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Summary

In this report a model for cavitating nuclei in a flow field and the possible extensions of
this model are examined.
In the paper by Johnson and Hsieh [1] such a model is introduced. In this paper a simple
equation of motion along with a quasi steady equation for the bubble growth is solved in
a potential flow field. This model leads to a prediction of cavitation inception based on
the critical pressure coefficient. Cavitation inception is therefore also assumed to occur
when the bubble starts to grow asymptotically. One could say that the model presented
by Johnson and Hsies is the absolute basis. The equation of motion only has three terms,
which is the minimum, the bubble growth is described by a quasy-steady equation and
the flow field is a potential flow field.

Step by step the complexity of (parts of) the model is increased. Starting with a
bubble dynamics equation, the Rayleigh-Plesset equation is used at first. Eventually the
Rayleigh-Plesset equation is replaced by the general Keller-Herring equation, which is a
more advanced bubble dynamics equation and includes damping due to the emitted sound
wave. The equation of motion is extended by using more forces, of which the buoyancy
force is the most influential. The volume-changing force (the force due to the changing
volume of the wake of the bubble) turned out to be very dominant during collapses of the
bubble. The model has the mass of the nucleus incorporated so that the model is suitable
for solid particles.

The history force has been included as the Basset force. This is done in an itera-
tive way. The history force smears out the trajectory of the bubble, and is especially
reactionary towards the volume-changing force as it is a very unsteady force. The Basset
force turned out not to be a good choice for the history force, since it overestimates this
force significantly, especially over longer time spans.

Finally a new flow field has been taken, in this flow field the simple equation of motion
has been solved along with the general Keller-Herring equation. The result is a trajectory
in this flow field. The trajectory has been compared with the results found by [8], it was
found that locally taking the streamline as a trajectory was a good approximation. The
trajectory has also been compared with the trajectory found in experiments which gave
encouraging results regarding the trajectories. The bubble diameter was less comparable.
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Introduction

This report concludes the work for the internship at MARIN.

Sheet cavitation is in many cases induced by free-stream nuclei. These nuclei can be
gaseous or solid and range in diameter between approximately 10 and 500 micrometer.
A scale effect that could occur is bubble screening, the deflection of a bubble from the
leading edge of a foil due to buoyancy forces. High-speed observations of the nuclei-
induced inception process made at MARIN, show that both gas and solid nuclei can
deflect significantly from calculated streamlines. This data set may be used to validate
a Lagrangian model which uses an equation of motion to determine the trajectory of a
point mass in a known velocity and pressure field. Once validated, this model can be used
to calculate the trajectories of nuclei for a large range of nuclei diameters, velocities and
leading edge geometries.

Understanding the underlying cavitation inception mechanisms is crucial to make suitable
models for implementation in simulations. Cavitation inception will be defined in this
report as the unstable growth of a gas bubble in a flow. The bubble dynamics will be
the driving force for cavitation inception. Its input, namely the local pressure, depends
on the trajectory of the bubble. In this way the trajectory and the bubble dynamics are
coupled, and will therefore be solved together.

The basis of this work was already founded by Johnson and Hsieh [1]. The results
in this paper have been reproduced as a first exercise.

Later on more advanced equations for both the motion and dynamics of the bubble
will be introduced. Especially a look will be taken at the History/Basset force, since
this force might be relevant in unsteady conditions, which can originate from the bubble
dynamics equation.

Finally an attempt has been made to start simulations in a given flow field. The results
found by these simulations are compared with experiments.

The report contains appendices, which can be a helpful addition if the reader has particular
interest. Otherwise, the report is complete without the appendices.
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1. Reproducing the results of

Johnson and Hsieh

The paper by Johnson and Hsieh [1] has been used as a starting point to get a better
understanding of cavitation inception. The paper has been divided in three main parts,
namely: Static stability of spherical gas bubbles, Bubble trajectory and Application to a
two-dimensional half body in an infinite fluid. This structure will be kept, since it refers
to the bubble dynamics, the trajectory and the flow, which will stay relevant.

Review of the equations

In this section a review will be given on the equations derived by Johnson and Hsieh [1].

Static stability of spherical gas bubbles

Johnson and Hsieh used an equation which is based on the static stability of spherical gas
bubbles surrounded by liquid. This equation is given in Eq. 1.1.

p− pv
p0 − pv

=

(
R′0
R′

)3 [
1 +

8

σvW

(
1− R′2

R′20

)]
(1.1)

The definition of the variables in Eq. 1.1 can be found in Appendix A. The derivation of
the gas stability can be found in Appendix A. Johnson and Hsieh used Eq. 1.1 as the basis
of three equations. The first being the dimensionless form of Eq. 1.1, the second being
the solutions to the third degree polynomial function (which is Eq. 1.1) in terms of the
bubble growth, and lastly a critical pressure coefficient is found by finding a critical point
in the bubble growth. The derivations of these equations can also be found in Appendix
A.

The equations derived concerning the static stability of spherical gas bubbles thus include
the growth of the bubble. The bubble growth depends on the Weber number, the cavita-
tion number and the pressure coefficient. A smaller cavitation number means that the
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bubble will grow more easily. A smaller pressure coefficient also means more growth. A
larger Weber number means more growth.

It is important to note that there are some minor mistakes in [1], namely in the third
equations (3a-3c), in equation 3a a term of 1

2
Q is missing, in equation 3b and 3c the

division signs are missing.

Bubble trajectory

The equation of motion is constructed via a force balance. The forces which will be
included in the equation of motion are the pressure force, the drag force and the added
mass force. The force due to the acceleration of the bubble is neglected, since the mass of
the bubble is much smaller than the added mass of the bubble. The force balance is given
in Eq. 1.2.

1

2

4

3
πR′3ρ

dwb

dt︸ ︷︷ ︸
Added mass force

=
1

2
ρ(w −wb)|w −wb|CDπR′2︸ ︷︷ ︸

Drag force

− 3

2

4

3
πR′3∇p︸ ︷︷ ︸

Pressure force

(1.2)

The derivation is given in Appendix B. After establishing the force balance, the equation
of motion is made dimensionless and written term wise. This has also been done in
Appendix B.

Application to a two-dimensional half body in an infinite fluid

The flow field which will be used is a potential flow field. The benefit of a potential flow
field is that with the superposition of very basic elements an analytically defined flow field
can be found. The elements used in this case are uniform flow and a source at the origin.
The source strength is chosen such that the stagnation point is in (x, y) = (− 1

π
, 0). The

resulting body shape is given in Eq. 1.3.

x = −y cotπy (1.3)

The full derivation, including the outcome with respect to the velocities and the pressure
coefficient can be found in Appendix C.

The resulting dimensionless equations of motion are given in Eqs 1.4-1.5.

dẋ

dτ
=

18

R2Rf

RBCD
24

[(
1 +

1

π

x

x2 + y2

)
− ẋ
]
− 3

π

[
x2 − y2 + x

π

(x2 + y2)2

]
(1.4)
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dẏ

dτ
=

18

R2Rf

RbCD
24

[(
1

π

y

x2 + y2

)
− ẏ
]
− 3

π

[
y
(
2x+ 1

π

)
(x2 + y2)2

]
(1.5)

So the equation of motion depends on the acceleration, the velocity and the position, and
is therefore a second-order Ordinary Differential Equation(ODE).

Solving the system of ODE’s

The resulting equations of motion are second-order coupled non-linear ODE’s. These kind
of systems can be solved efficiently via numerical integration. Most of these numerical
integration schemes are designed to solve systems of first-order ODE’s efficiently, therefore
the set of second-order ODE’s will be reduced to a system of first-order ODE’s. The
actual reduction is straightforward, and can be found in Appendix D.
The numerical integration scheme which will (mostly) be used is the Runge-Kutta scheme.
This scheme will be incorporated via the ode functions in MATLAB, since these have
adjusted time stepping, which speeds up the process significantly.

Even though no initial conditions on the velocities are mentioned by Johnson and Hsieh
the initial conditions that seemed to be used are given in Eq. 1.6.

z0 =


ub0 = 0
x0 = x0

vb0 = 0
y0 = y0

 (1.6)

Only with zero initial bubble speed it makes sense to alter the initial horizontal location
of the bubble (second Figure in [1]). A probably better option would be that the bubble
follows the fluid.

Results

In this part the results will be discussed and compared with the results of [1].

Variation of the initial vertical position

The effect of the vertical initial location on the bubble path is examined first. The
trajectory of a bubble with y0 = 0.01 is shown in Figure 1.1.
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Figure 1.1: The bubble trajectory when y0 = 0.01

The resulting trajectory is comparable, however the trajectory is overall slightly higher
in the vertical position. The same trend can be seen when the initial conditions of
y0 = [0.02 0.05 0.1 0.2] are used, see Figure 1.2.
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Figure 1.2: Trajectories with different initial height y0 = [0.02 0.05 0.1 0.2]

Variation of initial radius

The trajectories of varying initial radii are being compared to the trajectories with the
same initial radii in [1]. The initial radii are R0 = [0.24 0.12 0.08 0.04 0.02], the result
can be seen in Figure 1.3.
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Figure 1.3: Bubble trajectory with different initial radii

It can be seen that the calculated trajectories deviates significantly in some cases (R0 =
[0.12 0.08 0.04]). The trajectories with R0 = [0.24 0.02] are reasonably comparable.

Varying the cavitation number

Johnson and Hsieh changed the cavitation number from σv = 0.4 to σv = 0.58. In the
next section on stability, this will be investigated in more detail. For now, it suffices to say
that both by the calculation of Johnson and Hsieh and in this calculation the cavitation
number does not seem to change the bubble trajectory significantly.

Stability

The stability of the nuclei can be checked by means of the growth of the bubble. If this
goes asymptotically the growth has passed the critical point. Cavitation inception occurs
past this point. The sixth Figure in [1] shows the stability of a bubble with different
cavitation numbers. The stability has been analyzed, leading to Figure 1.4.
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Figure 1.4: Variation of the size of a gas nucleus along its trajectory

It can be seen that the stability is not fully comparable. When the bubble growth of
σv = 0.58 is taken as a reference, the bubble growth is slightly lower than the growth
calculated by Johnson and Hsieh. The according trajectories can be seen in Figure 1.5.
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Figure 1.5: Bubble trajectories with different cavitation number

Critical size of bubble

The seventh figure in [1] is also compared. If one looks in [1] at h = 0.6 in and R′0 = 0.02 in
(R0 ≈ 0.033) one can find that the critical cavitation number is around σv ≈ 0.46, a
slightly lower critical cavitation number of σv ≈ 0.43 is found and can be seen in Figure
1.6.
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Figure 1.6: Variation of the size of a gas nucleus along its trajectory

The argument can also be turned around and it can be seen that the initial critical size of
bubble is R′0 = 0.02 in if h = 0.6 in and σv ≈ 0.43.

Discussion

The results found in the prior section are not the same as in [1]. A suggestion on the cause
of this discrepancy might be the temporal step involved in solving the coupled differential
equation. This time step is namely in this report variable, meaning that when more
change in time is expected (derivative based) the temporal step automatically decreases.
The time step or solving procedure of [1] is not known. The Runge-Kutta method is
named, but in a later stadium and without a time step. Another option is that the transfer
of dimensions causes some minor altered conditions. For example going from inch to
meters requires some accuracy. It can not be ruled out that the these accuracies play a role.

The overall slightly higher trajectory will automatically lead to encountering less low
pressures, which means less growth. This could be seen in Figure 1.4.

The general trends which can be seen in the results are that a higher initial height
means a higher trajectory. A larger initial bubble radii means a higher trajectory. A
higher trajectory means less growth. And finally a larger cavitation number means more
stability.
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The parameter describing the body size (h) as specified by Johnson and Hsieh is not clear.
The flow Reynolds number is specified as Rf = 2hU

ν
, by which h is most likely to represent

the half body width. But shortly below the definition of the Reynolds number h is called
the body size. Later on h is defined as the semi-thickness of the two-dimensional half
body. In this report the semi-thickness is used as a definition for h, since this corresponds
to both the Reynolds number and the non-dimensional flow field. The semi-thickness is
therefore interpreted as the half body width when the body width is considered infinitely
far downstream.

Interesting to note is that the same trajectory can be reproduced by combining the
main parameters of the flow (body size, h, initial bubble radius, R′0 and free stream
velocity, U). For example the same trajectory can be reproduced with a higher free stream
velocity (25 times higher, 381m/s). This free stream velocity is however approximately
a quarter of the speed of sound in water and therefore not realistic. The observation
however is interesting. Another example of this phenomena is increasing the initial bubble
size by a factor of 12

3
and increasing the body size by a factor of 2, this combination also

leads to the same trajectory. The figures are not included since the result is the same as
in Figure 1.1.

Conclusions

The objective of this chapter was to reproduce the results found in the literature, more
specifically those found in [1]. This has been done quite successfully, but needs further
investigation. The trajectories were overall slightly higher which led to different growth
figures for the bubbles. The difference in results are minor, and might be explained by
the different solving procedure or the transfer of units.

The model itself however has been reproduced, and the trends in the results are the
same. Because the trends reflect physical effects, the model is adequate in providing
theoretical understanding.
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2. Expanding the basic model

In the prior chapter the paper by Johnson and Hsieh has been reviewed. In this chapter
their basic model will be expanded, by both a more advanced equation of motion and a
more advanced equation for the bubble dynamics.

Review of equations

In this section a brief overview will be given of the new derived equations.

Bubble growth

Rayleigh-Plesset equation

To describe the bubble growth multiple methods are possible, the most convenient one
being the Rayleigh-Plesset equation. The Rayleigh-Plesset equation is given in Eq. 2.1.

ρf

[
R′
d2R′

dt2
+

3

2

(
dR′

dt

)2
]

= pv − p+ pg(t)− 2
γ

R′
− 4µf

R′
dR′

dt
(2.1)

The derivation of Eq. 2.1 is based on the mass conservation equation and the Navier-
Stokes equations. In the derivation a spherical bubble is assumed. The derivation can
be seen in Appendix E. In Appendix E the derivation of the dimensionless form of the
Rayleigh-Plesset equation is given as well, the outcome can be seen in Eq. 2.2.

d2R

dτ2
=

1

R

[
−3

2

(
dR

dτ

)2

+
1

2
(−Cp − σv) +

(
1

2
σv +

4

W

)(
R0

R

)3
cp
cv

− 4h

WR′0R
− 8

RfR

dR

dτ

]
(2.2)
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The general Keller-Herring equation

The Rayleigh-Plesset equation does not include damping. And it assumes that the wall
velocity of the bubble is not close to that of the speed of sound. The damping of the
bubble’s dynamic behavior is partly due to the energy loss in the radiation of a sound
wave (at high enough wall velocities) and partly due to the rise in temperature of the gas
in the bubble due to the fast volumetric change. The first effect is included in the general
Keller-Herring equation, which is derived in Appendix E. The outcome can be seen in Eq.
2.3.

(
1− (λ+ 1)

dR′

dt

c

)
ρfR

′d
2R′

dt2
+

3

2

dR′

dt

2

ρf

(
1− (λ+

1

3
)
dR′

dt

c

)
=(

1 + (1− λ)
dR′

dt

c

)
[pv − p+ pg(t)] +

R′

c

dpg(t)

dt
− 4µ

dR′

dt

R′
− 2γ

R′

(2.3)

If the factor λ is set to 0 the Keller-Miksis equation is found, and if λ is set to 1 the
equation used by Herring and Trilling is found.
Eq. 2.3 can be completed using the van der Waals equation of state given in Eq. 2.4.

pg
(
R′3 −R′3hc

)κ
= C (2.4)

In Eq. 2.4 C is a constant and R′hc is the van der Waals hard core radius which is

R′hc =
R′

0

8.54
([4]) for air. Using Eq. 2.4 to non-dimensionalize Eq. 2.3 gives Eq. 2.5.(

1− (λ+ 1)Ṙ
U

c

)
RR̈ +

3

2
Ṙ2

(
1−

(
λ+

1

3

)
Ṙ
U

c

)
=

1

2

(
1 + (1− λ)Ṙ

U

c

)[
−σv − Cp +

(
σv +

8

W

)(
R3

0 −R3
hc

R3 −R3
hc

)κ]

+R
U

c

(
1

2
σv +

4

W

)3κR2
(
R3

0−R3
hc

R3−R3
hc

)κ
R3
hc −R3

− 8

Rf

Ṙ

R
− 4

W

R0

R

(2.5)

So an alternative for the Rayleigh-Plesset equation is found. It is still a second-order
ODE.

Equation of motion

The equation of motion is constructed using the force balance of the bubble. A very
elaborate derivation of an equation of motion of a solid sphere in creeping flow is given
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by Maxey and Riley [5]. Starting from their equation of motion the equation of motion
which will be used is derived in Appendix F, the outcome being Eq. 2.6.

4

3
πR′3(

1

2
ρf + ρb)

dwb

dt︸ ︷︷ ︸
Accelerating force

=
1

2
ρ(w −wb)|w −wb|CDπR′2︸ ︷︷ ︸

Drag force

− 3

2

4

3
πR′3∇p︸ ︷︷ ︸

Pressure force

+
4

3
πR′3g′(ρb − ρf )︸ ︷︷ ︸

Buoyancy force

+ 2πρfR
′2(w −wb)

dR′

dt︸ ︷︷ ︸
Changing volume force

(2.6)

Eq. 2.6 is the result of assuming steady potential flow with a one-way coupling of the
bubble dynamics equation and neglecting fluid acceleration. The dimensionless form of
this equation is given in Eq. 2.7.

dwb

dτ
=

9α

R2Rf

CDRb

24
(w −wb)−

3

4
α∇Cp + gβ +

3

2

α

R
(w −wb)

dR

dτ
(2.7)

Where α =
ρf

ρb+
1
2
ρf

and β =
ρb−ρf
ρb+

1
2
ρf

, and w is now dimensionless.

The equation found in this report is the same as in the paper by Farrell [6]. The only
difference is the history force, which will be included later on, and the inclusion of the
mass of the bubble.

Application to a two-Dimensional half body in an infinite fluid

This part will not change compared to [1].

Solving the system of ODE’s

The system of ODE’s will again be a second-order system of coupled non-linear Ordinary
Differential Equations. The method for solving will again be using the ode function in
MATLAB. The order of the system needs to be reduced, which is done in Appendix G. In
Appendix G the initial conditions are given as well and are straightforward.

Results

The results will be discussed in terms of the trajectory and in terms of the bubble growth.
The trajectories will be discussed first.

15



Trajectories

The trajectories will be shown with more forces included successively.

First the original equation (neglecting the mass of the bubble, gravity and the vol-
ume changing force) in combination with the Rayleigh-Plesset equation is shown in Figure
2.1.
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Figure 2.1: Bubble trajectories with the Rayleigh-Plesset equation, compared with the
results from [1].

It can be seen in Figure 2.1 that the trajectories slightly deviate in the region where the
bubble is growing.

Including the mass of the bubble and the volume-changing force gives Figure 2.2.
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Figure 2.2: Bubble trajectories with the Rayleigh-Plesset equation and the volume
changing force and mass of the bubble, compared with the results from [1].

The differences between Figure 2.1 and Figure 2.2 are small. This is because, as will be
shown later, the dR

dt
-term is not very large. At the end of the trajectory, there where the

bubble hits the body, the effect of the collapsing bubble can be seen, see Figure 2.3.
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(b) With volume-changing force and mass of the
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Figure 2.3: Comparison of the trajectories with different forces

In Figure 2.3 it can be seen that when the pressure increases, and thus the bubble shrinks
(fast), the bubble is drawn towards the body. When the trajectory exceeds 1 in the vertical
height the calculations are stopped. The trajectories are still introduced at roughly the
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same height at x = 0.6, but start to deviate when the bubble collapses. The bubble
collapse can be seen in Figure 2.13(a) and will be discussed later on. The effect of the
mass of the bubble indeed seems to be negligible, but gives the opportunity to switch to
solid particles easily.

Including gravity means introducing the bouyancy force. This force significantly in-
fluences the results. This can be seen in Figure 2.4.
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Figure 2.4: The bubble trajectories with the full equation of motion and the Rayleigh-
Plesset equation

The bubbles are released at the same starting position (x = −10), but because the bubble
is lighter than water the bubble rises, and therefore the vertical position at which the
bubble reaches the body is higher. Since the bubbles are further away from the body the
bubbles encounter less low pressures, meaning less violent collapses, by which the dR

dt
-term

is less influential. This can lead to a more straight trajectory near the body, which can be
seen in Figure 2.5.
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Figure 2.5: The end of the trajectories

So including buoyancy makes the bubbles hit the body further down stream.

The general Keller-Herring equation will also be used for the bubble growth with λ = 0.
The result can be seen in Figure 2.6
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Figure 2.6: Bubble trajectories with full equation of motion and the general Keller-Herring
equation with the van der Waals equation of state and λ = 0

The trajectories are practically the same as those when the Rayleigh-Plesset equation
is used. The calculation with the general Keller-Herring equation is faster in terms of
computational time due to the damping term.

Stability

The stability of the bubble will be observed with an initial condition of y0 = 0.01 and
with a cavitation number of σv = [0.2 0.4]. The bubble is either in the first growing state
or in the first collapsing state when it hits the body. For that reason the calculation will
be continued in the body to show the behavior of both equations.

The pressure input for both equations can be seen in Figure 2.7.
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Figure 2.7: Pressure input to show the reaction of both equations

First the behavior of the Rayleigh-Plesset equation can be seen in Figure 2.8.
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Figure 2.8: Behavior of the Rayleigh-Plesset equation in the flow field, not stopped by
the body, y0 = 0.01 and σv = 0.2.

The integration is stopped since the collapse is too violent. The bubble wall velocity can
be seen to be well above the speed of sound, the bubble volume is only just above the
van der Waals volume and the bubble is moving backwards in the flow at the time of
the collapse. Furthermore it can be seen that the initial condition is not the equilibrium
initial condition since the bubble radius oscillates.

If the cavitation number is increased, Figure 2.9 is found. In Figure 2.9 it can be seen that
the Rayleigh-Plesset equation does not damp the solution. The rebound of the bubble is
only lower because of the increased pressure. Due to the increased pressure the collapses
becomes more violent as can be seen by the increasing wall velocity.
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Figure 2.9: Behavior of the Rayleigh-Plesset equation in the flow field, not stopped by
the body, y0 = 0.01 and σv = 0.4.
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Now the behavior of the general Keller-Herring equation is studied. The outcome can be
seen in Figure 2.10.
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Figure 2.10: Behavior of the general Keller-Herring equation in the flow field, not stopped
by the body, y0 = 0.01 and σv = 0.2.

In Figure 2.10 it can be seen that the bubble radius strives more to its equilibrium
size. The damping can clearly be seen, and the bubble wall velocity is significantly
lower than the speed of sound after the first rebound. Still the bubble moves backwards
due to the volume-changing force. The oscillation due to the initial condition is suppressed.

The same can be done with a higher cavitation number, see Figure 2.11.
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Figure 2.11: Behavior of the general Keller-Herring equation in the flow field, not stopped
by the body, y0 = 0.01 and σv = 0.4.

It can be seen that the bubble wall velocity stays very low. So all the damping comes
from the dpg

dt
-term. The volume is now well above the van der Waals volume.
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The stability of the bubble is only of physical importance if the bubble is still in the flow,
because after the bubble hits the body contour the bubble “enters” the body. Therefore
the calculation is stopped at the point where the bubble hits the body. The outcome of
the bubble growth for the Rayleigh-Plesset equation can be seen in Figure 2.12.
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Figure 2.12: Stability of the bubble along its trajectory with the Rayleigh-Plesset
equation, the cavitation number increases with increasing steepness of the curve, with
σv = [0.2 0.4 0.58], y0 = 0.01

In Figure 2.12 it can be seen that the initial oscillations only damp out when the bubble
starts to grow. Furthermore it can be seen that the bubble does not get to the collapsing
state. When the initial condition y0 = 0.05 is taken the collapse of the bubble can be seen
with σv = 0.4, see Figure 2.13.
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Figure 2.13: Stability of the bubble along its trajectory with the Rayleigh-Plesset
equation, the cavitation number increases with increasing steepness of the curve, with
σv = [0.2 0.4 0.58], y0 = 0.05

The influence of the collapse of the bubble could also be seen in Figure 2.3(b).

The same bubble growth figures can also be made for the general Keller-Herring equation
with λ = 0, see Figure 2.14.
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Figure 2.14: Stability of the bubble along its trajectory with the general Keller-Herring
equation (λ = 0), the cavitation number increases with increasing steepness of the curve,
with σv = [0.2 0.4 0.58], y0 = 0.01

It can be seen that the Keller-Herring equation causes much smaller oscillations in the
bubble radius, but the growth of the bubble radius is similar. For y0 = 0.05, see Figure
2.15.
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Figure 2.15: Stability of the bubble along its trajectory with the general Keller-Herring
equation (λ = 0), the cavitation number increases with increasing steepness of the curve,
with σv = [0.2 0.4 0.58], y0 = 0.05

Lastly it will be interesting to check the stability without gravity and volume-changing
force, since the trajectories were in good agreement with [1] without these forces. The
result can be seen in Figure 2.16.
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Figure 2.16: Stability of the bubble along its trajectory with the general Keller-Herring
equation (λ = 0), the cavitation number increases with increasing steepness of the curve,
with σv = [0.2 0.4 0.58], y0 = 0.01.

The bubble hits the body sooner because the bubble trajectory is closer to the body.
Consequently, the ultimate bubble radius is smaller.
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Discussion

In the discussion there will be looked at the results and the method. The terms in the
equation of motion and the bubble growth will be discussed. Furthermore some extensions
are discussed.

Equation of motion

The equation of motion is an extensive equation of motion under the assumption of steady
potential flow. It is now interesting to see which forces are the most influential. In
Figure 2.17 the forces can be seen on a log-scale (some extra damping is added to the
Keller-Herring equation to disregard the vibration due to the initial condition). The force
due to the mass of the bubble is not given.
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Figure 2.17: The absolute value of the forces along the trajectory, the solid lines are in
the x-direction and the dashed lines are in the y-direction. y0 = 0.01 and σv = 0.4

It can be seen that the gravitational force is the most influential in the beginning, leading
to a rise of the bubble. The drag force is smaller than the pressure force, meaning that in
the absence of the other forces the drag force is fully reactionary on the pressure force.
As the body is approached the bubble shrinks, this leads to a lower body force (see the
gravitational force). After the maximum pressure is passed the bubble grows, and the
body force grows. It can be seen that the volume-changing force is the force with the
highest magnitude. In most cases it is however in the direction of the trajectory since
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the flow determines the trajectory of the bubble, and therefore the slip velocity of the
bubble is in the direction of the trajectory. The bubble is not yet in the collapsing phase.
In the collapsing phase (see Figure 2.14(b)) this force will become influential since a small
difference in velocity direction between the bubble and the flow will be enlarged by the
collapsing speed. In Figure 2.3(b) one can see the first minor effect of this force, since the
bubble starts to shrink before hitting the body.
The added force which is the most influential is the gravitational force (buoyancy). This
force namely couples the initial condition y0 with the initial condition x0.

Bubble growth

The bubble growth will be calculated in an accurate and physically relevant way by the
general Keller-Herring equation. The Rayleigh-Plesset equation introduces oscillations
in the presented model, and the oscillations require smaller time steps leading to higher
computational times. The missing damping in the Rayleigh-Plesset equation will be a
bigger problem when the bubble implodes before it hits the body. The presented method
by Johnson and Hsieh is not very accurate in terms of bubble growth, but the gained
accuracy in bubble growth can not be said to influence the bubble trajectories significantly.

Solid particle

The equations presented in this chapter can easily be used to let a solid particle approach
the body. The bubble growth equation will be set to zero, so that the volume-changing
force is zero. An example can be seen in Figure 2.18.
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Figure 2.18: A solid particle with y0 = 0.05 as initial condition, and density of 7800 kgm−3

One sees the gravity pull the particle down, and the particle hits the body near the
maximum pressure, this is possible since the particle is more dense than water.

History/Basset force

In this part the inclusion of the history force is being discussed, even though there are many
ways in which to include the history force, the Basset force is taken. The history/Basset
force is the force which accounts for the different time scales in the flow and that of the
build up of the boundary layer of the bubble. The Basset force is based on the build up
speed of the boundary layer of a flat plate, but can be used for nuclei. The Basset force
is taken since this will be extendable easily. The equation from which will be started is
given in Eq. 2.8.

(
mp +

1

2
mf

)
dWi

dt︸ ︷︷ ︸
Accelaration force

+
1

2
4πρfa

2da

dt
Wi︸ ︷︷ ︸

Changing volume force

+ 6πa2µ

∫ t

−∞

dWi

dτ
[πν(t− τ)]−1/2dτ︸ ︷︷ ︸

History force

=

− 1

2
ρfCDπa

2W 2
i︸ ︷︷ ︸

Drag force

− 3

2

4π

3
a3∇p︸ ︷︷ ︸

Pressure force

+ (mp −mf ) gi︸ ︷︷ ︸
Buoyancy force

− mp
dw

dt︸ ︷︷ ︸
Acceleration force

(2.8)

This equation can be written as Eq. 2.9.
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(
mp +

1

2
mf

)
dwb

dt︸ ︷︷ ︸
Accelaration force

=
1

2
4πρfR

′2dR
′

dt
(w −wb)︸ ︷︷ ︸

Changing volume force

+ 6πR′2µ

∫ t

−∞

dw −wb

dτ
[πν(t− τ)]−1/2dτ︸ ︷︷ ︸

History force

+
1

2
ρfCDπR

′2(w −wb)|w −wb|︸ ︷︷ ︸
Drag force

− 2πR′3∇p︸ ︷︷ ︸
Pressure force

+ (mp −mf ) g
′
i︸ ︷︷ ︸

Buoyancy force

+
1

2
mf

dw

dt︸ ︷︷ ︸
Acceleration force

(2.9)

In dimensionless form this leads to Eq. 2.10.

dwb

dτ
=βgi −

3

4
α∇Cp +

1

2
α
dw

dτ
+

3

2
α

1

R

dR

dτ
(w −wb) +

3

8
αCD

1

R
(w −wb)|w −wb|

9

2
α

ν√
πν h

U

U

1

R

∫ τ

−∞

d(w −wb)

dτ ′
(τ − τ ′)−

1
2dτ ′

(2.10)

The integral of the history force can be written as:∫ τ
−∞

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ =
∫ τ0
−∞

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ +
∫ τ
τ0

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′

If it is assumed that the relative acceleration prior to and at the initial time τ0 is zero, then
the integral can be written as:

∫ τ
−∞

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ =
∫ τ
τ0

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′

Note that from now on therefore the initial condition on the velocities is no longer zero,
but the same as that of the flow (this makes the derivation more easy, and the result still
useful). The integral presented goes to infinity when τ is filled in for τ ′. This needs to be

solved and will be done by splitting the integral once more:
∫ τ
−∞

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ =∫ τ−∆τ

τ0

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ +
∫ τ
τ−∆τ

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′.

If it is now assumed that the relative dimensionless acceleration is constant during
the last time step, ∆τ . The integral can be written as:

∫ τ
−∞

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ ≈∫ τ−∆τ

τ0

d(w−wb)
dτ ′

K(τ − τ ′)dτ ′ + d(w−wb)
dτ ′

|τ− 1
2

∆τ

∫ τ
τ−∆τ

K(τ − τ ′)dτ ′. The integral over the

Basset kernel can be found to be:
∫ τ
τ−∆τ

(τ − τ ′)− 1
2dτ ′ = 2

√
∆τ . If then the acceleration

at τ − 1
2
∆τ is taken to be the average over the two points one finds: d(w−wb)

dτ ′
|τ− 1

2
∆τ≈

1
2

(
d(w−wb)

dτ ′
|τ−∆τ+

d(w−wb)
dτ ′

|τ
)

. So the conclusion on the integral can be seen in Eq. 2.11.

∫ τ

−∞

d(w −wb)

dτ ′
K(τ − τ ′)dτ ′ ≈∫ τ−∆τ

τ0

d(w −wb)

dτ ′
(τ − τ ′)−

1
2dτ ′ +

(
d(w −wb)

dτ ′
|τ−∆τ+

d(w −wb)

dτ ′
|τ
)√

∆τ

(2.11)
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In this way the history force is found in terms of the relative acceleration and in terms of
the time step.
The focus is therefore now on finding the relative dimensionless acceleration of the bubble.
This acceleration can be found by reusing the force balance. The procedure of implementing
the history force is given below.

1. Calculate the trajectory of the bubble without using any history force.

2. Calculate the relative acceleration of the bubble and use this to calculate the history
force.

3. Use the found history force as an input for the new trajectory calculation.

4. Then calculate the relative acceleration again based on all the forces including the
prior used history force to find the new history force.

5. Repeat 3 and 4 until a certain convergence has been reached.

The convergence of this scheme is not that great, and will in practice depend on interpo-
lation accuracy and ODE solver accuracy. This makes the history force inclusion hard.
Errors of up to 0.01% can be reached, but after this there will not be much improvement,
since always one or the other accuracy of the interpolation or the grid will come in to
play. This can of course be altered, but that will mean having to decrease the time step
such that this is not computationally efficient anymore. Therefore the reached error will
be seen as sufficiently small. Another reason of this accuracy is the stiffness introduced
by the introduction of the history force to the set of equations. This makes solving the
system less accurate.

Falling sphere

To test the implementation of the history force in the way described above a test case
of a falling sphere is used. This test case is also used in the paper by D.F. van Eijkeren
[7] and can therefore be used as reference. The history force found after iteration can be
seen in Figure 2.19, in the same Figure the reference plot can be seen.

As can be seen the forces are of the same order of magnitude, and are similar in shape
and in final value, the peak value however is a bit higher in the iterative case. This might
be due to the fact that not exactly the same model has been used for the drag force, or
due to the fact that the model used in the iterative test case was more simplistic than the
model used in the literature. Lastly it can be seen that the Basset force overestimates the
history force significantly, as compared to the other history kernels (different functions for
K(τ − τ ′)), see Figure 2.19(b).
A zoomed in version of the history/Basset force is shown in Figure 2.20. It can be seen
that the history force converges, and that it is not completely smooth. This is due to the
assumption of constant acceleration of the bubble during the last time step.

33



0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

0

1

2

3

4

5

6

7

H
is

to
ry

 fo
rc

e 
[N

]

×10-6 History force in time

1st iteration

2nd iteration
...

(a) Iterative calculation result (b) Result from literature [7]

Figure 2.19: Resulting History force found by iteration and discussed in literature
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Figure 2.20: Zoomed in history force

The velocity in time is also shown in the reference literature. The comparison can be
found in Figure 2.21.

Again it can be seen that the iterative procedure overestimates the velocity slightly, the
possible explanations have been given. The end result is similar.
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Figure 2.21: Resulting vertical velocity found by iteration and discussed in literature

Application to the bubble trajectory

The history force can be implemented, in the same way as discussed for the falling sphere
in the calculation of the particle trajectory. The outcome can be seen in Figure 2.22.
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Figure 2.22: The trajectories of the bubble as the history force converges, the first iteration
is the lowest blue line and the red dashed-dotted line is the final trajectory.
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A new problem arises, namely when the history force is added the trajectory is altered,
and therefore altered flow conditions will be encountered. This will make the convergence
harder. Luckily the flow field is a potential flow field, so that boundary layers are not a
problem, and the flow field will not be much different when the trajectory is shifted.

The final history force in both directions is shown in Figure 2.23.
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Figure 2.23: Resulting forces in both directions, the history force is the red striped line

In Figure 2.23(a) it can be seen that the history force in the x-direction is not correct far
along the trajectory. What can also be seen is that the history force is the main force, and
therefore determines the relative acceleration, which in term determines the history force.
This makes that the history/Basset force increase exponentially in time. That problem
could be solved using a better definition of the history force kernel. In Figure 2.19(b), it
could be seen that history kernels exist, which overestimate the actual history force for
larger times significantly less. The Basset force can in this case however still be useful
as the large deviations happen within the body (the calculation was not stopped when
the bubble hits the body since the influence of the history force on unsteady behavior,
which happens within the body, was of interest. A practical reason is that stopping
the calculation means stopping the bubble, which gives huge spikes in the history force,
leading to a not converging system, this could be solved by stopping the calculation at
a different estimated time). It can be seen that the history force smears out the initial
trajectory, and that the effect of the collapsing bubble is almost fully canceled, so the
most unsteady force is counteracted the most by the history force. This is expected, since
the Basset force is based on the time it takes to build up a boundary layer.
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Conclusions

The aim of this chapter was to expand the basic model. This has been done by both
changing the bubble dynamics equation and by expanding the equation of motion.

The general Keller-Herring equation has physically relevant features for the descrip-
tion of the bubble growth, such as damping depending on the speed of sound. These
features can be used for future extensions, such as predicting the sound emitted by this
form of cavitation.

The prediction of the bubble growth has improved as compared to the quasi-steady
bubble growth description. The bubble growth did not influence the trajectory signifi-
cantly however.

It seems that the equation of motion is far more important in terms of the trajec-
tory than the actual bubble growth. This was shown by consequently adding forces to the
equations being solved, and their outcome with respect to the trajectories.

The most significant added force was the buoyancy force. The magnitude of the volume
changing force was only significant when the bubble changed its volume noticeable.

The used way of solving is very general, which makes it easy to change the kind of
problem solved. As an example the trajectory of a solid particle has been shown.

Finally, the Basset force as an estimate of the history force was added. The imple-
mentation of this force and the mathematical description of this force did not yield good
results. The force is overestimated by the Basset kernel. And the iterative implementation
of the Basset force only works in uniform flows.

37



3. Validation of expanded model in

a RANS solution

In this chapter an equation of motion coupled with an equation for the bubble dynamics
will be solved in a RANS solution which was used by Martijn van Rijsbergen [8]. The 3D
flow was calculated around a NACA-0015 foil with a chord length of 0.06m at an angle
of attack of 6◦. Two 2D section of the foil have been examined, namely one without the
roughness element (smooth) and one with a roughness element. An impression of the flow
field and an impression of the foil with and without the roughness element can be seen in
Figure 3.1.
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Figure 3.1: An overview of the flow field and the different grids
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Used equations

The equations which will be solved in this given flow field will be discussed briefly, the
equations have (partly) been mentioned before, so they will not be derived. They are
named because they will be used in their dimensionfull form.

Equations of motion

The equation of motion used is given in Eq. 3.1.

4

3
πR′3

(
ρb +

1

2
ρf

)
dwb

dt︸ ︷︷ ︸
Acceleration force

=
1

2
ρf (w −wb)|w −wb|CDπR′2︸ ︷︷ ︸

Drag force

− 3

2

4

3
πR′3∇p︸ ︷︷ ︸

Pressure force

(3.1)

It can be seen that the driving forces are only the drag force and the pressure force. These
forces are chosen for now since it seemed in the potential flow case like these two were
enough to describe the bubble trajectory. Furthermore it can be seen that the mass of
the bubble is not neglected. This is done to make the code suitable for solid particles.

Bubble dynamics equation

To describe the bubble dynamics the general Keller-Herring equation is used (see Eq.
2.3). The general Keller-Herring equation is chosen since it has damping properties, this
potentially reduces the amount of temporal steps. λ = 0 will be chosen, the equation of
state used is that of a perfect gas.

Data handling

The data used in these simulations is retrieved from a 3D RANS simulation. The 3D
simulation was meant to test the effect of one roughness element on the foil. Therefore
two planes have been chosen, namely one over the symmetry line of the roughness element,
and one far away from the roughness element. Both choices have been made so that the
assumption of a 2D flow is reasonable.

Grid

The grid that is used in 2D is a structured grid (see Figure 3.1). On the nodes in the grid
the velocity in three directions, and the pressure is defined. The node itself is defined by
its 3D Cartesian coordinate, the origin is in the middle of the foil.
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Interpolation

The particle trajectory will not be bound to the grid points, meaning that a point can
be in a cell and not only on its nodes. This creates the need for interpolating. The
interpolation needs to capture the physics of the flow properties. In flow fields local effects,
like a boundary layers, lead to the need for local interpolation. The interpolation function
used for the velocity components in x and y-direction and for the pressure is given in Eq.
3.2.

qp =

∑
k qc,kR

−1
c,k∑

k R
−1
c,k

(3.2)

Where qp is the value of the flow property at the point p = (xb, yb), Rc,k is the distance
from the point p to the kth closest point, and finally qc,k is the flow property in the kth

closest point. So basically this is a weighted average. The amount of closest points used, k,
influences the capturing of local effects, and the continuity of the resulting flow properties.
A different way of interpolation is shown in Eq. 3.3.

qp =

∑
t qc,tR

−2
c,t∑

tR
−2
c,t

(3.3)

Where in this case the summing index t is over all points. The result is a continuous
function for the flow variables, which still captures the local effects. The downside is that
a whole set of distances (R) needs to be used at every time step in stead of just the first
few. Clearly the interpolation can be done with even higher orders, but is not expected to
give better results. For practical applications the interpolation of Eq. 3.2 will be used,
since this is more efficient in terms of computational time.

Spatial derivatives

Spatial derivatives play an important role in the equation of motion for the bubble. In the
simple equation of motion given in Eq. 3.1 only the pressure gradient is of importance,
but in more complex equations of motion the spatial derivative of the velocity can be of
importance. The used derivative is calculated as in Eq. 3.4.

∂qp
∂xi

=
qp+δxi − qp−δxi

2δxi
Where: δxi = C

∑
k ∆xi,k
k

(3.4)

In Eq. 3.4 the derivative can be in two directions depending on i. The δxi depends on the
average distance in the xi-direction and on a constant C which can be chosen freely. The
constant C will determine how local the pressure gradient is being calculated. It could
make sense to calculate the derivatives with δxi being related to the radius of the bubble,
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because this will take the fact that there is no flow inside the bubble into account. This is
however not done. The derivative is taken very locally, since the bubble is assumed to
be a point mass, this assumption needs(!) local information. C = 1

100
will be taken. A

low value for C will also decrease the chance of having other points as the closest point,
preventing jumps in these derivatives.

Results

In this section the results will be shown. The results will be compared with [8] in the
conclusion, the data set used is namely the same. In [8] a streamline is taken as the (local)
bubble trajectory. In this report the bubble trajectory is the result of an equation of
motion. The results will all be shown on the full scale of the solution, and on a zoomed
scale. The zoomed scale is the same in time as in space.

Trajectory

The trajectory of a bubble depends on the flow field properties, and on the properties of
the bubble itself. The most important property of the bubble is the size. Other properties
that play a role are mostly dependent on the type of gas used (like gas density and surface
tension). Some other factors, like the minimum pressure in the bubble, namely the vapor
pressure, are taken into account as well. The most important factor not taken into account
is the shape of the bubble. A larger bubble will react stronger to the pressure force. This
yields different trajectories for different initial radii of the bubble. Two initial bubble sizes
have been investigated, namely R0 = 18.5µm and R0 = 43µm.
The trajectory over the roughness element of the bubble with an initial radius of R0 =
18.5µm can be seen in Figure 3.2.
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Figure 3.2: Trajectory around the foil with roughness element of a bubble with R0 =
18.5µm and y0 = −0.00375m

The bubble nearly hits the roughness element, as intended (the trail and error method
has been used to find a suitable initial condition). The trajectory with the same initial
conditions can also be found on the foil without roughness, see Figure 3.3.
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Figure 3.3: Trajectory around the foil without roughness element of a bubble with
R0 = 18.5µm and y0 = −0.00375m

The trajectory of the bubble with an initial radius of R0 = 43µm can be seen in Figure
3.4.
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Figure 3.4: Trajectory around the foil with roughness element of a bubble with R0 = 43µm
and y0 = −0.00409m

Again the trajectory without the roughness can be found and can be seen in Figure 3.5.
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Figure 3.5: Trajectory around the foil without roughness element of a bubble with
R0 = 43µm and y0 = −0.00409m

The trajectories are sensitive for the relative solving tolerance, which was 10−4 in this case.
This tolerance has been chosen as such since it is reasonably fast in terms of computational
time, and the interpolation tolerance will not be bigger than this value. The shooting
method is used for finding the initial condition which yields these trajectories.

Pressure along trajectory

The pressure along a trajectory is of importance for the bubble dynamics equation. The
bubble size depends namely on the local pressure.

The pressure coefficient along the bubble trajectory depends on the initial bubble size,
since this is an important factor in the trajectory. The different pressure coefficients can
be seen in Figures 3.6-3.7.
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Figure 3.6: Pressure coefficient in time with R0 = 18.5µm and y0 = −0.00375m
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Figure 3.7: Pressure coefficient in time with R0 = 43µm and y0 = −0.00409m
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In both Figures 3.6-3.7 the interpolation can be seen not to be smooth. The influence
of the roughness element can also be seen. The minimum pressure coefficient becomes
locally lower. The peak in the negative pressure coefficient can therefore be ascribed to
the roughness element. The trajectories do not pass the roughness element at the exact
same height, this might be the reason for the different type of peak for the different initial
bubble radii.

The “local flatness” of the curve in Figure 3.6(b) can be explained, since the bubble is
at that time closest to the boundary layer (see Figure 3.3), in the boundary layer the
pressure is higher and therefore the pressure coefficient is flatter.

Radius along trajectory

The radius along the trajectory shows the bubble dynamics which is dependent on the
bubble trajectory, see Figures 3.8-3.9.
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Figure 3.8: Bubble diameter in time with R0 = 18.5µm and y0 = −0.00375m
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Figure 3.9: Bubble diameter in time with R0 = 43µm and y0 = −0.00409m
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As can be seen the bubble diameter reacts to the roughness element. The small bubble
collapses repeatedly with the roughness element, without the roughness element, the
bubble only grows slightly. The larger bubble in both cases shows significant grow, still
the effect of the roughness element can be observed. The bubble radius with the roughness
element decreases more in size.

Comparison with experiments

The simulations can be validated by comparing the found results with experiments. The
experimental data is however not available under the exact same circumstances. The inlet
velocity assumed in the simulations was U = 6m/s, where as in the experiments the inlet
velocity was U = 8m/s. The difference in inlet velocity results in a different flow field.
The foil and the angle of attack of the foil were the same.
All experimental results are near the roughness element, therefore two cases have been
examined for both the initial radii R0 = 18.5µm and R0 = 43µm.

The first case is trying to find a simulation which has been done previously and compare
with the experimental results, see Figures 3.10-3.11 (it should be noted that the error taken
for the bubble radius is only the camera accuracy). It can be seen that for R0 = 18.5µm
the trajectory is not accurate. This can be due to the fact that no other simulation was
available at for example y0 = −0.0036m, still the trajectory is reasonably close to the
experimental results with normal uncertainty (blue). Another reason why the trajectory
is not that close is the different circumstances for the simulation and the experiment
described above. The diameter of the bubble can be seen to be reasonable accurate. The
frequency of the camera is too low to capture the influence of the roughness element,
especially just before the last experimental result it would have been nice to have more
data.
For R0 = 43µm the trajectory is close to that of the experiments. The bubble diameter
is with this initial radius not comparable. This might be an effect of the estimation of the
radius as done in the experiments. The shape of the bubble is namely far from spherical,
especially for the last result. Furthermore it can again not be ruled out that the different
circumstances influence the bubble growth significantly.
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Figure 3.10: The bubbles experimental results with the simulated result for y0 = −0.0037m
and R0 = 18.5µm
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Figure 3.11: The bubbles experimental results with the simulated result for y0 =
−0.00409m and R0 = 43µm
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The second case is trying to use the experimental data as an initial condition and then
compare results, see Figures 3.12-3.13. It can be seen that for R0 = 18.5µm the trajectory
is not comparable. The initial condition on the velocity has been scaled by 3

4
, since this

accounts for the different inlet velocity. The second point experimental point has been
used as an initial condition since at that point an estimate for the velocity is available. The
initial condition on the radius is taken as the first radius in the more accurate experimental
results. The bubble diameter is pretty accurate, and is nearly everywhere within the
experimental error.
For R0 = 43µm the trajectory is close. The initial condition on the velocity has again
been scaled by 3

4
, and the second experimental point is used. The bubble diameter deviates

significantly, but this might be the error of determining the effective bubble diameter.
The bubble is less spherical towards the end of the measurements.
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Figure 3.12: The bubbles experimental results with the simulated result with the first
result as initial condition
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Figure 3.13: The bubbles experimental results with the simulated result with the first
result as initial condition
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Conclusions

The objective of this chapter was to use a RANS flow solution instead of potential flow as
the input for the bubble dynamics and the equation of motion.

Interpolation of the flow properties has been done on the basis of distance. This gives
acceptable results, but it causes discontinuities and in stretched cells the interpolation
might only take points on a line of cells. This might lead to less accurate results, especially
in the boundary layer.

The assumption of spherical bubbles is not accurate, when large pressure gradients
are involved.

The bubble can become larger than the spacing between the grid cells. This means
that taking the bubble as a point mass is not accurate. This is however required for the
equation of motion.

The simulated trajectories deviate significantly from the streamline, especially when
the foil with the roughness element is considered. So the roughness element influences the
trajectory significantly.

The computational time is significant; up to 2 hours with high tolerances. This can
be ascribed to the large data set and the inefficient interpolation in this data set.

The pressure along the trajectory shows that the assumption of taking the streamline
locally as done in [8] is reasonable to use as an input to a bubble dynamics equation. Even
though the trajectory does not correspond very well with the streamline, the pressure
input is very similar.

The bubble grows under similar circumstances more when the foil has a roughness
element. The lower pressure at the roughness element causes this. The small bubble
collapses repeatedly, where the larger bubble shrinks in size but does not shrink violent
enough to call it a collapse. Both bubbles oscillate after having reached their maximum size.

The experiments and the simulations have different inlet velocities. Therefore the trajec-
tories can only be compared qualitatively. The trajectories show that the same type of
trajectory shape is found. To compare the results more quantitatively the flow conditions
should be the same in the simulations and the experiments.
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4. Conclusions and

Recommendations

The conclusions have shortly been discussed after each chapter. The final conclusions and
recommendations are summarized in this chapter.

Conclusion

The aim was to make a model which solves the bubble trajectory and the bubble growth
at the same time. This has been done in steps.

� The model as described by Johnson and Hsieh has been used as a basic model.
This model couples quasi-steady bubble growth to a simple equation of motion in
potential flow. The model is computationally efficient, but the results were not
fully reproducible. The model is adequate in giving insight in the trajectories of
cavitation nuclei.

� The basic model was expanded by using a bubble dynamics equation. Both the
Rayleigh-Plesset equation and the general Keller-Herring equation have been used.
The latter has damping properties which gives a physically more accurate description
and makes a code using this equation computationally more efficient.

� More forces were included in the equation of motion. The most influential force was
the buoyancy force. The expanded model gives more relevant results in terms of the
bubble growth. The trajectories did not change much when the buoyancy force was
not taken into account.

� The history force was implemented in the equation of motion, using the Basset force.
The Basset force overestimates the history force, which is not physical. The iterative
implementation only works in uniform flow fields.

� Using a RANS solution as the flow field showed that the trajectory and the streamline
deviate. This effect was exaggerated by the roughness element.

58



Recommendations

� The simple equation of motion used by Johnson and Hsieh is a good option for an
initial calculation.

� The general Keller-Herring equation should be used when violent collapses are
expected, since the damping properties will benefit the computational time and the
relevance of the results.

� If a force is added to the equation of motion but a force of approximately the same
magnitude is neglected the result will not improve, but worsen. Therefore the added
forces in the equation of motion should be examined.

� The Basset force should not be used as the history force, since this overestimates
this force.

� Iterative implementation of the history force should not be used.

� The interpolation and data handling should be examined further for the case of a
given flow field.

� Comparison between the simulations and experiments should be made with similar
flow conditions.

� For better results the assumption of a spherical bubble should be abandoned.

� In general, the one-way coupling is not realistic when cavitation occurs on a large
scale. This might be a limitation of the presented model, which needs further
investigation.
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A. Static stability of spherical gas bubbles

First a look will be taken at the bubble related equations. The assumptions made to
support the first part of the derivation are as follows:

� The bubble is assumed to be spherical regardless of the flow features.

� Gravity is assumed not to play a role, therefore the buoyancy of the bubble is not
taken into account.

� It is assumed that pressure changes slowly so that mechanical equilibrium is still
satisfied.

� The fluid inside the bubble is isothermal.

� The bubble is small enough to feel no pressure difference inside the flow. So in
practice the bubbles should not enter the boundary layer or become too large.

Having these assumptions the sketch shown in Figure A.1 can be made of the situation.
In which p is the surrounding pressure for the bubble, so the pressure determined by the
flow field. pv is the vapor pressure of the liquid and pg is the partial gas pressure.

R′

pv + pg

p

Figure A.1: Sketch of a bubble with radius R′ in a liquid
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To get static stability the sum of the forces acting on any point in the bubble needs to be
zero. This will in general not yet be the case since the surface tension is not included. So
now the surface tension needs to be included. The surface tension will account for the
difference in pressure over the boundary of the bubble. Imagine to cut the bubble in half,
so the cut should go along the middle of the sphere. Then the force that is exerted by
the pressure difference felt by the boundary of the cut is equal to the pressure difference
times the projected area (a circle with radius R′). This projected area is the effective
area on which the pressure works in a force balance in any direction, since the cut of a
sphere is not direction dependent. The surface tension now works on the edge of the cut
of the sphere, and has therefore a work line described by the circumference of a circle. In
equations we get the force balance shown in Eq. A.1.

F∆p = Fγ (A.1)

In which F∆p stands for the force exerted by the pressure difference and Fγ stands for the
force exerted by the surface tension. Since this force balance has a direction the pressure
difference force is given by F∆p = ∆pAproj. In which Aproj is the projected area of a
sphere in any direction, so a circle with area Aproj = πR′2. The surface tension works on
the circumference of the projected area since the normal of the projected area is in the
direction of the force balance, and therefore the surface tension has to work on this line.
Thus the surface tension force is given by: Fγ = γScirc, where Scirc is the circumfurence
of a circle, which is Scirc = 2πR′ and γ is the surface tension. Filling this in one finds Eq.
A.2.

∆pπR′2 = γ2πR′ → ∆p =
2γ

R′
(A.2)

The pressure difference is positive if the pressure inside the bubble is larger then the
pressure outside the bubble. Using this Eq. A.3 is derived.

pg + pv − p =
2γ

R′
→ p = pg + pv −

2γ

R′
(A.3)

Eq. A.3 is the equation for static stability of a bubble. This equation will now be rewritten
into a more usable form. Eq. A.3 holds at any point in a flow field, and therefore also
holds at a chosen reference point. Therefore Eq. A.4 holds as well.

p0 = pg0 + pv −
2γ

R′0
(A.4)

Where p0 is the reference pressure at a point where the bubble has a radius of R′0. The
vapor pressure is not dependent on the place in the flow field since the composition of the
liquid does not change, so pv0 = pv. Furthermore the partial gas pressure at any point can
be related by using the prefect gas law, since the temperature does not change one finds

pg0V0 = pgV . This in turn gives pg = pg0
R′3

0

R′3 . Filling this in in Eq. A.3 Eq. A.5 is found.
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p = pg0

[
R′0
R′

]3

+ pv −
2γ

R′
(A.5)

By rewriting Eq. A.5 and dividing by p0 − pv Eq. A.6 can be found.

p− pv
p0 − pv

=
1

p0 − pv

(
pg0

[
R′0
R′

]3

− 2γ

R′

)
(A.6)

To get rid of the partial gas pressure Eq. A.4 is used once more leading to Eq. A.7.

p− pv
p0 − pv

=
1

p0 − pv

([
p0 − pv +

2γ

R′0

](
R′0
R′

)3

− 2γ

R′

)
(A.7)

If Eq. A.7 is rewritten conveniently one gets Eq. A.8.

p− pv
p0 − pv

=

(
R′0
R′

)3 [
1 +

2γ

(p0 − pv)R′0

(
1− R′2

R′20

)]
(A.8)

Now the vapor cavitation number is introduced as:

σv =
p0 − pv

1
2
ρU2

(A.9)

and the Weber number as:

W =
2ρU2R′0

γ
(A.10)

When both the vapor cavitation number (Eq. A.9) and the Weber number (Eq. A.10) are
used in Eq. A.8, Eq. A.11 can be found.

p− pv
p0 − pv

=

(
R′0
R′

)3 [
1 +

8

σvW

(
1− R′2

R′20

)]
(A.11)

Eq. A.11 is the first equation in the paper. The second equation in the paper will now be
derived from the first equation. To write this dimensionless equation (Eq. A.11) in a more
convenient form, more dimensionless numbers will be introduced. The vapor cavitation
number (Eq. A.9) and the Weber number (Eq. A.10) are both already dimensionless. Next

the radius ratio r is introduced as r =
R′

0

R′ and the pressure coefficient Cp is introduced to
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be the ratio of the relative pressure over the dynamic pressure Cp = p−p0
1
2
ρU2 .

Eq. A.11 can now be rewritten using:

Cp + σv
σv

=
p− pv
p0 − pv

(A.12)

into Eq. A.13.

Cp + σv
σv

= r3

[
1 +

8

σvW

(
1− r−2

)]
(A.13)

Rewriting Eq. A.13 gives Eq. A.14.

r3 −
8

σvW(
1 + 8

σvW

)r − Cp+σv
σv(

1 + 8
σvW

) = 0 (A.14)

Which leads to Eq. A.15.

r3 −
8
W

σv + 8
W

r − Cp + σv
σv + 8

W

= 0 (A.15)

Eq. A.15 is the same equation as Eq. A.11 but written in a solvable form when r is sought.
Eq. A.15 is written shortly as: r3−Pr−Q = 0. A third degree polynomial can be solved,
the solution depends on the discriminant. The discriminant of a third degree function of
the form ax3 + bx2 + cx+ d is given by ∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2. In the
case of Eq. A.15 the discriminant becomes: ∆ = 4P 3 − 27Q2. By using the discriminant
three cases can be distinguished, namely:

1. if ∆ > 0, then the equation has 3 distinct real roots

2. if ∆ = 0, then the equation has a multiple root and all of its roots are real

3. if ∆ < 0, then the equation has one real root and two complex roots

First the case in which the local pressure p is greater then the vapor pressure pv is
considered. This means that Cp + σv > 0. If this is the case then Q will be positive
just as P which is always positive. If then the case in which Q2 > 4

27
P 3 is considered

the discriminant will be negative(∆ < 0, case 3). When a third degree polynominal in
the form of Eq. A.15 has one real root, this root can be found by Cardano’s method.
This gives as a solution Eq. A.16. Of course only real solutions are interesting since this
problem is physical.

r =
3

√
1

2
Q+

1

2

√
Q2 − 4

27
P 3 +

3

√
1

2
Q− 1

2

√
Q2 − 4

27
P 3 (A.16)
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Realizing r =
R′

0

R′ the first equation of the third equation (3a) of the paper has been found.
Note that 1

2
Q has been forgotten in the paper.

If now the case Cp + σv > 0 and Q2 < 4
27
P 3 is considered the determinant becomes

positive(∆ > 0, case 1), meaning 3 real solutions. The solution which will be relevant
however needs to be positive since the radius of the bubble will always be positive. The
solutions for this case can be found by Viète’s method the only positive solution is found
in the case where k = 0. This gives Eq. A.17.

r = 2

√
P

3
cos θ Where θ =

1

3
cos−1

 Q√
4
27
P 3

 (A.17)

Eq. A.17 is the second part of the third formula (3b) in the paper. Note that the division
is missing in the paper.

Lastly the case where Cp + σv < 0 and Q2 < 4
27
P 3 is considered. This means that

the surrounding pressure is smaller than the vapor pressure. In that case the determinant
is again positive and the solution to the problem has therefore three real roots. In this
case two positive solution can be found when, namely when k = 0 or k = 1 is taken. Only
in the case where k = 1 r is smaller than 1, meaning that the bubble has grown which it
should do since the surrounding pressure is lower than the vapor pressure. Similar to the
previous case one can find Eq. A.18.

r = 2

√
P

3
cos

π − θ′

3
Where θ′ = cos−1

 Q√
4
27
P 3

 (A.18)

Eq. A.18 is the last part of the third formula (3c) in the paper. Note that the division is
again missing in the paper.

With Eqs A.16-A.17-A.18 the third equation in the paper is reproduced.

One special case has not been investigated yet, namely the case where Q2 = 4P 3

27
. This

case is only of interest when Cp + σv < 0 so that the surrounding pressure is lower then
the vapor pressure because only then this critical point will lead to massive growth of
the initial bubbles. This phenoma is known as cavitation inception since the bubbles will
become visible after/shortly after this point. One could find a critical pressure coefficient
by simply working out Q2 = 4P 3

27
but to get a better understanding of the meaning of this

critical point a plot of the outcome of Eq. A.11 is given in Figure A.2.
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Figure A.2: The function given in Eq. A.11 plotted for different values of σvW . The
values used for σvW are 1,8,10,20,100 and 1000, the higher this value the higher the
critical point.

As can be seen in Figure A.2 there is a minimum pressure after which the particle begins
to grow very fast. This point is called the critical point. It can be seen that all functions
head towards the p−pv

p0−pv = 0-line, meaning that the surrounding pressure moves towards
the vapor pressure due to the bubble expanding.
To find the minima observed in Figure A.2 and to create decent understanding of the
phenoma Eq. A.5 is used. Cavitation inception occurs at the minimal surrounding pressure
reached, this point can be found by setting the derivative to zero, see Eq. A.19.

∂p

∂R′
= −3

pg0R
′3
0

R′4
+

2γ

R′2
(A.19)

After setting the derivative to zero and some convenient rewriting Eq. A.20 is found.

R′c = R′0

√
3pg0

2γ
R′

0

(A.20)

In Eq. A.20 R′c is the critical radius. Using this critical radius the critical pressure can be
found by using Eq. A.5 again. This leads to Eq. A.21.
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pc = pg0

( 2γ
R′

0

3pg0

)3/2

+ pv −
2γ

R′c
(A.21)

Rewriting Eq. A.21 gives Eq. A.22.

pc =
2γ

3R′0

R′0
R′c

+ pv −
2γ

R′c
= pv −

4γ

3R′c
(A.22)

So the critical pressure is known. Writing Eq. A.22 in dimensionless form requires the
dimensionless critical radius. This can be found by using Eq. A.4 and using the cavitation
and Weber number. This gives Eq. A.23.

R′c = R′0
√

3

√
Wσv

8
+ 1 (A.23)

Filling in the critical radius found in Eq. A.23 into Eq. A.22 one finds Eq. A.24.

pc − pv = − 4γ

3
√

3R′0

√
Wσv

8
+ 1

(A.24)

Introducing the critical pressure coefficient as: C∗p = pc−p0
1
2
ρU2 one can find Eq. A.25.

C∗p + σv = −
16
W

3
√

3
√

Wσv
8

+ 1
(A.25)

Rewriting Eq. A.25 gives Eq. A.26.

C∗p + σv = −
2σv

(
8

σvW

)3/2

3
√

3
(

1 + 8
σvW

)1/2
(A.26)

This found equation (Eq. A.26) could also be found by equating 4Q2 = 27p3, and is the
same equation as the fourth equation in the paper.
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B. Bubble trajectory

The bubble trajectory will be constructed by using the second law of Newton. Therefore
the force balance is needed. The forces which could be relevant are the following:

� FD, Drag force

� Fp, Pressure force

� Ff , Added mass force

� FG, Force due to growth

� Fb, Buoyancy force

� Fµ, Viscous forces

The drag force on any particle in any direction could be written in the form given in Eq.
B.1.

FD =
1

2
ρwrel|wrel|CDAfrontal (B.1)

In which CD is the drag coefficient, wrel is the relative velocity vector, and Afrontal is the
frontal area of the particle. A spherical bubble has a frontal area of Afrontal = πR′2. The
relative velocity is the difference between the flow velocity and the bubbles velocity, so
wrel = w −wb.

The pressure force is given by 3
2

of the volume of the bubble times the pressure gra-
dient, when it is assumed that the bubble is a point mass. The factor 3

2
accounts for the

added mass of the sphere, the added mass adds up to half the volume of the bubble. To
take the pressure gradient instead of an integral of the pressure over the surface of the
bubble means that the bubble is considered to be a point mass. Lastly a positive gradient
in the pressure field means a negative force on the bubble since the pressure is then higher
on the front of the bubble. So the pressure force is as in Eq. B.2.

Fp = −3

2

4

3
πR′3∇p (B.2)

The added mass force is the force due to the fact that the bubble will transport a bit of
surrounding fluid. This fluid will just as the bubble have to be accelerated. This force is

69



defined as the mass of half (exact outcome of potential theory) the volume bubble in the
surrounding fluid times the accelaration of the bubble. This leads to Eq. B.3.

Ff = −1

2

4

3
πR′3ρ

dwb

dt
(B.3)

The forces due to growth is a force which can be seen as the force due to the moving of a
wall. Imagine a wall in quiescent water, which is then moved in the direction of the water.
A force would be felt by the wall, in the opposite direction of its movement. In this case
however the wall is not at rest at first but it has just as the example a velocity difference.
This force is defined in Eq. B.4.

FG = 2πρR′2wrel
dR′

dt
(B.4)

This force will be limited due to the fact that initially the calculation will be stopped
after the critical point, so the time derivative of the radius will never be large. Therefore
this force will be neglected.

The buoyancy force will be zero since gravity is set to zero.

The viscous forces are not incorporated since the flow will be taken to be potential
flow, in which the viscosity will not be playing a role.

The force balance will thus become as in Eq. B.5.

mb
dwb

dt
= −1

2

4

3
πR′3ρ

dwb

dt
+

1

2
ρ(w −wb)|w −wb|CDπR′2 −

3

2

4

3
πR′3∇p (B.5)

Since the mass of the bubble (mb) will be significantly smaller than the added mass by the
surrounding fluid the mass of the bubble will be neglected initially, this leads to Eq. B.6.

1

2

4

3
πR′3ρ

dwb

dt
=

1

2
ρ(w −wb)|w −wb|CDπR′2 −

3

2

4

3
πR′3∇p (B.6)

Eq. B.6 is the same equation as equation 5 from the paper where only the inertia force is
already neglected.

The drag coefficient, CD, is related to the Reynolds number of the sphere Rb by the
relation given in Eq. B.7.

CDRb

24
= 1 + 0.197R0.63

b + 2.6 · 10−4R1.38
b (B.7)
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Eq. B.7 was obtained by fitting experimental data of rigid spheres. The part which can
be extracted with 24

Rb
is the normal drag relation for Stokes flow. The other terms are

there to account for the higher Reynolds number regimes. The definition of the bubble
Reynolds number is given in Eq. B.8.

Rb =
2R′|w −wb|

ν
(B.8)

Eq. B.6 can be made dimensionless, this is convenient for solving them since then the
outcomes are more general. First Eq. B.6 will be written as separate formulas for velocity
components u′ and v′, see Eq. B.9.

1

2

4

3
πR′3ρ

du′b
dt

=
1

2
ρ(u′ − u′b)

[
(u′ − u′b)2 + (v′ − v′b)2

]1/2
CDπR

′2 − 3

2

4

3
πR′3

∂p

∂x′

1

2

4

3
πR′3ρ

dv′b
dt

=
1

2
ρ(v′ − v′b)

[
(u′ − u′b)2 + (v′ − v′b)2

]1/2
CDπR

′2 − 3

2

4

3
πR′3

∂p

∂y′

(B.9)

It will be shown how to make the first equation of Eq. B.9 dimensionless since the process
for the other equation is similar. First the equation is rewritten to Eq. B.10.

du′b
dt

=
3CD
4R′

(u′ − u′b)
[
(u′ − u′b)2 + (v′ − v′b)2

]1/2 − 3

ρ

∂p

∂x′
(B.10)

If now the following dimensionless variables are introduced: τ = Ut
h

, u = u′

U
, ub =

u′b
U

,

v = v′

U
, vb =

v′b
U

, x = x′

h
, y = y′

h
and R = R′

h
where U is the free stream velocity and h the

body size, Eq. B.11 is found.

dub
dτ

=
3CD
4R

(u− ub)
[
(u− ub)2 + (v − vb)2

]1/2 − 3

ρU2

∂p

∂x
(B.11)

Now by using the definition of the bubble Reynolds number(Eq. B.8) and using the fact
that the derivative to the pressure over the dynamic pressure is the same as the derivative
of the pressure coefficient since there is only a constant added to the pressure coefficient,
Eq. B.12 is found.

dub
dτ

=
18

RbR

RbCD
24

(u− ub)
[
(u− ub)2 + (v − vb)2

]1/2 − 3
1

2

∂Cp
∂x

(B.12)

This can be rewritten to Eq. B.13.

dub
dτ

=
18ν

2R′UR

RbCD
24

(u− ub)−
3

2

∂Cp
∂x

(B.13)
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By introducing the body Reynolds number as Rf = 2hU
ν

finally Eq. B.14 is found.

dub
dτ

=
18

R2Rf

RbCD
24

(u− ub)−
3

2

∂Cp
∂x

(B.14)

The same steps could be taken in the y-direction leading to Eq. B.15.

dvb
dτ

=
18

R2Rf

RbCD
24

(v − vb)−
3

2

∂Cp
∂y

(B.15)

Both Eq. B.14 and Eq. B.15 form the seventh equation of the paper.
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C. Application to a two-dimensional half body in an infinite fluid

To get a flow field in which the bubbles move it is chosen to take a potential flow. The
flow potential is given in Eq. C.1.

Φ =
1

2π
ln (x2 + y2) + x (C.1)

This flow potential is an uniform flow field (+x-part) combined with a source in the point
(0, 0). The source will account for the body in the flow. The integration constant is set to
zero since in practice only the derivatives matter. The body shape found by this potential
is given in Eq. C.2.

x = −y cotπy (C.2)

Eq. C.2 is the eight equation in the paper. And can be derived via the stream function.
The analysis of the stream function just as the analysis of the potential have been left out
of this derivation, but can be found in this Appendix on the bottom.
The flow potential can be differentiated to x and to y leading to the velocity components,
see Eq. C.3.

∂Φ

∂x
= u = 1 +

1

π

x

x2 + y2

∂Φ

∂y
= v =

1

π

y

x2 + y2

(C.3)

The dimensionless pressure gradients can be found by using Bernoulli’s formula, in this
there will be no time dependency and no gravity so: p0 − p = 1

2
ρ(u′2 + v′2). This formula

in dimendionless form gives: Cp = 1− (u2 + v2). This gives the dimensionless pressure
gradient given in Eq. C.4.

−∂Cp
∂x

= − 2

π

x2 − y2 + x
π

(x2 + y2)2

−∂Cp
∂y

= − 2

π

y
(
2x+ 1

π

)
(x2 + y2)2

(C.4)
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Eq. C.3 and Eq. C.4 are the ninth equation of the paper, where it should be noted that
the 3

2
was already incorporated in 9c and 9d. Filling in Eq. C.3 and Eq. C.4 into Eq.

B.14 and Eq. B.15 gives Eqs. C.5-C.6.

dub
dτ

=
18

R2Rf

RbCD
24

[(
1 +

1

π

x

x2 + y2

)
− ub

]
− 3

π

[
x2 − y2 + x

π

(x2 + y2)2

]
(C.5)

dvb
dτ

=
18

R2Rf

RbCD
24

[(
1

π

y

x2 + y2

)
− vb

]
− 3

π

[
y
(
2x+ 1

π

)
(x2 + y2)2

]
(C.6)

Since ub = dx
dτ

= ẋ and vb = dy
dτ

= ẏ the two ordinary differential equations (ODE’s in Eqs.
C.5-C.6) are of second-order. And can be written as Eqs. C.7-C.8.

dẋ

dτ
=

18

R2Rf

RBCD
24

[(
1 +

1

π

x

x2 + y2

)
− ẋ
]
− 3

π

[
x2 − y2 + x

π

(x2 + y2)2

]
(C.7)

dẏ

dτ
=

18

R2Rf

RbCD
24

[(
1

π

y

x2 + y2

)
− ẏ
]
− 3

π

[
y
(
2x+ 1

π

)
(x2 + y2)2

]
(C.8)

The bubble Reynolds number can be found by using the relative velocity components
from Eq. C.3. This gives Eq. C.9.

Rb = RRf

{[(
1 +

1

π

x

x2 + y2

)
− ẋ
]2

+

[(
1

π

y

x2 + y2

)
− ẏ
]2
}1/2

(C.9)

Eq. C.9 is the fourteenth equation of the paper.
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D. Actual solving of the ODE’s

For efficient computation first-order differential equations are preferred, and therefore the
second-order nonlinear ODE’s given by Eqs. C.7-C.8-C.9 will be written as a system of
first-order ODE’s. This is done by introducing the vector z. The definition of the vector
is given in Eq. D.1.

z =


ẋ
x
ẏ
y

 (D.1)

This means that ż is given by Eq. D.2.

ż =


18

R2Rf

RBCD
24

[(
1 + 1

π
x

x2+y2

)
− ẋ
]
− 3

π

[
x2−y2+ x

π

(x2+y2)2

]
ẋ

18
R2Rf

RbCD
24

[(
1
π

y
x2+y2

)
− ẏ
]
− 3

π

[
y(2x+ 1

π )
(x2+y2)2

]
ẏ

 (D.2)

Now it can be seen that the following holds: ż = f(z). So the first derivative of a vector z
is a function of that same vector, leading to an in general non-linear system of first-order
ODE’s.
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E. Deriving the bubble dynamics equation

E.1 Derivation of Rayleigh-Plesset equation

In this derivation [2] has been used to provide the directions.
The Rayleigh-Plesset equation can be derived from the Navier-Stokes equations (Eq. E.1)
together with the mass conservation equation (Eq. E.2).

ρf

(
∂w′

∂t
+ w′ ·∇w′

)
= −∇p+ µf∇2w′ + ζf∇∇ ·w′ (E.1)

∂ρf
∂t

+ ∇ · (ρfw′) = 0 (E.2)

In these equations the same notation has been used, the new factor ζf is the bulk viscosity
of the fluid. This viscosity comes into play when the fluid is being contracted or expanded.
It is assumed that the fluid is isothermal, and for that reason the energy equation is not
used.

If the identity w′∇w′ = 1
2
∇w′2 and the velocity is represented by a potential then

w′ = ∇φ. Eqs. E.1-E.2 then become Eqs. E.3-E.4.

ρf

(
∂∇φ

∂t
+

1

2
∇(∇φ∇φ)

)
= −∇p+ µf∇2∇φ+ ζf∇∇ ·∇φ (E.3)

∂ρf
∂t

+ ∇ · (ρf∇φ) = 0 (E.4)

Assuming a spherical bubble all the time will mean that the velocity field near the bubble
will be fully spherical (if the bubble is followed along its track). This means that the local
streamlines will never interfere and therefore the viscosity does not play a role, this leads
to Eq. E.5.

ρf

(
∂∇φ

∂t
+

1

2
∇(∇φ∇φ)

)
= −∇p (E.5)
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Since the spatial differential operator just as the temporal operator is a linear operator,
the order of operations may be switched. This leads to Eq. E.6.

ρf∇
(
∂φ

∂t
+

1

2
∇φ ·∇φ

)
= −∇p (E.6)

Eq. E.6 as a weak formulation one finds Eq. E.7.

ρf

(
∂φ

∂t
+

1

2
(∇φ)2

)
= −p (E.7)

If the assumption of only radial velocity components is re-used finally one finds Eq. E.8.

ρf

(
∂φ

∂t
+

1

2

(
∂φ

∂r

)2
)

= −p (E.8)

For the mass conservation equation (Eq. E.4) more or less the same steps can be taken
leading to Eq. E.9.

∂ρf
∂t

+ ∇ρf ·∇φ+ ρf∇2φ = 0 (E.9)

If again the sphericity of the bubble is used one finds Eq. E.10.

∂ρf
∂t

+
∂ρf
∂r

∂φ

∂r
+ ρf∇2φ = 0 (E.10)

The objective now is to find one equation for the potential, φ, this can be accomplished
by taking the temporal derivative of the pressure. First it should be noted that the
dp = dp

dρf
dρf = c2dρf . Using both Eqs E.8-E.10 Eq. E.11 can be found.

−∂p
∂t

= −c2∂ρf
∂t

= c2

[
∂ρf
∂r

∂φ

∂r
+ ρf∇2φ

]
and:

−∂p
∂t

=
∂

∂t

(
ρf

[
∂φ

∂t
+

1

2

(
∂φ

∂r

)2
]) (E.11)

Clearly both terms of Eq. E.11 can be equated. Equating both parts, using the product
rule of differentiation and rearranging one finds Eq. E.12.

∇2φ =
1

c2ρf

∂ρf
∂t

[
∂φ

∂t
+

1

2

(
∂φ

∂r

)2
]

+
1

c2

[
∂2φ

∂t2
+

1

2

∂
(
∂φ
∂r

)2

∂t

]
− 1

ρf

∂φ

∂r

∂ρf
∂r

(E.12)
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If dH = dp
ρf

,
∂ρf
∂t

=
ρf
c2
∂H
∂t

, ∂
∂t

= 1
u
∂
∂r

, ∂r
∂t

= u = ∂φ
∂r

and lastly 1
2
∂y2

∂x
=

∂ 1
2
y2

∂y
∂y
∂x

= y ∂y
∂x

one finds

Eq. E.13.

∇2φ =
1

uc4

∂H

∂r

[
∂φ

∂t
+

1

2

(
∂φ

∂r

)2
]

+
1

c2

[
∂2φ

∂t2
+ u

∂u

∂t

]
− u

c2

∂H

∂r
(E.13)

Now reuse the momentum equation, to find Eq. E.14.

∇2φ = − 1

uc4

∂H

∂r

p

ρf
+

1

c2

[
∂2φ

∂t2
+ u

∂u

∂t

]
− u

c2

∂H

∂r
(E.14)

Rearranging gives Eq. E.15.

∇2φ =
u

c2

(
∂u

∂t
− ∂H

∂r

[
1 +

p

ρfc2u2

])
+

1

c2

∂2φ

∂t2
(E.15)

Knowing that the pressure is of the same order as the density times about the free stream
velocity squared, and assuming that this free stream velocity is much smaller than the
speed of sound, the term in between square brackets can be reduced to just 1, this finally
gives Eq. E.16.

∇2φ =
u

c2

(
∂u

∂t
− ∂H

∂r

)
+

1

c2

∂2φ

∂t2
(E.16)

Eq. E.16 needs to be solved as a function off the wall velocity of the bubble (dR
dt

). From
Eq. E.16 it can be seen that with a velocity field with significant lower velocities the first
term cancels ( u

c2
≈ 0). The linear term involving ∂2φ

∂t2
can be neglected near the bubble,

under the assumption that c2 � ∂2φ
∂t2

. This leads to the conclusion that near the bubble
the Laplace equation holds for the potential (∇2φ=0). At the bubble wall the radial
velocity is known, namely the velocity of the bubble wall itself. This leads to a solution
shown in Eq. E.17.

φ = −Ṙ
′R′2

r
+ A(t) (E.17)

Where Ṙ′ = dR′

dt
and A(t) is a free constant possibly depending on time. The constant

A(t) will represent the sound field initiated by the bubbles growth and collapse. Since the
bubble is much smaller than the sound wave length (note that this is a crucial assumption,
but realistic since the wavelenght of sound of 1 kHz in water is about 1.5m ), the sound
field will be independent of r at large distances from the bubble. This means that the
first term will be omitted far from the bubble so that Eq. E.18 remains.

φ = A(t) (E.18)
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It is also known that far away from the bubble the potential is equal to the potential at
infinity giving A(t) = φ∞(t). So the full potential is given by Eq. E.19.

φ = −Ṙ
′R′2

r
+ φ∞(t) (E.19)

It can be seen that the velocity u = ∂φ
∂r

= Ṙ′R′2

r2
, and that at r = R′ the boundary condition

indeed holds. Having the velocity, the force balance on the surface of the bubble can
be made. This is done in terms of the pressure, see Eq. E.20. The shear viscosity has
however now been included via the shear term ∂u

∂r
(r = R′).

pg(t) + pv − p[R′(t)] + 2µf
∂u

∂r
(r = R′) = 2

γ

R′
(E.20)

Differentiating the velocity field to r leads to Eq. E.21.

pg(t) + pv − p[R′(t)]− 4µf
Ṙ′

R′
= 2

γ

R′
(E.21)

The pressure in the bubble of the gas, pg, is assumed to be spatially uniform, meaning
that body forces are not allowed. If Eq. E.8 is used again, and the pressure term of Eq.
E.21 is used one finds Eq. E.22.

ρf

(
∂φ

∂t
+

1

2

(
∂φ

∂r

)2
)

= −pg(t)− pv + 4µf
Ṙ′

R′
+ 2

γ

R′
(E.22)

Knowing that ∂φ
∂r

= u and filling it in at r = R′ gives ∂φ
∂r

= Ṙ′. ∂φ
∂t

is derived in Eq. E.23.

∂φ

∂t
=

∂

∂t

(
−Ṙ

′R′2

r

)
+
∂

∂t
(φ∞(t)) = −R̈′R′ − 2Ṙ′2 +

∂

∂t
(φ∞(t)) (E.23)

Using Eq. E.23 in Eq. E.22 gives Eq. E.24.

ρf

[
R′
d2R′

dt2
+

3

2

(
dR′

dt

)2
]

= pg(t) + pv − 4µf
Ṙ′

R′
− 2

γ

R′
+ ρf

∂φ∞
∂t

(E.24)

The term ρf
∂φ∞
∂t

is the source term in the equation. This can be included in the following

way: ρf
∂φ∞
∂t

= −P0 − P (t).

ρf

[
R′
d2R′

dt2
+

3

2

(
dR′

dt

)2
]

= pg(t) + pv − P0 − P (t)− 4µf
Ṙ′

R′
− 2

γ

R′
(E.25)
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The source term depends in this case on the bubble path, therefore the pressure which the
bubble feels, taken as p can be taken as this source. Including this term gives Eq. E.26 is
found.

ρf

[
R′
d2R′

dt2
+

3

2

(
dR′

dt

)2
]

= pv − p+ pg(t)− 2
γ

R′
− 4µf

R′
dR′

dt
(E.26)

To improve the found equation the gas pressure derivative can be included. Furthermore
the influence of the radiated sound wave can be included to implement the effect of
damping. Lastly it is important to have a realistic equation of state. This will all be
examined later.

E.2 Non dimensionalization of Rayleigh-Plesset equa-

tion

For the usability of the Rayleigh-Plesset equation it is beneficial to have it in its dimen-
sionless form.
The Rayleigh-Plesset equation is given in Eq. E.26, if pV

cp
cv = C, with C a constant, is

used as the equation of state for the gas pressure, and some convenient rewriting is done
one finds Eq. E.27.

ρfU
2

[
R
d2R

dτ 2
+

3

2

(
dR

dτ

)2
]

=
1

2
ρfU

2

(
−p0 − pv

1
2
ρfU2

− p− p0

1
2
ρfU2

)
+ pg0

(
R0

R

)3
cp
cv

− 2
γ

Rh
− 4µfU

Rh

dR

dτ

(E.27)

Using the definition of the pressure coefficient Cp, the cavitation number σv, the Weber
number W and the Reynolds number of the flow Rf one finds Eq. E.28.

[
R
d2R

dτ 2
+

3

2

(
dR

dτ

)2
]

=
1

2
(−Cp − σv) +

pg0
ρfU2

(
R0

R

)3
cp
cv

− 4R′0
WhR

− 8

RfR

dR

dτ
(E.28)

Noting that pg0 = po − pv + 2γ
R′

0
gives that

pg0
ρfU2 = 1

2
σv + 4

W
. Using this relation one finds

Eq. E.29.

d2R

dτ 2
=

1

R

[
−3

2

(
dR

dτ

)2

+
1

2
(−Cp − σv) +

(
1

2
σv +

4

W

)(
R0

R

)3
cp
cv

− 4h

WR′0R
− 8

RfR

dR

dτ

]
(E.29)
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Eq. E.29 is the dimensionless Rayleigh-Plesset equation with the conventions used in the
paper.

E.3 Derivation of the Keller equation

In this derivation both [3] and [2] have been used extensively.
The derivation of this equation is comparable to the derivation of the Rayleigh-Plesset
equation, with the only difference being that the radiated sound wave is taken in consid-
eration. Waves in general can be solved by a function which is constant in time when the
observer of the solution is moving with the wave speed. This holds in both directions,
and therefore a general wave solution can be seen in Eq. E.30.

QWave = F (t− r

c
) +G(t+

r

c
) (E.30)

Since the wave is created by a changing volume in time the units of the solution are
[m3s−1]. It is obvious that if one travels at the speed of sound, c, the argument of the
function F is constant, and therefore the value of F . Since the wave is defined in polar
coordinates, the wave the other way is not there, so G = 0. This leads to QWave = F (t− r

c
).

If the wave is implemented in the potential of Eq. E.17 one finds Eq. E.31.

φ = −Ṙ
′R′2

r
+ A(t) = φ∞(t)− 1

r
F (t− r

c
) (E.31)

So it can be seen that the potential far away from the bubble is still φinfty(t), but now
with the wave potential of the wave added.
The wave function F (t − r

c
) can be approximated as F (t − r

c
) = F (t) − r

c
dF (t)
dt

via a
first-order Taylor expansion around the point t. Using this relation one finds Eq. E.32.

φ = φ∞(t)− 1

r
F (t− r

c
) ≈ φ∞(t)− 1

r
F (t) +

1

c

dF (t)

dt
(E.32)

By comparing Eq. E.31 and Eq. E.32 one finds that F (t) = Ṙ′R′2 and A(t) = φ∞(t) +
1
c
dF (t)
ddt

.
Following the derivation of the Rayleigh-Plesset equation, the found potential should now
be included in the reduced momentum equation (Eq. E.8). This involves calculating ∂φ

∂t

and ∂φ
∂r

at r = R′. These calculations will be done term wise starting with ∂φ
∂r

, see Eq.
E.33.

∂φ

∂r
(r = R′) =

Ṙ′R′2

r2
|r=R′= Ṙ′ (E.33)

Calculating ∂φ
∂t

will be more involved, but will be started in Eq. E.34.
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∂φ

∂t
|r=R′ =

dφ∞(t)

dt
− 1

r

d(Ṙ′R′2)

dt
+

1

c

d2(Ṙ′R′2)

dt2

=
dφ∞(t)

dt
− 1

R′

(
R̈′R′2 + 2R′Ṙ′2

)
+

1

c

d2(Ṙ′R′2)

dt2

=
dφ∞(t)

dt
−
(
R̈′R′2 + 2Ṙ′

2
)

+
1

c

d2(Ṙ′R′2)

dt2

(E.34)

The latter part of Eq. E.34 (d
2(Ṙ′R′2)
dt2

) will be treated separately, which can be seen in Eq.
E.35.

d2(Ṙ′R′2)

dt2
=

d

dt

(
R̈′R′2 + 2Ṙ′

2
R′
)

(E.35)

The first part ( d
dt

(
R̈′R′2

)
) of Eq. E.35 will lead to a third derivative of the radius of

the bubble with respect to time. This is an unwanted derivative, since it requires an
extra initial condition on the acceleration of the boundary of the bubble. By that it
turns out that this will not work numerically according to [3]. To prevent this problem
the third derivative can be expressed in terms of the normal Rayleigh-Plesset equation
(Eq. E.26). It can be seen that the term R̈R′ can be extracted from the Rayleigh-Plesset
equation. This is a simplification of course, since the objective is to look for a more
advanced equation for the bubble dynamics, but it is the best option available. So after
some tedious derivation Eq. E.36 is found.

d

dt

(
R̈′R′2

)
=

d

dt

{
R′
[

1

ρf

(
pv − p+ pg(t)− 2

γ

R′
− 4µf

R′
Ṙ′
)
− 3

2
Ṙ′

2
]}

= −3

2
Ṙ′

3 − 3R′Ṙ′R̈′ +
Ṙ′

ρf
(pv − p+ pg(t)) +

1

ρf
ṗgR

′
(E.36)

Adding the result of Eq. E.36 with d
dt

(
2Ṙ′

2
R′
)

= 2Ṙ′
3

+ 4R′Ṙ′R̈′ gives Eq. E.37.

d2(Ṙ′R′2)

dt2
=

1

2
Ṙ′

3
+R′Ṙ′R̈′ +

Ṙ′

ρf
(pv − p+ pg(t)) +

1

ρf
ṗgR

′ (E.37)

Filling in Eq. E.37 into Eq. E.34 and knowing that the source term is the negative
pressure of the flow over the density of the liquid so, ∂φ∞

∂t
= − p

ρf
gives Eq. E.38.

∂φ

∂t
|r=R′=

− p

ρf
−
(
R̈′R′ + 2Ṙ′

2
)

+
Ṙ′

c

[
1

2
Ṙ′

2
+ R̈′R′ +

1

ρf
(pv − p+ pg(t)) +

1

ρf
ṗgR

′
] (E.38)
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Using Eq. E.22 and Eq. E.33 and Eq. E.38 one finds Eq. E.39.

− p− ρf
(
R̈′R′ +

3

2
Ṙ′

2
)

+ ρf
Ṙ′

c

[
1

2
Ṙ′

2
+ R̈′R′ +

1

ρf
(pv − p+ pg(t)) +

1

ρf
ṗgR

′
]

=

− pg(t)− pv + 4µf
Ṙ′

R′
+ 2

γ

R′
(E.39)

Rewriting Eq. E.39 gives Eq. E.40.

(
1− Ṙ′

c

)
ρfR

′R̈′ +
3

2
Ṙ′

2
ρf

(
1− Ṙ′

3c

)
=(

1 +
Ṙ′

c

)
[pv − p+ pg(t)] +

R′

c
ṗg(t)− 4µf

Ṙ′

R′
− 2

γ

R′

(E.40)

As can be seen in Eq. E.40 the found equation will reduce to the Rayliegh-Plesset equation
if c� Ṙ′ plus an extra term with the temporal derivative of the gas pressure. Eq. E.40 is
called the Keller equation in [3] and [2].
Eq. E.40 can be derived in a more general way, namely by adding the Rayleigh-Plesset
equation the equation resulting in a third order temporal derivative. This leads to the
general Keller-Herring equation, which is given in Eq. E.41.

(
1− (λ+ 1)

dR′

dt

c

)
ρfR

′d
2R′

dt2
+

3

2

dR′

dt

2

ρf

(
1− (λ+

1

3
)
dR′

dt

c

)
=(

1 + (1− λ)
dR′

dt

c

)
[pv − p+ pg(t)] +

R′

c

dpg(t)

dt
− 4µ

dR′

dt

R′
− 2γ

R′

(E.41)

If the factor λ in Eq. E.41 is set to 0 the Keller Miksis equation is found, and if λ is set
to 1 the equation used by Herring and Trilling is found.

E.4 Non dimensionalization of the general Keller-Herring

equation

The non-dimensionalization of the general Keller-Herring equation will be similar to the
non dimensionalization of the Rayleigh-Plesset equation. Since it is convenient to have an
equation of state when one starts to non-dimensionalize the van der Waals equation of
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state is used. This is done so that the application of this equation of state to the normal
Rayleigh-Plesset equation will be clear as well. It is also meant to work the other way
around, the ideal gas equation of state will be assumed to be easy to implement by the
reader. The van der Waals equation of state is given in Eq. E.42.

pg
(
R′3 −R′3hc

)κ
= C (E.42)

In Eq. E.42 C is a constant and R′hc is the van der Waals hard core radius which is

R′hc =
R′

0

8.54
([4]) for air. κ is the specific heat ratio. By implementing the standard non

dimensionalization and the equation on state one finds Eq. E.43.

ρfU
2

(
1− (λ+ 1)Ṙ

U

c

)
RR̈ +

3

2
ρfU

2Ṙ2

(
1−

(
λ+

1

3

)
Ṙ
U

c

)
=(

1 + (1− λ)Ṙ
U

c

)[
pv − p+ pg0

(
R3

0 −R3
hc

R3 −R3
hc

)κ]
+R

U

c

d

dτ

{
pg0

(
R3

0 −R3
hc

R3 −R3
hc

)κ}
− 4µf

U

h

Ṙ

R
− 2

γ

Rh

(E.43)

Dividing out (2 times) the dynamic pressure, realizing
pg0
ρfU2 = 1

2
σv + 4

W
. And working out

the differentiation gives Eq. E.44.

(
1− (λ+ 1)Ṙ

U

c

)
RR̈ +

3

2
Ṙ2

(
1−

(
λ+

1

3

)
Ṙ
U

c

)
=

1

2

(
1 + (1− λ)Ṙ

U

c

)[
−p0 − pv

1
2
ρfU2

− p− p0

1
2
ρfU2

+

(
σv +

8

W

)(
R3

0 −R3
hc

R3 −R3
hc

)κ]

+R
U

c

(
1

2
σv +

4

W

)3κR2
(
R3

0−R3
hc

R3−R3
hc

)κ
R3
hc −R3

− 4
µf
ρfUh

Ṙ

R
− 2

γ

ρfU2Rh

(E.44)

Now using the pressure coefficient, the cavitation number, the Weber number and the
Reynolds number one finds Eq. E.45.

(
1− (λ+ 1)Ṙ

U

c

)
RR̈ +

3

2
Ṙ2

(
1−

(
λ+

1

3

)
Ṙ
U

c

)
=

1

2

(
1 + (1− λ)Ṙ

U

c

)[
−σv − Cp +

(
σv +

8

W

)(
R3

0 −R3
hc

R3 −R3
hc

)κ]

+R
U

c

(
1

2
σv +

4

W

)3κR2
(
R3

0−R3
hc

R3−R3
hc

)κ
R3
hc −R3

− 8

Rf

Ṙ

R
− 4

W

R0

R

(E.45)
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Finally Eq. E.45 can be written in terms of the second derivative of the dimensionless
radius to the dimensionless time, R̈. This is obvious and will not be done.
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F. Equation of motion

F.1 Derivation

The equation of motion given in Maxey and Riley (their equation 48) is given in Eq. F.1.
The same symbols will be used in this derivation, after which they will be transformed
back to the used notation convention. It is important to know that Wi = Vi(t)−ui[Y (t), t]
is the slip velocity but inversely defined and a is the radius of the sphere.

(
mp +

1

2
mf

)
dWi

dt
+ 6πa2µ

∫ t

0

dWi

dτ
[πν(t− τ)]−1/2 dτ + 6πaµWi =

−mp
dui
dt

+mf
Dui
Dt

+ (mp −mf ) gi + a3πµ∇2ui +
1

20
a2mf

d

dt

(
∇2ui|Y (t)

)
+ πµa4

∫ t

0

d

dτ

(
∇2ui|Y (t)

)
[πν(t− τ)]−1/2 dτ

(F.1)

First, this equation of motion will be simplified assuming steady potential flwo. Note
that all terms with the Laplacian of the fluid velocity are zero under the assumption of
potential flow. This can easily be seen: ∇2ui = ∇2 ∂Φ

∂xi
= ∂

∂xi
(∇2Φ). In potential flow the

Laplace of the potential is zero everywhere, so the gradient of this Laplacian must also be
zero everywhere. The terms with the Laplacian of the velocity will thus be left out of
discussion. Furthermore the time derivative of the fluid velocity is zero since it is steady
flow. The equation of motion which will be discussed can be seen in Eq. F.2.

(
mp +

1

2
mf

)
dWi

dt︸ ︷︷ ︸
Accelaration force

+ 6πa2µ

∫ t

0

dWi

dτ
[πν(t− τ)]−1/2dτ︸ ︷︷ ︸

History force

+ 6πaµWi︸ ︷︷ ︸
Drag force

=

mf
Dui
Dt︸ ︷︷ ︸

Pressure force

+ (mp −mf ) gi︸ ︷︷ ︸
Buoyancy force

(F.2)

Via the Navier-Stokes equation for potential flow it can be seen that mf
Dui
Dt

= −Vf∇p, the
mass of the fluid is however not only the mass of the fluid which would have been in the
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volume of the bubble, it is also the added mass, leading to mf
Dui
Dt

= −(1 + 1
2
)4π

3
a3ρf∇ p

ρf
.

This leads to Eq. F.3.

(
mp +

1

2
mf

)
dWi

dt︸ ︷︷ ︸
Accelaration force

+ 6πa2µ

∫ t

0

dWi

dτ
[πν(t− τ)]−1/2dτ︸ ︷︷ ︸

History force

+ 6πaµWi︸ ︷︷ ︸
Drag force

=

−3

2

4π

3
a3∇p︸ ︷︷ ︸

Pressure force

+ (mp −mf ) gi︸ ︷︷ ︸
Buoyancy force

(F.3)

This equation of motion is derived for the limit of creeping flow. Since this will not be
considered, the analytical result for the creeping flow drag relation is replaced by the drag
coefficient CD. Furthermore the equation is derived for solid particles. The solid particles
can be changed to volume-changing bubbles by differentiating the whole impulse term
with respect to time instead of just the velocity. This can be seen in Eq. F.4.

d

dt

{(
mp +

1

2
mf (t)

)
Wi

}
︸ ︷︷ ︸

Accelaration force

+ 6πa2µ

∫ t

0

dWi

dτ
[πν(t− τ)]−1/2dτ︸ ︷︷ ︸

History force

+
1

2
ρfCDπa

2W 2
i︸ ︷︷ ︸

Drag force

=

−3

2

4π

3
a3∇p︸ ︷︷ ︸

Pressure force

+ (mp −mf ) gi︸ ︷︷ ︸
Buoyancy force

(F.4)

It is assumed that the bubble has a constant mass (note that this assumption means no
mass transport, even at (very) low pressures inside the bubble). The added mass, however,
can change since the radius of the bubble can change. Using the volume of a sphere and
the chain rule of differentiation leads to Eq. F.5.

(
mp +

1

2
mf

)
dWi

dt︸ ︷︷ ︸
Accelaration force

+
1

2
4πρfa

2da

dt
Wi︸ ︷︷ ︸

Changing volume force

+ 6πa2µ

∫ t

0

dWi

dτ
[πν(t− τ)]−1/2dτ︸ ︷︷ ︸

History force

=

− 1

2
ρfCDπa

2W 2
i︸ ︷︷ ︸

Drag force

− 3

2

4π

3
a3∇p︸ ︷︷ ︸

Pressure force

+ (mp −mf ) gi︸ ︷︷ ︸
Buoyancy force

(F.5)

A better understanding of the changing volume force is necessary for understanding the
particle trajectory. In four cases the working of this force will be explained. It is important
to know that the force can be written as an added mass change in time times the slip
velocity of the bubble.
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� The bubble grows and the bubble is slower than the surrounding flow.
In this case the bubble will accelerate, this is due to the fact that the added mass of
the bubble is growing. The growing added mass needs mass from the flow, this mass
is faster than the bubble, and therefore it can be seen as if the mass gets trapped
into the added mass of the bubble making the bubble accelerate.

� The bubble grows and the bubble is faster than the surrounding flow.
In that case the bubble will decelerate, this is due to the fact that the added mass
is growing. The growing added mass needs mass from the flow, this mass is slower
than the bubble, and therefore it can be seen as if the bubble bumps into its future
added mass, making the bubble decelerate.

� The bubble shrinks and the bubble is slower than the surrounding flow.
In that case the bubble will decelerate, this is due to the fact that the added mass
is shrinking. The shrinking added mass loses mass to the faster flow. The mass in
the (former) added mass “wants” to be at the higher speed of the surrounding fluid,
letting go of this mass means that the bubble will decelerate.

� The bubble shrinks and the bubble is faster than the surrounding flow.
In that case the bubble will accelerate, this is due to the fact that the added mass
is shrinking. The shrinking added mass loses mass to the slower flow. The mass in
the (former) added mass “wants” to be at the lower speed of the surrounding fluid,
letting go of this mass means that the bubble will accelerate.

The volume-changing force has some self-enlarging effect, for a shrinking bubble. If it is
slower than the flow, the bubble will decelerate and enlarge the slip velocity because of
this effect. This will lead to strong behavior regarding this force. As it turns out a bubble
can, in the model presented, go in the opposite direction of the flow. In reality this effect
will probably be significantly less influential, the equations regarding the bubble growth
allow for violent collapses (and fast growth) of the bubble. Especially in the collapsing
phase the wake, in which the added mass is trapped, will not be able to fully develop.
This unsteady phenomena will reduce this effect significantly. A simple approach would
be to make the added mass dependent upon the bubble growth.

The history force will not be taken into account for now.

(
mp +

1

2
mf

)
dWi

dt︸ ︷︷ ︸
Accelaration force

+ 2πρfa
2da

dt
Wi︸ ︷︷ ︸

Changing volume force

= − 1

2
ρfCDπa

2W 2
i︸ ︷︷ ︸

Drag force

− 3

2

4π

3
a3∇p︸ ︷︷ ︸

Pressure force

+ (mp −mf ) gi︸ ︷︷ ︸
Buoyancy force

(F.6)

So having used the assumption of one-way coupled steady potential flow and neglecting
the acceleration of the flow an equation of motion is derived (see Eq. F.6). To write this
equation of motion in the usual convention it is important to note that the slip velocity
Wi was inversely defined, and the equation is now written in vector form. This leads to
Eq. F.7.
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4

3
πR′3(

1

2
ρf + ρb)

dwb

dt︸ ︷︷ ︸
Acceleration force

=
1

2
ρ(w −wb)|w −wb|CDπR′2︸ ︷︷ ︸

Drag force

− 3

2

4

3
πR′3∇p︸ ︷︷ ︸

Pressure force

+
4

3
πR′3g′(ρb − ρf )︸ ︷︷ ︸

Buoyancy force

+ 2πρfR
′2(w −wb)

dR′

dt︸ ︷︷ ︸
Changing volume force

(F.7)

F.2 Non dimensionalization

The equation of motion can be rewritten to Eq. F.8.

(
1

2
ρf + ρb)

dw′
b

dt
=

3

8
ρf
CD
R′

(w′−w′
b)|w′−w′

b|−
3

2
∇p+ g′(ρb− ρf ) +

3

2

ρf
R′

(w′−w′
b)
dR′

dt
(F.8)

Note that in Eq. F.8 the w′ means that it is a dimensionfull vector of the velocity
components. Now introducing:

τ =
Ut

h
u =

u′

U
v =

v′

U
Ub =

u′b
U
Vb =

v′b
U
x =

x′

h
y =

y′

h
R =

R′

h
g =

g′h

U2

gives Eq. F.9.

(
1

2
ρf + ρb)

dwb

dτ
=

3

8
ρf
CD
R

(w −wb)|w −wb|−
3

2

h

U2
∇x′p+ g(ρb − ρf ) +

3

2

ρf
R

(w −wb)
dR

dτ
(F.9)

The pressure gradient can be non dimensionalized like how it is done before giving Eq.
F.10.

(
1

2
ρf + ρb)

dwb

dτ
=

3

8
ρf
CD
R

(w −wb)|w −wb|−
3

4
ρf∇Cp + g(ρb − ρf ) +

3

2

ρf
R

(w −wb)
dR

dτ
(F.10)

Lastly introducing α =
ρf

ρb+
1
2
ρf

and β =
ρb−ρf
ρb+

1
2
ρf

Eq. F.11 is found.

dwb

dτ
=

3

8

CDα

R
(w −wb)|w −wb|−

3

4
α∇Cp + gβ +

3

2

α

R
(w −wb)

dR

dτ
(F.11)

Since the drag relation is most convenient in the form CDRb
24

where Rb = RRf |w −wb|
one finds Eq. F.12.
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dwb

dτ
=

9α

R2Rf

CDRb

24
(w −wb)−

3

4
α∇Cp + gβ +

3

2

α

R
(w −wb)

dR

dτ
(F.12)

The relation for CDRb
24

has already been given and will be kept the same, and Rf = 2hU
νf

.
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G. Actual solving of the ODE’s

The described equations are all meant to solve a system of equations which describe the
particle path together with the bubble growth. Since only derivatives in time play a role
the system is a system of coupled non-linear second-order ODE’s. To solve such a system
the ode functions in Matlab are the easiest to implement. But to use these functions it is
necessary to reduce the order. The ode functions in Matlab can handle systems in the
form of ż = f(z, t). In this case this comes down to Eq. G.1.

ż =



U̇b = 9α
R2Rf

CDRb
24

(u− Ub)− 3
4
α∂Cp

∂x
+ g1β + 3

2
α
R

(u− Ub)dRdτ
Ub

V̇b = 9α
R2Rf

CDRb
24

(v − Vb)− 3
4
α∂Cp

∂y
+ g2β + 3

2
α
R

(v − Vb)dRdτ
Vb
Ṙ

R̈ = 1
R

[
−3

2

(
Ṙ
)2

+ 1
2

(−Cp − σv) +
(

1
2
σv + 4

W

) (
R0

R

)3
cp
cv − 4h

WR′
0R
− 8

RfR
Ṙ

]


(G.1)

Where as an example the Rayleigh-Plesset equation has been taken. The general Keller-
Herring equation could be included in the same way. The gravity has been taken into
account in both equations of motion since a rotation of the coordinate system should
be possible. Furthermore it is important to recognize the easy way of “shutting forces
off”. For example the gravity can be set to zero. The mass of the bubble can still be
neglected, and the force due to a volume change can also be left out of the consideration.
This might be useful in determining the influence of the forces. If a solid sphere would be
under consideration the Ṙ could be set to zero just as the R̈. This just goes to show that
this system is usable in multiple ways.

In Eq. G.1 it can be seen that indeed ż = f(z, t). So the system is set, and this
is a solvable system. The last part is to set the initial conditions, see Eq. G.2.

z0 =


Ub(0) = Ub0
x(0) = x0

Vv(0) = vb0
y(0) = y0

R(0) = R0

Ṙ(0) = Ṙ0

 (G.2)
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Usually the point x0 is at a place well before the body. The initial bubble velocity is 0

or the bubble moves with the flow, and the initial radius is R0 =
R′

0

h
, the initial bubble

growth (Ṙ0) will be zero. Of course the vertical initial position will be altered again.
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