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ABSTRACT 

Modelling and monitoring of crops is of importance to develop, implement and maintain food security 

policy. This is especially necessary in order to keep pace with the increasing needs of a growing world 

population. With the world’s population estimated at 9.15 billion by 2050, food production will have to 

increase by 60% above current production levels. Fundamental to food security studies is to have accurate 

and timely knowledge of what is grown, where it is grown, and when and how much of it. Crop Growth 

Models (CGM) are increasingly being utilized for food production monitoring activities. They capture the 

relationship between the physiological processes within a plant, and its environment and by simulating these 

processes, crop growth and crop development is estimated and crop yield at harvest can be predicted. 

 
The use of Remote Sensing data in FAO’s crop growth model AquaCrop to estimate actual crop yields has 

been evaluated. Canopy cover and biomass, derived from coarse resolution NDVI time series, have been 

forced into AquaCrop for 641 barley and 695 durum wheat sample segments in Spain over five growing 

seasons between 2004 and 2009. It was found that forcing NDVI-derived canopy cover or biomass did not 

improve AquaCrop’s performance, compared to the use of AquaCrop without forcing. The crop phenology 

in simulation runs (baseline, forced canopy cover, forced biomass) for the majority of selected samples does 

not agree with crop phenology derived from coarse resolution NDVI time series. Crop base temperature is 

suspect of being too low, however other crop parameters may be suspect as well. Calibration of the 

conservative crop parameters to achieve accurate and reliable estimations in AquaCrop is required. 

 

Inaccuracies in biomass, canopy cover and CGP derived from the NDVI time series may also occur as a 

result of the coarse resolution in combination with segment heterogeneity. Sample segments are smaller 

than NDVI pixels while barley and durum wheat occupy only a small fraction in most sample segments. 

Utilization of higher spatial resolution NDVI time series, like MODIS or PROBA-V can be considered to 

address this. In addition the (complementary) use of SAR or inverse radiative transfer modelling may proof 

useful. 
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when we pay no heed  
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1. INTRODUCTION 

1.1. Modelling and monitoring of crops 

Modelling and monitoring of crops is of importance to develop, implement and maintain food security 

policy. This is especially necessary in order to keep pace with the increasing needs of a growing world 

population. The World Summit on How to Feed the World 2050 High-level Expert Forum (Rome 12-13 

October 2009) already concluded that agriculture in the 21st century “…has to produce more food and fibre to feed 

a growing population with a smaller rural labour force, more feed stocks for a potentially huge bioenergy market, contribute to 

overall development in the many agriculture-dependent developing countries, adopt more efficient and sustainable production 

methods and adapt to climate change”. With the world’s population estimated at 9.15 billion by 2050, food 

production will have to increase by 60% above current (2005/2007) production levels (Alexandratos & 

Bruinsma, 2012).  

 

Fundamental to food security studies is to have accurate and timely knowledge of what is grown, where it 

is grown, and when and how much of it. Crop Growth Models (CGM) are increasingly being utilized for 

food production monitoring activities (Clevers et al., 2002). Crop growth models try to capture the 

relationship between the physiological processes within a plant, and its environment. By simulating these 

processes, usually in daily time steps, crop growth and crop development is estimated and crop yield at 

harvest can be estimated. Modelling of crop growth generally revolves around a crop growth engine. In 

essence, three main types of crop growth engines can be distinguished (Steduto, 2006) namely carbon-

driven, solar-driven and water-driven crop growth engines. Figure 1.1 shows an overview of processes 

involved in vegetation biomass production, canopy transpiration and the different modelling pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1. Overview of processes involved in vegetation biomass production, canopy transpiration and modelling pathways. 

Solar and carbon driven engines follow path A while water driven engines follow path C 

(A= biomass production, B= canopy transpiration, C= linkage between biomass production and canopy transpiration) 

(Adapted from Steduto, 2006) 
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Carbon-driven and solar-driven crop growth engines follow pathway A, while the water-driven crop engine 

follows pathway C. Table 1.1 below lists the advantages and disadvantages of the different engines and also 

provides examples of CGMs currently in use. 

 

Table 1.1. Overview of advantages and disadvantages of different crop growth engines 

 Carbon-driven Solar-driven Water-driven 

Advantages Hierarchical system organization  
Sound physical & physiological basis 

Robust under non-stressed 
conditions 
Less complex 

Robust 
Less complex 

Disadvantages Complex 
Cultivar specific 
Uncertainties (resulting in large errors in biomass 
estimations) 

Inconsistent variability 
among crops, locations and 
years 
Nonlinear under stress 
conditions  

Difficulties deriving 
actual crop 
transpiration 

Crop Growth Models Wageningen crop models (BACROS, SUCROS, 
ARID CROP, WOFOST, MACROS, PAPRAN, 
SWACROP etc.) 
American CROPGRO model series (SOYGRO, 
PNUTGRO, BEANGRO, TOMGRO etc.) 

CERES 
EPIC 
STICS 
CropSyst 
 

AquaCrop 
CropSyst 

(Adapted from Steduto, 2006) 

 

Different CGMs have been developed, used and tested over time for different crops and growth conditions. 

However crop yield estimation results have shown substantial variability in accuracy and robustness (Palosuo 

et al., 2011; Rötter et al., 2012). Many CGMs require an extensive amount of input data which hampers their 

applicability beyond research conditions. WOFOST for example (Vandiepen et al., 1989), which is used 

within the EU’s Joint Research Centre’s Monitoring Agricultural Resources Unit Mission (MARS), requires 

about 40 parameters to characterize the crop under evaluation (Khan, 2011; Todorovic et al., 2009). Recently 

the FAO has developed the AquaCrop CGM in an attempt to create optimal balance between simplicity, 

accuracy and robustness (Steduto et al., 2009). AquaCrop uses a relatively small number of parameters and 

input-variables and has been assessed for different crops in different circumstances with promising results 

(Abedinpour et al., 2012; Andarzian et al., 2011; Karunaratne et al., 2011; Khoshravesh et al., 2013; Mebane 

et al., 2013; Mkhabela & Bullock, 2012; Stricevic et al., 2011; Wellens et al., 2013).  

 

The general absence of a spatial component in crop growth models is considered a serious shortcoming 

(Clevers et al., 2002) and this is especially so for yield estimations at regional scales. Determining model 

inputs for the required spatial and temporal dimensions is a burdensome task and assuming spatial 

homogeneity often leads to errors in estimated outputs (Launay & Guerif, 2005). There exists considerable 

uncertainty with regards to the spatial distribution of farm management practices and soil and weather 

conditions (Hansen & Jones, 2000). A hybrid approach, combining crop growth simulation modelling and 

remotely sensed data, has the potential to overcome both limitations of CGM’s.  

 

Remote sensing data can be used in CGM’s in two ways. One is as input to CGM’s, more specifically for 

meteorological variables (de Wit & van Diepen, 2008) at regional scale. Secondly, RS data can be integrated 

into CGM’s, providing actual empirical information of the crop’s growth state throughout the crop’s 

lifecycle and can also in that way account for the spatial variability in the plants environment. The integration 

of RS data in CGMs can take different forms. Delécolle et al. (1992) distinguish two main approaches: forcing 

and recalibration. In forcing, model state variables are replaced or adjusted using remotely sensed 

estimations. In recalibration, model parameters or initial conditions are adjusted based on RS observations.  
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There is ample evidence showing that the integration of RS data in CGMs improves crop yield estimations. 

Many approaches utilize Leaf Area Index (LAI) derived from a vegetation index (Casa et al., 2012; Clevers 

et al., 2002; Doraiswamy et al., 2004; Ma et al., 2013; Myneni et al., 1995). Moriondo et al. (2007), not without 

success, utilize NDVI (Normalized Difference Vegetation Index) in combination with a CGM to estimate 

wheat yield on a regional scale in Italy. Alternatively also non-optical remote sensing data i.e. Advanced 

Synthetic Aperture Radar (ASAR) is utilized for LAI retrieval, sometimes in combination with optical 

remote sensing (Dente et al., 2008). In a recent study on wheat production in Andalusia, Spain (Khan, 2011), 

the use of RS data from thermal bands (Moderate Resolution Imaging Spectrometer Land Surface 

Temperature) for actual yield estimations showed very close agreement with measured yield data. Another 

study, on rice in the Mekong Delta in Vietnam, used a Soil-Leaf-Canopy (SLC) radiative transfer model for 

LAI estimation and forced this into an existing CGM (Ha, 2013), again showing close agreement with 

measured yield data.  

 

Until now, RS data has mainly been integrated in complex CGMs, therefore still requiring extensive input 

datasets. With the recent developments regarding CGM’s (FAO, 2012), effective incorporation of RS data 

in these models is a promising field of study that may improve the model’s accuracy and applicability to 

larger regions (De Bie & Morsink, 2013). Figure 1.2 shows the evolution in crop yield assessment methods.  

 

 
Figure 1.2. Evolution in crop yield assessment methods (Source: de Bie & Morsink, 2013) 

 

In summary, accurate crop yield estimation with existing CGMs requires extensive input datasets and 

substantial efforts for calibration. Recent efforts have resulted in more simple and robust CGM’s (i.e. FAO’s 

AquaCrop), however the concerns with regards to input data requirements and calibration to achieve 

accurate and reliable estimations remain. RS data provides actual empirical data of the crop’s growth state 

throughout the crop’s lifecycle and its appropriate use in CGMs is likely to lead to more accurate and more 

robust actual yield estimation. This is especially important for yield estimations at the spatial scales necessary 

to support food security policy. Forcing with RS-data overrules the CGM’s basic carbon, water or solar-

driven engine, potentially reducing substantial ground-based data requirements, and uses the strengths of 

CGM’s that defines partition and development, leading ultimately to yield. 
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1.2. AquaCrop, FAO’s simulation model for crops 

In an effort to integrate improved knowledge and understanding of soil-water-yield relationships into crop 

growth models (Steduto et al., 2009), the FAO has recently developed the AquaCrop CGM. At the basis of 

the model is the approach of Doorenbos and Kassam (1979) which relates the relative yield loss of a crop 

to the relative reduction in evapotranspiration. By separating crop transpiration and soil evaporation from 

evapotranspiration, the productive water use (i.e. crop transpiration) is utilized to establish yield estimations. 

Figure 1.3 provides a schematic overview of the AquaCrop model. For a more detailed explanation of 

AquaCrop, reference is made to FAO’s Irrigation and Drainage paper 66, (FAO, 2012). 

 

 

 

 

 
 

Figure 1.3. Schematic overview of AquaCrop (Source: Steduto et al., 2008) 

 

 

 

AquaCrop uses weather, crop, soil and management data to estimate yield output. Table 1.2 summarizes 

AquaCrop’s input data requirements. Weather parameters can be provided on a daily, 10-daily or monthly 

basis. CO2 concentration data is provided for larger timescales (years, decades). Crop and soil data is 

provided once, while irrigation and management data is provided for each irrigation or management event.  
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Table 1.2. AquaCrop input data overview 

Type of data Description Specific parameters 

Weather Characterizes the weather Temperature  

Reference evapotranspiration 

Rainfall 

CO2 concentration 

Crop Characterizes the crop  Crop temperature range 

Rooting depth 

Crop stage lengths 

Canopy growth & decline characteristics 

Soil water depletion factors 

Soil Characterizes the soil properties and profile Number of soil horizons 

Thickness of soil horizons 

Water content at field capacity and 

Permanent wilting point 

Saturated hydraulic conductivity 

Restrictive layer depth 

Irrigation Specifies the irrigation Irrigation method 

Date and depth for each irrigation event 

Management Specifies soil fertility and soil conservation practices 

that influence the soil-water balance 

Soil fertility levels 

Reduction in runoff 

Mulching or soil bunds  

 

AquaCrop calculates the simulated yield in a number of steps. Figure 1.4 shows AquaCrop’s calculation 

scheme, including the feedback mechanisms which account for various stresses. 

 

 

Figure 1.4. AquaCrop’s calculation scheme (Source: Raes et al., 2009) 

Dotted arrows indicate processes affected by water stress. CC is the canopy cover, Ks the target process specific stress coefficient, WP is the 

water productivity, ETo the reference evapotranspiration, HI the harvest index and KcTR the crop transpiration coefficient. 

 

By simulating the soil water balance over time, considering crop, weather, soil, irrigation and management 

characteristics, the green canopy development, expressed as crop canopy cover, is estimated. From canopy 

cover, AquaCrop derives crop transpiration.   
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Biomass (aboveground) is subsequently derived from crop transpiration using the concept of normalized 

water productivity (Raes et al., 2009). In turn, the yield is derived from biomass using a harvest index. The 

simulations in AquaCrop are performed in daily time steps. For a detailed explanation of AquaCrop’s 

calculation scheme, reference is made to FAO’s Irrigation and Drainage paper 66, (FAO, 2012) and Raes et 

al. (2009) 

1.3. Research objective 

The research objective is to determine if the use of RS data through forcing within FAO’s CGM AquaCrop, 

results in improved and accurate actual yield estimations. This will be tested using yield data of barley and 

durum wheat collected at the field level in Spain. For the purpose of this research, the use of RS data will 

be limited to directly estimating crop canopy cover and crop biomass from NDVI time series. A forcing 

data assimilation approach will be used, i.e. the model state variables for biomass and canopy cover will be 

adjusted or replaced daily by RS based estimations. Calibration of fixed model parameters and initial 

conditions is excluded in this study. 

1.4. Research question and hypothesis 

From the research objective, and assuming that RS data provide a good measure of biomass or canopy 

cover, the following research question has been derived: 

 Does the use of biomass and/or canopy cover derived from RS data within AquaCrop, result in 

more accurate actual yield estimations compared to AquaCrop’s yield estimations without the use 

of RS data? 

 

The research question can be reformulated into the following hypothesis: 

 H0 : The accuracy of actual yield estimations in the AquaCrop model that utilizes RS data is less 

than or equal to the accuracy of yield estimations derived from the AquaCrop model without the 

use of RS data. 

 HA : The accuracy of actual yield estimations in the AquaCrop model that utilizes RS data is better 

compared to the accuracy of yield estimations derived from the AquaCrop model without the use 

of RS data. 

1.5. Method 

An overview of the proposed research method is given in a flowchart in figure 1.5. With reference to figure 

1.5, the research method can be further explained as follows. 

1. Data preparation 

 RS-data preparation: In this step temporally-changing estimates of biomass and canopy 

cover data are made from NDVI time series.  

 Basic model-data preparation: AquaCrop requires input data for soil, crop, management 

and climate. Up to 12 input files are required to run a simulation. These are prepared from 

existing datasets for the spatial and temporal dimensions of interest.  

 Validation-data preparation: Measured yield data for the crops, area and period of 

interest is prepared for the accuracy assessment. 

2. Modification of AquaCrop 

In order to force biomass and canopy cover derived from NDVI into AquaCrop, the AquaCrop 

model is modified. The modification is performed by Prof. D. Raes from the AquaCrop developing 

team. The communication and evaluation module to interact with AquaCrop is developed by Mr. 

W. Nieuwenhuis, software developer at ITC.  
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3. Yield Estimations 

The simulations are run for area, period and crops of interest, using both the regular and the 

modified AquaCrop model. 

 

4. Model accuracy assessment and hypothesis testing 

In this step, the estimated crop yields from both the regular and the modified AquaCrop model 

simulations, are compared to the field validation data. Basic statistical indicators (X-Y diagram with 

1:1 line, correlation coefficient r, determination coefficient R2 and Nash-Sutcliffe coefficient) are 

used for accuracy assessment of the model outputs. The result of the model accuracy assessment 

will establish if the hypothesis has to be rejected or accepted. 
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Figure 1.5. Research method flowchart 
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1.6. Study area 

The study area covers the mainland of Spain, located between latitudes 36º and 44º N and longitudes 10º W 

and 4ºE. It has a total area of around 500.000 km2. Figure 1.7 depicts a map of Spain. The dominant climate 

types in Spain are warm and temperate Mediterranean (Koppen-Geiger: Csa and Csb), cold semi-arid 

(Koppen-Geiger: Bsk) and temperate oceanic (Koppen-Geiger: Cfb), although other climate types exist in 

smaller regions. Figure 1.8 shows a Koppen-Geiger climate classification map for Spain (Rubel & Kottek, 

2010).  

Figure 1.6. Topographic map of Spain (Source: Wikimedia) 

 

Temperature, humidity, sunshine hours and precipitation vary across Spain. For the Mediterranean climate 

zones, temperatures vary from -15º C in winter to 35º C in summer with annual rainfall exceeding 500 mm. 

In some regions this can be as much as 2000 mm per year. In the oceanic climate zones, rainfall is abundant, 

exceeding 1000 mm per year, while temperatures vary only slightly from approximately 9º C to 21º C. The 

semi-arid climate zones have less rainfall, approximately 300 mm per year and temperatures can exceed 40º 

C.  

 

According to Eurostat, agriculture accounted for ±2.5% of Spain’s Gross Domestic Product and employed 

approximately 2.2 million people in 2010. Agricultural lands are located across the whole of Spain, with 

regional variation in crops and absence in the extreme regions i.e. the high mountainous and the very dry 

areas. Total agriculture lands covered ±24 million hectares of which 26.5% is used for cultivation of cereals, 

with barley and wheat being the major crops. Table 1.3 details the utilized agricultural area for Spain in 2010. 

Most of the agriculture area under production is non-irrigated (±80%) and depends solely on rainfall.  
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Figure 1.7. Koppen-Geiger climate classification map of the Iberian Peninsula (Source: AEMET) 

Table 1.3. Utilized Agricultural Area (UAA) for Spain 2010 (Source: Eurostat) 

 Ha  % of UAA 

Land use 23,752,690  100.0  

Arable land 11,286,010  47.5  

           Cereals (±34% Wheat, ± 50% Barley) 6,291,820  26.5  

           Pulses (total) 318,130  1.3  

           Potatoes 61,890  0.3  

           Sugar beet 48,580  0.2  

           Fodder roots and brassicas 17,550  0.1  

           Industrial crops (total) 900,440  3.8  

           Fresh vegetables, melons, strawberries 236,490  1.0  

           Flowers and ornamental plants (total) 6,610  0.0  

           Fodder crops 736,100  3.1  

           Seeds and seedlings 4,430  0.0  

           Other crops on arable land 0  0.0  

           Fallow land 2,663,960  11.2  

    Kitchen gardens 3,050  0.0  

    Permanent grassland and meadow 8,377,390  35.3  

    Permanent crops 4,086,240  17.2  
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1.7. Thesis structure 

The thesis report is structured as follows. Chapter 1 provided the background, research objective, research 

questions and hypothesis, a study area description as well as a brief overview of the research method. 

Chapter 2 details the datasets used and describes the main data pre-processing steps performed. Chapter 3 

provides the method used in the research. In chapter 4 the results of the simulations are presented. The 

discussion is covered in chapter 5, while conclusions and recommendations are given in chapter 6.  
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2. DATA PREPARATION 

2.1. Introduction 

This research uses different data from various sources. Distinction is made between the following datasets. 

 Validation data: This contains the actual crop area and yield data collected by the Instituto Nacional 

de Estadística (INE) for Spanish government’s annual Agricultural Census program. 

 AquaCrop input data: This contains all data required to run the AquaCrop software and is related 

to the crop and its environment for the temporal and spatial dimensions of interest. 

 Remote sensing data: This relates to the two crop features, canopy cover and accumulated 

aboveground biomass derived from NDVI time series, which will be used to replace or adjust on a 

daily basis the same crop features simulated in AquaCrop. 

Each dataset is treated separately, with provision of details on data sources and carried out data pre-

processing. 

2.2. Validation data  

2.2.1. Validation data selection 

The Agricultural Census is an annual statistical operation conducted by the INE since 1962 using the farm 

as basic unit of information. Its main purpose is to collect, process and disseminate data on the structure of 

the agricultural sector in Spain. Over 10.000 segments of 700x700m are sampled each census year to collect 

the required census data. Figure 2.1 shows an overview of the sampling segmentation method. 

 

 

 
 
Figure 2.1. Sample segmentation in INE’s agricultural census. 700x700m segments are selected from a 1x1km grid and each 

selected segment is assessed for statistical data of interest. (Adapted from INE) 

 

 

For this research, INE census data for 2004, 2005, 2006, 2007 and 2009 was made available through the 

EU’s Joint Research Centre (JRC) for all fields within 52.670 segments. Yield data for each field in each 

segment is determined in different ways.  
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INE distinguishes the following ways of yield determination:  

 

 Ocular estimation 

 Data provided by the farmer 

 Determination by combine harvester  

 Counting of spikes and grains 

 Counting and weighing of spikes 

 Weighing of spikes 

 Counting and weighing of fruits, counting of trees 

 Sectorial determination 

 Other 

A selection is made for segments containing fields with barley and/or durum wheat, for which the yield has 

been measured, either by counting spikes and grains, counting and weighing spikes or weighing spikes only. 

The underlying assumption supporting the selection is that these three methods of measuring the yield are 

the most accurate. This is assumed because no clear documentation on the remaining acquisition methods 

could be retrieved. The selection leads to 1323 sample segments, 311 in 2004, 286 in 2005, 257 in 2006, 239 

in 2007 and 230 in 2009. These selected segments are treated as sample points and yield data is attributed 

to the segment midpoint.  

2.2.2. Exploratory statistics on validation data 

AquaCrop’s yield estimations are deterministic and assumed known without error. Although model output 

is influenced by errors in input data, their relative effect on modelled yield can be investigated by conducting 

a model sensitivity analysis. In this thesis, only model performance is considered and this is evaluated using 

the validation data, utilizing linear parametric statistical tools i.e. correlation and linear regression analysis 

(Moore et al. 2009). For that, the validation data has to be independent, random, and homoscedastic, with 

the residuals independent and identically distributed (Tedeschi, 2006). 

 

INE uses a grid based stratification setup, based on the CORINE (Coordination of Information on the 

Environment of the European Environmental Agency) Land Cover map. From 100 km2 agricultural land 

use grid blocks, which are each divided into a mesh of 1 km2 cells, three cells are chosen at random in each 

of the grid blocks. The selected cells always occupy the same relative positions within a block, therefore 

being uniformly distributed throughout the territory under investigation. The unit of field work is set at a 

square of 700 by 700 meters attached to the left lower corner of the corresponding 1 km2 grid cell. The 

sample thus obtained is in some cases reinforced with additional segments with the highest cropping 

intensity. In these cases three more cells are added per block.  

 

From INE’s data set over 2004-2009, containing 52.670 segments, the validation data is selected based on 

crop (barley and durum wheat) and yield measurement method (measured either by counting spikes and 

grains, counting and weighing spikes or weighing spikes only). Out of 1323 selected sample segments for 

this research, 695 contain durum wheat fields and 641 contain barley fields. Figure 2.2 shows the histograms 

for yield and cropped area of the selected sample segments for both crops. The proportion of durum wheat 

is less than 30% for 75% of selected segments. In case of barley the proportion is less than 13 % for 75% 

of the selected segments.  
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Figure 2.2. Histograms of yield and cropped area for barley and durum wheat for their respective selected sample segments of 

occurrence (n=695 for durum wheat, n=641 for barley, sample segment area=49ha) 

 

The resulting 1323 segment midpoints (695 for durum wheat and 641 for barley) are superimposed on the 

crop intensity maps for barley and durum wheat and shown in figure 2.3. The resulting maps as well as the 

comparison with the climate classification map (see also figures 1.8 and 2.3) support the assumption that 

validation samples properly represent the variability of the population. Inferences made from the samples 

are therefore expected to hold. 
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Figure 2.3. Selected segment midpoints for census years 2004-2009 for Durum Wheat (top, n=695) and Barley (bottom, n=641) 

displayed on top of a crop fraction map (Source: de Bie, 2014)  
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To verify whether the validation data measurements vary with the relative cropped area in a segment, the 

standard deviation of the yield is calculated for each selected sample segment containing six or more fields 

of the respective crop. Both ordinary and weighted linear model relating standard deviation to cropped area 

in the segment, did not result in significant values for the slopes, hence confirming that no significant 

relationship exists. Figure 2.4 shows the resulting scatter diagrams with regression lines.  

 

 

 
 

Figure 2.4. Scatter diagrams with linear regression line for the standard deviation of yield of barley and durum wheat with 

cropped area size 

 

 

The validation data sets for barley and durum wheat are not normally distributedA Shapiro-Wilks test 

(Shapiro & Wilk, 1965) performed on the validation data confirms its non-normality (p-values of 8.6e-15 

and 2.9e-06 for barley and durum wheat respectively). In order to meet requirements for normality, 

transformation of validation data is explored using the Box-Cox power transformation method (Box & Cox, 

1964). An automated approach, using a readily available function in R software to determine the optimal 

Box-Cox power transformation (boxcoxnc from R’s MASS package) is applied to the data. Unfortunately 

the optimal power transformed data continues to fail the Shapiro-Wilks normality test (p-values of 1.8e-07 

and 0.047 for barley and durum wheat respectively). 

 

Figure 2.5 shows the histograms for original and transformed data. Figure 2.6 shows the QQ-plots for 

original and transformed data. Even with the validation data or its transformation not perfectly normally 

distributed, linear regression analysis involving the validation data will still hold if the residuals of the 

regression are independent and identically distributed or will at least be informative for model comparison 

(Bennett et al., 2013). The independence and distribution of regression residuals therefore need to be verified 

when assessing the simulation results. 
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Figure 2.5. Histograms of validation data for barley and durum wheat, original and transformed using optimal BoxCox power 

transformation (λ=0.41 for Barley, λ=0.71 for durum wheat) 

 

 
Figure 2.6. QQ-plots of validation data for barley and durum wheat, original (top) and transformed (bottom) using optimal 

BoxCox power transformation (λ=0.41 for Barley, λ=0.71 for durum wheat)  
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2.3. AquaCrop input data 

2.3.1. Overview of AquaCrop input data 

AquaCrop requires specific data related to weather, soil, irrigation, management and crop for each 

simulation run. Table 2.1 summarizes the input data and specifies the data sources that have been utilized 

to acquire these. In the following paragraphs, the data types (weather, soil, crop and simulation data) are 

treated separately. 

 

Table 2.1. Overview of input data for AquaCrop as used in this research 

Data type Description Sources Remarks 

Weather Minimum temperature  

Maximum temperature 

Solar radiation 

Humidity 

Wind speed 

Atmospheric pressure 

Rainfall 

Atmospheric CO2 concentration 

Reference evapotranspiration 

 

AEMET 

 

 

 

 

 

IRI/LDEO Climate Data Library 

AquaCrop database (Mauna Loa) 

Calculated from weather data 

using FAO Penman-Monteith 

equation (FAO, 2012) 

AEMET is the Spanish government’s 

meteorological services agency. 

The IRI/LDEO climate database is 

maintained by the Columbia University in 

New York USA 

 

 

AquaCrop contains standard CO2 

concentration records as observed in 

Mauna Loa, Hawai. 

 

Soil Horizon thickness 

Soil water content at: 

-Field capacity 

-Saturation 

-Permanent wilting point 

Saturated hydraulic conductivity 

Curve number (runoff determination) 

Readily evaporable water 

Capillary rise parameters 

Eurosoils database (EU JRC) 

 

SEISNET 

 

AquaCrop Reference Manual 

 

The Soil Geographic Database of Europe 

(SGDBE) is used.  

SEISNET is the Spanish Soil Information 

System on the Internet. 

A single horizon is considered with an 

assumed depth of 3 m. Soils are re-

classified based on AquaCrop’s own 

classification system (Crop yield response 

to water 2012) 

Crop Crop temperature range 

Rooting depth 

Crop stage lengths 

Canopy growth & decline characteristics 

Soil water depletion factors 

FAO database of calibrated crop 

files (FAO, 2012). 

Calibrated crop files are included in 

AquaCrop  

Simulation  Start & end of crop growing period 

 

 

Start & end of simulation 

Derived from NDVI 

 

 

Start derived from rainfall data, 

end from NDVI 

Start & end of crop growing period not 

exactly known, therefore derivation from 

NDVI 

To start simulation from saturated soil, 

rainfall events are considered. 

 

2.3.2. Weather data 

Weather data, except for precipitation, has been acquired from Spain’s national meteorological services 

agency AEMET. The data is collected as daily observations from approximately 212 weather stations located 

across Spain. This point dataset has been spatially interpolated to create daily raster datasets for the whole 

of Spain in order to enable determination of weather parameters at any point. Different spatial interpolation 

techniques have been considered. Given the extent of the interpolation task, a pragmatic approach using 

inverse distance weighing (IDW) has been applied to all weather parameters acquired from AEMET. 

Literature shows (Apaydin et al., 2004; Attorre et al., 2007; Cao et al., 2009; Hofstra et al., 2008; Vicente-

Serrano et al., 2003) that this approach provides results with acceptable accuracy, although it may not be the 

most optimal for each weather parameter under different conditions.   
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Reference evapotranspiration is calculated using FAO’s Penman-Monteith’s equation (Allen et al., 1998), 

given by equation (1). 

 

 

 

 

 

 

 

 

 
 

 

 

With: ETo: reference evapotranspiration [mm day-1] 

Rn: net radiation at the crop surface [MJ m-2 day-1] 

G: soil heat flux density [MJ m-2 day-1] 

T: mean daily air temperature at 2 m height [°C] 

U2: wind speed at 2 m height [m s-1] 

es: saturation vapour pressure [kPa] 

ea: actual vapour pressure [kPa] 

es-ea: saturation vapour pressure deficit [kPa] 

Δ: slope vapour pressure curve [kPa °C-1] 

γ: psychrometric constant [kPa °C-1]. 

 

 

 

 

For each selected segment midpoint, the weather parameters required to calculate the reference 

evapotranspiration are acquired from the spatially interpolated raster datasets. Subsequently the reference 

evapotranspiration is calculated for each selected segment midpoint.  

 

In the case of precipitation data, the IRI/LDEO (International Research Institute for climate & society/ 

Lamont-Doherty Earth Observatory) climate database has been consulted. This has primarily been done for 

reasons of efficiency, i.e. it would also have been possible to create precipitation raster data from AEMET’s 

data set, however this is more time consuming and assumed not to lead to improved results. The available 

precipitation data is created by NOAA (National Oceanic & Atmospheric Administration) based on the 

CMORPH technique (Joyce et al., 2004). CMORPH combines at a 0.25x0.25 degrees grid resolution 3-

hourly precipitation estimates retrieved from several low earth orbiting passive microwave sensor satellite 

data and geostationary infrared data. In different parts of the world very high levels of accuracy were 

achieved when validating CMORPH data with ground measurements (Dinku et al., 2008; Dinku et al, 2010). 

For this research, eight 3-hour estimates have been aggregated into one daily estimate.  
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2.3.3. Soil data 

With regards to the soil data, two soil databases have been explored: the Soil Geographic Database of 

Eurasia version 4.0 (SGDBE) which is maintained by the EU’s Joint Research Centre and Spain’s SEISNET 

(Spanish Soil Information System on the Internet) soil database. The latter provides soil classification data 

consistent with the United States Department of Agriculture’s (USDA) taxonomy (USDA, 2010). SGDBE 

provides, at a scale of 1:1.000.000, 14 types of attribute data, including soil classification, texture, depth, 

parent material, soil water regime, impermeable layer and obstacle to roots (Lambert et al., 2003).  

 

As listed in table 2.1, AquaCrop uses a limited set of parameters to characterize up to five soil horizons in a 

simulation run. Ideally soil parameters are determined in the field before commencing each simulation. 

Alternatively AquaCrop offers a set of default values for the parameters it uses. Table 2.2 provides an 

overview of AquaCrop’s default values in use. The default parameter values are related to the USDA’s soil 

textural classes. SGDBE however provides soil textural classification based on an EU standard. Figure 2.7 

displays the soil textural triangles for both systems.  

 

For this research, an attempt has been made to reclassify the soil for each selected segment midpoint to 

USDA’s standard soil textural classes. This is carried out by combining soil data from both SGDBE and 

SEISNET. A number of simplifications have been applied. For instance, only one soil horizon is considered 

with a fixed depth of 3 meters, and this is attributed to the dominant soil type as provided by SGDBE. In 

addition, no restrictive and impermeable layers have been considered. After the reclassification, AquaCrop’s 

standard soil parameter values have been applied to all selected segment midpoint. The assumption is that 

with this approach, including its embedded simplifications, at least the minimum requirements for adequate 

AquaCrop simulations are met (FAO, 2012). 

 

 
 

  

Figure 2.7. Soil textural classes triangle as used in SGDBE (left) and as used in USDA’s 12 class-system (right) 

(Sources: JRC and USDA) 
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Table 2.2. Default soil properties values in AquaCrop (Source: AquaCrop Reference Manual) 

TEXTURAL CLASS    SOIL WATER CONTENT    SATURATED HYDRAULIC CONDUCTIVITY   

   SATURATION  FIELD 

CAPACITY  

 PERMANENT WILTING 

POINT 

KSAT 

   Vol. %    Vol. %    Vol. %    mm/day   

 Sand    36    13    6    1500   

 Loamy sand    38    16    8    800   

 Sandy loam    41    22    10    500   

 Loam    46    31    15    250   

 Silt loam    46    33    13    150   

 Silt    43    33    9    50   

 Sandy clay loam    47    32    20    125   

 Clay loam    50    39    23    100   

 Silty clay loam    52    44    23    120   

 Sandy clay    50    39    27    75   

 Silty clay    54    50    32    15   

 Clay    55    54    39    2   

 

2.3.4. Crop data 

Crop data characterizes the crop under evaluation. Crop parameters describe the crop’s growth and 

development, transpiration, biomass production and yield formation, and response to water and 

temperature stresses. In addition information is needed on crop stage duration (phenology), planting density, 

soil rooting and response to soil related stresses. Both barley and durum wheat are grown as winter crops 

with a dormancy period after germination. For this research, standard calibrated crop files for barley and 

wheat from the FAO are used. Table 2.3 summarizes the standard crop parameters as used in AquaCrop. 

 

Table 2.3. Crop parameters (Crop yield response to water 2012) used in simulation runs 

Conservative parameter description Wheat Barley 

Crop growth & development 
 Base temperature (°C) 
 Upper temperature (°C) 
 Canopy size of average seedling at 90% emergence (cm2) 
 Canopy growth coefficient (fraction soil cover per day) 
 Canopy decline coefficient (fraction soil cover per day) 
 
Crop transpiration 
 Decline of crop coefficient as a result of ageing (%/day) 
 
Biomass production and yield formation 
 Water productivity normalized (WP*) for ETo and CO2   (gram/m2)  
 Reduction coefficient on normalized water productivity during yield formation (as % WP*) 
 Reference Harvest Index (HI) (%) 
 
Stresses (Soil-water) 
 Upper and lower thresholds of soil water depletion for canopy expansion and shape of curve 
 Upper threshold of soil-water depletion for stomatal closure and shape of the stress curve 
 Upper threshold of soil-water depletion for early senescence and shape of the stress curve 
 Upper threshold of soil-water depletion for failure of pollination 
 Possible increase of HI resulting from water stress before flowering (%) 
 Coefficient describing positive impact of restricted vegetative growth during yield formation on HI (%) 
 Coefficient describing negative impact of stomatal closure during yield formation on HI (%) 
 Allowable maximum increase of specified HI (%) 
 Anaerobiotic point (for effect of waterlogging on transpiration) (Vol %) 
 
Stresses (Air temperature) 
 Minimum and maximum air temperature below which pollination starts to fail (°C) 
 Minimum growing degrees required for full biomass production (°C-days) 

 
0 
26 
1.5 
0.04902 
0.07179 
 
 
0.15 
 
 
15 
100 
48 
 
 
0.20/0.65/5.0 
0.65/2.5 
0.7/2.5 
0.85 
5 
10 
7 
15 
5 
 
 
5/35 
14 

 
0 
15 
1.5 
0.1241 
0.07679 
 
 
0.15 
 
 
15 
100 
33 
 
 
0.20/0.65/3.0 
0.60/3.0 
0.55/3.0 
0.85 
5 
10 
5 
15 
15 
 
 
5/35 
14 
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Table 2.3 continued  

None-conservative parameter description Wheat Barley 

Phenology (cultivar specific) 
 Time to flowering or the start of yield formation (Days/°C-days) 
 Length of the flowering stage (Days/°C-days) 
 Time to start of canopy senescence (Days/°C-days) 
 Time to maturity (i.e. the length of crop cycle) (Days/°C-days) 
 
Management dependent 
 Plant density (no. of plants/ha) 
 Time to 90% emergence (Days/°C-days) 
 Maximum canopy cover (fraction of soil cover) 
 
Soil dependent 
 Maximum rooting depth (m) 
 Time to reach maximum rooting depth (Days/°C-days) 
 
Soil & management dependent 
 Response to soil fertility (%) 
 Soil salinity stress (%) 

 
127/1250 
15/200 
158/1700 
197/2400 
 
 
4500000 
13/150 
0.96 
 
 
1.5 
93/864 
 
 
50 
50 

 
60/867 
12/160 
65/924 
93/1296 
 
 
1500000 
7/98 
0.8 
 
 
1.30 
60/854 
 
 
50 
50 

 

AquaCrop distinguishes conservative and non-conservative parameters (Raes et al., 2009). Conservative 

parameters are considered to remain the same under different growing conditions and water regimes. The 

none-conservative parameters on the other hand, may depend on the cultivar, management practices and 

location and should be adjusted by the user if possible and as necessary. For this research, exact cultivar en 

management information is not available and therefore simulations are performed using the standard 

parameter values as provided in the FAO’s calibrated crop files for barley and wheat. The underlying 

assumption here is that significantly inaccurate parameter values will lead to explicit systematic errors in the 

model simulation output.  

 

The crop’s phenology parameters have been researched in literature, to validate the use of standard 

parameters in AquaCrop (Abrha et al., 2012; Albrizio et al., 2010; Andarzian et al., 2011; Araya et al., 2010; 

Isidro et al., 2011; Soddu et al., 2013). Figures from literature regarding the crop’s phenology parameters in 

comparable regions, do not deviate substantially from FAO’s standard values. It is therefore considered 

appropriate to run simulations using the latter. Table 2.4 provides an overview of phenology parameters as 

found in literature and as provided in the FAO’s calibrated crop files for barley and wheat.  

 

Table 2.4. Crop phenology parameters from literature and as used in AquaCrop.  

D
U

R
U

M
 W

H
EA

T
 

Parameter description AquaCrop Isidro et al. (2011) 

[Spain]** 

Soddu et al. (2013) 

[Sardinia, Italy] 

Andarzian et al. (2011)*** 

[Ahvaz, Iran] 

Time to flowering  
Length flowering stage  
Time to senescence  
Time to maturity  
 
 

127 (1250)* 
15 (200) 
158 (1700) 
197 (2400) 

(1149-1445) 
(189.5-235) 
(1340-1680) 
(1978-2274) 

145 
10 
155 
194 

93 (1277) 
10 (140) 
100 (1372) 
142 (2040) 

B
A

R
LE

Y
 

 AquaCrop Araya et al. (2010) 

[Mekelle, Ethiopia] 

Abrha et al. (2012) 

[Mekelle, Dejen & Maiquinha, Ethiopia] [Bari, Italy] [Breda, Syria] [Montana, USA] 

Time to flowering  
Length flowering stage  
Time to senescence  
Time to maturity  

60 (867) 
12 (160) 
65 (924) 
93 (1296) 

(676) 
(130) 
(962) 
(1105) 

(696-940) 
(160-180) 
(704-1063) 
(1069-1520) 
 

*:Units: Days (°C-days) **:[Study Area] ***: Study refers to Bread Wheat  

2.3.5. Simulation dates 

Simulation dates relate to the start and end of each simulation and the start and end of each crop growing 

period (CGP) for the site under simulation. AquaCrop requires the user to specify these four dates for each 

simulation run. The proper order of these dates is: start of simulation, start of CGP, end of CGP, end of 

simulation, although AquaCrop also allows the simulation start to be after the start of CGP.   
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To determine these dates for each simulation, the following logic has been applied. For each simulation, the 

start and end of CGP has been determined utilizing crop calendars and hyper temporal NDVI data. The 

end of simulation date is then set at the latest occurrence of the end of CGP date per for each season. The 

start of simulation is set at the date in September or October prior to the start of CGP, with the maximum 

rainfall occurring. This sets the initial timing for AquaCrop’s soil water balance simulation, from which the 

crop growth simulation further develops. For simulations where a starting point cannot be determined based 

on prior rainfall events, rainfall events after, but close to the start of CGP (in September or October) are 

considered. 

 

From crop calendars provided by the USDA (2012) we can derive the months for CGP start and end for 

durum wheat and barley in Spain. This information is further complemented with regional crop calendars 

derived in previous research (Khan, 2011; Supit & Wagner, 1999). In general, both crops are planted in 

November and harvested in June. However, rather than a month, AquaCrop requires a specific date for 

both start and end of CGP. Because this information is not available at field level, one way to determine 

this is from remote sensing data i.e. from NDVI-profiles. The concept behind this idea is best explained 

using figure 2.8. 

Figure 2.8. Agro-phenology indicators derived from an NDVI curve. The x-axis represents the 12 months of a season. (Reed et 

al., 1994) 

 

From the NDVI curve given in figure 2.8, three key phenology indicators can be derived: onset of greenness, 

maximum NDVI and end of greenness. In the case of spatial homogeneity, where one NDVI pixel 

represents a single crop planted approximately at the same time, the onset of greenness can confidently be 

related to the start of CGP and the end of greenness to the end of the CGP. For more spatially 

heterogeneous pixels, this association does not necessarily hold, however the same approach may still be 

used. Different techniques are used to determine onset and end of greenness from NDVI. Curnel and Oger 

(2006) describe techniques based on thresholds, moving averages, first derivatives and empirical equations. 

They conclude that although none of these techniques is ideal, they are still useful depending on context 

and objectives. For this research, start of the crop growing period and end of the crop growing period are 

determined for each simulation based on a delayed moving average method (Reed et al., 1994). Here, a 

moving average is calculated for each NDVI curve, creating a new series with a time lag. The actual NDVI 

values are compared to the calculated moving average series and a trend change can then be distinguished. 

Trend changes represent the start and the end of the crop growing period. To determine the trend changes, 

a window of thirteen 10-day periods (SPOT-NDVI Maximum Value Composites) was used to calculate the 

moving average. This conforms to recommendations from literature (Beurs & Henebry, 2010; Reed et al. 

1994).   
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Figure 2.9 illustrates the applied method to derive start of the crop growing period utilizing a delayed moving 

average. The end of the crop growing period is determined similarly, however by applying the moving 

average in inverse order (Beurs & Henebry, 2010; Reed et al., 1994). Table 2.5 summarizes main statistical 

characteristics of the resulting simulation and cropping dates. 

 

Table 2.5. Means, 25th & 75th percentiles of start, end and length of crop growing period calculated from selected segments. 

 2004 2005 2006 2007 2009 

Start CGP mean 9-Nov-03 16-Dec-04 2-Nov-05 27-Oct-06 26-Nov-08 

End CGP mean 17-Jun-04 21-Jun-05 19-Jun-06 12-Jun-07 5-Jun-09 

Length CGP mean 221 days 187 days 229 days 228 days 191 days 

Start CGP 25th percentile  20-Oct-03 10-Nov-04 10-Oct-05 10-Oct-06 20-Oct-08 

Start CGP 75th percentile 20-Nov-03 10-Jan-05 10-Nov-05 31-Oct-06 20-Dec-08 

End CGP 25th percentile 30-May-04 31-May-05 20-May-06 31-May-07 10-May-09 

End CGP 75th percentile 30-Jun-04 30-Jun-05 20-Jun-06 20-Jun-07 10-Jun-09 

Length CGP 25th percentile 203 days 161 days 202 days 202 days 171 days 

Length CGP 75th percentile 244 days 212 days 233 days 243 days 212 days 

 

 

Figure 2.9. Illustration of start of CGP detection based on a delayed moving average method (Reed et al., 1994) CGP start is 

where upwards moving NDVI crosses the Moving Average curve.  

The actual CGP start and end dates for each selected segment are not known. However, the average resulting 

dates retrieved from the NDVI profiles, comply with findings from literature (Khan, 2011; Supit & Wagner, 

1999). The relatively late average start of CGP in 2005 may be attributed to the drought that Spain suffered 

during that specific season (European Drought Centre). Figure 2.10 illustrates how canopy cover 

development in a simulation run is expected to relate to simulation start, start of CGP and end of CGP. The 

figure therefore displays NDVI, its trend changes used to determine start of CGP and end of CGP and the 

rainfall maximum before the start of CGP which is used to set the start of simulation.  
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Figure 2.10. Illustration of determination of Simulation start, start of CGP and end of CGP for an imaginary sample site and their 

relationship with expected canopy cover development. NDVI is scaled for display purposes. Rain data is only shown prior to 
start of CGP 

2.4. Remote sensing data 

2.4.1. Normalized Difference Vegetation Index (NDVI) time series 

The Normalized Difference Vegetation Index or NDVI is a dimensionless index that represents the 

photosynthetic activity in vegetation. NDVI is acquired by applying the formula NDVI = (NIR - 

RED)/(NIR + RED), where NIR is the near-infrared reflectance and RED is the (visible) red reflectance, 

reflected by vegetation and captured by (satellite) sensors. NDVI values vary from -1 to 1 whereby values 

close to zero correspond to an absence of green vegetation and negative values in principle occur only over 

water surfaces. NDVI can be calculated from different sensors, however for this research only coarse 

resolution NDVI time series are considered and referred to.  

 

In numerous studies NDVI has been related to different plant attributes like plant photosynthetic activity 

and plant productivity. This is quite extensively summarized, along with associated shortcomings, by 

Pettorelli et al. (2006) and Santin-Janin et al. (2009). Noise in NDVI data is mainly due to cloud cover, water, 

snow or shadow, and usually leads to decreased NDVI values. Different smoothing techniques may be used 

to properly handle noise (Pettorelli et al., 2006). A commonly used method is maximum value composition 

(MVC) whereby NDVI values are aggregated and the highest NDVI value for period and area considered 

is retained.  

 

NDVI is capable of capturing the specific periodic behaviour that crops exhibit. The relationship between 

NDVI and biomass is known to saturate at high biomass values and high vegetation densities (Gitelson, 

2004; Santin-Janin et al., 2009). The reflectance of RED can be attributed to one layer of leafs while the 

NIR reflectance results from multiple layers of leafs dues to the high transmittance of NIR radiation through 

green leafs. As a consequence, RED saturates faster, leading to saturation of NDVI where the Leaf Area 

Index (the one-sided green leaf area per unit ground surface area) becomes larger than 3. In Spain, barley 

and durum wheat are mostly grown under water limiting conditions leading to low yield potentials (FAO, 
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2012). For environments with low and medium yield potential, LAI values are usually lower than 3 (Aparicio 

et al. 2000), and therefore the assumption that NDVI saturation has little relevance for this research seems 

justified. Other pitfalls concerning NDVI, relate to mixed pixels, misregistration, and the quality of the 

information in respect to spatial location (Pettorelli et al., 2006).  

 

Despite the limitations, there are a number of reasons why coarse resolution NDVI time series have been 

chosen in this research. Firstly, coarse resolution NDVI time series are readily available at zero cost to 

researchers. Secondly, the use of coarse resolution NDVI time series (and similar vegetation indices) is 

currently the only feasible approach when analysing vegetation considering the scale and limitations of this 

research. Thirdly, crop characteristics (i.e. LAI, fractional cover) derived from coarse resolution NDVI time 

series have proven to be useful over time (Glenn et al., 2008).  

 
The NDVI data used is the 10-day maximum value composite georeferenced 1x1 km product derived from 

the Système pour l’Observation de la Terre (SPOT) vegetation program (Maisongrande et al., 2004). SPOT 

uses a RED band (0.61-0.68μm) and a NIR band (0.78-0.89μm) to calculate NDVI. NDVI is made available 

as an unsigned 8 bit integer digital number (DN) in accordance with the formula: DN = (NDVI+0.1)/0.004. 

This converts the NDVI value of -1 to 1 to a DN of 0 to 255. For each month, three products are created 

for each pixel, leading to 36 images for a year. The SPOT NDVI time series have been cleaned, by removal 

of invalid pixels based on accompanying quality records, and upper envelope filtered utilizing a Savitsky-

Golay filtering technique (Chen et al., 2004). This technique smooths out noise in the NDVI time series 

caused primarily by cloud contaminiation and atmosperic variability, which usually depress the NDVI values. 

The cleaning and filtering was performed by Dr. de Bie and the resulting NDVI-time series were made 

available for this research. The used data set comprises 2003-2009, a total of 252 images, and cover the 

whole of Spain.  

2.4.2. Derivation of canopy cover from NDVI 

From the upper envelope filtered NDVI series the canopy cover (also known as fractional vegetation cover) 

is derived. Canopy cover is the fraction of soil surface covered by green canopy, considering a vertical 

projection of the shoot (or crown) area of the vegetation. The concept of canopy cover is displayed in figure 

2.11. 

 
 

Figure 2.11. Canopy cover (CC) or vegetation fraction illustrated. CC is the fraction of soil surface covered by green canopy 

(Source: AquaCrop training material, Raes 2012) 

Canopy cover is used in AquaCrop to model the water flux at the surface. In this way, the separation of 

evapotranspiration into productive water use (i.e. crop transpiration) and soil evaporation can be achieved 

(Raes et al., 2009).   
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Different approaches exist to derive canopy cover from NDVI (Jiang et al., 2006). For this research, two 

approaches are considered. Firstly canopy cover is derived using the scaled NDVI approach of Gutman and 

Ignatov (1998). They suggest that the canopy cover in a dense vegetation mosaic (patchy structured) pixel, 

can be derived using equation (2). 

 

 

 

 

With: CC the canopy cover 

 NDVI the NDVI for the pixel under evaluation 

NDVIS the NDVI for bare soil  

NDVI∞ the NDVI for dense green vegetation  

 

The vegetation density varies over the crop’s growing season, and consequently Gutman and Ignatov’s dense 

vegetation mosaic pixel model may not be an accurate proxy for canopy cover throughout the growing 

season. Gutman and Ignatov argue however that even in case of non-dense vegetation mosaic pixels where 

the Leaf Area Index exceeds 3, the above formula will hold (Gutman & Ignatov, 1998). The sample segments 

under evaluation, have a mosaic structure, as can be seen in the example displayed in figure 2.1. Alternatively 

the canopy cover is also derived from a generic relationship as proposed by Baret et al. (1995). Their 

approach links the vertical gap fraction, which is the fraction of soil seen from nadir, to the canopy cover 

as given in equation (3) and (4). 

 

 

where 

 

 

 

With: CC the canopy cover 

 P0 the vertical gap fraction 

 NDVI the NDVI for the pixel under evaluation 

NDVIS the NDVI for bare soil  

NDVI∞ the NDVI for dense vegetation  

 

In an analytic study by Jiang et al. (2006) comparing canopy cover retrieval from NDVI using different 

methods for developing cotton canopy over a variety of soil backgrounds and for both wet and dry soil 

conditions, the model of Baret et al. performed somewhat better than Gutman and Ignatov’s. For this 

research both will be utilized and results will be compared to AquaCrop’s baseline output (without forcing 

of CC) to determine which performs best. 

 

Establishing values for NDVIS and NDVI∞ is considered difficult and uncertain (Liu et al., 2012) due to the 

dependence on soil type, vegetation type, atmospheric factors and leaf properties. Different approaches are 

suggested in literature. Gutman and Ignatov (1998) use constants, independent of location and vegetation, 

while Zeng et al. (2000) derive NDVI∞ for each land cover class separately. Alternatively logistic modelling 

is utilized to derive values for NDVIS and NDVI∞ (Liu et al., 2012) and even NDVI histograms (Jimenez-

Munoz et al., 2009). In this research, the values for NDVIS and NDVI∞ are estimated separately for barley 

and durum wheat. The assumption is that if NDVIS and NDVI∞ are crop specific, the resulting CC will be 

crop specific. Out of 1323 selected sample segments for this research, 695 contain durum wheat fields and 

641 contain barley fields. Only 13 selected sample segments contain both.   
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The minimum and maximum value of NDVI for each of the 1323 selected segment midpoint over 2004-

2009 is determined by sampling the NDVI dataset for the selected sample segment midpoints. The NDVI 

values are then attributed to barley, durum wheat or both, depending on which of the crops occurs in the 

corresponding sample segment. Figure 2.12 shows the histograms for minimum and maximum value of 

NDVI for both crops.  

 

 
Figure 2.12. Histograms of NDVI minima and maxima for barley and durum wheat for their respective selected sample 

segments of occurrence (n=695 for durum wheat, n=641 for barley) 

The NDVI is based on reflectances in RED and NIR averaged over the pixel area. The contribution of a 

crop’s reflectances towards NDVI is therefore relative to its fractional size in the pixel. To estimate the 

values for NDVIS and NDVI∞ separately for barley and durum wheat, some simplifications have been 

applied. It is assumed that the NDVI values sampled for all 1323 sample segment midpoints represents the 

NDVI of the sample segment. In fact, not only is there a discrepancy between sample segment size 

(700x700m) and NDVI pixel size (1x1km), it is also possible to have one sample segment fall within multiple 

adjacent NDVI pixels. In addition, by calculating NDVI minima and maxima over 2004-2009, variations 

across seasons are not considered. It is also implicitly assumed that crop fractions throughout this period 

remain approximately the same. These factors which are likely to introduce inaccuracies are acknowledged 

but not considered further. We assume from now on that the contribution of a crop field’s reflectances 

towards the NDVI determined at the sample segment midpoint, is relative to its fractional size in the sample 

segment for the season under consideration. A weighted sum of the contribution values is then calculated, 

where the weights are set equal to the relative fraction of the crop in a selected sample segment. Table 2.6 

summarizes the values for NDVIS and NDVI∞ determined for each crop.  
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Table 2.6. Values for NDVIS and NDVI∞ as determined for barley and durum wheat 

 NDVIS NDVI∞ 

Barley 0.17 0.59 

Durum Wheat 0.18 0.63 

 

 

By applying the determined values for in NDVIS and NDVI∞ for each crop separately in Gutman and 

Ignatov’s dense vegetation mosaic pixel model and Baret et al.’s gap fraction model, the canopy cover for 

each selected sample segment midpoint can be calculated by crop. To avoid negative values and values over 

1, both model outputs are truncated between 0 and 1. Figure 2.13 shows a random selection of calculated 

canopy cover curves based on Gutman and Ignatov’s model for the 2003-2004 season for durum wheat and 

the same selection of calculated canopy cover curves based on Baret et al.’s model. 

 

 

  
 

Figure 2.13. Durum wheat canopy cover curves for some sample segment midpoints in the 2003-2004 season, as derived from 

NDVI using Gutman and Ignatov’s (1998) dense vegetation mosaic pixel model and using Baret et al.’s gap fraction model.  
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For AquaCrop simulations, data is required on a daily, 10-daily or monthly basis. For this research, daily 

data is used. The daily data series with regards to canopy cover are derived from the canopy cover data by 

means of linear interpolation. The linear interpolation is performed using R software. 

 

2.4.3. Derivation of biomass from NDVI 

NDVI has been used as a proxy for plant biomass in many studies. By establishing the correlation between 

different spectral indices and wheat biomass in different phonological stages, Bao et al. (2008) conclude that 

correlation between biomass and NDVI is phonological stage dependant. Especially in the later stages of 

crop development (i.e. flowering and grain-filling) very low correlations exist. Another interesting approach 

is the use of Time Integrated NDVI (TINDVI). TINDVI is the area under the NDVI curve calculated from 

start-to-end of the season. Figure 2.8 displays the concept of TINDVI. Calera et al. (2004) distinguish 

empirical relationships between biomass and a vegetation index, and the use of models based on Absorbed 

Photosynthetic Active Radiation (APAR). Both relationships indicate that a linear relationship between the 

TINDVI and biomass exists. Care has been suggested with regards to the use of cumulated variables in 

growth models (Malet et al., 1997), since the relationship between two time-accumulated variables (i.e. 

biomass and TINDVI) may just be a meaningless artefact, because the apparent relationship may be present 

only due to the fact that both variables increase with time. Calera et al. (2004) do conclude that despite this 

pitfall, good agreement is established for barley and maize, utilizing a linear relationship between TINDVI 

and biomass. 

 

For the purpose of this research, a linear relationship between biomass and TINDVI is investigated. From 

the smoothed SPOT NDVI series, daily NDVI values are interpolated utilizing R software. From start to 

end of the season these NDVI values are summed for each selected sample midpoint using the CGP and 

simulation dates as acquired in section 2.3.4. Biomass is calculated from INE’s sample yield records utilizing 

a fixed harvest index (HI) derived from literature. Because the HI is defined as the ratio of yield to 

aboveground biomass, biomass may be retrieved from yield by dividing yield by HI. Royo et al. (2007) report 

a mean value of 0.41 for the HI of modern durum wheat cultivars used in Spain. Albrizio et al. (2010) 

reported a HI of 0.41-0.45 for winter barley during a three season research experiment (2005-2008) in Bari, 

Italy. To derive biomass from yield records, a harvest index of 0.41 and 0.43 will be utilized for durum wheat 

and barley respectively. In reality HI for a specific crop varies with cultivar, environmental conditions and 

agricultural management practices as becomes apparent in many different studies (Cantero-Martı́nez et al., 

2003; Royo et al., 2004; Villegas et al., 2001).  

 

A weighted linear regression is established for both barley and durum wheat. The weights are calculated 

with equation (5). 

 

 

 

By applying weights, more importance is given to sample segments with higher relative crop cover. It is 

assumed that the relationship between NDVI data and crop biomass improves if the relative crop cover in 

a pixel increases. 

 

The results are presented in figure 2.14. The linear regression leads to an R2 of 0.19 for barley and 0.14 for 

durum wheat with significant p-values for slope and intercept. Building linear models for separate seasons 

as suggested by Diouf and Lambin (2001) did not lead to improved results. From the linear models, daily 

values of biomass are calculated for each selected sample midpoint and used in the RS forced simulation 

runs.  

jsegment  of area total

jsegment  samplein   i  crop of area 
 jsegment  samplein   i  crop ofweight  (5) 
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Figure 2.14. Scatterplots and weighted linear models relating barley and durum wheat biomass to Time Integrated NDVI 
(n=695 for durum wheat, n=641 for barley) 

2.5. AquaCrop input files preparation 

From the prepared datasets for weather, soil, crop, simulation and RS derived canopy cover, AquaCrop 

input files are created for each selected sample segment midpoint, in accordance with AquaCrop’s 

specifications as published in the Reference Manuals. This is done with R software. In total 1336 project 

files and 6615 weather files are created for the simulation runs. In addition one file is created for each crop, 

containing the RS derived canopy cover and biomass for each selected sample segment midpoint over the 

respective season. This is done using Microsoft Excel software and R software. The crop files used in the 

simulation are acquired from FAO, and are initially utilized without any modification.  
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3. METHOD 

3.1. AquaCrop simulations setup 

AquaCrop is run in growing degree days (GDD) mode for this research. This approach assures that 

temperature effects on crop phenology and development are accounted for (FAO, 2012). AquaCrop utilizes 

a modified procedure based on McMaster and Wilhelm (1997) to calculate GDD. To improve the effect of 

cold stress on plant processes, minimum temperatures below a plant’s base temperature are also considered. 

In addition to a base temperature, below which the crop is not developing, AquaCrop also utilizes an upper 

temperature, above which the crop development ceases to increase with temperature. AquaCrop calculates 

GDD for each day as given in equation (6).  

 

 where 

 

With:  GDD the growing degree days 

 T*
avg the adjusted daily average temperature 

 Tbase the crop’s base temperature 

 Tupper the crop’s upper temperature 

 Tmin the daily minimum temperature 

 T*
max the adjusted daily maximum temperature 

if the daily maximum temperature > Tupper then T*
max = Tupper 

if the daily maximum temperature < Tbase then T*
max = Tbase 

 

In this method only T*
max is limited by Tbase and Tupper while the effect of daily minimum temperatures below 

a plant’s base temperature is accounted for in the GDD calculation. 

 

As briefly mentioned in chapter 1, AquaCrop uses stress coefficients which adjust target parameters to 

account for water, temperature and soil stresses on crop development. Some elaboration on this concept is 

necessary to understand the simulation setup. Figure 3.1 displays the concept of stress factors as used within 

AquaCrop.  

 
 

Figure 3.1. The stress coefficient Ks as used in AquaCrop (FAO, 2012)  

baseavg TTGDD  *
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The adjustment of model target parameters by a generic stress coefficient Ks is determined by the thresholds 

and the shape. The latter sets the sensitivity of the model target parameter while the former defines the 

range of a stress factor (i.e. soil water content, air temperature, soil salinity, soil fertility) over which the 

stress coefficient is of influence. Table 3.1 summarizes the stress coefficients used in AquaCrop and their 

respective model target parameters.  

 

Table 3.1. Summary of stress coefficients used in AquaCrop (Adapted from AquaCrop Reference Manual) 

Soil water stress coefficients Impact Target model parameter 

Ksexp,w for canopy expansion  

 

 

Kssto for stomatal closure 

 

 

 

Kssen for canopy senescence 

 

 

Kspol,w for pollination 

 

 

Ksaer for water logging 

 

Reduces canopy expansion and may 

have a positive effect on Harvest Index 

 

Reduces crop transpiration and root 

zone expansion and may have a negative 

effect on Harvest Index  

 

Reduces green canopy cover and thus 

affects crop transpiration 

 

Affects flowering and may have a 

negative effect on Harvest Index 

 

Reduces crop transpiration 

 

Crop Growth Coefficient (CGC) and 

Harvest Index (HI) 

 

Transpiration (Tr) and Harvest Index 

(HI) 

 

 

Canopy Cover (CC) 

 

 

Harvest Index (HI) 

 

 

Transpiration (Tr) 

 

Air temperature stress coefficient Impact Target model parameter 

Ksb cold stress for biomass production 

 

Kspol,c cold stress coefficient for 

pollination 

 

 

Kspol,h heat stress coefficient for 

pollination 

 

Reduces biomass production 

 

Affects flowering and may have a 

negative impact on Harvest Index 

 

 

Affects flowering and may have a 

negative impact on Harvest Index 

 

Normalized Water Productivity (WP*) 

 

Harvest Index (HI) 

 

 

 

Harvest Index (HI) 

Soil fertility stress coefficient Impact Target model parameter 

Kscc for maximum canopy cover 

 

Ksexp,f for canopy expansion 

 

KsWP for water productivity 

 

fCDecline Decline coefficient of canopy 

cover 

 

Reduces canopy cover 

 

Reduces canopy expansion 

 

Reduces biomass production 

 

Decline of canopy cover once maximum 

canopy cover is reached 

Canopy Cover (CCx) 

 

Crop Growth Coefficient (CGC) 

 

Normalized Water Productivity (WP*) 

 

Canopy Cover (CCx) 

 

 

Soil salinity stress coefficient Impact Target model parameter 

Kssalt 

 

Kscc for maximum canopy cover 

 

Ksexp,f for canopy expansion 

 

Kssto,salt for stomatal closure 

 

 

fCDecline Decline coefficient of canopy 

cover 

 

Reduces biomass production 

 

Reduces canopy cover 

 

Reduces canopy expansion 

 

Reduces crop transpiration 

 

 

Decline of canopy cover once maximum 

canopy cover is reached 

Transpiration (Tr) 

 

Canopy Cover (CCx) 

 

Crop Growth Coefficient (CGC) 

 

Water stress coefficient for stomatal 

closure (Kssto) 

 

Canopy Cover (CCx) 
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AquaCrop simulations are run for the following four instances: 

 Baseline simulation model. In this case the standard AquaCrop software is used to process the 

created project files for 641 barley and 695 durum wheat sample midpoints.  

 Forced biomass simulation model. In this case, biomass simulated by AquaCrop is replaced after 

each simulation time step (1 day) by biomass derived from NDVI, using the BIOMASS-TINDVI 

linear regression models developed in 2.4.3. 

 Forced canopy cover simulation model (a). In this case, canopy cover simulated by AquaCrop 

is replaced after each simulation time step (1 day) by canopy cover derived from NDVI, using 

Gutman and Ignatov’s (1998) dense vegetation mosaic pixel model. 

 Forced canopy cover simulation model (b). In this case, canopy cover simulated by AquaCrop 

is replaced after each simulation time step (1 day) by canopy cover derived from NDVI, using Baret 

et al.’s (1995) gap fraction model. 

For the baseline simulation run, FAO’s standard crop files for wheat and barley are used with parameters as 

specified in table 2.3. For the forced simulation runs however, the standard crop files are adjusted in order 

to eliminate or minimize stress coefficients used in AquaCrop, which account for soil-water and air 

temperature stresses on crop development. The underlying assumption is that the effect of these stresses is 

already incorporated in the remotely sensed crop parameters CC or biomass, and therefore no additional 

adjustments for stresses should be required during forced simulation runs. It remains subject of future 

research to establish whether the impacts of all stress factors are reflected in NDVI or not. Table 3.2 

summarizes the adjusted crop parameters modified for the forced simulation runs.  

 

Table 3.2. Crop parameters as used in forced simulation runs.  

Conservative parameter description Stress Coefficient Wheat Barley 

Stresses (Soil-water) 
 Upper and lower thresholds of soil water depletion for canopy expansion and shape of curve 
 Coefficient for positive impact of restricted vegetative growth during yield formation on HI (%) 
 Upper threshold of soil-water depletion for stomatal closure and shape of the stress curve 
 Coefficient describing negative impact of stomatal closure during yield formation on HI (%) 
 Upper threshold of soil-water depletion for early senescence and shape of the stress curve 
 Upper threshold of soil-water depletion for failure of pollination 
 Possible increase of HI resulting from water stress before flowering (%) 
 Anaerobiotic point (for effect of waterlogging on transpiration) (Vol %) 
 
Stresses (Air Temperature) 
 Minimum growing degrees required for full biomass production (°C-days) 

 
Ksexp,w 
fHI 

Kssto 
fHI 

Kssen 
Kspol,w 
Kspol,w 
Ksaer 
 
 
 

 
0.50/0.80/6.0 
0 
0.90/6.0 
-9.0 
0.98/6.0 
0.98 
0 
-9.0* 
 
 
-9.0 

 
0.50/0.80/6.0 
0 
0.90/6.0 
-9.0 
0.98/6.0 
0.98 
0 
-9.0 
 
 
-9.0 

* -9.0 indicates that the parameter is not applicable or not considered. Soil salinity and fertility stresses are not considered in any of the simulation runs.  

 

To run all project files, AquaCrop is used in a batch mode specified as AquaCrop Plugin. The baseline 

simulation run uses AquaCrop V4.0 and AquaCrop Plugin V4.0, while the forced mode simulations use an 

adjusted version of AquaCrop and AquaCrop Plugin, in combination with an evaluator module. The 

adjusted versions of AquaCrop and AquaCrop Plugin have been specifically developed and released for use 

in this research by Professor D. Raes of the University of Leuven, who is part of the FAO’s specialist team 

that developed AquaCrop. The evaluator module, which feeds the RS-derived CC and biomass into 

AquaCrop at each simulation time step, is built by Willem Nieuwenhuis, Software Developer at the Natural 

Resources Department of ITC.  

 

The way forcing works in the setup of this research can best be described as follows. After each simulation 

step, the adjusted version of AquaCrop records the simulated values of CC and biomass in an exchange file 

and halts simulation. The evaluator module is allowed to read the exchange file and to overwrite the values 

of CC and biomass. Once the evaluator has released the exchange file, AquaCrop resumes the simulation. 

It reads the updated values of CC and biomass and continues its internal calculations for the next simulation 

step based on the replaced values. The procedure is repeated after each simulation step until simulation end.  
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The evaluator module allows replacement of simulated by RS-derived values for CC or biomass is performed 

at each simulation step between start of CGP and end of CGP. The RS derived values for CC or biomass 

are read from an adequately formatted data-file. The simulation start and end date as well as the start of 

CGP and end of CGP dates are sample specific and remain the same for each simulation caser. AquaCrop 

does not consider the end of CGP date, but uses the phenology parameters as specified in the crop files (see 

table 2.3) to determine the different growth stages during the simulation runs. 

3.2. Model validation statistics 

Once model simulations have been run, the simulated yields needs to be compared to the observed yields 

to provide a measure of the model’s performance. For this purpose the correlation and regression analysis 

(Moore et al. 2009) are used on untransformed field measurement (validation) data. In general, the Pearson 

correlation coefficient r serves as an indicator of the strength and direction of a linear relationship between 

two variables and is calculated by dividing the covariance of the two variables by the product of their 

standard deviations, as becomes apparent in its equation (7) shown below.  
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The Pearson correlation coefficient r varies between +1 (for a perfect positive linear relationship) and -1 (in 

case of a perfect negative linear relationship). Values between -1 and +1 are an indication of the degree of 

linear relationship between variables. If r equals zero no linear relationship exists between the variables. The 

linear regression model with a constant, delivering R2, regression slope and intercept, are additionally used 

to assess model performance. R2 determines how much of the linear variation in the observed variable is 

explained by the variation in the modelled variable. The slope of the linear regression is often considered an 

indication of model consistency, while the intercept may provide information on model bias (Piñeiro, et al., 

2008; Tedeschi, 2006).  

 

Both ordinary and weighted correlation and regression are established for both barley and durum wheat 

yields and for each simulation case. The weights are calculated using equation (5). Weights are assigned so 

that more importance is given to sample segments with higher relative crop cover. It is assumed that RS-

based data are relatively more accurate when a segment contains relatively more crop. For proper 

comparison, the baseline simulation (which does not utilize RS data) is treated equally i.e. its output is also 

evaluated using both ordinary and weighted correlation and regression. 

 

The 1:1 line is the regression line which reflects a perfect model fit. To assess how well the data fits the 

perfect model, the Nash-Sutcliffe model efficiency coefficient (Nash & Sutcliffe, 1970) is utilized. The Nash-

Sutcliffe model efficiency coefficient (NSE) is given by equation (8). 
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Here X obs is the measured or observed value and X model is the modelled value of each sample point. Nash-

Sutcliffe efficiencies take values from - to 1. Values below zero indicate unacceptable model performance, 

while values between 0 and 1 indicate acceptable levels of performance. The model is more accurate as NSE 

is closer to 1 (Moriasi et al., 2007). A weighted form of NSE exists (Hundecha & Bárdossy, 2004) and is 

also utilized. Based on Moriasi et al. (2007), Chaube et al. (2011) devised a performance rating for NSE, 

which is summarized in table 3.3.  

 

  Table 3.3. Performance rating for NSE (Source: Chaube et al. 2011) 

Performance rating NSE 

Very good 0.75- 1.00 

Good 0.65- 0.75 

Satisfactory 0.5- 0.65 

Unsatisfactory ≤ 0.50 

 

 

To assess model performance the different values of r, R2 and NSE will be compared across the simulation 

cases. To quantitatively test the null hypothesis, the correlation coefficients of model output are compared 

using a procedure developed by R. A. Fisher (1921). In this three-step procedure, the two correlation 

coefficients are first transformed using equation (9). 
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In the second step, the test statistic is computed applying equation (10).  
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Next the p-value for the derived z is obtained. If the p-value is less than 0.025 (in case of a two-tail test with 

95% confidence) r1 is considered significantly stronger than r2. 

  

(9) 

(10) 
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4. RESULTS 

4.1. Simulation results 

Figure 4.1 illustrates for one actual sample segment midpoint, CC development over the crop growth period 

for a baseline and a forced-CC simulation run. NDVI is also plotted in the same figure. For the illustrated 

case a Gutman and Ignatov CC-derivation was applied. This effectively performs a linear transformation on 

NDVI and consequently, the forced CC simulation closely follows the NDVI pattern.  

 

 

 
 

Figure 4.1. CC development in baseline and forced simulation case together with NDVI for the same sample.  

 

 

Figures 4.2 to 4.5 display the scatterplots with the weighted linear regression line and the 1:1 line for each 

simulation case, as well as the residual plots. The latter are created to visually assess if the residuals of the 

regression are independent and identically distributed. This is necessary to determine whether linear 

regression analysis involving the validation data will still hold or at least be informative for model evaluation. 

Figures 4.2, 4.4 and 4.5 reasonably confirm independence and identical distribution of the residuals, hence 

the use of linear regression analysis is justified. Figure 4.3 indicates some dependency in the case of barley, 

hence the use of linear regression analysis may not be justified here. Finally, table 4.1 summarizes the results 

of all statistical tests performed for all simulation cases. 
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Figure 4.2. Scatterplots with weighted linear regression lines and residual plots for AquaCrop’s baseline simulation run 

 

 
Figure 4.3. Scatterplots with weighted linear regression lines and residual plots for AquaCrop’s simulation run with forced RS-

derived biomass utilizing the TINDVI-Biomass relationship 
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Figure 4.4. Scatterplots with weighted linear regression lines and residual plots for AquaCrop’s simulation run with forced RS-

derived CC utilizing Gutman and Ignatov’s model 

 

 

 
Figure 4.5. Scatterplots with weighted linear regression lines and residual plots for AquaCrop’s simulation run with forced RS-

derived CC utilizing Baret et al.’s model  
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Table 4.1. Summary of model evaluation results for all simulation cases 

    *AquaCrop_STD **AquaCrop_BM ***AquaCrop_GI ****AquaCrop_BA 

B
A

R
LE

Y
 

r 0.38 0 0.36 0.31 

R2 0.14 0 0.13 0.09 

Intercept 1725(s) 2511(s) 1850(s) 2039(s) 

Slope 0.49(s) 0.02 (n.s.) 0.25(s) 0.25(s) 

NSE -0.54 -143.22 -1.06 -1 

       

D
U

R
U

M
 W

H
EA

T r 0.27 0.05 0.35 0.36 

R2 0.07 0.002 0.12 0.13 

Intercept 1876(s) 2459(s) 1580(s) 1615(s) 

Slope 0.14(s) 0.09(n.s.) 0.16(s) 0.17(s) 

NSE -3.33 -9.93 -8.25 -6.17 

s indicates a significant p-value (p < 0.05) 
n.s. indicates a non-significant p-value (p < 0.05) 
*AquaCrop_STD refers to the baseline simulation,  
**AquaCrop_BM refers to the simulation with RS-forced biomass 
***AquaCrop_GI refers to the simulation with RS-forced CC utilizing Gutman & Ignatov’s model 
****AquaCrop_BA refers to the simulation with RS-forced CC utilizing Baret et al’s model 
 

 

From the results it becomes apparent that none of the simulation models performs satisfactory. NSE values 

are all less than zero with the worst results attributed to the forced biomass simulation case. Only in the case 

of durum wheat, both RS-forced CC simulations indicate a slightly improved model performance.  

4.2. Hypothesis test 

To quantitatively test the null hypothesis, the correlation coefficients of model output are compared using 

a procedure developed by R. A. Fisher (1921) which is explained in section 3.2. Table 4.2 summarizes the 

calculation results. 

 

Table 4.2. Summary of Fisher test for the comparison of correlation coefficients 

    *AquaCrop_STD **AquaCrop_GI 

B
A

R
LE

Y
 

r 0.38 0.36 

n 640 640 

z 0.41 

p-value 0.34 

D
-W

H
EA

T
 r 0.27 0.36 

n 693 693 

z -1.86 

p-value 0.03 

*AquaCrop_STD refers to the baseline simulation 
**AquaCrop_GI refers to the simulation with RS-forced CC utilizing Gutman & Ignatov’s model 

 

With one-tailed p-values at 0.34 and 0.03 we cannot reject the null hypothesis, hence the accuracy of actual 

yield estimations in the AquaCrop model that utilizes RS data is not significantly better than the accuracy of 

yield estimations derived from the AquaCrop model without the use of RS data.   
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5. DISCUSSION 

5.1. Introduction 

This research explored forcing of RS-derived canopy cover and biomass into the AquaCrop crop growth 

model for actual field conditions at a regional level. The use of RS data in AquaCrop is expected to lead to 

more accurate and more robust actual yield estimations because it contains actual empirical information of 

the crop’s growth state throughout the crop’s lifecycle. However, the results of the research are not in 

agreement with the a priori expectations. In the discussion presented here, different aspects of the research 

are critically examined, with the objective of identifying and disclosing potential weaknesses, with 

discussions on possible ways forward. 

5.2. Exploring the simulation results 

From the results of the simulation runs (i.e. figures 4.2-4.5), it can be observed that only in the case of forced 

biomass a significant but negative impact on model performance occurs. For the forced CC simulations 

however, there seems to be no clear effect on model performance. A general increase in simulated yield 

values is apparent, however this may be due to the fact that stress factors in the RS-forced simulation runs 

have been minimized or completely disregarded. A more detailed exploration of the simulation runs may 

provide insight. For that purpose the results of the AquaCrop_STD case are plotted against the results of 

the AquaCrop_GI case. Figure 5.1 shows the scatter diagrams for both barley and durum wheat. A 

considerable correlation (r=0.45 and 0.67 for barley and durum wheat respectively) is apparent between the 

AquaCrop_STD and the AquaCrop_GI simulations for durum wheat and to a lesser extent for barley. The 

forcing of RS-based CC does affect the estimated yields, however to different extent for barley and durum 

wheat.  

 
Figure 5.1. Scatterplots with linear regression lines for AquaCrop’s baseline simulation against AquaCrop’s forced RS-derived 

CC utilizing Gutman and Ignatov’s model 

 

 

Next, a number of simulation results from the baseline simulation and RS-forced CC simulations derived 

by Gutman and Ignatov’s model are inspected. Considering that each simulation case can either result in an 

underestimation (U), correct estimation (OK) or overestimation (O) of yield, several combinations have 

been explored. Figure 5.2 shows the CC development compared to NDVI for some selected samples and 

cases.  
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Figure 5.2. CC-development throughout growing season compared to NDVI for some sample midpoints. Graph titles indicate 

year, crop (B=Barley, DW= Durum Wheat), sample number and explored case (baseline/forced with U= underestimation, O = 
overestimation, OK = correct estimation). CC indicates baseline, CC-GI indicates RS-forced simulation canopy cover.  
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Drawing solid conclusions from the graphs in figure 5.2 is challenging. It is however obvious that the crop 

phenology in simulations often disagrees with the crop phenology as suggested by the NDVI pattern. 

Reference is made to figures 2.8 and 2.10 that respectively show crop phenology indicators in relationship 

to NDVI and the expected agreement of NDVI and CC-development in AquaCrop simulations, irrespective 

of the use of forcing. To further investigate this disagreement, the length of the crop growing period (CGP) 

as derived from NDVI in chapter 2, is compared to the length of the growing cycle in AquaCrop for each 

simulation run. The latter is expected to be similar for all simulation cases since the growing cycle is 

determined by AquaCrop based on GDD, which is similar in all cases. For this comparison, the simulation 

output for the AquaCrop_GI case has been utilized. Figure 5.3 summarizes the results. 

 

 
Figure 5.3. Histogram of the difference between crop phenology derived from NDVI (CGP) compared to crop phenology derived 

by AquaCrop for (growing cycle) for all simulated sample segments (693 durum wheat and 640 barley) 

 

Following figure 5.3, the simulations in AquaCrop are in considerable disagreement with reality (under the 

assumption that NDVI represents reality) with regards to crop phenology. As a consequence, AquaCrop’s 

estimated yields for this research have little to no relationship with the actual development of the crop. This 

observation identifies a major issue during simulations performed in section 3.3 and section 3.4 and feeds 

the forthcoming discussion. 

 

For this research AquaCrop is run in GDD mode. The different phenology phases in crop development are 

expressed in number of GDD’s. AquaCrop calculates the GDD’s based on temperature input data and uses 

the crop’s parameters for the base and upper temperature as given in the crop file to determine the crop’s 

phenology. In most cases AquaCrop terminates crop growth before the crop actually ceases to grow. For 

barley sample segments, figure 5.3 shows that the deviation is generally larger than for durum wheat. This 

may be due to its lower time to maturity parameter setting in AquaCrop (1296 vs 2400 GDD’s for barley 

and durum wheat respectively). The actual error in yield estimations this leads to, needs to be established 

through a more detailed analysis. Figure 5.1 however indicates the appearance of systematic underestimation 

for the RS-forced simulation case when the crop’s growing period is terminated early. Because AquaCrop 

simulations seem to systematically terminate crop growth early, there is suspicion that the 0 ºC base 

temperatures for both crops is too low. Crop temperature settings are considered to be made in a 

conservative manner (FAO, 2012); they should hold for the same crop irrespective of location. This finding 

however indicates that calibration of also the conservative crop parameters to achieve accurate and reliable 

estimations is required.   
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To address the discrepancy between crop phenology in AquaCrop simulations and reality, two approaches 

can be considered. The first is to (iteratively) adjust the crop base and upper temperature input parameters. 

The second option is to defer from running simulations in GDD mode and to run simulations in normal 

time. The different crop phenology stages are then defined in calendar days and may either be derived from 

existing data for the crop and region under evaluation or from remote sensing data. Multi-temporal NDVI 

for example can aid in identifying the occurrence of different phases in phenology. Extending on the 

approach by Reed et al. (1994), additional metrics can be derived from NDVI for this purpose (Hill & 

Donald, 2003; Zhao et al., 2012).  

5.3. AquaCrop model sensitivity 

AquaCrop models crop growth throughout the crop’s lifecycle. For this purpose the crop and its 

environment are characterized by quantitative metrics on the basis of which AquaCrop is able to calculate 

the crop development and ultimately estimate yield. Figure 5.4 shows a simplified overview of the 

simulations in AquaCrop. In general, yield estimations from AquaCrop are subject to errors in input data 

for crop and environment as well as generalizations within the model itself. The latter will not be considered 

here for two reasons. Firstly, the general results with AquaCrop around the world so far, despite its main 

use on local scale, give no immediate reason to doubt the model itself. Secondly, the user has no direct 

options to modify adopted mechanisms of the model.  
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Figure 5.4. Simplified overview of simulations in AquaCrop 
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The information provided to AquaCrop originates from various sources and has been processed in different 

ways in preparation (see chapter 2). The data acquisition and data processing, including applied assumptions 

and simplifications, are all sources of inaccuracies that ultimately influence the yield estimation. This applies 

to information regarding climate, soil and crop as well as to RS-derived data regarding crop phenology, CC 

and biomass. Understanding the model’s sensitivity to variance in input data is not only required when trying 

to understand errors in yield estimation, but also in prioritizing efforts to improve model performance. 

AquaCrop’s documentation and literature (Geerts et al., 2009; Salemi et al., 2011) provide some direction in 

this area.  

 

Most studies involving the use of AquaCrop, have focussed on yield estimation at local level for research 

station conditions, for which the information requirements to adequately characterize crop and environment 

can be met confidently. Challenges to meet AquaCrop’s information requirements arise when AquaCrop is 

used for regional monitoring of production. The use of RS-data to characterize crop and environment is 

inevitable at this scale, at least for some parameters. Determining the required spatial and temporal 

resolutions as well as appropriate data processing techniques (e.g. for spatial or temporal data interpolation) 

is subject to solid understanding of the model sensitivity. Recently a global sensitivity analysis for AquaCrop 

has been conducted (Vanuytrecht et al., 2014), identifying influential and non-influential model parameters 

and providing guiding principles to AquaCrop users.  

5.4. Representativeness of NDVI time series  

For this research it was assumed that CGP, canopy cover and biomass derived from NDVI time series 

provide a good measure of the crop’s actual state. However, the NDVI time series for each pixel is not 

solely related to the crop under investigation, due to several factors. First there a discrepancy between sample 

segment size (700x700m) and the utilized NDVI pixel size (1x1km). Secondly it is possible to have one 

sample segment fall within multiple adjacent NDVI pixels. Thirdly, the sample segments are heterogeneous 

whereby barley and durum wheat occupy only a small fraction in most cases (see figure 2.2). These factors 

are sources of inaccuracy. Not only could they lead to inaccuracies in biomass or canopy cover proxies 

derived from the NDVI time series, but they may also explain the observed deviations between NDVI-

derived CGP and AquaCrop’s growing cycle. To address these inaccuracies, utilization of higher resolution 

NDVI time series, like MODIS (16-days 250x250m pixel size) or PROBA-V (10 days 1/3 x 1/3 km pixel 

size) may be considered.  

5.5. Remote sensing proxies for canopy cover and biomass 

For this research, remote sensing proxies for canopy cover and biomass have been derived from NDVI. 

Although this research has not established to which extent NDVI-derived proxies satisfy the requirements 

for accurate yield estimations, it may be useful to explore alternative options, especially if the RS-forced 

simulations are extended to other regions. Accurate optical RS data may for instance be difficult to acquire 

over the cropping season in regions with substantial cloud cover. In those cases the synthesis with synthetic 

aperture radar (SAR) may be considered (Bach et al., 2012).  

 

Jiang et al. (2006) introduced a scaled difference vegetation index (SDVI), also based on red and near infrared 

reflectances and showed that SDVI is a better proxy for canopy cover, especially for heterogeneous surfaces, 

than the models proposed by Gutman and Ignatov (1998) and Baret et al. (1995). Gitelson (2004) proposed 

the derivation of canopy cover utilizing a Wide Dynamic Range Vegetation Index (WDRVI). In another 

study (Gitelson, 2013) he compared the use of WDRVI for canopy cover retrieval to six other vegetation 

indices for maize and soybean.  
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Additionally the work of Jiapaer et al. (2011) provides valuable information with regards to the use of 

alternatives to NDVI when deriving canopy cover. They compared the use of six kinds of remote sensing 

inversion models (NDVI regression, a spectral mixture analysis, pixel dichotomy and three 3-band maximal 

gradient difference models). Bao et al. (2008) correlated biomass of wheat to vegetation indices derived from 

TM data and showed that different vegetation indices were optimal for different growth stages. Combining 

different vegetation indices may lead to improved biomass proxies. Alternatively the utilization of SAR 

(Dente et al., 2008; Moran et al., 2012) for crop biomass estimations throughout the growth season could 

be considered. Another interesting approach is the derivation of crop properties by inverse radiative transfer 

modelling (Ha, 2013; Jacquemoud et al., 1995; Verhoef & Bach, 2007). 

5.6. Concluding considerations 

Crop growth simulation modelling for food security is in itself an extensive area of research. An endless 

amount of aspects must be considered. The purpose of this thesis is not to be complete, but only to indicate 

some main issues for further considerations. Two additional aspects related to this research worth 

mentioning are the following. First, the use of AquaCrop at a regional level, requires an extensive amount 

of data processing, both in preparation to the simulations as well as in processing simulation output. 

AquaCrop has not been built for this type of application. Once proven of use, it would be worthwhile to 

consider embedding AquaCrop into a data processing environment (or application), which accommodates 

the use of AquaCrop at the spatial scales required for food security studies. Some work has been done in 

that area (Lorite et al., 2013) however the products developed (AquaData & AquaGIS) are not yet available 

for use or evaluation. Another interesting aspect is related to the use of RS-derived crop parameters i.e. for 

crop phenology. Instead of determining crop phenology beforehand (whether or not from RS-data) and 

fixing this into AquaCrop, re-parameterization (Maas, 1988) of AquaCrop during simulation runs could be 

considered based on actual remotely sensed observations of crop phenology. Combining calibration with 

forcing however poses new challenges (Clevers et al., 2002; Launay & Guerif, 2005).  
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

The use of Remote Sensing data in a crop growth model to estimate actual crop yields has been evaluated. 

NDVI time series derived canopy cover and biomass has been forced into AquaCrop for barley and durum 

wheat in Spain for five growing seasons within the period of 2004 to 2009. The following conclusions can 

be drawn from the research. 

 

 Forcing NDVI-derived canopy cover or biomass did not improve AquaCrop’s performance as 

compared to the use of AquaCrop without forcing. The simulation runs where NDVI-based 

biomass was forced into AquaCrop show no correlation between observed and modelled output, 

while simulation runs where NDVI-based canopy cover was forced into AquaCrop show no 

significant improvement of model performance.  

 Many sources of inaccuracy may exist in the applied method, varying from inaccuracies in data 

measurements, model parameterization, data-processing, and applied assumptions and 

simplifications. Determining the required spatial and temporal resolutions for data as well as 

appropriate data processing techniques is subject to solid understanding of the model sensitivity. In 

addition, establishing the model’s sensitivity to variance in input data is necessary in order to analyze 

errors in yield estimation and in prioritizing efforts to improve model performance. 

 The crop phenology in simulation runs (baseline, forced canopy cover, forced biomass) for the 

majority of selected samples does not agree with crop phenology derived from NDVI time series. 

Crop base temperature is suspect of being too low, however other crop parameters may be suspect 

as well.  

 Inaccuracies in biomass or canopy cover proxies and CGP derived from the NDVI time series can 

result from sample segment heterogeneity. Sample segments are smaller than utilized NDVI pixels. 

In addition barley and durum wheat occupy only a small fraction in most sample segments. As a 

result, the NDVI signal may not be very representative of the crop under evaluation.  

6.2. Recommendations 

Drawing upon the conclusions, the following recommendations for future research can be formulated. 

 

 Firstly, it is recommended to establish AquaCrop’s sensitivity to variance in input data, both related 

to the crop as well as the environment. Determining the model’s sensitivity to variance in input 

data, will aid in estimated yield error analyses and in prioritizing efforts to improve model 

performance. Guiding principles, resulting from a global AquaCrop sensitivity analysis have recently 

been published (Vanuytrecht et al., 2014) and can be utilized. 

 An additional recommendation following the observed discrepancy between simulated and NDVI-

derived crop phenology, is to calibrate AquaCrop for the crops and location under evaluation.  

 The final recommendation is to explore higher resolution NDVI time series, both for derivation of 

CGP as well as biomass and canopy cover. MODIS (16-days 250x250m pixel size) or PROBA-V 

(10 days 1/3 x 1/3 km pixel size) may be considered. Considering the heterogeneous cover in 

sample segments, a more representative NDVI signal for the crops may then be retrieved. In 

addition other vegetation indices, the (complementary) use of SAR or inverse radiative transfer 

modelling may proof useful. 
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