
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Defending against
Access Pattern Attacks

on Secure Range Query Schemes

Jasper J. F. Boot
Master Thesis
October 2020

Supervisors:
dr. A. Peter

dr. ing. F.W. Hahn
R.F. de Vries (KPMG)

Services and Cyber-Security Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract—We investigate a defense for secure range query
schemes against existing attacks. Secure range query schemes
make it possible to encrypt data while still being able to execute
range queries on the data. The goal is that both the data and
the queries are not leaked to an adversary. However, attacks
exist on secure range query schemes which require only the
access pattern leakage in order to reveal plaintexts. There is no
known method to remove access pattern leakage. To make these
schemes more secure, we obfuscate the access pattern by adding
false positives. We tested this against state-of-the-art attacks
to show the effectiveness of the measure. Since securing these
schemes is inherently a trade-off between performance (in terms
of communication overhead in this example), security (in terms
of success rate of existing attack) and functionality (in terms of
accuracy of the returned results), the experiments focus on these
aspects to provide insight in the trade-offs between these factors.
We provide a novel protocol (Local Indexed Search - LIS) using
a local index which costs performance in order to make sure the
only leakage is indeed the access pattern leakage. The results
are open to interpretation; it takes at maximum 3.30 times the
communication overhead to get at an acceptable security level
(between 0.4 and 0.5 maximum symmetric error). It depends
on the application context what the right trade-off is between
security and performance.

Index Terms—Searchable Encryption, Access Pattern, Range
Queries, Defense

I. INTRODUCTION

Traditional encryption encrypts a plaintext into something
that is unreadable for someone without having the right key to
decrypt it. In general, encrypted data loses certain properties
making it impossible to search through this data without
first decrypting it. This is problematic when it is crucial to
search through the data before it can be used. We define an
untrusted party that provides data storage as a service and
call it the service provider. A service provider could be a
cloud provider which offers data storage and backups. We
consider the following scenario.

Scenario
When medical records are stored with a service provider, a

doctor might want to search for patient information using an
age range. But the doctor does not want to reveal the patient
files, information about the age of patients or the entered
search terms to the service provider. The doctor creates a
search query with a lower bound and an upper bound forming
a range. For example, patients with an age of 20 (a) or higher
and and age of 30 (b) and lower.

In this scenario it would make no sense storing the de-
cryption key with the cloud provider; the cloud provider (or
someone with access to the system of the cloud provider) can
then decrypt and read all of the data. The decryption key
should reside with the user, meaning that the data will be
unreadable for the service provider, making it impossible to
search through it. In order for the scenario to work, the user
needs to download all files from the service provider, decrypt
them, and then search for the right file. Doing so directly omits
one of the main uses of this system: not having to download
all patient files on the device of the user.

Searchable encryption is an active field of research that
investigates methods of storing data encrypted - so an ad-
versary cannot read the stored data - while maintaining the
ability to search through this data. There is no perfect way
of accomplishing this yet. Some methods are slow but rather
secure such as ORE [1] [2] and OPE [3]. Faster methods
offer in turn less security [4]. It is crucial to find the right
balance between security (in the sense of how much resources
an attacker would require in order to get useful information
out of the encrypted data), performance (in the sense of how
much overhead it takes in communication and execution of
the protocol) and functionality (in the sense of the accuracy
of the data that is returned to a user). The trade-off is depicted
as a triangle as shown in Figure 1.

Fig. 1: The three main concerns when developing a searchable
encryption scheme.

We focus on searchable encrypted range query schemes -
schemes where a search query consists of two values (a and
b) which act as an lower and upper bound for the search. For
example, every patient with an age between 20 (a) and 30 (b).
Everything within and including these values will be returned
as the answer for the query. To accomplish this, the service
provider requires extra information about the ordering of the
data (although there are exceptions where it is not specifically
required but these are generally slow). Leakage can occur both
in the queries (because the service provider needs to be able to
compare if results fall within the range) as well as in the results
(as all elements in a result are neighbours in the dataset).
Researchers investigated these leakages and crafted attacks
with the goal of recovering e.g. the order of the encrypted
data or even recovering the plaintexts of the encrypted data.

An example of the complete scenario is depicted in Figure 2.

Fig. 2: Example of the secure range query scheme as stated in the
Scenario.

We investigate searchable encrypted range query schemes
which would only have an access pattern leakage in order to
defend against them. We introduce a novel protocol (Local In-
dexed Search - LIS) which has this property. To defend against

2

access pattern attacks, a defense mechanism is introduced:
adding false positives to the results of a query (and thus to
the access pattern). The stated scenario would then not only
return values within the range a - b, but also values outside
the range. The goal is to make it harder for attacks which
rely on constraints or on statistics to succeed. We investigated
how much influence this has on existing attacks to provide
insight in the trade-offs between security, functionality and
performance. We used the amount of added false positives as
a parameter. The goal is to give insight in a practical example
of defending against attacks and furthering the field of research
in the process. Creating this defense could potentially lead to
the creation of better working attacks, which in turn should
lead to the creation of better searchable encryption schemes
in the categories security, functionality and performance.

II. DEFINITIONS

Most searchable encryption schemes consist of two different
parts. A piece of data is encrypted with traditional encryption
- which could be the patient file from the scenario. Such a
file is called a document. The age is then stored separately
using searchable encryption. When searching for a specific
age range, not only the ages are returned but the documents
as well. Different kinds of encryption can be combined to
enhance the utility of the scenario. Figure 2 shows this
structure as well.

In order to be able to discuss leakage it is important to define
what kind of scheme we try to defend. It has the following
properties:

1) Range query scheme We focus solely on range query
schemes because this search type has not as extensively
been researched as for example exact keyword match
schemes.

2) Access pattern leakage The most basic type of leakage is
access pattern leakage, defined as an attacker intercepting
encrypted responses belonging to a query. The attacker
can identify the specific documents being accessed when
a query is executed. This leakage seems to be the hardest
to avoid and more modern attacks only focus on abusing
the access pattern.

The above mentioned properties can be found in every
known range query scheme. The problem is that these schemes
allow for more types of leakage than just our properties. To
limit the leakage and make the setup for the experiments less
complex we introduce our own simple scheme. It also makes it
possible to introduce false positives in the experimental setup.
We call this scheme Local Indexed Search - LIS for short.
The idea is that a user encrypts documents with traditional
encryption and stores them with a unique identifier at the
service provider. The user then creates an index of search terms
on their local device instead of at the service provider. A user
can execute a search query - for example all patients with
an age between 20 and 30, as in the scenario - and look up
the corresponding document identifiers using their local index.
The user requests these documents from the service provider.

A depiction of the protocol can be found in Figure 3 and a
description of the steps is given below.

Fig. 3: Depiction of the LIS protocol.

1) The user enters a search query using the variables a and
b. To search for everything between and including 20 and
30, the user would enter a = 20 and b = 30.

2) The Local Index searches which documents fall within
the provided query and collects the identifiers of the
corresponding documents.

3) The documents are requested at the service provider
by using the document identifiers without revealing the
search query.

4) The requested documents are returned to the user.
5) The requested documents are returned to the user. This

is the same step as step 4, but this will change when we
introduce the false positives.

LIS can now be extended to support our defense mechanism:
adding false positives to the access pattern. Since the user
stores a local index, it is possible to request more data than
strictly required to complete the search query. By adding more
document identifiers in step 2 which are outside the queried
range to the list of documents to be requested from the storage
provider, we obfuscate the access pattern. We will refer to
this from now on with adding false positives. Since the false
positives are added at the system of the user, it is possible
to filter them out when the results are received. Step 4 and
step 5 in the diagram show this. In step 5 the user receives
only the requested results, while step 4 also contains false
positives. The access pattern we investigate is basically the
communication in step 4 of this diagram. Figure 4 shows the
position of the adversary and where false positives are added.

III. ATTACK MODEL

This section describes the capabilities we consider an ad-
versary has. We consider the scenario in which the main
goal of the adversary is finding the plaintexts of a dataset.
In the scenario presented in our introduction (and depicted in
Figure 2) this means finding out what the ages are which are
stored at the service provider. We also make the following
assumptions on the adversary:
• Full control over service provider We consider either

that the adversary is the service provider or that the
adversary has full control over the service provider. The

3

Fig. 4: Depiction of the LIS protocol including the position of the
adversary and the false positives.

latter could be the case when the servers of the service
provider are for e.g. hacked by the adversary.

• Passive attacks We only consider passive attacks, which
means that the information the adversary sees can only
be read and not altered in any way to alter the execution
of the protocol.

• Plaintext domain is known We assume that the domain
of the plaintext data is known to the adversary. The
domain is required for the attacks to work. For example,
in the scenario using ages can even be easily deducted.

• Query distribution is known We assume that the query
distribution is known to the adversary. Although this
is a very powerful assumption, it seems unavoidable in
existing attacks.

These assumptions can be summarised as an honest-but-
curious service provider as our adversary.

As stated earlier, we focus on the access pattern leakage
specifically because this is generally not possible to get rid
of - besides using obfuscation as we do. The access pattern
consists of the individual memory locations accessed on the
server when a query is being executed. The memory locations
can be identified, but the data in the memory locations are
encrypted records. Simplified, the unique identifiers of the
datapoints stored on the server. The adversary thus sees sets
of unique identifiers belonging to a query but not the query
itself or the actual data values. To map it to the LIS protocol,
this is the same as step 4 in the protocol, which is the set of
encrypted documents. We thus assume that the adversary can
only intercept the data transferred in step 4.

IV. ATTACKS ON SE RANGE QUERY SCHEMES

There exist many attacks on searchable encrypted range
query schemes as shown in Appendix section A. It shows per
attack what it requires to succeed, what constraints it has and
what the goal of the attack is. The overview also contains
references to relevant papers describing the attacks.

To select attacks applicable to our research, requirements
have been defined. With these requirements a selection of at-
tacks has been made from the overview in Appendix section A.
The requirements are focused on the attacker having minimal

knowledge of the plaintext data, attacks using access pattern
leakage and considering the established attack model. Minimal
knowledge means that we restrict the requirements as much
as possible without excluding all attacks. The requirements
follow below.
• The goal is Plaintext Recovery We focus on attacks

which aim to recover plaintexts, excluding e.g. attacks
focusing on recovering order or query plaintexts.

• Targets access pattern leakage only We only focus on
access pattern as this type of leakage seems unavoidable.
Communication volume can be directly obtained from
the access pattern, as this is the amount of documents
returned by a query.

• No plaintexts are required Since we want to make
minimal assumptions on the side of the attacker, we omit
attacks which specifically depend on knowledge about
plaintexts of the data or plaintext queries in order to
succeed.

• No plaintext distribution is known Since we want to
make minimal assumptions on the side of the attacker,
we omit attacks which specifically depend on knowledge
about the distribution of plaintext in order to succeed.
This is also referred to as auxiliary information.

• Dense dataset is not required We focus on attacks which
do not depend on a dense dataset to succeed. In a dense
dataset every domain value occurs at least once.

As stated in the previous section, we do assume the adver-
sary has knowledge over both the plaintext domain and the
query distribution as this seems unavoidable.

When these constraints are applied to the mentioned attack
overview from Appendix section A the following attacks are
of our interest:

1) Access Pattern Attack [5]
2) Communication Volume Attack [5]
3) e-Approximate Database Reconstruction Attack [6]
The work of Grubbs et al. [6] directly references the work

of Kellaris et al. [5] by enhancing the methods used. Grubbs
et al. created a generalized version of the attacks of Kellaris et
al. which is called the GeneralizedKKNO Attack. This attack
directly builds onto the attacks in the paper of Grubbs et al. [6]
generalizing them to be e-Approximate. e-Approximate means
that the algorithm always succeeds and that the attacker can
calculate how much error there is in the plaintexts uncovered
by the algorithm. The e-Approximate Database Reconstruction
Attack (a.k.a. the ApproxValue Attack) [6] continues this path
with a more optimized algorithm. Because the same methods
are used we only focus on the newest form: the e-Approximate
Database Reconstruction Attack [6].

V. THE APPROXVALUE ATTACK

A. Overview

The ApproxValue attack is created by Grubbs et al. [6] and
builds directly upon the Access Pattern Attack as described in
the work of Kellaris et al. [5]. The adversary has access to the
access pattern as shown in Figure 4 and tries to estiamate the

4

real values (ages for example, according to the scenario). The
main principle of these attacks is that they rely on statistics.
The amount of queries a specific record should appear in out
of all possible queries on the domain is used to estimate its
value. It is then assumed that the distribution of how queries
are generated is fixed and known; in this case queries are
assumed to be generated uniformly random. Hence, datapoints
at the beginning or the end of the domain are queried less
often than the datapoints in the middle of the domain. This
distribution is depicted in Figure 5. The attack measures the
amount of queries a specific value is in from all intercepted
queries. Compared with the theoretical distribution it provides
an estimate of its real value. The interesting aspect of the
ApproxValue attack is that it always succeeds, but precision
of the results is required to interpret the results. The results
will be more precise when more queries / access patterns are
intercepted. It is possible to calculate - using the amount of
used queries - the preciseness of the outcome, giving an error
margin in which the predicted values will reside. In practice, to
obtain meaningful results, an adversary potentially requires to
intercept less queries. The age of a person is a good example:
It might not be possible to predict the real age values, but for
example within a 10 year error margin. Depending on the goal
of the adversary, it can still be useful.

B. Algorithm

The algorithm of the ApproxValue attack is included in
algorithm 1 as described by Grubbs et al. [6]. To explain how
the attack works we will use both the algorithm as well as
some graphs. These graphs will contain ideal scenario’s where
real-world measurements will always have an error margin.

Algorithm 1: ADR Algorithm ApproxValue created
by Grubbs et al. [6]

Input : Set of queries Q.
Output: Function est-val approximating val.

1 for each record r do
2 c(r)← |{q ∈ Q : r ∈ q}|/|Q|
3 ṽ(r)← argmink |c(r)− p(k)|
4 end
5 rA ← argminr |ṽ(r)−N/4|
6 ṽA ← ṽ(rA)
7 for each record r do
8 c′(r)← |{q ∈ Q : rA, r ∈ q}|/|Q|
9 w̃L ← argmink∈[1,ṽA] |d(ṽA, k)− c′(r)|

10 w̃R ← argmink∈[ṽA,N] |d(ṽA, k)− c′(r)|
11 if c(r) < (p(w̃L) + p(w̃R))/2 then
12 est-val(r)← w̃L

13 else
14 est-val(r)← w̃R

15 end
16 end

First we introduce p(k) = Pr(Ak) =
2

N(N+1) (N + 1− k)
- the probability that a uniformly random range contains the
value k. A graph of this distribution is depicted in Figure 5.

Fig. 5: ApproxValue algorithm step 1. The blue line depicts the
distribution between domain values and the fraction of all possible
queries this domain value appears in.

In line 1− 3 of the algorithm two distributions are made to
be used later. Distributions are made for every record found
in the set of queries Q. On line 2 the amount of intercepted
queries a record is in, is divided by the total amount of
intercepted queries generating a fraction of the measurement.
On line 3 this is then mapped to distribution p(k) to obtain an
approximate value for this record. Note that the distribution is
symmetric, meaning that there are (in general) two points in
the distribution which match. Only the leftmost point will be
returned.

On line 5 the anchor record is chosen. The anchor record
is as close to the first quarter of the domain as possible. The
record corresponding to the estimated value closest to N/4 is
chosen. In line 6 the approximated value of this record is also
stored according to the distribution of p(k).

Lines 7 − 16 contain the main loop which iterates over
all records and returning the approximated value. One of the
main challenges here is that our earlier estimate only gives an
estimate up until reflection because the distribution of p(k) is
symmetric.

We now introduce d(vA, k) as follows:

d(vA, k)
def
=

2

N(N + 1)
·

 k(N + 1− vA) if k ≤ vA

vA(N + 1− k) if k > vA.

d(vA, k) shows the fraction of all queries both vA and k are
in, which will be used in the next section.

On line 8 d(vA, k) is used to combine every record (as k)
with the anchor point vA. The idea is to use the anchor point
and calculate a fraction of the records to get an estimate of
its value - like line 2 does. The difference is that we check
the amount of intercepted queries containing both the current
record as well as the anchor point, resulting in a different
distribution. A depiction of this distribution is in Figure 6

5

as the dotted blue line where the (ideal) anchor point is the
highest point.

Fig. 6: ApproxValue algorithm step 2. The blue dotted line depicts
for every domain value in what fraction of all possible queries both
this domain value and the value on a quarter of the domain appear
in. The grey dotted lines represent a quarter, half and three quarters
of the domain values respectively.

In Figure 7 two points are added. The blue star is the real
record we try to find the value of plotted on the blue line. The
blue dot is not the real data value but has the same value on the
blue line. This means that by just using the P (k) distribution,
these points are indistinguishable. Figure 8 shows a orange
dotted line which is on the record we investigate. An orange
star has been placed along that line on the yellow line. In this
case this point will be the value chosen by line 9.

Fig. 7: ApproxValue algorithm step 3. The blue star marks the
currently investigated domain value mapped on the blue line, the
blue dot maps the same fraction on the blue line as the blue star.

In lines 9 and 10 a left point and a right point are chosen -
depicted in Figure 9. The real record value has a orange dotted

Fig. 8: ApproxValue algorithm step 4. The orange dotted line and
the orange star are placed on the same domain value as the blue star.
The orange star is mapped on the blue dotted.

line through it and an orange star where it crosses the blue
dotted line. The other orange dotted line and point are on the
same value on the blue dotted line. There is also a blue dot
mapped on the blue line on the same value. These two values
on the blue dotted line are indistinguishable. The problem here
is that we need to choose between the left and the right value,
as only one is the correct one as shown in the figure.

Fig. 9: ApproxValue algorithm step 5. The new orange dotted line is
placed on the same fraction on the blue dotted line as the orange star.
The orange dot and the blue dot are mapped onto the blue dotted line
and the blue line along the orange dotted line.

On line 11 this distinction is made, which is depicted in
Figure 9 as the horizontal dashed purple line. It takes the
average of both the left and right point on the p(k) distribution
(blue line). If the measured value from the blue line (the blue
star) is lower it picks the left point, otherwise it picks the right
point. In lines 12 and 14 these values are returned.

6

C. Results as reported by Grubbs et al. [6]

The experimental results (Figure 10) are directly borrowed
from the paper of Grubbs et al. [6] and are used to understand
the attack and to evaluate our implementation of it. We focus
on the topmost colored lines. The horizontal axis shows the
amount of queries captured by the attack and the different
lines mean different domain sizes. They use 1,000 datapoints
in the database. On the vertical axis they used a specific metric
to evaluate how well the attack preformed - the maximum
symmetric error as a fraction of the domain size.

The maximum symmetric error is defined by taking the
maximum of the following formula:

|min{est-val(r), N + 1− est-val(r)} − symval(r)|

Where est-val(r) is the result of the ApproxValue algorithm
and symval(r) is defined as:

symval(r)
def
= min{val(r), N + 1− val(r)}

The maximum symmetric error is a measurement to com-
pensate for the fact that an estimated value can be both on the
left half of the values or on the right half. The measurement
negates this difference. The maximum part means that we are
only concerned in the maximum error because an attacker does
not know how precise the results are up until the maximum
possible error. In the paper it is explained how this upper-
bound can be calculated as a fraction of the domain size using
the number of intercepted queries. It is also shown in Figure 10
as the grey dotted line. They show that their experimental
results indeed stay below this line.

Fig. 10: Experimental results of the ApproxValue attack as presented
in the paper by Grubbs et al. [6]

D. Experimental setup

In our experimental setup we used the same variables and
assumptions as the researchers did with the ApproxValue
attack. We created an implementation as there was no im-
plementation of the attack available. We verified the results
with the results from the paper (Figure 10) by creating the
same graph. We expect that the results are the same if the
implementation of the attack is correct. The result of this
verification is shown in Figure 11. One key difference is that
we did not measure with 500 different databases, but only with
5. This graph gives us confidence the results of the paper are
indeed correct and we implemented the attack well.

Fig. 11: Graph showing the results of the implemented ApproxValue
attack without any defense mechanisms. It depicts the amount of
queries on the horizontal axis and the masimum symmetric error as
a fraction of the domain size on the vertical axis. The colors repre-
sent different domain sizes; blue=100, orange=1,000, green=10,000,
purple=100,000

E. Intuition

Because the ApproxValue attack relies heavily on the two
distributions p(k) and d(vA, k) and do not take wrong mea-
surements into account our hypothesis is that when adding
false positives to the queries the results of the attack will
drastically drop. When looking at Figure 11 the line should
ideally stay high instead of going down to indicate that the
attack results are significantly worse.

VI. METHODOLOGY

To test the impact of false positives on the success of attacks
we create an experimental setup. Within this setup we create
an abstract representation of the attack, defense and protocol to
conduct measurements to the success of the attack in relation
to the amount of false positives added.

A. Experimental setup

With the experiment we want to see how well the proposed
defense - adding false positives to query results - works on

7

the previously discussed topics; security, performance and
functionality. A setup is implemented in code which generates
random datasets, random queries on these datasets and exe-
cutes the ApproxValue attack on them. It collects the results
in terms of Maximum symmetric error as a fraction of N. For
simplicity, we only use numeric values as datapoints. We can
now set parameters for the setup and run the experiment. The
result will be captured in a graph.

The setup contains different parameters which are listed
below.

Domain A fixed domain is used to when a dataset is created.
The domain is also known to the adversary. The datapoints
within the dataset will all be within the domain.

Datapoints The amount of datapoints which will make up
the dataset. It could be that a domain value has multiple
datapoints or that a domain value has no datapoint.

Query amount The amount of queries generated (and
thus captured by the adversary). The queries are generated
uniformly at random within the set domain.

Run amount The amount of times a measurement will be
repeated. This is used to smooth out the results as there is
randomness involved in generating datasets and queries. The
results of the different runs will be averaged.

Adversary The adversary which will try to identify the real
datavalues - either the RandomAdversary or the ApproxVal-
ueAdversary. The RandomAdversary is a naive implementa-
tion which returns a random value from the domain for every
result, used to create a baseline for the experiments. The Ap-
proxValueAdversary is the implementation of the ApproxValue
algorithm as explained before.

False positives The fixed amount of false positives added
to the query results sent to the adversary. The false positives
could also be zero. They are picked at random from all
datapoints which are not in the given query. When there are
no available datapoints left, it could theoretically be that less
false positives are added.

In order to provide insight in how well the false positive
defense works and what the trade-offs in terms of secu-
rity, functionality and performance are we generate different
graphs.

The security is measured in terms of how well the attacks
succeed in recovering the plaintexts. This is achieved by
implementing the attacks and measuring the results when
facing randomly generated datasets and queries. Two baselines
are generated: one with the ApproxValue adversary and no
false positives and one with the RandomAdversary and no
false positives. These baselines give the boundaries for the
experimental results which will fall somewhere between those
- they enable us to discuss the results and put them into
perspective.

The performance is measured in terms of communication
overhead. The absolute value will match the amount of false
positives injected. The relative value will match the following
formula:

query result size + false positives
query result size

It is possible however to have a denominator of zero,
meaning that it is not possible to calculate the formula and
have an infinitely large overhead. As we do not want to omit
these results, we change a zero denominator to the value 1.

The functionality is not measured because the precision of
the query results does not change when the defense is applied.
False positives are added by the client which can be thrown
away again automatically when received. This means that the
returned results always exactly match the query.

The results will be in the form of two graph types:

Graph type A Depicts on the horizontal axis the amount
of added false positives and on the vertical axis the maximum
symmetric error as a fraction of the domain size. When the
amount of added false positives is zero the attack shows
results as described in the attack paper.

Graph type B Depicts on the horizontal axis the amount of
queries the attack used and on the vertical axis the maximum
symmetric error. When the amount of added false positives
is zero the attack shows results as described in the attack
paper. In general, the symmetric error should lower when the
amount of queries increase. When false positives are added
we expect the line to go down less. The higher the graph, the
worse the attack preforms.

We are also interested in two specific variables: The domain
size and the amount of generated queries. We plot these as
different lines on the same graph - graph type A. This should
give an idea if these variables matter for the performance of
the attack, and if it does, what this impact is.

VII. RESULTS

A. Random baseline

A random baseline is generated as described in the previous
section, which is used to show what a random adversary looks
like to compare it to the results of the ApproxValue adversary
later. The used settings are depicted in Table 1. The graph
with the results is depicted in Figure 12.

Domain 1 - 100

Datapoints 1,000

Query amount 500

Run amount 5

Adversary RandomAdversary

False positives Varied between 0 and 200
in increments of 10.

Tab. 1: Properties of the random baseline experiment.

8

Fig. 12: Graph type A for the random adversary, depicting the amount
of false positives added on the horizontal axis and the maximum
symmetric error as a fraction of the domain size on the vertical axis.

B. Graph type A with varying domain sizes

The ApproxValue attack in the form of graph type A with
varying domain sizes. On the horizontal axis are the absolute
number of added false positives. On the vertical axis is the
maximum symmetric error. The lower the graph, the more
successful the attack is. The graph is generated with the
settings depicted in Table 2. The results can be found in
Figure 13.

Domain 1 - [100, 1,000, 10,000, 100,000]

Datapoints 1,000

Query amount 500

Run amount 5

Adversary ADRAdversary

False positives Varied between 0 and 200
in increments of 10.

Tab. 2: Properties of the ApproxValue graph type A with varying
domain sizes experiment.

C. Graph type A with varying datapoints

The ApproxValue attack in the form of graph type A with
varying datapoints. On the horizontal axis are the absolute
number of added false positives. On the vertical axis is the
maximum symmetric error. The lower the graph, the more
successful the attack is. The graph is generated with the
settings depicted in Table 3. The results can be found in
Figure 14.

D. Graph type B

The ApproxValue attack in the form of graph type B. On the
horizontal axis are the amount of intercepted queries / access
patterns. On the vertical axis is the maximum symmetric error.
The lower the graph, the more successful the attack is. The

Fig. 13: Graph type A for the e-Approximate Database Reconstruc-
tion attack, depicting the amount of false positives added on the
horizontal axis and the maximum symmetric error as a fraction of the
domain size on the vertical axis. The colors represent different upper
bounds for the domain; blue=100, orange=1,000, green=10,000,
purple=100,000.

Domain 1 - 100

Datapoints [10, 100, 1,000, 10,000]

Query amount 500

Run amount 5

Adversary ADRAdversary

False positives Varied between 0 and 200
in increments of 10.

Tab. 3: Properties of the ApproxValue graph type A with varying
amounts of datapoints experiment.

Fig. 14: Graph type A for the e-Approximate Database Reconstruc-
tion attack, depicting the amount of false positives added on the
horizontal axis and the maximum symmetric error as a fraction
of the domain size on the vertical axis. The colors represent dif-
ferent amounts of datapoints; blue=10, orange=100, green=1,000,
purple=10,000.

9

attack also tends to be more successful when it intercepts more
queries. The graph is generated with the settings depicted in
Table 4. The results can be found in Figure 15.

Domain 1 - 100

Datapoints 1,000

Query amount Varied between 1 and 501
in increments of 10.

Run amount 5

Adversary ADRAdversary

False positives [0, 50, 100, 150, 200, 250, 300]

Tab. 4: Properties of the ApproxValue graph type B.

Fig. 15: Graph type B for the e-Approximate Database Reconstruction
attack, depicting the amount of queries on the horizontal axis and
the maximum symmetric error as a fraction of the domain size on
the vertical axis. The colors represent different amounts of injected
false positives; blue=0, orange=50, green=100, red=150, purple=200,
brown=250, grey=300.

VIII. DISCUSSION

The results give different perspectives on the problem and
will be discussed per graph. Afterwards, the results as a whole
will be discussed as well as what they mean in practice.

The random baseline is generated in the form of graph type
A (Figure 12). It shows that the false positives do not have
a clear impact on the results; which is as expected. We can
see that between a maximum symmetric error of 0.4 and 0.5
true randomness is approached, giving a clear idea when the
attack does not work. If the results of an attack are the same
as the random baseline, they provide no meaningful insight to
the adversary. We also know from Figure 10 and Figure 11
that with the query amount parameter set to 500 the expected
results from the attack should be around 0.05, meaning that
these are the maximum values we expect in the other results.
There is a gray area however; an attack does not either work
or does not work. It can depend on the context of a dataset or
the attack goals what is considered ’secure’, but it definitely

includes the random baseline. Lower values could also be
’secure’ depending on the context. We will assume everything
with a score of 0.4 and above is relatively secure.

Graph type A has been generated in two forms (one with
varying domain sizes and one with varying amounts of dat-
apoints in the database). The one with varying domain sizes
(Figure 13) gives clear overlapping lines suggesting heavily
that this parameter does not influence the outcome of the
experiment. Furthermore it is evident that the false positives
decrease the success of the attack. The scale however is equally
important. The attacks reach the maximum symmetric error
of 0.4 after approximately 130 false positives. Relative to the
amount of datapoints in the database (1,000) this is intuitively
quite a lot as it is added to all query results.

The other variant of graph type A - the one with varying
amounts of datapoints (Figure 14) - pants a different image.
The amount of datapoints influences the success of the attack
clearly; if the amount of datapoints get higher, the success of
the attack increases. We want to see how much false positives
are needed for the attack to fail. We pick the first point for
every graph where it passes the maximum symmetric error of
0.4. Please note that the step size of the false positives is 10.
This gives us the results as depicted in Table 5. Results are a
fraction of the average query result size of the experiment.

Amount of datapoints Amount of false positives needed

10 3.30

100 2.52

1,000 2.27

10,000 N/A

Tab. 5: Amount of false positives needed for the maximum symmetric
error to surpass 0.4. The data is taken from the graph in Figure 14.
Please note that this graph has a step size of 10. It is calculated using
the following formula:

average query result size + false positives added
average query result size

The impact of these numbers highly depends on the context
of the application. Intuitively, 3.30 is quite high as it generates
more than three times the amount of traffic. High amounts of
overhead could be a problem for currently deployed databases.
On the other hand, if the overhead is less of an issue than
the security risks and the functionality increase, it is a good
result. Data shows that the overhead tends to be lower when
the amount of datapoints increase. Unfortunately, our imple-
mentation was not able to generate much larger cases as it
would take too long to render. If the amount would go down
further it would be good as this would lower the overhead in
larger datasets.

Graph type B (Figure 15) shows similar results as graph
type A. We can directly compare it to the results of the
paper introducing ApproxValue [6] as shown in Figure 10 and
Figure 11. As the blue line corresponds to no false positives,
which is the same as the results from the paper. As expected,

10

the graph shows that the maximum symmetric error goes less
down when the amount of false positives is increased.

It is evident that the method of adding false positives works
but the real question is how well it works. It all comes down
to the triangle between security, functionality and performance
(Figure 1). Again, we will not discuss functionally here as
this will not change with or without the proposed defense.
However, both the security and the performance do change.
The generated graphs show clearly what their trade-off is as
they directly show this correlation. It depends on the situation
if the defense is feasible and if yes, how much false positives
should be added. There is also much to improve about the
defense, which will be elaborated more on in section X.

IX. RELATED WORK

General solutions to defending access pattern leakage exist.
The main method to achieve this is Oblivious RAM - ORAM
[7] for short. Although it is difficult to directly compare
their results to our scenario, these methods can be applied
to it. ORAM creates quite some overhead, limiting the overall
performance. It starts with returning all documents to a search
query - infeasible for our scenario. But there are works which
greatly improve upon this. Goldreich et al. [7] mention a
”poly-logarithmic slowdown in the running time”. Garg et
al. [8] investigates this problem as well ending up with a
communication cost of O(log(n)loglog(n)) where n is the
number of documents, specifically applied to exact keyword
match searchable encryption. And Stefanov et al. [9] mention
a O(logN) overhead in specific cases. Our approach however
does not require a different implementation at the server side
or the use of multiple rounds.

Chen et al. [10] applied ORAM techniques to searchable en-
cryption schemes, although with exact keyword match instead
of range queries. They used differential privacy to back their
claims. In their work, two interesting differences occur. Their
security guarantees are higher than ours (using differential
privacy) but their measured communication overhead is as
well: they mention ”2x” communication overhead up until ”5x
6x” communication overhead [10] depending on the attack.
Besides communication overhead, their documents also need
to be saved redundantly, creating a potentially large storage
overhead as well. However, comparisons with our approach
can be difficult, as the setting is slightly different.

Different methods of range query schemes exist. Range
query schemes could also be constructed using Order Pre-
serving Encryption [3] or Order Revealing Encryption [1]
[2]. However, OPE and ORE suffer from other kinds of
leakages themselves. They can reveal e.g. the ordering of the
plaintexts, which can (in)directly lead an adversary to retrieve
the plaintexts as well.

X. FUTURE WORK

The method as proposed in this paper could be improved
in various ways which we elaborate on in this section.

We used only a fixed amount of false positives. Assessing
the impact of varying the amount of false positives added per

query could be vital to lowering the overhead. In our LIS
protocol it is possible to know the amount of results which a
query returns in advance, so the amount of false positives could
be changed to a fixed overhead percentage per query. Different
methods of selecting the false positives could be explored.
We selected them at random. When selecting them to create
a specific distribution could potentially lead to better results.
Or select them further away from the real range query.

We did not go into detail about functionality as shown in
the triangle in Figure 1. When false negatives are introduced
this could drastically change, causing results which the user
expects to not be returned, lowering the functionality. How-
ever, it could mean that false negatives have an influence on
the attack success as well. Investigating the impact of these
false negatives can prove interesting to specific use cases. For
example it can lead to enhanced security but it can only be
used in a context where a less than perfect functionality is
acceptable.

Our test setup was limited to a single attack and attack
goal. More attack goals can be investigated, like e.g. Order
Reconstruction - which could (sometimes trivially) lead to
Plaintext Reconstruction.

LIS could also be improved and extended. It would be
interesting to see how well LIS would work in real-world
scenarios. If this is the case, LIS could improve security quite
a lot and bring searchable encryption closer to being used in
practice.

Searchable encryption in general would benefit from more
research after the trade-offs between security, functionality and
performance. This trade-off is vital and could potentially take
the field of research from the drawing board to real-world
applications.

XI. CONCLUSION

Adding false positives to query results does significantly
decrease attack success - meaning the amount of information
an adversary can obtain is close to random (between 0.4 and
0.5 maximum symmetric error). However, it depends highly on
the context of the application to assess how well this works.
Adding false positives could even require a communication
overhead of 3.30 but it does provide security against these
attacks. It is also possible to scale down this security in order
to decrease the performance overhead. It all comes down to
the trade-offs between security, functionality and performance
(Figure 1).

There are quite some extensions left to be investigated for
the defense, which makes it promising. This means that 3.30 is
an upper bound. It also depends highly on our created protocol
(LIS) which only leaks the access pattern. The main difference
is that we use a local index which increases security, while
also increasing performance overhead. We also do not require
a change in the protocols of the service provider.

Our approach is novel and the results mean it is feasible
in practice, bringing secure range query schemes closer to be
used in practice. Future research can strengthen this approach
leading to even better results.

11

REFERENCES

[1] K. Lewi and D. J. Wu, “Order-Revealing Encryption: New Construc-
tions, Applications, and Lower Bounds,” Tech. Rep., 2016.

[2] D. Bogatov, G. Kollios, and L. Reyzin, “A comparative evaluation of
orderrevealing encryption schemes and secure rangequery protocols,” in
Proceedings of the VLDB Endowment, vol. 12, no. 8. PVLDB, 2018,
pp. 933–947. [Online]. Available: https://doi.org/10.14778/3324301.
3324309

[3] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6841
LNCS, 2011, pp. 578–595.

[4] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” p. 51, 2014. [Online]. Available:
http://dx.doi.org/10.1145/2636328

[5] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks on
secure outsourced databases,” in Proceedings of the ACM Conference
on Computer and Communications Security, vol. 24-28-Octo, 2016,
pp. 1329–1340. [Online]. Available: http://dx.doi.org/10.1145/2976749.
2978386

[6] P. Grubbs, M. S. Lacharite, B. Minaud, and K. G. Paterson, “Learning to
reconstruct: Statistical learning theory and encrypted database attacks,”
in Proceedings - IEEE Symposium on Security and Privacy, vol. 2019-
May, 2019, pp. 1067–1083.

[7] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996.

[8] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient obliv-
ious RAM in two rounds with applications to searchable encryption,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9816,
2016, pp. 563–592.

[9] E. Stefanov, M. van Dijk, E. Shi, T.-h. Hubert Chan, C. Fletcher,
L. Ren, X. Yu, S. Devadas, and U. Berkeley, “Path ORAM: An
Extremely Simple Oblivious RAM Protocol,” Tech. Rep. [Online].
Available: http://arxiv.org/abs/1202.5150v1

[10] G. Chen, T. H. Lai, M. K. Reiter, and Y. Zhang, “Differentially Private
Access Patterns for Searchable Symmetric Encryption,” Proceedings -
IEEE INFOCOM, vol. 2018-April, pp. 810–818, 2018.

[11] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Inference attack against
encrypted range queries on outsourced databases,” in CODASPY 2014
- Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy. Association for Computing Machinery, 2014,
pp. 235–246.

[12] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in Proceedings of the ACM
Conference on Computer and Communications Security, vol. 2015-
Octob. Association for Computing Machinery, oct 2015, pp. 644–655.

[13] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-Abuse Attacks against Order-Revealing Encryption,” Tech.
Rep.

[14] M. S. Lacharite, B. Minaud, and K. G. Paterson, “Improved Recon-
struction Attacks on Encrypted Data Using Range Query Leakage,” in
Proceedings - IEEE Symposium on Security and Privacy, vol. 2018-
May. Institute of Electrical and Electronics Engineers Inc., jul 2018,
pp. 297–314.

[15] P. Grubbs, M. S. Lacharité, B. Minaud, and K. G. Paterson, “Pump up
the volume: Practical database reconstruction from volume leakage on
range queries,” in Proceedings of the ACM Conference on Computer
and Communications Security. Association for Computing Machinery,
oct 2018, pp. 315–331.

[16] E. A. Markatou and R. Tamassia, “Full Database Reconstruction with
Access and Search Pattern Leakage,” Tech. Rep.

[17] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “The State
of the Uniform: Attacks on Encrypted Databases Beyond the Uniform
Query Distribution,” Tech. Rep.

APPENDIX

ATTACKS TABLE

A compact table with all the attacks is on the next page. It
gives a quick overview of the attacks on searchable encrypted
range queries. The table headers show properties an attack
could require in order to be successful. Below is an explanation
of the symbols.

Attack The name of the attack and a reference to the source.
Year The year the paper has been published.
Goal The goal of the attack. It could be one of the

following: FPR = Full Plaintext Recovery
PPR = Partitioning of Plaintext Recovery
APR = Approximate Plaintext Recovery
AOR = Approximate Order Recovery
VCR = Value Counts Recovery
NRPR = New Record Plaintext Recovery
QPR = Query Plaintext Recovery

Access pattern If the attack uses access pattern leakage to
succeed.

Search pattern If the attack uses search pattern leakage to
succeed.

ORE/OPE If the attack uses leakage from Order Revealing
Encryption of Order Preserving Encryption to succeed.

Communication volume If the attack uses communication
volume leakage to succeed.

Query knowledge If the attack requires knowledge about
queries to succeed. This could be query plaintexts.

Plaintext knowledge If the attack requires knowledge about
plaintext data values to succeed.

Query distribution What assumptions the attack makes on
the distribution of queries.

Plaintext distribution If the attack requires to know the
plaintext distribution in order to succeed.

Dense data If the data requires to be dense for the attack
to succeed.

The following markings are used.
3= Required
l= Preferably
7= Not required
* = Preferred, but not required

12

https://doi.org/10.14778/3324301.3324309
https://doi.org/10.14778/3324301.3324309
http://dx.doi.org/10.1145/2636328
http://dx.doi.org/10.1145/2976749.2978386
http://dx.doi.org/10.1145/2976749.2978386
http://arxiv.org/abs/1202.5150v1

A
tt

ac
k

Ye
ar

G
oa

l
A

cc
es

s
pa

tt
er

n
Se

ar
ch

pa
tt

er
n

O
R

E
/O

PE
C

om
m

un
i-

ca
tio

n
vo

lu
m

e

Q
ue

ry
kn

ow
l-

ed
ge

Pl
ai

nt
ex

t
kn

ow
l-

ed
ge

Q
ue

ry
di

st
ri

bu
tio

n

Pl
ai

nt
ex

t
di

st
ri

-
bu

tio
n

D
en

se
da

ta

In
fe

re
nc

e
A

tta
ck

[1
1]

20
14

FP
R

3
7

7
7

3
7

U
ni

fo
rm

*
3

7

So
rt

in
g

A
tta

ck
[1

2]
20

15
FP

R
7

7
3

7
7

7
N

/A
7

3

C
um

ul
at

iv
e

A
tta

ck
[1

2]
20

15
FP

R
7

7
3

7
7

7
N

/A
3

7

A
cc

es
s

Pa
tte

rn
A

tta
ck

[5
]

20
16

FP
R

3
7

7
7

7
7

U
ni

fo
rm

7
7

C
om

m
un

ic
at

io
n

Vo
lu

m
e

A
tta

ck
[5

]
20

16
FP

R
7

7
7

3
7

7
U

ni
fo

rm
7

7

N
on

-c
ro

ss
in

g
A

tta
ck

[1
3]

20
17

FP
R

3
7

3
7

7
7

N
/A

3
7

B
C

L
O

A
tta

ck
[1

3]
20

17
FP

R
3

7
3

7
7

7
N

/A
7

7

C
LW

W
A

tta
ck

[1
3]

20
17

FP
R

3
7

3
7

7
7

N
/A

7
7

Pa
rt

iti
on

in
g

A
tta

ck
[1

3]
20

17
PP

R
7

7
3

3
7

3
N

/A
3

7

B
in

om
ia

l
A

tta
ck

[1
3]

20
17

FP
R

7
7

3
7

7
7

N
/A

3
7

Im
pr

ov
ed

R
ec

on
st

ru
ct

io
n

A
tta

ck
[1

4]
20

18
FP

R
3

7
l

7
7

7
U

ni
fo

rm
7

3

Im
pr

ov
ed

A
pp

ro
xi

m
at

e
R

ec
on

st
ru

ct
io

n
A

tta
ck

[1
4]

20
18

A
PR

3
7

7
7

7
7

U
ni

fo
rm

7
3

Im
pr

ov
ed

A
ux

ili
ar

y
D

is
tr

ib
ut

io
n

A
tta

ck
[1

4]
20

18
FP

R
3

7
3

7
7

7
U

ni
fo

rm
3

7

C
om

m
un

ic
at

io
n

Vo
lu

m
e

Im
pr

ov
ed

A
tta

ck
[1

5]
20

18
V

C
R

7
7

7
3

7
7

U
ni

fo
rm

*
7

l

U
pd

at
e

R
ec

ov
er

y
A

tta
ck

[1
5]

20
18

N
R

PR
7

7
7

3
7

7
U

ni
fo

rm
*

7
l

C
D

F
M

at
ch

in
g

A
tta

ck
[1

5]
20

18
Q

PR
7

7
7

3
7

7
U

ni
fo

rm
*

3
l

A
cc

es
s

Pa
tte

rn
an

d
Se

ar
ch

Pa
tte

rn
A

tta
ck

[1
6]

20
19

FP
R

3
3

7
7

7
7

A
gn

os
tic

7
7

e-
A

pp
ro

xi
m

at
e

D
at

ab
as

e
R

ec
on

-
st

ru
ct

io
n

A
tta

ck
[6

]
20

19
A

PR
3

7
7

7
7

7
U

ni
fo

rm
7

7

e-
A

pp
ro

xi
m

at
e

O
rd

er
R

ec
on

st
ru

c-
tio

n
A

tta
ck

[6
]

20
19

A
O

R
3

7
7

7
7

7
U

ni
fo

rm
7

7

A
gn

os
tic

R
ec

on
st

ru
ct

io
n

A
tta

ck
[1

7]
20

19
FP

R
7

3
7

7
7

7
A

gn
os

tic
7

7

13

	Introduction
	Definitions
	Attack model
	Attacks on SE range query schemes
	The ApproxValue Attack
	Overview
	Algorithm
	Results as reported by Grubbs et al. Grubbs2019
	Experimental setup
	Intuition

	Methodology
	Experimental setup

	Results
	Random baseline
	Graph type A with varying domain sizes
	Graph type A with varying datapoints
	Graph type B

	Discussion
	Related work
	Future work
	Conclusion
	References
	Appendix

