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ABSTRACT 

 
Air pollution generates different problems on ecosystems and human health. In order to improve the state of air quality, 

the European Union (EU) has established certain limits for all EU countries which must be accomplished.  These limit 

target values have been established according to each individual pollutant. Particulate matter and ozone are Europe’s 

most problematic pollutants in terms of harm to human health (EEA., 2013)). 

 

Particulate matter is a type of pollutant that originates from primary and secondary particles generated in anthropogenic 

processes and natural emissions. Particulate matter is classified according to the size of the particle. Particulate matter 

equal or less than 1 micrometre is designated as PM1, PM2.5 corresponds to the fine fraction of 2.5 micrometre or less 

in diameter and PM10 has the size of 10 micrometres or less. 

 

In order to evaluate the state of air pollution, accurate maps of interpolated data are needed. Different techniques have 

been used to obtain more accurate predictions. In this thesis, two methods, compositional kriging and cokriging are 

used to generate predictions for the spatial distribution of the pollutants. European data, taken from a freely available 

database is used as base data. Several combinations of covariates are used, until the best choice is found. The full 

comparison between cokriging and compositional kriging was not possible, as compositional kriging only provides 

data for the ratio between pollutants. 
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1. INTRODUCTION 

 Motivation and Problem statement 

 
The air quality in any place on the Earth depends upon many factors, including topography, climatic conditions, social 

conditions, land use and the dispersion of the pollutants according to their physical and chemical properties.  The 

variations of air quality levels in space can be determined as a function of these factors.   

 

Air pollutants such as particulate matter (PM), ozone (O3), nitrogen and organic compounds still represent a significant 

threat for human health and the environment in Europe, even after trying to improve the state of air pollution (EEA., 

2013). Health effects of air pollution are dominated by particulate matter both PM10 and PM2.5, which is the inhalable 

size fraction of PM (Schaap et al. (2001)).  Schaap et al., (2001) also identified seven source groups for these two types 

of particulate matter: 1) nitrate-rich secondary aerosol, 2) sulphate-rich secondary aerosol, 3) traffic and re-suspended 

road dust, 4) metal from industrial activity/ incineration, 5) sea salt, 6) mineral dust, and 7) particles from residual oil 

combustion.  

 

Air pollution can be measured from different techniques, viz. a) ground data, which are in situ measurements taken 

from stations, and b) remote sensing products. By using a combination of ground data and remotely sensed data and 

considering the composition of the pollutants, it is possible to predict levels of pollution. As long as the data is reliable 

(and corrected), it is likely that gaps and outliers, such as maximum and minimum values, are identified in the process 

of prediction. 

 

A statistical method is required if predictions are to be made. The pollutants on air at any moment in time behave as a 

spatial phenomenon for which it is impossible to obtain data at every specific location. In order to use the data and 

identify the values where no measure has been taken it is helpful to use geostatistics. Geostatistics can help predict data 

taking into account the spatial correlation. Using geostatistical methods will enable us to make estimations or 

predictions without bias and with minimum error, and allows us to deal with varying properties at all spatial scales 

(Webster & Oliver (2007)). 

 

Geostatistical prediction depends chiefly upon statistical linear models.  Predictions are made by means of different 

techniques. The selection of an optimal model, with the lowest error can drastically improve the quality of the 

predictions. In this thesis, we focus in kriging. Kriging is regarded as the best linear unbiased estimator (BLUE) because 

it minimizes the prediction error variance. Different types of kriging are distinguished depending on the chosen model 

for the trend of the random function (Moral, Álvarez, & Canito, 2006).  Cokriging and compositional kriging are two 

extensively validated methods for the prediction of air pollutants.  Cokriging allows us to jointly estimate values of a 

coregionalization with spatially correlated components (Pawlowsky, 1989). It thus depends not only on the distance of 

the data, but also on the direction and orientation of the neighbouring data. On the other hand, compositional kriging 

considers all components simultaneously by minimizing the sum of their prediction error variances and by taking the 

unbiasedness, nonnegativity, and constant sum constrains into account (Walvoort & Gruijter, (2001)).  

 

In this work, current values of particulate matter using multiple pollutants were predicted by combining the in situ data 

of Europe with data obtained from a Chemical Transport Model CTM to derive predictions on a map. These 

predictions were made by compositional kriging and cokriging, considering the two types of particulate matter, PM2.5 

and PM10, as the components. 
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 Research objectives 

1.2.1. General Objective 

Develop a geostatistical model for multiple pollutants and at a continental scale using compositional kriging and 

cokriging. 

 

1.2.2. Specific Objectives 

 
1. Perform an exploratory analysis over a selection of European ground and remotely sensed data for two types 

of particulate matter. 

2. Predict values and uncertainties of particulate matter PM2.5 using multivariable prediction. 

3. Provide a general assessment of the data quality in terms of accuracy of the results obtained in the prediction 

of the composition. 

 

1.2.3. Research Questions 

 
Objective 1: Exploratory Analysis 
 

1. Which covariates generate a model with lowest error? 
2. What is the spatial distribution of the pollutants using these covariates? 
3. What is the spatial variation of the measurements and how can it be interpreted? 

 

Objective 2: Prediction 

4. What are the results of the predictions with respect to the composition of PM2.5? 
5. What prediction method produces the lowest error: compositonal kriging or cokriging? 

 

Objective 3: Data quality 
6. What is the maximum spatial extent in which can be obtained accurate prediction results? 
7. Which method is suitable for measuring the accuracy of the output? 
8. What is the accuracy of the output? 

 

 Innovation 

 
The novelty of this research resides in its aim to use two categories of particulate matter (PM10 and PM2.5) as 

components and also the use of multiple covariates to generate predictions. The prediction methods used are 

compositional kriging and cokriging, and their accuracy will be compared. 

 

The second novel aspect of this work is the large spatial extent of the predictions. Some related work has already 

addressed the prediction of particulate matter concentrations in smaller areas with similar characteristics corresponding 

to single countries. The present research combines different, and larger, spatial extent areas and it is shown that reliable 

predictions can still be produced. 
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2. RELATED WORK 

Denby et al. (2005) made a review on different techniques used for interpolation of air pollutants at a regional scale in 

Europe. Further research on air pollutants, specifically on particular matter ratios, was made by Leeuw & Horálek, 

(2009) who used PM2.5/PM10 ratios to prepare PM2.5 concentration maps of Europe. On their research it is mentioned 

that on an annual basis the correlation between the co-located PM2.5 and PM10 daily averages should be at least 0.7. 

They found average ratios of 0.62 at rural stations and 0.65 urban stations, while the average ratio at traffic locations 

is 0.58 for the period 2004-2006.  

 

Putaud et al. (2010) performed a synthesis of the data on particulate matter physical and chemical characteristics for 10 

years. They state as one of their findings that there is no single ratio between PM2.5 and PM10 mass concentrations 

although fairly constant ratios that range from 0.5 to 0.9 are observed at most individual sites.  

 

In the case of cokriging, Ver Hoef & Cressie, (1993), presented the best linear unbiased spatial prediction for 

multivariable data based on covariances or cross-variograms. Studies for air pollution prediction using co-kriging 

already exist in the literature. Singh, et al. (2011) implemented a cokriging technique using the results of a deterministic 

Chemical Transport Model (CTM) simulation as secondary variable. Bytnerowicz et al. (2002) in their research for 

ozone concentrations evaluated various interpolation methods, including both simple and geostatistical methods, for 

the interpolation of ozone measurements in the Carpathian Mountains of Eastern Europe. Results from that study 

indicate a number of appropriate interpolation methods. As a conclusion, they recommended the spherical model of 

cokriging with altitude as the secondary variable  

 

In the case of compositional predictions, Pawlowsky (1989), analysed the use of cokriging to estimate regionalized 

compositions, making use of the additive-log-ratio transformation. Later, Walvoort & de Gruijter (2001), compared 

the performance of compositional kriging with that of the additive logratio-transform. In their work they describe a 

regionalized composition as a vector random function  𝑧(𝑥𝑖) located at a point 𝑥𝑖   in a spatial domain  𝐷  with 

𝑝 components 𝑧𝑘(𝑥𝑖) 

 

𝑧(𝑥𝑖) = [𝑧1(𝑥𝑖), 𝑧2(𝑥𝑖), … , 𝑧𝑝(𝑥𝑖) ]𝑇 

 

That are nonnegative and sum to a constant 𝑐 which usually equals 100(%) or 1. 

 

Walvoort and de Guitjer suggest that prediction methods such as kriging and co-kriging do not satisfy the requirements 

for an appropriate spatial interpolation method for a regionalized composition and its constraints. Therefore 

compositional kriging is proposed, which is an unbiased predictor that minimizes prediction error variance. 

 

Odeh, Todd, & Triantafilis, (2003) applied the additive and modified log-ratio transformation to the particulate matter 

data. The performance of the transformed data using ordinary kriging was compared with the prediction of the 

untransformed data using ordinary kriging, compositional kriging and cokriging. However, further research is required 

to understand the composition, spatial distribution and sources of particulate matter that could generate more accurate 

predictions. This may be achieved by using compositional kriging and assessing its results. 

 

For completeness, we also note the book by Van den Boogaart & Tolosana-Delgado, (2013), which details different 

techniques to analyse compositional data on the R environment.  
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3. STUDY AREA AND DATA DESCRIPTION 

 Study Area 

 
The area of study was determined by the countries that contributed with observations to the Airbase database (the 

database is described on the following section). The countries used for the prediction were selected according to the 

coherence of the measurements. The outliers, blank fields and unknown data were discarded. The countries which do 

not share land borders were also discarded, as it was considered that they could affect the final accuracy because the 

proximity within the stations is less, reducing the quality of the interpolation.  

 

The countries selected for the analysis were the following: 

Group A 

North Western Europe: Belgium, Luxembourg, Netherlands and France (Latitude above or equal to 45 

degrees). 

Southern Europe:  Italy, Spain, Portugal and France (Latitude below 45 degrees). 

Central Eastern Europe: Austria, Switzerland, Czech Republic, Poland and Germany. 

 

A second analysis was made with the following regions: 

Group B 

BENELUX: region formed by the countries Belgium, Netherlands and Luxemburg 

 GERPOL: Germany and Poland 

 SLOCZ: Czech Republic and Slovakia 

  

The selection of the regions was defined according to the analysis of PM2.5/PM10 ratios and literature review of the 

work of Leeuw & Horálek, (2009), Hamm, et al. (2014) and Putaud et al. (2010). 

 Data Description 

 
The data used for the prediction consists on PM10 and PM2.5 observations taken from stations across Europe of the 

database Airbase and measurements of the Chemical Transport Model (CTM) from LOTOS-EUROS.  

The original data was provided in a Network Common Data Form (NetCDF) file extension and contains 

measurements for 3 years: 2007, 2008 and 2009. It is arranged in 4299 rows by 1096 columns. The columns correspond 

to the day number during the three years. The measurements of every day contain 15 variables with information of the 

stations and time in which the measurements were taken. The measurements selected correspond to the 5th of April 

of 2009. The 5th of April showed high air pollution levels and it was part of an air pollution event that occurred from 

the 2nd to the 7th of April, 2009. According to Hamm et al. (2014) “PM10 concentrations in April were higher and 

fluctuated in both space and time (overall maximum: 185 μg m-3: maximum daily median: 42 μg m-3)”. 

 

After preliminary analysis of the data, the countries described in section 3.1 were retrieved. 

3.2.1. Airbase Observations 

 
AirBase (http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8#tab-european-

data) is the air quality information system maintained by the European Environmental Agency (EEA) through the 

European topic centre on Air pollution and Climate Change mitigation. It contains air quality data delivered annually 

from an exchange of information measuring ambient air pollution within the Member States. (European 

Environmental Agency, 2014).  
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3.2.2. Covariates 

In addition to the observed air quality data, it is possible to introduce supplementary data, with better spatial coverage, 

to improve the interpolation (Denby et al. (2005)). Typically the supplementary data should be representative of the 

data interpolated or should reflect correlation between the physical process that lead to the spatial distribution of the 

data interpolated. The additional data selected and tested in this case were the following: a) type of area (rural, suburban 

and urban), b) region and c) CTM. 

3.2.2.1. LOTUS-EUROS CTM 

 
The LOTOS-EUROS is a regional chemical transport model (CTM) designed for the assessment of gaseous and 

particulate air pollutants. The model is used for a wide range of scientific and regulatory supporting applications. 

LOTOS-EUROS can simulate air quality on a regional and subregional scale for different components and includes 

data-assimilation (TNO, RIVM, KNIM, & PBL, 2015).  

 

The formula used to calculate the model (LE) is the following: 

𝐿𝐸 𝑓𝑜𝑟𝑚𝑢𝑙𝑎: 𝑇𝑃𝑀2.5| 𝐵𝐶 + 𝑃𝑃𝑀2.5 + 𝑆𝑂4 + 𝑁𝑂3 + 𝑁𝐻4 + 𝑁𝑎𝑓 ∗ 𝑁𝑎 𝑡𝑜 𝑠𝑒𝑎𝑠𝑎𝑙𝑡 + 𝐷𝑢𝑠𝑡𝑓 

 

Where: 

TPM2.5 total particulate matter < 2.5 µg m-3 

BC Black Carbon 

SO4 Sulfate 

NO3 Nitrate 

NH4 Ammonium 

Naf fine sodium 

Na to seasalt Sodium to seasalt 

Dustf fine fraction of soil dust  

 

The grid resolution is 0.50° longitude x 0.25° latitude. A plot from the grid can be found in Appendix 2. 
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4. METHODS 

 Preprocessing and Data Extraction 

 
1. The NetCDF files that contained a matrix with the model measurements and the observations for PM10 and 

PM2.5 were downloaded. The content of the file was analysed.  
 

2. The relevant station information was selected. Data frames for PM10 observations, PM10 model, PM2.5 
observations, and PM2.5 model were created which contained the relevant information for the stations and 
the observations and model measurements for April 5th, 2009. 
 

3. A projection and transformation of the data coordinates was made from latitude/longitude to the European 
Terrestrial Reference System ETRS89. The result obtained in meters was then transformed to kilometres. 
 

4. The location of the countries was visually assessed from the plot of the stations to determine which countries 
do not share a boundary and are not affected or affect the emissions of other European countries. The 
stations located in islands that belong to European countries were omitted. 
 

5. The countries were joined into the groups A and B. Each of these groups contained 3 different regions as 
described in section 3.1. The incomplete and unknown data cases were removed. 
 

6. An R file was created containing two data frames one for PM10 and another for PM2.5 measurements to work 
with cokriging. 
 

7. The measurements were exctracted into a data frame for those stations that had observations of both, PM10 

and PM2.5, for the 5th of April 2009 to perform compositional data analysis and compositional kriging.  

 Kriging of compositional Data 

1. The coarse fraction of particulate matter was computed through: 

𝑃𝑀𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑃𝑀10 − 𝑃𝑀2.5 

Figure 1 shows an explanation of the distribution of particulate matter sizes and PMcoarse 

 

 

            Figure 1 Classification of particulate matter* 

*Author: Linares, C & Díaz, J. (2008) El ecologista no. 58. Instituto de Salud Carlos III. Madrid, Spain. p. 6 
 

2. The ratios PM2.5/PM10 and PMcoarse/PM10 were computed for the countries of interest and the results were 

analysed.  
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3. The mean and standard deviation was calculated and analyzed for each of the groups. The values were 

grouped for the stations of: 

 

 The same country   

 The same region: Central-Eastern Europe, North-Western Europe and Southern Eruope  and later 

for Belgium, Netherlands and Luxemburg (BENELUX), Germany and Poland, Czech Republic and 

Slovakia 

 The same type of area: rural, suburban and urban.  

 

4. The data was treated as a composition by first “closing” the components to sum up to unity. To treat the 

data as a compositional data set it is necessary to assign a scale to the measurements. According to van den 

Boogaart & Tolosana-Delgado, (2013) from the scales one should be the preferred, as it is the one grounded 

on the mildest hypotheses: the Aitchinson geometry for compositions. Depending in the view of the problem 

other scales might be more appropriate.  The scales are:  

 

“rmult” Real Multivariate scale: This is  a scale to analyse multivariate vectors for which other multivariate 

methods such as cluster analysis and multivariate regression were created. In this case, the negative values are 

meaningful. The multivariate normal distribution is its central statistical model.  

“rplus” Real interval restricted to the positive (plus) real orthant: The rplus scale allows to perform the 

same process as with multivariate scale for positive data but it does not take into account some principles of 

compositional data analysis such as being scaling invariant. This leads to problems in the interpretation of the 

results, therefore it was not considered. 

 “aplus” Aitchison (i.e., ratio) geometry): In this approach the amount of each component can be 

individually analysed as ratios of the components and distances computed based on the log transformed data. 

Therefore, the natural central distribution in this case should be the multivariate lognormal. This allows the 

data to be treated as a composition but many methods based on this approach are not scaling invariant. 

“rcomp” Real (i.e, interval) compositional scale: Treats the data as multivariate real datasets but does not 

considers the necessary constraints to treat compositional data. Not considered because of its similarities with 

“rplus” leading to difficulties on the interpretation. It does preserve mass. 

“acomp” Aitchinson compositional scale: It follows all the principles for the statistical analysis of 

compositional data: scaling invariance, perturbation invariance, permutation invariance, and 

subcompositional coherence. The reference distribution is the additive-logistic-normal distribution or the 

normal distribution on the simplex. The mathematical structure is a vector space structure in its own right 

isometrically equivalent to  ℝ𝐷−1 . An advantage of this equivalence is that it is possible to convert any 

statistical problem involving compositions of 𝐷 parts onto a classical multivariate problem involving real 

vectors of 𝐷 − 1 coordinates. 

“ccomp” count compositional scale: Used to treat count compositions. Not considered because the 

dataset to be used is not formed by counts but by true observations. 

 

5. In order to translate real vectors to compositions we need to make a transformation from the simplex to the 

real space. Following Aitchison, (1999) there is equivalency between any 𝐷-part  composition and its logratio 

vector. We can obtain an equivalence through an isometry which preserves angles and distances.  

The first type of transformation is the centred log ratio transformation (clr) which allows to treat the parts 

symmetrically: 

𝑐𝑙𝑟(𝑥) = (𝑙𝑛
𝑥𝑖

𝑔(𝑥)
) 𝑖=1…𝐷 

 

With:  𝑔(𝑥) = √𝑥1 ∙∙∙ 𝑥𝐷
𝐷  

 

 

Where 𝑥 is the composition of 𝐷 number of parts (columns). In this case 𝐷 is equal to 2. 
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The log ratio of the vector is applied component-wise. The components sum up to zero. The image of the 

clr is a hyperplane of the real space orthogonal to the vector 1=[1,…,1], i.e., the bisector of the first orthant. 

This may be a source of problems when doing statistical analysis, as e.g., the variance matrix of a clr-

transformed composition is singular. This transformation allows to use standard unconstrained multivariate 

methods (Aitchison, 2003).  

 

The second is the Isometric Log-ratio Transformation (ilr). This is an isometric linear mapping between the 

Aitchison simplex and ℝ𝐷−1. The isometry is constructed by representing the result in the basis of the (𝐷 −

1) dimensional image space ℍ of the clr transformation. It is possible to arrange the vectors {𝑉𝑗 ∗} by 

columns in an 𝐷 × (𝐷 − 1) element matrix, denoted by 𝑉, with the following properties: 

 It is a quasi-orthonormal matrix 

𝑉𝑡 ∙ 𝑉 is an identity matrix of  𝐷 − 1 elements: 

𝑉𝑡 ∙ 𝑉 = 𝐼𝐷−1 

 

𝑉 ∙ 𝑉𝑡 = 𝐼𝐷 −
1

𝐷
1𝐷×𝐷 

Where 1𝐷×𝐷 is a matrix full of ones. 

 Its columns sum up to zero because they represent vectors of the clr-plane 

𝑖𝑙𝑟𝑣(𝑥) = 𝑐𝑙𝑟(𝑥) ∙ 𝑉 = ln (𝑥) ∙ 𝑉 

 

𝑉 is a matrix of 𝐷 rows and 𝐷 − 1 columns. 

 

The transformation provides the coordinates of any composition with respect to a given orthonormal basis. 

The ilr transformation induces an isometric identification of ℝ𝐷−1  and 𝕊𝐷 . For measure and probability 

theory purposes, this induces an own measure for the simplex, called the Aitchinson measure on the simplex. 

(van den Boogaart & Tolosana-Delgado, 2013). 

 

The philosophy of logratio analysis is the following: 

1. Formulate the compositional problem in terms of the components of the composition. 

2. Translate this formulation into terms of the logratio vector of the composition. 

3. Transform the compositional data into logratio vectors. 

4. Analyse the logratio data by an appropiate standard multivariate statistical method. 

5. Translate back into terms of the compositions the inference obtained at the analysis (Aitchison, 

2003). 

 

6. The linear regression model was created for the case in which both, the dependent and independent variable, 

are a composition. The dependent variable was stated as the observations and the independent as the 

measurements of the model using the equation: 

 

𝑖𝑙𝑟(𝑌) = 𝑎 + 𝑖𝑙𝑟(𝑋) ∙ 𝐵 + 𝜀𝑖 
Where: 

𝑖𝑙𝑟(𝑌)  and 𝑖𝑙𝑟(𝑋) are the isometric log ratio transformation of the dependent and independent 

compositional variable respectively. 

𝐵 is a square matrix representing a linear transformation between compositions in ilr space 

𝜀𝑖 is the error  
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From this equation three models were obtained, one for each region. Later, a fourth model was computed 

testing two categorical covariates (the type of area and region) and a continuous variable (the CTM).  The 

models where tested using the Analysis of variance (ANOVA) procedure. 
 

7. Descriptive Statistics of the scaled dataframe: 

The data was tested for normal disbrution using QQ-plots for compositional data with 𝛼 = 0.05. 

The compositional mean of the dataset with 𝑁 number of observations and  parts is the composition  

 

�̅� =
1

𝑁
⨀⨁𝑛=1 

𝑁 𝑥𝑛 = 𝑐𝑙𝑟−1 (
1

𝑁
∑ 𝑐𝑙𝑟(𝑥𝑛 )

𝑁

𝑛=1

) =∗ 𝑙𝑟−1 (
1

𝑁
∑∗ 𝑙𝑟(𝑥𝑛 )

𝑁

𝑛=1

)           

Where: 

⨀ Denotes power transformation (geometrically equivalent to scaling) 

⨁ Denotes perturbation (translation of a composition) 

 𝑥𝑛 Is the nth observation of the nth row of the compositional dataset 𝑋 

∗ 𝑙𝑟 Represents one of the log-ratio transformations. 

 

 

The spread of the data was calculated through three methods: 

The first method is the metric variance which is defined as the average distance between the composition and 

the mean and is equivalent to the average variation: 

𝑚𝑣𝑎𝑟(𝑋) =  
1

𝑁 − 1
∑ 𝑑𝐴

2(𝑥𝑛 , 𝑥 ̅)

𝑁

𝑛=1

 

where 𝑑 is the distance from the centre to the dataset. To calculate the metric variance, the average of the 

squared distance is calculated and divided into the corrected degrees of freedom.  

 
The second method was the metric standard deviation: 

𝑚𝑠𝑑(𝑋) = √
1

𝐷 − 1
𝑚𝑣𝑎𝑟(𝑋) 

 

This is the square root of the metric variance divided by the number of dimensions minus one (𝐷 − 1). It 

can be interpreted as an average spread when the variance is not the same in all directions. When the average 

spread is the same in all direction this is the radial standard deviation on a log scale. 

The codependence of the components needs a special treatment to avoid obtaining spurious effects. The 

equation of the metric variance does not give as a result any information about the codependence of 

components. To tackle this problems, Aitchison, (2003) suggests the variation matrix to replace the 

correlation. The variation matrix is symmetric and has 𝐷2 components calculated with the following equation:  

Ʈ𝑖𝑗 = 𝑣𝑎𝑟 (𝑙𝑛
𝑥𝑖

𝑥𝑗

) 

And estimated by  

Ʈ̂𝑖𝑗 =
1

𝑁 − 1
∑ 𝑙𝑛2  

𝑥𝑛𝑖

𝑥𝑛𝑗

− 𝑙𝑛2
�̅�𝑖

�̅�𝑗

𝑁

𝑛=1

 

where 𝑁  is the number of observations.  In other words, each component of the matrix is calculated as the 

variance of the natural logarithm of the ith part of the composition 𝑥𝑖 divided by the jth part 𝑥𝑗 .  
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The variation matrix Ʈ has zero diagonal elements, and cannot be expressed as the standard covariance matrix 

of some vector. The smaller a variation element is, the better the proportionality between the two components 

(van den Boogaart & Tolosana-Delgado, 2013). 

 

8. A variogram was created in order to analyse second-order moment descriptions of the form: 

𝛾(ℎ) =
1

𝑁(ℎ)
∑ (𝑍(𝑥𝑖) − 𝑍(𝑥𝑗))

2

(𝑖,𝑗)∈𝑁(ℎ)

 

𝑁(ℎ) = {(𝑖, 𝑗): ‖𝑥𝑖 − 𝑥𝑗‖ ≈ ℎ} 

 

Which shows the variance of the squared differences of 𝑍(𝑥𝑗) and 𝑍(𝑥𝑗)at their respective location, 

separated by a distance ℎ. 

Later, an appropriate variogram model was fitted to the empirical variogram. 

 

9. The values were predicted using compositional kriging which, according to Walvoort & Gruijter, (2001), is 

an extension of ordinary kriging. It considers all components simultaneously by minimizing the sum of their 

prediction error variances and by taking the unbiasedness, nonnegativity, and constant sum constraints into 

account. The equation is the following: 

𝑚𝑖𝑛𝑤𝑘 
∑(𝜎𝑘

2 + 𝒘𝑘
𝑇𝑪𝑘𝒘𝑘 − 2𝒘𝑘

𝑇𝒅𝑘)

𝑝

𝑘=1

 

𝑾𝑇1(𝑛) = 1𝑝 

𝒘𝑘
𝑇𝒛𝑘 ≥ 0 𝑓𝑜𝑟 𝑘 = 1, … , 𝑝 

𝑡𝑟(𝑾𝑇𝒁) = 1 

Where: 

𝜎2 is the variance of the kth component of 𝑧(𝑥𝑖),  

𝒘𝑘 is the kth column of 𝑊, 

𝑪𝑘 is the n x n matrix containing the covariances between the data points for component k, 

𝒅𝑘  is the vector of dimension n containing the covariances between the data points and the prediction point 

for component k, 

𝒛𝑘  represents the kth column of 𝑍,  

𝑡𝑟() gives the trace of its argument. 

 

10. The data were backtransformed.  

 Cokriging of PM2.5 and PM10 

 

1. The complete extracted data set for PM10 and PM2.5 was used. In this case it is possible to use all the 

measurements since cokriging allows to use a sparsely sampled data as a primary variable (PM2.5) in 

combination with abundant secondary information (PM10). 

 

2. The values to create data frames for the validation and prediction were retrieved. The validation data extracted 

was 25% of the total number of measurements. The remaining 75% was used for prediction. The validation 

and prediction data was plotted to see the spatial distribution of the stations used in each process. 

 

3. The PM10 and PM2.5 data was inspected with descriptive statistics. The mean, median, first and third quartile 

and the minimum and maximum value were examined from the summary statistics. Both the histogram and 

Q-Q graph were plotted to check the probability distribution of the values. 
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4. The correlations between PM10 and PM2.5 measurements were computed and compared with the correlation 

between the log transformations of the two types of particulate matter. 

 

5. A linear model with PM2.5 as the primary variable and PM10 as the secondary variable was created. Different 

models using different covariates were tested using ancillary and surrogate data. The best model according to 

the available data was selected using the criteria of the R2 value. 

 

6. The variograms were computed in order to later interpolate the data. According to Singh et al.,  (2011). The 

weights are estimated on the base of two semi-variograms and the cross variogram which describes the 

correlation between the two variables: 

𝛾𝑍𝑌(ℎ) =
1

2𝑁(ℎ)
∑[𝑍(𝑥𝑖) − 𝑍(𝑥𝑗)(𝑌(𝑣𝑖) − 𝑌(𝑣𝑗)]

(𝑖,𝑗)

 

where 𝑁(ℎ) is the number of station pairs (𝑥𝑖 , 𝑥𝑗) separated by ℎ.  

 

7. The prediction was made by including the correlation of the variables PM10 and PM2.5 using cokring. The 

general equation is the following: 

�̂�(𝑥0) =  ∑ 𝜆𝑖𝑍(𝑋𝑖)

𝑛

𝑖=1

+ ∑ Ƞ𝑗𝑌(𝑋𝑗)

𝑚

𝑗=1

 

 
Where  

𝑍(𝑠𝑖) are the primary data at a measurement point ( in this case PM2.5) 

𝑌(𝑠𝑖) are the secondary data (in this case PM10) 
𝜆𝑖 and Ƞ𝑗  are the weights, which are based on knowledge of the variograms and the crossvariogram 

 

According to Denby, et al. (2005) the crossvariogram is determined using the covariance of the two quantities 

Z and Y in a similar manner to the use of the variance to determine the semivariogram. 

 

8. The mean error and root mean squared error was calculated using the following equations: 

 

Mean error 

𝜀 =
1

𝑁
∑[𝑍(𝑥𝑖) − �̂�(𝑥𝑖)]

𝑁

𝑖=1

 

Root mean squared error 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[𝑍(𝑥𝑖) − �̂�(𝑥𝑖)]2

𝑁

𝑖=1

 

 
where: 

𝑁 is the number of observations 

𝑍(𝑥𝑖) is the measured concentration 

�̂�(𝑥𝑖) is the estimated concentration 
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5. RESULTS AND ANALYSIS 

 Preprocessing and Data Extraction 

 

A visualization of the stations shown in figure 2 still shows some stations that do not share boundaries with other 

countries, even after modifying the bounding box to remove extreme locations. 

 

Figure 2  Airbase stations locations (latitude and longitude) in Europe. Units: m. 

These stations were removed and the countries with a greater number of stations and coherent data where retrieved. 

The countries that had missing values or unknown data where discarded from the analysis. 

 

The following plots show the remaining stations for PM2.5 (left plot) and PM10 (right) for region A: 

 

Figure 3 Distribution of PM2.5 and PM10 European stations of group A in Cartesian coordinates (ETRS89). Units: 

km.  
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Rural stations are represented in green, suburban stations in red and urban stations in black.  
 

The locations of the extracted values for the PM2.5 (left) and PM10 (right) of the selected countries for region B 

(Belgium, Netherlands and Luxemburg) are shown on the following figure: 

 
Figure 4 Distribution of PM2.5 and PM10 European stations of group B in Cartesian coordinates. Units: km. Green 

represents rural stations, red suburban and black urban stations.  

 

The number of stations of PM2.5 measurements is smaller than for PM10 on both groups of regions. 
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 Kriging of compositional Data 

5.2.1. Compositional Analysis and Prediction for the group of regions A: Central Eastern Europe (CEE), North-
Western Europe (NWE) and Southern Europe (SE) 

 

1. Computing of the coarse fraction 

After joining the tables the number of stations available for the analysis was 255.  The table presented repeated 

columns which were removed. The coarse measurements of the model and observations were computed.  

 

2. Computing of ratios 

The descriptive statistics for PM2.5 and PMcoarse measurements and ratios were computed. During the analysis the 

PMcoarse fraction showed for some stations negative and zero values, indicating that the PM2.5 value was higher than 

PM10. This result did not seemed reasonable since PM2.5 measurements are a fraction of PM10 and therefore these 

stations where removed from the data frame. 

 

Table 1 Statistics of the compositional data for the group A 

Observation 

(µg∙m-3) 

Min  1st Quartile Median Mean 3rd Quartile Max 

PM2.5 3.75 17 29.61 32.57 44.53 104.60 

PMCoarse  -29.64 5 9 9.96 13.36 50.333 

PM10 8 25.70 38 42.52 55.57 113.42 

Ratios 2.5/10 0.23 0.63 0.77 0.75 0.86 1.70 

Ratios coarse/10 -0.7 0.14 0.23 0.25 0.37 0.77 

Model  Min  1st Quartile Median Mean 3rd Quartile Max 

PM2.5 2.28 12.97 21.55 21.17 26.95 56.04 

PMCoarse  1.02 4.16 5.76 5.90 7.36 13.31 

PM10 4.58 18.34 27.50 27.06 33.99 69.35 

Ratios 2.5/10 0.45 0.70 0.78 0.76 0.84 0.93 

Ratios coarse/10 0.07 0.16 0.22 0.24 0.29 0.54 

 

The following table shows the results of the statistics for the 238 remaining stations: 

 

Table 2 Statistics of the compositional data without negative values for the group A 

Observation  

(µg∙m-3) 

Min  1st Quartile Median Mean 3rd Quartile Max 

PM2.5 3.75 17.19 29 31.62 44.0 81.25 

PMcoarse  0.29 6 9.52 11.23 13.81 50.33 

PM10 8 26.10 38.00 42.86 55.40 113.42 

Ratios 2.5/10 0.23 0.62 0.76 0.72 0.84 0.99 

Ratios coarse/10 0.01 0.16 0.24 0.28 0.38 0.77 

Model  Min  1st Quartile Median Mean 3rd Quartile Max 

PM2.5 2.28 13 21.53 20.84 26.92 46.49 

PMcoarse  1.63 4.18 5.74 5.79 7.20 12.30 

PM10 4.58 18.50 27.47 26.63 33.76 54.20 

Ratios 2.5/10 0.45 0.71 0.78 0.76 0.84 0.93 

Ratios coarse/10 0.07 0.16 0.22 0.24 0.29 0.54 
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The statistics of the stations seem to be more reasonable without negative values.  

 

The stations left after the join (890 for PM10 and 38 for PM2.5) were used for the validation. 

 

3. Analysis of the descriptive statistics for different groups 

The data was grouped according to certain characteristics to identify if there was a pattern or relation between 

measurements with similar spatial context. The groups were made according to: the type of station (rural, suburban, 

urban), country, and region (Central Eastern Europe, North-Western Europe, Southern Europe). 

 

The following tables show the number of stations, the average of the PM2.5/PM10 ratio and the standard deviation for 

the data grouped by type of station, country and region: 

 

Table 3 Mean and standard deviation of the ratio for the type of area, group A  

Type of area Number of stations Mean of the ratio Standard Deviation of the ratio 

Rural  64 0.68 0.18 

Suburban  60 0.75 0.15 

Urban  114 0.72 0.16 

 

Table 4 Mean and standard deviation of the ratio for the type of area and country, group A  

Country No. of stations Rural Suburban Urban 

R S  U T Mean SD Mean  SD Mean  SD 

Austria  2 2 4 8 0.81 0.12 0.64 0.16 0.66 0.07 

Belgium 6 6 2 14 0.79 0.04 0.79 0.09 0.76 0.04 

Switzerland 2  1 3 0.82 0.17   0.88 NA 

Czech Republic 4 8 10 22 0.78 0.16 0.82 0.10 0.70 0.15 

Germany 8 12 23 43 0.81 0.12 0.80 0.10 0.81 0.06 

Spain 17 9 5 31 0.59 0.18 0.61 0.24 0.77 0.12 

France 4 17 24 45 0.67 0.23 0.79 0.10 0.67 0.15 

Italy 8 5 24 37 0.71 0.13 0.67 0.09 0.75 0.15 

Netherlands 5 1 3 9 0.80 0.12 0.82 NA 0.91 0.12 

Poland 1  14 15 0.78 NA   0.66 0.15 

Portugal 7  4 11 0.46 0.09   0.35 0.11 

          

Table 5 Mean and standard deviation of the ratio for the type of area and region, group A 

Region  No. of stations Rural Suburban Urban 

R S U T Mean SD Mean  SD Mean  SD 

Central Eastern 

Europe 

17 22 52 91 0.80 0.12 0.79 0.11 0.74 0.13 

North-Western 

Europe 

14 21 23 58 0.79 0.09 0.79 0.10 0.72 0.15 

Southern Europe 33 17 39 89 0.58 0.17 0.66 0.20 0.69 0.19 

 

The mean of the ratios can give information about those countries or regions for which PM2.5 has a great local 

contribution on the PM10 observations.  The greater the value of the mean ratio is, the higher the contribution of PM2.5. 

Since the particulate matter smaller than 2.5 µm are mainly generated from combustion of fuels and anthropogenic 

sources, while the PM10 has an important explanation on natural phenomena, we expect higher ratios in areas where 
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this type of human activity occurs.  On table 5 we can see that the mean ratio decreases from rural to urban for Central 

Eastern Europe. From this region we can see that the Netherlands has very high mean ratios, particularly for the urban 

area which could have an explanation on shipping activities and the high population density. Regarding the North-

western region the mean ratios are similar for the three types of area and the dispersion from the mean value is also 

low, but the total number of stations is the lowest. The ratios for South Europe are low compared to the other two 

regions, showing a higher contribution of the coarse fraction. The low rural ratio could have an explanation on the 

contribution of mineral Sahara dust (Leeuw & Horálek, 2009). In general the suburban region seems to contribute 

more with PM2.5. 

 

There does not seem to be a clear pattern of the weight of PM2.5 over PM10. Using data from all stations it becomes 

clear that in the rural area the fraction of PM2.5 is lower but this differ according to each country.  

 

The distribution of the stations is also important on the analysis of the ratios. When understanding the mean value and 

the standard deviation it is important to consider that some countries have a greater number of stations for one group 

compared with another. For example, for the type of area, there are about double the amount of urban stations (114) 

as there are rural (64) or suburban stations (60). However, in the aggregation per country Spain has a greater number 

of rural stations (17) compared to suburban (9) and urban (5), so care must be taken. The previous statement can be 

reaffirmed by looking at the distribution of the stations by type of area showed on figure 5. 

 

 

Figure 5  Spatial distribution of the retrieved stations for the compositional analysis of group A in Cartesian 
coordinates (ETRS89). Units: km. The green dots represents rural stations, red suburban and black urban stations 

Figure 5 shows the distribution of the stations represented by green for rural, red for suburban and black for urban. It 

is clear that in the South-east part of the continent (especially in Spain) the number of rural stations is higher than the 

urban and suburban number of stations. In France, Italy and Germany the number of urban stations is evidently higher 

than the number of rural and suburban. This can be corroborated with the data on table 4.    

 

Some of the countries do not have enough stations for the analysis. That is the case of Switzerland, which has only 3 

stations for the country.  Given the problem of the concentration of the type of station on certain countries and the 

low number of stations in each country, the analysis by country was discarded.  

  

Once the ratios were analysed it was decided that the further statistical analysis would be performed to the stations 

that share the same region because they seem to have a relatively similar value of standard deviation (less than 0.2 for 
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the three types) with respect to the country and region. In addition to this, they have enough number of stations to 

work with, later on the variogram and compositional kriging. 

 

4. Closing the composition and giving scale to the measurements 

 

After selecting the group to use, the next step was to treat the data as compositions. For this the package 

“compositions” (van den Boogaart & Tolosana-Delgado, 2008) was used to close the parts of the compositions to sum 

up to one, which is the same principle as calculating the ratios, and to give scale to the measurements. The scale selected 

as appropriate for the dataset was “acomp” which is described on section 4.2.  

 

5. Isometric transformation of the data 

Figure 6 and figure 7 show the results obtained for the scaled measurements, Centered log-ratio (clr) transformation 

and Isometric log-ratio (ilr) transformation of each type of station: 

Figure 6 Centred log-ratio transformation of the composition for group A 

Figure 7 Isometric log-ratio transformation of the composition for group A 

6. Construction of the linear model  

 

The model is intended to include the covariates that would improve the results of the prediction. The performance of 

three different covariates was tested.  The continuous covariate was the CTM and the categorical covariates were the 
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type of area and the region of the station. The results of the combination of different covariates with the response 

variable (compositional data with 238 observations) are shown in table 6.  

 

Table 6 Estimates for the regression models of compositional data group A 

Estimate/Model 

covariates 

CTM, Type of 

area and Region 

CTM and 

region 

CTM and type 

of area 

Region and 

type of area 

CTM 

Residual Standard 

Error 

0.5807 0.5854 0.6064 0.6104 0.6136 

Degrees of Freedom 220 232 232 229 236 

Adjusted R2 -0.07727 -0.02155 -0.02155 -0.03493 -0.004237 

 

The model with the lowest residual standard error is the one which includes all the covariates: the Chemical Transport 

Model, type of area and region. Nevertheless, the summary statistics for this model indicates that none of the covariates 

are significant showing probabilities Pr(>|t|) greater than 0.1 for all the covariates. The R2  yields negative values for 

all the models. It is important to mention that, according to van den Boogaart & Tolosana-Delgado, (2013) it is not 

recommended to work with the standard summary of linear models involving composition since it gives to the 

(arbitrary chosen) ilr transformation, an excessive importance. This is why the Analysis of Variance is also presented 

for the different models. 

After testing the different combinations of the covariates, the chosen model for this analysis was the following: 

 

lm(formula = ilr(y) ~ ilr(x1) * x3) 

 

Where:   ilr(y) is the response variable, the composition transformed by an isometric log-ratio transformation. 

 ilr(x1) Is an exploratory variable. It is the isometric log-ratio transformation of the CTM as a composition. 

 x3 the region of the station as a factor 

 

This model shows a low residual standard error and also significant covariates. The coefficients found for this model 

are shown on tables 7 and 8: 

 

Table 7 Summary statistics of the selected compositional model for group A 

Minimum  1st Quartile Median 3rd Quartile Maximum  

-2.20307 -0.33295   0.07138 0.38760 1.43911 

Coefficients Estimate Standard Error t value Pr(>|t|) 

(Intercept)    -0.77203 0.20831 -3.706 0.000263 *** 

ilr(x1)         0.16659 0.20569 0.810 0.418832 

x3NWE 0.04813 0.30581 0.157 0.875072 

x3SE 0.77327 0.23729 3.259 0.001287 ** 

ilr(x1):x3NWE   0.10796 0.33814 0.319 0.749796 

ilr(x1):x3SE 0.49108 0.23779 2.065 0.040019 * 

 
Table 8 Analysis of variance of the selected compositional model for the group A 

Coefficients Df Sum Sq Mean Sq F value Pr(>F) 

ilr(x1) 1 11.081 11.0812 32.3386 3.877e-08 *** 

x3 2 7.629   3.8145 11.1318 2.419e-05 *** 

ilr(x1):x3    2 1.740   0.8702   2.5396    0.08109 .   

Residuals 232 79.498   0.3427   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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The analysis of variance shows that the CTM and region are significant on the model. The combination on the CTM 

and the type of area is significant at alpha= 0.01. We can state that with 99% confidence Y is dependent on the 

combination of the isometric log-ratio transformation of the model combined with the region. 

The linear models were computed for the compositional data of the observations regressed on the CTM of each type 

of region (Central Eastern Europe, North-Western Europe and Southern Europe). The results of the model are shown 

in the following table: 

 

Table 9 Estimates of regression model (ilr of observations vs ilr of CTM) for each region, group A 

 Region 1 

Central Eastern Europe 

Region 2 

North-western Europe 

Region 3  

Southern Europe 

Residual standard error 0.5432 0.5935 0.6262 

Degrees of freedom 89 58 112 

Adjusted R-squared -0.01124 -0.01724 -0.008929 

 

The PM2.5 and PMcoarse model was plotted against the observations. The results for the centered log ratio (ilr) 

transformation of the region 1 are shown in figure 8.   

 

Figure 8 Central Eastern Europe clr transformed observations vs. model  

We can observe that there is a slight linear tendency within both the model and the observations. The region of Central 

Eastern Europe shows more correlation with the model than the other two regions. 

 

The formula used for the linear model was the following: 

 

lm(formula = ilr(compY1) ~ ilr(compX1)) 

where: 

compY1 is the composition of the observations and compX1 is the composition of the CTM for Central Eastern 

Europe.  
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The dependent and the independent variable are transformed into an isometric log-ratio transformation (ilr). 

The coefficients for the intercept and the ilr transformed CTM data are the following: 

 

Table 10 Summary statistics for the linear regression model of Central Eastern Europe 

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-1.85 -0.36 -0.01 0.34 1.44 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

(Intercept) -0.77 0.19 -3.99 0.000134*** 

ilr(compX1) 0.17 0.19 0.87 0.385150 

Significant Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The summary statistics show that there is no dependence on Y over X1 according to the probability value above 

0.05. The analysis of variance showed the following results: 

 
Table 11 Analysis of variance for the regression model of Central Eastern Europe stations 

 Df Sum Sq Mean Sq F value Pr(>F) 

ilr(compX1) 1 0.02 0.22 0.76 0.3851 

Residuals 89 26.26 0.29   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The analysis of variance shows that the independent variable is not significant. The model is not improved by including 

this covariate. 

 

The clr transformation of the observations against the model was plotted for region 2. For the North-Western Europe 

data the linear tendency is even less obvious.  

 

Figure 9 North-Western Europe clr transformed observations vs. model 
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The formula used to calculate the coefficients was the following: 

lm(formula = ilr(compY2) ~ ilr(compX2)) 

 

where compY2 is the composition of the observations and compX2 is the composition of the CTM model for 

North-Western Europe data. The coefficients obtained for the region 2 (NWE) regression model are the following: 

 

Table 12 Summary statistics for the linear regression model of the North-Western Europe stations 

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-2.20 -0.21 -0.11 0.31 1.28 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

(Intercept) -0.72 0.22 -3.18 0.00237** 

ilr(compX1) 0.27 0.27 1.01 0.31807 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table 13 Analysis of variance for the linear regression model of North-Western Europe stations 

 Df Sum Sq Mean Sq F value Pr(>F) 

ilr(compX2)   1 0.36 0.36 1.01 0.3181 

Residuals 56 19.79 0.35   

           

From the analysis of variance we can determine that the covariate is not significant in this case because the value of 

the probability obtained is higher than the F value. 

 

In the case of the Southern Europe data, the plot shows a linear relation between the clr transformation of the model 

and the observations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Southern Europe clr transformed observations vs. model 
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The formula of the model was: 

lm(formula = ilr(compY3) ~ ilr(compX3)) 

where compY3 is the composition of the observations and compX3 is the composition of the CTM model for 

Southern Europe data. 
 

Table 14 Summary statistics for the linear regression model of Southern Europe stations 

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-1.665 -0.414 0.101 0.496 1.275 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

(Intercept) 0.001 0.120 0.010 0.992 

ilr(compX3) 0.66 0.126 5.203 1.29e-06*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Table 15 Analysis of variance for the linear regression model Southern Europe stations 

 Df Sum Sq Mean Sq F value Pr(>F) 

ilr(compX3) 1 10.410 10.410 27.076 1.288e-06*** 

Residuals 87 33.449 0.384   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The Southern Europe data shows a value for probability in the ANOVA test of 1.288e-06 and it is significant at a 

level of alpha= 0. 

From the results above we can take the dependence of the Y on X as credible. 

 

7. Analysis of the descriptive statistics of the compositional data 

 

Descriptive Statistics for Central Eastern Europe 

 

According to van den Boogaart & Tolosana-Delgado, (2013) it is not sufficient to accept joint normality only knowing 

that the marginals have a normal distribution. To determine a joint normal distribution the projection should be normal 

onto all directions.  The quantile-quantile (Q-Q) plot was displayed to test the compositional normality. The plot for 

Central Eastern Europe stations is show in figure 11: 
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Figure 11 Q-Q plot for Central Eastern Europe compositional data 

 

The data seems to be normally distributed for both components with alpha=0.05. This joint normality suggest 

normality in all displayed marginal distributions. 

 

The analysis of the descriptive statistics and the measures of dispersion were calculated for the regional compositions. 

The results are displayed in table 16: 

 
Table 16 Descriptive Statistics for Central Eastern Europe stations 

 

The metric standard deviation (msd) is not the square root of the metric variance, but the square root of the mean of 

the eigenvalues of the variance matrix. “In this way it can be interpreted in units of the original natural geometry, as 

the radius of a spherical ball around the mean with the same volume as the 1-sigma ellipsoid of the data set” (van den 

Boogaart & Tolosana-Delgado, 2013). In this case the metric standard deviation can be interpreted as a 0.542 of average 

spread. 

 

The variation matrix shows a relation in which the smaller a variation element is, the better the proportionality. In this 

case we can identify a medium variation (0.589) element which make us infer there is some proportionality between 

the two elements. 
  

Component Mean of the composition 

 

Variation Matrix 

 

Metric Variance Metric Standard 

Deviation 

PM2.5 0.789 0.589 0.294 

 

0.542 

PMcoarse 0.211 
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Descriptive Statistics for North-Western Europe 

 

The North-Western Europe stations (region 2) show a normal distribution on the Q-Q plot with some outliers on the 

extreme values. The proportionality between the measurements is very low, with a result for the variation matrix of 

0.7. 

Figure 12 Q-Q plot for North-Western Europe compositional data 

 
Table 17 Descriptive Statistics for North-Western Europe stations 

Component Mean of the composition 

 

Variation matrix Metric Variance Metric Standard 

Deviation 

 

PM2.5 0.790 0.707 0.353 

 

0.594 

PMcoarse 0.209 

Descriptive Statistics for Southern Europe 

 

The Q-Q plot of the southern European countries data shows a linear pattern in figure 13 indicating that the data is 

close to normality.   

Figure 13 Q-Q plot for Southern Europe compositional data 
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Table 18 Descriptive Statistics for Southern Europe Stations 

Component Mean of the 

composition 

 

Variation Matrix Metric Variance Metric Standard Deviation 

 

PM2.5 0.677 0.996 0.498 

 

0.706 

PMcoarse 0.323 

 

The proportionality between PM10 and PMcoarse for this area is very low. 

 

8. Variogram 

 

The empirical variogram for the prediction was calculated for the compositional data.  The variogram and model 

variogram are shown on figure 14, 15 and 16: 

 
Figure 14 Empirical Variogram (black line) and Model Variogram (red line) for Central Eastern Europe. Horizontal 

axis: distance in km, vertical axis: semi-variance 

 

Figure 15 Empirical Variogram (black line) and Model Variogram (red line) for North-Western Europe. Horizontal 
axis: distance in km, vertical axis: semi-variance 
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Figure 16 Empirical Variogram (black line) and Model Variogram (red line) for Southern Europe. Horizontal axis: 

distance in km, vertical axis: semi-variance                               

The variogram for Central Eastern Europe shows a trend along the vertical direction, the spatial correlations decreases 

with the distance, the range is reached at 300 km. There is a cyclic behaviour noticeable on the North-Western Europe 

variogram as well as for the Southern Europe variogram. The third region also shows a vertical trend. The three 

variograms clearly show a nugget effect. According to Gringarten & Deutsch, (2001) the nugget effect can appear due 

to measurement errors or correlation ranges shorter than the sampling resolution. There is a lack of spatial correlation 

in the variograms, this effect could be linked to the limited number of data and the large distance between the 

measurements.  

 

9. Predicted values 

The predicted values obtained for the group of regions A, are ratios of the measurements for PM2.5. We can infer from 

these values the percentage of PM2.5 over PM10 and compare the values obtained from the analysis of the ratios made 

and analyzed in steps 2 and 3.  This is in agreement with the ratios obtained showing lower values in Spain, Portugal 

and Southern France. The highest ratios appear to be in the Central Eastern Europe countries. 

 

Figure 17 Predicted values (compositional kriging) of PM2.5 ratios for group A for April 5, 2009. Units: scaled 
PM2.5/PM10 ratios using Aitchison compositional scale. 

This data can only show the predicted ratios. To evaluate the actual predicted values obtained it is necessary to 

backtransform the data into terms of µm-3. However, this case is difficult since we do not have the total PM10 



MAPPING MULTIPLE POLLUTANTS AT A CONTINENTAL SCALE 

27 

observations for the predicted values. Nevertheless, the data was backtransformed using the total PM10 from the 

Chemical Transport Model grid to obtain values of PM2.5. 

 

 

10. Backtransformed data 

 
Figure 18 Backtransformed values (compositional kriging) of PM2.5 for group A for April 5, 2009. Units: µg∙m-3 

5.2.2. Compositional Analysis and Prediction for the data grouped by the regions: Belgium, Netherlands and 
Luxemburg (BENELUX), Germany and Poland (GERPOL), Czech Republic and Slovakia (SLOCZ) 

 

1. Computing of the coarse fraction 

 

The stations necessary for the compositional analysis are those which measure both components. A more detailed 

description of the number of stations per group of countries can be found in table 19: 

 
Table 19 Number of stations per group for compositional analysis of group B 

Group PM2.5 PM10 

Rural 30 62 

Suburban 29 120 

Urban 71 299 

BENELUX 31 132 

GERPOL 74 374 

SLOCZ 25 115 

 

2. Computing of the ratios 

 

The correlation between the extracted observations of PM10 and PM2.5 is 0.780. After computing the coarse fraction 

and the ratios, some stations showed zero and negative values. As before this ratios were assumed to be incorrect 

measurements and removed from the dataset. 

 

 

 



MAPPING MULTIPLE POLLUTANTS AT A CONTINENTAL SCALE 

28 

 
Table 20 Descriptive statistics after removing negative and zero values for group B 

Observation 

(µg∙m-3)  

Min  1st Quartile Median Mean 3rd Quartile Max 

PM2.5 12.84 35.13 44.08 45.51 55.60 81.25 

PMCoarse  0.29 7.02 10.93 14.13 18.94 50.33 

PM10 20.30 45.07 55.82 59.64 74.78 113.42 

Ratios 2.5/10 0.31 0.73 0.79 0.78 0.85 0.99 

Ratios coarse/10 0.01 0.14 0.20 0.22 0.27 0.69 

Model  Min  1st Quartile Median Mean 3rd Quartile Max 

PM2.5 8.46 20.01 25.16 26.18 30.79 46.49 

PMCoarse  3.1 5.83 6.78 6.75 7.43 10.61 

PM10 13.33 25.13 32.90 32.93 37.09 54.20 

Ratios 2.5/10 0.59 0.74 0.79 0.78 0.84 0.9 

Ratios coarse/10 0.1 0.16 0.21 0.22 0.26 0.40 

 

The ratios between PM2.5/PM10 vary from 0.31 to 0.99 for the observations and from 0.59 to 0.9 for the model. The 

mean of the ratios is the same (0.78) for the observations and model.  

The descriptive statistics of the ratios are very similar between the observations and the model but they are also close 

to the values obtained for the analysis of the group of regions A described in section 5.2.2. For that case the mean 

value obtained for PM2.5/PM10 and PMcoarse/PM10 was 0.72 and 0.22 respectively. 

 

3. Analysis of the descriptive statistics for different groups 

 

The mean and the standard deviation was computed for the ratios of different groups. The data was grouped by the 

type of area, country and regions. In this case, the regions were constructed with less countries and it was expected to 

show less dispersion. The results are shown on tables 21, 22 and 23: 

 

Table 21 Mean and standard deviation for the ratios by type of area, group B 

Type of area Number of stations Mean of the ratio Standard Deviation of the 

ratio 

Rural  25 0.79 0.10 

Suburban  27 0.80 0.09 

Urban  54 0.75 0.13 

 

 

Table 22 Mean and standard deviation for the ratios by type of area and country, group B 

Country No. of stations Rural Suburban Urban 

R S  U T Mean SD Mean  SD Mean  SD 

Belgium 6 6 2 14 0.79 0.04 0.79 0.09 0.76 0.04 

Czech Republic 4 8 10 22 0.78 0.16 0.82 0.10 0.67 0.15 

Germany 8 12 23 43 0.81 0.12 0.80 0.10 0.81 0.06 

Netherlands 5 1 3 9 0.80 0.12 0.82 NA 0.91 0.12 

Poland 1  14 15 0.78 NA   0.66 0.15 

Slovakia 1  2 3 0.78 NA   0.68 0.23 
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The stations for the individual countries by type of area show a low standard deviation. Although the value of the 

standard deviation is low, the analysis by country is not considered since some countries have very few stations; that is 

the case of Slovakia with 3 available stations from where is no suburban stations, and 2 urban and only 1 rural station. 

 
Table 23 Mean and standard deviation of the ratios by type of area and region, group B 

Region  No. of stations Rural Suburban Urban 

R S U T Mean SD Mean  SD Mean  SD 

Belgium, 

Netherlands, 

Luxemburg 

11 7 5 23 0.79 0.08 0.79 0.08 0.85 0.12 

Germany and 

Poland 

9 12 37 58 0.80 0.11 0.80 0.10 0.75 0.12 

Slovakia and Czech 

Republic 

5 8 12 25 0.78 0.13 0.82 0.09 0.69 0.15 

 
Germany and Poland show higher values for mean ratios, these countries are also part of the Central Eastern Europe 

region (for group A in the previous analysis), which also showed the highest mean ratios. 

 

4. Closing the composition and giving scale to the measurements 

 
The data was assigned with the class “acomp” as the group of regions A. The distribution of the stations by the type 

of area is showed on figure 19.  It is important to consider the number of stations in the analysis of the standard 

deviation. The BENELUX region includes a higher number of rural stations, while the region of Germany and Poland 

and Slovakia and Czech Republic has a higher number of urban stations. 

 

Figure 19 Distribution of the retrieved stations for the compositional analysis of group B in Cartesian coordinates 
(ETRS89). Units: km. Rural stations in green, suburban in red and urban in black 

5. Isometric transformation of the data  

The data was transformed into clr transformation to visually inspect the relation between the measurements 

and CTM. The clr transformation allows to plot the measurements in 𝐷 number of dimension while for the 

computing of the estimates the ilr transformation was used which works with 𝐷 − 1. 
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6. Construction of the linear model 

 

Table 24 Estimates for the regression models for the compositional data of group B 

Estimate/Model 

covariates 

CTM, Type of 

area and Region 

CTM and 

region 

CTM and type of 

area 

Region and type of 

area 

CTM 

Residual Standard 

Error 

0.5367 0.5633 0.5567 0.5495 0.5702 

Degrees of Freedom 88 100 100 97 104 

Adjusted R2 -0.1932 -0.05 -0.05 -0.08247 -0.009615 

 

During the analysis of the second group of data the model including as covariates the ilr transformation of the Chemical 

Transport Model as a composition, type of area and region shows the lower residual standard error. The stations of 

the urban type of area are significant covariates at alpha=0.05 and the region “GERPOL” (Germany and Poland) at 

alpha=0.1. The combination of the isometric logratio transformation of the CTM and the region GERPOL is also 

significant at 0.1 with a probability of 0.0620. For the purpose of comparison, the model with the ilr transformation 

of CTM and region was further analyzed. 

 

The clr transformation of the observations was plotted against the centered log ratio transformation of the CTM for 

the three regions. The clr measurements did not seem to have a linear relation on the graphs. The isometric logratio 

transformation of the measurements for this regions was also analyzed through the summary statistics and the ANOVA 

test of the model: 

lm(formula = ilr(compY) ~ ilr(compX)) 

 

where:  

compY is the PM2.5 and PMcoarse observation as a composition 

compX is the PM2.5 and PMcoarse CTM measurements as a composition 

ilr is the isometric log ratio transformation function 

 

7. Analysis of the descriptive statistics  

 

The data for the region formed by Belgium, Netherlands and Luxemburg does not seem to have a distribution close 

to the normal even after the clr or ilr transformation. Regions 2 and 3 formed by the countries Germany and Poland, 

and Slovakia and Czech Republic follow a distribution close to the normal. The descriptive statistics for the regions 

are shown on the following tables: 

 
Table 25 Descriptive Statistics for Belgium, Netherlands and Luxemburg Stations 

 
  

Component Mean of the composition 

 

Variation 

Matrix 

 

Metric Variance Metric Standard 

Deviation 

PM2.5 0.83 0.84 0.42 

 

0.65 

PMcoarse 0.16 
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Table 26 Descriptive Statistics for Germany and Poland Stations 

 

 

Table 27 Descriptive Statistics for Slovakia and Czech Republic Stations  

 

 

The region of Germany and Poland shows a higher relation between the components with the lower value obtained 

for the variation matrix (0.56). The metric variance and metric standard deviation for Germany and Poland is also the 

lowest compared to the other two regions. This is in agreement with the results of the evaluation of the models 

explained above in which the GERPOL region presented a significant probability. 

 

8. Variogram  

 
The variograms for Germany and Poland show that the spatial correlation decreases with the distance. For shorter 

distances, the spatial correlation between the measurements is higher. The variograms for Germany and Poland and 

Slovakia and Czech Republic display a nugget effect. The “BENELUX “and “SLOCZ” Region shows a cyclic 

behaviour with high and low correlation along the distance.  

 

Figure 20 Empirical Variogram (black line) and Model Variogram (red line) for Belgium, Netherlands and 
Luxemburg. Horizontal axis: distance in km, vertical axis: semi-variance 

 

Component Mean of the composition 

 

Variation 

Matrix 

 

Metric Variance Metric Standard 

Deviation 

PM2.5 0.8 0.56 0.28 

 

0.53 

PMcoarse 0.20 

Component Mean of the composition 

 

Variation 

Matrix 

 

Metric Variance Metric Standard 

Deviation 

PM2.5 0.78 0.64 0.32 

 

0.56 

PMcoarse 0.22 
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Figure 21 Empirical Variogram (black line) and Model Variogram (red line) for Germany and Poland. Horizontal axis: 
distance in km, vertical axis: semi-variance 

 

 

Figure 22 Empirical Variogram (black line) and Model Variogram (red line) for Slovakia and Czech Republic. 

Horizontal axis: distance in km, vertical axis: semi-variance 
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9. Predicted values 

 
Figure 23 Predicted values (compositional kriging) of the PM2.5 ratios of group B for April 5, 2009. Units: scaled 

PM2.5/PM10 ratios using Aitchison compositional scale. 

10. Backtransformed data 

 

 

 
Figure 24 Backtransformed values (compositional kriging) of PM2.5 for group B for April 5, 2009. Units: µg∙m-3 
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 Cokriging of PM2.5 and PM10 

5.3.1. Analysis and prediction using cokriging for the data grouped by the regions: Central Eastern Europe (CEE), 
North-Western Europe (NWE) and Southern Europe (SE) 

 

1. Analysis of the data set 

 

The data contained data frames for PM10 (1145 observations) and PM2.5 (293 observations). The primary variable to 

use was the PM2.5 since it is sparse and because PM10 has a greater number of observations. 

 

2. Retrieval of the prediction and validation data set 

 

The validation data set from the main attribute PM2.5 was extracted from the original data set. The validation data 

contained 25% of random rows which is 75 observations from the complete data set consisting of 293 observations. 

The remaining data, 218 observations, were assigned as the prediction dataset.   

 

3. Analysis of the descriptive statistics 

 

The results of the descriptive statistics for PM10 and PM2.5 observations and model are shown on table 28  

 
Table 28 Descriptive statistics PM10 observations and CTM for group of regions A 

Statistic PM10 observations PM10 CTM PM2.5 observations PM2.5 CTM 

Minimum 1.79 4.58 3.75 2.28 

1st quartile 25.8 19.86 18.0 13.52 

Median  38.0 26.33 29.0 21.60 

Mean 43.32 27.4 32.75 21.23 

3rd quartile 56.0 33.8 44.58 26.85 

Maximum 152.0 69.35 104.60 56.04 

 

 

The values are within a range of 1.79 to 152 for the PM10 observations and from 4.58 to 69.35 µg m-3 for the CTM. 

The values suggest that the model, in general, underestimates the concentrations. The same occurs between the 

observations and the model of PM2.5 measurements. Authors such as Schaap et al. (2001), Schaap et al. (2009) and  

Adams & Lükewilee, (2010) mention in their work the underestimation of the CTM due to the higher uncertainties in 

PM emission inventories. The mean values of PM10 values are higher than PM2.5 for both, the observations and model. 

 

The histogram of the data for region A was plotted and showed a distribution skewed to the left. The data was log 

transformed and compared to the raw data. The plots are shown in figure 25: 
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Figure 25 Histograms for cokriging data, observations and log transformation of PM10 and PM2.5, of group A  

Both observation measurements, PM10 and PM2.5, seem to have a distribution closer to the normal after the logarithmic 

transformation. This is also reiterated with the Q- Q plot, which shows in figure 26 that the distribution is closer to 

the normal for the logarithmic transformation. 

 
Figure 26 Q-Q plot for cokriging data, PM10 and PM2.5 observations and log transformation, of group A 
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4. Correlations between the observations and the logarithmic transformation of the measurements 

 

The correlation found between the PM2.5 and PM10 observations and the CTM is 0.74 and 0.69 for respectively. 

The correlation between the logarithm of the observations and the model is 0.77 for PM2.5 and 0.68 for PM10. 

 

5. Model  

Two models were constructed to evaluate the performance of the covariates for both, PM2.5 and PM10. The first 

model was prepared with the logarithm of PM2.5 observations regressed on the logarithm of the CTM, type of area 

and region. The formula used was the following: 

 

log (pm.obs) ~log (pm.LE) +x1+x2 

 

where: 

pm.obs are the observations extracted from the stations 

pm.LE are the data extracted from the Chemical Transport Model –CTM- 

x1 is the type of area  

x2 is the type of region  

 

In the case of PM2.5 measurements, the log transformation of the CTM and the Southern Europe region are significant 

at 0.001 level with a probability of <2.2e-16 while the suburban type of area is significant at 0.05 with a value of 

0.02017.  

 

The urban type of area is the only covariate that may not improve the model because the probability (0.066) is higher 

than the tolerance (alpha=0.05). For the PM10 model, the urban region has highest probability value (0.00148) but it is 

still below the tolerance level so it is possible to reject the null hypothesis that β = 0. 

 

The type of area showed the highest probability values for the analysis of variance, therefore the second model was 

constructed with the covariates logarithmic transformation of the CTM and region, to asses if an improvement on the 

model could arise. The equation of the second model was: 

 

log (pm.obs) ~log (pm.LE) +x2 

 

 

 The following table shows the comparison of the fit of the models: 

 

Table 29 Comparison between the fit of the models for cokriging of group A 

 

 

The first model for PM10 and PM2.5 which includes all the covariates show a slightly improvement over the second 

model. Considering the minor improvement of the type of region as a covariate (probability of 0.05 in the ANOVA 

test between model 1 and model 2) and the ambiguous relation of what is defined as a rural, urban or suburban type 

of area, the further analysis and prediction was made for the model 2. 

Model  PM2.5 

Log(CTM), type 

of area and region 

PM2.5 

Log(CTM) and region 

PM10 

Log(CTM), type of 

area and region 

PM10 

Log(CTM) 

and region 

Residual standard error 0.346 0.3491 0.3915 0.395 

Degrees of freedom 212 214 952 954 

Adjusted R2 0.7349 0.7301 0.5485 0.5404 



MAPPING MULTIPLE POLLUTANTS AT A CONTINENTAL SCALE 

37 

In this way, there is also the possibility of comparing the methods, compositional kriging and cokriging, under the 

same conditions. 

 

The summary statistics for the selected model are displayed on table 31 for the PM2.5 and 32 for PM10 in table 32. 

 
Table 30 Summary for the selected PM2.5 regression model of group A 

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-1.15242 -0.21221 0.00457 0.23430 0.87290 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

Intercept 1.67 0.15 10.94 < 2e-16 *** 

log(pm25.LE 0.66 0.04 14.43 <2e-16 *** 

x2NWE -0.19 0.06 -3.053 0.00255 ** 

x2SE -0.65 0.06 -10.8 < 2e-16 *** 

 

 

Table 31 Summary for the selected PM10 regression model of group A  

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-3.6469 0.2140 0.0265 0.2678 1.3396 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

Intercept 1.75 0.12 15.001 < 2e-16 *** 

log(pm25.LE 0.63 0.03 18.7 <2e-16 *** 

x2NWE -0.18 0.03 -5.47 5.72e-08 *** 

x2SE -0.49 0.03 -14.09 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

6. Empirical Variogram, Model Variogram and Cross-Variogram 

 

 

Figure 27 Empirical and model variogram for PM2.5 of group A. Distance in km. 
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Figure 28 Empirical and model variogram for PM10 of group A. Distance in km 

 

There is spatial correlation between the measurements. There is an extended correlation range in the horizontal 

direction for PM10. The spherical variogram models were fitted to the empirical variograms of both measurements. 

The estimated parameters are shown in table 33. 

 

Table 32 Estimated Parameters of the variogram for CEE, NWE and SE for cokriging 

Pollutant Model Partial Sill Nugget Range SSErr 

PM2.5 Spherical 0.0675 0.0533 637 2.67e-06 

PM10 Spherical 0.0981 0.048 396 2.85e-05 

 

The cross variogram shows that the changes in both pollutants are spatially similar. The spherical model was used for 

the cross variogram with a range of 400 km. The results are presented in figure 29: 

 
Figure 29 Cross variograms and variogram model for group A. Distance in km. 
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7. Prediction 

 
Figure 30 Log transformed (cokriging) predictions of group A for April 5, 2009.  

 
Figure 31 Backtransformed prediction after cokriging of group A for April 5, 2009. Units: µg∙m-3. 

 

 

 

8. Mean error and Root Mean Squared Error 

 

Table 33 Mean error and Root Mean Squared Error, cokriging group A 

Measure of error Cokriging Ordinary Kriging 

Mean Error 5.921189e-18 -8.881784e-18 

Root Mean Squared Error 1.1466e-16 5.773314e-17 
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5.3.2. Analysis and prediction using cokriging for the group of regions B: Belgium, Netherlands and Luxemburg 
(BENELUX), Germany and Poland (GERPOL) and Czech Republic and Slovakia (SLOCZ) 

 

1. Analysis of the data set  

The retrieved data for the three regions contained a data frame with 130 observations for PM2.5 and a second with 

551 observations for PM10.  

  

2. Retrieval of the prediction and validation data set  

The validation data set was retrieved as 25% of random observations for PM2.5 (33 observations). The remaining data 

was assigned as the prediction data set with a total number of observations equal to 97. 

 

3. Analysis of the descriptive statistics 

 

The mean and median for both types of particulate matter for the group of regions B are higher than those for group 

A. This could be caused by the countries included, for which is known to contribute with high values of particulate 

matter. According to Adams & Lükewilee, (2010) in rural areas, largely constant NH3 emissions from agriculture have 

contributed to the formation of secondary particulate matter and prevented significant reductions of PM in, for 

example, the Netherlands and north-western Germany. Also, Hamm et al. (2014)  presented the highest values of PM10 

for these countries on the 5th of April of 2009. 

 
Table 34 Descriptive statistics of cokriging data, PM10 and PM2.5 observations and CTM 

Statistic PM10 observations PM10 CTM PM2.5 observations PM2.5 CTM 

Minimum 1.79 8.88 12.84 8.46 

1st quartile 41.19 24.18 35.13 19.50 

Median  55.17 31.62 44.60 25.05 

Mean 58.69 33.25 47.51 26.47 

3rd quartile 75.35 39.19 57.13 31.92 

Maximum 152.0 69.35 104.60 56.04 

 

 

The raw data does not follow a normal distribution and is slightly skewed to the left. The logarithmic transformation 

was applied to the PM10 and PM2.5 data. After the transformation the distribution of the data was skewed to the right 

but closer to be symmetrical and to a normal distribution with a similar value for the mean (red in figure 32) and 

median (green in figure 32). The Q-Q plot shows an improvement on the distribution of the data. 
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Figure 32 Histograms for cokriging data, observations and log transformation of PM10 and PM2.5, of group B  

 

 
Figure 33 Q-Q plot for cokriging data, PM10 and PM2.5 observations and log transformation, of group B 
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4. Correlations between the observations and the logarithmic transformation of the measurements 

 

The correlation between the observatios and the Chemical Transport Model –CTM- is higher for the PM2.5 

measurements resulting on a value 0.73 than for the measurements of PM10 in which the outcome obtained was 0.53. 

 

5. Model 

Four different models were analyzed the same way as for regions “A”. The results in table 34 indicate that the best 
model for both categories of pollutants is obtained from including all the available covariates. Considering the fact that 
the R2 increases with every predictor, the adjusted R2 was evaluated to compare the models with different number of 
independent variables. As in the first analysis, the highest values of adjusted R2 were achieved for the model using the 
three covariates. 

Table 35 Comparison between the fit of the models for cokriging of group B 

 

 

 

 

 
 

The first model is to some extent an improvement over the second model. The difference between the coefficients is 

very low. As in the first cokriging analysis, it was considered that by adding the type of area as a covariate an error 

could be included on the prediction. The previous statement is because while the region used has universally defined 

boundaries, the criteria to define the type of area boundaries on the maps differs according to the author.  

 

Finally the selected model included the logarithmic transformation of the CTM measurements and the type of region. 

The residuals plot of the model for PM2.5 is showed on figure 34: 

 
Figure 34 Residuals plot for PM2.5 model of group B 

 

Coefficient/Model  PM2.5 

Log(CTM), type 

of area and region 

PM2.5 

Log(CTM) and region 

PM10 

Log(CTM), type of 

area and region 

PM10 

Log(CTM) 

and region 

Residual standard error 0.2325 0.2433 0.3968 0.3982 

Degrees of freedom 91 93 461 463 

Adjusted R2 0.6166 0.5803 0.2805 0.2753 
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The analysis of variance and summary statistics (tables 35 and 36) show that the logarithmic transformation of the 

CTM and the region are significant predictors. 

 

Table 36 Analysis of variance for PM2.5 model of group B 

 Df Sum Sq Mean Sq F value Pr(>F) 

log(pm25.LE) 1 7.99 7.99 125.18 <2e-16 *** 

x2 2 0.48 0.24 3.78 0.02633* 

Residuals 93 5.93 0.06   

 

Table 37 Summary statistics for PM2.5 model of group B 

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-0.93870 -0.13928 -0.00143 0.19321 0.51011 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

Intercept 1.40 0.22 6.43 5.47 e-09 *** 

log(pm25.LE) 0.71 0.07 10.57 <2e-16 *** 

X2GERPOL 0.11 0.06 1.78 0.07766. 

x2SLOCZ 0.21 0.08 2.74 0.00732** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

The PM10 model residuals are close to a normal distribution and show a linear relationship between the variables. 

The plot shows some outliers that correspond to two urban stations in Poland (303 and 362) and a rural station in 

Czech Republic (95). 

 
Figure 35 Residuals plot for PM10 model of group B 

The analysis of variance and summary statistics report a high significance for the covariates included. 
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Table 38 Analysis of variance for PM10 model of group B 

 Df Sum Sq Mean Sq F value Pr(>F) 

log(pm10.LE) 1 25.62 25.62 161.61 <2.2e-16 *** 

x4 2 2.92 1.46 9.22 0.0001182 ** 

Residuals 463 73.41 0.16   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 39 Analysis of variance for PM10 model of group B 

Residuals: 

Minimum 1st Quartile Median 3rd Quartile Maximum 

-3.7949 -0.1872 0.0336 0.2252 1.3237 

Coefficients: Estimate Standard Error t value Pr(>|t|) 

Intercept 1.26 0.20 6.16 1.56e-09 *** 

log(pm10.LE) 0.72 0.06 12.75 < 2e-16 *** 

x4GERPOL 0.24 0.06 3.83 0.000143 *** 

x4SLOCZ 0.3 0.07 4.19 3.36e-05 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 
 

6. Empirical Variogram, Model Variogram and Cross Variogram 

Table 40 Model cross variogram coefficients 

Pollutant Model Partial Sill Range SSErr 

PM2.5 Exponential 0.0291 0.0445 131 1.52e-06 

PM10 Spherical 0.1351 0.0265 603 6.79e-06 

 

 

 
Figure 36 Cross variogram and variogram model for group B. Distance in km 
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7. Prediction 

 
Figure 37 Log transformed predictions (cokriging) of group B for April 5, 2009. 

 

 
Figure 38 Backtransformed prediction after cokriging for group B for April 5, 2009. Units: µg∙m-3 

 
 

8. Mean Error and Root mean squared error 

 

Table 41 Mean error and Root mean squared error, cokriging of group B 

Measure of Error Cokriging Ordinary Kriging 

Mean Error 0.0129149 0.008370715 

Root Mean Squared Error 0.110435 0.1149565 
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6. DISCUSSION 

According to the nature of the data both methods, compositional kriging and cokriging, represent an appropriate way 

of prediction. The advantages in both methods are that they minimize the prediction error variance and include the 

concept of best linear unbiased predictor (BLUP).  

 

For this case and in air pollution, cokriging is a good method considering that not all the stations in Europe measure 

the same type of pollutants, therefore, it is possible to include other particles such as the ultrafine particles (PM1) as a 

sparsely sampled variable. For this study, the performance of compositional kriging was tested over a composition of 

two parts due to the lack of data, while according to Tolosana-Delgado in theory a composition of two parts that sums 

up to 1 or 100% is in fact only one part or variable (personal communication, Jan 19, 2015). The compositional data 

analysis and prediction lead to some errors that may be avoided by using a logistic transformation for this two parts. 

Further research is then possible in this sense by either including a greater number of parts or performing logistic 

transformation over the two parts. 

 

The low number of observations for some countries, may have generated less accurate results. While the inclusion of 

multiple pollutants for this study could have generated results with greater accuracy for cokriging, it would have 

decreased the accuracy of the compositional prediction because it only makes sense to analyze the components 

measured at the same spatial location which reduces the number of stations for the analysis. 

 

This research did not include the model of the covariate with the lowest error due to the problem of the difference 

between interpretations of the type of area. In order to generate a better prediction it is possible to test a coherent map 

between this areas and the measurements. 

 

The improvement of cokriging over compositional kriging is not clear since the problem with cokriging is that there is 

no accounting for the correlation between predicted values (Ver Hoef & Cressie, (1993)). As mentioned by Aitchison, 

(2003), there could be a spurious effect on the correlation between the measurements of compositions in the same 

location. Being PM2.5 a fraction of PM10 it is possible that this problem arises in the analysis for close stations given 

that the variance within the measurements is less.  

 

The main problem encountered during this study was the difficulty on comparing results across methods. The two 

methods work in a different way and produce different type of results. In this case even though, the data was 

transformed back to the original measurements on both methods, they are not comparable since one is being 

backtransformed from natural logarithm to the original input and the other one from ratio to the total measure PM2.5 

obtained using the values in the CTM. 

 

The methods also allow to include multiple pollutants in the process but it is necessary to clarify that they do it in two 

different ways. Compositional kriging provides a way to predict multiple pollutants at the same time while cokriging 

can include multiple variables to predict a sparsely sampled variable. Nevertheless it is possible to work with a 

combination of this two methods: compositional cokriging. Compositional cokriging allows to jointly estimate values 

of a coregionalization with spatially correlated components (Pawlowsky, (1989)). 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 Conclusions 

 
Objective 1: Exploratory Analysis 
 

1. Which covariates generate a model with lowest error? 

The comparison between the models present similar values of Residual Standard Error and Adjusted R2 

between the models using the three covariates (chemical transport model from LOTUS EUROS, the type of 

area and region) and the model using the CTM and region. For the compositional analysis of group A, the 

most adequate model was obtained using the CTM and region as covariates. The rest of the analysis obtained 

lower residual standard error and higher adjusted R2 values for the model including the three covariates. The 

difference between this two models was very low (in some cases not significant at α=0.05 in the ANOVA). 

The available data to include the type of area as a covariate needed further preprocessing to ensure that the 

data is coherent when comparing the distinction between the classes, i.e. rural, urban and suburban. This 

process could generate further errors for the prediction that would not be shown in the error of the model. 

Therefore the final model chosen was the one including the region and the CTM as independent variables. 
 

2. What is the spatial distribution of the pollutants using these covariates? 
 

3. What is the spatial variation of the measurements and how can it be interpreted? 

 

The highest levels of pollution found for PM2.5 were located on Central Eastern Europe for the analysis of 

region A and for the countries of Germany and Poland in the analysis of region B so we can say in both cases 

spatial distribution of highest levels of pollution was located around the same places. The high values also 

correspond to West Germany and are concentrated on the location of the industrial agglomerations around 

the river Rhine. 

 

The lower values of PM2.5 were located on the south coast of region A northern-west coast of region B. The 

low values of PM2.5 of region can be explained on higher contributions of the coarse fraction for this areas 

than the particulate matter less than 2.5 µg. 

 

For compositional kriging the results can only be truly analysed in terms of ratios, the backtransformed values 

may include error and were only plotted for explanation purposes. Region A ranged from 5.98 to 91.66 while 

region B ranged from 13.35 to 98.26 for the predictions based on cokriging.  
 

Objective 2: Prediction 

 

4. What are the results of the predictions with respect to the composition of PM2.5? 
 

As stated in the answer to question 3, the compositional prediction can only be discussed in terms of ratios. 

The back transformed data is only an example representing what the actual values could be if the total PM10 

was the measurement obtained for the LOTUS-EUROS Chemical Transport Model. However, the ratios 

also provide important information of the pollutants and can describe in which areas the highest 

concentrations of PM2.5 occur. The areas with low values of this pollutant can be explained on higher 

contributions of total PM10 of the coarse fraction. The ratios ranged from 0.44 to 0.90 for region A and from 

0.50 to 0.96 in region B, the mean values are 0.67 and 0.73 respectively. 
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5. What prediction method produces the lowest error: compositonal kriging or cokriging? 

 

Comparing the cokriging approach with the compositional approach is difficult as the compositional 

approach provides ratios of PM while cokriging can produce actual values. In this analysis we are interested 

in the absolute values of PM2.5. If instead we were interested in the ratios a direct comparison between both 

approaches could be made as done by Odeh et al. (2003). 

 

 

Objective 3: Data quality 

 

6. What is the maximum spatial extent in which can be obtained accurate prediction results? 

 

The spatial extent show similar trends for the data, the difference of the results was mainly between the 

methods and not between the spatial extents. Nevertheless, the prediction for bigger areas show lower errors 

compared to the regions of smaller size. This could be because the amount of data is higher. 

 

7. Which method is suitable for measuring the accuracy of the output? 

 

Following the studies by Odeh et al., (2003), Denby et al., (2005) and Hamm et al. (2014), the model validation 

diagnostics where calculated. The mean error and root mean squared error was computed between the 

prediction and validation dataset. The mean error was used to quantify the bias and the root mean squared 

error to quantify the dispersion of the error. 

 

8. What is the accuracy of the output? 

 

The prediction based on cokriging generated a Mean Error of 5.92e-18 and 0.1104 for regions A and B 

respectively. The RMSE obtained for region A was 1.14e-16 compared to 0.1149 for region B. The prediction 

obtained for a larger spatial extent is more accurate. 

 

 Recommendations 

 

1. The results of this study could be further analysed or improved by including other pollutants that are fractions 

of PM10. The challenge lays in that different stations measure different type of pollutants, in the case of 

cokriging this is a problem because there will be less number of stations to include in the prediction. 

 

2. The model could be improved by testing the performance of a coherent land cover map as a predictor. Others 

covariates such as DEM could also be tested. It is not recommended to include more than 4 covariates for 

the model to avoid falling in the error of overfitting.  

 

3. Other softwares and packages are available to treat compositional data, an example is CoDA work 2015. 
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APPENDICES 

Appendix1: R codes 

# Code to import and process the PM data for group of regions A 

# from Arjo Seger's NetCDF file 

 

# Author: Dr Nicholas Hamm 

# Modifications Marisol Amador 

 

##########Load the necessary libraries 

library(ncdf4) # Version 1.4 (1.3 doesn't seem to work) 

library(gstat) 

library(rgdal) 

 

##########Extract the data   

#Open the netcdf data file (Run it either for PM2.5 or PM10, example for PM2.5) 

#Let's create first the PM2.5   

ap <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__obs__1d__pm25_mass__pm25.nc" 

LE  <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__LE_eu__1d__pm25_mass__pm25.nc"  

 

#For PM10 

#LE  <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__LE_eu__1d__pm10_mass__pm10.nc"  

#ap <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__obs__1d__pm10_mass__pm10.nc" 

 

nc1 <- nc_open(ap) 

nc2 <- nc_open(LE) 

   

# now you can inspect the contents of nc (by typing "nc") 

nc1 

nc2   

  

# Station information   

lat <- ncvar_get(nc1, "station_lat") 

lon <- ncvar_get(nc1, "station_lon") 

height <- ncvar_get(nc1, "station_height") 

st.code <- ncvar_get(nc1, "station_code") 

st.name <- ncvar_get(nc1, "station_name") 

st.type <- ncvar_get(nc1, "airbase_station_type") 

st.type_area <- ncvar_get(nc1, "airbase_station_type_of_area") 

 

##########Create data frames  

# PM2.5 data 

# This dataframe contains the PM2.5 in situ observations  

pm25.airbase <- ncvar_get(nc1, "pm25_mass__pm25") 

# This dataframe contains the PM2.5 LE simulation outputs 

pm25.LE <- ncvar_get(nc2, "pm25_mass__pm25") 

 

# PM10 data 

# This dataframe contains the PM10 in situ observations  

#pm10.airbase  <- ncvar_get(nc1, "pm10_mass__pm10") 
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# This dataframe contains the PM10 LE simulation outputs 

#pm10.LE <- ncvar_get(nc2, "pm10_mass__pm10")   

 

# Close the links to the NetCDF files 

nc_close(nc1) 

nc_close(nc2) 

 

#Create a data frame with the coordinates for April 5 2009 

tmp0  <- data.frame(lat=lat, lon=lon, height=height, st.code=st.code, type=st.type, type_area=st.type_area,  

                    coun=substr(st.code, 1, 2), pm25.obs=pm25.airbase[,826], pm25.LE=pm25.LE[,826]) 

#For PM10                     

#tmp0  <- data.frame(lat=lat, lon=lon, height=height, st.code=st.code, type=st.type, type_area=st.type_area,  

                    coun=substr(st.code, 1, 2), pm10.obs=pm10.airbase[,826], pm10.LE=pm10.LE[,826]) 

 

tmp1 <- tmp0 

coordinates(tmp1) <- ~ lon + lat 

 

##########Coordinates 

#Projected coordinates WGS84 

proj4string(tmp1) <- CRS("+proj=longlat") 

proj4string(tmp1) 

 

# Transform from Lat/Lon to ETRS89, see 

# http://spatialreference.org/ref/epsg/3035/ 

tmp2 <- spTransform(tmp1, CRS("+init=epsg:3035"))   

plot(tmp2@coords) 

#I plot them ignoring the extreme locations (note that there are several  

# Spatial outliers owing to various "outlying" European territories. 

plot(tmp2@coords, xlim=c(2000000, 7000000), ylim=c(90, 6000000)) 

title(main="Airbase Stations", sub="All stations",  

      cex.main = 1.5,   font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue")  

  

#Transform back to a data frame and change the column names to "x"and "y"  

tmp3 <- as.data.frame(tmp2) 

colnames(tmp3)[8]  <-  "easting" 

colnames(tmp3)[9]  <-  "northing" 

#Transform to kilometers 

tmp3$easting <- tmp3$easting/1000 

tmp3$northing <- tmp3$northing/1000 

 

tmp3 <- data.frame(tmp3, lat=lat, lon=lon)  

 

# This data frame contains the station information. 

st.info.airbase <- data.frame(lat=lat, lon=lon, easting=tmp3$easting, northing=tmp3$northing,  

                              height=height, code=st.code, name=st.name, type=st.type, type_area=st.type_area) 

 

########## Save to .Rdata files 

save(st.info.airbase, pm25.airbase, pm25.LE, file="airbase25.Rdata") 

#For pm10 

#save(st.info.airbase, pm10.airbase, pm10.LE, file="airbase10.Rdata") 
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##########Work out Regions 

  

tmp4  <- tmp3 

tmp4["region"] <- NA 

 

tmp4$region[which(tmp4$coun == "BE")] <- "NWE" 

tmp4$region[which(tmp4$coun == "LU")] <- "NWE" 

tmp4$region[which(tmp4$coun == "NL")] <- "NWE" 

tmp4$region[which(tmp4$coun == "FR" & tmp4$lat >= 45)] <- "NWE" 

 

tmp4$region[which(tmp4$coun == "IT")] <- "SE" 

tmp4$region[which(tmp4$coun == "ES")] <- "SE" 

tmp4$region[which(tmp4$coun == "PT")] <- "SE" 

tmp4$region[which(tmp4$coun == "FR" & tmp4$lat < 45)]  <- "SE" 

 

tmp4$region[which(tmp4$coun == "AT")]  <- "CEE" 

tmp4$region[which(tmp4$coun == "CH")] <- "CEE" 

tmp4$region[which(tmp4$coun == "CZ")] <- "CEE" 

tmp4$region[which(tmp4$coun == "PL")] <- "CEE" 

tmp4$region[which(tmp4$coun == "DE")]  <- "CEE" 

 

head(tmp4)#data frame with all fields 

 

##########Inspect the data with regions 

# Get the number of stations for each region 

summary(as.factor(tmp4$region)) 

 

#Show only the data without missing values 

tmp4 <- tmp4[complete.cases(tmp4),] 

head(tmp4)  

plot(tmp4$easting, tmp4$northing, xlab="Easting", ylab="Northing") 

title(main="Airbase stations", sub="Countries of interest", 

      cex.main = 1.5,   font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

dim(tmp4) 

 

#Define the bounding box 

plot(tmp4$easting, tmp4$northing, xlim=c(1000, 6000), ylim=c(1000, 5000)) 

tmp4 <- tmp4[which(tmp4$easting > 2000),] 

tmp4 <- tmp4[which(tmp4$easting < 6000),] 

#tmp4 <- tmp4[which(tmp4$y > 1000),] 

plot(tmp4$easting, tmp4$northing) 

title(main="Airbase stations", sub="Countries of interest", cex.main = 1.5,    

      font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

summary(as.factor(tmp4$type_area)) 

 

#Remove rows where type of area is unknown 

tmp5 <- tmp4[!tmp4$type_area == "unknown", ] 

tmp5 <- tmp5[!tmp5$type_area == "", ] 
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#Plot stations Rural in green, suurban in red and urban in black 

plot(tmp5$easting, tmp5$northing, xlab="easting", ylab="northing",  

     col=ifelse(tmp5$type_area == "rural", 'green', ifelse(tmp5$type_area == "suburban", 'red', 'black'))) 

title(main="European Stations", sub="Rural, Urban and Suburban stations", cex.main = 1.5, 

      font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

 

 

#Name of the table pm2.5 

pm2.5 <- tmp5 

 

#Name of the table pm10 

#pm10 <- tmp5 

 

########### Save file 

#Create a file with measurements for April 5 2009  

save(pm2.5, pm10, file="compositions.Rdata") 

 

# Delete all variables and then restore the key data 

rm(list=ls()) 

 

###############################END################################# 

 

# Code to import and process the PM data for group of regions B 

# from Arjo Seger's NetCDF file 

 

# Author: Dr Nicholas Hamm 

# Modifications M.A. 

setwd("C:/GFM MSc/Thesis/Preprocessing/Data") 

 

##########Load the necessary libraries 

library(ncdf4) # Version 1.4 (1.3 doesn't seem to work) 

library(gstat) 

library(rgdal) 

 

#opens the netcdf data file(Run it either for PM2.5 or PM10) 

#Let's create first the PM2.5   

#ap  <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__obs__1d__pm25_mass__pm25.nc" 

#LE  <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__LE_eu__1d__pm25_mass__pm25.nc"  

#For PM10 

LE  <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__LE_eu__1d__pm10_mass__pm10.nc"  

ap <- "C:/GFM MSc/Thesis/Preprocessing/airbase/airbase/aqord__obs__1d__pm10_mass__pm10.nc" 

 

nc1 <- nc_open(ap) 

nc2 <- nc_open(LE) 

 

# now you can inspect the contents of nc (by typing "nc") 

nc1 

nc2   
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########## Extract the station information   

lat <- ncvar_get(nc1, "station_lat") 

lon <- ncvar_get(nc1, "station_lon") 

height <- ncvar_get(nc1, "station_height") 

st.code <- ncvar_get(nc1, "station_code") 

st.name <- ncvar_get(nc1, "station_name") 

st.type <- ncvar_get(nc1, "airbase_station_type") 

st.type_area <- ncvar_get(nc1, "airbase_station_type_of_area") 

 

##########Create data frames  

# PM2.5 data 

# This dataframe contains the PM2.5 in situ observations  

#pm25.airbase <- ncvar_get(nc1, "pm25_mass__pm25") 

# This dataframe contains the PM2.5 LE simulation outputs 

#pm25.LE <- ncvar_get(nc2, "pm25_mass__pm25") 

 

# PM10 data 

# This dataframe contains the PM10 in situ observations  

pm10.airbase  <- ncvar_get(nc1, "pm10_mass__pm10") 

# This dataframe contains the PM10 LE simulation outputs 

pm10.LE <- ncvar_get(nc2, "pm10_mass__pm10")   

 

# Close the links to the NetCDF files 

nc_close(nc1) 

nc_close(nc2) 

 

#Create a data frame with the coordinates for April 5 2009 

 

#tmp0  <- data.frame(lat=lat, lon=lon, height=height, st.code=st.code, type=st.type, type_area=st.type_area,  

#                    coun=substr(st.code, 1, 2), pm25.obs=pm25.airbase[,826], pm25.LE=pm25.LE[,826]) 

#For PM10                     

tmp0  <- data.frame(lat=lat, lon=lon, height=height, st.code=st.code, type=st.type, type_area=st.type_area,  

coun=substr(st.code, 1, 2), pm10.obs=pm10.airbase[,826], pm10.LE=pm10.LE[,826]) 

 

tmp1 <- tmp0 

coordinates(tmp1) <- ~ lon + lat 

 

##########Coordinates 

#Projected coordinates WGS84 

proj4string(tmp1) <- CRS("+proj=longlat") 

proj4string(tmp1) 

 

# Here I transform from Lat/Lon to ETRS89, see 

# http://spatialreference.org/ref/epsg/3035/ 

tmp2 <- spTransform(tmp1, CRS("+init=epsg:3035"))   

plot(tmp2@coords) 

#I plot them ignoring the extreme locations (note that there are several  

# Spatial outliers owing to various "outlying" European territories. 

plot(tmp2@coords, xlim=c(2000000, 7000000), ylim=c(90, 6000000)) 

title(main="Airbase Stations", sub="All stations",  
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      cex.main = 1.5,   font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue")  

 

#Transform back to a data frame and change the column names to "x"and "y"  

tmp3 <- as.data.frame(tmp2) 

colnames(tmp3)[8]  <-  "easting" 

colnames(tmp3)[9]  <-  "northing" 

#Transform to kilometers 

tmp3$easting <- tmp3$easting/1000 

tmp3$northing <- tmp3$northing/1000 

 

tmp3 <- data.frame(tmp3, lat=lat, lon=lon)  

 

# This data frame contains the station information. 

st.info.airbase <- data.frame(lat=lat, lon=lon, easting=tmp3$easting, northing=tmp3$northing,  

                             height=height, code=st.code, name=st.name, type=st.type, type_area=st.type_area) 

 

##########Save data 

 

# Save to .Rdata files 

#save(st.info.airbase, pm25.airbase, pm25.LE, file="airbase25.Rdata") 

#For pm10 

save(st.info.airbase, pm10.airbase, pm10.LE, file="airbase10.Rdata") 

 

########## Work out regions 

tmp4  <- tmp3 

tmp4["region"] <- NA 

 

tmp4$region[which(tmp4$coun == "BE")] <- "BENELUX" 

tmp4$region[which(tmp4$coun == "LU")] <- "BENELUX" 

tmp4$region[which(tmp4$coun == "NL")] <- "BENELUX" 

 

 

tmp4$region[which(tmp4$coun == "SK")] <- "SLOCZ" 

tmp4$region[which(tmp4$coun == "CZ")] <- "SLOCZ" 

 

tmp4$region[which(tmp4$coun == "PL")] <- "GERPOL" 

tmp4$region[which(tmp4$coun == "DE")]  <- "GERPOL" 

 

head(tmp4)#data frame with all fields 

 

 

##########Analysis of the regions 

 

# Get the number of stations for each region 

summary(as.factor(tmp4$region)) 

 

#Show only the data without missing values 

tmp4 <- tmp4[complete.cases(tmp4),] 

head(tmp4)  

plot(tmp4$easting, tmp4$northing, xlab="Easting", ylab="Northing") 
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title(main="Airbase stations", sub="Countries of interest: BENELUX, SLOCZ, GERPOL", 

      cex.main = 1.5,   font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

dim(tmp4) 

 

#Define the bounding box 

plot(tmp4$easting, tmp4$northing, xlim=c(3500, 6000), ylim=c(2500, 4000)) 

tmp4  <- tmp4[which(tmp4$easting > 2000),] 

tmp4 <- tmp4[which(tmp4$easting < 6000),] 

 

plot(tmp4$easting, tmp4$northing) 

title(main="Airbase stations", sub="Countries of interest", cex.main = 1.5,    

      font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

summary(as.factor(tmp4$type_area)) 

 

#Remove rows where type of area is unknown 

tmp5 <- tmp4[!tmp4$type_area == "unknown", ] 

tmp5 <- tmp5[!tmp5$type_area == "", ] 

summary(as.factor(tmp4$region)) 

summary(as.factor(tmp4$type_area)) 

 

#Plot stations Rural in green, suurban in red and urban in black 

plot(tmp5$easting, tmp5$northing, xlab="easting", ylab="northing",  

     col=ifelse(tmp5$type_area == "rural", 'green', ifelse(tmp5$type_area == "suburban", 'red', 'black'))) 

title(main="European Stations", sub="Rural, Urban and Suburban stations", cex.main = 1.5, 

      font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

 

 

#Name of the table pm2.5 

#pm2.5 <- tmp5 

 

#Name of the table pm10 

pm10 <- tmp5 

 

#Create a file with measurements for April 5 2009  

save(pm2.5, pm10, file="compositions2.Rdata") 

 

# Delete all variables and then restore the key data 

rm(list=ls()) 

 

##############################END############################ 

#Code to extract prediction Grid 

library(ncdf4) # Version 1.4 (1.3 doesn't seem to work) 

library(gstat) 

library(rgdal) 

 

##########Open the file 

#opens the netcdf data file(grid) 

#Grid   

CTMg  <- "C:/GFM MSc/Thesis/Preprocessing/LE-eu-y2009-daily/LE-eu-y2009/LE_eu-y2009_conc-

sfc_20090405_daily.nc"  
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nc <- nc_open(CTMg) 

 

# Now you can inspect the contents of nc (by typing "nc") 

nc   

 

########## Retrieve the Information   

lat  <- ncvar_get(nc, "lat") 

lon <- ncvar_get(nc, "lon") 

tpm25 <- ncvar_get(nc, "tpm25") 

tpm10 <- ncvar_get(nc, "tpm10") 

 

nc1 <- as.matrix(as.numeric(t(tpm25))) 

nc2 <- as.matrix(as.numeric(t(tpm10))) 

 

# The units are in kg*m-3 and it is necessary to tranform them to mg*m-3 

#Transform the tpm25 and tpm10 

pm25.LE <- nc1*1000000000 

pm10.LE <- nc2*1000000000 

 

# SP object from grid data 

att1 <- expand.grid(lat=lat, lon=lon) 

#create a table with the measurements 

j <- cbind(att1, pm25.LE, pm10.LE) 

coordinates(j) <- ~lon+lat 

proj4string(j)<- CRS("+proj=longlat") 

 

##########Save the data 

write.csv(j, sep=";", file="C:\\GFM MSc\\Thesis\\Preprocessing\\Data\\ctm_data.csv") 

 

##########Modify data externally 

#The names for the country for each code were assigned in ArcGis 

 

##########Open new data 

#Open the csv data with the name of the country  

ctm.data <- as.data.frame(read.csv("C:\\GFM MSc\\Thesis\\Preprocessing\\Data\\ArcGis\\ctmdata.csv")) 

 

#Create columns for the regions 

# Region A  

tmp1  <- ctm.data 

tmp1["region"] <- NA 

 

tmp1$region[which(tmp1$CNTRY_NAME == "Austria")]  <- "CEE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Switzerland")]  <- "CEE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Czech Republic")] <- "CEE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Poland")] <- "CEE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Germany")]  <- "CEE" 

 

 

tmp1$region[which(tmp1$CNTRY_NAME == "Belgium")]  <- "NWE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Luxembourg")] <- "NWE" 
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tmp1$region[which(tmp1$CNTRY_NAME == "Netherlands")] <- "NWE" 

tmp1$region[which(tmp1$CNTRY_NAME == "France" & tmp1$lat >= 45)] <- "NWE" 

 

tmp1$region[which(tmp1$CNTRY_NAME == "Italy")] <- "SE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Spain")] <- "SE" 

tmp1$region[which(tmp1$CNTRY_NAME == "Portugal")] <- "SE" 

tmp1$region[which(tmp1$CNTRY_NAME == "France" & tmp1$lat < 45)]  <- "SE" 

 

 

#Region B 

tmp1["regionB"] <- NA 

 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Belgium")]  <- "BENELUX" 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Luxembourg")]  <- "BENELUX" 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Netherlands")] <- "BENELUX" 

 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Germany")]  <- "GERPOL" 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Poland")]  <- "GERPOL" 

 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Slovakia")]  <- "SLOCZ" 

tmp1$regionB[which(tmp1$CNTRY_NAME == "Czech Republic")]  <- "SLOCZ" 

 

#Assign coordinates 

coordinates(tmp1) <- ~lon+lat 

proj4string(tmp1) <- CRS("+proj=longlat") 

proj4string(tmp1) 

tmp2 <- spTransform(tmp1, CRS("+init=epsg:3035")) 

 

ctm.data  <- as.data.frame(tmp2) 

colnames(ctm.data)[9]  <-  "easting" 

colnames(ctm.data)[10]  <-  "northing" 

 

#Transform to kilometers 

ctm.data$easting <- ctm.data$easting/1000 

ctm.data$northing <- ctm.data$northing/1000 

 

#coordinates(ctm.data) <- ~easting+northing 

#proj4string(ctm.data) <- CRS("+init=epsg:3035 +units=km") 

 

#Subset the data  

tmp3 <- subset(ctm.data, !is.na(ctm.data$region) | !is.na(ctm.data$regionB)) 

tmp3$pm25.LE <- tmp3$pm25_LE 

tmp3$pm10.LE <- tmp3$pm10_LE 

R1.ctm.data <-  tmp3[c(7, 9:12)] 

R2.ctm.data <-  tmp3[8:12] 

R1.ctm.data <- R1.ctm.data[complete.cases(R1.ctm.data),] 

R2.ctm.data <- R2.ctm.data[complete.cases(R2.ctm.data),] 

###Save data 

save(tmp3, R1.ctm.data, R2.ctm.data, file="regions_ctm_data.Rdata") 

#############################END################################### 
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## Code for prediction with cokriging 

# Make two data sets, one for regions A: Northwest Europe, one for Southern and one for Central Europe and one 

for regions B: BENELUX, GERPOL and SLOCZ 

# The table contains all the countries for each region and both pollutants PM10 and PM2.5 

 

########## Require Libraries 

library(gstat) 

library(sp) 

 

##########Load the data 

setwd("C:/GFM MSc/Thesis/Preprocessing/Data") 

load("compositions.Rdata") 

#load("compositions2.Rdata") 

 

########## Create validation and prediction data set  

#Retrieve the validation data set  (25% of random observation)  

df <- merge(pm10, pm2.5, by="st.code") 

ss <- sort(sample(1:255, 75))#for region A 

ss <- sort(sample(1:255, ))#for region A 

df <- df[ss,]#for region A 

vd <- df[,c(6:9, 17:18, 23)] 

colnames(vd)[7]  <-  "region" 

row.names(vd) <- NULL 

 

#Retrieve the prediction data set  

pd <- pm2.5[!(pm2.5$lat %in% vd$lat),] 

 

################ Descriptive statistics 

 

#Summary statistics 

summary(pm10[,6:7]) 

summary(pm2.5[,6:7]) 

summary(vd) 

summary(pd[,6:11]) 

 

#Histogram  

hist(pm10$pm10.obs, xlab="PM10 observations", main="Histogram of PM10") 

abline(v=median(pm10$pm10.obs), col="green") 

abline(v=mean(pm10$pm10.obs), col="red") 

hist(log(pm10$pm10.obs), xlab="log PM10 observations", main="Histogram of log PM10") 

abline(v=median(log(pm10$pm10.obs)), col="green") 

abline(v=mean(log(pm10$pm10.obs)), col="red") 

 

hist(pm2.5$pm25.obs, xlab="PM2.5 observations", main="Histogram of PM2.5") 

abline(v=median(pm2.5$pm25.obs), col="green") 

abline(v=mean(pm2.5$pm25.obs), col="red") 

hist(log(pm2.5$pm25.obs), xlab=" log PM2.5 observations", main="Histogram of log PM2.5") 

abline(v=median(log(pm2.5$pm25.obs)), col="green") 

abline(v=mean(log(pm2.5$pm25.obs)), col="red") 
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#qqplot PM10 

qqnorm(pm10$pm10.obs, main="Q-Q plot of PM10") 

qqline(pm10$pm10.obs) 

qqnorm(log(pm10$pm10.obs), main="Q-Q plot of log PM10") 

qqline(log(pm10$pm10.obs)) 

 

#qqplot PM2.5 

qqnorm(pm2.5$pm25.obs, main="Q-Q plot of PM2.5") 

qqline(pm2.5$pm25.obs) 

qqnorm(log(pm2.5$pm25.obs), main="Q-Q plot of log PM2.5") 

qqline(log(pm2.5$pm25.obs)) 

 

 

# Check the correlations of the observations and the CTM 

 

cor(log(pm2.5[,6:7])) 

cor(log(pm10[,6:7]))  

 

 

########## Coordinates 

 

#Define the coordinates 

coordinates(pd) <- ~easting+northing 

proj4string(pd) <- CRS("+init=epsg:3035 +units=km") 

coordinates(vd) <- ~easting.x +northing.x 

proj4string(vd) <- CRS("+init=epsg:3035 +units=km") 

coordinates(pm2.5) <- ~easting+northing 

proj4string(pm2.5) <- CRS("+init=epsg:3035 +units=km") 

coordinates(pm10) <- ~easting+northing 

proj4string(pm10) <- CRS("+init=epsg:3035 +units=km") 

 

plot(pd@coords) 

title( main="Locations of the Prediction Data") 

plot(vd@coords) 

title( main="Locations of the Validation Data") 

 

#Find the values that repeat 

#Find point pairs with equal spatial coordinates 

#When using kriging, duplicate observations sharing identical spatial locations result in  

#singular covariance matrices. This function may help identify and remove spatial duplices 

zd <- zerodist2(pm10, pd) 

zd 

#Remove duplicates 

ndpm10 <- pm10[-zd[,1], ] 

 

plot(pm2.5@coords) 

title(main="PM2.5 Stations") 

plot(pm10@coords) 

title(main="PM10 Stations") 

 



 

62 

#########Define a model 

#Establish regions as factors to use them on as covariates 

 

factor(pd$type_area) 

factor(pd$region) 

 

factor(ndpm10$type_area) 

factor(ndpm10$region) 

 

#Create the model  

mdl2.5 <- lm(log(pm25.obs) ~ log(pm25.LE)+type_area+region, data=pd) 

par(mfrow=c(2,2)) 

plot(mdl2.5) 

anova(mdl2.5) 

summary(mdl2.5) 

 

samdl2.5 <- lm(log(pm25.obs) ~ log(pm25.LE)+region, data=pd) 

par(mfrow=c(2,2)) 

plot(samdl2.5) 

anova(samdl2.5) 

summary(samdl2.5) 

 

mdl10 <- lm(log(pm10.obs) ~ log(pm10.LE)+type_area+region, data=ndpm10) 

par(mfrow=c(2,2)) 

plot(mdl10) 

anova(mdl10) 

summary(mdl10) 

 

samdl10 <- lm(log(pm10.obs) ~ log(pm10.LE)+region, data=ndpm10) 

par(mfrow=c(2,2)) 

plot(samdl10) 

anova(samdl10) 

summary(samdl10) 

 

########## Empirical Variogram 

# Compute variograms for PM10 and PM2.5 

pm2.5.ev <- variogram(log(pm25.obs)~ log(pd$pm25.LE)+region, data=pd, cutoff=1000) 

#pm2.5.ev <- variogram(log(pm25.obs)~ log(pd$pm25.LE)+region, data=pd, cutoff=700)#For region B 

plot(pm2.5.ev) 

pm2.5.ev 

 

pm10.ev <- variogram(log(pm10.obs)~ log(ndpm10$pm10.LE)+region, data=ndpm10) 

#pm10.ev <- variogram(log(pm10.obs)~ log(ndpm10$pm10.LE)+region, data=ndpm10, cutoff= 1100)#For region 

B 

plot(pm10.ev) 

pm10.ev 

 

########## Variogram Model  

pm2.5.mv <- fit.variogram(pm2.5.ev, model=vgm(0.12, "Sph", 300, 0.04)) 

#pm2.5.mv <- fit.variogram(pm2.5.ev, model=vgm(0.06, "Exp", 150, 0.02))#For region B 
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pm10.mv <- fit.variogram(pm10.ev, model=vgm(0.12, "Sph", 400, 0.10)) 

#pm10.mv <- fit.variogram(pm10.ev, model=vgm(0.16, "Sph", 450, 0.14))#For region B 

 

# Plot the Empirical Variogram and Variogram Model  

plot(pm2.5.ev, pm2.5.mv) 

plot(pm10.ev, pm10.mv) 

str(pm2.5.mv) 

str(pm10.mv) 

 

########## Sample variograms and cross-variograms 

# Create a gstat object, g, to hold the data for log(PM10) 

rm(g) 

# We use the prediction sample for pm2.5 (primary) and pm10 (secondary) variable 

g <- gstat(NULL, "ln.pm2.5", log(pm25.obs) ~ log(pm25.LE)+region, pd) 

 

# Append the other variables to g 

g <- gstat(g, "ln.pm10", log(pm10.obs) ~ log(pm10.LE)+ region, ndpm10) 

 

v <- variogram(g) 

# Check the output and plot the result 

v 

plot(v) 

# Define the initial variogram model and append it to g 

g <- gstat(g, model=vgm(0.04, "Sph", 600, 0.1), fill.all=TRUE) 

#g <- gstat(g, model=vgm(0.08, "Sph", 200, 0.04), fill.all=TRUE)# for region B 

# Use the LMC for fitting 

g.fit <- fit.lmc(v, g) 

g.fit 

plot(v, g.fit) 

 

#vgm.map = variogram(g, cutoff = 1000, width = 1000/15, map = TRUE) 

#plot(vgm.map, threshold = 15, col.regions = bpy.colors(), xlab = "", ylab = "") 

 

# Append the fitted model to g 

g <- g.fit 

 

##########Co-kriging 

#Use the grid for prediction 

#grid 

load("regions_ctm_data.Rdata") 

 

row.names(R1.ctm.data) <- NULL 

coordinates(R1.ctm.data) <- ~easting+northing 

proj4string(R1.ctm.data) <- CRS("+init=epsg:3035 +units=km") 

spplot(R1.ctm.data, zcol=1, edge.col=TRUE) 

plot(R1.ctm.data@coords) 

 

 

row.names(R1.ctm.data) <- NULL 

colnames(R2.ctm.data)[1]  <-  "region" 
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coordinates(R2.ctm.data) <- ~easting+northing 

proj4string(R2.ctm.data) <- CRS("+init=epsg:3035 +units=km") 

spplot(R2.ctm.data, zcol=1, edge.col=TRUE) 

plot(R2.ctm.data@coords) 

 

 

tmp1 <- predict.gstat(g, newdata=R1.ctm.data) 

#tmp1 <- predict.gstat(g, newdata=R2.ctm.data) #for regions B 

spplot(tmp1, zcol="ln.pm2.5.pred", scales=list(draw=TRUE),  col.regions=bpy.colors(20))  

tmp2 <- as.data.frame(tmp1) 

tmp2$pm2.5.pred <- exp(tmp2$ln.pm2.5.pred) 

coordinates(tmp2) <- ~easting+northing 

proj4string(tmp2) <- CRS("+init=epsg:3035 +units=km") 

spplot(tmp2, zcol="pm2.5.pred", scales=list(draw=TRUE), col.regions=bpy.colors(20)) 

 

#Perform accuracy assesment using the sub-sample 

aa1  <- predict.gstat(g, vd) 

pm2.5.err1 <- log(vd$pm25.obs) - aa1$ln.pm2.5.pred 

sum(pm2.5.err1)/length(pm2.5.err1) # Mean Error  

sum(pm2.5.err1^2)/length(pm2.5.err1) # RMSE 

 

########## Universal Kriging 

pb.mv <- fit.variogram(pm2.5.ev, model=vgm(0.10, "Sph", 500, 0.9)) 

aa2  <- krige(log(pm25.obs) ~ log(pm25.LE), pd, newdata=vd, model=pb.mv) 

pb.err2 <- log(vd$pm25.obs) - aa2$var1.pred 

sum(pb.err2)/length(pb.err2) # Mean Error  

sum(pb.err2^2)/length(pb.err2) # RMSE 

 

#############################END################################### 

 

#Code for analysis of Compositional Data 

#Author: Marisol Amador 

#Set the libraries 

library(sp) 

library(compositions) 

library(rgdal) 

library(gstat) 

library(plyr) 

library(ggplot2) 

library(MASS) 

library(lattice) 

library(energy) 

 

##########Load the data  

setwd("C:/GFM MSc/Thesis/Preprocessing/Data") 

 

#load("compositions.Rdata") 

load("compositions2.Rdata") 

 

#Join the tables by the station code "st.code 
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comp <- merge(pm10, pm2.5, by="st.code") 

head(comp) 

 

#Check the correlation between PM2.5 and PM10 

cor(comp[,c(6,17)]) 

 

#Create a table with variables of interest 

ncom <- comp[,c(1:12, 17:18)] 

head(ncom) 

 

#Compute PM coarse for the observations 

ncom$coarse.obs <- ncom$pm10.obs-ncom$pm25.obs 

#Compute PM coarse for the model 

ncom$coarse.LE <- ncom$pm10.LE-ncom$pm25.LE 

 

########## Get the ratios and coarse fraction 

#Compute the ratios of the observations 

ncom$ratios.obs <- ncom$pm25.obs/ncom$pm10.obs 

#Compute the ratios of the model 

ncom$ratios.LE <- ncom$pm25.LE/ncom$pm10.LE 

 

#Coarse fraction ratios 

#Compute the ratios of the observations 

ncom$cratios.obs <- ncom$coarse.obs/ncom$pm10.obs 

#Compute the ratios of the model 

ncom$cratios.LE <- ncom$coarse.LE/ncom$pm10.LE 

 

##########Get basic statistics  

obs <- ncom[,c("pm25.obs", "coarse.obs", "pm10.obs", "ratios.obs", "cratios.obs")] 

LE <- ncom[,c( "pm25.LE", "coarse.LE", "pm10.LE", "ratios.LE", "cratios.LE")] 

   

summary(obs) 

summary(LE) 

 

#The coarse fraction seems to be negative and 0 in some cases 

#Delete Rows with negative values or equal to 0 

ncomp <- ncom[!(ncom$coarse.obs <= 0),] 

#show the new statistics 

obs <- ncomp[,c("pm25.obs", "coarse.obs", "pm10.obs", "ratios.obs", "cratios.obs")] 

LE <- ncomp[,c( "pm25.LE", "coarse.LE", "pm10.LE", "ratios.LE", "cratios.LE")] 

summary(obs) 

summary(LE) 

 

#Inspect the number of stations in each country, region and type of area 

summary(as.factor(ncomp$coun.x)) 

summary(as.factor(ncomp$region.x)) 

summary(as.factor(ncomp$type_area.x)) 

 

#Analyze the mean and standard deviation of the ratios  

#By the type of area 
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aggregate(ncomp$ratios.obs, list(type_area= ncomp$type_area.x), mean) 

aggregate(ncomp$ratios.obs, list(type_area= ncomp$type_area.x), sd) 

 

#By the type of area and country 

count(ncomp, c("type_area.x", "coun.x")) 

aggregate(ncomp$ratios.obs, list(type_area= ncomp$type_area.x, country=ncomp$coun.x), mean) 

aggregate(ncomp$ratios.obs, list(type_area= ncomp$type_area.x, country=ncomp$coun.x), sd) 

 

#By type of area and region 

count(ncomp, c("type_area.x", "region.x")) 

aggregate(ncomp$ratios.obs, list(type_area= ncomp$type_area.x, region=ncomp$region.x), mean) 

aggregate(ncomp$ratios.obs, list(type_area= ncomp$type_area.x, region=ncomp$region.x), sd) 

 

#Plot the stations of the table 

plot(ncomp$easting.x, ncomp$northing.x, xlab="easting", ylab="northing",  

     col=ifelse(ncomp$type_area.x == "rural", 'green', ifelse(ncomp$type_area.x == "suburban", 'red', 'black'))) 

title(main="European Stations", sub="Rural, Urban and Suburban stations", cex.main = 1.5, 

      font.main= 2, cex.sub = 0.75, font.sub = 3, col.sub = "blue") 

 

ggplot(ncomp)+geom_line(aes(x=coun.x, y=ratios.obs, colour=type_area.x))+ 

  facet_wrap(~region.x)+guides(col=guide_legend(ncol=3)) 

 

##########Compositional Data Analysis 

#Close the compositions and compare with the ratios 

oc <- ncomp[,c("pm25.obs", "coarse.obs")] 

#This ratios will be the same as the ratios calculated above 

coi <- clo(oc, parts=c("pm25.obs", "coarse.obs"), total=1) 

#compare the summary statistics of "coi" with the ratios of "obs" (They have to be the same) 

#Give scale to the complete data set 

y= acomp(oc) 

#Transformation of the complete data set 

ct <- clr(y) 

it <- clr2ilr(ct) 

plot(ct) 

title(main="Clr Transformed Compostition") 

lines(ct) 

 

plot(it) 

title(main="Ilr Transformed Compostition") 

lines(it) 

 

 

##########Linear model 

#Unified Model 

y= acomp(oc) 

 

covariables= ncomp[, c("pm25.LE", "coarse.LE", "type_area.x", "region.x")]  

x1= acomp(covariables[,1:2]) 

x2=factor(covariables$type_area.x) 

x3=factor(covariables$region.x) 
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#Including all the covariates 

(umodel <- lm(ilr(y)~ ilr(x1)*x2*x3)) 

summary(umodel) 

anova(umodel) 

par(mfrow=c(2,2)) 

plot(umodel) 

 

#Including CTM and region  

(umodel2 <- lm(ilr(y)~ilr(x1)*x3)) 

summary(umodel2) 

anova(umodel2) 

plot(umodel2) 

 

#Including CTM and type of area  

(umodel3 <- lm(ilr(y)~ilr(x1)*x2)) 

summary(umodel3) 

anova(umodel3) 

plot(umodel3) 

 

#Including region and type of area  

(umodel4 <- lm(ilr(y)~x2*x3)) 

summary(umodel4) 

anova(umodel4) 

plot(umodel4) 

 

#Including only CTM 

(umodel5 <- lm(ilr(y)~ilr(x1))) 

summary(umodel5) 

anova(umodel5) 

plot(umodel5) 

 

##########Analysis by region 

#Dependent Variable 

Y <- ncomp[,c("pm25.obs", "coarse.obs")] 

compY= acomp(Y) 

#compY1 <- acomp(compY[ncomp$region.x=="CEE",]) 

#compY2 <- acomp(compY[ncomp$region.x=="NWE",]) 

#compY3 <- acomp(compY[ncomp$region.x=="SE",]) 

 

compY1 <- acomp(compY[ncomp$region.x=="BENELUX",]) 

compY2 <- acomp(compY[ncomp$region.x=="GERPOL",]) 

compY3 <- acomp(compY[ncomp$region.x=="SLOCZ",]) 

 

#Independent Variable 

X <- ncomp[,c("pm25.LE", "coarse.LE")] 

compX=acomp(X) 

#compX1 <- acomp(compX[ncomp$region.x=="CEE",]) 

#compX2 <- acomp(compX[ncomp$region.x=="NWE",]) 

#compX3 <- acomp(compX[ncomp$region.x=="SE",]) 
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compX1 <- acomp(compX[ncomp$region.x=="BENELUX",]) 

compX2 <- acomp(compX[ncomp$region.x=="GERPOL",]) 

compX3 <- acomp(compX[ncomp$region.x=="SLOCZ",]) 

 

#Linear Model for CEE ===== plot, coefficients and Anova test 

opar <- par(mar=c(4,4,0,0), oma=c(3,3,0.1,0.1)) 

pairwisePlot(clr(compX1), clr(compY1)) 

#mtext(text=c("model", "Central Eastern Europe observations"),side=c(1,2), at=0.5, line=2, outer=TRUE) 

mtext(text=c("model", "Belgium, Netherlands and Luxemburg observations"),side=c(1,2), at=0.5, line=2, 

outer=TRUE) 

 

(modelR1 <- lm(ilr(compY1)~ilr(compX1))) 

summary(modelR1) 

anova(modelR1) 

 

#Linear Model for NWE ===== plot, coefficients and Anova test 

opar <- par(mar=c(4,4,0,0), oma=c(3,3,0.1,0.1)) 

pairwisePlot(clr(compX2), clr(compY2)) 

#mtext(text=c("model", "North-Western Europe observations"),side=c(1,2), at=0.5, line=2, outer=TRUE) 

mtext(text=c("model", "Germany and Poland observations"),side=c(1,2), at=0.5, line=2, outer=TRUE) 

 

(modelR2 <- lm(ilr(compY2)~ilr(compX2))) 

summary(modelR2) 

anova(modelR2) 

 

 

#Linear Model for Southern Europe area ===== plot, coefficients and Anova test 

opar <- par(mar=c(4,4,0,0), oma=c(3,3,0.1,0.1)) 

pairwisePlot(clr(compX3), clr(compY3)) 

#mtext(text=c("model", "Southern Europe observations"),side=c(1,2), at=0.5, line=2, outer=TRUE) 

mtext(text=c("model", "Slovakia and Czech Republic observations"),side=c(1,2), at=0.5, line=2, outer=TRUE) 

 

(modelR3 <- lm(ilr(compY3)~ilr(compX3))) 

summary(modelR3) 

anova(modelR3) 

 

##########Descriptive Statistics 

##########Analysis by region 

 

###Central Eastern Europe 

###Second Analysis for BENELUX 

 

#R1 <- subset(ncomp, region.x=="CEE", select=c(pm25.obs, coarse.obs)) 

R1 <- subset(ncomp, region.x=="BENELUX", select=c(pm25.obs, coarse.obs))  

R1 <- clo(R1, parts=c("pm25.obs", "coarse.obs"), total=1) 

#Give scale to the measurements 

SR1 <- acomp(R1) 

 

#Transformation of the data 

#Centered Log-ratio transformation  
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CTSR1 <- clr(SR1) 

ITSR1 <- ilr(SR1) 

ITSR1 <- clr2ilr(CTSR1) 

 

plot(CTSR1) 

title(main="Clr Transformed Region 1 Compostition") 

lines(CTSR1) 

 

plot(ITSR1) 

title(main="Ilr Transformed Region 1 Compostition") 

lines(ITSR1) 

 

#Test for compositional normality 

#Testing Marginals 

qqnorm(SR1, alpha=0.05, main="Normal Q-Q Plot: Region 1 Composition") 

qqnorm(CTSR1, main="Normal Q-Q Plot Clr: Region 1") 

qqline(CTSR1) 

qqnorm(ITSR1, main="Normal Q-Q Plot Ilr: Region 1") 

qqline(ITSR1) 

 

#Mean of the composition 

mean(SR1) 

#Metric Variance 

mvar(SR1) 

#Metric Standard Deviation  

msd(SR1) 

#variation matrix 

variation(SR1) 

 

###North-Western Europe 

###Second Analysis for GERPOL 

 

#R2 <- subset(ncomp, region.x=="NWE", select=c(pm25.obs, coarse.obs)) 

R2 <- subset(ncomp, region.x=="GERPOL", select=c(pm25.obs, coarse.obs)) 

R2 <- clo(R2, parts=c("pm25.obs", "coarse.obs"), total=1) 

#Give scale to the measurements 

SR2 <- acomp(R2) 

 

#Transformation of the data 

#Centered Log-ratio transformation  

CTSR2 <- clr(SR2) 

ITSR2 <- ilr(SR2) 

ITSR2 <- clr2ilr(CTSR2) 

 

plot(CTSR2) 

title(main="Clr Transformed Region 2 Compostition") 

lines(CTSR2) 

plot(ITSR2) 

title(main="Ilr Transformed Region 2 Compostition") 

lines(ITSR2) 
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#Test for compositional normality 

qqnorm(SR2, main="Normal Q-Q Plot: Region 2 Composition", alpha=0.05) 

qqnorm(CTSR2, main="Normal Q-Q Plot Clr: Region 2 composition") 

qqline(CTSR2) 

qqnorm(ITSR2, main="Normal Q-Q Plot Ilr: Region 2 Composition") 

qqline(ITSR2) 

 

#Mean of the composition 

mean(SR2) 

#Metric Variance 

mvar(SR2) 

#Metric Standard Deviation  

msd(SR2) 

#variation matrix 

variation(SR2) 

 

###Southern Europe 

###Second Analysis for SLOCZ 

 

#R3 <- subset(ncomp, region.x=="SE", select=c(pm25.obs, coarse.obs)) 

R3 <- subset(ncomp, region.x=="SLOCZ", select=c(pm25.obs, coarse.obs)) 

R3 <- clo(R3, parts=c("pm25.obs", "coarse.obs"), total=1) 

#Give scale to the measurements 

SR3 <- acomp(R3) 

 

#Transformation of the data 

#Centered Log-ratio transformation  

CTSR3 <- clr(SR3) 

#Isometric log-ratio transformation 

ITSR3 <- ilr(SR3) 

ITSR3 <- clr2ilr(CTSR3) 

 

plot(CTSR3) 

title(main="Clr Transformed Region 3 Compostition") 

lines(CTSR3) 

 

plot(ITSR3) 

title(main="Ilr Transformed Region 3 Compostition") 

lines(ITSR3) 

 

#Test for compositional normality 

qqnorm(SR3, main="Normal Q-Q Plot: Region 3 Composition") 

qqnorm(CTSR3, main="Normal Q-Q Plot Clr: Region 3 Composition") 

qqline(CTSR3) 

qqnorm(ITSR3, main="Normal Q-Q Plot Ilr: Region 3 composition") 

qqline(ITSR3) 

 

#Mean of the composition 
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mean(SR3) 

#Metric Variance 

mvar(SR3) 

#Metric Standard Deviation  

msd(SR3) 

#variation matrix 

variation(SR3) 

 

 

##########Variogram 

#Try different methods to include the model in the variogram 

#Best Model=umodel2 

 

#Data frame  

gr <- data.frame(ncomp$pm25.obs, ncomp$coarse.obs, ncomp$easting.x, ncomp$northing.x) 

colnames(gr) <- c("pm25", "coarse", "x", "y") 

head(gr) 

 

###For Central Eastern Europe   

### Second analysis for Belgium, Netherlands and Luxemburg 

#Y1 <- gr[ncomp$region.x=="CEE",] 

Y1 <- gr[ncomp$region.x=="BENELUX",] 

coord1 <- Y1[,c("x", "y")] 

Y1 <- clo(Y1[,1:2]) 

compY1 <- acomp(Y1) 

 

lrv1 <- logratioVariogram(compY1, coord1) 

plot(lrv1) 

lrvModel1 <- CompLinModCoReg(~nugget()+R1*sph(500), compY1) 

vgmModel1 <- vgmFit2lrv(lrv1, lrvModel1, print.level=0) 

vgmModel1 

plot(lrv1, lrvg=vgram2lrvgram(vgmModel1$vg)) 

 

###North Western Europe 

###Second Analysis for Germany and Poland 

#Y2 <- gr[ncomp$region.x=="NWE",] 

Y2 <- gr[ncomp$region.x=="GERPOL",] 

coord2 <- Y2[,c("x", "y")] 

Y2 <- clo(Y2[,1:2]) 

compY2 <- acomp(Y2) 

 

lrv2 <- logratioVariogram(compY2, coord2) 

plot(lrv2) 

lrvModel2 <- CompLinModCoReg(~nugget()+R1*gauss(100), compY1) 

vgmModel2 <- vgmFit2lrv(lrv2, lrvModel2, print.level=0) 

vgmModel2 

plot(lrv2, lrvg=vgram2lrvgram(vgmModel2$vg)) 

 

 

###Southern Europe 
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###Second Analysis for Slovakia and Czech Republic 

#Y3 <- gr[ncomp$region.x=="SE",] 

Y3 <- gr[ncomp$region.x=="SLOCZ",] 

coord3 <- Y3[,c("x", "y")] 

Y3 <- clo(Y3[,1:2]) 

compY3 <- acomp(Y3) 

 

lrv3 <- logratioVariogram(compY3, coord3) 

plot(lrv3) 

lrvModel3 <- CompLinModCoReg(~nugget()+R1*sph(200), compY1) 

vgmModel3 <- vgmFit2lrv(lrv3, lrvModel3, print.level=0) 

vgmModel3 

plot(lrv3, lrvg=vgram2lrvgram(vgmModel3$vg)) 

 

###########################################Use the CTM grid 

 

load("regions_ctm_data.Rdata") 

plot(R1.ctm.data$easting, R1.ctm.data$northing) 

plot(R2.ctm.data$easting, R2.ctm.data$northing) 

 

#Grids for group of regions A 

R1G <- R1.ctm.data[which(R1.ctm.data$region=="CEE"),] 

R1G <- R1G[,2:3] 

R2G <- R1.ctm.data[which(R1.ctm.data$region=="NWE"),] 

R2G <- R2G[,2:3] 

R3G <- R1.ctm.data[which(R1.ctm.data$region=="SE"),] 

R3G <- R3G[,2:3] 

 

 

#Grids for group of regions B 

R1G <- R2.ctm.data[which(R2.ctm.data$regionB=="BENELUX"),] 

R1G <- R1G[,2:3] 

R2G <- R2.ctm.data[which(R2.ctm.data$regionB=="GERPOL"),] 

R2G <- R2G[,2:3] 

R3G <- R2.ctm.data[which(R2.ctm.data$regionB=="SLOCZ"),] 

R3G <- R3G[,2:3] 

 

##################################################Prediction 

CK1 <- compOKriging(compY1, coord1, R1G, vg=vgmModel1$vg) 

summary(CK1) 

str(CK1) 

a1 <- as.data.frame(CK1$Z) 

a2 <- as.data.frame(CK1$X) 

aa = cbind(a1, a2) 

head(aa) 

 

CK2 <- compOKriging(compY2, coord2, R2G, vg=vgmModel2$vg) 

summary(CK2) 

str(CK2) 

b1 <- as.data.frame(CK2$Z) 
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b2 <- as.data.frame(CK2$X) 

bb = cbind(b1, b2) 

head(bb) 

 

CK3 <- compOKriging(compY3, coord3, R3G, vg=vgmModel3$vg) 

summary(CK3) 

str(CK3) 

c1 <- as.data.frame(CK3$Z) 

c2 <- as.data.frame(CK3$X) 

cc = cbind(c1, c2) 

head(cc) 

 

m <- rbind(aa, bb, cc) 

#n <- cbind(m, R1.ctm.data) 

n <- cbind(m, R2.ctm.data) 

 

coordinates(m) <- ~easting+northing 

proj4string(m) <- CRS("+init=epsg:3035 +units=km") 

spplot(m, zcol="pm25", scales=list(draw=TRUE),  col.regions=bpy.colors(20)) 

#############################END################################### 
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Appendix 2: Prediction Grid for group of regions A and B 

 

 

 

 

 

 

 


