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ABSTRACT 

Change detection of urban objects is an important process that provides basis for: documentation of 
urban development, map updating, disaster evaluation and illegal building detection; because it highlights 
areas that have changed over time. The municipal of Rotterdam acquired airborne laser datasets for years 
2008, 2010, and 2012. In this research only 2008 and 2010 datasets are used and the main aim is to analyse 
the differences between the two data sets. Both datasets are classified into building, water, ground, 
vegetation, and undefined objects in advance. The objects of interest in this research are buildings, 
vegetation and ground with main focus being development of a class-based change detection approach. 
An inventory of expected changes per class is first made and this serves as a basis for developing the 
change detection approaches. Surface separation map is generated based on 3D neighbourhood for 
building and vegetation whereas for ground it is based on 2D neighbourhood. Visualization of the 
separation map is done to identify the appearance of the expected changes per class. Further, the changes 
in each class are verified by applying different thresholds that are defined based on knowledge of classes. 
The changes detected are further classified into relevant and irrelevant changes. Building changes with an 
aerial coverage of above 2m2 are identified as relevant; cut and planted trees are the relevant changes in 
vegetation class and in ground class only changes occurring on the road surfaces are relevant. 
Finally accuracy assessment of building and vegetation change results is done with an aerial photograph of 
2010 as the reference dataset while for ground it was done by visually comparing the change results with 
the surface separation map. 
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1. INTRODUCTION 

1.1. Motivation and problem statement 
Change detection of urban structures is an important step that provides basis for monitoring and planning 
with some of the applications being: documentation of urban development, surveying of construction 
sites, map updating, disaster evaluation and illegal building detection (Hebel et al., 2013). Illegally built or 
demolished building structures are difficult to identify, especially among other buildings in urban areas. 
These structures can be identified by use of change detection information in combination with other 
building records at the municipal authority offices. Local governments are mandated to collect taxes on 
real estate and buildings in their jurisdiction. However, urban landscapes are subject to dynamic changes 
demanding regular update of GIS databases, by detecting changes and revising building data accordingly; 
this is one of the most challenging tasks to the local governments because of lack of fast and automated 
methods to carry out these regular updates.  A number of ways to manually do database updates have 
been proposed in researches before. One of them being by overlaying an ortho-image of the study area 
with the change map and existing database; this will show clearly the areas that have changed for example 
buildings as shown in figure 1-1. Overlaying only the parts of ortho image where changes have taken place  
would facilitate  faster data revision and updates by the human operator  (Murakami et al.,1999). However, 
improving the degree of automation of change detection and updating the databases is essential in a 
dynamic urban environment. 
 

 
Figure 1-1: Grey areas are building data in a building database, white areas are change results, the ortho image is 
displayed only for the changed areas (Murakami et al., 1999). 

 



CHANGE DETECTION OF URBAN OBJECTS IN LIDAR DATA 

 

2 

Conventional methods of urban change detection employ aerial images and manual photo interpretation 
techniques.  Use of manual processes can cause omission errors in the detected changes because human 
errors are present and the processes are costly and time consuming. Also, automated approaches of 
detecting changes from aerial or satellite images have not yet reached the stage where they can perfectly 
identify changes (Murakami et al., 1999).  Other methods of change detection either use maps or DSMs, 
and this poses a problem of information loss, because if there is a change under other objects like 
vegetation, neither maps nor DSM can track. Also changes detected in difference images are generally 
affected by commission errors. Chen and Lin (2010) used aerial images and LiDAR data for detection of 
building changes by applying double threshold strategy. However, this technique was faced by detection 
challenges due to registration errors of the two datasets. 
 
Multi-temporal airborne LiDAR data has been used for change detection in past studies, for example 
study by Murakami et al., (1999).  Xu et al., (2013)  also designed an algorithm for building change 
detection using both geometric and classification information; the data was first classified as explained  in 
Xu et al., (2014).  
 
Having identified the importance of change detection in urban areas and problems of techniques applied 
in previous researches, this study is motivated towards developing an approach of change detection in 
airborne LiDAR point clouds that utilizes geometric and classification information to identify changes. 
The major focus will be to identify the type of changes in different classes by developing a multi-class 
change detection method. Airborne laser scanners provide a reliable way of 3D change detection because 
they generate point clouds with accurate 3D coordinates; changes in both coverage and height can be 
detected (Xiao et al., 2012). 
 
 

1.2. Research identification 

1.2.1. Research objectives and questions 
The main objective of this research to develop a change detection approach, that detects changes in 
airborne LiDAR data by utilizing classification and geometric information to separate false changes from 
real changes in urban areas. 
 
The specific objectives and associated research questions are: 
1. To identify the characteristics of the objects in the classified datasets. 

• What are the properties of objects in an urban area? 
• What geometric properties can be used as constraints in change detection? 

2. To use the knowledge of classes and geometric information to detect and classify changes. 
• What kinds of changes occur per class? 
• How to identify a real change? 
• How do false changes appear in the results? 

3. To perform quality assessment. 
• What is the performance quality of the change detection method in terms of accuracy? 
• How do classification errors affect the quality of detected changes? 
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1.2.2. Innovation 
The proposed method of change detection will use classification and geometric information as constraints 
to separate false changes from real changes. Moreover, this approach will utilize knowledge of classes and 
the kind of geometric changes per class for change detection 

1.3. Thesis structure 
This thesis is organized in 5 chapters. 
Chapter one introduces the problem and motivation of the research; the objectives, research questions 
and innovation of this research are also identified. 
Chapter two is the review of the related work that has been done in the previous researches which 
includes various approaches of change detection both in remote sensing and LiDAR datasets. 
Chapter three describes the research framework. This shows the workflows followed in the research 
together with explanation of each stage of the methodology. 
Chapter four describes the datasets used and the results obtained. 
Chapter five describes the conclusions drawn from the study and makes recommendations for future 
research. 
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2. LITERATURE REVIEW 

2.1. Approches of change detection in imagery 
There are various approaches of change detection using imagery. According to Chan et al., (2001) change 
detection techniques can be grouped into change enhancement techniques and nature-of-change detection 
techniques. Enhancement techniques only show and locate magnitude of changes but do not show the 
nature of changes that have taken place. Enhancement methods in remote sensing include: image 
differencing, principal component analysis and post classification analysis as reviewed in the paper of Lu 
et al., (2004). Other categories of change detection techniques include: direct comparison, model method, 
object-oriented methods, time series analysis, visual analysis and hybrid methods. Each of the methods has 
strengths and weaknesses and no single one is optimal and applicable in all cases (Doxani et al., 2010). 
 
Doxani et al., (2010) in their research used an object-based classification method to automatically monitor 
changes in urban areas. Morphological scale filtering was used to improve the quality of the objects 
obtained and multivariate alteration detection transformation was used to identify the changes. However, 
this method was faced by challenges due to occlusion of some objects especially building walls. Li et al., 
(2010) applied one class support vector machine method to monitor the damaged buildings from very 
high resolution imagery after a disaster. Although conventional methods of change detection could be 
used to assess such damages, analysis is normally done both on damaged and undamaged classes of 
objects which could be time consuming. One-class support vector machine proved to be efficient in 
assessing damages in one class only for example buildings. 
Sharma et al., (2006) employed unsupervised change detection using RANSAC; they modelled signals 
received from objects at two different times as a linear function that resulted as an amplification of the 
image dynamic range. RANSAC was then used to estimate the shift in the dynamic range of the images. 
 

2.2. Approaches of change detection in lidar data 
Various approaches of change detection have been applied in previous studies; some using multi-temporal 
ALS data and others combination of ALS data and aerial imagery. Traditionally, change detection for 
urban environments was done by spectral analysis of aerial images without putting 3D information 
embedded in urban objects into consideration. Although 3D information can be extracted from imagery 
by methods such as stereo-matching, the height information extracted is still less accurate in comparison 
to ALS data.  Vosselman et al., (2005) demonstrates how laser scanning data is useful for change detection 
and semi-automated 3D mapping of urban environments. From this research laser scanning was seen to 
be useful for detecting changes as well as errors in mapping. The results of the research proved that 
automated change detection using laser scanning can also be used as a way of quality control.  Matikainen 
et al., (2010) demonstrated that laser scanner data is useful for updating large scales city maps. The initial 
step involved detection of buildings from LiDAR data based on region-based segmentation and 
classification. Change detection was done by comparing the detected buildings with those on the map. 
They recommended that to improve the change detection results, testing of new and potentially useful 
datasets like full-wave form laser data would improve automatic classification of objects in the scene. 
Chen & Lin, (2010) used double-threshold strategy for find changes in 3-D building models using LiDAR 
data. Changes were identified by height comparison between LiDAR data and the estimates of the 
building models. The double threshold strategy helped to cope with the high sensitivity of thresholding 
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that is normally a challenge in rule-based approaches and also improved the detection accuracy. The 
detection errors that were in the final results achieved were mainly due to registration errors and tiny roof 
variations. The main limitation of this method was in the areas occluded mainly by vegetation. Choi et al., 
(2006) used DSM subtraction method to detect changes. The DSMs were generated for individual LiDAR 
datasets acquired in different dates. Their approach involved three main steps including: identification of 
change areas, derivation of clues of changes and lastly comparing the clues as shown in figure 1-2. This 
method was able to detect the type of changes with a sufficient degree of accuracy and reasonable 
processing time. However, there was no quantitative evaluation carried out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Hebel et al., (2013) employed object-based analysis and on-the-fly comparison of multi-view ALS data to 
detect changes. In this study, Dempster-shafer theory was applied to identify conflicting evidence in the 
laser pulse propagation path. Other attributes were used to distinguish between man-made and seasonal 
changes. According to study by Khoshelham et al., (2010) Dempster-Shafer method proved to have a 
better performance than other methods of building detection. Murakami et al., (1999) in their study did a 
comparison between DSMs acquired in different epochs to detect building changes without omission 
errors. This method proved that errors of commission can be easily detected in the results obtained. 
Rottensteiner, (2007) in his research of building change detection compared building detection results to a 
vector map in order to detect and classify changes. The method took into consideration topological 
differences between buildings extracted from laser data and the vector map. The building detection 
method was adopted from previous work of  Rottensteiner et al., (2007) on automatic building detection 
by fusion of laser scanner data and multi-spectral images.  
 
Stal et al., (2013) also detected 3D changes by DSM subtraction. The two surface models derived from 
ALS data and aerial Photogrammetry acquired in two different dates, were compared to detect and 
quantify 3D changes in buildings using a pixel-based method of differencing as in the equation below: 

Figure 2-1 Urban change detection approach(Choi et al., 2006) 
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(Stal et al., 2013) 
 

The main task was to differentiate unchanged parts, noise, and errors from real significant changes. The 
results obtained were within reasonable accuracy. However, DSM errors, model noise and insufficient 
detail due to low spatial resolution had a significant impact on the accuracy and performance of this 
method. Szostak et al., (2013) in their paper employed nDSM to monitor land cover changes. Use of 
LiDAR dataset allowed automation of the detection process and the assessment of the land cover 
dynamics. Teo & Shih, (2013) employed geometric analysis to perform object-based changed detection 
and change-type determination based on object properties. This was done by generation of a shape 
difference map by subtracting two digital surface models acquired in two different epochs. The method 
utilized height differences and above-ground objects to extract the changed objects. Four classes of 
changes were obtained including: changed building, newly built building where there was a building 
before, newly built building where there was no building before, and demolished building. 80% 
correctness in change classification was achieved with most of the errors being in small and the vegetated 
areas; change detection using full waveform LiDAR would solve these errors. 
 
Vögtle & Steinle, (2004) also applied differencing of laser scanning derived DSMs acquired at different 
dates. Segmentation based on region growing algorithm was first done to generate separate 3D objects; 
this was to avoid ambiguities. However, this method could not provide the full information required for 
disaster management which was the main aim of the study. Vosselman et al., (2004)  carried out a study 
for automatic change detection of buildings in medium scale map using ALS data. The method applied in 
this study involved segmentation and classification of ALS data, followed by matching of building 
segments obtained with the building objects on the  vector database. This was to facilitate updates of the 
topographic database. 
 
Vu & Matsuoka, (2004) employed global histogram thresholding method on LiDAR data for change 
detection of buildings in dense urban areas. The changes detected in this study were not only of buildings 
but also trees due to seasonal changes and newly planted trees. However, their methods were not able to 
differentiate changes due to trees and building using only LiDAR data. This wrong detection was 
eliminated by mismatching in the building database. Reasonable results were obtained but there was need 
for improvements in future.  Xiao et al., (2013) applied a combination of methods based on consistency 
between the occupancies of space computed from different datasets and Weighted Dempster-Shafer 
theory (WDST). This approach allowed detection of changes in large urban areas while separating real 
changes from occlusions. Xiao et al., (2012) applied tree to tree matching algorithm using overlapping 
bounding boxes and point to point distances for change detection of urban trees. Comparison of the two 
methods was done to evaluate constancy and stability of parameters. The detected changes showed the 
two methods can be used for monitoring tree growth and pruning in urban areas. From the research it was 
noted that since mobile laser scanning is good in acquiring data on tree trunks, combining it with ALS 
data would be more efficient for tree change detection. Yu et al., (2004) also examined the feasibility of 
tree-tree matching method in the detection of harvested trees and determination of forest growth in 
LiDAR data.  
 
Xu et al., (2013) employed surface separation map for building change detection. 3D surface separation 
map indicates the differences between two epochs of ALS data. In this research the focus was changes 
occurring on building elements especially on the roof. After the generalization of the surface separation 
map, changes were verified by making rules on the separation map; changes larger than 10cm were 
detected. Several attributes were used to classify the changes including: area, height to the nearest roof, 



CHANGE DETECTION OF URBAN OBJECTS IN LIDAR DATA 

 

8 

normal of nearest roof (type of roof) and the class labels of the changed points. The changes were 
classified into roof, wall, dormers, vehicles, construction above the roof and undefined objects.   The 
result of the study showed that 80% of the changes were correctly interpreted. Most errors occurred in the 
classification of changes due to vehicles and dormers which were confused for constructions above the 
roof. 
 
Various change detection methods have been applied to study changes in urban areas in the past and 
results have been obtained with reasonable accuracy. However, class-based change detection methods 
have not been applied before. Class-based approaches are necessary due to the fact that a single approach 
is not sufficient for detecting changes in different kinds of objects present in urban areas; changes 
occurring in different objects vary in geometric nature, pattern and magnitude. Development of different 
approaches to detect changes in different classes of objects is the main focus of this research. 
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3. RESEARCH METHODOLOGY 

3.1. Introduction  
The focus of this research is to detect changes of various urban objects in ALS data. The main objects of 
interest are buildings, ground and vegetation. The idea is use of knowledge and characteristics of the 
objects to develop a change detection approach for each class of objects. In order to develop the change 
detection approaches proper knowledge of the object characteristics and expected changes is required 
beforehand. This will make it easy to develop an approach that’s fit for each object category. Furthermore, 
a visit to the municipal of Rotterdam was made to find out the changes of interest to the user. This 
information was also used as a reference during the development of the class-based approaches. Section 
3.2 lists the characteristics of the objects of interest as well as the changes of interest to the user as 
specified by municipality of Rotterdam. 

3.2. Inventory of the expected changes per class 
As mentioned earlier, the municipal of Rotterdam officials indicated that they would be interested in 
changes occurring in classes building, ground and trees. Changes in water class will not be of focus in this 
research since it would be difficult to detect changes using ALS data because water absorbs most LiDAR 
pulses so most parts on water lack data. The expected changes per each class of objects are as follows: 

3.2.1. Building  
Buildings are amongst the static objects in urban areas. Over short periods of time there are no major 
changes that could occur on the buildings. Changes occurring on buildings take a particular geometrical 
pattern. The possible changes include: newly built or demolished building extensions that take the same 
orientation as the main building; additional floors to a storey building/ increasing building height; 
reduction/ demolishment of some building floors leading to decrease in building height; a building may be 
demolished and replaced with a new one with the same dimensions; a building could be completely 
demolished and not replaced; new buildings are built; construction of new roof elements like dormers etc. 
All these are real changes.  Some false changes could occur in this class, for example absence of points in 
one epoch due to occlusion or presence of water on a surface could appear as a change.  Xu et al., (2013), 
in their research focused on changes in building roofs, wall, and roof elements which are larger than 10 cm 
and area larger than 4m2; fake changes resulting from lack of data which were identified as unknown. 
 
The focus of this research in this class will be to detect both small and large changes and later show the 
implication of both cases using the approach developed. The municipal of Rotterdam is interested in 
changes greater than 2m2. Although other smaller changes would be detected they will not be relevant to 
the user. 
 

3.2.2. Ground: Roads 
The roads are classified as part of ground in the input data. The road surface itself is more or less static, 
but the surface level can change like in cases where objects like speed bumps and curbs are introduced or 
removed; these could cause changes as small as 15cm to 30cm or when the street as a whole is 
reconstructed and raised to reach a certain level. This is common in the Netherlands because the ground 
level sinks over time. Curbs mainly occur at the edges of the roads or between car lanes and bicycle lanes 
while speed bumps run across the road.  There are also other objects present along the roads like road 
furniture for example traffic light, lamppost etc.  These are expected to have changes over time too. 



CHANGE DETECTION OF URBAN OBJECTS IN LIDAR DATA 

 

10 

However, changes due to road furniture are not of interest in this research. The only changes the user is 
interested in are changes occurring on the road surface.  Dynamic objects also occur on the roads like 
vehicles; these could cause changes in height of between 0.5m to 3m.  However, since vehicles are 
classified to a different class, they will be separated from the ground during analysis to solve the problem 
of false changes. Other false changes left will also be eliminated by the approach adopted.  
 

3.2.3. Vegetation: Trees 
Vegetation in urban areas is found mainly in the parks and the trees planted along the roads. Trees planted 
along the roads in Netherlands appear at particular intervals; this could be an important factor in 
monitoring their changes. Also vegetation has a very unique and irregular point distribution in ALS data; 
this factor is considered while developing a change detection approach for this class. Some of the changes 
that occur on the vegetation include: vegetation growth, this can be increase in width or height. Growth of 
vegetation like trees does not occur in any specific pattern, it’s random. Also new trees could be planted 
where none existed before; trees could also be removed/ cut. Xiao et al., (2012), described a tree oriented 
change detection approach, by identifying the location of trees in both epochs then applied tree to tree 
matching method using a distance threshold of 0.5 meters. In his research he focused on four categories 
to analyze the changes as shown in the table 3.1 below.  
 
Table 3-1: Change detection categories, Xiao et al., (2012). 

Categories Cut Planted Area Change Volume Change  
Change Only in data 1 Only in data 2 Area     Area Volume   Volume  
The focus this research will be to detect planted trees and cut/removed trees; this is in accordance to the 
interest of municipal of Rotterdam. Changes in volumes and area occupied by trees are out of scope of 
this study. 
 

3.2.4. Summary  
Table 3-2 below gives an overview of the magnitude of changes under study per class. 
 

Table 3-2: Magnitude of changes under study per class 

Class  Magnitude  Location of change  
Building  Changes above 10 cm Change on  whole or part of a 

building 
Ground Changes above 15 cm Changes on road surface  

 
Vegetation Changes above  2 meters  Change on a whole tree (cut or 

planted trees 
 
Having identified the geometric characteristics and the nature of the changes per object it is clear that 
different approaches of change detection will need to be developed for different classes; hence class-based 
change detection method as shown in the methodology frame-work in figure 3-1 below. 
It is noted that the focus of this research is not to detect the smallest changes in a particular object; rather 
the main aim is to develop different approaches for change detection per class.  
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3.3. Methodology frame-work 
The methodology of this research is class-based change detection; this is because the expected changes per 
class are already known. The methodology workflow is executed with respect to three sub-objectives 
following the steps in the in figure 3-1. Class-based three-dimensional surface separation map is generated 
by calculating point-wise geometrical difference between the two input point clouds. Workflows are 
developed to detect changes for different objects, the results are assessed and the methods are revised if 
necessary. Finally error analysis is carried out on the results.  
 

 
Figure 3-1: Methodology framework 
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3.4. 3D Surface separation map generation 
The separation map contains geometric indication of whether there is a change or not. Surface separation 
map has been applied before by Vosselman, (2012) in his research on automated planimetric quality 
control in high accuracy airborne laser scanning to evaluate the quality of data in overlapping strips. Xu et 
al., (2013) also applied surface separation map to detect and classify building changes in airborne laser 
scanning data. 
 
To generate surface separation map, the two input datasets were merged and edges derived with the scan 
numbers being the distinguishing attribute. The differences between the two epochs were calculated as the 
distance from a point in the first epoch to its nearest fitted plane in the second epoch (point to plane 
distances). For every point in the first epoch a search is made within a range of 1 meter in 3D or 2D 
depending on the class to check if there is a point in the second epoch. The separation values between the 
two epochs were recorded as residuals stored in the first epoch. If no nearby point is found in the other 
epoch due to lack of data, a separation value of 100 is assigned. Calculation of surface separation map was 
done based on 3D neighbourhood for building and vegetation, whereas for ground it was done based on 
2D neighbourhood. All separation values are positive float values. Figure 3-2 shows surface separation 
map calculation workflow. Figure 3-3 shows an example part of input datasets and the resulting surface 
separation maps. 

 
Figure 3-2: SSM generation workflow 
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This workflow was executed twice by reversing the order of input datasets; this makes it easy to interpret 
various types of changes that occur within the time of study. Further explanation of this is in section 3.5. 
It was noted some objects like newly built buildings with heights above 100 meters were assigned 
separation values of 100 since nearest point is not found. This problem was solved by increasing the 
number of neighbours for edge generation. It was also observed that even if there is classification error in 
one of the datasets, if there is no geometric change there will be no consequence. Example is the building 
in red circles in figure 3-3; it was wrongly classified as ground in 2008 but correctly classified in 2010. 
Since there were no geometrical changes on the building, corresponding separation values are close to 
zero. 
 

a. 2008 dataset b. 2010 dataset 

 

 

c. Separation map  (2008 vs. 2010) with all classes based 
on 3D neighbourhood 

d. Separation map (2008 vs. 2010) with vegetation & 
building based on 3D neighbourhood  and ground 
based on 2D neighbourhood 

Figure 3-3: (a) and (b) Are classified 2008 & 2010 datasets respectively and (c) is separation map with all classes based 
on 3D neighbourhood (d) separation map  with vegetation & building based on 3D neighbourhood  and ground 
based on 2D neighbourhood 
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As mentioned earlier, surface separation map for ground was calculated based on 2D neighbourhood. 
Referring to figure 3-3 d, undefined objects which includes vehicles on the ground were left out during 
calculation of 2D ground surface separation map to avoid their influence to the changes detected on the 
ground.  

3.5. Class-based change detection 
An important task in this research is to identify nature and appearance of the expected changes in the 
surface separation map. Since the appearance of changes in the separation map for different objects is 
different, separate interpretation approaches were adopted as follows. 

3.5.1. Building 
Appearance of expected changes in the surface separation map 
Calculation of the SSM was done with two epochs as inputs in the order 2008 vs.2010 and 2010 vs.2008.  
Changes in buildings exhibit high separation values in the two epochs (both when the separation map is 
generated in the order 2008 vs.2010 and 2010 vs.2008); this is because the distance to nearest point in the 
other epoch is large in both cases. In all the diagrams below the SSM is visualized by colour thresholding 
showing all changes greater than 1 meter; all separation values are positive. 
 
Newly constructed buildings have high separation values in 3D separation map in both epochs. The only 
difference is the visualization in both epochs; the building is visible in the epoch where it is present. In 
figure 3-4a, the part of the building existed in year 2008.  In year 2010 the building was built to its full 
height.  Figure 3-5 also shows visualization of similar cases where in (a) the building was completely not 
present in year 2008; (b) it was present in year 2010. 
Existing buildings that have increased in height have high separation values only in the parts that have 
been newly built within the time of study; while the parts of the building that already existed has low 
separation values as in figure 3-5 c and d. Demolished and newly built building extensions also have high 
separation values in both epochs as in figure 3-5 e and f. 
 
 

  

a. 2008  b. 2010  
Figure 3-4: (a) Part of building in yellow square present in year 2008; (b) building fully built in year 2010 



CHANGE DETECTION OF URBAN OBJECTS IN MULTI-TEMPORAL LIDAR DATA 

15 

 
 

a. 2008  b. 2010  

 
 

 

 

 
c.  2008  d.  2010  

 

 

 

 

e. 2008         f. 2010  
Figure 3-5: (a) Building absent in year 2008; (b) building built in year 2010; (c) &(d) the building increased in height in 
2010. Some parts in the lower parts of the building have high separation values because of occlusion in year 2008; (e) 
building extension present in year 2008; (f) building extension demolished in year 2010. 

Parts of buildings demolished or newly built have high separation values in the 3D surface separation map 
as shown in figure 3-6. 
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a. 2008  b.  2010  
 

 

 

c. 2008  d.  2010  
Figure 3-6: (a) shows parts of the building in squares that were present in year 2008; (b) same parts of the building 
demolished in year 2010; (c) shows part of a building that was not present in year 2008; (d) part of the building built-
up in year 2010 

 
Points with high separation do not always denote a change, for example this could occur due to lack of 
data as a result of occlusion of some parts of the building like the walls in one of the datasets as shown in 
figure 3-7.  As a result these points are assigned high separation values. It is observed that the high 
separation values only occur in the epoch where data is present. In 2D neighbourhood nearest points in 
the other epoch will be found too the only difference is that the separation values will be larger than in the 
case of where the separation map is calculated based on 3D neighbourhood. This case of occlusion will 
further be confirmed by checking whether the corresponding roof of that building has changed or not. 
 
 

 

 
 

 

a. 2008 b. 2008 
Figure 3-7: 3D neighbourhood (a) the wall in black square was occluded in 2008; (b) The wall has high separation 
values because of absent in year 2008 

Lack of data in one epoch could also be as result of surface absorption and this mainly occurs on the roof 
of a building; presence of water on a building roof absorbs laser pulses. This will too have high separation 
values in the separation map based on 3D neighbourhood. However, in the 2D neighbourhood a nearest 
point is not found for these areas, since it is the roof hence a value of 100 is assigned to the points as 
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specified in the SSM calculation algorithm. Figure 3-8 shows and example of part of roof with data gaps 
due to presence of water on the roof surface. 

  

a. 2008 dataset b. 2010 dataset 
Figure 3-8: (a) Absence of LiDAR points on a roof in 2008 data; no separation values when 2008 is input as the first 
epoch, (b) absence of LiDAR points in 2008 data; leads to high separation values in 3D neighbourhood when 2010 is 
input as the first epoch.  

Changes between 10cm and 1m 
All the above visualized changes are above 1 m (points with separation values above 1 meter). Small 
changes up to 10 cm can also be detected, for example on roofs due to changes on dormers. Figure 3-9 
below shows some of changes with separation values above 10cm and below 1 meter. In (a) it is observed 
that building edges have separation values greater than 10 cm; this is due to differences in point density of 
the two epochs. 

 a. 2008 vs. 2010 

 

b.  2008 vs. 2010       c. 2010 vs.2008 
 

Figure 3-9: (a) Overview of points with separation values greater than 10 cm; (b)& (c) points on the roof with 
separation values above 10 cm,  
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Change detection workflow 
Since changes cannot be extracted and interpreted by only thresholding the separation map, a workflow 
was developed to separate the changed points and the unchanged points from the surface separation map 
as shown in figure 3-12.  All points classified as building (roof, wall and roof element) in the scene 
classification were selected from the surface separation map the result is as shown in figure 3-10. This was 
followed by grouping of the points into planar segments  using surface growing method(Vosselman et al., 
2004). Surface growing algorithm is the most common method of segmenting planar surfaces in point 
clouds. This algorithm is similar to region growing used in images. There are two steps involved in surface 
growing; first step being identification of the seed surface point. This is done by plane fitting and analysis 
of residuals between the points and other points within some threshold distance. Points with residuals 
below the threshold distance are considered as part of the plane.  However, there are always outliers in 
LiDAR data; robust least squares adjustments or Hough transform methods are used to fit planes in these 
cases. For this research seed selection is done by direct neighbourhood method, within a radius of 1 
meter. 
 
The second step of surface growing is growing the seed surface which involves fitting of a plane equation 
and points are added to the plane depending on whether they are within the threshold value set. Planar 
surface model was used and maximum distance to plane set at 0.2 meters. The reason for doing surface 
growing is to have compact segments instead of points and this make is easy for further analysis of 
changes per segment. The results for surface growing are as shown in figure 3-11. For changes above 1 
meter, the percentage of point points with separation greater than 1 meter per segment is calculated with 
the formula: 
 
% of points with separation values > 1 m = (number of points with separation >1m)/ (Total of points 
with separation values)  
 
If a segment has over 80% of the points with separation larger than 1 meter, it is labelled as changed. The 
rest of the segments were labelled as unchanged; these change values are stored in plane number tag 
attribute. 80% value was chosen as the optimum after trying several thresholds. The workflow was 
executed a second time; the separation value threshold was lowered to 10cm. Further, the changed and 
unchanged segments were separated and connected component analysis done separately. 2D connected 
component analysis is done on changed segments. Changes on an entire building are expected to be 
grouped as one object hence 2D neighbourhood is preferred. The changed components are further 
inspected and any component with a roof segment greater than 2sqm is labelled as a relevant change and 
the others are labelled as irrelevant changes. At this stage false changes as a result of lack of data on 
occluded walls are eliminated. The roofs are identified by using the class labels. The idea is if the roof has 
not changed the whole building is considered as unchanged. In that the walls cannot change without the 
roof changing.  Xu et al., (2013) treated areas that lack data due to occlusion in a different way; the 
algorithm created labelled the wall points as “unknown” instead of changed if the roof of the same 
building is not changed. These walls are labelled “unknown” due to lack of evidence as to what happened 
with the wall.  These unknown points were excluded from the datasets in further analysis. In this research 
occlusion is confirmed by reversing the order of the epoch during SSM calculation as mentioned earlier. 

 

 
 

 

Figure 3-10: Building points selected using class labels 
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a. Unsegmented building points              b. Segmented building points 
 

Figure 3-11: Building segmentation process (a) input labelled by height colour (b) labelled by segment number 

 

 
Figure 3-12: Building change detection workflow 
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After changed and unchanged segments of the building were separated, 2D connected component analysis 
was done on the changed segments only and the outputs were as in figure 3-13.  
 

 
(a)Part of changed segments before 2D connected component analysis 

 
(b)Changed components after 2D connected components analysis 
Figure 3-13 (a) changed points labelled by plane number, (b) changed points labelled by component number 
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3.5.2. Ground 
Appearance of expected changes in the surface separation map 
In this class the changes of interest are those occurring on the road surfaces. The roads are classified as 
part of ground in the input datasets. Changes on the roads could be as a result of changes on the surface   
and changes due to the dynamic objects like cars present on the road.  However, the user is interested with 
the changes occurring on the road surface. The idea is to separate changes occurring on the road surface 
from the changes resulting from dynamic objects like cars. The first step is interpretation of the surface 
separation map by thresholding the separation values. The same 3D surface separation map generated in 
section 3.4 is used first. It was noted that points on dynamic objects like vehicles on the ground have high 
separation values in the SSM as shown in figure 3-12 below in the black squares. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a. 2008 vs. 2010 

 

b. 2010 vs. 2008 
 
Figure 3-14:  3D Surface separation map showing changes on roads/ground due vehicles in the black 
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Generation of surface separation map with presence of dynamic object on the road surface was observed 
to introduce false changes on the road surface. A different approach was adopted for generation of 
surface separation for this class. 
First step was to select all points labelled ground (label 2) in the two epochs during the scene classification. 
The vehicles were excluded; they have a different class label. The surface separation map was generated 
based on 2D neighbourhood using the same workflow as in figure 3-2. However, some gaps are left on 
the roads in the areas where cars/vehicles were present during data acquisition.  For this reason 2D 
neighbourhood is chosen for surface separation map generation; this is because a nearby point will be 
found in the second epoch within a search radius of one meter eliminating high separation values on the 
gaps. This will eliminate high separation values/ false changes caused by dynamic objects or data gaps on 
the road surface. Figure 3-15 shows surface separation for ground generated in 2D neighbourhood. 
 

 
a. 2008 vs.2010 
 

 
b. 2010 vs.2008 
Figure 3-15: Ground SSM generated in 2D neighbourhood (black areas are software background areas where there 
were buildings and other objects) 
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From figure 3-15 it is observed that the points with high separation values due to dynamic objects like cars 
are not present. So, false changes as a result of the dynamic objects have been eliminated. However, there 
are points still with high separation values, these are points on water or occluded areas by buildings; points 
that were absent in one epoch.  
 
Change detection workflow 
To detect changes points are grouped into two categories depending on the separation values as in figure 
3-16. Points with separation values of 0 to 0.15 metres are considered to be unchanged and points with 
separation values above 0.15 to 0.5 metres are considered to be changed. Points with separation values 
above 0.5m are discarded at this stage because they are likely to be located on water or occluded areas; 
changes on the road surfaces are expected to be less than 0.5 metres. Connected component analysis is 
done on the two classes of points separately. Connected component analysis was chosen since the ground 
surface is not perfectly planar. Connected component analysis clusters nearest points to form individual 
segments that represent an object.  The clustering is influenced by the distance between points. The 
algorithm first selects a seed point, then the points are connected to the selected seed points based on the 
parameters set by the user. Both sets of components are then combined together and components with 
over 85% of points with separation values greater than 0.15 m are labelled as changed. These are the 
changes on the ground surface; relevant to the user. Percentage of points per component is calculated by 
the formula: 
  
% of points with separation values > 0.15 m = (number of points with separation >0.15)/ (Total of 
points with separation values) 
 

 
Figure 3-16: Ground change detection workflow 
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Figure 3-17 shows results of connected component analysis on the ground points. Grouping the points 
before connected components ensured that that points considered to be changed are grouped together 
and the unchanged are grouped together for efficiency in further analysis.  

 
a. Components of  unchanged points 

 
 b. Changed points components  

 
 
c. Combined components of changed and unchanged points  
 
Figure 3-17: Ground points connected component analysis  

3.5.3. Vegetation 
Appearance of expected changes in the surface separation map 
As mentioned earlier changes of interest in this class are only planted and cut trees during the time of 
study. These exhibit high separation values in the 3D surface separation map. However, since in these 
cases a tree is absent in one epoch, high separation values don’t show in both epochs. The high separation 
values only show in the epoch where the trees are present. In the epoch without trees there are no large 
separation values because the distance to the nearest point in the other epoch is less than a meter no 
matter whether there is a tree or not in the other epoch.  Below are some example separation maps; grey 
colour represents point with separation values above 1 meter and white represents points with separation 
values below 1 meter, the separation values are all positive. 
 

  
(a) SSM with 2008 dataset  (b) SSM with 2010 dataset 

  
Figure 3-18: Trees in black squares were present only in 2008; there other trees with low separation values were 
present in both epochs 
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a. SSM with 2008 dataset  
 

b. SSM with 2010 dataset  
 

  

           c.  SSM with 2008 dataset  d.  SSM with 2010 dataset  
 

Figure 3-19: (a) Trees in black squares were present only in 2008 do show high separation values in this case; (b) The 
trees are not present in year 2010; (c) Trees in black square were present only in 2008; (d) The trees are not present in 
year 2010 

 

Change detection workflow 
The procedure followed for change detection is as in figure 3-20. To interpret the changes from the 3D 
separation map, points classified as trees (label 4) are selected like in figure 3-21. If high separation values 
greater than 2 meter are observed only in year 2008 from 3D surface separation map and not observed in 
year 2010; this means the changes detected by the SSM are of cut trees (trees that existed in 2008 but cut 
in 2010) and vice versa. Selection of vegetation points is followed by segment growing on the points. Since 
the segmentation results had a large number of isolated points majority filtering was done to assign the 
points to a segment. The most frequent segment number within a fixed neighbourhood is assigned to 
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these points. Most trees still had multiple segments in them; connected component process was done to 
group the points of each tree into compact components. A Kd-tree was generated from the points and 
each component was labelled with a component number. The result of this process is as shown in figure 
3-22. 
 
An algorithm was created to calculate the percentage of points with separation values greater than 2 
meters per component. Components with percentage greater than 90% were labelled as changed while the 
rest of the components were labelled as unchanged. 90% value was chosen because the changes we are 
looking at involve a change in the whole tree as a component. After trying several threshold values 90% 
was chosen as the best. The value is sufficient enough for detection of cut and planted trees while allowing 
for some error margin in the datasets. At this stage all changes detected in trees/ vegetation (cut and 
planted trees) are relevant to the user; so no need to further label the points. 
 

 

 
  

Figure 3-20: Vegetation change workflow  



CHANGE DETECTION OF URBAN OBJECTS IN MULTI-TEMPORAL LIDAR DATA 

27 

  

a. 2008 dataset b. Trees/vegetation from 2008 
Figure 3-21: (a) shows a section of 3D SSM visualized by separation values; (b) vegetation visualized by separation 
values.  

 

It observed that trees some trees (in black squares) in figure 3-22 (a) have multiple segments hence 
connected components is done as in (b) 
 

 

 

 

a. Part 2008 dataset segmented (b)  Part of 2008  dataset  connected components 
 

Figure 3-22: (a) Result of segment growing, (b) Result of connected component analysis 
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3.6. Quality assessment 
The quality assessment of the change results achieved in buildings and vegetation is done by comparing 
them to ground truth points obtained from an aerial photograph that was acquired in year 2010. 
Assessment of ground changes is done by visual inspection and comparison of the changes to the SSM. 
This is because acquiring ground truth points for ground would be difficult since all parts of the ground 
are not well visible on the image. 

3.7. Differences in change detection approaches for different classes of objects 
Since the main aim of this research is to develop different approaches for change detection per class, we 
note the main differences in the approaches adopted as below:   
 
Table 3-3: Difference in change detection approaches used 

 
Differences in change 
detection approaches 

Classes 
Building Ground Vegetation 

SSM calculation Based on 3D 
neighbourhood 

Based on 2D 
neighbourhood (other 
objects are excluded) 

Based on 3D 
neighbourhood 

Appearance of changes 
in SSM 

 All real changes have 
high separation values in 
both epochs 

All real changes have 
high separation values in 
both epochs 

High separation values 
present in the epoch 
where the vegetation is 
present. 

Grouping points 
together for change 
analysis 

Surface growing 
algorithm 

Connected components 
algorithm 

Connected components 
algorithm 
 

Threshold values for 
change detection 

10 cm for small changes 
and 1 meter for large 
changes 

15cm for changes on 
the ground surface 

2 meters for cut and 
newly grown trees 

Location of changes  Whole building/part of 
building/building 
element 

On the surface of the 
roads/streets 

Change of the trees as a 
whole component 

Relevance of changes 
detected 

Changes above 2 square 
meters in aerial coverage 
are relevant 

Changes on the road/ 
street surface are 
relevant 

Cut and planted trees 
are relevant changes  
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4. DATASETS AND RESULTS 

4.1. Dataset 
The input Airborne Laser Scanner (ALS) datasets were classified using  multiple-entity classification 
strategy approach by Xu et al., (2014). Both datasets are classified into building, ground, vegetation, water 
and undefined objects as shown in figure 4-1 b & c below. The two datasets are located in the commercial 
area of Rotterdam. The point density for 2008 and 2010 are 30 pts/m2 and 35 points/m2 on average 
respectively.  An aerial image acquired in 2010 was used for assessing the accuracy of the results obtained. 
The square black square on the aerial photograph shows the location of the study area.  
 

 
a. location of the study area  

 
 

 
    b. 2008 data c. 2010 data 
Figure 4-1: (a) Location of study area on the aerial photograph acquired in year 2010 (b) & (c) classified input LiDAR 
datasets 

Before starting any analysis some data preparation was done which involved creation of pyramid levels to 
make it easier to work with the data.  Linear reducing factor was left default as 2, minimum 3D distance 
between points based on original points spacing of 0.2 reduction method was used. Both datasets have 6 
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pyramid levels. Further to prevent the surface separation map algorithm from crashing, a thinning factor 
of 2 was introduced. 

4.2. Results  
The change detection procedure for all the classes is composed of change detection, classification of the 
changes and assessment of the accuracy with which the changes were detected. The first steps include 
generation of a surface separation map and change identification using different approaches for different 
classes. All results are shown with the changes stored to one epoch depending on what kind of change is 
on display. 

4.2.1. 3D Surface separation map for all classes 
As mentioned earlier in chapter 3 generation of the surface separation map was done differently for 
different classes of objects. For building and vegetation the surface separation map was based on 3D 
neighbourhood and for ground class it was based on 2D neighbourhood. The surface separation map 
gives clues of where there are changes but further interpretation is applied to separate the changed from 
the unchanged points. The output separation values are saved in the first epoch for display 
 
 

 

 

 
a. 2008 vs 2010 b. 2010 vs 2008 

 

Figure 4-2: 3D Surface separation map calculated inclusive of all classes 

Larger differences between the two datasets can be observed where the grey colour gets deeper. These are 
the areas where large changes have taken places. Large differences are also observed in places where there 
is lack of data in one dataset especially on water surfaces and occluded parts of buildings. In water high 
separation values are seen in both epochs, this is because point density on water is not the same for both 
epochs resulting to high separation values. The surface separation maps are the inputs of the change 
identification. 
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4.2.2. Building change detection  
After the generation of surface separation map the expected changes are visually identified as they appear 
the separation map as discussed in section 3.5.  This is followed by labelling the changed and unchanged 
parts of the buildings as shown in figure 4-3; changes visualized in this figure are greater than 1m.  

 
Figure 4-3: Examples of changes detected; the 1st and 2nd  columns show the  input datasets visualized by 
class labels and the 3rd column show change detection results, purple colour represents changed parts and 
green colour represents the unchanged parts of the buildings.  
 
Some changes detected in buildings are not real changes. These are as a result of occlusion. For example 
only part of the wall of a building has changed like shown in figure 4-4. These were eliminated at a later 
stage by checking if the roof of the building has changed. 

 

Year 2008 Year 2010 New building in 2010 

Year 2008 Year 2010 Part of building built in 2010 
 

Year 2008 Year 2010 Building extension demolished in 
2010 

 
 
 
 
 
 
 
 

 
Year 2008 

 
 
 
 
 
 
 
 
 

Year  2010 

 
Increase in building height in 
2010 
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Figure 4-4: Changes due to occluded walls in red circles 

 
Further the change results are separated into relevant and irrelevant changes based on the size of the roof 
of changed components. Components with a roof greater than 2 m2 meters which was found to be 
equivalent to 10 points in the data used (reduced version of the dataset) were labelled as relevant changes. 
The rest of the components were labelled as irrelevant, as shown in figure 4-5. The false changes resulting 
from occlusion were classified as irrelevant since the roof of the building is not changed.  However, some 
of them were still labelled as relevant changes, this because parts of building roofs greater that 2 m2 have 
changed. This could have been as a result occlusion of some parts of the roof resulting to change on the 
roof. This could also be a result of a change of a building element on the roof. 
 

 
 
 
Figure 4-5: Brown components are the relevant changes and the cyan components are the irrelevant changes 

 
Small changes below one meter were also investigated. Small changes were detected by lowering the 
detection threshold to 10 cm. It is observed some of the small changed seen from on the SSM are not 
detected. This because they are due to small differences in point densities of the two epochs.  By 
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inspecting the separation values of the left out small changes; most of them were found to be close to 10 
cm. It is also observed that lowering the threshold introduces more false positives in the change results. 

 
a.  2008 vs. 2010 SSM                                                  
 

 
b.  changes corresponding to SSM in (a) 
 

 

 

 

c. 2010 vs. 2008 SSM                                                              d.  Changes corresponding to SSM in (c) 
 

 
 
 
 
 
 

 
e. SSM thresholds in display 
 
Figure 4-6: Result of detection of the small changes; in b and d purple represents changed components while green 
represents unchanged components. 
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4.2.3. Ground change detection  
As discussed earlier ground SSM was generated separately in 2D neighbourhood. This helped eliminate 
false changes/ points with high separation values due to presence of dynamic objects on the ground 
surface. Results of the surface separation map are as below. Larger differences are observed in areas where 
there is deeper grey colour. Looking at the road surface most of it is more or less unchanged. 
 

 
 
(a)2008 vs. 2010 
 

 
(b)2010 vs.2008 
 

 
 
Figure 4-7: Ground SSM based on 2D neighbourhood  
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Changes on the ground were labelled by looking at the percentage of points per segment with separation 
values above the threshold set in the change detection workflow. Results of change detection are as in 
figure 4-8; it is clear there are a few changes on the ground surface this is due to differences in height 
values on those particular areas between the two epochs. However, the changes don’t show any pattern. 
These changes could be as a result of small repairs on the road surface causing height differences. 
Comparing the SSM and the change results, it is observed that all the changes as per SSM are depicted in 
the change results. 
 

 

 
 
a. 2008 vs. 2010 SSM showing separation values 

 
 b. Ground changes green represent unchanged while purple represents changed components 
Figure 4-8: Ground changes  
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4.2.4. Vegetation change detection  
The expected changes were identified as they appear in the separation map as highlighted in section 3.5. 
As mentioned earlier cut and planted trees are the changes of interest in this research. It is observed that 
cut or planted trees have high separation values (greater than 2 meters) which are observed in the epoch in 
which the trees are present. For example, if a tree was present in 2008 and cut in 2010, high separation 
values area observed in 2008; whereas there will be no separation values observed when 2010. So to detect 
cut trees in the period 2008-2010, separation values stored in 2008 dataset are used and to detect planted 
trees, separation values stored in 2010 data are used. The points of cut or planted trees are labelled as 
changed and the other trees that were present in both datasets are labelled as unchanged.  
 
 

a. Part of 2008 data cut trees shown 
in purple colour 

b. Part of 2010 data planted trees are shown in 
brown colour 

  
Figure 4-9: (a) shows some of the trees that were cut (in purple colour) during the study period in; (b) shows some of 
the trees that were planted (in brown colour) during the study period; in the diagrams green colour represents 
unchanged trees 

 

 
 

Figure 4-10: Overview of the trees in the whole study area,  purple colour represents cut trees, brown 
colour represents planted trees and green colour represent unchanged trees 
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From figure 4-10 it is observed that some of the objects detected as cut and planted trees are not really 
trees, this is due to classification errors in the input data as discussed later in the document. Elimination of 
these errors can be done by different methods for example use such attributes as component size, height 
span, minimum height, colour, reflectance, normal and plane residual (Wen Xiao et al., 2012). However, 
this is out of scope of the objectives of this research. 

4.3. Accuracy analysis and error description 
The purpose of performing evaluation of the change results is to help determine the quality of change 
detection approaches used per class in terms of accuracy and also to determine how classification errors of 
the input data influence the change results obtained. In this study evaluation of results was carried out 
using an aerial photograph acquired in 2010 as the reference dataset. 

4.3.1. Change detection error due to scene classification error 
The surface separation map was generated from already classified input data. To separate the objects in 
the separation map, selection is done using the classification labels. This follows that classification errors 
in the scene classification are transferred to the change detection stage. 
 
False positives (for example a non-building object is detected as a change in building) 
This happens when there is scene misclassification error in one epoch. Since the scene class labels are used 
for separation of different objects for change detection, wrongly classified objects end up in the wrong 
class. If there is no change in the wrongly classified objects, false positives will not occur in the output 
change results as shown in figure 4-11; the object in black squares was misclassified as a building wall 
(label 7) in both 2008 and 2010 datasets.  Because there is no change in the object it did not appear among 
the changed parts of the building. 
 

 
a. Year 2008   b. Year 2010 

 
       c.  No change detected 

Figure 4-11: False positives avoided even if there is error in classification; (c) represents unchanged building parts 

False positives cannot be avoided if there is a change in the misclassified objects. For example, some 
vehicles on the ground were classified as buildings during scene classification. These were present in 2010 
and absent in the 2008 resulting into a change under class building as shown in figure 4-12 (in red 
squares). The boat in a blue circle was not present in year 2008 and it was misclassified as a building in 
2010. As a result it appeared in change results. These false positives were confirmed from the aerial image 
that was acquired together with LIDAR dataset in year 2010 as in figure 4-13. 
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2008 dataset 
 

 
2010 dataset 

 
Change results purple changed and green unchanged. 
Figure 4-12: False positives in building changes due to classification errors 
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Figure 4-13: Aerial image showing the ground truth of false positives in buildings in 2010 as in figure 4-12 

Some false positives are also found in vegetation change results. Some road furniture and part of building 
walls were wrongly classified as vegetation and hence they appeared in change results since they were 
present in only one epoch. Some of the false positives were avoided because no change had taken place as 
in figure 4-14. 
 
 
 
 
  

Figure 4-14: Features in blue squares are false positives avoided, and features in red square are 
false positives in vegetation changes 
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False negatives 
This happens for example when a change is detected in an object that was not classified correctly in both 
epochs during scene classification. This change will not fall in the correct class of objects and this leads to 
false negatives.  In figure 4-15, a real change in building occurred but since parts of the building were 
classified as vegetation the change ended up in vegetation class. When either of the dataset is correctly 
classified false negatives can be avoided. 
 

 
a. 2008  displayed by class label 

 
b. 2010 displayed by class label 

 
c. Change result 
 

 Figure 4-15: Example of false negatives, in (c) brown colour represent changed components and green colour 
unchanged components 

Additionally, some objects like construction cranes were detected as part of building changes. However, 
further analysis of these kinds of changes is beyond the scope of this research so they were left in the 
change results. For example the construction crane (in red circle) in figure 4-16 was detected as part of 
building changes. 

 
Figure 4-16:  The part in red circle is a construction crane that was labelled as a building change. 
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4.3.2. Change detection error due to change detection method 
By visual inspection it was noted that some unchanged walls are classified as changed. This was also 
confirmed from the aerial images as in the figure 4-17. The approach used for building change detection, 
has the assumption that if the roof of a building has not changed then the walls have not changed; 
meaning the building is unchanged. In case part of the roof greater than 2 m2 was occluded causing a 
change, the false changes on the walls were not eliminated by our method. Some of them remained in the 
final results for example the wall in figure 4-17 a. 

 
a.  occluded wall labelled  as relevant                                                                 
 
 

 
b.  occluded displayed by class label 

 
c. red walls corresponding to the building in a. 

Figure 4-17: False changes on the walls  

The wall was labelled as a relevant change by our algorithm because it was connected to a part of changed 
roof (in black circle) that is greater than 2m2. This could be solved my increasing the threshold. 
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4.4. Accuracy analysis 
Accuracy assessment on the changes detected was done by comparing the changes an aerial photograph 
that was acquired together with LiDAR dataset of 2010. Since only 2010 aerial photograph is available 
from municipal of Rotterdam, the task was to compare the changed  objects with the 2010 image and 
verify whether they really exist on the ground on not; depending on the type of change that is detected. 
For example if a tree was planted in year 2010, the task was to confirm whether it’s really there on the 
aerial photograph or not. 
 
All vegetation and building changed components were converted to CSV files and loaded to ArcGIS. 
Polygons were created for each of the classes to make overlay with the aerial image easier. 30 and 39 
random samples were selected for building and vegetation respectively. Ground truth points were digitized 
and error analysis carried out as follows: Correctness, completeness and quality of both vegetation and 
building changes were evaluated. Correctness represents the percentage of correctly detected changes 
while completeness presents the percentage of the reference data. Quality is a measure of how bad or 
good change detection results are; it combines both correctness and completeness together. These 
measures are determined by considering three classes of factors per category of objects including true 
positives (TP), false positive (FP) and false negative (FN). The formulas are as shown below according to 
McKeown & Bulwinkle, (2000). 
 

Completeness = TP / (TP+FN) 
Correctness = TP / (TP+FP) 
Quality = TP / (TP+FN+FP) 

 
Table 4-1: Completeness and correctness of the change results 

2008 vs.2010 changes 
 True positive False positive False negative Correctness completeness 
Building 18 12 5 60% 78% 
Vegetation 28 11 0 72% 100% 
 
 
Table 4-2: Percentage of error due to Scene classification and errors due to change detection methods 

 False Positive False negatives  
Building 12 11 5 5 Errors due to scene 

classification (94%) 
1 0 Errors due to limitation of 

change detection method (6%) 
Vegetation 11 9 0 0 Errors due to scene 

classification (82%) 
2 0 Errors due to limitation of 

change detection method (18%) 
 
Accuracy assessment of ground components has not been done using aerial image because it is difficult to 
obtain reference samples since all parts of the ground are not well visible from the aerial photograph. 
In building some of false positive were due to our method, this was as a result of some cases as explained 
in section 4.3.2. Vegetation some of the errors were due the season when the data was acquired. Some 
trees were present in the aerial photograph but they had no leaves. These trees had very low point density 
in the LiDAR data hence were in case there is a change it was not detected by our method.  
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5. CONCLUSION AND RECOMENDATIONS 

5.1. Conclusion 
Different change detection approaches for different classes have been presented in this research. These 
were developed to meet the objectives of the study and answer the research questions.  The research 
began with identification of geometric properties of the objects in urban areas, this involved description of 
the expected changes per class including their magnitude in section 3.2. Further the appearance of 
expected changes in the surface separation maps was discussed. This was followed by development of 
change detection approaches per class of objects in section 3.5. Finally, accuracy analysis and error 
description was done in section 4.3 including a discussion of how the classification errors affected the 
quality of the change detection results. 
The following conclusion can be drawn from the different approaches applied for change detection: 

• Use of 3D Surface separation map method as the first step of getting change clues provided a 
good basis for change detection for buildings and trees. 

• Surface growing has proven to an efficient algorithm to group building points in compact 
segments for further analysis.  2D connected component analysis on building changed points was 
efficient enough in grouping a changed building into one compact component. 

• Generation of surface separation map method based on 2D neighborhood for ground points was 
able to avoid false changes due to dynamic objects like cars. Further grouping of ground points 
using connected component algorithm was observed to be advantages since ground surface are 
not perfectly flat. 

• Connected components algorithm was also found efficient in clustering tree points together for 
further analysis of changes. 

Changes in all the classes i.e. building, ground and vegetation can be correctly detected and classified using 
our change detection method provided that the input data set is correctly classified. The correctness for 
building was found to be 60% and for trees/ vegetation was found to be 72%.  Separation of relevant and 
irrelevant changes was faced by errors as a result of scene classification and also some limitations in the 
methods used. 
Our change detection method detected larger changes for example changes on a whole building with 
higher accuracy. However, reduction the threshold to 10cm to detect smaller changes in building was 
observed to introduce more false positives in the results. Changes on trees were detected with high 
accuracy; the errors present are due to scene classification errors. Improvement of scene classification 
methods would be necessary since the change detection methods developed in this research are class-
based. 
All the objectives of the research were achieved and the research questions answered by the approaches 
developed. 
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5.2. Recommendations 
The proposed methods were feasible enough to achieve the research of objectives of this research. 
However, improvements could still be made since the achieved results are not perfect, hence the following 
recommendations: 

• The study area was only a small part of city of Rotterdam in future analysis could be run on the 
whole city to achieve more feasible results that would be of help to the municipality of 
Rotterdam. 

• Classification of the input data introduced errors in the change detection results because some 
objects were misclassified to the wrong classes; the classification method could be improved for 
better results in future. Also incorporating more factors to separate relevant and irrelevant 
changes in the results would improve the methods used for change detection.  

• For accuracy assessment aerial images of both epoch acquired at the same time with the LiDAR 
data would be more helpful for accuracy assessment in future. Also having GPS acquired ground 
truth points for ground class, would be helpful for quality assessment of ground changes. 
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