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ABSTRACT 

Following the request from the Municipal of Rotterdam to determine the quality of the 2D maps 

in their registry using the newly acquired ALS data,  this thesis focuses on determining measures 

that will be used to identify, separate, measure and classify differences on the map by comparing 

with point cloud data from an Airborne Laser Scanning system. This approach is vector based 

which first applies a symmetrical difference operation to identify differences between outlines 

from the 2D map and outlines derived from point clouds. These differences are separated into 

two sets using a threshold value; the two sets are the large and small differences. The small 

differences are used to determine the geometric accuracy of the map by statistically analysing 

point-to-line distance measurements. The accuracy of the map is reported to be approximately 

25cm. The large differences are further classified into four classes – sunshades, building 

extensions, vegetation and mixed objects – by employing a supervised classification scheme on 

the height distribution of the laser point clouds. A 70% overall accuracy is derived for this 

classification. 
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1. INTRODUCTION 

1.1. Motivation and problem statement 

 
The topic of change detection continuously sparks interests in the field of remote sensing. Its applications 

cut across various environmental fields. According to Singh (1989), change detection has been applied in 

“land use change analysis, monitoring of shifting cultivation, assessment of deforestation, study of changes 

in vegetation phenology, seasonal changes in pasture production, damage assessment, crop stress 

detection, disaster monitoring snow-melt measurements, day/night analysis of thermal characteristics and 

other environmental changes”. Nowadays, sensors with varying capabilities are developed frequently 

providing more possibilities in application fields but this also brings challenges on how the data obtained 

from them can be effectively used for specific applications like change detection.  

 

In recent times, LiDAR (Light Detection and Ranging) has gained prominence in remote sensing, and has 

been used also for monitoring environmental events and detecting changes.  

 

Change detection is usually executed to update maps and spatial databases by comparing datasets of two 

or more epochs. With LiDAR data, this can be done by comparing multi-temporal data like in (Murakami 

et al., 1999), (Teo and Shih, 2013), (Xu et al., 2013) and (Rutzinger et al., 2010) or by comparing a single 

epoch data with a particular map (Vosselman et al, 2004). Other media of comparisons may exist like 

when compared/combined with satellite images (Malpica et al., 2013).  

 

In comparing maps, questions about their correspondence are often raised, these questions concern their 

spatial accuracy, the errors that may exist in each map, and the errors that may arise from the methods 

used to compare them. This calls for the need to evaluate and classify the kind of changes on the maps 

and further investigate the errors contained therein. 

 

When change detection methods are implemented, general quality assessments are usually carried out to 

evaluate their performances and products obtained.  Some common quantitative measures used are 

confusion matrix, completeness and correctness analyses (Freire et al., 2014). These measures are usually 

not sufficient for checking the quality of individual objects in terms of their spatial correlation or deviation 

from reference data of higher accuracy. Hence there is a shortcoming in analysing the geometric quality of 

specific objects derived from the methods applied. 

 

Furthermore, in analysing quality issues, Vosselman et al. (2004) stressed  on the importance of 

considering  the rules and specifications employed when 2D maps are to be updated. One striking point 

was that change detection can be useful in identifying quality issues on 2D maps. If after change detection 

is implemented it is observed that some objects still contain errors, misalignments and displacements, then 

it becomes imperative that the reasons for such deviations are carefully investigated. Quality 

assessment/error analysis is applied if the differences are small and change classification if the differences 

are large. 
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Freire et al. (2014) have indicated that assessing quality of spatial information can be done by measuring its 

compliance with independent sources. Usually the quality of checking the accuracy of a certain map may 

involve the use of ground truth data from field surveys, but the challenge here is that such data is 

expensive and not sufficient to cover large areas. Another alternative is comparing with another dataset 

with larger accuracy; this is the approach to be adopted in this research in order to analyse the outline 

quality of buildings in a 2D map. Laser data proves to be an effective independent source of reference. 

There have been reported accuracies of 15-25cm planimetry (Rentsch and Krzystek, 2009) and 

subsequently this makes them suitable for  updating and checking the quality of 2D maps. 

 

Before LiDAR data can be used as quality control for a map, it is important to ascertain that it is fit for 

such purpose by assessing its internal quality (Oude Elberink and Vosselman, 2011). The specifications of 

the data are also critical in obtaining reliable information on the accuracies of the data. 

 

With these numerous challenges, the motivation for this work lies in the need to employ measures for 

determining the accuracy of a base map by comparing with point cloud data of higher planimetric 

accuracy. The differences between the map and LiDAR data can be large, indicating a change, or small, 

indicating error in the map. 

 

 

1.2.  Research identification 

1.2.1. Research objectives 

 
The main objective of this research is to develop an improved procedure for checking the quality of a 2D 

base map by comparing changes with a LiDAR data set. This involves the following sub-objectives: 

 

a) To develop appropriate measures to assess the quality of a map. 

b) To separate the differences caused by real changes from the differences caused by errors in the 

map. 

c) To interpret the real changes caused by large differences in order to understand which changes 

are relevant and should lead to map updating. 

 

1.2.2. Research questions  

 
1) What suitable measures can be used to evaluate discrepancies between objects from 2D map and 

point cloud data? 

2) How are differences caused by change and those caused by data inaccuracies discriminated? 

3) Which features are suitable for change classification? 

4) Which kind of changes can be distinguished? 
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1.2.3. Innovation 

 
Innovatively, this study aims to: 

 

a) Implement change detection as a means to carrying out quality assessments on 2D maps. 

b) Derive classes for change based on error magnitude and error distribution. 

This provides a new dimension to the application of change detection with emphasis on determination of 

geometric accuracy. 

 

1.3. Structure of the thesis 

 

This thesis is structured into six chapters. Chapter 1 contains the motivation and problem statement, the 

research objectives and questions, and the innovation. Chapter 2 reviews literature of closely related works 

on the topic. Chapter 3 introduces the processes employed with focus on the preparation of data. In 

chapter 4, a detailed analysis of the geometric accuracy determination is presented, the results are 

discussed too. Chapter 5 focuses on the interpretation of “large” changes. Chapter 6 is for the conclusion 

and recommendations from the author.
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2. LITERATURE REVIEW 

2.1. Introduction to change detection 

 
The terms “monitoring” and “dynamic” are typically associated with change detection. Knowing that one 

constant factor in man’s environment is change; it comes as no surprise that scientist, especially in the 

field of environmental sciences, remote sensing and GIS, dedicate vast mental and financial resources in 

investigating the dynamics of landforms, objects and even people by employing critical monitoring and 

observation techniques. Change detection is therefore not a new thing to researchers. In the field of 

remote sensing, several sensors and methods have been employed, Gong et al., (2008) provide detailed 

descriptions of such techniques and methods by categorising the algorithms used in change detection as 

summarised in figure 2-1 below. 

 
Figure 2-1: Classification concept of change detection algorithms (Gong et al. 2008). 
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In this description, change detection algorithms are grouped into seven classes – “direct comparison, 

classification, object-oriented method, time-series analysis, visual analysis and hybrid method”. The hybrid 

method usually consists of a combination of two or more of the other methods. The paper also talked on 

the effect and methods of geometric correction as well as the effect of radiometric correction. Geometric 

corrections were discussed to be prerequisites for the implementation of change detection algorithms as 

multi temporal images require a desirable level of spatial co-registration to minimise false indications of 

changes. It stressed that a sub-pixel level is accepted for geometric registration accuracy. However, there 

were instances where the reliability of the sub-pixel accuracies were questioned especially when different 

data sources are considered. In using multi-sensor images, several challenges are posed that affect the 

quality of geometric registration. These challenges are due to varying characteristics of the images such as 

“imaging models, imaging angles and conditions, curvature and rotation of the earth” etc. and are 

pronounced in areas of high terrain variability like in mountainous and urban scenes. The use of feature 

based methods of change detections are considered to be less demanding for registration accuracies since 

changes are detected on extracted objects, but the level of reliability of the results from such procedure are 

still yet to be fully investigated. On the issue of radiometric correction, the need to correct for external 

physical and environmental factors which often introduce what may be considered as noise on the images 

was also discussed, these kind of factors like cloud cover, different illumination angles etc. often affect 

change detection results and need to be corrected before changes are analysed. One aspect of correction 

which is termed absolute radiometric correction involves adjusting radiation values to standard values by 

manipulating spectral curves in the lab, this approach often comes with a great setback in reality because 

of the difficulty and cost  in acquiring atmospheric parameters and ground objects (used as reference data) 

for current and past scenes. On the other hand, the relative radiometric correction is often used, as the 

characteristics of a reference image are used to correct the affected image; this is mostly done using 

histogram regularisation algorithms. This process however was adjudged to be unnecessary for feature 

based algorithms. 

The application of any of the methods of change classification algorithms follows the pre-processing stage 

of radiometric and geometric corrections. Choosing which method to adopt often depends on the 

availability of resources, operator’s knowledge and competence, data sources, scene characteristics and a 

host of other factors. Each class possesses its own sets of merits and demerits and the choice of method 

depends on the analyst’s interpretation of the underlying circumstances. Consequently, assessments are 

implemented to ensure that the methods selected and used meet certain quality standards. These 

assessments are often based on the use of reference data which may be acquired with various approaches. 

Whatever approach is used, whether field survey, use of high resolution images or visual interpretations, it 

is worth mentioning that there are usually advantages and disadvantages which are dependent on the 

desired application and cost implications. The use of pixel based assessment have been prominent which 

leads to Gong et al., (2008) suggesting that more should be done to improve on object or feature based 

accuracy assessment methods. 

2.2. Change detection with airborne laser scanning data  

 
Already, a lot of research has been done on change detection using LiDAR data. Due to the limitations 

(which include time consuming processes, costly operations and inclusion of omission errors) of using the 

manual methods, Murakami et al., (1999)  first employed the use of Airborne laser Scanning (ALS) data 

for detecting changes in buildings in the city of Minokama, Japan. The authors started by investigating the 

capabilities of the ALS data in meeting the requirements for detecting changes in an urban area where 

buildings could change in both vertical and horizontal dimensions. The initial consideration addressed 

objects on the scene which were considered to be a minimum of 2m by 2m in horizontal direction and 
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about 2m for minimum floor height; hence the expectation for the ALS was that it would be better than 1 

meter in both directions for the changes to be effectively detected. An accuracy validation was done to 

conclude that the ALS data had a vertical accuracy of 10-20 cm and a horizontal accuracy of about 1m 

which made it suitable for the study. The approach simply employed differencing of multi-temporal digital 

surface models (DSM) to detect changes. To minimise commission errors, morphological operations were 

used to remove edges on objects that were unchanged. The selected threshold for the operation was based 

on the value derived for the horizontal accuracy of the ALS data. The authors argued that by eliminating 

the omission errors, manual inspection will be focused on areas with actual changes which in turn will 

address the removal of commission errors in a more simplistic manner thereby saving time. 

 

               
Figure 2-2: A difference image derived from subtracting two ALS data (left) and a morphologically 
transformed image of the same scene after commission errors are removed (right). Culled from 
Murakami et al., (1999). 

 

Since achieving this feat which was automatic, LiDAR based change detection has taken several 

approaches and automation remains the main goal for some of the methods adopted. Matikainen et al., 

(2010) used DSM derived from airborne laser scanner data in combination with digital aerial image to 

initiate the change detection process and later applied object based image analysis on individual building 

objects to update base maps. The approach used three sets of data; ALS data, colour ortho image mosaic 

and two building maps. All data were processed in raster formats. The ALS data was classified into ground 

and non-ground where points above the threshold of 2.5m were considered to be non-ground. The ortho 

mosaic was generated using DSM derived from the ALS data and images from an aerial digital camera. 

The map data was fetched from an existing database and the most recent one was adjusted to create an old 

map by removing new buildings and adding demolished ones. To start the comparison, buildings were 

first detected in the ALS data by implementing a segmentation algorithm which first separated buildings 

and trees from the ground surface. A further classification was adopted which used decision tree methods 

based on training sets to split the trees from the buildings. The decision tree produced two sets of 
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building-tree classes for low rise area and other areas. The resultant building objects (derived with an 

accuracy of 89%) were used for change detection by comparing with the existing building map. The 

change detection method (object based) compared and matched map objects by using overlap analysis and 

buffers from morphological operations. This resulted in five classes for the building change objects, the 

classes are unchanged, changed, new, demolished and 1-n/n-1 buildings (this class refers to buildings 

changes that may accrue from map generalisation, inaccuracy of the map or problems with detecting 

buildings). The assessment of this method showed that there was 80% and 77% completeness and 

correctness respectively in detecting buildings larger than 20m2.  

 

Choi et al. (2009) presented a feature based approach to classify changes from multi-temporal Airborne 

Laser Scanning (ALS) data. Points were grouped into patches after subtracting DSMs of different epochs 

like in the case of Murakami et al. (1999). A difference image derived by this differencing is similarly 

corrected for commission errors by using opening operation. To further improve on the classification of 

the changes, clues of changes are derived from the point cloud data which undergoes a segmentation 

process. The segments referred to as surface patches are then grouped into clusters based on their 

connectedness (which simply considers horizontal characteristics of the changes) and elevatedness (which 

models the proportional changes in height). The first classification of the surface patches yields three 

classes of ground, vegetation and building. This was achieved by considering the roughness, size and 

height of the patches derived. Having achieved this with the separate DSMs, the patches from each DSM 

are compared on a grid basis using the height, roughness and normal vectors of the patches. With these 

properties, the changes in classes are grouped into to ten categories. 

 

         
Figure 2-3: Change classification by Choi et al. (2009) derived from three major classes of 
patches(left) and the resultant categories from analysing the height, roughness and normal vector of 
corresponding patches (right). 

 The results were reported to be satisfactory when compared with an orthoimage background, though no 

quantitative analysis was carried for the exercise.  
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Similarly, Teo and Shih (2013) generated shape difference map from two DSMs of different epochs. Areas 

with small differences were considered as unchanged areas and the large differences were subjected to 

segmentation and classification. The procedure started with the usual pre-processing methods of co-

registration followed by the already familiar differencing of DSMs. Segmentation was also implemented 

before the classification of changes was computed. The classification focused on buildings and vegetation. 

In this case the gradient magnitude was used as a criterion for calculating surface roughness which is 

effective for differentiating these classes. The change types are categorised using information of the land 

cover, height and area of compared segments. Figure 2-4 below shows the categories of change derived 

from these factors and figure 2-5 shows the threshold definitions used to achieve final results from start of 

the procedure used in the research. 

 
Figure 2-4: Change categories by Teo & Shih (2013). Classification was based on the land cover, 
height and area of segments. 

 

 
Figure 2-5: Classification thresholds for change detection by  Teo & Shih (2013). 

 A reported 80% accuracy was achieved with this approach with most errors attributed to areas with low 

vegetation roughness and small areas.  

 

Xu et al. (2013) used ALS data from two epochs to detect changes automatically. This approach focuses 

on the detection and classification of a wider variety of changes found in multi epoch ALS dataset by 

deriving and then using surface separation values. The method accounted for errors caused from the 

registration of the data, which sometimes leads to false changes. Based on this, rules were defined to take 

into account the minimum size of real changes on the map. Results show 80% accuracy in correctly 

classified buildings.  
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In a different development, Hebel et al. (2013) moved from the classical difference methods and adopted 

an approach which also considers the position of the scanning sensor in detecting changes. The concept 

was adopted from the Dempster-Shafer theory. They also highlighted the contributions of the point 

density and point positioning accuracy to the minimum size of detectable changes. These factors were 

modelled using certain parameters (λ, с, ĸ) which describe the fuzziness of the laser points. An 

implementation of this approach involved an on-the-fly change detection which supported on-board 

processing by allowing the ALS sensor to gain real time access positioning systems and reference raw data 

for comparisons. 

 

 

2.3. Working with 2D maps 

 
In comparing LiDAR data with maps, cartographic rules and regulations must be considered but a suitable 

platform for comparison must first be created. Vosselman et al., (2004)  identified the need to carry out 

segmentation followed by classification of the segments on the laser data. This leads to comparing 

building segments with buildings on the map. After achieving an overall accuracy of 90% for classification,  

results prompted the need to analyse further errors that appeared after change detection, hence, it was 

resolved that other sources of errors can accrue from:  

 

- Generalisation of objects on the topographic or 2D maps, whereas the laser data maintains 

original object structure. Morphological operations (dilation and erosion) were employed to 

effective ends to minimise differences that may have been caused by generalisation.  

 

Figure 2-6: Check for intrusion of laser segment by using the dilated laser segment (top left) and 
fitting to the generalised database object (top right); for protrusion by using the eroded laser segment 
(bottom left) and fitting inside a generalised database object (bottom right). Source: Vosselman et al., 
(2004). 

 
- Random data noise inherent in the separate datasets used for comparison. The morphological 

kernel used was enlarged in order to accommodate the tolerance in change detection.  

- Systematic errors observed by identifying misalignments between similar objects on the separate 

datasets. This shift was corrected by re-aligning the object on the database before the 

implementation of change detection.  



ANALYSIS OF BUILDING OUTLINE QUALITY BY COMPARISON TO POINT CLOUD 

11 

 

Figure 2-7: Systematic offsets that may exist between building segments in a laser dataset (grey) and a 

vector map (red lines). Source: Vosselman et al., (2004). 

- Object selection, here certain objects are omitted as part of the mapping rules for the topographic 

maps, objects that fell within this category were removed on the segmented data in accordance to 

the specifications of the topographic mapping rules.  

 

Figure 2-8: Segments falsely marked as new buildings (red) which were in fact omitted in the map 
due to mapping rules. Source: Vosselman et al., (2004). 

As a result of these considerations, real changes are efficiently discriminated from false changes, meaning 

that the change detection process already proves to be valuable for assessing quality of the topographic 

maps. In a separate study, Freire et al., (2014) introduced stringent mapping standards in assessing 

buildings derived from very high resolution satellite imagery. They considered various assessment 

measures including geometric deviations from reference maps being measured with cartographic 

constraints at various map scales. It was observed that the geometric quality of small scales map easier 

satisfied the strict standards for planimetric deviation than large scale maps.   

 

2.4. Quality of LiDAR data 

 
In as much as some of the rules in a map production process are considered when analysing changes, 

there still exist challenges that are inherent in the use of images and LiDAR data. Questions about how 

good the reference data is need to be answered. For LiDAR data, it is primarily stated that interpreting and 
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detecting changes could be affected by poor reflection from water logged surfaces and occlusions (Oude 

Elberink and Vosselman, 2011).  These amongst several other factors can affect the quality of point clouds 

used for analysis. 

 

Vosselman (2008) adopted measures to analyse point clouds accuracy by checking deviations of extracted 

ridgelines from overlapping strips. To achieve this, the method focused on areas with overlapping strips, 

segmentation was implemented to detect roof planes on the point clouds. Then, the ridge lines of the roof 

planes are derived by computing the intersecting lines from the roof planes. These lines in overlapping 

strips are consequently compared to determine the offset between them. 

 
Figure 2-9: offsets between identical ridgelines in an overlapping strip.  Vosselman (2008) 

 

 Results from the research proved that planimetric standard deviation of 2cm is achievable in strip 

adjustments of point clouds.  

 

In a similar investigation, Van der Sande et al. (2010) proposed a new approach in which planar features 

are extracted from AHN-2 data and used for strip adjustments and accuracy assessment. The strip 

adjustment was simply done by evaluating the systematic and random errors in the data by computing 

distances between identical planar features in overlapping strips. Results reveal vertical displacements of 

up to 4cm and horizontal offsets between 2cm to 34cm.  

 

In a another development, Vosselman (2012) cemented on the accuracy of outlining objects from point 

clouds by proving a maximum standard deviation of 5cm for the planimetric accuracy. Anil et al. (2013) 

also used deviation analysis to assess a building model derived from point cloud data. The deviations 

between the model and point cloud are visualised at every point and represented with a colour scale in 

order of magnitude. These investigations have proven that point cloud data are of reliable horizontal and 

vertical accuracies and such are appropriate for reference data. 

 

 

2.5. Quality assessments in change detection 

 
Gong et al., (2008) have listed several factors that affect change detection results, these factors have been 

attributed to cost and time constraints, terrain complexities, the algorithms adopted, operator’s 

competence, quality of registration and calibration and the quality of reference data used. Considering 

these complexities, seeking appropriate measures for quantifying differences in maps and how they can 

reflect change remains to be fully investigated. 

 

Van Coillie et al., (2008) used number of segments that have centroid in reference polygons, difference in 

total area, difference in total perimeter, difference in shape complexity and average distance between edge 
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pixel and reference pixel, but this was applied to the evaluation of segmentation quality. Khoshelham et 

al., (2010) also used a pixel based metrics for accuracy assessment of methods used to detect buildings. 

These approaches are rudimental in thinking on the way of quantifying differences and classifying them to 

reflect map quality and object change. 
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3. PROCESS IMPLEMENTATION 

The chart below provides an overview of the general process involved in achieving the goal and objectives 

of this research. 

 

a) Segmentation and classification of point clouds: Segmentation involves detecting planar faces. 

Objects derived from segmentation will need to be grouped into classes. Several methods exist for 

classifying segments. The method  by Xu et al. (2014) was implemented and is deemed 

appropriate as it achieves a 97% classification accuracy. This stage is important because classified 

segments provide the avenue for extracting points that fall in the classes that are needed for 

comparison, and in this case, buildings. These processes have already been executed in the data 

provided. 

b) Extraction of building outlines: Extracting outlines from point clouds is a prerequisite for 

comparison since the base map is a 2D vector map. Identifying an appropriate algorithm for 

outlining is the task here. 

c) Vector overlay operations: The 2D map is introduced at this stage and overlay operations are used 

to identify deviations in the datasets. 

d) Analyse deviations: Deviations derived from the overlay operations are split into two types based 

on the size of changed objects on the map, the two types of deviations include: 

i) Small Differences: These differences are analysed statistically by computing the vertex-

line distance of identical objects from the two datasets. They reveal the geometric 

accuracy of the map. Details will be discussed in chapter 4 of this report.  

ii) Large Differences: Large differences are analysed to investigate for real changes. These 

changes may have been instigated by construction activities, occlusions, sun shades etc. 

The changes are interpreted and classified. Details will be reported in chapter 5. 
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Figure 3-1: Flow of processes in analysing change 
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3.1. Data 

 
An area around the Rotterdam central station is used in the research. The selected region covers an area of 

approximately 1 square kilometre (1km2) with 255 building polygons employed for investigation. The data 

sets used in the thesis are: 

a) Classified point cloud data of part of the city of Rotterdam at an average point density of 

30points/m2. 

 

Figure 3-2: Classified point clouds covering the study area, the different colours represent the classes 
derived from the classification process. 

b) Building outlines of the city of Rotterdam from the Dutch base registry BAG for the year 2010. 

 

Figure 3-3: 2D map of the study area clipped from the Dutch registry BAG. 
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3.2. Data Preparation 

 

3.2.1. The point clouds 

 

The point cloud data for the city of Rotterdam was acquired in 2012, which makes it more recent than the 

map dataset. Considering the high planimetric accuracy (as reported by Vosselman (2012), the point cloud 

serves as a suitable reference dataset for comparison with the 2D map.  

 

3.2.1.1. Selecting building components 

 

The classified point cloud originally contains seven labels (wall, roof, roof elements, vegetation, ground, 

water and undefined objects). Since the comparison is implemented just for buildings, there is the need to 

extract only building components from the point cloud data; this leads to identifying only classes that are 

connected to buildings. In selecting building components, this motive is duly achieved using the labels 

associated with buildings only which include walls, roofs and roof elements.  

 

3.2.1.2. Growing Segments 

 

Growing segments involves implementing a connected component analysis on the selected labels for 

buildings. Building segments are created based on similarity of points. The distance metric which 

determines the Euclidean space in which the proximity of the points will be considered is pre-set to 2D 

since the resultant operation will be compared from the orthogonal perspective. The components are 

grown in tile-wise manner as seen in figure 3-4 below. 

 

 

 

 

 

 

Figure 3-4: Tile-wise results after growing building segments. The different 
colours represent the separate building components in each tile. 
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3.2.1.3. Block Segments 

 

With a tile-wise representation of the building segments, there are disjointed building components, 

especially for features that lie across tiles. Combining the segments resolves the discontinuity in objects by 

merging components across tiles using boundary zone for searching across tile borders.  A region of 1m is 

used as the search range for bordering points. This results in a complete block with building segments in 

complete patches. 

 

 

 

Figure 3-5: Result of block segments operation executed after the grow segments function 

 

 
Figure 3-6:  Block segments result of study area. Each building block represented in different colour. 
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3.2.2. The map data 

 

The 2010 version of the BAG datasets is used here. The BAG is a key register originally composed of two 

key registers in the Netherlands and is managed by all municipals. These two key registers are the Key 

Register of Addresses (BRA) which holds information on towns, street names and house numbers and the 

Key register of Buildings (BGR) which holds data on buildings, premises, permanent locations and 

mooring. They are combined into one considering the inevitability of having one existing without the 

other. This makes the BAG registry a key register of Buildings and Addresses (Ellenkamp & Maessen, 

2009). The BAG dataset represents all buildings at residential units and contains certain attributes such as 

the year of construction, the number of floors, the status, etc. The national requirement for the absolute 

point accuracy for the BAG is 20cm. 

3.2.2.1. Updating Attributes 

 

The dataset contains buildings at all levels. The levels here refer to the number of floors each building has. 

The field containing this information is updated, all underground building are selected and excluded from 

further analysis, since the ALS sensor will not capture underground features. This is to ensure that 

comparison of the datasets is done at the same perspective in order to minimise the inclusion of false 

changes. 

 

3.2.2.2. Aggregate Polygons 

 

For an effective comparison to take place, the polygons in the BAG datasets are processed to conform to 

the patches on the point cloud. Originally, the buildings are partitioned in smaller blocks on the parcel 

level; these blocks are subsequently merged to represent whole units. 

 
 

 

 
 

Figure 3-7: Polygons before (left) and after (right) aggregation. 
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3.3. Building outlines from point cloud 

 

An outlining procedure has been adopted here which is based on an aggregation of a cluster of points. 

Outlines are derived from the point clouds in order to be able to precede with the overlay operations on 

the datasets. Point aggregation is a generalisation procedure which simplifies cluster of points into 

polygons. Polygonal boundaries are wrapped around the point clusters by using a proximity threshold to 

determine points that are considered within a cluster. Results are similar to those obtained from using 

concave hull/alpha shapes algorithms. This procedure involves three distinct stages: building a 

Triangulated Irregular Network (TIN), clustering based on proximity constraints and constructing 

polygons around clusters. 

- Building a TIN: A TIN is built on the points using a Delaunay triangulation method. This method 

maximises wide angles between neighbouring points and connects them in triangles ensuring that 

no point is left inside the circumcircle of any triangle (Wikipedia, 2014). A network work of 

interlinked triangles is derived and each triangle represents a plane with a continuous surface. 

 
Figure 3-8: An example of Delaunay triangulation of a set of random points. (Source: Wikipedia, 
2014) 

 

- Clustering: An aggregation distance is used as a proximity criterion to find clusters. The lengths of 

sides of the triangles in the TIN provide values for this evaluation. Due to the random spatial 

distribution of the point clouds as a result of irregular point spacing, the aggregation distance is 

tested within a range of values in order to find a compromise between having too many holes in 

the polygons and over generalisation of the edges. A convenient value of 0.6 meters was used in 

the process to obtain satisfactory results. 

Figure 3-9: over perforation of polygons caused by small clustering threshold (left) and over 
generalisation due to large clustering threshold (right) 
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- Constructing polygons: with the clusters determined, polygons are drawn around clusters 

connecting most of the vertices on the outside of the clusters.  

 

 

 
Figure 3-10: Point clouds segment for a part of the block (left) and the resulting outline for a 
building polygon (right) 

 

 

3.4. Overlay Analysis 

 

The symmetrical difference is performed as an overlay operation on the two datasets. Having two sets A 

and B, the symmetrical difference is given mathematically as: 

 

A △ B = (A – B) ∪ (B – A) 

 

This operation results in portraying the differences between both vector datasets. A tolerance value of 

0.5m is used to minimise the effect of noisy objects. This value (0.5m) is chosen after several iterations 

ranging from 0 to 1m. Any value higher or lower leads to highly reduced change polygons or continuously 

connected polygons respectively, which can make the interpretation of changes difficult, for example, a 

low tolerance value will lead to having polygons that are highly connected leading to a high number of 

objects with mixed properties. Figure 3-11 below shows the difference polygons derived by using 

symmetrical difference overlay analysis. 
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Figure 3-11: showing the differences in polygon datasets using symmetrical difference overlay 
analysis. 

3.5. Distinguishing the kinds of changes 

 
A clear distinction between the kinds of changes identifies what kinds of deviations are directly linked to 

the quality of the map outline and those that are linked to real changes. 

 
Figure 3-12: Use of bounding boxes (pink) with threshold values to distinguish points with large 
differences from points with small differences (black dots). The red line represents the map outline 

(2012) – (2010) 

 (2010) – (2012) 
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In distinguishing these changes, the first approach is to look at the characteristics of objects on the area 

being observed.  The size of the smallest kind of real change is the primary indicator. In addition to the 

size, the length and width of the extent of the changed object is considered because, only the size of the 

changed object might not be a completely decisive indicator in some cases, especially when the object is 

very large or very small. For example, a building side of 50 meters long with an observed extension of 

20cm will translate to an area of 10 square meters, whereas in reality an extension of 20cm construction 

activity is not feasible.  Hence the width and length of the changed object is important, which means, a 

rectangular bounding box (as shown in figure 3-12) around a changed object becomes useful for further 

analysis. 

 

After carefully observing changed objects in the study area by looking at their characteristics on some 

aerial and street images from Google, it was observed that all real changes were longer or wider than 1m. 

Therefore, 1 meter is used as a selection criterion to filter out points that fall within a bounding box that is 

longer or wider than the said threshold. With that in place, only the vertices of points from the point 

cloud outline that are not within the selected bounding boxes are compared to the 2D map outline. 
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4. DETERMINATION OF GEOMETRIC ACCURACY OF 
THE 2D MAP 

The geometric accuracy of the 2D map is determined by statistically analysing the small differences found 

in the map.  It is generally expected that the representation of an object on one dataset should be the same 

as the representation of the same object on another dataset. Since the BAG polygons are generated from 

aerial photographs, the polygons are expected to coincide with the polygons generated from the LIDAR 

point clouds as they both represent the roof outlines of buildings. However, deviations are inevitable and 

are observed to be caused by several factors such as the uncertainties caused by the processes in the 

separate building outlining processes, the quality of the reference data (LIDAR point clouds) and actual 

construction on ground.  

 

4.1. Finding the Geometric Accuracy of the map 

After filtering out the large deviations caused by real changes, the small deviations are used to determine 

the accuracy the map. Using the point cloud data as reference requires that the uncertainties inherent in 

the outlining process must be modelled.   These uncertainties as observed by  Vosselman (2008) are due to 

the point distribution around the outline of the object and the location accuracy of the laser objects. The 

other differences are those that are inherent in the map. In summary, the differences between the map and 

the building outlines in the point cloud are caused by: 

a) Uncertainties in outlining due to point spacing. 

b) Uncertainties in point location. 

c) Uncertainties in the map itself i.e. map accuracy. 

Knowing that these differences can be measured by looking at the deviations, if the uncertainties in the 

point cloud elements are determined, then the map accuracy can be ascertained. 

 

4.1.1. The uncertainty in outlining because of the point spacing 

 
The uncertainty in outlining due to the point spacing refers to the effect of the point distribution on the 

outline of objects in the point cloud. To determine this effect, an experiment is carried out on a patch of 

point clouds taken from a relatively flat terrain in the scene. A relatively flat surface is used so that the 

point distribution on that surface will be more or less uniform. A line is then drawn across the patch, the 

outlines are modelled relative to one side of the line, and the deviations are computed to determine the 

effect of the point distribution on the outline. This experiment is repeated for each side of the line and 

another line is drawn at every five degrees until a full circle is achieved so as to have sufficient samples for 

the experiment. A total of 72 lines were used. Figure 4-1 below shows how the simulation is implemented. 
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Figure 4-1: Sample of the effect of point distribution on the outline of an object (left) and the line 
turned through every five degrees resulting in 72 lines (right) 

In figure 4-1 above, the points are derived from the vertices of the outline, and the straight line is an 

arbitrary building outline, the perpendicular distances from the vertices to line are computed to determine 

the deviations. With this simulation, there is a systematic effect which is represented as the bias ( ̅) of the 

observations and this is computed as the mean of the deviations to be 5cm. The standard deviation 

(σpointspacing) is also derived to be 5cm. 

 

4.1.2. The uncertainty in point location 

 

The uncertainties in point location refers to the planimetric accuracy in the position of the laser points. 

Vosselman (2012) developed a method which assessed the planimetric accuracy of mapping objects in a 

point cloud and this method was verified by checking the shifts in the ridge lines of gable roofs in strips 

overlaps. The standard deviation (σpoint location) of the point clouds was derived to be 5cm. 

 

4.1.3. Finding the differences 

The differences between the outlines are calculated by measuring the point to line distances from the 

vertices of the outline of the point cloud to the map outline. The equation for the point to line distance 

measures the perpendicular distance from a given point to a line and is given as: 

  

X cos α + Y sin α – d = 0 

Where: 

d is the distance from vertex to line, 

α is the azimuth of the line and 

X and Y are the coordinates of the points. 

 

This equation measures the distance from each vertex in the point cloud outline to the adjacent map 

outline, a search radius of 1m is used as points beyond this threshold translate to large changes. The 

distance is corrected for a systematic effect derived and described as the bias ( ̅) estimated in section 4.1.1. 

This is expressed as: 
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e’ = d -  ̅ 

 

Hence, the overall accuracy is expressed as the sum of the three accuracy components: 
 

 

 

Given that the left hand side of the equation has been derived from measurements made from the point 

to line distance calculations, and the point spacing and point location related uncertainties have been 

estimated, the estimate for the map accuracy remains the only unknown variable and is then easily 

calculated in the equation. Using a total of 255 building polygons from the study area, the errors from all 

observations are computed and the overall accuracy of the map (σmap) is derived to be 25cm. 

 

4.1.4. Assessment of the accuracy determination method 

The method used to assess the geometric accuracy of the map is tested to ascertain its robustness. This is 

achieved by splitting the study area into four blocks and each block is processed independently to 

determine the accuracy of the block. It is expected that the results will be similar if the method is reliable. 

Table 4-1 below shows the results for the four blocks: 

 

Block Number Calculated accuracy (σmap) 

Block 1 24cm 

Block 2 25cm 

Block 3 24cm 

Block 4 28cm 

Table 4-1: Results for map accuracy calculated independently for 4 blocks. 

From Table 4-1 above it can be seen that the accuracy determined across blocks are close to each other. 

Similarity in the results proves that the method used is reliable. 

4.2. Discussions of results for the geometric accuracy of map 

 

Figure 4-2: A clip of the study area showing the small differences. The black dots represent the 

vertices of the outline from point cloud and the green lines are the map outline. 

   σ2
e’  =  σ2

point spacing  +  σ2
point location  + σ2

map 
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The required accuracy was set to 20cm, but with the results obtained, it can be observed that the accuracy 

of the map is approximately 25cm.  This has been computed using the observed differences from the 

representation of the datasets. Factors that contribute to the outlining of objects have been equally 

modelled to achieve the results. This shows that the accuracy of the map is not too far off from the 

national accuracy requirement. 
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5. INTERPRETING LARGE DIFFERENCES 

Interpreting the large differences follows a supervised classification process, where samples are trained and 

rules are defined based on the trends in the samples. Large differences are defined by objects longer or 

wider than 1m. These differences are caused by objects that directly alter building outlines as a result of 

large deviations from the point cloud data or actual construction work. From investigating the data used 

for analysis, three classes are derived which represent the large differences: 

 

a) Building Extension: This basically represents object change caused by construction activities. 

Even though the focus is on the extensions to buildings because of already existing algorithms 

that detect new or demolished buildings, it is remarkable that buildings and buildings extension 

share identical properties in the point cloud. 

 

b) Sunshades: These kinds of changes are characterised as small attachments to buildings, which are 

not building extensions, balconies also fall into this class. They are usually not represented in map 

outline because cartographic representations from the aerial images often dwell on roof 

impressions and sometimes consider sunshades as temporary structures. Segmentation and 

classification algorithms easily detect these features as significant parts of buildings thereby 

presenting a different geometry from the map outline, which leads to changes. 

 

c) Vegetation: Vegetation originally has a different class but trees close to buildings often present 

different challenges for classification because their proximity easily connects them to buildings. 

The classification algorithms sometimes fail to recognise the separate entities hence the geometry 

differs, causing changes on the map. 

 

 

 

 

5.1. Training Samples 

 

The task to efficiently interpret these changes and put them into the classes derived requires selecting 

samples and understanding their characteristics. This leads to defining rules that can efficiently identify the 

objects in the map. The distribution of the points’ elevation is the primary variable for such analysis. 

Understanding the distribution of points with respect to their heights was facilitated by first looking at the 

histograms for typical examples for each class. As a result, the characteristics of these objects in the point 

cloud are defined and used for further identification. The sample sets consists of 5 samples from each 

class. The typical characteristics of each class are as described below with the aid of histograms: 
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a) Buildings extension:  

Figure 5-1: Histogram of height distribution for a typical building extension. 

 

A typical building extension is characterised by a low number of points on the ground and a high 

number of points above the ground. The histogram usually shows distinct peak(s) where the 

points are accumulated at the roof surfaces. 

 

 

b) Sunshades: 

 

Figure 5-2: Histogram of height distribution for a typical sunshade/balcony. 

  

Sunshades have similar histogram characteristics to building extensions; they typically have 

distinct peak(s) at the roof surfaces but also have a good number of points on the ground. 

Although their overall point count is smaller, there is often a higher percentage on the ground 

than building extensions. The scan angle of sensors makes it possible for more points to be 

captured below the sunshades, and since they typically will not have enclosed walls, penetration to 

the ground is improved. 
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c) Vegetation: 

 
Figure 5-3: Histogram of height distribution for a typical vegetation class. 

 

The histogram for vegetation shows a high amount of points on the ground and a good number 

spread across the entire range as well, but they typically have low point counts. More bins contain 

data for vegetation class. 

 

5.2. Statistical measures 

 

With the patterns of the classes observed from the histograms from the training sets, certain measures are 

defined to describe these characteristics of the classes. These measures will be used to define rules upon 

which the classification of all other polygons representing the large differences will be established. A first 

look at using basic measures such as mean, standard deviations and variances proved to be insufficient for 

describing the classes because of the slightly complex behaviour of the distribution of the height 

parameter. An approach which tries to use mathematical expressions to describe the separate histograms 

as much as possible becomes the most likely solution for classification. Based on this notion, the following 

measures were considered and utilised: 

 

a) Number of bins with significant percentage of data: 

Derived from the histogram’s classes, the number of bin with significant percentage of data is 

used to define those classes that have a significant amount of points. This tends to minimise the 

effect of noise from other objects that may interfere with the classification of a particular object.  

 

Two factors are used to determine this measure; the total number of bins and the significant 

percentage value. The total number of bins is 15 for all classes. This is chosen as a means of 

normalising the data between classes. This was derived after iteratively looking at the histograms 

of the samples. Histograms from 15 to 20 bins vary less in appearance and structure, 15 was then 

chosen as a convenient value that balances between having an over division of classes and under 

representation of classes.  

 

The second factor, the significant percentage value was visually determined by observing the 

histogram samples. Selecting bins above 5% leads to over reduction in bin count and loss of some 
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useful data. Values from 2% to 4% show little variation in test results for the classes, so 4% is 

used as the constant for calculating number of bins with significant percentage of data. This 

implies that any bin with less than 4% of total point count is considered insignificant for 

classification purpose. 

 

From the samples used, the following results show the behaviour of the classes with regards to 

bin count: 

 

 

Sample class Number of bins with significant 

percentage of data (4%) 

Sunshade1 2 

Sunshade2 3 

Sunshade3 2 

Sunshade4 3 

Sunshade5 9 

Vegetation1 9 

Vegetation2 8 

Vegetation3 4 

Vegetation4 8 

Vegetation5 8 

Building extension1 4 

Building extension2 3 

Building extension3 4 

Building extension4 6 

Building extension5 4 

 
Table 5-1: Number of significant bins for 5 samples in each class. 

 

From Table 5-1 it can be seen that the vegetation class is easily detectable as it contains more bins 

because of its point distribution, the distribution ranges from 4 to 10 or even more. Sunshades 

have lower bins because points are distributed on ground and sunshade roofs with little 

elsewhere. For building extensions, the values vary from 3 to 6, this could be as a result of 

multiple story extensions, but in general the bins will not be as many as those in vegetation class. 

There are exceptions in the behaviour of some samples, like in “Sunshade5”; this will be discussed 

in section 5.3. 

 

b) Entropy: Entropy measures the degree of randomness or variation of a variable. Height 

distribution in the classes exhibit varying degrees of variation and as a result, entropy is used to 

investigate the behaviour of height distribution in each class. Shannon (1948) mathematically 

defined entropy as; 

 

H = -∑ pi log pi, the entropy of a set of probabilities from p1 to pn. 
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For this specific case, the probability is calculated as the number of points in a class/bin divided 

by the total number of points in the sample.  Table 5-2 below shows the entropy values calculated 

for each sampled object. 

 

 

Sample class Entropy value 

Sunshade1 0.463 

Sunshade2 0.452 

Sunshade3 0.169 

Sunshade4 0.424 

Sunshade5 0.972 

Vegetation1 1.063 

Vegetation2 1.049 

Vegetation3 0.745 

Vegetation4 0.950 

Vegetation5 0.948 

Building extension1 0.781 

Building extension2 0.233 

Building extension3 0.581 

Building extension4 0.691 

Building extension5 0.943 

 
Table 5-2: Entropy values for 5 samples in each class. 

Entropy values for sunshades from the samples are averagely below 5, buildings show a wider 

range of values but in most cases higher than sunshades but lower than vegetation which ranges 

from 0.7 and above. Again the peculiar sunshade5 will be discussed later. 

 

c) Ground ratio (Gr): The ground ratio is defined to adequately describe classes based on the points 

on the ground. It is calculated still from the histogram classes with the underlying assumption 

that, majority of the ground points in a given sample will fall in the first bin of the histogram. This 

is because the first class in the histogram contains values around the minimum.  This is simply 

expressed as: 

 
 

Gr = [no. of pts. in the first bin / sum of points in other bins] x 100 

 

From this expression, the ground ratios for the samples were generated and are shown in table 5-

3 below: 

 

Sample class Ground ratio 

Sunshade1 31.0 

Sunshade2 13.5 

Sunshade3 13.3 

Sunshade4 15.4 

Sunshade5 03.3 
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Vegetation1 13.9 

Vegetation2 27.4 

Vegetation3 17.3 

Vegetation4 32.0 

Vegetation5 42.5 

Building extension1 07.8 

Building extension2 0.10 

Building extension3 0.04 

Building extension4 07.9 

Building extension5 02.9 
 

Table 5-3: Ground ratio values derived for 5 samples in each class 

The ground ratio creates a good distinction between the building extension and other classes. 

Building extensions as expected contain lesser ground points and the values reveal values below 

10 per cent. Vegetation and sunshades have higher percentages of ground points. 

 

d) Number of points in a sample: To further improve on the distinction between sunshades and 

buildings, the number of points in a sample (simply referred to as point count) also plays a 

significant role. From the samples taken, a threshold value was set to 18,000 points as the 

maximum number of points a sunshade may possess. The point count is directly proportion to 

the size of an object, for a small object will contain lesser point than a larger object. 

 

5.3. Formulating classification rules 

 

After defining the measures described in section 5.2, classes are then defined based on their properties 

with these measures. A combination of these measures can provide a means for distinguishing classes as 

their values differ in each class. The scatter plots below show the behaviours of these classes using the 

measures described above, this is to visually appreciate how the rules are formulated from the measures. 

 

From the scatter plots, it can be observed that the objects form cluster patterns from the measures used. 

The trends can be used to specify thresholds for the class definitions. Though the measures may not 

explicitly segregate the classes when used alone, combining them will produce remarkable results.   
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Figure 5-4: Scatter plot showing the number of significant bins against entropy values for the 
samples. 

 
Figure 5-5: Scatter plot showing the number of significant bins against ground ratio for the samples. 

 

Figure 5-6: Scatter plot showing the number of significant bins against number of points in samples. 
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Now, addressing some outliers in the samples, it is seen in the scatter plots that “sunshade5” continuously 

falls in an unexpected region, where it sometimes falls in building extension or vegetation regions but its 

relative size and location on the map suggest it is a sunshade. This calls for a closer look at the object. The 

object is again observed carefully and it is discovered that the polygon contains a great percentage of roof 

and wall element which could pass it for a building extension, but it is not sufficiently large enough to be 

an extension and contains a reasonable amount of sunshade as well.  (See figure 5-7 below) 

 

 

Figure 5-7: Supposed sunshade with a clear roof and wall outline inside it. 

The large presence of wall and roof element was discovered to be as result of a rare operator error in the 

map outline. This resulted in a mixture of classes and leads to making a decision to include another class 

termed “Mixed objects” which describes this kind of instance and many more. 

 

Also in another separate instance where “vegetation3” often falls in the region of sunshades in the scatter 

plots, a closer look reveals a peculiar case where the tree canopy is very dense making the points to cluster 

around the crown and giving it a planar impression. This also results in reduced penetration, thereby 

reducing the amount of points that are expected on the ground making it behave like a typical sunshade. 

Figure 5-8: Dense tree crown (orange and lemon points) causing sparse distribution of ground points 
(blue) below it leaving gaps (black space). 
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To accommodate cases like this, the threshold for the number of bins for vegetation is adjusted to a cover 

a wider range of bin counts in that class. 

 

Using the values from the tables and scatter plots for the samples and also considering the special cases 

listed above, the final classes and classification rules are defined accordingly. These rules are made up of a 

combination of thresholds derived from considering the range of values for each measure in the separate 

classes.  

 

The table and chart below shows a summary of the rules used for defining classes and the algorithm used 

to compute the classes respectively. 

 

 

 

 Class Rules 

 

1 Vegetation Object is tagged vegetation if Entropy is greater than 0.7 and 

Number of significant bins is greater 4 and ground ratio is greater 

than 12 per cent. 

 

2 Building Extension Object is tagged building extension if Entropy is less than 0.9 and 

number of significant bins is less than 7 and ground ratio is less than 

10 per cent. 

 

3 Sunshade Object is tagged sunshade if Entropy is less than 0.6 and number of 

significant bins is less than 7 and ground ratio is greater than 10 per 

cent and point count is less than 18000. 

 

4 Mixed objects Object is tagged mixed object if it is neither tagged vegetation nor 

building extension nor sunshade. 

 
Table 5-4: Rules used to define classes inferred from samples.  
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Figure 5-9: Classification algorithm for change polygons 

 

In selecting the points per polygon, polygons are given an inward buffer of 30cm so as to minimise the 

effect of noise from surrounding objects. This is especially applicable in sunshades where adjoinning wall 

elements may contribute a high percentage of laser points which inturn may affect proper classification. 

The 30cm offset ensures that majority of these kinds of points are not selected in the analysis. Then the 

classification is implemented. The classification algorithm produces labels which are assigned to all points 

per polygon. The points per polygon all contain the same label. To improve computation speed, the points 

in polygon are filtered to a minimum value. The attributes of the filtered points are transferred to the 

polygons (using a spatial join) to identify polygon class.  

 

Results of the classification are shown below: 
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Figure 5-10: classification results overlaid on map outline 
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5.4. Accuracy assessment of classification 

Assessing the accuracy of the classification involves comparing the results with some sort of reference 

data. This is often done using ground-truth information from field acquisitions. But in this case, reference 

data was obtained from Google earth by looking at the aerial and street views of areas where changes were 

perceived. A total of 74 samples were randomly taken as references and the assessment was done using an 

error matrix. The error matrix show the user and producer accuracies per class. The overall accuracy is 

computed from the matrix too. 

 

 

  Reference data  

  Sunshade Building 

Extension 

Vegetation Mixed object Total Error of 

commission 

(%) 

User 

accuracy 

(%) 

 Sunshade 11 1 1 0 13 15 85 

Building 

extension 

1 11 0 0 12 8 92 

Vegetation 4 1 22 2 29 24 76 

Mixed object 6 3 3 8 20 60 40 

 Total 22 16 26 10 74  

 

 

Error of 

omission (%) 

50 31 15 20  

 

 

  

Producer 

accuracy (%) 

50 69 85 80    

 
Table 5-5: Error matrix for assessing accuracy of the classification. 

An overall accuracy of 70% was obtained for the classification. Classification results are affected by a 

number of factors: 

i) There are instances where sunshades and buildings extensions are confused by the 

classification algorithm especially when the building extension is relatively smaller than the 

size of most sunshades. Also, concrete sunshades and balconies that are also large can easily 

be classified as buildings as they allow minimal penetration of the sensor data to the ground, 

hence the ground points are reduced making the sunshade look like a building. 

 
Figure 5-11: A typical scenario where a there is uncertainty in sunshade/building extension 
classification. 
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ii) Mixed objects are first identified by the nature of their enclosing polygons, which tend to 

stretch over several entities in the scene. In some cases these kinds of objects are placed in 

any of the other three classes. This happens because the algorithm identifies that majority of 

the points contained in the polygon of the mixed class tend to conform to the attributes of 

the selected class.  

 

Figure 5-12: A likely “mixed object” class classified as building extension because of the 
overwhelming presence of building extension characteristics. 

iii) Similar to ii) above, another common misclassification occurs when a class may be classified 

as another when there is a huge presence of the second object class in the polygon. In 

principle, the classification may be correct but the nature of the polygon’s location may tend 

to suggest otherwise. For example, some sunshades are classified as vegetation because of the 

presence of overhanging trees over the sunshade areas, either class will be correct in such a 

case, it is left for the algorithm to choose which one is more recognised. 

 

 
 

Figure 5-13: A supposed sunshade classified as vegetation because of the presence of overhanging 
trees. 

These factors played a role in achieving a lesser accuracy, however it has been observed that there is 

reasonable justification in the results of some of the objects classification as seen from the instances 

mentioned above. Notwithstanding, there are possibilities of improvements which will be discussed in 

section 6.2. 
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With the results from the error matrix table, it becomes necessary that the classes obtained are further 

separated into relevant and irrelevant changes; this is in line with one of the objectives of this research. 

The need for this is to guide the user/operator to regions on the map where the changes are actually 

relevant for updating the map because, nobody will want to update a cadastral map where there is a 

perceived change in vegetation/tree for instance. This leads to a decision stage where sunshades and 

vegetation classes are considered as the irrelevant classes and building extensions and mixed objects are 

considered as relevant classes. Sunshades and vegetation are obviously not relevant for updating the BAG 

map, because these classes, though remarkable changes, are not needed for the updating process. The 

building extensions are undisputable for map updates, but the mixed objects are equally considered as 

relevant because they may contain a variety of objects which often include building extensions.  

 

As a consequence of these requirements, the error matrix table is then further classified into a matrix 

which contains relevant and irrelevant changes as seen below. 

 

 Reference data  

Relevant 

changes 

Irrelevant 

Changes 

Total Error of 

Commission 

User 

Accuracy  

 Relevant 22 10 32 31 69 

Irrelevant 4 38 42 10 90 

 Total 26 48 74  

Error of 

Omission 

15 21  

Producer 

accuracy 

85 79  

 
Table 5-6: Error matrix for relevant and irrelevant classes. 

This translates to 81% accuracy for identifying the relevant and irrelevant changes. With this, the relevant 

changes can be identified up to 69% accuracy and used for map updating. The 31% commission error 

implies that 31% of the changes flagged are regarded as false alarms, this will cause the operator to 

confirm those object during updating. For a large area this proportion might become cumbersome as 

many false alarms will need to be attended to but it is safer to confirm than omitting them. Having a 15% 

omission error for the relevant changes indicates that about 15% of the changes will not be identified; 

however it is important to note that the mixed objects class has a higher percentage in this omission which 

implies that detecting building extensions will not be greatly overlooked. Therefore only a few portions of 

the map may be left out-dated. By first filtering out the irrelevant changes which have a higher detection 

rate (90%) the focus on updating the relevant ones can be made easier. Conclusively, these results suggest 

that this classification is useful for obtaining desired results for updating maps. 

 

In estimating the number of building contours that need updating, two scenarios have been considered. In 

the first scenario, a query has been executed to select all building contours that intersect objects in the 

relevant class. An offset of 0.5 is specified to cater for the shrinking of the polygons used to select points 

for classification. Out of 255 buildings, a count of 188 is attained. Taking a closer look at the results, it is 

observed that most selected changes are small area changes. It has been initially been stated that large 
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changes included objects whose bounding box length or width is more than 1m. In this case, all changes 

are considered, but when considering those strictly for map updating, another filter is considered to 

remove small area polygons from the relevant class. This leads to the second scenario where polygons less 

than 20m2 are removed from the selection criteria; this threshold is chosen by considering the size of a 

remarkable extension to a building, which will be at least 20m2. This idea is adopted from Teo and Shih 

(2013) who used a 50m2 threshold to remove small areas in a nDSM. With the said threshold, a total of 93 

out of 255 building contours are flagged for updating. This percentage is high and may not reflect the real 

situation. From further evaluation, it is observed that this outcome is affected by a couple of reasons. 

First, the already reported commission error which likely contributes 31 per cent of false alarms will 

increase the building count. Secondly, there are some instances where the change polygons extend to 

adjoining building contours, especially for the mixed classes; this causes a double count for the building 

contours thereby increasing the overall percentage needed for updating. See Figure 5-14 below. 

   

 
Figure 5-14: Building polygons earmarked for updating (red) and those that are unchanged (black). 
The relevant changes are shown in the two classes of building extension (blue) and mixed objects 
(grey). 

From Figure 5-14 above, it can already be seen by visual confirmation that some of the selected polygons 

for updating are selected as a result of the commission error. At the top left quarter of the figure, instances 

where multiple building contours are counted against one change polygon can be seen. This validates the 

fact that these effects can cause increased counts for building to be updated. The operator’s discretion and 

intervention are may be required when dealing with these cases.  
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

 

This research was set up to meet several objectives. The accuracy of a 2D vector map is determined by 

comparing it with point cloud data from an ALS system. Comparisons are done by computing the point-

to-line distances between the vertices from the point cloud building outline and the 2D map outline. But 

before that is implemented, the differences in the map are separated using a threshold which defines two 

sets of differences.  

 

The threshold value is selected based on the minimum size of an object which passes for a real change. 

This results in two classes of differences –small and large differences. The small differences are used to 

determine the geometric accuracy of the map using the point-to-line distance and the large represent 

object change in the scene. 

 

From the small differences, the accuracy of the 2D map dataset was found to be approximately 25cm 

which falls just short of the required accuracy of 20cm. The measure is tested for its robustness by 

independently splitting the area in to four blocks and all results are all within 10cm of the required 

accuracy. Given the underlying assumptions which modelled errors that are contributed by the point cloud 

data, it is reasonable to conclude that the map accuracy is a little  less than required, even though there 

could be some outliers in the points used for computations, these effects are minimised by the great deal 

of sampling points from the point cloud vertices.  

 

The large differences were interpreted by using a supervised classification scheme, where training samples 

were used to define rules for describing predefined classes –sunshades, buildings extensions, vegetation 

and mixed objects.  The computations are based solely on the height information of the point cloud data. 

Classification results reached an overall accuracy of 70% with this approach. These changes are further 

classified into relevant and irrelevant changes to identify objects that are suitable for map updating. 

 

In conclusion, all objectives were met and the map accuracies and classification results are presented. 

 

6.2. Recommendations 

For geometric accuracy determination, this approach can be expanded to 3D by possibly incorporating 

point-to-plane distance analysis to determine accuracy of building representations in three dimensions. 

This can find its applications in assessing the quality of 3D building models where the deviations are 

considered not only for the roof outlines, but also for wall faces and other building sides. Accuracy reports 

can be improved by including more measures that may portray map regions based on the magnitude of 

error distribution. For example, using a deviation map to visualise the magnitude of errors in the various 

parts of the map as used by Anil et al. (2013) for  analysing the differences between a building model and 

point cloud data. 
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Figure 6-1: Example of a deviation map showing spread of error magnitude. Source: Anil et al. 
(2013). 

The results of classification from the height attribute can also be improved by considering an integration 

of plane detection by segmentation to the histogram analysis. The segmentation properties for each of the 

classes can be different, for instance, building extensions and sunshades will have fewer planes while 

vegetation will likely have a high amount of planar segments. The segments can be analysed by 

considering their size, proximity to ground, roughness, spread etc. Semantic data may also be included to 

describe certain characteristics of the data, for example, if the structure contains walls all round, then it 

cannot be a classified as sunshade. This kind of information can improve classification. 
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