
CABiNet

Efficient Context Aggregation
Network for Low-Latency Se-
mantic Segmentation

Saumya Kumaar Saksena

Such GPU,
Much Learning,
Wow.

CABiNet
Efficient Context Aggregation Network for

Low-Latency Semantic Segmentation
by

Saumya Kumaar Saksena
to obtain the degree of Master of Science in Systems and Control

at the University of Twente.

Student number: s2084627
Project duration: February 1, 2020 – October 2, 2020
Thesis committee: Prof. dr. ir. George Vosselman, UT, Committee Chair

Dr. ir. Michael Ying Yang, UT, Academic Supervisor
Dr. ir. Nicola Strisciuglio, UT, External Examiner

Preface

It is a pleasure to submit my academic thesis towards the partial fulfillment of my Masters’ course on Systems
and Control. A summary of the accomplished tasks and milestones throughout the course of my research
has been presented in this document. On a personal level, this graduation thesis presented me with mul-
tiple challenging tasks, which essentially led to a steep learning curve. My programming skills have been
sharpened further and I have witnessed an overall development in my personality.

I would genuinely like to thank my PhD supervisor, Ir. Ye Lyu, who has been an immense inspiration and
thoroughly supportive throughout my tenure and my academic supervisor Dr. Michael Yang, for constantly
providing me with his esteemed guidance. I would like to thank my parents for making me capable enough to
take on these challenges sportingly. Indeed there were local minimas and pitfalls along the way but attempted
to make sure that eventually, everything falls into its place, which fortunately happened. So it almost seems
like someone upstairs is happy with me for granting me with wonderful people and opportunities.

Saumya Kumaar Saksena
Enschede, August 2020

iii

Contents

List of Figures 1

List of Tables 3

1 Abstract 5

2 Introduction 7
2.1 Motivation and Research Statement . 7
2.2 Research Objectives and Expected Outcomes . 8

2.2.1 RA 1 - Conceptualization. 8
2.2.2 RA 2 - Implementation . 8
2.2.3 RA 3 - Validation and Testing. 9
2.2.4 RA 4 - Inference on Mobile Platforms . 9
2.2.5 RA 5 - Comparison with SOTA and Others . 9

2.3 Report Structure . 9

3 Related Work 11
3.1 Semantic Segmentation. 11

3.1.1 FCNs . 11
3.1.2 CRFs . 12
3.1.3 Spatial Pyramid Pooling . 12
3.1.4 Self Attention . 12
3.1.5 Convolution Variations . 12
3.1.6 Real-time Semantic Segmentation . 12

3.2 Instance-aware Semantic Segmentation . 13
3.2.1 Mask-RCNN . 14
3.2.2 Other Techniques . 14

3.3 Panoptic Segmentation . 14

4 A Preliminary Overview 15
4.1 Accuracy . 15
4.2 Speed . 15
4.3 Contributions . 16

5 Network Architecture 17
5.1 Spatial Branch . 17
5.2 Context Branch . 18
5.3 MobileNetV3-Small . 18
5.4 Context Aggregation Block . 19

5.4.1 Revisiting Position Attention Module . 19
5.4.2 Compact Asymmetric Position Attention (CAPA) Module 19
5.4.3 Local Attention. 21
5.4.4 Plug-n-Play Concept . 21

5.5 Downsampling Bottleneck . 22
5.6 Feature Fusion . 22
5.7 Output Classifier . 22
5.8 Loss Functions . 23
5.9 Implementation Details. 23

5.9.1 Training Objectives . 23
5.9.2 Training Settings . 23
5.9.3 Inference Settings . 24

v

vi Contents

6 Experimental Setup and Results 25
6.1 Datasets. 25
6.2 Evaluation Metrics . 26
6.3 Results . 26

6.3.1 Cityscapes . 27
6.3.2 UAVid . 28
6.3.3 Benchmarking on Jetson Xavier NX . 29

6.4 Results on Other Datasets . 29
6.5 Speed Computations . 31
6.6 Ablation Studies. 32

6.6.1 Context Aggregation Block . 32
6.6.2 Backbone Choice . 33
6.6.3 Spatial Branch . 34
6.6.4 Feature Fusion Module . 34
6.6.5 Sampling Method Choice . 34
6.6.6 Number of Sparse Representations . 34
6.6.7 Bottleneck . 35

7 Discussions and Future Work 37

Bibliography 39

List of Figures

2.1 Single training sample from the UAVid dataset [60] . 7

3.1 Common image segmentation strategies found in literature. Starting from left we have dilated
convolution technique utilized by [11, 114]. Second is the standard FCN [58, 65] type structure,
also called as U-Net [80] or Encode-Decoder [11, 44, 109, 123]. Next up, is the triple stage fusion
strategy proposed in [119], and the last technique is a generic multi-branch architecture design
which we use as a baseline in this research. 11

3.2 Instance-aware semantic segmentation outputs from Mask-RCNN [29]. Best viewed in color. . . 13
3.3 Panoptic Segmentation illustration. Starting from left, semantic segmentation is shown, fol-

lowed by instance-aware segmentation and the rightmost image shows the unification of both
processes, called panoptic segmentation. Best viewed in color. 14

5.1 Architecture of CABiNet with cheap spatial branch and deep context branch. FFM and CLS
stand for feature fusion module and classifier respectively. Input image is shown on the extreme
left and on the extreme right CABiNet’s prediction output for the input RGB image. 17

5.2 Position attention module (top) and the compact asymmetric position attention module (bot-
tom). Here, A =W ×H . Our CAPA module leverages the benefits of spatial pyramid pooling and
depth-wise separable convolutions. Image best viewed in color. 20

5.3 Cheap operations concept. Best viewed in color. 21
5.4 Feature fusion module. Best viewed in color. 22

6.1 Single training sample from the Cityscapes dataset [16] . 25
6.2 Single training sample from the UAVid dataset [60] . 26
6.3 Comparative segmentation results on the Cityscapes validation set. From left, the first column

consists of the input RGB images. Second column indicates the prediction results of the SOTA
[67], whereas the third column shows the predictions from our architecture and the red boxes
show the improvements we offer over the current state-of-the-art. Last column comprises of
the ground truths. Best viewed in color. 28

6.4 More segmentation results on the Cityscapes validation set. First row consists of the input RGB
images. Second row contains the predictions from our architecture and the third row shows the
ground truths of the input images. Bext viewed in color. 28

6.5 Comparative segmentation results from the UAVid [60] test dataset. First column shows the
input RGB images, second column depicts the outputs of the previous SOTA [60] and the third
column shows the predictions of our architecture. White boxes highlight the regions of efficient
feature aggregation. 29

6.6 More segmentation results on the UAVid validation set. First row consists of the input RGB
images. Second row contains the predictions from our architecture and the third row shows the
ground truths of the input images. Best viewed in color. 30

6.7 Segmentation results on the Aeroscapes [63] validation set. First row consists of the input RGB
images. Second row contains the predictions from our architecture and the third row shows the
ground truths of the input images. Best viewed in color. 31

1

List of Tables

4.1 High-accuracy architectures. All computational expenses including FPS measured on a single
RTX 2080Ti on full Cityscapes resolution (2048×1024). FPS* is measured on Jetson Xavier NX on
full resolution again. − indicates the algorithm was too heavy to be executed on an embedded
platform. 15

4.2 High-speed architectures. All computational expenses including FPS measured on a single RTX
2080Ti on full Cityscapes resolution (2048×1024). FPS* is measured on Jetson Xavier NX on
full resolution again. − indicates the algorithm was too heavy to be executed on an embedded
platform. 15

4.3 Best algorithms from both the above tables with highlighted advantages. 16

5.1 MobileNetV3-Small specifications for our use-case. The Input column shows the size of input
vector to the associated layer in W ×H×N , where W , H and N are width, height and the number
of channels in the tensor respectively. The expansion size is mentioned in the Exp. Size column,
whereas the C column tells about the output number of channels after the vector is passed
through the associated layer. 7and Xindicate the absence and presence of squeeze-and-excite
modules in the associated block respectively. NL column indicates what kind of non-linearity is
present in the block whether Hard-squish (HS) or ReLU (RE). The final column s indicates the
stride of the block. 18

6.1 As compared to original position attention module proposed in [23], our design has much less
computational complexity, lesser parameters and almost 5 times faster. Another attention re-
finement method was suggested in [112], which has a slightly lower runtime than ours but has
lesser improvements on the overall mIOU. It is to be noted that [112] use two of such proposed
modules (AR) in their actual architecture, which doubles all the above numbers. Since we only
have single context aggregation stage, we offer much less computational overhead. Our atten-
tion fusion technique outperforms all the previously suggested methodologies in almost every
aspect. 26

6.2 Computational expenses and run-time measurements for all the models have been done on a
single RTX 2080Ti, on an input resolution of 1024×2048. The architectures mentioned in the
table above have mostly computed their GFLOPS on different resolutions, thereby making the
comparisons unfair. We recompute the MAdd and FLOPS on a common resolution from the of-
ficial implementations to provide a better understanding of the architecture complexities. − in-
dicates that the corresponding values could not be confirmed at the time of writing this report.
7indicates that the execution of the corresponding models at 1024×2048 resolution resulted in
< 1 FPS. Please note that the execution speeds for [112, 113] are observed to be lower than what
were reported originally as the authors used TensorRT [95] optimization to enhance the infer-
ence speeds of their models. We report all execution speeds of the original models without any
such modifications. 27

6.3 Quantitative results on the UAVid test dataset from the official server. Please note that for train-
ing ShelfNet [123], we adopt the same strategy mentioned in [60], as the architecture functions
with only fixed input-sizes which are multiples of 256. All models were trained on a batch-size
of 3, for 50% larger iterations than were originally proposed in each. − indicates that the FPS of
the algorithm could not be confirmed. 29

3

4 List of Tables

6.4 Jetson Xavier NX has 6 modes of operation, depending on the power consumption and the num-
ber of cores utilized. For full resolution testing (1024×2048), we employ the maximum power
mode (15W, all 6 cores). However, for the smaller resolutions (512×1024 and 256×512) we use a
lower mode (10W, only 4 cores) to establish an effective comparison between the possible use-
cases. For instance, implementing semantic segmentation on lower resolutions is likely to imply
that there could be more processes running, and hence considering the usage of other cores for
other threads, we utilize only 4. The execution speed is affected by the number of processors
involved in computations. 30

6.5 Quantitative results on AeroScapes dataset [63]. Our superior context aggregation techniques
outperform the previous SOTA on this dataset by a significant margin, while maintaining a real-
time performance. − indicates that the corresponding values could not be confirmed. 30

6.6 Basic ablation study. SB and CB stand for spatial and context branches, whereas FFM (WA)
stands for feature fusion module with weighted attention respectively. 32

6.7 CAB implemented in other algorithms. Straightforward addition to [72, 73, 113] results in sig-
nificant improvements over the baseline models. In [112], the proposed attention refinement
modules were replaced with CAB. 33

6.8 Computational comparison between common light-weight feature extractors. M and F indi-
cate the ground value of mIOU and FPS (measured on RTX 2080Ti on 2048×1024 resolution)
on Cityscapes validation set, which are 76.6 and 76.50 respectively. All other models are evalu-
ated against these references. All other computational expenses are measured for the extractors
(backbones) alone and not for the overall segmentation model. Relative improvements over the
ground values are shown in the mIOU and FPS columns. 33

6.9 Relative complexity comparison between our approach and the current state-of-the-art. With
ResNet-18 [27] as the backbone, the computational complexities become more comparable be-
tween the two architectures. CABiNet offers a 35% reduction in computations, with compa-
rable mIOU along-with a 16% reduction in the overall inference time. Both the approaches
[67, 112] use ResNet-18 as the primary feature extractor. R18 and MV3 stand for ResNet-18 and
MobileNetV3-Small (1.×) respectively. 34

6.10 AW here stands for attention weight based fusion. 34
6.11 Different pooling strategies and their impacts on the overall mIOU. 35

1
Abstract

Real-time semantic segmentation is a challenging task as the optimal balance between accuracy and effi-
ciency (computational complexity, memory footprint and execution speed) is hard to achieve. Conventional
lightweight and real-time semantic segmentation architectures usually address only one of the above per-
spectives, thereby making high-accuracy designs computationally expensive and high-speed models rela-
tively inaccurate. In this research, we introduce an approach to semantic segmentation (for images), which
successfully reduces the computational costs by almost 88% and increases the execution speed by a factor
of 1.5 compared to the current state-of-the-art, while maintaining a comparable mean intersection-over-
union score. Building upon the existing multi-branch architectures for high-speed segmentation, we design
a cheap high resolution branch for effective spatial detailing and a context branch with compact asymmet-
ric position and local attention (collectively termed as Context Aggregation Block), potent enough to cap-
ture both long-range and local contextual dependencies required for accurate semantic segmentation, at
low computational costs. Specifically, we achieve 76.6% and 75.8% mIOU on Cityscapes validation and test
sets respectively, at 76 FPS on a single NVIDIA RTX 2080Ti and 8 FPS on a Jetson Xavier NX. Our superior
context aggregation techniques also outperform the current state-of-the-art on another public benchmark,
UAVid dataset, by a significant margin of 14%. Codes and pre-trained models shall be made available at
https://github.com/dronefreak/CABiNet.

5

https://github.com/dronefreak/CABiNet

2
Introduction

2.1. Motivation and Research Statement
In the domain of computer vision or machine perception, semantic segmentation refers to the process of
dividing a digital image into segments that share similar characteristics. The target of this process is to trans-
form the complex input image into a notation which contains more information and can be easily interpreted
by a machine. In this process, we normally assign a class-label to each and every pixel, such that the pixels
with similar labels have some common features. For instance in Fig. 2.1, the input RGB image is shown on
the left, whereas the semantic labelling is shown on the right, which clearly demarcates the boundaries and
extent of different objects in the RGB image.

(a) RGB Image (b) Ground Truth for Semantic Segmentation

Figure 2.1: Single training sample from the UAVid dataset [60]

Semantic segmentation has found applications in several aspects. As we map every pixel into a target
class, land usage mapping in satellite imagery becomes a very potential use-case. Land-cover information
in turn, could be important for monitoring forest cover [17], agricultural lands [20] and urban settlement ex-
pansion [47, 98, 107]. This use-case relies on multi-class semantic segmentation, thereby partitioning roads,
buildings, urban settlements etc into different segments. Another application is the field of self-driving cars
or autonomous machines to be more general [67, 72, 73]. Autonomous driving is a very complicated task, re-
quiring control, perception and accurate decision-making, all happening together within complex and vari-
able environments. Furthermore, all operations in this aspect need to be extremely precise as safety is of
utmost priority. Image segmentation techniques [7, 67, 72, 73, 78, 112, 113] can provide information about
nearby objects, free space on roads, ego-lanes etc. more accurately than conventional object-detection and
recognition algorithms, especially in the case irregular shaped objects like roads etc.

Facial segmentation is another extensively researched field, where age/gender prediction, expression
recognition etc. become easier if the eyes, nose, mouth and other facial features are accurately segmented
and separately studied [45, 75, 83, 85, 86]. It is to be noted that facial segmentation is affected by factors
like face orientation, expressions and other environmental factors. Another very challenging task is cloth-
parsing, i.e. understanding the type of fabric/cloth is present or used for manufacturing a certain product.

7

8 2. Introduction

Clothing parsing is more challenging than others because there are immense number of classes to be cate-
gorized [21, 35, 50, 111], which is coupled with the fact that fine-grained clothing segmentation may require
additional post-processing techniques to acquire reliable results.

Semantic segmentation also has applications in medical imaging [37, 38, 81, 91]. For instance, radiol-
ogists and other specialists have to analyse multiple medical images for a reliable diagnosis. However, the
complexity in medical imaging like overlapping regions, contrast etc. can cause trouble to even trained spe-
cialists and hence, systems employing semantic segmentation could provide assistance to these professionals
in understanding the images better [8, 25, 92]. Now that we have established the potential of the concept of
semantic segmentation, we would like to introduce this research, where we develop a strategy for urban scene
understanding specifically.

2.2. Research Objectives and Expected Outcomes
The primary objective of this research is to develop a robust, convolutional neural network (CNN)-based
design for real-time urban scene understanding, which has an optimal balance between computational ex-
penses, execution speed and the overall prediction accuracy. Specifically, we perform the below-mentioned
tasks in this research:

1. Conceptualize an effective semantic segmentation architecture for real-time applications

2. Implement and train the above conceptualization in a targeted deep learning framework on public
benchmarks

3. Validate and test the methodology on the testing sets of the chosen benchmarks

4. Compute inference speeds on mobile platforms

5. Provide a detailed comparison between the state-of-the-art real-time segmentation architectures and
our proposed method

We further break down each of the aforementioned points into research aspects (RA) to make the overall
analysis easier.

2.2.1. RA 1 - Conceptualization
Semantic segmentation for urban scene understanding has been addressed using various techniques. Con-
ceptualization hence, can be further broken down into the following:

• Determine the specific feature requirements for accurate semantic segmentation

• Analyze how different architectures fulfill the above requirements

• Analyze the computational requirements of the above models

• Based on the above two analyses, determine which design is best suitable for fast semantic segmenta-
tion

• Analyze the shortcomings in the best selected architecture and look for possible remedies

So this is the stage where the shortcomings have been effectively studied and in the next stage we move
on to implementing the newly designed strategy.

2.2.2. RA 2 - Implementation
A lot of deep learning frameworks are available today like TensorFlow [1], PyTorch [70], MXNet [13] etc. MAT-
LAB also has support for deep learning applications, although multi-GPU configurations could be a bit tricky.
Considering the ease of programming which allows the user to focus more on the architecture, we decided
to move ahead with PyTorch [70], because it has a very consistent programming structure, full GPU sup-
port including multi-GPU setups and supportive documentation. Now once the draft model is ready (which
attempts to solve the shortcomings in the best selected architecture tentatively), the need for training on
datasets arises, so there is yet another list of questions that need to be answered:

2.3. Report Structure 9

• Determine the most commonly used public benchmarks for semantic segmentation

• Determine the types of challenges the chosen datasets present, like scale variations, class imbalance
etc.

• Determine the type of problem the aforementioned design attempts to resolve

• Determine the label encoding and data-loading techniques for the chosen datasets

Once the data-loaders are ready we needed to initiate my training, where several parameters needed to be
determined before-hand. For instance, the batch-size, total training iterations, initial learning rate, learning
rate manipulation, etc. In order to determine these parameters, we read several state-of-the-art articles and
experimented with different settings. All these values have been discussed in the later sections of this report,
which were used to train the final model.

2.2.3. RA 3 - Validation and Testing
Once a deep learning architecture has been trained, it needs to be evaluated and tested on the evaluation
sets and testing sets respectively. Once again this domain involves answering certain questions for effective
progress to the next stage:

• Determine the metrics for evaluation and testing, based on the problems that the proposed design
attempts to solve

• Determine the validation strategy like k-fold etc. and the parameters like crop size, batch-size etc.

• Obtain predictions on testing sets and submit to the official servers for final evaluation

Once we have the above results with us and if they are satisfactory, we move on to the next stage of infer-
ence.

2.2.4. RA 4 - Inference on Mobile Platforms
Real-time architectures are usually, in literature, benchmarked on high-end GPUs, like Titan XP or Titan V.
Inferencing on full scale GPUs like Titan X, RTX20 series etc. is unlikely to provide a real-world analysis,
as self-driving cars and other autonomous vehicles like UAVs or UGVs are more likely to have low-power
consumption modules, with limited memory resources like Drive AGX, Jetson TX2, Xavier NX etc. Hence, it is
important that we choose a low-power consumption module for inference that has a better real-world value.

2.2.5. RA 5 - Comparison with SOTA and Others
As we mentioned earlier, most of the real-time models are not benchmarked on embedded platforms. Hence,
it is important to:

• Check for the official implementations of the SOTA architectures

• Benchmark the official models on an embedded platform

• Compute GFLOP, MAdd count and the execution speed on a common input resolution for reasonable
comparison

• Highlight the advantages (or disadvantages, if any) of the proposed model over SOTA

So in a nutshell, the innovation in this research is aimed at developing a neural architecture that requires
lesser memory footprint, has lesser computations thereby a larger inference speed and a comparable overall
mIOU score as compared to the SOTA.

2.3. Report Structure
The following document contains 7 chapters. We begin with a detailed related work analysis, and complete
each of the above mentioned stages in a sequential order. The above mentioned strategy complies more
or less with the overall structure of the report and the research questions have been answered in respective
sections. In the last two chapters, we present certain possible improvements that could be made and present
a short conclusion for this research.

3
Related Work

The concept of image segmentation can be broadly classified into three major categories, namely, semantic
segmentation, instance segmentation and panoptic segmentation. Each of the three essentially aim to map
every pixel in the image to a certain possible category, but they differ in their core concepts and final visu-
alizations. Semantic segmentation related literature has been covered in detail as it is the focal point of this
research. Instance and panoptic segmentation techniques have been covered briefly. Some commonly used
strategies for image segmentation have been shown in Fig. 3.1.

Figure 3.1: Common image segmentation strategies found in literature. Starting from left we have dilated convolution technique
utilized by [11, 114]. Second is the standard FCN [58, 65] type structure, also called as U-Net [80] or Encode-Decoder [11, 44, 109, 123].

Next up, is the triple stage fusion strategy proposed in [119], and the last technique is a generic multi-branch architecture design which
we use as a baseline in this research.

3.1. Semantic Segmentation
Semantic segmentation has witnessed a significant research input, thereby resulting in various methodolo-
gies and their numerous possible variations. In this chapter, instead of writing about every semantic seg-
mentation paper in a random fashion, I categorize them into multiple domains thereby covering the different
designs more effectively.

3.1.1. FCNs
The realm of semantic segmentation was revolutionized in 2015, when the concept of using fully convolu-
tional networks was established by Long et. al. [58]. They adapted the feature representation of commonly
used image classifiers like AlexNet [41], VGG [90] etc. into fully convolutional networks and finetune the rep-
resentations on segmentation tasks. Similarly, Noh et. al. [65] also implemented a learning-based deconvolu-
tion network for enhancing the spatial information from the previous encoding module. These architectures
are commonly termed as encoder-decoder designs, where the first part, the encoder, enlarges the receptive
field by reducing the size of the convolution features. Then the next block upsamples the downsized feature
vectors to create a full-scale semantic prediction of the input image. Skip connections were introduced in [3]

11

12 3. Related Work

and [4] to improve the learning performance of decoders. A study on the importance of global context encod-
ing for fully convolutional networks was performed by Zhang et. al. [116], where a novel context encoding
module was introduced for selective strengthening of class-wise feature maps.

3.1.2. CRFs
A unique discriminative probabilistic modelling technique in machine learning that handles contextual in-
formation embedding effectively. Introduced in 2001 by Lafferty et. al. [42], the concept has been widely
implemented for several computer vision applications like object recognition and gesture prediction [74, 82,
100, 103]. Modern research approaches incorporate CRFs for image segmentation as well [7, 22, 62, 97, 104].
This concept was introduced in 2014 by Chen et. al. [10], where they were able to make the design end-to-end
trainable and achieved better results when compared to the then state-of-the-art algorithms. [7, 97] used the
Gaussian variations of CRFs for semantic segmentation.

3.1.3. Spatial Pyramid Pooling
This concept was introduced in 2015 by He et. al. [28] to tackle the challenge of arbitrary input sizes for
convolutional neural networks. Putting the concept to test in visual object recognition, the methodology out-
performed all the previous architectures. With this inspiration, later in 2017, Chen et. al. [12] modified the
original pooling module by replacing the pooling layers with dilated convolutions of variable weights, specif-
ically for the target of semantic segmentation, thereby creating a new atrous spatial pyramid pooling module
(ASPP), which became the gold standard for encoder-decoder architectures. Zhao et. al. [118] further im-
proved the overall results by strategically placing the pooling module after certain layers for effective context
embedding over different scales. Recently, improvements were suggested for ASPP module considering its
computational requirements [31, 57] and its restricted receptive field [109], which assist in overcoming the
limitations.

3.1.4. Self Attention
Attention modules have the capability to model long-range dependencies, and several researchers have em-
ployed the concept of attention in various works [51, 54, 87, 96]. The introduction of attention to machine
understanding was achieved first in [54], where the global dependencies of inputs were learnt, which were
then applied to natural language processing. Since then, a lot works have utilized this concept for several
scene understanding tasks at both single and multiple scales [23, 34, 48, 76, 94, 120, 121], thereby outper-
forming the previous conventional context embedding methodologies. Oktay et. al. [66] apply the concept of
attention-based segmentation to medical imaging, whereas Niu et. al. [64] employ it for semantic segmenta-
tion from aerial images.

3.1.5. Convolution Variations
In order to further optimize the performance of semantic segmentation models, several researchers have
often used different convolution strategies like atrous convolutions [11, 12], dilated convolutions [71], depth-
wise convolutions [72, 73] etc. It was also established in [71], that large kernel sizes could be key to effective
spatial detailing for accurate semantic segmentation.

3.1.6. Real-time Semantic Segmentation
Coming to the focal point of this research, real-time segmentation has addressed using multiple approaches.
Romera et. al. [78] proposed to use factorized convolutions with residual connections for maintaining a
balance between accuracy and execution speed. Poudel et. al. [72] suggest a dual-branch network with bot-
tlenecks to effectively capture local and global context for fast segmentation. Later they propose an improved
learning-to-downsample module in [73] for improved trade-offs between execution speed and accuracy. Two
other highly accurate dual-branch segmentation networks were suggested by Yu et. al. [112, 113], where
they designed novel feature fusion and attention refinement modules for accurate semantic segmentation
tasks. In the second work, they redesign the feature aggregation methodology to further improve the exe-
cution speed, at considerable costs of accuracy. Multiple encoder-decoder pairs with multi-scale skip con-
nections were also studied in this regard in [123]. This ensemble of shallow and deep paths is viewed as a
shelf of multiple networks allows for effective feature representation with shallower backbones like ResNet-
34, as compared to [112, 118]. Triple branch cascaded feature fusion strategy was extensively studied in [119],
with significant resource consumption. Another approach to real-time segmentation is by using depth-wise

3.2. Instance-aware Semantic Segmentation 13

asymmetric bottlenecks [43], which theoretically provides for sufficient receptive field as well as captures
dense context.

Neural architecture search techniques have proven to outperform the state-of-the-art designs in several
aspects such as image classification [31] etc. which search optimal building blocks of networks. These search
techniques however, fail to determine several other crucial aspects such as depth, downsampling etc. Sun
et. al. proposed join-search framework which automates the search of optimal building blocks, as well as
network depth, downsampling techniques and feature aggregation. Recently, graphic-guided architectural
search pipelines were suggested in [52], which assist in alleviating the mechanical inputs researchers have to
put in while designing real-time scene comprehension models. They introduce a novel search mechanism
which explores through cell-level diversity and latency-based constraints.

Another context-focused research was published by Jiang et. al. [36] where they introduced context re-
finement and context integration modules for efficient scene segmentation. They employ dense semantic
pyramids with image-level features, which encode contextual information while maintaining a large recep-
tive field. An interesting technique of calculating spatial and contextual features was recently presented in
[26], where the spatial details are evaluated in the forward path and the context is recorded in the backward
flow. Light-weight feature pyramid encoding model was suggested in [56], which is an adaptation of the regu-
lar encoder-decoder architecture with depth-wise dilated convolutions. Multi-scale context aggregation was
presented in yet another couple of approaches [89, 117], where [89] uses class boundary supervision to pro-
cess certain relevant boundary information and [117] use optimized cascaded factorized ASPP module to bal-
ance the trade-offs between accuracy and execution speed. Orsic et. al. [67] developed a methodology which
exploits light-weight upsampling and lateral connections with a residual network as the main recognition
engine for real-time scene understanding. This particular algorithm is deemed as the current state-of-the-
art network for real-time semantic segmentation on Cityscapes test dataset, whereas for the UAVid dataset,
multi-scale dilation net [60] is the state-of-the-art.

3.2. Instance-aware Semantic Segmentation
Instance-aware semantic segmentation or instance segmentation is the process where the algorithm attempts
to identify each instance of the different objects present in the image, instead of categorizing each pixel into
a label class. For example, if there are five cars in an image, instead of labelling all cars with a single label, it
will label each car separately. An illustration can be seen in Fig. 3.2.

Figure 3.2: Instance-aware semantic segmentation outputs from Mask-RCNN [29]. Best viewed in color.

14 3. Related Work

3.2.1. Mask-RCNN
Mask-RCNN [29] was introduced in 2017 and it became the glod standard for instace-aware semantic seg-
mentation. This algorithm has two stages, similar to its predecessors Fast-RCNN [101] and Faster-RCNN [77],
a region proposal network (RPN) and the final stage of classification and mask generation. The primary fea-
ture extractor for this network is either ResNet-50 or ResNet-101. RPN generates associated outputs for every
anchor (set of predefined locations) and the mask generation and alignment is taken care by the ROI Pooling
and ROI Align operations. In the end of the network, there is a final convolution layer that generates 28×28
sized features which represent the possible masks and they are later upscaled during inference to match the
size of the ROI bounding box.

3.2.2. Other Techniques
Bai et. al. [5] introduced a simple intuitive technique for instance segmentation based on the classical wa-
tershed algorithm fused with deep learning, as opposed to other approaches to instance segmentation that
employ complex techniques such as CRFs [42], RNNs [79] RPNs [29, 77]. Romera et. al. [79] suggested a se-
quential approach to finding objects in an image and their associated instances one at a time, using recurrent
neural networks. Hybrid task cascading was suggested in [9], where the authors adopted a FCN to generate ef-
fective spatial details and interweave the cascaded refinement into a single join multi-stage processing block.
Real-time instance segmentation on the MS-COCO dataset [53] was also suggested in [6], which achieved 35
FPS on a single Titan XP GPU.

3.3. Panoptic Segmentation
The concept of panoptic segmentation was introduced in 2019 by Kirillov et. al. [40], which basically unifies
the concepts of both semantic and instance segmentation. This requires the generation of a coherent and
complete scene segmentation head. An illustration is shown in Fig. 3.3.

Figure 3.3: Panoptic Segmentation illustration. Starting from left, semantic segmentation is shown, followed by instance-aware
segmentation and the rightmost image shows the unification of both processes, called panoptic segmentation. Best viewed in color.

Since the inception of this concept, significant amount of efforts have been put in by several researchers
across the globe. UPSNet [108] was proposed in 2019 to solve the panoptic segmentation challenge. They
adopt a deformable convolution based segmentation strategy and Mask-RCNN style for instance aware seg-
mentation, which together, solve these problems simultaneously. Another attention-guided network AUNet,
was presented in [49] by Li et. al. where they proposed to distribute the object-level and pixel-level tasks
into two different attention-guided structures that together again solve the panoptic segmentation challenge.
Pyramid-based structures for panoptic segmentation were also studied extensively in [15, 40], whereas Li et.
al. studied weakly and semi-supervised techniques for the same [46, 55].

4
A Preliminary Overview

Before we jump into the methodology and the architecture design of the proposed model, we would like to
divert the attention of the reader towards an initial basic analysis of the several algorithms. Specifically, we
would like to compare the different high-speed and high-accuracy models and discuss the different trade-offs
presented across the literature more qualitatively. Consider for instance, Table 4.1. It can be seen clearly from
the table that most of the accurate algorithms provide an execution speed of around 45 FPS.

4.1. Accuracy

Model mIOU Memory MAdd Flops Params FPS FPS*
ICNet [119] 71.0 1094.47MB 162.43G 81.02G 28.30M 14.03 –
BiseNetV2 [113] 73.0 2784.99MB 207.64G 103.37G 3.65M 37.90 2.01
BiseNet [112] 74.7 1941.39MB 208.18G 103.72G 12.89M 47.20 2.42
ShelfNet [123] 74.8 1158.12MB 187.37G 93.69G 14.6M 44.37 2.59
SwiftNet [67] 75.5 1671.66MB 207.64G 103.37G 11.80M 45.40 2.61

Table 4.1: High-accuracy architectures. All computational expenses including FPS measured on a single RTX 2080Ti on full Cityscapes
resolution (2048×1024). FPS* is measured on Jetson Xavier NX on full resolution again. − indicates the algorithm was too heavy to be
executed on an embedded platform.

Now an average of 45 FPS is acceptable but it is to be noted that this value is obtained a powerful GPU
(NVIDIA RTX 2080Ti in this case), which is unlikely to present in real-world robotic solutions. Once these
speeds are computed on an embedded platform, we see that none of them reach beyond 4 FPS, which is
slightly unacceptable. The average accuracy of the models in this table is around 74.5%.

4.2. Speed

Model mIOU Memory MAdd Flops Params FPS FPS*
CGNet [106] 64.8 3134.91MB 55.01G 27.05G 0.5M 34.91 2.91
DABNet [43] 70.0 3287.50MB 82.83G 40.88G 0.76M 40.35 –
DFANet [44] 70.1 1778.09MB 30.68G 15.28G 2.19M 47.88 4.71
SINet [68] 68.2 672.00MB 2.99G 1.24G 0.12M 68.61 12.02
ESNet [59] 70.7 1176.29MB 66.81G 33.81G 1.81M 75.64 9.65
ContextNet [72] 66.1 1429.43MB 13.98G 6.74G 0.88M 118.65 10.49
Fast-SCNN [73] 68.4 1239.33MB 13.85G 6.72G 1.14M 128.97 11.49

Table 4.2: High-speed architectures. All computational expenses including FPS measured on a single RTX 2080Ti on full Cityscapes
resolution (2048×1024). FPS* is measured on Jetson Xavier NX on full resolution again. − indicates the algorithm was too heavy to be
executed on an embedded platform.

Now let us consider Table 4.2, which shows the relatively faster algorithms as compared to the previous
ones. The picutre is now seemed to have reversed. Even though the fastest algorithm reaches around 120 FPS

15

16 4. A Preliminary Overview

[73], it shows a significant drop in accuracy, and it can be confirmed from this table as that as the speed tends
to increase, the accuracy seems to drop considerably. The average speed of this table specifically, is around
60-70 FPS.

Let us compare the best algorithms from both the tables for a better analysis. Consider Table 4.3 for in-
stance. We would like to divert the attention of the reader towards the difference in the overall mIOU score
and FPS of both the algorithms. Also, the computational complexities of both the architectures are signifi-
cantly far apart.

Model mIOU Memory MAdd Flops Params FPS FPS*
SwiftNet [67] 75.5 1671.66MB 207.64G 103.37G 11.80M 45.40 2.61
Fast-SCNN [73] 68.4 1239.33MB 13.85G 6.72G 1.14M 128.97 11.49

Table 4.3: Best algorithms from both the above tables with highlighted advantages.

This huge gap between the two of the fastest and most accurate architectures is exactly what we intend to
fulfill in this research. With this metric-based analysis now established, we can now move on to the method-
ology sections where we attempt to shorten this gap by means of context aggregation and cheap spatial de-
tailing techniques.

4.3. Contributions
With respect to the above mentioned perspectives, our architecture has the following primary contributions
to offer:

• Building upon the existing dual-branch architectures, we offer a cheap robust methodology to decouple
the spatial and contextual feature extraction, where we design two branches, one for fast and effective
spatial detailing and the other for dense context embedding.

• We introduce a plug-n-play context aggregation block (CAB) with Compact Asymmetric Position (CAPA)
and Local Attention (LA) as the two sub-modules for deep global and local context aggregation.

• Our superior speed-accuracy trade-offs and effective spatial-contextual feature fusion allows us to out-
perform the previous state-of-the-arts for real-time semantic segmentation on Cityscapes and UAVid.
Specifically, we achieve a mIOU score of 75.8% on Cityscapes and 63.5% on UAVid at 76 and 15 FPS
respectively.

5
Network Architecture

We begin this chapter by introducing and explaining every component of our proposed Context Aggregated
Bilateral Semantic Segmentation Network (CABiNet) in detail. An overall visualization of the design can be
seen in Fig. 5.1.

Figure 5.1: Architecture of CABiNet with cheap spatial branch and deep context branch. FFM and CLS stand for feature fusion module
and classifier respectively. Input image is shown on the extreme left and on the extreme right CABiNet’s prediction output for the input

RGB image.

5.1. Spatial Branch
In order to encode sufficient spatial information, multiple existing approaches [71], [99], [12], [11] have em-
ployed the usage of dilated convolutions, while others attempt to capture large receptive fields with either
pyramid pooling or large-sized kernels [71], [12], [118]. These methodologies indicate that sufficient recep-
tive fields and effective spatial information encoding, could be crucial for accurate semantic segmentation. It
is however, difficult to satisfy both the requirements in parallel, especially while designing real-time segmen-
tation architectures. Conventional real-time designs usually either downsize the image to a smaller resolution
[119] or use a lightweight reduction model [4], [69] for speeding up the overall architecture. Downsizing the
image however, incurs loss in the spatial information and light-weight models tend to damage the receptive
fields because of the incessant channel pruning. This problem was addressed in [112], [113], but at the cost
of significant increase in the computations, thereby imparting a lower execution speed on mobile and em-
bedded platforms. Based upon these observations, we propose a shallow branch that encodes rich spatial
information and maintains an adequate receptive field, while maintaining a significantly low computational
cost. We design this branch to extract the low-level information, which is the rich spatial content in a full-
resolution image. This branch therefore requires a rich channel capacity, and since it focuses only on the
low-level details, this branch has a shallow structure with small strides. Specifically, this path has four layers,
where the first layer is a convolutional layer (large kernel size) followed by batch-normalization and ReLU,
followed by two depth-wise convolutional layers. A strategic use of depth-wise convolutions results in the
same outcomes as that of conventional convolutions, but with reduced computations, and the marginal loss
in features can be compensated by enlarging the output channels. Finally, the last layer is another convolu-
tional layer with kernel size of 1. Strides for the first three layers are fixed at 2, whereas the last layer has a
unit stride. This branch, hence generates an output that is (1

8)th of the input resolution, thereby maintaining

17

18 5. Network Architecture

the required spatial information with a significant reduction in computations. A detailed graphic in Fig. 5.1
shows the overall structure of the shallow branch.

5.2. Context Branch
As already established previously, detailed spatial information coupled with adequate receptive field, sig-
nificantly affects semantic segmentation accuracy. While the shallow branch takes care of the spatial de-
tails, we design a new attention branch, with light-weight compact asymmetric position and local attention
(CAPA+LA) for providing a sufficient receptive field and capturing both global and local context. We use a
pretrained MobileNetV3-Small [31] as the lightweight feature extractor in this branch, which can downsam-
ple the input images effectively and efficiently to provide rich high level semantic features. These features are
however unrefined, and hence, need to be passed on to a refinement stage, which in this case is the context
aggregation block.

5.3. MobileNetV3-Small
Interesting thing about mobile networks such as [19, 31, 32, 61, 84] is that they are built upon efficient building
blocks such as depth-wise convolutions, depth-wise separable convolutions, atrous convolutions etc. This
concept imparts an acceptable inference speed on mobile platforms while maintaining the required accuracy.
For instance, depth-wise separable convolutions were introduced in MobileNetV1 [32].

Similarly, MobileNetV2 [84] introduced the concept of linear bottlenecks and inverted residual structure
for enhancement of individual layer structures. This structure is defined by a series combination of 1×1 ex-
pansion convolution, depth-wise convolutions and a final 1× 1 projection layer. If the input has the same
number of channels as the output, they are connected with a residual link. It is noteworthy that such a
structure maintains a dense representation of both the input and output, while internally expanding to a
higher-dimensional feature space. Building upon MobileNetV2, MnasNet [93] introduced efficient attention
blocks in the bottleneck structures with the help of squeeze-and-excitation modules [33], which were placed
after the depth-wise convolutions, such that maximum receptive field is available to the attention blocks for
feature extraction. The squeeze block suggested in [33] is primarily meant for global information embedding
whereas the excitation block takes care of the adaptive re-calibration of assimilated features from the squeeze
operations.

Later in 2019, MobileNetV3 [31] was introduced which uses a mixture of layers suggested in MobileNetV2
and MnasNet, to construct the most effective and efficient neural network for mobile applications. Modified
swish non-linear functions were used to improve the performance of layers, along-with hard sigmoid for
squeeze-and-excitation modules. The exact specifications of the backbone are mentioned in Table 5.1, with
the associated notations. The final feature vector after the backbone is of size 64×32×576.

Input Operator Exp. Size C SE NL s
2048×1024×3 Conv2D, 3×3 - 16 7 HS 2
1024×512×16 BNeck, 3×3 16 16 X RE 2
512×256×16 BNeck, 3×3 72 24 7 RE 2
256×128×24 BNeck, 3×3 88 24 7 RE 1
256×128×24 BNeck, 5×5 96 40 X HS 2
128×64×40 BNeck, 5×5 240 40 X HS 1
128×64×40 BNeck, 5×5 240 40 X HS 1
128×64×40 BNeck, 5×5 120 48 X HS 1
128×64×48 BNeck, 5×5 144 48 X HS 1
128×64×48 BNeck, 5×5 288 96 X HS 2
64×32×96 BNeck, 5×5 576 96 X HS 1
64×32×96 BNeck, 5×5 576 96 X HS 1
64×32×96 Conv2D, 1×1 - 576 X HS 1

Table 5.1: MobileNetV3-Small specifications for our use-case. The Input column shows the size of input vector to the associated layer
in W × H × N , where W , H and N are width, height and the number of channels in the tensor respectively. The expansion size is
mentioned in the Exp. Size column, whereas the C column tells about the output number of channels after the vector is passed through
the associated layer. 7and Xindicate the absence and presence of squeeze-and-excite modules in the associated block respectively. NL
column indicates what kind of non-linearity is present in the block whether Hard-squish (HS) or ReLU (RE). The final column s indicates
the stride of the block.

5.4. Context Aggregation Block 19

The hard-swish non-linearity is defined as:

h − swi sh[x] = x
ReLU 6(x +3)

6
(5.1)

which significantly increases the accuracy of deep neural networks in image classification tasks [18, 30].
Interesting aspect of MobileNetV3 series is that these models were not designed by any humans. Instead,

the authors used block-wise platform-aware neural architectural search (NAS) [93] for finding the global
structures. Then they performed a layer-wise search for searching the optimal number of filters using Ne-
tAdapt [110]. All proposals that were generated with NetAdapt, were filtered based on a single criteria that

maximizes the ratio ∆accur ac y
|∆l atenc y | . All of the above factors combined result in an accurate and low-power image

classifier that could potentially be used a backbone for many computer vision tasks.

5.4. Context Aggregation Block
Theoretically, when an image is passed through the forward flow of a feature extractor like ResNet [27] or
MobileNetV3 [31], the output is a feature vector of certain size (W ×H) and has certain number of channels
(N), which depends upon the output layers of the extractor. These channels ideally, are (N) different inter-
pretations of the input image, which implies that each and every interpretation contains some or the other
information about the contents of the original image. Intuitively, it is very likely that each position in a par-
ticular channel has some sort of mapping or a link in another channel. Furthermore, positions in a certain
channel could also possibly have local connectivity within the same channel. These long-range and local
dependencies could be crucial for accurate semantic segmentation. The key ideology of context aggregation
block is therefore, is to capture effectively and efficiently such inter-channel and intra-channel mappings.
Couple of previous works have explored this concept but at the cost of significant computations, which be-
comes the focal point of this research.

Position attention module (PAM) was introduced in [23], which is potent enough to capture long-range
dependencies crucial for accurate semantic segmentation. However, the module is computationally expen-
sive and requires significant GPU memory for execution. In this section, we review the shortcomings the
components of PAM block and attempt to overcome them.

5.4.1. Revisiting Position Attention Module
The following sections are inspired from [23, 48, 122]. The solutions presented in [48, 122] have been em-
ployed as a part of this research to refine the features obtained from the previous backbone (MobileNetV3-
Small) stage.

The original position attention module is shown in the upper part of Fig. 5.2, where the output from the
previous backbone stage is fed to three parallel convolutional layers to generate new embeddings. After the
embeddings have been generated similarity matrices are calculated using matrix multiplications, followed
by a Softmax normalization process. This output contains the semantic cues for every position in the input
feature vector. The entire pipeline can be seen in Fig. 5.2 on top.

5.4.2. Compact Asymmetric Position Attention (CAPA) Module
A careful observation of the pipeline in Fig. 5.2, indicates that there could be two possible limitations to the
position attention module suggested in [23]. Firstly, the matrix multiplications of the Key and Value convo-
lutions followed the by the next multiplication process after the softmax activation stage, increase the time
complexity, as these computations are performed on relatively large matrices. Secondly, the original design
proposes to extract the contextual information directly from the outputs of the backbone which has a very
large number of channels, thereby increasing the required number of parameters. One possible solution to
the first identified challenge was suggested in [122] which assists in the reduction of computational expenses
in such self-attention modules. However, for our real-time application case, we believe that the complexities
could be reduced even further by adjusting the number of parameters and computations in the convolutional
layers of the self-attention module. So first, we discuss the solution presented in [122] in detail, which we
employ in this research and then we discuss the additional improvement in the convolutional layers, which
tackles the second identified challenge.

For our real-time scene understanding architecture, the input to the context aggregation block has a size
of 64×32 = 2048. Therefore, it can be said that the simple, yet large matrix multiplication is the basic cause of
increased computations in the PA block. The limiting factor in the above step is the number A (Fig. 5.2), and

20 5. Network Architecture

Figure 5.2: Position attention module (top) and the compact asymmetric position attention module (bottom). Here, A =W ×H . Our
CAPA module leverages the benefits of spatial pyramid pooling and depth-wise separable convolutions. Image best viewed in color.

if it were changed to a smaller value M , (where M << A) might help in alleviating some of the computations.
Although, changes have to be made in such a way that the output size of the vector remains unchanged.

Hence, we adopt the suggestion of [122] of employing spatial pyramid pooling modules [118] after the
convolutional layers in the position attention module to effectively reduce the size of the feature vectors for
easier computations. Therefore, instead of feeding all the spatial points to the to multiplication process, it
would be advisable to sample the points and feed only certain representative points to the process.

This is precisely what the PSP-module [118] does. From previous works [28, 72, 118] we know that the spa-
tial pyramid pooling module [118] has been proven to be effective in capturing multi-scale representations.
Furthermore, this pooling module is free from parameters and has high efficacy. Therefore, for our real-time
application, an appropriated choice would be to employ this module for sampling the Key and Value vector
representations. We use four adaptive maximum pooling at four scales to reduce the amount of computa-
tions in the PA block (similar to what was suggested in [122]) and then the four pooling results are flattened
and concatenated to serve as the input to the next layer.

For our experiments, we set the number of scales at four, as was also suggested by [122]. The number of
sparse representations can be formulated as:

S = ∑
n∈1,3,5,8

n2 = 110 (5.2)

thereby reducing the complexity to O (N̂ AM), which is much lower than O (N̂ A2). Specifically, for our input
to the PA block of 64×32 = 2048, this asymmetric multiplication saves us 64×32

110 ≈ 18 times the computation
cost. Furthermore, the feature statistics captured by the pooling module are sufficient to provide cues about
the global scene semantics.

So far we have discussed the solution presented in [122]. But as mentioned earlier, there is still a scope of
improvement in this block with respect to the convolutional layers present, considering a real-time applica-
tion at hand. This block employs three 1×1 convolution layers, which results in a relatively larger number of
parameters. This might not have a direct influence on the overall execution speed, but a neural design with
lesser parameters indicates the effectiveness and efficiency of the model. The idea proposed in this approach

5.4. Context Aggregation Block 21

is simple [24] and is shown in Fig. 5.3.

Figure 5.3: Cheap operations concept. Best viewed in color.

Regular convolution layers have learnable filters that convolve on the input feature vector. The repetitive
convolution strategy results results in a certain number of parameters based on the kernel size, input size
etc. and also in redundant features. Basically, if there are N output channels, it is unlikely that all the chan-
nels contain absolutely dissimilar information, which means that some channels (if not all) could literally
be duplicated and need not have repeated convolutions. This technique is called cheap operations, where a
convolution layer is applied first to generate a smaller number of channels, and this collection of features is
then passed to a set of cheap linear operations, which result in exactly the same output as compared to a full
convolution, but with reduced parameters and computations. Cheap linear operations are a generic strat-
egy and in this research the implementation is done with depth-wise separable convolutions. A quantitative
breakdown of this procedure is later presented in the ablation studies.

5.4.3. Local Attention
In the previous section, we calculate the global statistics for every group which are later multiplied back to
features within. The aspect to be noted here is that the windows in which the statistics are calculated are
relatively large, and hence there is a possibility that the statistical cues could be biased to towards the larger
patterns as there are more samples within, which can further cause and over-smoothing of the smaller pat-
terns. This over-smoothing should be avoided to create an accurate semantic segmentation algorithm.

In this regard, a local attention (LA) module was proposed in [48] to adaptively use the features, con-
sidering patterns at every position encoded by the previous global attention block. We directly employ the
above suggested module in this research without any additional modifications. Our ablation studies indicate
that this module is efficient and fast and hence requires no additional improvements. Fundamentally, the LA
block predicts local weights by re-calculating the spatial extent, which is primarily targeted to avoid coarse
feature representation issues, which were present in the previous CAPA module. Here, the predicted local
weights add a point-wise trade-off between the global information and local context. CAPA module lacks in
details which is complemented by the use of LA block, thereby generating a more fine-grained representation
of the input features. The local attention block is hence, modelled as a set of three depth-wise convolutional
layers, which allows for fine-tuning the feature representations from the previous CAPA module.

5.4.4. Plug-n-Play Concept
Both the attention modules employed in this research were suggested in different literature and were, hence
utilized in different sections of the architectures. However, the combination of these two modules allow for
the creation of a linear sub-structure of self-attention mechanism. Since, the local attention module operates
on the feature vectors coming from the CAPA module, this linearity in approach allows this overall block to
be used as a plug-n-play structure for other multi-branch architectures for semantic segmentation. Details
have been presented in the ablation studies section.

22 5. Network Architecture

5.5. Downsampling Bottleneck
Feature representations while context extraction could increase significantly, thereby increasing the inference
time and introducing redundancy in semantics. Hence, keeping a check on the number of channels becomes
important while designing the attention branch. In deep learning, a bottleneck is a neural block that has
lesser input channels as compared to the previous layers. This block is usually added to deep structures to
assist in reducing the number of features (channels) to best fit in the GPU space available. This further assists
in avoiding over-fitting or exploding weights. In our research, we use a downsampling bottleneck with 1×1
convolutions with reduced channels to reduce the number of feature representations in the attention branch,
thereby reducing the number of parameters required to learn effectively. Furthermore, this bottleneck gen-
erates a class-wise discriminated output representation which is later used to directly supervise the learning
of this particular branch. In common terms this is called deep supervision of internal structures of a model.
Since this branch generates the crucial low-level features a doubly deep supervision ensures the appropriate
extraction of features.

5.6. Feature Fusion
It is to be noted that the features extracted from both the branches are in different levels of representation, i.e.
a higher level and a lower level. Hence, a simple addition of both the feature vectors is very unlikely to produce
the desirable results. [72] and [73] follow the addition-of-features strategy in order to save computations. This
in turn, tends to have significant impacts on the final accuracy of the model. Therefore in this research, we
implement a feature fusion technique as suggested in [112], with certain adaptations.

In order to fully utilize the vector representations from both the branches, we concatenate both the fea-
tures first, followed by a downsampling bottleneck. The initial idea of fusion suggested in [112] incurs a great
deal of computational expenses and the reason for this the fact that the concatenated feature vector is large
in all the three dimensions. Hence, computations on this extended representation is the primary reason for
the slow performance of this particular module. Adding a downsampling bottleneck reduces the efforts of the
later computations in this module by significant amount, without causing damage to the overall accuracy.

This if followed by a depth-wise convolution, which again assists in retaining the representations as con-
ventional convolution, but with reduced computations. This is followed by a batch-normalization step to
equalize the different feature scales. In the next step, we apply a reduced channel attention block to further
enhance the vector representations, the output of which is multiplied with the initial features. A detailed
schematic is shown in Fig. 5.4

Figure 5.4: Feature fusion module. Best viewed in color.

Finally, we upsample the features again with an upsampling bottleneck, such that the retained features
have the exact same representation as was described in [112].

5.7. Output Classifier
The output classifier block generates the final class-wise discriminated outputs for predictions. Empirically,
we observe that the addition of a smaller number of layers boosts the performance of the fusion module.
A possible reason for this could be that till the fusion module vector representations already have discrete
separation of features within the channel representations and the only aspect left is implementing a class-
wise separation. Hence, for a simple class-wise separation, multiple layers become unnecessary.

5.8. Loss Functions 23

With this concept in mind, we utilize only two layers in the final classifier, one depth-wise separable con-
volution and one point-wise convolution as the final output layer. Since we use SGD as our optimizer, we use
Softmax activation instead of Sigmoid [72, 73].

5.8. Loss Functions
Several loss functions have been proposed and used for scene understanding tasks. Datasets like Cityscapes,
CamVid and UAVid contain a number of easy examples (over-weighted classes) and a relatively smaller num-
ber of hard examples. In order to create a suitable balance between the two, we use the regular weighted
Cross-entropy loss given by Eq. 5.13-14. Apart from just monitoring the overall output of CABiNet, we use
two additional auxiliary loss functions, one that monitors the output of the attention branch and one for the
attention fusion module. These two auxiliary loss functions provide deep supervision of the two modules,
thereby making sure that the right feature representations are learnt. The value of α is set to 1

l oss = 1

N

∑
i

Li = 1

N

∑
i
− log

(
epi∑
j ep j

)
(5.3)

Here, p is the final output of the network (prediction).

L(X ;W) = lp (X ;W)+α
K∑

i=2
li (Xi ;W) (5.4)

where, lp is the principal loss of our network, Xi is final feature output from stage i and li is the corre-
sponding loss for that stage. K is three in this research and L represents the joint loss of the function. Utilizing
a joint loss makes it easier to optimize the model, hence the auxiliary losses are only employed during the
training stage.

5.9. Implementation Details
5.9.1. Training Objectives
Following [112], our model has a total of three supervisions, two for the context branch and one for the overall
architecture. Mathematically, we express the loss functions as:

L f i nal = Lout put +LC 1 +LC 2 (5.5)

where, LC 1 and LC 2 are the two auxiliary losses for the context branch. We use regular cross entropy for
the final loss and perform online hard example mining (OHEM) [88] for the auxiliary losses. We do not use
weighing parameters to control the influence of the auxiliary loss functions. Instead we incorporate them
completely into the overall loss calculation.

5.9.2. Training Settings
This research is based on an open-source deep learning framework PyTorch 1.4 [70], commonly used for se-
mantic segmentation models. The backbone used in the attention branch is MobileNetV3-Small [31] with
unit width. For optimizing the network, we use Stochastic Gradient Descent (SGD) [39] and set the initial
learning rate as 1e−4 for Cityscapes and 5e−5 for UAVid. We employ the poly-learning rate strategy, where
during training, the learning rate is multiplied with 1− (i ter

max_i ter)power , with power being equal to 0.9. For
Cityscapes we randomly crop patches of [1024, 1024] from the original input images during training. For
UAVid we adopt a slightly different technique as compared to [60]. The original author proposed to split the
UAVid images into 9 overlapping regions of (1024×2048) during training and inference. Instead, we recom-
mend to split the image into 4 equal quarters of (1920×1080). As a result, we do not have to average out the
results of the overlapping sections, thereby improving the overall prediction accuracy at the cost of slightly
slower inference. It is tedious to train on the full resolution of UAVid, as the image size is too large and re-
quires a significant amount of GPU memory to store the intermediate features. We use data augmentation
techniques like random horizontal flips, random scaling and color jitter for both the datasets. Scales range
from (0.75, 1.0, 1.5, 1.75, 2.0). Batch-sizes are set at 6 for Cityscapes and 3 for UAVid and since we train and
evaluate on a single GPU, we do not employ cross-GPU synchronized batch normalization. Furthermore,
training iterations are set at 160k for Cityscapes and 240k for UAVid. All the above mentioned experiments
are conducted on a single NVIDIA RTX 2080Ti, with PyTorch 1.4 and CUDA 10.2

24 5. Network Architecture

5.9.3. Inference Settings
As a common notion, we do not apply any inference tricks such as multi-scale and left-right flip testing. These
tricks tend to make the overall inference process slower, although provided mIOUs are significant. Ablation
studies are done in single scale as well by feeding in images at full resolution. For inference, we use a single
NVIDIA RTX 2080Ti, with PyTorch 1.4 and CUDA 10.2 and a Jetson Xavier NX with the same software setup.
During inference, no other programs occupy the GPU on either of the two platforms.

6
Experimental Setup and Results

In this chapter, we demonstrate the effectiveness and the efficiency of our design by conducting multiple
experiments on different platforms. Firstly, we compare our design with numerous other real-time semantic
segmentation architectures on 2 different publicly available benchmarks. Secondly, we also perform multiple
ablation studies for feature fusion, bottleneck and context embedding modules to effectively study every
component of our architecture.

6.1. Datasets
Robustness of an algorithm can be demonstrated by benchmarking it on multiple, possibly unrelated datasets.
With this ideology in mind, we benchmark our system on Cityscapes [16] and UAVid [60] datasets. We begin
by introducing both the datasets briefly.

Cityscapes is an urban-scene understanding dataset which was publicly released in CVPR 2016 [16]. The
dataset contains a total of 5000 images (fine-grained) out of which, 2975 are for training, 500 for validation
and the remaining 1525 for testing. The dataset also contains additional 20K coarsely annotated images, but
we do not use them in this research. The image size for this dataset is 1024×2048, collected from across 50
different cities. The densely annotated data contains 35 classes, out of which 19 are used for urban scene
understanding. Usage of coarse training data could be employed but usually it is not a practise for real-time
low-latency architectures. An example is shown in Fig. 6.1.

(a) RGB Image (b) Ground Truth for Semantic Segmentation

Figure 6.1: Single training sample from the Cityscapes dataset [16]

UAVid [60] is another publicly available dataset for urban scene understanding that we use in this re-
search, but unlike Cityscapes, this dataset is collected from unmanned aerial vehicles (UAVs). An example is
shown in Fig. 6.2 for comparison. This dataset introduces large scale variations, making it a very competitive
and a tough benchmark. The dataset contains 300 densely labeled images into a total of 8 classes and 100
images are available for testing. The resolution of the images is 4K i.e. 3840×2160, which coupled with the
small size of the dataset, makes it a very challenging benchmark. The reason why the above two datasets
were chosen is that they provide for a real-time analysis and benchmark for urban-scene understanding from
different viewpoints, thereby effectively establishing the robustness of our architecture.

25

26 6. Experimental Setup and Results

(a) RGB Image (b) Ground Truth for Semantic Segmentation

Figure 6.2: Single training sample from the UAVid dataset [60]

6.2. Evaluation Metrics
For evaluation, we use the standard mean of class-wise intersection over union (mIOU), memory footprint
(in MB/GB), GLOP count (floating point operations) and the overall execution speed (Frames per second).
For calculating the computational expenses we adopt the same strategies as mentioned in [67, 112].

6.3. Results
In this section, we compare the effectiveness of the attention modules (PAM-CAM) suggested in [23] with
the proposed attention modules, namely Compact Asymmetric Position (CAP) and Local Attention (LA). The
benchmark is drawn out based on GFLOPs count (Million), GPU run-time (ms), number of parameters and
impacts on overall mIOU improvements over baseline, which can be seen in Table 6.1. Our proposed atten-
tion block receives an input tensor of size 64×32 during training and inference for Cityscapes dataset. We
therefore, compare the two blocks individually and the overall combinations as well in a fixed testing environ-
ment, such that the both have identical testing conditions. We experiment with both on a single RTX 2080Ti
with CUDA 10.2, with no other programs occupying the GPU. The major difference between the proposed
attention modules and the original modules [23] is the presence of spatial pyramid pooling and depth-wise
separable convolutions. Other processes are identical.

Module GFLOPs Params (K) Runtime (ms) mIOU
ARM + ARM [112] 3.63 311 3.24 74.8
PAM + CAM [23] 1.01 82.24 17.62 76.3
GA + LA [48] 1.01 65.34 14.28 76.1
APNB + AFNB [122] 0.82 42.24 8.35 76.4
CAPAM + LAM (Ours) 0.024 12.29 3.48 76.6

Table 6.1: As compared to original position attention module proposed in [23], our design has much less computational complexity,
lesser parameters and almost 5 times faster. Another attention refinement method was suggested in [112], which has a slightly lower
runtime than ours but has lesser improvements on the overall mIOU. It is to be noted that [112] use two of such proposed modules (AR)
in their actual architecture, which doubles all the above numbers. Since we only have single context aggregation stage, we offer much
less computational overhead. Our attention fusion technique outperforms all the previously suggested methodologies in almost every
aspect.

Apart from simple block-wise comparison, we also compare our overall architecture with the other low-
latency semantic segmentation models on the Cityscapes dataset as can be seen in Table 6.2. Our superior
speed-accuracy trade-offs outperform the current state-of-the-art algorithm in terms of computational ex-
penses and execution speed while maintaining a slightly better overall mIOU score.

6.3. Results 27

6.3.1. Cityscapes
A detailed comparison between our method and other architectures has been provided in Table 6.2, based
upon the GPU memory footprint, MAdd/GLOPs count, execution speed (RTX 2080Ti and Jetson Xavier NX)
and the overall mIOU score on validation and testing sets. We train our model directly on the training set
of Cityscapes, without incorporating the validation set or the coarsely annotated data. As it can bee seen
from the table, our model outperforms the previous SOTA methods for real-time scene understanding and
achieves 75.9% mIOU score. We also provide a qualitative analysis with the SwiftNet [67] in Fig. 6.3 and Fig.
6.4 and establish the superiority of our model in terms of detecting smaller objects like poles, traffic signs etc.
[67, 123] seem to have certain local inconsistencies on larger objects especially buses, as well as the smaller
objects, whereas our model does not. Thanks to the efficient global and local context aggregation, our model
does not suffer from such local or global inconsistencies.

Model mIOU Memory MAdd Flops Params FPS FPS*
val test

CGNet [106] – 64.8 3134.91MB 55.01G 27.05G 0.5M 34.91 2.91
ContextNet [72] – 66.1 1429.43MB 13.98G 6.74G 0.88M 118.65 10.49
FPENet [56] 69.5 68.0 – – – – – –
SINet [68] 69.4 68.2 672.00MB 2.99G 1.24G 0.12M 68.61 12.02
Fast-SCNN [73] – 68.4 1239.33MB 13.85G 6.72G 1.14M 128.97 11.49
FarSee-Net [117] 69.8 68.4 – – – – – –
ERFNet [78] 71.5 69.7 3244.00MB 213.88G 102.61G 2.07M 20.46 7

DABNet [43] 70.1 70.0 3287.50MB 82.83G 40.88G 0.76M 40.35 7

DFANet [44] 71.3 70.1 1778.09MB 30.68G 15.28G 2.19M 47.88 4.71
LedNet [105] 71.5 70.6 3031.75MB 90.71G 45.84G 0.93M 24.72 7

ESNet [59] – 70.7 1176.29MB 66.81G 33.81G 1.81M 55.65 4.65
ICNet [119] 72.5 71.0 1094.47MB 162.43G 81.02G 28.30M 14.03 7

GAS [52] 73.5 71.8 – – – – – –
BiSeNetV2 [113] 74.2 73.0 2784.99MB 207.64G 103.37G 3.65M 37.90 2.01
FasterSeg [14] – 73.1 – – – – – –
BiSeNet [112] 74.8 74.7 1941.39MB 208.18G 103.72G 12.89M 47.20 2.42
ShelfNet [123] 75.2 74.8 1158.12MB 187.37G 93.69G 14.6M 44.37 2.59
SwiftNet [67] 75.4 75.5 1671.66MB 207.64G 103.37G 11.80M 45.40 2.61
CABiNet (Ours) 76.6 75.9 1256.18MB 24.37G 12.03G 2.64M 76.50 8.21

Table 6.2: Computational expenses and run-time measurements for all the models have been done on a single RTX 2080Ti, on an input
resolution of 1024×2048. The architectures mentioned in the table above have mostly computed their GFLOPS on different resolutions,
thereby making the comparisons unfair. We recompute the MAdd and FLOPS on a common resolution from the official implementations
to provide a better understanding of the architecture complexities. − indicates that the corresponding values could not be confirmed
at the time of writing this report. 7indicates that the execution of the corresponding models at 1024×2048 resolution resulted in < 1
FPS. Please note that the execution speeds for [112, 113] are observed to be lower than what were reported originally as the authors
used TensorRT [95] optimization to enhance the inference speeds of their models. We report all execution speeds of the original models
without any such modifications.

28 6. Experimental Setup and Results

Figure 6.3: Comparative segmentation results on the Cityscapes validation set. From left, the first column consists of the input RGB
images. Second column indicates the prediction results of the SOTA [67], whereas the third column shows the predictions from our

architecture and the red boxes show the improvements we offer over the current state-of-the-art. Last column comprises of the ground
truths. Best viewed in color.

Figure 6.4: More segmentation results on the Cityscapes validation set. First row consists of the input RGB images. Second row contains
the predictions from our architecture and the third row shows the ground truths of the input images. Bext viewed in color.

6.3.2. UAVid
As previously established, UAVid [60] is a challenging benchmark due to the large resolution of images and
extreme complexities in the scenes. Hera again, we do not use the validation data during training. The vali-
dation data is only used for simple hyperparamter tuning post training. Testing is done on the UAVid official
servers by submitting the predictions from the different models. Interestingly, our efficient context aggre-
gation scheme outperforms the previous state-of-the-art on UAVid, MS-Dilation Net [60], by a large margin
of 14%, all the while maintaining an execution speed of 15 FPS (on 4K resolution) on a single RTX 2080Ti.
Furthermore, we also benchmark other multi-branch architectures on UAVid, to support the claim of split-
and-extract concept of spatial and context details. We however, do not benchmark with this dataset on a
Xavier NX as the SOM is only so powerful to run a full-scale Cityscapes prediction. A detailed quantitative
description can be seen in Table 6.3.

As it can be seen from Fig. 6.5 and Fig. 6.6, our model does not suffer from local or global inconsisten-
cies, thereby effectively capturing the cues to scene semantics. Previous SOTA models had either 0% or less
than 5% detection rates for smaller objects like humans in UAVid. Our model has a detection rate of almost
20% on humans, and furthermore, the segregation between clutter and building is distinctively clear as can
be seen in the figure. Local feature incorporation failure results in a mix-up in clutter and building, which

6.4. Results on Other Datasets 29

Model Building Tree Clutter Road Vegetation Static Car Moving Car Human mIOU FPS
FCN-8s+PRT 77.4 72.7 44.0 63.8 45.0 19.1 49.5 0.6 46.5 –
Dilation-Net+PRT 79.8 73.6 44.5 64.4 44.6 24.1 53.6 0.0 48.1 –
U-Net+PRT 77.5 73.3 44.8 64.2 42.3 25.8 57.8 0.0 48.2 –
MS-Dilation+PRT 79.7 74.6 44.9 65.9 46.1 21.8 57.2 8.0 49.8 –
Fast-SCNN [73] 75.7 71.5 44.2 61.6 43.4 19.5 51.6 0.0 45.9 33.84
ShelfNet [123] 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0 9.65
SwiftNet [67] 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1 11.84
BiSeNet [112] 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5 11.08
CABiNet (Ours) 86.6 79.3 66.0 62.1 78.1 68.3 47.8 19.9 63.5 15.14

Table 6.3: Quantitative results on the UAVid test dataset from the official server. Please note that for training ShelfNet [123], we adopt the
same strategy mentioned in [60], as the architecture functions with only fixed input-sizes which are multiples of 256. All models were
trained on a batch-size of 3, for 50% larger iterations than were originally proposed in each. − indicates that the FPS of the algorithm
could not be confirmed.

could theoretically have similar color and texture. The elevation however, makes the difference, which is cap-
tured effectively by our CAPLA block, thereby reducing the false positives. It is noteworthy that our algorithm
performs better than MS-Dilation-Net [60], even though it is based on a FCN-8s structure.

Figure 6.5: Comparative segmentation results from the UAVid [60] test dataset. First column shows the input RGB images, second
column depicts the outputs of the previous SOTA [60] and the third column shows the predictions of our architecture. White boxes

highlight the regions of efficient feature aggregation.

6.3.3. Benchmarking on Jetson Xavier NX
In order to create effective comparisons, we benchmark SOTA real-time semantic segmentation models on an
embedded device Jetson Xavier NX, a small form factor system-on-module (SOM). The device has a 384-core
NVIDIA Volta™ GPU with 48 Tensor Cores and a 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU. Inferencing
on full scale GPUs like Titan X, RTX20 series etc. is unlikely to provide a real-world analysis, as self-driving cars
and other autonomous vehicles like UAVs or UGVs are more likely to have low-power consumption modules,
with limited memory resources like Drive AGX, Jetson TX2, Xavier NX etc. We benchmark our algorithm and
others on multiple resolutions to demonstrate the efficiency. The mIOU scores have not been provided in
Table 6.4 as the models were trained and evaluated on different sizes and not all official implementations were
available to evaluate. Hence, we only provide the system execution speed, memory footprints and GFLOP

count on 1
4

th
and 1

16
th

of the standard Cityscapes resolution (2048×1024).

6.4. Results on Other Datasets
Apart from the above-mentioned primary datasets, we also benchmark our algorithm on other public datasets
in order to further demonstrate the efficiency and robustness of our algorithm. Specifically, we use AeroScapes
[63] dataset in this section. The AeroScapes dataset contains 11 classes for semantic segmentation and con-
tains a total of 3269 images, out of which 2700 are used for training and the 569 for testing. This split is

30 6. Experimental Setup and Results

Figure 6.6: More segmentation results on the UAVid validation set. First row consists of the input RGB images. Second row contains the
predictions from our architecture and the third row shows the ground truths of the input images. Best viewed in color.

Model Input Size
256x512 512x1024

Memory MAdd FLOPs FPS Memory MAdd FLOPs FPS
ERFNet 201.50MB 13.37G 6.41G 19.02 806.00MB 53.47G 25.65G 5.20
BiseNet 121.35MB 13.01G 6.48G 28.07 418.36MB 52.05G 25.93G 8.84
BiseNetV2 174.06MB 12.98G 6.46G 26.66 511.56MB 50.25G 24.93G 8.12
SwiftNet 104.66MB 12.99G 6.47G 26.19 418.06MB 51.95G 25.89G 9.14
ShelfNet 72.39MB 11.74G 5.86G 26.97 289.53MB 46.97G 23.42G 7.30
ICNet 68.40MB 10.15G 5.06G 8.49 273.62MB 40.61G 20.26G 3.38
DABNet 205.47MB 5.18G 2.62G 41.06 821.88MB 20.71G 10.22G 10.95
CGNet 195.96MB 3.44G 1.69G 25.77 786.75MB 13.75G 6.76G 11.43
DFANet 111.16MB 1.92G 955.16M 15.25 444.55MB 7.67G 3.82G 13.82
ContextNet 88.65MB 869.38M 419.61M 60.97 356.44MB 3.49G 1.68G 36.77
Fast-SCNN 77.37MB 865.74M 419.78M 69.64 309.71MB 3.46G 1.68G 42.34
SINet 42.00MB 187.02M 74.98M 28.28 168.00MB 784.04M 299.90M 24.78
CABiNet (Ours) 61.23MB 1.03G 502.22M 45.55 244.82MB 4.10G 2.01G 35.72

Table 6.4: Jetson Xavier NX has 6 modes of operation, depending on the power consumption and the number of cores utilized. For full
resolution testing (1024×2048), we employ the maximum power mode (15W, all 6 cores). However, for the smaller resolutions (512×1024
and 256×512) we use a lower mode (10W, only 4 cores) to establish an effective comparison between the possible use-cases. For instance,
implementing semantic segmentation on lower resolutions is likely to imply that there could be more processes running, and hence
considering the usage of other cores for other threads, we utilize only 4. The execution speed is affected by the number of processors
involved in computations.

inspired from the author of the dataset [63]. Qualitative results are shown in Fig. 6.7, and qualitative results
are shown in Table 6.5. This benchmark was captured around several cities with the help of a UAV with height
ranging from 5 to 50 meters.

Model mIOU Person Bike Car Drone Boat Animal Obstacle Building Vegetation Road Sky FPS
Ensemble-Softmax 57.0 48.2 14.8 69.0 47.7 51.4 38.6 14.0 70.5 92.1 86.2 93.8 −
Ensemble-Average 56.6 48.0 14.5 68.5 47.5 49.2 38.2 13.9 70.1 92.0 86.0 93.5 −

Ensemble-MixMatch 55.0 48.5 13.5 71.8 41.8 43.6 36.5 13.8 67.5 91.8 82.6 94.0 −
Ensemble-Winner 53.8 47.5 11.2 66.0 43.5 40.0 38.0 14.0 68.4 91.5 83.5 92.5 −

CABiNet (Ours) 69.2 48.7 32.1 83.0 74.2 95.2 40.3 21.6 80.0 96.9 94.0 95.2 85.4

Table 6.5: Quantitative results on AeroScapes dataset [63]. Our superior context aggregation techniques outperform the previous SOTA
on this dataset by a significant margin, while maintaining a real-time performance. − indicates that the corresponding values could not
be confirmed.

6.5. Speed Computations 31

Figure 6.7: Segmentation results on the Aeroscapes [63] validation set. First row consists of the input RGB images. Second row contains
the predictions from our architecture and the third row shows the ground truths of the input images. Best viewed in color.

6.5. Speed Computations
The methodology for computing the inference speed of a deep learning model has been studied and pre-
sented in certain literature [67, 72, 73, 112]. However, the implementations are naive in their approaches, in
the sense that the suggested approaches use a Python library called time to start the clock when the model
is called and stop the the clock immediately after the model returns the predictions. This may seem like a
sufficient criteria for computing the inference speeds, but there is more to this than meets the eye.

When a deep learning model is instantiated on a GPU, the CPU first initiates the required kernels on the
GPU, it then launches the kernels, then it copies the data from the RAM to the GPU and then the GPU gets
to process. After this data is copied back to the RAM/CPU and the kernels are shut down. The point is not
to disregard these operations, but to synchronize them. GPU operations are by default asynchronous, which
implies that all the above-mentioned operations are not checked internally by a clock, hence resulting in
sequential completion where parallel computations are possible. So it becomes necessary to synchronize
these computations in order to get an accurate estimate of the inference speed.

Furthermore, when a model is instantiated on a GPU, the first few computations often take the largest
amount of time. This reflects largely in the final average of the computed speeds while reporting. The reason
why this happens is that the GPU tends to warm-up in the first few computations so the initial procedures
are time consuming. Hence, it again becomes crucial to instantiate the GPU before computing the actual
inference speeds. In this regard, we use the following algorithm for accurate inference speed computation,
which takes care of all the aforementioned problems.

1

2 def compute_speed(model , input_size , device , iteration):
3

4 torch.cuda.set_device(device)
5 torch.backends.cudnn.benchmark = True
6

7 model.eval()
8 model = model.cuda()
9

10 input = torch.randn(*input_size , device=device)
11 logger.info(’========= Warmup ========= ’)
12

13 torch.cuda.synchronize ()
14

15 for _ in range (50):
16 model(input)
17 torch.cuda.synchronize ()
18

19 logger.info(’========= Speed Testing ========= ’)
20 logger.info("========= DEVICE :%s SIZE:%s=========" % (
21 torch.cuda.get_device_name(device), input_size))

32 6. Experimental Setup and Results

22

23 time_spent = []
24 for i in range(iteration):
25 torch.cuda.synchronize ()
26 t_start = time.perf_counter ()
27 with torch.no_grad ():
28 model(input)
29 torch.cuda.synchronize ()
30 time_spent.append(time.perf_counter () - t_start)
31 if (i+1) % 100 == 0: print("Iterations {} Complete".format(i+1))
32

33 torch.cuda.synchronize ()
34 elapsed_time = np.sum(time_spent)
35 with torchprof.Profile(model , use_cuda=True) as prof:
36 model(input)
37

38 logger.info(prof.display(show_events=False))
39 logger.info(’Elapsed time: [%.2f s / %d iter]’ % (elapsed_time , iteration))
40 logger.info(’Speed Time: %.2f ms / iter FPS: %.2f’ % (
41 elapsed_time / iteration * 1000, iteration / elapsed_time))
42 logger.info(’\n’)

Listing 6.1: Speed Computation Algorithm

As it can be seen here, we first initialize the model, synchronize the operations at every step and let the
GPU run for the first 50 iterations. Immediately after the GPU is ready, we perform our speed computations
while synchronizing all the operations.

6.6. Ablation Studies
In this chapter we aggressively study the impacts of several components in our architecture on the overall
mIOU and the execution speeds. We present design choices for future developments and their effects on the
final results. All architectures presented in this section use MobileNetV3-Small [31] as the feature extractor.
Baseline is defined as a simple dual-branch network with two convolution layers in the spatial branch and
untrained feature extractor in the second branch. The baseline is devoid of CAPLA and bottleneck modules
and is similar in structure with [72]. For fusing the features from both branches we simply add them which are
later discriminated by a small classifier block into the respective number of classes. Both the branches are fed
images at the same resolution, unlike [72] and all the ablation experiments are performed on this baseline.

Model mIOU
Baseline 68.4
Baseline + SB + CB 72.3
Baseline + SB + CB + CAB 74.7
Baseline + SB + CB + CAB + FFM (WA) 76.6

Table 6.6: Basic ablation study. SB and CB stand for spatial and context branches, whereas FFM (WA) stands for feature fusion module
with weighted attention respectively.

6.6.1. Context Aggregation Block
The context aggregation block (CAB) is designed specifically to capture local and global context effectively
and efficiently. For the case of ablation studies, it is interesting to see how the model performs without this
specific block. If we remove CAB from the design keeping all other modules and training/inference parame-
ters intact, we observe a drop of 2.1% in the overall mIOU score, along with a drop in inference time by almost
3ms. This establishes the fact that the segmentation head is capable enough to obtain a decent mIOU score
on the Cityscapes validation set. The addition of the context block enhances the feature representations,
while having minimal impact on the overall execution speed and complexity.

Now since this block has been introduced as a plug-n-play module, it is worth observing the impacts of
CAB if it were to be implemented in other dual-branch architectures.

Table 6.7 proves the efficacy of the proposed context aggregation block, in a manner that it canbe used
with any dual-branch architecture for semantic segmentation, indicating the superiority in design.

6.6. Ablation Studies 33

Model mIOU w/o CAB mIOU w CAB
ContextNet [72] 66.1 69.2 ↑
Fast-SCNN [73] 68.4 71.2 ↑
BiSeNet [112] 74.7 75.3 ↑
BiSeNetV2 [113] 74.2 75.1 ↑

Table 6.7: CAB implemented in other algorithms. Straightforward addition to [72, 73, 113] results in significant improvements over the
baseline models. In [112], the proposed attention refinement modules were replaced with CAB.

6.6.2. Backbone Choice
A lot of previous real-time semantic segmentation architectures [67, 112, 119, 123] employ powerful feature
extractors like ResNet-18 [27]. Even though this choice is justified for accurate semantic segmentation, the
implications on execution speed and computational complexity are profound. Consider, for instance Table
6.8, where we provide a detailed comparison between the various possible efficient backbone designs for
real-time perception applications like object detection, segmentation etc.

Model mIOU Memory MAdd Flops Params FPS
EffNet [19] M −0.5 4712.00MB 41.46G 21.41G 1.76M F −10
ShuffleNetV2 (0.5×) [61] M −0.6 469.50MB 3.49G 1.65G 0.34M F +5
ShuffleNetV2 (1.0×) [61] M −0.1 871.12MB 12.44G 6.29G 1.25M F
ShuffleNetV2 (1.5×) [61] M +0.3 1225.50MB 25.36G 12.45G 2.48M F −15
ShuffleNetV2 (2.0×) [61] M +0.6 1651.12MB 49.82G 25.05G 5.35M F −20
ResNet-18 [27] M 944.00MB 112.01G 56.81G 8.18M F −20
MobileNetV3-Large (0.75×) [31] M +0.6 1946.92MB 13.31G 6.33G 1.79M F −20
MobileNetV3-Large (1.×) [31] M +1.3 2138.05MB 18.48G 8.88G 2.97M F −10
MobileNetV3-Small (0.75×) [31] M −2.6 619.65MB 3.69G 1.74G 0.57M F +5
MobileNetV3-Small (1.×) [31] M 672.78MB 4.78G 2.28G 0.93M F

Table 6.8: Computational comparison between common light-weight feature extractors. M and F indicate the ground value of mIOU
and FPS (measured on RTX 2080Ti on 2048×1024 resolution) on Cityscapes validation set, which are 76.6 and 76.50 respectively. All other
models are evaluated against these references. All other computational expenses are measured for the extractors (backbones) alone and
not for the overall segmentation model. Relative improvements over the ground values are shown in the mIOU and FPS columns.

Let us begin by analyzing the ShuffleNetV2 [61] series first. As we can see from Table 6.8, ShuffleNetV2
(0.5×) and ShuffleNetV2 (1.0×) do not provide the same mIOU score as the reference model with MobileNetV3-
Small (1.0×). Furthermore, the deeper versions of ShuffleNetV2 although provide an improvement in the
overall mIOU score, they tend to have significant increase in their memory footprints and computational
complexities (increased GFLOPs count). This in turn, causes a decrease in the overall FPS of the segmen-
tation model. EffNet [19] has an undesirable memory footprint, thereby rendering the segmentation model
ineffective on embedded platforms.

Next, let us compare the internal variations of the MobileNetV3 design. As we can see from the table,
the larger versions have significant memory footprints, even though the complexity is lower than those of
ShuffleNetV2 and ResNet-18. The number of parameters is marginally acceptable for both the large designs
of MobileNetV3. So even though the larger variations have decent improvements in the overall mIOU score,
the memory footprints become the limiting factors, the effects of which can be seen on the overall FPS as
well.

Therefore, we are essentially left with the smaller versions of MobileNetV3. Both of these (MobileNetV3-
Small (0.75×) and MobileNetV3-Small (1.×)) have almost comparable memory requirements and complexi-
ties. However, the mIOU scores on both backbones are significantly apart. Naturally, the optimal choice for
our use-case (low-latency high accuracy) becomes MobileNetV3-Small (1.×).

It is also interesting to observe the relative complexities of the SOTA [67] and our architecture with the
same backbones. Hence, we utilize ResNet-18 as our primary feature extractor for effective comparison be-
tween the SOTA [67] for real-time semantic segmentation and our model. The quantified results are shown
in Table 6.9.

As it can be seen from the table above, our segmentation head is lighter, faster and more accurate as
compared to both SwiftNet [67] and BiSeNet [112], even if we use the same feature extractor as them which is
ResNet-18. This, when further coupled with an even more light-weight backbone, creates significant impacts

34 6. Experimental Setup and Results

Model mIOU Memory MAdd Flops Params FPS
BiseNet [112] 74.8 1941.39MB 208.18G 103.72G 12.89M 47.20
SwiftNet [67] 75.4 1671.66MB 207.64G 103.37G 11.80M 45.40
CABiNet-R18 (Ours) 76.7 1502.58MB 132.51G 66.41G 9.19M 54.50
CABiNet-MV3 (Ours) 76.6 1256.18MB 24.37G 12.03G 2.64M 66.50

Table 6.9: Relative complexity comparison between our approach and the current state-of-the-art. With ResNet-18 [27] as the backbone,
the computational complexities become more comparable between the two architectures. CABiNet offers a 35% reduction in computa-
tions, with comparable mIOU along-with a 16% reduction in the overall inference time. Both the approaches [67, 112] use ResNet-18 as
the primary feature extractor. R18 and MV3 stand for ResNet-18 and MobileNetV3-Small (1.×) respectively.

on the overall inference. Furthermore, the comparison between CABiNet-R18 and CABiNet-MV3 from Table
6.9 and Table 6.8 reveals that the computational overheads added by ResNet-18 are larger as compared to
MobileNetV3-Small even though it provides similar mIOU scores. Since the segmentation head is light, using
a heavy backbone and limiting the capabilities of the overall model in terms of inference, does not seem to
be a logical decision.

6.6.3. Spatial Branch
In this study, we replace the spatial branch with the final feature representations from the backbone. A small
convolutional layer with batch normalization is applied to reduce the number of channels as per the require-
ments of the feature fusion module. As a result, the model becomes lighter but also tends to have a lower
mIOU score as compared to the original model. Specifically, we see a drop of 0.5% in the overall mIOU on
the Cityscapes validation set. Another aspect that is observed is the increased variance in the overall design.
Without the spatial branch, the segmentation head tends to have a larger variance in terms of the final mIOU
and was observed to have a variance as large as 2%. This implies that the final mIOU is within ±2 range. The
spatial branch reduces this uncertainty in the final architecture at the cost of slight increase in computations.

6.6.4. Feature Fusion Module
Several fusion techniques have been suggested in literature, and designing the right technique could have
significant impacts on the final outcome. We experiment with simple feature addition, simple feature con-
catenation and feature concatenation with weighted addition. Consider Table 6.10 for a quanititative com-
parision between the various fusion techniques.

Fusion Style mIOU FLOPs
Feature Addition [72] 73.2 0.5G
Feature Concatenation w/o AW [73] 74.5 0.8G
Feature Concatenation w AW [112] 76.6 1.5G

Table 6.10: AW here stands for attention weight based fusion.

As can be seen from the table above, feature concatenation with with weighted attention provides the best
mIOU scores out of the three variants, at the slight cost complexity which is acceptable.

6.6.5. Sampling Method Choice
The sampling strategy used in the CAPA module has to potential to affect its performance significantly. Nor-
mally, there are three variations, r andom, max and aver ag e, but in this research we experiment only with
the max and aver ag e as the random sampling technique is less efficient as compared to other two [118].
Furthermore from the same literature, it can be established that the aver ag e sampling method is likely to
perform better than the max method. Theoretically, this could be attributed to the fact that the aver ag e
sampling method considers all the input spatial operators, unlike the other two, which can be seen from
Table 6.11.

6.6.6. Number of Sparse Representations
The layers of the pyramid pooling module determine the number of sparse anchor points which, in turn have
an impact on the performance of the AP block. Following the footsteps of [118], we experiment with multiple
variations of the output sizes of PSP module. Specifically, we experiment with bin sizes of 1,2,3,6 and 1,3,6,8

6.6. Ablation Studies 35

Sampling Strategy mIOU
Random Pooling 76.2
Max Pooling 76.4
Average Pooling 76.6

Table 6.11: Different pooling strategies and their impacts on the overall mIOU.

and their combinations with max and aver ag e methods. Considering the impacts on mIOU score and the
computational expenses, even though aver ag e pooling with a bin size of 1,2,3,6 provides sufficient semantic
coverage, we choose the former combination at the slight cost of increases computations because it also gives
us a slightly better result of 76.6%.

6.6.7. Bottleneck
The combination of the bottleneck and the attention fusion provides for the double supervision of the at-
tention branch. Since the context branch generates a decent semantic representation and comprises of the
most crucial components in the model, the bottleneck is added to create a semantic distinction from the ex-
tracted features, before the representations are fed to the feature fusion module. This bottleneck allows us to
supervise the context branch directly, thereby improving the overall performance. The bottleneck provides
for additional supervision of the entire model, along-with a slight boost in the overall mIOU score by 0.3%.

7
Discussions and Future Work

In this research, a new methodology was presented to tackle the challenge of real-time semantic segmenta-
tion with a novel context aggregation block design. Local and global context assimilation were observed both
qualitatively and quantitatively in the report. The pipeline presented is simple in terms of design, implemen-
tation and execution. We start with the input RGB image and perform parallel operations to extract deep
features and spatial features using two separate heads. It is observed that both long-range and short-range
dependencies prove to be crucial for accurate semantic segmentation. No post-processing techniques are
applied like SegFix [115] or Deep CRFs [42, 74] for further enhancement of the obtained predictions. Predic-
tions were directly submitted to the official servers for evaluation. While improving the overall mIOU score,
we am also able enhance the execution speed significantly with the help of the novel context aggregation
block and a strategic use of depth-wise convolutions.

A possible future work would be to implement the suggested approach using distributed training tech-
nique. Instead of training on a single GPU, the architecture could be trained on multiple-GPUs in parallel
with a larger batch size and reduced number of iterations. This can bring about an increase in the overall
mIOU score on both datasets.

Another possible extension of this project is forecasted in the temporal domain. By training on spatio-
temporal data, instead of static images, the temporal information of videos could be harnessed to further
boost the performance. It is possible to design attention blocks that incorporate temporal abstractions as
well. In fact, non-local operators that were initially proposed in [102] did have a temporal representation
layer and were proposed for understanding object semantics in videos.

There are a couple of other datasets available such as DroneSeg, SkyScapes [2] etc. which could be used
for benchmarking this algorithm. However, unlike UAVid and Cityscapes, these dataset are not well managed
and do not provide official testing servers for evaluation. They also suffer from relatively poor documentation.
Hence, only two primary datasets were chosen for this research along-with one other, Aeroscapes [63].

If the output layer of pixel-wise classification is replaced with an object detection head (a region pro-
posal network and bounding box regressor), this same pipeline could be used for accurate high-speed object
detection in image and in videos as well.

Furthermore, this segmentation head could very well be modified to suit the requirements of instance-
aware segmentation. Coupled with this new methodology, segmentation head and instance head could fur-
ther be combined to address panoptic segmentation as a whole.

37

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16),
pages 265–283, 2016.

[2] Seyed Majid Azimi, Corentin Henry, Lars Sommer, Arne Schumann, and Eleonora Vig. Skyscapes fine-
grained semantic understanding of aerial scenes. In Proceedings of the IEEE International Conference
on Computer Vision, pages 7393–7403, 2019.

[3] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293, 2015.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine in-
telligence, 39(12):2481–2495, 2017.

[5] Min Bai and Raquel Urtasun. Deep watershed transform for instance segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5221–5229, 2017.

[6] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance segmentation. In
Proceedings of the IEEE international conference on computer vision, pages 9157–9166, 2019.

[7] Siddhartha Chandra and Iasonas Kokkinos. Fast, exact and multi-scale inference for semantic image
segmentation with deep gaussian crfs. In European conference on computer vision, pages 402–418.
Springer, 2016.

[8] Gabriel Chartrand, Phillip M Cheng, Eugene Vorontsov, Michal Drozdzal, Simon Turcotte, Christopher J
Pal, Samuel Kadoury, and An Tang. Deep learning: a primer for radiologists. Radiographics, 37(7):2113–
2131, 2017.

[9] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4974–4983, 2019.

[10] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Se-
mantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014.

[11] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[12] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convo-
lution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[13] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[14] Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang, Yuan Li, and Zhangyang Wang. Fasterseg:
Searching for faster real-time semantic segmentation. arXiv preprint arXiv:1912.10917, 2019.

[15] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig Adam, and Liang-
Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmen-
tation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12475–12485, 2020.

39

40 Bibliography

[16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benen-
son, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene
understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[17] Clément Dechesne, Clément Mallet, Arnaud Le Bris, and Valérie Gouet-Brunet. Semantic segmentation
of forest stands of pure species combining airborne lidar data and very high resolution multispectral
imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 126:129–145, 2017.

[18] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

[19] Ido Freeman, Lutz Roese-Koerner, and Anton Kummert. Effnet: An efficient structure for convolutional
neural networks. In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 6–10.
IEEE, 2018.

[20] Björn Fröhlich, Eric Bach, Irene Walde, Sören Hese, Christiane Schmullius, and Joachim Denzler. Land
cover classification of satellite images using contextual information. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, 3(W1), 2013.

[21] Cheng-Yang Fu, Tamara L Berg, and Alexander C Berg. Imp: Instance mask projection for high accuracy
semantic segmentation of things. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5178–5187, 2019.

[22] Huazhu Fu, Yanwu Xu, Stephen Lin, Damon Wing Kee Wong, and Jiang Liu. Deepvessel: Retinal vessel
segmentation via deep learning and conditional random field. In International conference on medical
image computing and computer-assisted intervention, pages 132–139. Springer, 2016.

[23] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. Dual attention net-
work for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3146–3154, 2019.

[24] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More features
from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1580–1589, 2020.

[25] Zhongyi Han, Benzheng Wei, Ashley Mercado, Stephanie Leung, and Shuo Li. Spine-gan: Semantic
segmentation of multiple spinal structures. Medical image analysis, 50:23–35, 2018.

[26] Shijie Hao, Yuan Zhou, and Yanrong Guo. Bi-direction context propagation network for real-time se-
mantic segmentation. arXiv preprint arXiv:2005.11034, 2020.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
corr abs/1512.03385 (2015), 2015.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence,
37(9):1904–1916, 2015.

[29] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969, 2017.

[30] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. 2016.

[31] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1314–1324, 2019.

[32] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861, 2017.

Bibliography 41

[33] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7132–7141, 2018.

[34] Lang Huang, Yuhui Yuan, Jianyuan Guo, Chao Zhang, Xilin Chen, and Jingdong Wang. Interlaced sparse
self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273, 2019.

[35] Wei Ji, Xi Li, Yueting Zhuang, Omar El Farouk Bourahla, Yixin Ji, Shihao Li, and Jiabao Cui. Semantic
locality-aware deformable network for clothing segmentation. In IJCAI, pages 764–770, 2018.

[36] Bin Jiang, Wenxuan Tu, Chao Yang, and Junsong Yuan. Context-integrated and feature-refined network
for lightweight urban scene parsing. arXiv preprint arXiv:1907.11474, 2019.

[37] Feng Jiang, Aleksei Grigorev, Seungmin Rho, Zhihong Tian, YunSheng Fu, Worku Jifara, Khan Adil, and
Shaohui Liu. Medical image semantic segmentation based on deep learning. Neural Computing and
Applications, 29(5):1257–1265, 2018.

[38] Baris Kayalibay, Grady Jensen, and Patrick van der Smagt. Cnn-based segmentation of medical imaging
data. arXiv preprint arXiv:1701.03056, 2017.

[39] Jack Kiefer, Jacob Wolfowitz, et al. Stochastic estimation of the maximum of a regression function. The
Annals of Mathematical Statistics, 23(3):462–466, 1952.

[40] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár. Panoptic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9404–9413,
2019.

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[42] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

[43] Gen Li, Inyoung Yun, Jonghyun Kim, and Joongkyu Kim. Dabnet: Depth-wise asymmetric bottleneck
for real-time semantic segmentation. arXiv preprint arXiv:1907.11357, 2019.

[44] Hanchao Li, Pengfei Xiong, Haoqiang Fan, and Jian Sun. Dfanet: Deep feature aggregation for real-
time semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9522–9531, 2019.

[45] Hongliang Li, King N Ngan, and Qiang Liu. Faceseg: automatic face segmentation for real-time video.
IEEE Transactions on Multimedia, 11(1):77–88, 2008.

[46] Qizhu Li, Anurag Arnab, and Philip HS Torr. Weakly-and semi-supervised panoptic segmentation. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 102–118, 2018.

[47] Weijia Li, Conghui He, Jiarui Fang, and Haohuan Fu. Semantic segmentation based building extraction
method using multi-source gis map datasets and satellite imagery. In CVPR Workshops, pages 238–241,
2018.

[48] Xiangtai Li, Li Zhang, Ansheng You, Maoke Yang, Kuiyuan Yang, and Yunhai Tong. Global aggregation
then local distribution in fully convolutional networks. arXiv preprint arXiv:1909.07229, 2019.

[49] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, and Xingang Wang. Attention-
guided unified network for panoptic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7026–7035, 2019.

[50] Xiaodan Liang, Liang Lin, Wei Yang, Ping Luo, Junshi Huang, and Shuicheng Yan. Clothes co-parsing
via joint image segmentation and labeling with application to clothing retrieval. IEEE Transactions on
Multimedia, 18(6):1175–1186, 2016.

[51] Guosheng Lin, Chunhua Shen, Anton Van Den Hengel, and Ian Reid. Efficient piecewise training of
deep structured models for semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3194–3203, 2016.

42 Bibliography

[52] Peiwen Lin, Peng Sun, Guangliang Cheng, Sirui Xie, Xi Li, and Jianping Shi. Graph-guided architecture
search for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4203–4212, 2020.

[53] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer, 2014.

[54] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130, 2017.

[55] Huanyu Liu, Chao Peng, Changqian Yu, Jingbo Wang, Xu Liu, Gang Yu, and Wei Jiang. An end-to-end
network for panoptic segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6172–6181, 2019.

[56] Mengyu Liu and Hujun Yin. Feature pyramid encoding network for real-time semantic segmentation.
arXiv preprint arXiv:1909.08599, 2019.

[57] Wei Liu, Andrew Rabinovich, and Alexander C Berg. Parsenet: Looking wider to see better. arXiv
preprint arXiv:1506.04579, 2015.

[58] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic seg-
mentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

[59] Haoran Lyu, Huiyuan Fu, Xiaojun Hu, and Liang Liu. Esnet: Edge-based segmentation network for
real-time semantic segmentation in traffic scenes. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 1855–1859. IEEE, 2019.

[60] Ye Lyu, George Vosselman, Gui-Song Xia, Alper Yilmaz, and Michael Ying Yang. Uavid: A semantic
segmentation dataset for uav imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 165:
108–119, 2020.

[61] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV),
pages 116–131, 2018.

[62] Andreas C Müller and Sven Behnke. Learning depth-sensitive conditional random fields for semantic
segmentation of rgb-d images. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 6232–6237. IEEE, 2014.

[63] Ishan Nigam, Chen Huang, and Deva Ramanan. Ensemble knowledge transfer for semantic segmen-
tation. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1499–1508.
IEEE, 2018.

[64] Ruigang Niu. Hmanet: Hybrid multiple attention network for semantic segmentation in aerial images.
arXiv preprint arXiv:2001.02870, 2020.

[65] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for semantic
segmentation. In Proceedings of the IEEE international conference on computer vision, pages 1520–
1528, 2015.

[66] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku
Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net: Learning where to
look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

[67] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic. In defense of pre-trained imagenet architec-
tures for real-time semantic segmentation of road-driving images. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 12607–12616, 2019.

[68] Hyojin Park, Lars Sjosund, YoungJoon Yoo, Nicolas Monet, Jihwan Bang, and Nojun Kwak. Sinet: Ex-
treme lightweight portrait segmentation networks with spatial squeeze module and information block-
ing decoder. In The IEEE Winter Conference on Applications of Computer Vision, pages 2066–2074, 2020.

Bibliography 43

[69] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A deep neural network
architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pages 8026–
8037, 2019.

[71] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters–improve seman-
tic segmentation by global convolutional network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4353–4361, 2017.

[72] Rudra PK Poudel, Ujwal Bonde, Stephan Liwicki, and Christopher Zach. Contextnet: Exploring context
and detail for semantic segmentation in real-time. arXiv preprint arXiv:1805.04554, 2018.

[73] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla. Fast-scnn: fast semantic segmentation net-
work. arXiv preprint arXiv:1902.04502, 2019.

[74] Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object recogni-
tion. In Advances in neural information processing systems, pages 1097–1104, 2005.

[75] Petia Radeva and Enric Martí. Facial features segmentation by model-based snakes. In International
Conference on Computing Analysis and Image Processing, Prague, pages 1–5. Citeseer, 1995.

[76] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

[77] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In Advances in neural information processing systems, pages 91–99,
2015.

[78] Eduardo Romera, José M Alvarez, Luis M Bergasa, and Roberto Arroyo. Erfnet: Efficient residual fac-
torized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation
Systems, 19(1):263–272, 2017.

[79] Bernardino Romera-Paredes and Philip Hilaire Sean Torr. Recurrent instance segmentation. In Euro-
pean conference on computer vision, pages 312–329. Springer, 2016.

[80] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

[81] Holger R Roth, Chen Shen, Hirohisa Oda, Masahiro Oda, Yuichiro Hayashi, Kazunari Misawa, and Ken-
saku Mori. Deep learning and its application to medical image segmentation. Medical Imaging Tech-
nology, 36(2):63–71, 2018.

[82] Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, Javier Monroy, Francisco-Angel Moreno, and Javier
Gonzalez-Jimenez. Ontology-based conditional random fields for object recognition. Knowledge-Based
Systems, 168:100–108, 2019.

[83] Shunsuke Saito, Tianye Li, and Hao Li. Real-time facial segmentation and performance capture from
rgb input. In European conference on computer vision, pages 244–261. Springer, 2016.

[84] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4510–4520, 2018.

[85] Mauricio P Segundo, Chaua Queirolo, Olga RP Bellon, and Luciano Silva. Automatic 3d facial segmenta-
tion and landmark detection. In 14th International Conference on Image Analysis and Processing (ICIAP
2007), pages 431–436. IEEE, 2007.

44 Bibliography

[86] Maurício Pamplona Segundo, Luciano Silva, Olga Regina Pereira Bellon, and Chauã C Queirolo. Auto-
matic face segmentation and facial landmark detection in range images. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 40(5):1319–1330, 2010.

[87] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. Disan: Directional
self-attention network for rnn/cnn-free language understanding. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[88] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors with
online hard example mining. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 761–769, 2016.

[89] Haiyang Si, Zhiqiang Zhang, Feifan Lv, Gang Yu, and Feng Lu. Real-time semantic segmentation via
multiply spatial fusion network. arXiv preprint arXiv:1911.07217, 2019.

[90] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[91] Amber L Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani, Bram Van Gin-
neken, Annette Kopp-Schneider, Bennett A Landman, Geert Litjens, Bjoern Menze, et al. A large an-
notated medical image dataset for the development and evaluation of segmentation algorithms. arXiv
preprint arXiv:1902.09063, 2019.

[92] Paul Suetens, Erwin Bellon, Dirk Vandermeulen, M Smet, Guy Marchal, Johan Nuyts, and Luc Mortel-
mans. Image segmentation: methods and applications in diagnostic radiology and nuclear medicine.
European journal of radiology, 17(1):14–21, 1993.

[93] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[94] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for semantic seg-
mentation. arXiv preprint arXiv:2005.10821, 2020.

[95] Han Vanholder. Efficient inference with tensorrt, 2016.

[96] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[97] Raviteja Vemulapalli, Oncel Tuzel, Ming-Yu Liu, and Rama Chellapa. Gaussian conditional random
field network for semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3224–3233, 2016.

[98] Michele Volpi and Vittorio Ferrari. Semantic segmentation of urban scenes by learning local class inter-
actions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 1–9, 2015.

[99] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Un-
derstanding convolution for semantic segmentation. In 2018 IEEE winter conference on applications of
computer vision (WACV), pages 1451–1460. IEEE, 2018.

[100] Sy Bor Wang, Ariadna Quattoni, L-P Morency, David Demirdjian, and Trevor Darrell. Hidden condi-
tional random fields for gesture recognition. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pages 1521–1527. IEEE, 2006.

[101] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive generation via
adversary for object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2606–2615, 2017.

[102] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 7794–7803, 2018.

Bibliography 45

[103] Yang Wang and Greg Mori. Max-margin hidden conditional random fields for human action recogni-
tion. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 872–879. IEEE, 2009.

[104] Yang Wang, Kia-Fock Loe, and Jian-Kang Wu. A dynamic conditional random field model for fore-
ground and shadow segmentation. IEEE transactions on pattern analysis and machine intelligence, 28
(2):279–289, 2005.

[105] Yu Wang, Quan Zhou, Jia Liu, Jian Xiong, Guangwei Gao, Xiaofu Wu, and Longin Jan Latecki. Lednet: A
lightweight encoder-decoder network for real-time semantic segmentation. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 1860–1864. IEEE, 2019.

[106] Tianyi Wu, Sheng Tang, Rui Zhang, and Yongdong Zhang. Cgnet: A light-weight context guided network
for semantic segmentation. arXiv preprint arXiv:1811.08201, 2018.

[107] Michael Wurm, Thomas Stark, Xiao Xiang Zhu, Matthias Weigand, and Hannes Taubenböck. Semantic
segmentation of slums in satellite images using transfer learning on fully convolutional neural net-
works. ISPRS journal of photogrammetry and remote sensing, 150:59–69, 2019.

[108] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel Urtasun. Up-
snet: A unified panoptic segmentation network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8818–8826, 2019.

[109] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan Yang. Denseaspp for semantic segmentation
in street scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3684–3692, 2018.

[110] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and Hartwig
Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 285–300, 2018.

[111] Wei Yang, Ping Luo, and Liang Lin. Clothing co-parsing by joint image segmentation and labeling. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3182–3189, 2014.

[112] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In Proceedings of the European conference
on computer vision (ECCV), pages 325–341, 2018.

[113] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and Nong Sang. Bisenet
v2: Bilateral network with guided aggregation for real-time semantic segmentation. arXiv preprint
arXiv:2004.02147, 2020.

[114] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

[115] Yuhui Yuan, Jingyi Xie, Xilin Chen, and Jingdong Wang. Segfix: Model-agnostic boundary refinement
for segmentation. arXiv preprint arXiv:2007.04269, 2020.

[116] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, and Amit
Agrawal. Context encoding for semantic segmentation. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, pages 7151–7160, 2018.

[117] Zhanpeng Zhang and Kaipeng Zhang. Farsee-net: Real-time semantic segmentation by efficient multi-
scale context aggregation and feature space super-resolution. arXiv preprint arXiv:2003.03913, 2020.

[118] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2881–
2890, 2017.

[119] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. Icnet for real-time seman-
tic segmentation on high-resolution images. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 405–420, 2018.

46 Bibliography

[120] Zilong Zhong, Zhong Qiu Lin, Rene Bidart, Xiaodan Hu, Ibrahim Ben Daya, Zhifeng Li, Wei-Shi Zheng,
Jonathan Li, and Alexander Wong. Squeeze-and-attention networks for semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13065–
13074, 2020.

[121] Lingyu Zhu, Tinghuai Wang, Emre Aksu, and Joni-Kristian Kamarainen. Cross-granularity attention
network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 0–0, 2019.

[122] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xiang Bai. Asymmetric non-local neural net-
works for semantic segmentation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 593–602, 2019.

[123] Juntang Zhuang, Junlin Yang, Lin Gu, and Nicha Dvornek. Shelfnet for fast semantic segmentation. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 0–0, 2019.

	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation and Research Statement
	Research Objectives and Expected Outcomes
	RA 1 - Conceptualization
	RA 2 - Implementation
	RA 3 - Validation and Testing
	RA 4 - Inference on Mobile Platforms
	RA 5 - Comparison with SOTA and Others

	Report Structure

	Related Work
	Semantic Segmentation
	FCNs
	CRFs
	Spatial Pyramid Pooling
	Self Attention
	Convolution Variations
	Real-time Semantic Segmentation

	Instance-aware Semantic Segmentation
	Mask-RCNN
	Other Techniques

	Panoptic Segmentation

	A Preliminary Overview
	Accuracy
	Speed
	Contributions

	Network Architecture
	Spatial Branch
	Context Branch
	MobileNetV3-Small
	Context Aggregation Block
	Revisiting Position Attention Module
	Compact Asymmetric Position Attention (CAPA) Module
	Local Attention
	Plug-n-Play Concept

	Downsampling Bottleneck
	Feature Fusion
	Output Classifier
	Loss Functions
	Implementation Details
	Training Objectives
	Training Settings
	Inference Settings

	Experimental Setup and Results
	Datasets
	Evaluation Metrics
	Results
	Cityscapes
	UAVid
	Benchmarking on Jetson Xavier NX

	Results on Other Datasets
	Speed Computations
	Ablation Studies
	Context Aggregation Block
	Backbone Choice
	Spatial Branch
	Feature Fusion Module
	Sampling Method Choice
	Number of Sparse Representations
	Bottleneck

	Discussions and Future Work
	Bibliography

