, consistency, and outliers, is assessed to be of a high 
standard. However, some caveats are to be mentioned, discovered during data exploration. 


There were some occurrences where the data was filled in, but did not reflect the real-world value. 
For example, the feature year of construction in the table Real Estate, denoting the year the house 
is built, has an unusually high occurrence of the value 1900. 15% of the real estate data points 
had the value 1900 for the attribute YearOfConstruction. After obtaining some domain knowledge, 
this is explained by the fact that this is a standard value mortgage lenders fill in when the real year 
of construction of the piece of real estate is not (yet) known. Another instance of the table real 
estate is initialized when the real construction year is known. As the data keeps track of historic 
values the newest value is chosen in this study.


There were also some occurrences of missing values in the following fields. First of all, it is 
assessed how many times the values for YearOfConstruction are 0 or null. This amounts to merely 
1 occurrence. This data point is excluded from the data set. Next, the it is assessed how many 
times the LeadTime is less than 10 hours, which are outliers and looking at the domain 
knowledge, would be too short, it has: 8 occurrences of this in Data set A, and 4 occurrences in 
Data set B These missing values are also excluded from the data set. Next, there were some 
instances of the combined income of consumers being unusually low (below 5000). With domain 
knowledge at hand, the incomes were too low to obtain a mortgage with any practical value. 
There were 24 occurrences of this, these data points were excluded.


7.3 Data Preparation 
In this phase of CRISP-DM relevant features for the model are selected, data is cleaned, and pre-
processed to be suitable for input in the modeling phase. 


7.3.1 Feature Selection 
Feature selection is a preprocessing step in developing machine learning models which removes 
irrelevant and redundant data, in order to increase the learning accuracy and improve results 
(Khalid et al., 2014). Domain knowledge is often used for this step (Kuhn and Johnson, 2013), but 
there are also more numerical method available. Such as a correlation-based approach, where   a 
good feature set contains features that are highly correlated with the target feature, but 
uncorrelated with each other (Hall, 1999). Correlated features with each other should therefore not 
be added. In addition, feature selection is even necessary for training some machine learning 
models such as Neural Networks. For Neural Networks, the predictive performance can actually 
decrease when non-predictive features are added. While some other machine learning models 
are, however, not affected by this (Kuhn and Johnson, 2013).


In this study the following features were selected by means of domain knowledge and an 
assessment of the correlation between the target feature and the other features. The graphs for 
the latter can be found in Appendix I. The former is already explained in the data description 
section. The following features are selected: RequestType, PrimaryHandler, HandlingParty, 
LoanToValue, Remaining Partial, YearOfConstruction.


Next the the already available features, combined features can also be constructed. This is called 
feature engineering and can be advantageous to the predictive capacity of a model (Kuhn and 
Johnson, 2013). For example, a ratio of two other features can be constructed. In this case study, 
several engineered features are used that were not readily available by looking at the database’s 
features alone. This is done through data exploration in combination with domain knowledge.


In this case study five features were engineered. The first is the target feature Lead Time itself, as 
mentioned earlier this feature had to be calculated by means of looking at the process states. The 
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SQL query that calculated this feature can be found in Appendix H.1. Next, a feature called 
Number of Consumers is constructed. This represents the number of applicants one mortgage 
application has. The rationale for adding this feature is that an application with more than one 
consumer will take longer, because each consumer’s have to be individually delivered and 
checked. The next feature is Sum Gross Income, which reflects the combined income of the 
applicants if there are multiple. Also a feature Sum Principal is added to reflect the mortgage loan 
height. It is summed because a mortgage can be divided into multiple parts. 


The last calculated feature was added during the modeling process and significantly improved the 
predictive performance of the model. This feature is called Overlap. Overlap represents the 
number of other simultaneous mortgage application processes being in progress at the start of 
that specific mortgage application process. The rationale for this feature is that the capacity of a 
bank is limited, and when a higher number of other applications are in progress, there is less time 
for the new process. In addition, the feature Overlap shows a stronger correlation than the other 
selected features, as can be seen in Appendix I. The SQL query extracting this information can be 
found in Appendix H.2. The full query extracting all features is stated in Appendix H.3.


The resulting list of selected features for input in the model is given in Table 7.3.1. 


As the improvements in predictive performance by adding more features in the modeling stage 
plateaued, no more features were selected in this case study. This is due to the diminishing 
returns on the improvement of the model and the time constraints. For improving the model 
results in the future it is recommended to consider other (constructed) features. 


7.3.2 Data Cleaning 
As mentioned in the data quality assessment, the quality of the data is already high. However, 
there are still some missing values and outliers present in the data sets. These are excluded in the 
following way.


All instances where the Lead Time was less than 10 hours were excluded. This amounted to the 
exclusion of 9 data rows. All data rows where the Sum Gross Income was below 5000 euros were 
removed, 368 instances. Also all instances were no consumers were linked to were excluded, 2 
instances. Some instances of YearOfConstruction were set in the future. These data points were 
kept, as they represent houses still under construction, but the mortgage application process was 
already finished.


Table 7.3.1 - Selected Features from the Combined Data Set

Feature Example value Type Min Max Mean St Dev

RequestType "Consumer" Categorial 2 categorial values {Consumer, Business}

PrimaryHandler "08R56017" Categorial 96 (55 + 41) categorial values 

HandlingParty "DC493B-
F48D-48FE409"

Categorial 1246 (773 + 473) categorial values 

Overlap 251 Integer 28 7.007 1.466,6 906,1

LoanToValue 0,6521 Float 0,0 1,8 0,7 0,2

RemainingPartial 301.000 Integer 0,0 1.000.000 243.444 144.646,1

YearOfConstruction 1975 Integer 1005 2022 1970 40,6

SumPrincipal 295.000 Integer 0 12.405.800 553.664 542.699,2

NumberOfConsumers 2 Integer 1 4 1,4 0,5

SumGrossIncome 76.000,67 Float 5000 3.554.133,0 50.392,6 63.306,4

LeadTime (target) 750 Integer 10 5749 717,3 465,6
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7.3.3 Data Pre-Processing 
After the right features are selected and the data are cleaned, the data is pre-processed. Here, the 
data is transformed to be in the right format for input in a machine learning model. This includes 
label encoding, one hot encoding, normalization, and formatting the data. 


One Hot Encoding

The features RequestType, PrimaryHandler, and HandlingParty are categorial features. They have 
a limited number of textual values. As Machine Learning models require their input to be solely 
numerical, this information needs to be encoded. All features are of nominal value, not ordinal, 
because they do not have an order embedded within the possible values. Therefore, these 
features will be encoded by the One Hot Encoding technique. To quote Harrag and Gueliani 
(2020), One Hot Encoding is: "a process by which categorical variables are converted into a form 
that could be provided to machine learning and deep learning algorithms to do a better job in 
prediction. It is a group of bits among which the legal combinations of values are only those with a 
single high (1) bit and all the others low (0)". Here each categorial value is represented in their own 
newly constructed feature, with either a value of 1 or 0, denoting whether this data point belongs 
to this class or not. For the feature RequestType one feature is satisfactory, as it only represents 
two categorial values. For the latter two features, only the top 25 most occurring categories are 
chosen (and one 'other' feature), to not include too many features to the model.  

Normalization 
Kurt and Johnson (2013) state that for Neural Networks (and Support Vector Machines) the data 
need to be scaled, normalized, and centered to obtain better results for the model. This is called 
normalization or feature scaling. It basically transforms all value ranges to the same or a similar 
scale, for example 0,0 to 1,0. The advantages of feature normalization on Neural Networks is also 
confirmed by Shanker et al. (1996), who compared several normalization techniques. The 
normalization is done feature wise, looking at the minimum and maximum values per feature. A 
common formula for normalization is: y = (x – min) / (max – min), according to Witten et al. (2016). 
Another technique is to apply standardization with y = (x – mean) / standard deviation (Witten et 
al., 2016). Which is a more statistical approach.


Looking at the data in this case study, there are large differences in the ranges. While the 
LoanToValue feature ranges from 0,0 to 1,8, SumPrincipal ranges from 0 to over 12 million. This is 
almost a difference of 7 orders of magnitude. Therefore, this data set will be scaled to represent 
only values between 0 and 1. In this case study the MinMaxScaler function from the sklearn 
Python library is used. It applies the normalization formula of y = (x – min) / (max – min), and 
transforms all values to a scale of -1 to 1 (or 0 to 1 if there are no negative values). 


7.4 Modeling 
In this part the modeling phase in CRISP-DM is described. 


7.4.1 Choice of Model 
There are a vast number of machine learning models available. Each belonging to a certain 
category of problem. Bishop (2006) names several machine learning models, such as: Linear 
Regression models, Bayesian Linear Regression, Neural Networks, Kernel methods, Support 
Vector Machines, and other classification and kernel methods. Looking at the type of problem, 
which is prediction of the lead time, a model supporting a regression problem would suffice. As 
already mentioned the scope of this case study is to develop a Neural Network. A local Neural 
Network model is trained for both banks, and a combined Federated Learning model is trained on 
both data sets.


7.4.2 Loss Function & Optimizer 
How does a Neural Network model learn? It uses two main functions: a loss function, which 
calculates how far the preliminary training predictions of the model are from the truth, and an 
optimizer, which updates the parameters of the model based on a gradient to steer it towards a 
lower loss.
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The task at hand in this case study is a regression task which can produce arbitrary values (i.e. 
not merely between 0 and 1). For this type of task Chollet (2018) suggests to use the MSE (Mean 
Squared Error) or MAE (Mean Absolute Error) as the loss function. The MAE loss function 
represents the total summed difference over all training examples: the absolute difference 
between the predicted value and the truth value. This loss function will calculate the performance 
of the model while training, and the objective is to minimize this loss function. The used loss 
function for this case study will be the MAE.


The minimization task of this loss function is done via an optimizer. This optimizer determines how 
the network will be updated based on the loss function (Chollet, 2018). The most popular 
optimizer used in Neural Networks is gradient descent (Ruder, 2016). Gradient descent minimizes 
the objective function J(θ), θ representing the model’s parameters. It updates the parameters of 
the model in the opposite direction of the gradient of the objective function with respect to the 
parameters. The optimization task stops when a (local) minimum is reached (Ruder, 2016). 


However, gradient descent is computationally expensive. Therefore, many models use Stogastic 
Gradient Descent (SGD) which performs a parameter update for each training example, instead of 
for the whole training data set (Ruder, 2016). Next to SGD, Ruder (2016) names several derived 
alternatives to gradient descend: 

- SGD, stogastic gradient descent;

- Momentum;

- Nesterov accelerated gradient; 

- Adagrad; 

- Adadelta; 

- RMSprop; 

- Adam;

- AdaMax; 

- Nadam. 


Of these algorithms RMSprop, Adadelta, and Adam are very similar and do well in similar 
circumstances (Ruder, 2016). Kingma and Ba (2014) show that the bias-correction in Adam 
slightly outperforms RMSprop towards the end of optimization as gradients become sparser. 
Adam can therefore be considered as the better choice. Adam will be used as the optimizer for 
this case study. Adam, Adaptive Moment Estimation, is a method that computes adaptive learning 
rates for each parameter. In addition, it store an exponentially decaying average of past squared 
gradients (Ruder, 2017).


In addition, each of the listed optimization functions are a form of stogastic gradient descent. 
Therefore, they only use a subset of the training data, instead of the whole training data set. For 
this, the model has a tunable variable called batch size, which sets the number of stogastic 
training examples per optimization step. Goodfellow et al. (2016) state that larger batches provide 
a more accurate estimate of the gradient, but with less than linear returns. They suggest a batch 
size range from 32 to 256, based on the size of the model and the computing power available. In 
this case study, the used batch size is set to 32.


Both the chosen loss function MAE and the optimizer Adam are built into the TensorFlow library 
used in this case study.


7.4.3 Parameter Initialization 
For a Neural Network model to start learning it’s initial parameters, or weights, need to be set as it 
needs an starting point. This initialization is, however, not trivial, as most algorithms are strongly 
affected by the initialization technique (Goodfellow et al., 2016). Setting the weights to 0 is also 
not a good choice, as this involves a symmetry problem. To quote Goodfellow et al. (2016): 
"perhaps the only property known with complete certainty is that the initial parameters need to 
'break symmetry' between different units. If two hidden units with the same activation function are 
connected to the same inputs, then these units must have different initial parameters. If they have 
the same initial parameters, then a deterministic learning algorithm applied to a deterministic cost 
and model will constantly update both of these units in the same way." (Goodfellow et al., 2016). 
Therefore, it is preferred to randomly initialize the parameters of the model; in this way the 
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symmetry can be broken. In used the TensorFlow in this case study, the parameters are initialized 
randomly.


7.4.4 Neural Network Architecture Design 
In this section, the architecture design of the neural network is described: its number of nodes, 
input, output, and hidden layers, and the activation function.


The choice for a neural network design seems, however, semi-arbitrary, and heavily tied to the 
problem at hand. To quote Chollet (2018): "picking the right network architecture is more an art 
than a science; and although there are some best practices and principles you can rely on, only 
practice can help you become a proper neural-network architect." Therefore, an iterative 
approach will be used in this case study, based on trial and error.


There are, however, some constants in the design: the input and output layers. The input layer has 
a node for each input feature. In this case study amounting to 8 nodes and however many one hot 
encoded features are encoded from the 2 other categorial features. The output layer constitutes 1 
node, it outputs a real value; the prediction for the lead time. In this case study, after many 
iterations, the neural network design has 3 hidden layers, with respectively 20, 10, and 10 nodes.


One last design question for Neural Networks is the activation function. Without an activation 
function the model would only be able to learn linear transformations, which is too restrictive for 
many tasks (Chollet, 2018). There are many activation functions available. The most popular is the 
ReLU activation function (Ramachandran et al., 2017), the rectified linear unit. This activation 
function will be used in this case study and is included in the TensorFlow library. 

7.4.5 Convergence  
A neural network is trained by means of iterations, also called epochs. During each iterations 
several steps are conducted. First, the input training data is propagated forwards, which results to 
an output, the lead time prediction in this case. Next, an algorithm called backpropagation is used 
to compute the gradient of the loss function with respect to the current weights of the model 
(Chollet, 2018). In this way the model learns. Training a neural network may require many epochs 
to reach an optimum. A heuristic that can be used is to use this many epochs where the learning 
rate (the decrease of the loss function) plateaus (Chollet, 2018; Goodfellow et al., 2016).


To mitigate the possibility of reaching a sub-optimal local minimum the model is trained several 
times on different train-test splits. The fact that both data sets show similar (loss) results and a 
similar number of epochs to reach convergence can be seen as an indication that a proper (local) 
minimum is reached.
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Figure 7.4.3 - Training (MAE) Loss per Epoch on 
Centralized Combined Data Set A & B

Figure 7.4.4 - Training (MAE) Loss per Epoch for 
the Federated Learning Model



In figures 7.4.1, 7.4.2, 7.4.3, 7.4.4, graphs are presented that show the convergence of each local 
Neural Network model for each data set, central approach on the combined data set, and the 
Federated model. The number of epochs set is 1000. Here it clearly shows that there is a steep 
decline in the MAE on the training data at the beginning, and it starts to plateau after about 40 to 
200 epochs, only providing diminishing returns afterwards. At 1000 epochs the decrease in the 
MAE on the training data is minimal or has even totally flattened. Also, no significant decrease in 
the MAE on the test set is observed after 300 epochs. 


7.5 Evaluation 
This section presents the evaluation of the model and also the last practical phase of CRISP-DM. 


7.5.1 Evaluation Method 
In order to evaluate the models, the original objective is revisited: to predict mortgage application 
lead times. In order to achieve this, the data need not only be predictive of the already available 
data, but even more so on future data. This cannot be accomplished by merely training the model 
on the heuristic of attaining a low loss on the training data. This would make the model too 
specific, i.e. an overfit (Shmueli and Koppius, 2010). To make the model more robust, the model is 
evaluated on different data than the training data.


Chollet (2018) names two ways this can be accomplished: 

(i) by a simple hold-out split;

(ii) by k-fold cross-validation.


In the first technique, the simple hold-out split, the data is split into a training set and a test set 
(usually an 80:20 split). Here, the model is trained each iteration on the training set, but evaluated 
on the test set. To show the predictive performance results that are more likely to be 
generalizable, as the model has not seen this data before (Chollet, 2018). The second technique 
works in the same manner, but randomizes and repeats this process multiple times. Here, the 
data set is split in k subsets, where one of these subsets is used as the test set and the remainder 
as the training set. This is performed k times such that every k-th subset is used as a test set 
once. After these k iterations, the mean of the results are taken (Friedman et al., 2001). In this 
study, due to the to the fragmented nature of the data sets in the Federated approach, instead of 
a k-fold cross validation, a simple hold-out split is used with an 80:20 split.


The metric used to evaluate the model on will be the MAE of the difference between the truth 
value, the actual lead time in the test set, and the predicted lead time by the model. This is done 
for every data point in the test set and then averaged to get the MAE for this model. This 
evaluation is done for every model: the local Neural Network model on both data sites, and on the 
Federated Neural Network model on the data of both data sites. In addition, a centralized model 
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Figure 7.4.1 - Training (MAE) Loss per Epoch on 
Data Set A

Figure 7.4.2 - Training (MAE) Loss per Epoch on 
Data Set B



is trained where the data of both data sets are combined, and this result is compared to the 
Federated model.


7.5.2 Evaluation Results 
In Table 7.5.1 the predictive results on both the test set as the training set are presented for each 
of the four models: the local models on data set A and B, the centralized model on the 
combination of data sets A and B, and the Federated model. Here the MAE for the lead time (in 
hours) is given.


For data set A, the MAE, mean absolute error, of the predictions of the model on the test set is 
193 hours (8 days). Comparing this to just guessing the average lead time for this data set (a MAE 
of 337), it performs 144 hours better. The results for the smaller data set B are slightly worse with 
a MAE of 213 hours on the test set, which only performed 103 hours better than guessing the 
average lead time.


The centralized model and the federated model perform very similarly. This is expected, as in the 
literature review it was concluded that Federated Learning algorithms do not have a significantly 
worse predictive performance than a centralized model, but instead are very similar. This is 
another empirical confirmation to this insight from the literature study. 


Next, both models perform worse than data set A, but better than data set B. Data set B is about 
four times smaller than data set A. Therefore, it could be that due the extra data available, a better 
model can be built. The worse performance than the local model on data set A can be explained 
by the fact that data set A already had plenty of data, and the added data makes the model less 
specific for this data set. This could prove to be advantageous for the generalizability of the model 
for future mortgage application. Also, the differences between the models are rather small, thus a 
strong conclusion cannot be made about this.


Next, the practical implications are discussed. The models have a MAE on the test set of between 
193 to 209. Although it is much better than just guessing the average, of between 103 and 144 
hours better, the error margin is still high for its purposes. Practically, it means that the average 
prediction error is still around 8 days, on an average lead time of a bit more than a month, making 
it not that suitable for real-world usage. Therefore, there are still improvement to be made to make 
the model suitable for practical usage. Looking at the scope of this case study, it is not surprising, 
as the main objective was to show the applicability of the chosen Federated Learning algorithm in 
the real world, not primality building the most predictive model possible.


Table 7.5.1 - Predictive Performance Results

MAE Lead Time (in hours) 
on Test set 

MAE by guessing with 
average lead time 

Difference (MAE loss on 
Training set)

Local Model Data Set A 193 337 144 178

Local Model Data Set B 213 316 103 171

Centralized Model 205 335 130 181

Federated Model 209 335 126 188
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8. Conclusion 
This chapter first presents conclusions by reflecting on the earlier posed research questions and 
their results. Then a discussion on the results is given. After that the study’s main theoretical and 
practical contributions are stated, alongside its limitations. Lastly, possible directions for future 
research are suggested.    


8.1 Conclusions 
This research set out to answer the following main research question: 


What is an appropriate methodology to help organizations choose the most suitable 
Federated Learning method given their situation regarding data-related characteristics and 
privacy requirements? 

To answer this main research question, the problem is broken up into several pieces, which 
together aim at answering the main research question. Conclusions on the research on a per sub 
research question basis are discussed next.


RQ1: What is the definition of Federated Learning according to the literature? 
Federated Learning is still a novel research area, the formal definition was only set in 2017 and 
most papers are just published last year (2019). Federated Learning started as a means of 
attaining more data input for machine learning models at different distinct data sites, while still 
preserving privacy. The main advantage: more data input is being available, and more data, under 
the general assumption that the combined data set is iid, means that a better machine learning 
model can be developed. To tackle the privacy constraints, almost all Federated Learning 
methods do not share the local data with another data site; the data does not leave its origin. 
Instead, partial local models are trained and merely the model (or parameter) updates are shared 
with a central server which aggregates these results.


This study synthesized the information present in 10 studies about Federated Learning and 
deduced common characteristics found. From this, a clear and usable definition of Federated 
Learning is formed: Federated Learning is a form of distributed machine learning where a global 
model is trained on a central server utilizing multiple separate heterogenous edge devices, while 
still preserving privacy by not permitting the data to leave their origin devices. 

RQ2: What Federated Learning methods exist in the literature? 
Federated Learning has a myriad of distinct methods present in the literature. These methods can 
be categorized in two ways. The first are proto-federated learning methods, which are in a 
research line started before Federated Learning had a formal definition. Most of these methods 
are standard machine learning algorithms adapted for distributed usage with some privacy 
mechanism present. Looking at these studies, each developed their own custom method and 
tackled challenges like networking, consolidation, and communication strain on their own, 
effectively reinventing the wheel each time again. Next are the second category of Federated 
Learning methods, which all started with the Federated Averaging (FedAvg) method of McMahan 
et al (2017). FedAvg is also the most commonly mentioned method. Most papers after this 
develop their new Federated Learning method based on FedAvg or compare their method to 
FedAvg, which is seen as a baseline. A comprehensive table of all methods identified in the 
literature can be found in Chapter 3.2.


RQ3: What are the main differentiating characteristics of the Federated Learning methods 
found in the literature?

To purposefully show relevant differences between the Federated Learning methods identified in 
the previous research question, 5 differentiating characteristics are devised for Federated 
Learning. The differentiating characteristics of Federated Learning methods are defined as: 
characteristics of Federated Learning methods (i) which may limit options or impact the desired 
outcome regarding a organization’s data-related characteristics and privacy considerations, i.e. are 
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relevant to the to-be-designed method, and (ii) have variation in implementation among the 
Federated Learning methods, i.e. not all Federated Learning methods have the same 
implementation regarding this characteristic.


There are 5 differentiating characteristics devised for Federated Learning. They are deduced from 
the characteristics and information about the various Federated Learning methods identified 
earlier. These 5 differentiating characteristics are: 

1. Data partitioning; 
2. Underlying machine learning models; 

3. Privacy guarantees; 

4. Performance (accuracy, predictive performance); 

5. Non-iid data support. 


These 5 differentiating characteristics are used as the basis for the designed method, as these 
characteristics serve to make an informed decision among the various Federated Learning 
methods. In this way, a structured comparison can be made based on the scope and goal of the 
study.


The first three differentiating characteristics are investigated in this research question and their 
values for each Federated Learning method are deduced. These results can be found in table 
format in Appendix F.2. The remaining two differentiating characteristics are not static; they show 
some interrelationship where a trade-off can be made. Therefore these are investigated 
separately, in research question 4 and 5. 


RQ4: What are the differences in predictive performance among Federated Learning 
methods? 
This research question’s aim is to investigate the differences in predictive performance among the 
found Federated Learning methods. It is the fourth differentiating characteristic.


An overarching view in Federated Learning research is that most methods (custom ones and 
FedAvg) achieve similar predictive performance results compared to a centralized approach. 
Meaning that the privacy-preserving mechanisms of Federated Learning do not significantly 
impede model accuracy. Also, multiple researchers claim that their Federated Learning method 
outperforms a local-only approach. Lastly, among a few Federated Learning methods directly 
compared to each other, the best known results are that of the FedAvg method, when compared 
in an external study.


It is important that a clear distinction be made between non-iid and iid data sets, as many 
standard Federated Learning methods do not perform well on non-iid data. Adapted Federated 
Learning methods who work better in non-iid settings are developed. Of these methods Zhao et 
al’s (2018) method shows the greatest improvement in accuracy of up to 55%, but does, however, 
require data sharing. The Astraea method does not require data sharing, but only shows a modest 
increase in accuracy of about 6%. A more detailed investigation of the effect of non-iid data on 
Federated Learning is included in the next research question.


These conclusion, however, should be stated alongside some considerations. First of all, it 
became apparent that many studies in this SLR both introduce both their newly-developed 
method and also a comparison of this method to another. This could lead to potential bias, as the 
researcher who created the method, which is fine-tuned for a particular data set, is now also 
comparing these results to another method. For a proper comparison an external study should be 
conducted, where the researcher compares several Federated Learning methods from other 
researchers on the same data set(s) and with the same objective. This study, therefore, considers 
these external studies (such as that of Nilsson et al, 2018) to be of higher quality and weights 
these higher in the results. In this way potential bias can be reduced. 


Second of all, there is a discussion within the Federated Learning domain whether traditional 
methods such as FedAvg work well on non-iid data. The original authors claim that working well 
on non-iid data is one of the pillars of their Federated Learning method. However, many studies 
published later on demonstrated both theoretically and empirically that predictive performance is 
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indeed negatively impacted in non-iid settings. The reason behind this will be investigated further 
in the next research question below.


The best performing Federated Learning methods identified in the literature based on both non-iid 
support and privacy are summarized in table format in Appendix F.1.


RQ5: What is the effect of Federated Learning’s consolidation technique of utilizing multiple 
data sites on predictive performance? 
To better understand the relation between the consolidation technique Federated Learning uses 
and the effect it has on predictive performance this research question was formulated. 


First, the mechanism of consolidation in Federated Learning is investigated. Consolidation here 
means the mechanism how Federated Learning combines and weights the information from the 
locally trained models. This mechanism is found to be a relatively simple (or naive) approach: it 
merely aggregates all data points from each data site with the same weight, or it aggregates each 
data site with the same weight in some cases. The implication of this is that some data sites may 
have more influence over the trained model than others (or in the second case that some data 
points may have more influence). This can also be represented in formula form. The goal of 
Federated Learning is to minimize the following objective function: 


where m is the total number of devices, w is the input parameter (i.e. input training data), Fk is the 
local objective function, and pk specifies the relative impact of each device. This relative impact is 
usually set as: pk = 1/n or pk = nk/n, where n is the total number of training examples, and nk is the 
number of training examples of a particular local device k (Li and Smith, 2019).


It has been shown in several empirical studies that Federated Learning (in an iid context) achieves 
very similar performance to a centralized approach. A centralized approach is when the data of 
each data site is transferred to a central server and a traditional Machine Learning model is 
trained. This means that Federated Learning is advantageous to use regarding its privacy 
preservation characteristics, but does so by not significantly impeding the predictive performance 
of the overall model.


The most interesting part is when this finding is linked with the problems seen with non-iid data. 
Although early research claims Federated Learning works well with non-iid data, many 
empirically-backed studies proved otherwise. The effects of non-iid data show an accuracy loss 
of up to 55% for some data sets. The way studies which tackled this problem is by changing the 
way the consolidation of multiple data sources is conducted. Many Federated Learning methods 
created for non-iid usage try to solve this accuracy loss by balancing the data between data sites, 
others share data among data sites, and others change the weights attributed to some of the 
local models. Concluding, a link has been made between the way consolidation is done in 
Federated Learning (a simple and naive approach as of right now), and the negative impact on 
model performance in non-iid contexts. 


RQ6: What is an appropriate method for identifying non-iid data sets in the context of 
Federated Learning? 
This research question sets out to identify and devise a supplemental method to identify non-iid 
data sets in a Federated Learning context. As the distinction between a non-iid and iid data set is 
of high impact for the choice among Federated Learning methods, a theoretically-backed sub-
method in identifying non-iidness is of added value to the method. 


Non-iidness is traditionally defined as a property of one data set, where the data draws are not 
independent and/or data is not identically distributed. Therefore, a different approach needs to be 
devised for a Federated Learning setting. As in Federated Learning there is not one data set, but 
multiple separated data sets which by principle cannot be combined. Thus non-iidness cannot be 
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assessed by means of an evaluation on one data set. Instead, it should be assessed by 
comparing each potential new data set incrementally to the existing data sets. For this, the 
methodology of Rabanser et al. (2018) is used and altered. The proposed method consists of 
three steps:

1. Dimensionality reduction, i.e. feature selection, to reduce the number of features to a 

manageable number with only relevant features;

2. A three-criteria test on non-iidness; and lastly,

3. A final assessment, where conclusions are drawn based on the findings in the previous step.   

 

For the second step the three criteria of causes of non-iidness in Federated Learning by Duan 
(2019) is used:

1. Size Imbalance, where the data size on each device (or client) is uneven;

2. Local Imbalance, where each device does not follow a common data distribution;

3. Global Imbalance, means that the collection of data in all devices is class imbalanced.


In this way, an assessment on the non-iidness of a newly added data set to a Federated Learning 
system can be made.


In addition, an interesting link between the first criterium, size imbalance, and the consolidation 
technique discussed in the research question 5 can be made. As the consolidation mechanism 
follows a naive approach, attributing the same weight to each data point, the importance of the 
criterium size imbalance can be explained. In the case where one data site provides an 
overwhelming majority of the data points, it also has, by definition, the most influence on the 
resulting global model. This is only a problem when there is also a local of global imbalance. The 
size imbalance will have a leveraging effect on these imbalances.


RQ7: How to design a methodology that fits the goal of the main research question? 
This research question seeks a method for designing a method, i.e. a meta-methodology. In this 
way the design process is structured and theoretically-backed. Such a meta-methodology is 
provided by Harmsen’s (1997) Situational Method Engineering. Here, the situation is characterized 
by the goal, scope, and objectives of this study. These serve as criteria for the selection of 
method fragments. In this study, the selected method fragments coincide largely with the 
Federated Learning differentiating characteristics deduced from the literature review. Later, the 
method is assembled by using the created method fragments and by utilizing some set assembly 
rules, as stated by the meta-methodology. Concluding, the Situational Method Engineering of 
Harmsen (1997) provides a structured way to design the target methodology of this study.


RQ8: How to evaluate the designed methodology? 
The designed method was founded on literature insights and its design process was scientifically-
backed by a meta-methodology, but this is no substitute to validating and evaluating. Therefore, 
this method is evaluated in two subsequent steps coming from the research methodology DSRM: 
validation by executing the method in a real-world case study, and evaluating this case study by 
demonstration to experts and measuring their responses. As described by Wieringa (2014), an 
artifact, in this case a method, should be evaluated by utility. This will be used as the main metric. 
In addition, the resulting Federated Learning algorithm is implemented in a separate case study. 


First, the validation by doing a real-world case study. The case study was conducted at the 
software company Topicus in the financial department, with data from financial institutions. The 
problem context was drawn from a real-world need and fit the scope of the designed method. By 
executing the case study, it showed that the method is feasible for usage in a real-world problem 
context. Also, by executing this case study an example of the method is given, further enhancing 
the understanding of the working of the method and showing the utility of the method. 


Second, the method is demonstrated to 5 experts in the field of data science by means of 
describing and explaining the method, and showing its execution by means of the case study. 
Then, experts’ are asked to fill in a survey. This survey contains standard questionnaire items from 
the UTAUT model, which is a model to predict future usage behavior by means of 5 determinants: 
performance expectancy, effort expectancy, social influence, facilitating conditions, and 
behavioral intent. This model fits the goal of measuring utility, as the concepts are closely related. 
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The survey results are positive, the response averages on performance expectancy, effort 
expectancy, and behavioral intent where the highest, showing that the respondents are likely to 
use the method and see productive value in it. Some slightly lower scores, but still positive 
nonetheless, on social influence and effort expectancy show that the method operates in an 
environment that is not familiar with Federated Learning. This is not surprising, as Federated 
Learning is a new research area, thus organizations have not developed the necessary 
infrastructure, knowledge base, and support for facilitating projects in this area.


Third, the case study’s resulting Federated Learning method, FedAvg, is implemented in a 
subsequent case study at the same company. The purpose of this is to show that the result of the 
method is also suitable for practical usage, next to only having a theoretically sound backing. 


Concluding, by means of the literature background and the three-way evaluation, the method not 
only has a theoretical backing, but also positive validation for usage in the real world.


Concluding Remarks 
This research has succeeded in its main goal of designing a method to support organizations 
make an informed choice among Federated Learning methods available, based on their data-
related characteristics, privacy requirements, and business objectives. It first set out to define 
Federated Learning and, by means of this definition, make inventory of all Federated Learning 
methods presented in the Systematic Literature Review. After the various Federated Learning 
methods are identified, their main differences are investigated. This is done by investigating 5 
differentiating characteristics of these Federated Learning methods. These differentiating 
characteristics, then, served as the basis for designing a method to make an informed choice. 
This method was designed by an academically backed meta-methodology. Then it was validated 
for utility in three steps. First, through a real-world case study, which showed the applicability of 
this method in a real-world setting. Second, by means of a demonstration of the method and case 
study to experts, which showed overall positive results. Third, the resulting FedAvg method was 
implemented in a subsequent case study at the company, to show its practical relevancy.


All in all, the main artifact of this study - the method - is based on insights from the literature, 
designed by means of an academic meta-methodology, and positively validated by means of a 
real-world case study and a demonstration to experts.


8.2 Discussion 
This section presents a discussion on the research methodology and results. This is an additional 
discussion next to the partial discussions found at the end of each of the research question result 
sections in Chapters 3, 4, 5, and 6. 


In research question 4 the predictive performance differences among Federated Learning 
methods are investigated. However, in a machine learning, and therefore Federated Learning, 
context, this is difficult to achieve. This is because the predictive performance results are not only 
tied to the algorithm used, but also based upon the data set used and the objective set. In this 
way, it is difficult to directly compare results from a literature study alone. This has been done 
regardless. There were some (external) studies which either directly compared multiple Federated 
Learning methods at once on the same data set and with the same objective, or separate studies 
which directly compared their newly developed method to a previous publication on the same 
data set. (Such as that of Nilsson et al, 2018.) Only studies which conformed to these 
requirements were used as input for the answering of this research question. For this reason, the 
results are rather limited to a few Federated Learning methods. Therefore, in the designed 
method, the Federated Learning methods present in the comparable study set take precedence 
over the other methods. It could therefore be the case that in practice other found Federated 
Learning method would produce better results, but trustworthy comparable information is not 
available, and are therefore excluded.


This study uses Situational Method Engineering as the meta-methodology for designing a 
method. Although this meta-methodology’s scope includes generic methods, it is tailored to IT 
projects in its guidelines. This manifests itself by the situation characterization phase. Here all 
proposed metrics and guidelines are tailored to IT project characteristics. To strengthen the 
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structure of this meta-methodology, the results of the first two phases and their guidelines of the 
DSRM, Problem identification & motivation and Defining solution objectives, are used instead. The 
phases of both methodologies show similarities and have the same overall goal.


Next, the assembly of the designed method is tied to the results drawn from the SLR. This was 
done to satisfy one of the situational independent criteria in the method assembly process: 
efficiency. The efficiency criterium states that method should fulfill its duty at minimal cost and 
effort. For example, the conditional split operator in the method serves to minimize the time it 
takes to come to an optimal choice among the Federated Learning methods. It does so by 
skipping method steps whose goal it is to gather unnecessary information, i.e. information that in 
that particular situation does not contribute to a better result anymore. This on the one hand 
makes the method more efficient for users, but on the other hand more time consuming to design. 
This efficiency gain is tied to the results of the SLR. Therefore, if these insights change or new 
Federated Learning methods with other properties emerge - and they are likely to change as the 
research area is still new and under development - then the assembly process will result in a 
different method. This tight coupling between data and method is practical and useful for the 
users of the method, but can, however, be seen as too specific. If the literature study is repeated 
often, then a more general method would be more suitable.


In the same manner, the 5 identified differentiating characteristics are tied to the Federated 
Learning methods available. Although the definition remains the same, the identification of these 
differentiating characteristics is based on the differences between the characteristics of the 
available Federated Learning methods. Therefore, if more Federated Learning methods are 
developed with significantly other characteristics, this process of devising the differentiating 
characteristics should be repeated. However, as the research on Federated Learning is 
standardizing since the FedAvg method of McMahan et al, it is not a likely scenario that the main 
properties of Federated Learning will undergo radical differences in the near future.


The next point is about the evaluation. By choosing the UTAUT model as a tool for evaluation an 
assumption was made. This assumption states that utility, the overarching measure of evaluation 
as stated by Design Science, is measured by the UTAUT model. However, the UTAUT model 
states that it predicts the usage behavior. This study makes the argument that utility and 
willingness to use the artifact are closely related, as stakeholders, users will not use the method if 
they do not see utility in it. Also, the utility is validated by executing the case study in a real-world 
scenario.


In the evaluation part of this study, the case study and the evaluation by demonstration are 
conducted at the same company. This way of measuring is as close to a real-world 
implementation as possible - users are directly involved in the case study situation - and arguably 
the preferred setup. It could, however, create bias in future comparisons. In possible future 
evaluations of this method where the case study company differs from the workshop evaluation 
company, the results should be compared with this information in mind, as it would not be a fair 
comparison. It is expected that in such a case the results will likely be lower, as the participants of 
the evaluation are not as closely linked to the presented situation as in the former case. 


The evaluation by demonstration and measurement by the UTAUT model shows positive results. 
Especially in the determinant performance expectancy and effort expectancy. The high score in 
performance expectancy show that the users see potential productivity gains in using the method, 
i.e. utility. Effort expectancy’s high score indicates that the method is set up to be efficient 
enough, conforming to the efficiency situational dependent criterium in the method assembly 
process. The determinants facilitating conditions and social influence also show positive results, 
but lower than the preceding determinants (up to 0,6 points on a 5 point scale lower). It could be 
that these determinants are scored lower due to the fact that Federated Learning is a new 
research area, and knowledge, support in organizations is not yet materialized. The method can, 
therefore, still be improved on those points. Looking at those determinants, a suggestion for 
improvement is to provide better additional guidelines and additional resources for other 
supporting stakeholders such as supervisors and management. 


Next, the survey’s descriptive statistics show that the respondents are predominantly male and 
young. As these properties are moderating factors in the UTAUT model, this further enhances the 
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positive results found on the determinants performance expectancy and effort expectancy, while 
diminishing the slightly lower results on facilitating conditions and social influence (the latter 
having a higher effect among females and older users, and the inverse is true for the former). 
However, this leveraging effect cannot be stated in general, as the participants in the evaluation 
were not selected randomly, and the group was not meant to make any claim on representativity. 


Next, although the method was founded upon insights from the literature, validated by means of a 
case study and evaluated by experts, the implementation of the chosen Federated Learning 
method is also implemented in a cast study to show its practicality. This is to validate the 
practicality of the result of the method, not merely relying on a literature based backing.


Also, in this case study, two local Machine Learning models and a centralized model were built, 
next to the Federated model. This showed that the centralized model shows similar results as the 
Federated model, confirming the literature insights that Federated Learning’s privacy preserving 
mechanisms do not significantly impede predictive performance. In addition, it showed that some 
locally learned models perform better on that respective data site than the Federated model. It 
should be noted that the differences in predictive performance between all - local, centralized, 
and federated - models are quite similar.


8.3 Generalizability  
Although the designed method has only been evaluated at one company in one industry, the 
artifact of this study has been designed with generalizability in mind. The method was designed 
not specifically for this company, but for a set general problem context. Within this problem 
context, stated in the introduction, a systematic literature review was executed. The insights from 
the literature set the basis for the method. For example, the main components of the method, the 
list of Federated Learning algorithms and the 5 differentiating characteristics, are general to 
Federated Learning, not a specific industry. Therefore, the method is suitable for all organizations 
identifying with the stated problem context in the introduction. 


The method has been evaluated at a software company who provides software for the financial 
sector. It is recommended that the method is evaluated at other industries as well. A good next 
step would be in the healthcare sector, as many Federated Learning studies found are already 
conducted in the context of healthcare, i.e. the interest is already there. Here, a more ad-hoc 
approach may be needed as in this case study there was an overarching software development 
company which provided a central point and has standardized software with similar domain 
models. In other situations this might not be this clear, for example, in healthcare there may not be 
an overarching software company, making it more decentralized. It is therefore advised to form a 
central steering unit with all participating units, incorporating both central planning and increasing 
the willingness for everyone to participate and oversee the process. 


8.4 Contributions 
In this section both the theoretical and practical contributions of this study are stated.


8.4.1 Theoretical Contributions 
First of all, this study synthesizes a clear view on what Federated Learning is according to the 
literature. As of right now, due to the research area being relatively new, information about 
Federated Learning is fragmented, not completely overlapping, and sometimes even 
contradictory. This is problematic, especially for organizations and researchers trying to get 
familiar with this topic. Before this study they would have to read many papers in order to gain a 
clear understanding of what Federated Learning is. This study synthesizes one clear agreed-upon 
definition of Federated Learning, based on the most common characteristics in the literature. This 
is useful as some studies make the definition too broad for its purpose. E.g. some studies also 
include a decentralized topology for Federated Learning, however, this only makes the definition 
too broad for its function, as all Federated Learning methods reviewed only work with a central 
aggregation server.


Next, this study composes a comprehensive list of the most prevalent Federated Learning 
methods. This has not been done before in previous literature publications to this extend. The 
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methods are usually introduced on a one-per-paper basis, making the information fragmented. 
This study makes inventory of the Federated Learning methods found in the literature and 
presents them in a clear manner. It lists 17 Federated Learning methods found in the SLR; the 
most in any study as of to date. This comprehensive list provides the foundation to make 
comparisons between the Federated Learning methods.


To purposefully compare the Federated Learning methods found, this study introduces the 
definition of differentiating characteristics. These differentiating characteristics provide a way to 
merely look at meaningful differences between Federated Learning methods, not trivial ones. The 
study devised 5 differentiating characteristics in Federated Learning, and along these created a 
clear overview of the main differences between the available Federated Learning methods. 


Another theoretical contribution this study makes is the investigation of the link between the 
consolidation mechanism of Federated Learning and the lower predictive performance results of 
Federated Learning on non-iid data. This study provides a thorough review on the effect of the 
way consolidation is done in Federated Learning. The technique with which Federated Learning 
consolidates information per data source has been investigated. It has been found to be simple/
naive averaging, where every data point (or data site) is attributed an equal weight. This study is 
the first to question this basic assumption present in Federated Learning research on such a 
thorough basis. It questions the relatively simple, naive, way consolidation of data among data 
sites is done. This study then links this assumption to problems seen in Federated Learning 
regarding non-iid data. Other studies did mention this problem implicitly by adapting their 
Federated Learning methods to work better on non-iid data, but did not make this direct link with 
the way consolidation is done. The relevance of this discovered link is that it shows a possible 
avenue to do future research on. This link could be used to investigate whether this naive method 
of combining data could be modified in future federated learning methods, in order to achieve 
better predictive results.


In addition, this study confirms the earlier found literature insight that Federated Learning models 
do not perform significantly worse than a centralized approach. The results of the case study 
implementing FedAvg and a centralized approach show very similar predictive performance 
results, with only a slight edge for the centralized approach over the Federated model. 


8.4.2 Practical Contributions 
This study designed a method that supports organizations who want to choose a Federated 
Learning method, which supports their organization’s specific data-related characteristics and 
business goal. The designed method is founded upon insights from a systematic literature review, 
successfully validated by a real-world case study, and positively evaluated by experts. The 
method, and the theoretical insights that it is founded upon, provides organizations new to 
Federated Learning a clear and comprehensive way to better understand what Federated 
Learning is, and what the best solution-fit would be for their specific situation. This study provides 
the most comprehensive review of existing Federated Learning methods as of yet, before this, 
organizations would have to do a systematic literature review themselves to attain this level of 
information overview.


Next, this study provides a way for organizations to detect non-iid data sets in a Federated 
Learning context. Non-iidness has traditionally been defined, and its tools adapted to, working 
with one general data set. This is not applicable to Federated Learning, due to the distributed and 
privacy-preserving nature. Instead, an iterative method is presented, which compares a new data 
set to existing ones, and tests it via three main causes of non-iidness in Federated Learning. In 
this way, a more practical method is introduced to work in a Federated Learning context.


8.5 Limitations 
This study, as all studies, is bound by limitations. These limitations are discussed in this section. 


First, the research area is relatively new. The earliest paper used in the SLR is from 2013 and the 
first formal definition of Federated Learning is from 2017. Also, as the meta-analysis of the SLR 
showed in chapter 2, most research has just been published last year (2019). It could therefore be 
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that most research is yet to be published, as the area is still gaining momentum. This new 
research could change current findings or strengthen currently weaker ones.


Second, the SLR was conducted by performing one broad search query for all research 
questions. The reasoning is currently valid, because the newness of the research area still makes 
manually going through a smaller number of papers possible, and even preferable, to not leave 
out any papers based on a specific search query, as a few papers missing has a large relative 
impact right now. However, this may not hold for future research as the number of studies 
published will expand, and multiple more specific search queries will have to be constructed. 


Third, this study is only focused on Federated Learning as a solution for the problem context, as 
is inherent to the scope of the research. It could be that other methods are useful too and these 
are now excluded. For example, during the SLR it became apparent that ensemble methods and 
transfer learning are also methods that could provide a solution to the problem context.   


Fourth, only a few studies actually made comparisons between multiple Federated Learning 
methods in an external and independent way; i.e. on the same data sets and by another author 
than the creator of the method. Therefore, the number of well-founded and credible comparisons 
in terms of predictive performance were limited. It is advised to conduct this research again if 
more of these types of comparisons are performed in the future.


Fifth, is regarding the designed method. Although the method has positively been validated and 
evaluated on (practical) utility by means of a case study and expert evaluation, it has not been 
validated on its subsequent implementation results. In other words, the resulting implementation 
afterwards is not validated for practicality. 


Also, the scope of the method is limited to finding a good solution-fit regarding an organizations 
data-related characteristics, like privacy and data partitioning, and its business goal. It does, 
however, not include more practical elements like technical implementation requirements, 
infrastructure, implementation costs, and implementation time. This has been due to the limited 
practical information available in the literature. 


8.6 Future Work 
In this section possible avenues for future research are suggested.


First of all, it is suggested that designed method should be validated and evaluated at multiple 
different industries. Not only at the financial sector as is the case right now. Although the method 
was designed for a general purpose, i.e. all organizations which fit the stated problem context, it 
is of added value to the generalizability of the method to be validated at multiple organizations in 
different industries. As much research on Federated Learning has been conducted in healthcare, 
this would be an ideal industry to start, as the interest in Federated Learning in that area has 
already been shown. Also regarding the evaluation, the method has not been evaluated with a 
representative respondents group in mind. To make the results of the evaluation more 
generalizable, it is suggested that a representative group is to be drawn in future research. 


It would also be useful to provide more validation case studies on the resulting Federated 
Learning algorithms of the method. As of right now only one Federated Learning algorithm, that of 
FedAvg, is implemented. It is useful to also implement the other Federated Learning algorithms, 
show their differences in predictive performance, and confirm that the method’s resulting 
Federated Learning algorithm is indeed the best solution-fit. This can serve as feedback to 
improve the method based on empirical results.


The next point is also regarding the method. It is suggested that the method should be updated 
when new research on Federated Learning is available. Because the research area is relatively 
new and under increased development. For this purpose, the method assembly step in the 
method engineering phase will need to be updated too, as the assembly process is tied to the 
data.
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Regarding the conducted literature study, some gaps in research were identified. These are 
discussed next.


Firstly, there is no comparison made in the research between local machine learning models and a 
centralized approach in non-iid data settings. As could give relevant insight into the answering of 
research questions 3 and 4, performing this comparison is useful as future work. It could provide 
insight into the practicality and usefulness of global models in non-iid contexts. As Federated 
Learning performs sub-optimally in these context, it is interesting to investigate whether this is 
due to the techniques used in Federated Learning or if its due to the nature of the underlying data.


Secondly, in addition to the previous point, there are only few external (non-primary) papers which 
test and compare these different Federated Learning methods to each other on the same dataset 
and with the same objective. More of these types of comparisons between Federated Learning 
methods should be performed to be able to make a better comparison among the myriad of 
Federated Learning methods available. This would also make the method more comprehensive 
and practically relevant.


Thirdly, there is no comprehensive comparison made in the research between local machine 
learning models and a federated approach in non-iid data settings. As the results of research 
question 5 showed, Federated Learning methods do not perform optimally when the combined 
data sets are non-iid, even when using specialized Federated Learning methods for non-iid 
contexts. It could, therefore, be the case that individual parties are better off in terms of predictive 
performance results by simple training a local model instead of applying a Federated Learning 
approach. These comparisons are not yet made in the literature and could provide relevant insight 
into comparing a larger number of situations.


Lastly, the discovered link between the naive way of consolidating data from multiple data 
sources in Federated Learning and the worse performance on non-iid data sets it causes could be 
investigated further. This could provide important insights to improve upon the current naive 
method of combining data and create a new type of Federated Learning methods which perform 
consolidation in a more intelligent way. As seen in the SLR, Zao et al. (2018) show that there is a 
up to a 55% reduction in accuracy in traditional Federated Learning methods, while the Astraea 
method, specially adapted for non-iid data without the need for data sharing, only shows 
improvement of 5,59%. This shows that there are still improvements to be made. 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Appendix A - Extraction Form 1 

paper name e.g. Brisimi 2018 - Federated learning of predictive models from 
federated Electronic Health Records

Freeform e.g. This paper discusses the data distribution imbalance and 
decomposes it into multiple classes of imbalance that occurs when FL 
is used. Mentions that this is rarely tackled in research.

Kind of Study Journal paper / Conference Proceeding / Book section

Purpose/Goal of the study e.g. Apply a distributed learning approach to improve performance of 
wind speed forecast…

Research method used. Case study, survey, experiment, interview to obtain data, observation

Main finding/conclusion e.g. Data imbalances lead to worse prediction accuracy in traditional FL 
methods like FedAvg…

Quality assessment

Relevance of study to RQ Yes / partial / little / none

How well are the practices or factors 
defined?

Yes / partial / little / none

How clearly is the research process 
established?

Yes / partial / little / none

How clearly are the work limitations 
documented?

Yes / partial / little / none

RQs extraction

FL Definition In terms of: (i) formal definition, (ii) network/communication strain, (iii) 
privacy, (iv) system heterogeneity, (v) statistical heterogeneity, (vi) 
processing power

What (FL) method for using multiple data 
sources is used?

Extract information relevant to each RQ

How does this method consolidate features 
from multiple data sources?

Extract information relevant to each RQ

How does this method compare to other 
and to local-only methods in terms of 
predictive performance?

Extract information relevant to each RQ

What type(s) of data partitioning does the 
FL method support? (Differentiating 
Characteristic)

FL method X supports: horizontally partitioned data only / vertically 
partitioned data only / both 

What Machine Learning model and problem 
does this FL method support? 
(Differentiating Characteristic)

FL method supports 
Underlying ML model: Linear model / Bayesian network model / 
Decision Tree / Clustering model / rule-engines / Gaussian mixture 
models / Support Vector Machine / Neural Network 

Problem type: Regression problem / Classification problem / Rule-
learning problem / Clustering problem (unsupervised)

What privacy protection does this FL 
method guarantee and support? 
(Differentiating Characteristic)

no privacy (data sharing) / privacy by aggregation (no data sharing) / No 
data sharing + Differential Privacy / No data sharing + cryptographic 
method. (list synthesized by categorizing all option found in this SLR)
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Potential References e.g. [4] Jochems A, Deist TM, van Soest J, Eble M, Bulens P, Coucke P, 
et al. Distributed learning: Developing a predictive model based on data 
from multiple hospitals without data leaving the hospital – A real life 
proof of concept. Radiother Oncol 2016;121:459–67
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Appendix B - Extraction Form 2 

paper name e.g. Zhao (2018) - Federated Learning with non-iid data

Freeform e.g. This paper discusses the data distribution imbalance and 
decomposes it into multiple classes of imbalance that occurs when FL 
is used. Mentions that this is rarely tackled in research.

Kind of Study Journal paper / Conference Proceeding / Book section

Purpose/Goal of the study e.g. Apply a distributed learning approach to improve performance of 
wind speed forecast…

Research method used. Case study, survey, experiment, interview to obtain data, observation

Main finding/conclusion e.g. Data imbalances lead to worse prediction accuracy in traditional FL 
methods like FedAvg…

Quality assessment

Relevance of study to RQ Yes / partial / little / none

How well are the practices or factors 
defined?

Yes / partial / little / none

How clearly is the research process 
established?

Yes / partial / little / none

How clearly are the work limitations 
documented?

Yes / partial / little / none

RQs extraction

Non-iid/iid data Definition In terms of: formal definition, challenges.

Method to identify non-iid data in the 
context of Federated Learning. 

Yes / Reference to other study / No

Potential References e.g. [4] Dagstuhl (2015) - Machine Learning with Interdependent and 
Non-identically Distributed Data
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Appendix C - UTAUT Survey 

Introductory description:

Thank you for participating in this study. Please complete the workshop and read through the 
workshop documents first. Your answers will be collected anonymously. Please always select the 
most appropriate answer. Always take the presented method and the case study in mind. The 
survey will take at most approximately 15 minutes.


Moderating factors:

Gender 
What is your gender? 

<male/female/prefer not to say>


Age 
What is your age? 
<options:>

20 years old or younger

21-25 years old

26-30 years old

31-35 years old

36-40 years old

40-45 years old

45-50 years old

51-55 years old

55-60 years old

61 years old or older


Experience 
What job do you occupy at the company? 
<open>


What is the highest level of formal education you have completed? 
<primary education, secondary education (middelbare school), college (HBO), university bachelor 
degree (WO bachelor), university master degree (WO master), PhD>


What was your study program? 
<open>


How many years of working experience do you have? 
<0-2, 3-5, 6-10, 10+ years>


How familiar are you in with the following concepts? 
Machine Learning <no familiarity, beginner, medium, senior, expert>

Data Science <no familiarity, beginner, medium, senior, expert>


With what frequency do you work with machine learning or similar concepts? 
Never, seldom, sometimes, regularly, very often 


<For all below. Likert scale labels: strongly disagree, disagree, neutral, agree, strongly agree>

Performance Expectancy: 
• I would find the method (or: way of working) useful in implementing a Federated Learning 

system. (U6) 
• Using the method enables me to implement a Federated Learning system more quickly. 

(RA1) 
• Using the method increases my productivity when implementing a Federated Learning 

system. (RA5) 
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Effort Expectancy:

• My interaction with the method would be clear and understandable. (EOU3) 
• It would be easy for me to become skillful at using the method. (EOU5) 
• I would find the method easy to use (EOU6) 
• Learning to use the method will be easy for me. (EU4) 

Attitude Towards Using Technology 
• Using the method is a good idea. (A1) 
• The method makes my work more interesting. (AF1) 
• Working with the method is fun. (AF2) 
• I would like working with the method. (Affect1) 

Social Influence 
• People who influence my behavior think that I should use the method. (SN1) 
• People who are important to me think that I should use the method. (SN2) 
• I expect my seniors/management at Topicus to be helpful in the use of the method. (SF2) 
• In general, I expect the organization to support the use of the method. (SF4) 

Facilitating Conditions

• Topicus will provide the resources necessary to use the method. (PBC2) 
• I have the knowledge necessary to use the method. (PBC3) 
• I have the resources necessary to use the method. (FC3) 
• The method is compatible with other systems or ways of working I use. (PBC5) 
• Support from an individual/a group, or a service is available when problems are 

encountered using this method. (FC3) 

Behavioral Intention of the System 
• I intend to use the system to help me complete my job. (BI1) 
• I predict I would use the system in the future to help me complete my job. (BI2) 
• I plan to use the method in the future when implementing a Federated Learning system. 

(BI3) 

Additional comments:

If you have any additional comments on the proposed method, please state them here: 
(optional) 
<open field>


113



Appendix D - List of Abbreviations 

ADMM: Alternating Direction Method of Multipliers 


AUC: Area under the Curve. A measure to assess predictive performance in Machine Learning. 


BPMN: Business Process Model and Notation (http://www.bpmn.org)


CRISP-DM: Data mining research methodology by Chapman et al. (2000)


DSRM: Design Science Research Methodology


HPD: Horizontally partitioned data


VPD: Vertically partitioned data


NN: Neural Network


FedAvg: The Federated Averaging algorithm, by McMahan et al. (2017)


UTAUT: The Unified Theory of Acceptance and Use of Technology model by Venkatesh et al. 
(2003)


SLR: Systematic Literature Review


MAE: Mean Absolute Error

MSE: Mean Squared Error
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Appendix E - List of Definitions 

Definition 1

Federated Learning:

Federated Learning is a form of distributed machine learning where a global model is trained on a 
central server utilizing multiple separate heterogenous edge devices, while still preserving privacy 
by not permitting the data to leave their origin devices.


Definition 2

Data Site: 

Data of a specific domain, clinical research for example, could be located in different places and it 
is expensive to carry data from one site to another due to technical or privacy concerns. We 
denote one of such a integrated data unity as a data site. There is a need to train a specific 
machine learning model for the [whole] domain, which requires collaboration across data sites 
(Sun et al., 2019).


Definition 3

Differentiating Characteristic:

The differentiating characteristics of Federated Learning methods are defined as: characteristics 
of Federated Learning methods which both (i) limit options or impact the desired outcome 
regarding a organization’s data-related characteristics and privacy considerations, i.e. those that 
are relevant to the to-be-designed method, and (ii) have variation in implementation among the 
Federated Learning methods, i.e. not all Federated Learning methods have the same 
implementation regarding this characteristic. 


Definition 4.1

Underlying Machine Learning model list: 

Linear model, Bayesian network model, Decision Tree, Clustering model, Rule-engines, Gaussian 
mixture models, Support Vector Machine (SVM), Neural Network (NN).


Definition 4.2

Machine learning problem type list: 

Linear problem, Regression problem, Classification problem, Rule-learning problem, Clustering 
problem (unsupervised), Language modeling problem.


Definition 5.1

Horizontally partitioned data (HPD):

Horizontally partitioned data means that the data at each data site have the same features, i.e. 
attributes or columns in traditional data base terms, but include different subjects, i.e. rows. For 
example, imagine a software company who sells software to small businesses to conduct their 
administration digitally. Each subject (i.e. small business) uses exactly the same type of software 
and generated the same types of data, i.e. the columns of the domain model are the same.


Definition 5.2

Vertically partitioned data (VPD):

Vertically partitioned data constitutes the opposite: the data of one subject, i.e. row, is present at 
multiple data sites. Each data site, therefore, has a different set of features, i.e. columns or 
attributes. For example, in the case of hospitals, where a patient’s health records are scattered 
across many hospitals. One hospital has data about his blood work, while another specialized 
hospital only stores the results of a lung scan. The different hospitals store data about the same 
subject (the patient), but have different data features or columns of that patient.


Definition 6

Privacy Guarantee Levels in Federated Learning:

1. Violates the no data sharing principle  

In this category the Federated Learning methods give no guarantee whatsoever about the no 
data sharing pillar of Federated Learning. Although Federated Learning is founded on the idea 
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of no data sharing, in this category, each local data site does not have control over their data. 
The data of each local data site can be shared with other data sites or the central server.


2. Privacy by no data sharing  
This category can be seen as a standard of Federated Learning. Federated Learning is 
founded by the principle of local data sites having ownership over their own data. In this 
category privacy is upheld by not allowing the data itself leave each local data site. Instead, 
only aggregates in the form of partial model updates (i.e. parameter updates during model 
training) are shared with a central server. 


3. Additional privacy mechanism  
In addition to privacy by no data-sharing, some studies indicate that this privacy guarantee 
level is still not enough. In fact, they claim that even the aggregate data, i.e. the parameter 
updates that are communicated with the central server, are private information. In addition, 
when the central server of other local data sites cannot be trusted, additional privacy 
mechanisms are also of importance. Both claimed by Gong et al (2016) and Jochems et al 
(2016). The additional privacy mechanisms mentioned in the studies used in this systematic 
literature review are: Anonymization, Differential Privacy, Secure Multi-Party Computation, 
Homomorphic Encryption.


Definition 7

ADMM:

"A simple but powerful algorithm that is well suited to distributed convex optimization, and in 
particular to problems arising in applied statistics and machine learning. It takes the form of a 
decomposition-coordination procedure, in which the solutions to small local subproblems are 
coordinated to find a solution to a large global problem" (Boyd et al., 2011).
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Appendix F - Federated Learning Lookup Tables 

Table F.1 - Best Performing Federated Learning Methods per Situation (Given the other characteristics 
are: HPD, Supported by NN, Privacy Level is 2 or lower)

Method Situation

FedAvg, McMahan (2017) Best-performing method in an iid data context.

Zhao et al’s (2018) method Best-performing method in a non-iid data context (55% increase in 
accuracy compared to baseline). Requires data sharing between data 
sites.

Astraea method, Duan (2019) Adapted method for non-idd data context. Shows a 6% increase in 
accuracy compared to baseline. Does not require data sharing.
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Table F.2 - Differentiating Characteristics (1-3) of Federated Learning Methods

FL Method Data 
partitioning

Type of ML model & problem Privacy Guarantee

Allende-Cid et al’s 
(2013) method

HPD Linear model. 

Linear/regression problem.

(Regression)

Privacy by no data sharing

Gong et al’s (2016) 
method

HPD & VPD Linear model.

Classification problem.

(Logistic regression)

Additional privacy 
mechanism (homomorphic 
encryption)

Deist et al’s (2017) 
method

HPD SVM.

Classification problem.

Privacy by no data sharing

Deist et al’s (2020) 
method

HPD Linear model.

Classification problem.

(Logistic regression)

Privacy by no data sharing

Jochems et al’s (2016) 
method

HPD Bayesian network model.

Linear/regression problem.

Privacy by no data sharing

Brisimi et al’s (2018) 
method

HPD SVM.

(Binary) classification problem.

Privacy by no data sharing

Federated Averaging 
(FedAvg) - McMahan et 
al (2017)

HPD Neural Network.

Classification & linear/regression 
problems.

Privacy by no data sharing

Federated Stochastic  
Block Coordinate 
Descent (FedBCD) - Liu 
et al (2019)

VPD Neural Network.

Classification & linear/prediction 
problems.


Privacy by no data sharing

Federated Stochastic 
Variance Reduced 
Gradient (FSVRG) - 
Nilsson et al (2018)

HPD Based on FedAvg. So NN. 

Classification & linear/regression 
problems.

Privacy by no data sharing

CO-OP - Nilsson et al 
(2018)

HPD Based on FedAvg. So NN. 

Classification & linear/regression 
problems.

Privacy by no data sharing

Restrictive Federated 
Model Selection (RFMS) 
-  Sun et al (2019)

HPD Bayesian model.

(Binary) classification problem.

Privacy by no data sharing

Federated 
recommender system - 
Jalalirad et al (2019)

HPD Neural Network.

Classification & linear/prediction 
problems.

(Recommender system)


Privacy by no data sharing

Zhao et al’s (2018) 
method

HPD Neural Network.

classification & linear/regression 
problems.

Violates no data sharing 
principle

Astraea method - Duan 
(2019)

HPD Neural Network. 

Classification & linear/regression 
problems.

Privacy by no data sharing

Attentive Federated 
Aggregation algorithm 
(FedAtt) - Shaoxiong et 
al (2019)

Not mentioned. 
Estimated 
guess: HPD*

Neural Network.  
Language modeling problem.

Additional privacy 
mechanism (differential 
privacy)

CBFL - Huang et al 
(2019)

HPD Clustering model.

Classification problem. (Unsupervised 
learning)

Privacy by no data sharing

Verma et al’s (2019) 
method

HPD Neural Network.

Classification problem.

Privacy by no data sharing
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Appendix G - UTAUT Evaluation Survey Results 

Table G - UTAUT Evaluation Survey Results

Respondents

Question Item 
Code Avg 1 2 3 4 5

What is your gender? Female Male Male Male Male

What is your age? 21-25 years 
old

31-35 years 
old

26-30 years 
old

21-25 years 
old

31-35 years 
old

What job do you occupy 
at the company? Data analyst Agile Coach Data Scientist Data Analist

Senior 
product 
owner

What is the highest level 
of formal education you 
have completed?

university 
master 
degree (WO 
master)

university 
master 
degree (WO 
master)

university 
master 
degree (WO 
master)

college 
(HBO)

university 
master 
degree (WO 
master)

What was your study 
program?

Business 
informatics 
(with data 
science track)

Industrial 
Engineering 
& 
Management, 
Business & IT

Business 
Analytics

Business IT 
and 
management

Information 
science

How many years of 
working experience do 
you have?

0-2 years 3-5 years 3-5 years 0-2 years 6-10 years

How familiar are you with 
the following concepts? 
[Machine Learning]

2,8 2 2 4 3 3

How familiar are you with 
the following concepts? 
[Data Science]

3,4 2 3 4 3 5

With what frequency do you work 
with Machine Learning or similar 
concepts? [1-5]

3 4 2 3 2 4

PE1: U6 [I would find the 
method (or: way of 
working) useful in 
implementing a 
Federated Learning 
system]

U6 4,8 5 5 5 5 4

PE2: RA1 [Using the 
method enables me to 
accomplish tasks more 
quickly]

RA1 4,2 4 4 4 5 4

PE3: RA5 [Using the 
method increases my 
productivity when 
implementing a 
Federated Learning 
system]

RA5 4 4 4 4 4 4

EE1: EOU3 [My 
interaction with the 
method would be clear 
and understandable.]

EOU3 4 3 3 5 4 5
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EE2: EOU5 [It would be 
easy for me to become 
skillful at using the 
method]

EOU5 4,6 4 5 5 5 4

EE3: EOU6 [I would find 
the method easy to use] EOU6 4,6 4 4 5 5 5

EE4: EU4 [Learning to 
use the method will be 
easy for me]

EU4 4,6 4 4 5 5 5

A1: A1 [Using the 
method is a good idea] A1 4,6 5 5 5 4 4

A2: AF1 [The method 
makes my work more 
interesting]

AF1 3,6 4 5 3 2 4

A3: AF2 [Working with 
the method is fun] AF2 4,2 5 5 4 3 4

A4: Affect1 [I would like 
working with the method] A1 4,4 5 5 4 4 4

SI1: SN1 [People who 
influence my behavior 
think that I should use 
the method]

SN1 3,8 4 4 4 4 3

SI2: SN2 [People who 
are important to me think 
that I should use the 
method]

SN2 3,6 4 4 4 3 3

SI3: SF2 [I expect my 
seniors/management at 
Topicus to be helpful in 
the use of the method]

SF2 4,2 5 3 5 4 4

SI4: SF4 [In general, I 
expect the organization 
to support the use of the 
method]

SF4 4 5 3 4 4 4

FC1: PBC2 [Topicus will 
provide the resources 
necessary to use the 
method]

PBC2 4,4 5 4 4 4 5

FC2: PBC3 [I have the 
knowledge necessary to 
use the method (given 
the guidelines and input 
documents provided)]

PBC3 4,4 4 4 5 5 4

FC3: PBC4 [I have the 
resources necessary to 
use the method]

PBC4 3,4 3 3 3 3 5

FC4: PBC5 [The method 
is compatible with other 
systems or ways of 
working I use]

PBC5 3,4 3 2 4 4 4

FC5: FC3 [Support from 
an individual/a group, or 
a service is available 
when problems are 
encountered using this 
method]

PC3 3,4 4 3 4 3 3
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BI1: BI1 [I intend to use 
the system to help me 
complete my job]

BI1 4,2 4 5 4 4 4

BI2: BI2 [I predict I would 
use the system in the 
future to help me 
complete my job]

BI2 4 3 5 4 4 4

BI3: BI3 [I plan to use the 
method in the future 
when implementing a 
Federated Learning 
system]

BI3 4,4 4 4 5 5 4
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Appendix H - Data Extraction SQL Queries 

H.1 - Calculating the Lead Times for each process 

SELECT P.ProcessNumber AS ProcessNumber, MIN(PS.DateTime) AS StartDate, 
MAX(PS.DateTime) AS EndDate, DATEDIFF(HOUR, MIN(PS.DateTime), 
MAX(PS.DateTime)) AS LeadTime 
FROM processinfo.Process P 
RIGHT JOIN processinfo.ProcessStatus PS ON P.ProcessNumber = 
PS.Process_ProcessNumber 
LEFT JOIN processinfo.ProcessType PT ON P.ProcessType_Id = PT.Id 
WHERE P.Whitelabel_WhitelabelNumber = 20 
AND PT.ProcessTypeOfProcess = 'Acceptatie' 
AND ( PS.Code = 'StartNieuweAanvraag' 
  OR 
  PS.Code = 'BindendAanbodVerstuurd' 
 ) 
GROUP BY P.ProcessNumber 
HAVING COUNT(P.ProcessNumber) = 2; 

H.2 - Calculating the Overlap (number of overlapping processes) 

SELECT *, (SELECT COUNT(*) FROM processinfo.ProcessLeadTimeFive test 
WHERE NOT (v.StartDate > EndDate or v.EndDate < StartDate) ) as Overlap 
FROM processinfo.ProcessLeadTimeFive v; 
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H.3 - Full Query Extracting all Features 

SELECT STable.RequestType, STable.PrimaryHandler, 
STable.HandlingParty_Id, STable.Overlap, STable.LoanToValue, 
STable.RemainingPartial, STable.YearOfConstruction, STable.SumPrincipal,  
COUNT(STable.ConsumerNumber) AS NumberOfConsumers, 
SUM(STable.GrossIncome) AS SumGrossIncome, STable.LeadTime 

FROM (SELECT FPTable.ProcessNumber, P.PrimaryHandler, FPTable.LeadTime, 
FPTable.Overlap,  
  A.RequestType, A.LoanToValue, A.RemainingPartial,  
  A.HandlingParty_Id, HP.HandlingPartyNumber, 
  MAX(RE.YearOfConstruction) AS YearOfConstruction, 
  SUM(L.Principal) AS SumPrincipal, 
  C.ConsumerNumber, MAX(I.GrossIncome) AS GrossIncome 
FROM ( SELECT * FROM processinfo.ProcessLeadTimeOverlapTwenty ) AS 
FPTable 

LEFT JOIN processinfo.Process P ON FPTable.ProcessNumber = 
P.ProcessNumber 
LEFT JOIN processinfo.Application A ON FPTable.ProcessNumber = 
A.Process_ProcessNumber 
LEFT JOIN processinfo.HandlingParty HP ON HP.Id = A.HandlingParty_Id 
LEFT JOIN processinfo.RealEstate RE ON RE.Application_Id = A.Id 
LEFT JOIN processinfo.Loan L ON L.Application_Id = A.Id 
LEFT JOIN processinfo.Consumer C ON C.Application_Id = A.Id 
LEFT JOIN processinfo.Income I ON I.ProcessInfoConsumer_Id = C.Id 

GROUP BY FPTable.ProcessNumber, P.PrimaryHandler, FPTable.LeadTime, 
FPTable.Overlap,  
  A.RequestType, A.LoanToValue, A.RemainingPartial, 
A.HandlingParty_Id, HP.HandlingPartyNumber, 
  C.ConsumerNumber 
) AS STable 

WHERE RequestType IS NOT null AND LoanToValue IS NOT null AND 
RemainingPartial >= 0 AND YearOfConstruction IS NOT null AND LeadTime > 
10 
GROUP BY STable.PrimaryHandler, STable.LeadTime, STable.Overlap, 
STable.RequestType, STable.LoanToValue, STable.RemainingPartial, 
STable.YearOfConstruction, STable.SumPrincipal, STable.HandlingParty_Id, 
STable.HandlingPartyNumber 
HAVING COUNT(STable.ConsumerNumber) > 0 AND SUM(STable.GrossIncome) > 
5000 
; 
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Appendix I - Correlation Based Feature Selection Graphs 
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