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Abstract 
 

Species distribution models (SDM) predict species occurrence based 

on statistical relationships with environmental conditions. Many 

studies have compared SDM accuracies but only a few have 

compared SDM transferability between two regions as distant as 

Andalusia and SW Australia. The R-package biomod2 which includes 

10 different SDM techniques was used in this study. Phytophthora 

cinnamomi Rands is a plant pathogen oomycete which is the main 

factor of the Oak Decline in Andalusia and the Jarrah Dieback in SW 

Australia. P. cinnamomi location data was used to test SDMs 

transferability and, simultaneously, to assess the environmental 

response of P. cinnamomi in both regions. It was found that P. 

cinnamomi risk of invasion was predicted accurately with all model 

techniques tested, except SRE, and that different environmental 

conditions explained the risk of fungal invasion in each study area. 

Moreover, machine-learning methods had a high predictive power in 

the training area but low transferability, while linear based models 

gave a reasonable accuracy within the training area and better 

transferability performance. A desirable combination of good model 

performance and good transferability was manifested by GAM and 

GLM. 

 

Key-words: Species distribution models, transferability, biomod, 

Phytophthora cinnamomi, Oak Decline, Jarrah Dieback. 
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Chapter 1: Introduction 

1.1 The Fungus 
Phytophthora sp. is a fungal plant pathogen that affects a wide range 

of communities from crops to forest. The word Phytophthora comes 

from Greek and means “plant killer”. One example of its relevance is 

that was the responsible of the Irish hunger in 1845. This genus 

contains numerous species one of which is Phytophthora cinnamomi 

(Zentmyer, 1988). 

 

Phytophthora cinnamomi Rands is a soil-borne oomycete with a 

worldwide distribution. P. cinnamomi causes root rot, dieback and 

cankers in >3000 woody plants species, including eucalyptus, 

avocado, pine and oak (Hardham, 2005). Although its identification 

requires expert knowledge and it is costly, P. cinnamomi has been 

continental identified and isolated in the United States, Australia, 

South Africa and Europe. (Zentmyer, 1988). 

 

Rands (1922) described P. cinnamomi from cinnamon trees 

(Cinnamomum burmanni) in Sumatra and suggested Asia as the 

origin of the fungus. Later, Zentmyer (1988) studied the fungi genetic 

variability and host plants resistance and considered South Asia, in 

particular Sumatra, as its centres of origin. From South Asia, the 

pathogen has spread worldwide. 

 

Caprifoliaceae, Ericaceae, Rhamnaceae, Labiateae, Lauraceae, 

Cistaceae and Leguminosae have been identified as susceptible host 

families (Meentemeyer et al., 2004; Moreira & Martins, 2005). The 

pathogen infection appears in plants weakened by drought or 

diseases. In addition, P. cinnamomi requires soil moisture and warm 

climate conditions to sporulate. Finally, it spreads by water, wind or 

infected tools, soils and root material, so an appropriate management 

may reduce and retard its expansion (Global Invasive Species 

Database, 2005; Reuter, 2005). 

http://es.wikipedia.org/wiki/Rhamnaceae
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1.2 Problem Statement 
European oak ecosystems have been affected by a severe decline and 

mortality during the last century, mainly caused by abiotic factors 

(frequent forest fires, severe drought, prolonged flooding, rapid 

fluctuation of soil water levels, cold winters, pollution and land use 

changes (Brasier, 1996; Gil Pelegrín et al., 2008), but also by biotic 

factors (insects and fungus, (Carrasco et al., 2009)). 

 

The Oak Decline can be defined as a complex disorder or syndrome in 

which a wide variety of environmental factors and parasitic agents 

that are not capable to destroy the tree separately, interact in 

different combination in time and space, but produce similar 

symptoms, ending with the death of the tree (Brasier, 1996; Tuset et 

al., 1996; Sánchez et al., 2002; Gil Pelegrín et al., 2008; Carrasco et 

al., 2009). Two diverse symptoms could be observed: Sudden Death, 

expressed by a rapid drought of the crown, and Dieback 

characterized by a continuous decay and foliage loss (Gallego et al., 

1999). 

 

In the Iberian Peninsula a general oak decline was detected at the 

beginning of the  1980s, mainly affecting Holm (Quercus ilex) and 

Cork oak (Quercus suber) (Brasier et al., 1993; Brasier, 1996). 

However, the pathogen, P. cinnamomi, was not isolated from root or 

soil until 1991 (Tuset et al., 1996). Besides, other studies related 

severe drought and P. cinnamomi as the main factors for the Oak 

Decline in Andalusia (Sánchez et al., 2002; Gil Pelegrín et al., 2008; 

Carrasco et al., 2009). The effect of this syndrome was evaluated by 

Romero de los Reyes et al. (2007) using aerial photography of 67.292 

hectares in Huelva, Andalusia. The decrease was estimated as 7.2% 

of canopy cover equivalent to 93.600 dead trees between 1997 and 

2002. Therefore, Mediterranean oaks forests in Andalusia are 

currently at high risk of Oak Decline syndrome due to severe drought 

and P. cinnamomi affection (Camarero et al., 2009). This is in 

addition to land use changes, fragmentation, overgrazing of livestock, 

abandoned land, increasing of wild fires, and other pest and diseases 

(Vogiatzakis et al., 2006; Carrasco et al., 2009). 

 

Andalusian climate change scenarios forecast an average maximum 

and minimum temperature increase between about 0.3 – 1.5 °C per 

decade, an average annual precipitation increase of between 3 – 20% 

in the first third of the century and a decrease of between 7 – 20% 

for the rest of the term, and an increase of drought frequency, 

duration and intensity (Moreira, 2008). Furthermore, P. cinnamomi 

grows under a wide variety of hydrological circumstances and 
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temperature ranges, although its optimum is estimated at 30 °C and 

its spread through the root tissues is faster between 25 and 30 °C 

(Weste & Marks, 1987; Sánchez et al., 2002). Consequently, P. 

cinnamomi activity may be enhancement by climate change 

conditions (Carrasco et al., 2009). 

 

On the other hand, plant communities in Southwest Australia have 

been affected by intense decline since 1921 when first P. cinnamomi 

symptoms were observed, although it was not associated with the 

fungus until 1964 (Weste & Marks, 1987; Hardham, 2005). The 

decline affected >75% of the flora in Jarrah forest (Eucalyptus 

marginata) which presented similar symptoms as Oak Decline in 

Europe, Sudden Death and Dieback (Weste & Marks, 1987; Dell et 

al., 2005). 

 

Jarrah Dieback as is P. cinnamomi affection known in SW Australia, is 

the main flora diversity threat in SW Australia (Shearer et al., 2004). 

Its infection has been evaluated assessing direct and indirect impacts 

by Shearer et al. (2007) who pointed out the pathogen impacts such 

as, the weakness of endangered flora, the changes in canopy and 

ground cover and also the decrease in plants biodiversity in old 

infected areas. Furthermore, Shearer et al. (2012) estimated the 

impact on vegetation cover caused by the diseases and concluded 

that the loss of canopy and understory cover would affect 

temperature ranges and water budgets which may have a negative 

effect on endemic plant species. 

 

The threat to natural ecosystems in Australia by P. cinnamomi 

invasion has been emphasized by its inclusion as a “Key Threatening 

Process” in the Commonwealth Environmental Protection & 

Biodiversity Conservation. 



Introduction 

 4 

1.3 Species Distribution Models 
Species Distribution Modelling (SDM) has acquired importance due to 

its faculty to forecast species occurrences from climate data, and its 

ability to predict species distributions in new areas or times (Elith et 

al., 2006). Therefore SDM has become a relevant tool for biodiversity 

conservation and management (Guisan & Thuiller, 2005). 

 

However, selecting a SDM approach is challenging, not only for the 

numerous techniques available but also for the different results 

yielded (Thuiller, 2004; Elith et al., 2006). Furthermore, studies 

suggest combining several model techniques or ensemble models 

(Thuiller, 2003; Araújo & New, 2007). 

 

SDMs have been widely used in ecological studies. However, 

biodiversity together with species spatial distribution could be the 

more common topic (Franklin, 2009; van Gils et al., 2012). SDMs 

have estimate the distribution of a broad variety of organism as: 

butterflies (Beaumont & Hughes, 2002), fungus (Wollan et al., 2008), 

plants (Thuiller, 2003; Benito Garzón et al., 2008), mammals (Elith et 

al., 2006), birds (Elith et al., 2006), amphibious (Allouche et al., 

2006; Ficetola et al., 2007), reptiles (Allouche et al., 2006) and fishes 

(Buisson et al., 2010). Moreover SDMs have been also used to predict 

potential species distribution (Benito Garzón et al., 2003), or predict 

the impact of climate change in populations (Benito Garzón et al., 

2008), estimate species distribution in the past (Benito Garzón et al., 

2007), protection of endangered species (Benito De Pando et al., 

2007), predict endemic species occurrence (van Gils et al., 2012), 

among other fields. 

 

SDMs have been also used to predict the potential pattern of 

biological invasion, identify suitable areas and estimate the risk of 

invasion (Ficetola et al., 2007; Kelly et al., 2007). The estimation of 

invasive species distribution in a new ecosystem can be based on: 

suitable environmental conditions from its native area or by true 

locations in its new range (Franklin, 2009). Predicting the distribution 

of invasive species challenges SDMs. SDMs assume that the species 

are in equilibrium with their environment in comparison alien species 

could occupy a different environmental range. In addition, there are 

undefined suitable areas where the invader is likely to appear and are  

under high risk of invasion (Václavík & Meentemeyer, 2009). 

 

Furthermore, the difference between potential and actual alien 

species distribution might be clarified. Potential spatial distribution 

agrees with the location where the invader is likely to appear 
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according to its environmental suitability. While actual distribution 

indicates areas where the invader is present in a certain time, limited 

under dispersal and environmental constrictions (Václavík & 

Meentemeyer, 2009). Normally, it is supposed that SDM predicts the 

potential distribution while it has been discussed that the models 

refers to actual distribution according to how models fits the 

calibration data (Franklin, 2009). 

 

Alien species are organisms introduced in a new ecosystem which 

have succeeded in establishing, reproducing and expanding. 

Introduced species can break the ecological equilibrium causing a 

great economical and ecological impact in the native ecosystem 

(Colautti & MacIsaac, 2004). Lowe et al. (2000) registered and 

described 100 of the worst invasive species in the world, where P. 

cinnamomi was included. In addition, Sánchez et al. (2003) pointed 

out the problem of P. cinnamomi affection in Andalusian Oaks forest 

and Shearer et al. (2007) highlighted the incidence of P. cinnamomi 

invasion in Australian flora biodiversity. 

 

SDM have mapped the “Sudden Oak Death” risk of invasion in 

California (Václavík et al., 2010). This research used Multi-criteria 

evaluation and MaxEnt to predict the risk of infection and took host 

species index, precipitation, maxima and minimum temperature as 

predictive variables. The independent variables where weighted 

according to Meentemeyer et al. (2004) suggestions who predicted 

the “Sudden Oak Death” spatial distribution with GIS. 

 

Phytophthora dieback distribution in SW Australia have been mapped 

using true locations and assessing infected areas (Weste & Marks, 

1987; Shearer et al., 2007) and similar studies have been done in 

Andalusia (Consejería de Medio Ambiente, 2010). However, to the 

best of our knowledge, no studies have mapped the risk of infection 

in Andalusia or SW Australia and compared both. 

 

The spatial distribution models of invasive species are based on 

estimations of the native environmental range and apply these to the 

introduced location. This can be done by calibrating and validating a 

model in one location and applying the model on a different area. 

Model transferability allows this operation. 

 

The spatial distribution of invasive species can be assessed by 

extrapolating predictions among occurrence areas; transferring 

models predictions throw areas. Although, extrapolate SMDs 

predictions are required in ecology conservation and management, 

model transferability have been poorly tested (Randin et al., 2006; 
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Heikkinen et al., 2012). Hence, a better knowledge of which models 

techniques performs more accurate extrapolations might be an 

improve on SDMs application (Franklin, 2009; Syphard & Franklin, 

2009). 

 

In this research we first compared the environmental distance 

between Southwest Australia and Andalusia (Spain) Secondly, P. 

cinnamomi SDMs were built to determine which environmental 

variable determine the fungus spatial distribution in each study area. 

Finally, we tested the transferability of SDMs between Andalusia and 

SW Australia and vice-versa. 

 

The main objectives of this research were to test if P. cinnamomi 

spatial distribution is determined by similar environmental conditions 

in both study areas and evaluate model transferability between both 

study areas. 

1.4 Research Questions 
Q1) Do have Andalusia and SW Australia similar environmental 

conditions? 

 

Q2) Which environmental variables determine the spatial distribution 

of the fungus in Andalusia and SW Australia? 

 

Q3) Are the spatial models accurately transferable from Andalusia to 

SW Australia and vice-versa? 
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Chapter 2: Study Area, Data and 

Methodology 

2.1 Study Area 
The Mediterranean-type ecosystem is located in regions characterized 

by long, hot and dry summers (at least 2 months of summer drought) 

and shorts, mild cold and wet winters (precipitation between 500 and 

900 mm/year) (Lindner et al., 2010). Such areas are around the 

Mediterranean Sea and equivalent areas at the West side of the 

continents at mid-latitudes and support the 20% of all plant species 

reported in the world (Figure 1) (Olson & Dinerstein, 2002). Indeed, 

the Mediterranean Basin occupy the 73% of the Mediterranean-type 

ecosystems total surface and it houses more than 25.000 species, 

among which more than half are endemic (Myers et al., 2000). 

 
Figure 1. Worldwide Distribution of Mediterranean type ecosystems 
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2.1.1 Andalusia (Spain) 

Andalusia is a characteristic Mediterranean Basin region of 87.268 

km2, located in South of the Iberian Peninsula, between 36° and 40° 

N latitude. Mediterranean oaks forests, woodlands and scrublands 

dominate this region with 4.6 million hectares, 51.5% of the total 

area, where 1.4 million hectares are populated by Oaks. Being, in this 

order, Holm and Cork oaks the most frequents mainly distributed in 

Western Andalusia (Figure 2) (Costa et al., 2006). 

 

 
Figure 2. Holm and Cork oak distribution in Andalusia (MAGRAMA, 2007) 

The value of this ecosystem has economic, (as community resources 

production), and ecological (rich in biodiversity) aspects, (Maranon et 

al., 1999; Costa et al., 2006). Mediterranean oaks forests contribute 

to the region economy with naturals and unique products such as 

cork, extensive livestock production, acorns, herbal and medicinal 

plants, and wildlife shelter (Olea & San Miguel-Ayanz, 2006). 

Additionally it provides social benefit, as carbon sink, ecotourism, 

prevention of soil erosion and desertification and creation of job 

opportunities and wealth (APCOR, 2010). 

 

The ecological relevance of Mediterranean forests is protected in the 

92/43/EEC Habitat Directive, included in the Nature 2000 Network 

(http://www.natura.org) and managed by the LIFE BioDehesa project 
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(Red Natura 2000, 2011). In addition, three more LIFE project are 

carried out to conserve endangered animal species on the IUCN list 

as the Spanish Imperial Eagle (Aquila adalberti, Vulnerable), the 

Iberian Lynx (Lynx pardinus, Critically Endangered), the Cinereous 

Vulture (Aegypius monachus, Near Threatened), and the Black Stork 

(Ciconia nigra, Least Concern), (IUCN, 2012). WWF (2012) mention 

that Cork oak forest contain 135 species of vascular plants per square 

meter, hold more than 30 different brackens and a rich diversity of 

fauna in land and numerous bird species nesting in trees. Moreover, 

Mediterranean biodiversity increases with human management (Díaz 

et al., 2003; da Silva et al., 2009; Bugalho et al., 2011) 

 

Andalusia meets the common aspect from a Mediterranean region 

combining (1) a marked geographical and topographical variability, 

(2) biseasonality climate, (3) high diversity of plant and animals (4) 

high degree of natural disturbances, including wild fires and (5) 

system exploitation often managed in a non-sustainable way 

(Scarascia-Mugnozza et al., 2000; Vogiatzakis et al., 2006). Because 

of the climate changes as well as the environmental and land use 

issues, Andalusia is a good area of study. 
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2.1.2 Southwest Australia. 

The Australian study area was limited to Perth, Southwest Australia 

and the Western area of West South Costal, inside the Southwest 

Botanical region (Figure 3). The selection was done considering 

ecological value (high endemic biodiversity), climatic characteristics 

and area extent similar to Andalusia. 

 

SW Australia is located in Mediterranean climate between 27º and 

35º S latitude within a surface of 87.307 km2 bounded by the Indian 

ocean on the west and south. The elevation increases from the 

coastal area to the highest point in the west limit at 782 masl. 

 
Figure 3. Vegetation cover on the SW Australia study area (ABARES, 2011) 

Jarrah forest (Eucalyptus marginata) dominates the area (3.8 million 

hectares, 45% of the total area) together with woodlands, 

scrublands, heaths, and kwongan. (Western-Australian scrublands 

similar to Mediterranean maquis, Californian chaparral or South 

African fynbos) (Initiative & Gole, 2006). 

 

This area host a spectacular biodiversity as a result of millions years 

of isolation. Three endemic Eucalyptus are the main tree species in 

the region, Jarrah (Eucalyptus marginata), Marri (E. calophylla), and 

Karri (E. diversicolor). In addition to hundred of endemic vertebrates, 

some on the IUCN list as: Carnaby's black-cockatoo (Calyptorhynchus 
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latirostris, Endangered), the Quokka (Setonix brachyurus, 

Vulnerable), the Gilbert’s potoroo (Potorous gilberti, Critical 

Endangered) and the Western Swamp turtle (Pseudemydura umbrina, 

Critical Endangered), among others (IUCN, 2012). 

 

Although, 11% of SW Australia region is protected, this area is 

severely at risk due to clearings of native vegetation for agriculture, 

bushes fires, introducing non-native species, mining and the root 

disease “Jarrah Dieback”, causes by the fungus Phytophthora 

cinnamomi which affects >50% of rare flora (Initiative & Gole, 2006). 

 

The ecological and economical value of this area lies in its 

biodiversity, where more than 3.500 species are endemic and on 

forest and agriculture uses with long anthropogenic influence 

(Initiative & Gole, 2006). 

2.2 Data 

2.2.1 Phytophthora cinnamomi Location 

2.2.1.1 Andalusia (Spain) 

P. cinnamomi presence-absence data was provided by Dr. Rafael 

María Navarro Cerrillo, Córdoba University. The data was obtained 

from the Andalusian Forest Monitoring Network and The Forest 

Phytosanitary Alert Network (Consejería de Medio Ambiente, 2010). 

 

Sample points were located in 8x8 km vertexes network’s, built 

according to the “Internacional Co-operative Programme on 

Assessment and Monitoring of Air Pollution Effects on Forests" (CEE-

ICP Forest). Quercus’ root and soil sample points were analysed in 

133 locations from the Andalusian Forest Ecosystem Damage 

Monitoring Network and 34 locations from the Forestry Phytosanitary 

Alert Network. The Fungus identification and isolation procedure was 

done according to Jeffers and Martin (1986). 

 

The Andalusian P. cinnamomi dataset consisted on 167 points with 47 

presences and 120 absences. Presence data was increased by 48 

presence point locations by literature review (Gomez-Aparicio et al., 

2012) and fieldwork based on previous studies and visual inspection. 

The final dataset was in World Geodetic System 1984 Universal 

Transverse Mercator Zone 30N Projected Coordinate System. 
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2.2.1.2 Southwest Australia 

The Australian P. cinnamomi dataset included all samples from point 

locations processed in Vegetation Health Service`s laboratory 

between 1 July 2011 and 30 June 2012. Most samples were taken in 

natural ecosystems and a few were collected in nurseries and 

gardens. The data was Mike Stukely courtesy, Vegetation Health 

Service, Science Division, Department of Environment and 

Conservation, Western Australia (Stukely et al., 2012). 

 

This dataset contained 1.625 points with 552 presences and 1.073 

absences and used Geodetic Coordinate System - Geocentric Datum 

of Australia 1994 Universal Transverse Mercator Zone 50 Projected 

Coordinate System. The original P. cinnamomi dataset was 

subsample to agree with Andalusian dataset on area extent and 

number of points. 

 

The isolation and identification followed the process described in 

Burgess et al. (2009). 

 

The initial difference in the number of P. cinnamomi point locations 

between Andalusia (167) and SW Australia (1.625 ) is due to their 

historical management of the problem with 30 years range (Weste & 

Marks, 1987; Tuset et al., 1996; Dell et al., 2005). 
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2.2.2 Environmental Data 

Table 1 summarizes the sources where the environmental variables 

were downloaded. 

Table 1.   Environmental variables sources 

Area Source Time Range 

S
W

 

A
u

s
tr

a
li

a
 

Bureau of Meteorology, 2013 

1976 - 2006 

ABARES, 2011 

A
n

d
a
lu

s
ia

 Junta de Andalucía, 2007 

Universidad de Extremadura, 2012 

MAGRAMA, 2013 

W
o

r
ld

w
id

e
 University of East Anglia Climatic 

Research Unit (CRU), 2008(1) 

FAO & IIASA, 2000(2) 

Tucker et al., 2004(3) 1981 - 2000 

 

The Andalusian environmental dataset was pre-processed to 2 km 

spatial resolution and projected in World Geodetic System 1984 

Universal Transverse Mercator Zone 30N Projected Coordinate 

System. 

 

The dataset SW Australian dataset was pre-processed to agree in 

variables and resolution with Andalusian dataset. The Projected 

Coordinate System used was Geocentric Datum of Australia (GDA) 

Map Grid of Australia (MGA) 1994 Zone 50S.  

 

The worldwide variables were clouds cover percentage and wet day 

frequency(1), Length growing period(2) and NDVI(3). Those variables 

were pre-processed to each study area extent (Table 1). 
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2.3 Methodology 

2.3.1 Models 

2.3.1.1 Species Distribution Models 

The increasing concern over the effects of climate change to 

ecological conservation and biodiversity has led to the development 

of bioclimatic models which combine actual species occurrences with 

digital layers of environmental information and allow extrapolation in 

time and space  (Elith et al., 2006). 

 

The variety of techniques accessible to model species distribution can 

be classified in three groups; (1) Profile techniques, which require 

presence-only data, environmental hype-space inhabited by a species 

methods as BIOCLIM, Surface Range Envelope (SRE), distance based 

methods as DOMAIN, Ecological Niche Factor Analysis (ENFA). (2) 

Discriminative techniques, which require presence-absence data, 

General Linear Model (GLM), General Additive Models (GAM), 

Multivariate Adaptive Regression Splines (MARS), Classification and 

Regression Tree Analysis (CTA), Boosted Regression Trees (BRT), 

Flexible Discriminant Analysis (FDA), Artificial Neural Network (ANN), 

Maximum Entropy (MaxEnt), Random Forest (RF), and (3) mix 

modelling approach which uses both techniques, Biomod, Generalized 

Regression Analysis and Spatial Prediction (GRASP), OpenModeller. 

Moreover, SDM can also be classified by their algorithms as: 

Regression methods as GAM, GLM and MARS; Machine-learning 

methods as ANN, BRT, MAXENT and RF; Classification methods as 

CTA and FDA; and Enveloping methods as SRE and BIOCLIM (Guisan 

& Thuiller, 2005; Elith et al., 2006; Elith & Leathwick, 2009; Franklin, 

2009). 

 

SDM have described the spatial distribution of a broadly types of 

organism (Elith et al., 2006; Václavík et al., 2010). Likewise, multiple 

studies have compared models accuracy and performance (Benito 

Garzón et al., 2006; Elith et al., 2006; Mateo et al., 2010; Gaston & 

Garcia-Vinas, 2011), though no superiority of any single one has 

been proved (Araújo & New, 2007). 

 

To deal with model technique election, biomod2 R-package (Thuiller 

et al., 2013), which include ten SDMs techniques, was used in this 

research (Thuiller, 2003; Phillips et al., 2006; Phillips & Dudík, 2008; 

Thuiller et al., 2009). Default settings of biomod2 (version 2.1.15) 

were used. 
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2.3.1.2 Statistical Models  

The biomod2 R-package is a computer platform for ensemble SDMs, 

which works with presence-absence data and includes ANN, BRT, 

GLM, GAM, CTA, FDA, MARS, SRE, RF and also let to run MaxEnt 

(Table 2). The outputs are assessed by the goodness-of-fit, ANOVA 

and Akaike Information Criterion (AIC) are available for GLM and 

GAM, while rate of misclassification is used for CTA and RF. Model 

accuracy is measured by Area Under the Curve (AUC), Cohen’s Kappa 

(κ) and True Skills Statistics (TSS) among others. Biomod2 also tests 

the influence of each variable in the model by a randomize procedure 

and displays a variable classification table. (Thuiller et al., 2013). 

Table 2.   Model Techniques ensemble in biomod2 (Thuiller et al., 2013) 

Model Data Reference 

biomod2 S Thuiller et al., 2013 

Artificial Neural Networks (ANN) A Lek & Guegan, 1999 

Surface Range Envelope (SRE) B Busby, 1991 

Boosting Regression Trees (BRT) A Elith et al., 2008 

Classification and Regression Trees (CTA) A Vayssieres et al., 2000 

Generalized Additive Models (GAM) A Guisan et al., 2002 

Generalized Linear Models (GLM) A Guisan et al., 2002 

Multivariate Adaptive Regression Splines (MARS) A Friedman, 1991 

Flexible Discriminant Analysis (FDA) A Trevor et al., 1994 

Random Forest (RF) A Breiman, 2001 

Maximum Entropy (MaxEnt) B Phillips et al., 2006 

(A: Absence, B: Background, S: Absences and Pseudo-Absences) 

 

Artificial Neural Networks (ANN) is a machine-learning approach, 

widely used to deal with diverse problems (Franklin, 2009). Although 

the most frequent in ecology is the single layer perception, also 

named multi-layer feed-forward neural network. This “black box” 

technique estimates the species occurrence by connecting the known 

output (response variable) with the inputs (explanatory variables) by 

a middle step (hidden composite variables). The model establishes 

linear relation between the explanatory variables and the hidden 

composite variable which are non-linear related with the response 

variables. (Lek & Guegan, 1999; Franklin, 2009). 

 

Surface Range Envelop (SRE) is a bioclimatic model similar to 

BIOCLIM. This model defines the climate range under which the 

species occurs, set of environmental variables where the species is 

present, and extrapolates the results to similar areas. This is the 

simple SDM technique (Busby, 1991; Beaumont & Hughes, 2002). 
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The Boosting Regression Tree (BRT) algorithm used in biomod2 was 

described in Ridgeway (1999) and implemented by Friedman (2001). 

BRT estimates the species occurrence by fitting numerous single 

models whose predictions are later ensemble to build a more robust 

prediction. Each single model is a simple regression or regression 

tree, i.e. an iterative data partitioning in homogenous groups base on 

the response. BRT performs a recursive method to build a final model 

by adding trees, reclassifying the data to highlight poor results by the 

previous tree model (Elith et al., 2008). 

 

Classification and Regression Trees (CTA) method is based on 

successive data partitions according to predictions into homogeneous 

groups in term of the response. The tree is done by a recursive data 

splitting based on a single explanatory variable. Each data division 

reduce the variance within the subset. The best CTA model is a mid 

way model between the highest variance decrease and the lower 

number of singles model (Vayssieres et al., 2000). 

 

Generalized Additive Models (GAM) estimates the species occurrences 

by fitting a response curve call “smoothers” which try to adjust the 

data into the curve by local fitting to data subsamples. GAM 

estimates more accurately complex relationships between the 

variables than linear models. The model fits a single smooth to each 

variable a then the results are additively combined (Guisan et al., 

2002). 

 

Generalized Linear Models (GLM) is based on fitting a linear 

relationship between the independent and dependent data. GLM use 

linear, quadratic or polynomial functions to estimate species 

occurrence. The model selection is done by a stepwise procedure 

under Akaike Information Criterion (AIC) or Bayesian Information 

Criterion (BIC) which delete redundant variables and decrease 

collinearity (Guisan et al., 2002). 

 

Multivariate Adaptive Regression Splines (MARS) is a linear type 

method which gives different models coefficient according to the 

optimal values across each level of the explanatory variables. The 

threshold which indicates a modification in the model coefficient are 

called “Knots” which are defined automatically. It presents similarities 

with CTA where the data partitioning is replaced by piecewise linear 

functions and the reduction of the final model complexity is done by 

deleting not relevant basic functions. Moreover, it is also close to 

GAM due to use piecewise splines. MARS advantages are that: 

considers local variables iterations, supports large number of 
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explanatory variables and performs faster than GAM (Friedman, 

1991). 

 

Flexible Discriminant Analysis (FDA) use the MARS function to 

perform a flexible discriminant analysis for the regression part of the 

model. FDA is a supervise classification method which combines 

different models (Trevor et al., 1994). 

 

Random Forest (RF) builds many de-correlated classification trees 

and averages them. It constructs the same number of classification 

trees as data in the training set are, randomly with replacements, 

with a subset of explanatory variables. Each individual tree is 

validated with the non-used subset of the data and returns the 

averages predictions of all trees. Variable selection is done by rate of 

misclassification, for categorical outcome or mean squared error. The 

difference in errors, between the prediction and the values calculated 

by procedure of variable randomization is reflected in the weight of 

the predictive variable (Breiman, 2001). 

 

MaxEnt is a machine-learning method that estimates the species 

distribution probability by assessing the maximum entropy 

distribution, so that the most spread-out, or closest to uniform. 

MaxEnt is performed with presence only data, though requires 

background points. It also gives variable comparison and test model 

accuracy by AUC (Phillips et al., 2006; Phillips & Dudík, 2008).  

2.3.1.3 Model Selection 

Model selection is finding a single model with most influential 

predictive variables among the available (Johnson & Omland, 2004). 

This process is also called variable importance. This operation aims to 

indentify which variables are related with the prediction and identify 

the smaller number of variables to perform a good prediction 

(Gromping, 2009). Moreover, it can be done manually or 

systematically by backward elimination, forward selection or stepwise 

procedures (Franklin, 2009). 

 

Some SDMs use Akaike Information criteria (AIC) or Bayesian 

Information criteria (BIC) as is implemented in GLM or GAM. AIC 

measures the goodness of fit of the model to the data, lower AIC 

better model, and reduces model complexity (Elith & Leathwick, 

2009). In addition, the SDMs techniques ensemble in biomod2 had 

their own model selection criteria (Thuiller et al., 2013). 
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2.3.1.4 Model Evaluation 

Model evaluation calculates the model’s predictive performance, 

based on the error evaluation and quantifying the ones classified 

incorrectly. There are two types of errors: commission error, which 

classifies an absence as present and omission error which defines 

presences as absence. The final model evaluation and the comparison 

between techniques are done by statistics which assess the 

discrimination capacity of the model. The optimal evaluation is done 

with an independent dataset to calibrate the model. However, this 

rarely occurs and researches applied other techniques as data 

partitioning or cross – validation (Franklin, 2009). 

 

Data partitioning consist of dividing the dependent data in two sets, 

one to calibrate the model, training data, and other to evaluate the 

model, testing/validation data. The optimal data partitioning range 

depend on the number of predictions (Franklin, 2009); in this case 

70/30 was selected to train and test the models respectivility. This 

range was also proposed in other studies (Thuiller, 2003; Thuiller et 

al., 2003; Thuiller, 2004; Heikkinen et al., 2012). 

 

Data partitioning is a simple case of cross-validation where the 

dependent data is divided in two sets. Cross – validation consists in 

divide the dependent data in multiple sub-sets each one with the 

same number of cases. Later the model runs the same number of 

times as sub-sets are. Each time a different sub-set is used to test 

the model performance while the rest are used as training data. 

 

Model evaluation tests the model predictive performance. The Area 

Under Curve of the Receiver Operating Characteristic plot (AUC) 

statistic was used to estimate model accuracy with presence-absence 

data. Moreover, Cohen’s Kappa (κ) was calculated to estimate the 

map veracity. 

 

AUC is a threshold independent statistic measure which represents 

the model’s goodness of fit to the data. AUC represents graphically 

the model discriminative capacity. AUC plots the commission error (1 

– sensitivity) in the horizontal axis, vs. omission error (sensibility) in 

the vertical axis. It ranges between 0.5 – 1, where 1 represents a 

prefect classification and 0.5 a random classification. Using AUC as 

evaluation metric has several advantages: It is possible to compare 

all SDMs, it is prevalence and threshold independent (Franklin, 2009). 

In contrast, requires a minimum number of presences, it does not 

differentiate between omission and commission errors and gives the 

same importance to all points across the region while the interesting 

area is the right top corner of the plot (Lobo et al., 2008). 
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Kappa is statistical measures of qualitative agreement between 

categorical predictions. K is a threshold dependent classifier which 

describes the difference between observation agreement and random 

agreement. Kappa is calculated from the confusion matrix where both 

the omission and confusion errors are considered (Franklin, 2009). K 

was calculated using the maximum threshold for all different model 

techniques.  

2.3.1.5 Model Transferability 

SDMs use point locations in a specific region to estimate the probable 

species spatial distribution across the region. In these situation areas 

without information about the species occurrence are estimated from 

the known location (Wenger & Olden, 2012). In the same way, 

models could be used to predict the species occurrence in regions 

geographically apart, what is called transferability. Model 

transferability aims to accurately predict the species occurrence in 

one region from model developed in a different region. It is similar to 

forecast species occurrences in time but in space (Randin et al., 

2006). 

 

In this research, cross-validation was used to train and test the 

models in each region separately and later model transferability was 

tested across regions. 

2.3.1.6 Model Comparison 

Upon the different models techniques used, the more accurate ones 

were elected by AUC values comparison. It was estimated that 

models with AUC >0.85 had a strong predictive performance. 
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2.3.2 Research Procedure 

2.3.2.1 Variable Pre-Processing 

Two equal environmental datasets in raster format each with 93 

variables were prepared (Table 3). The environmental variables were 

selected according to P. cinnamomi requirements in addition to 

descriptive variables that could suggest the spreading pattern (Weste 

& Marks, 1987; Václavík et al., 2010). The monthly climatic variables 

were composited to seasonal and annual averages. Moreover, a visual 

inspection of variables was done to verify their credibility. Pre-

processing of environmental layers was carried out in ArcGIS 10.1. 

Table 3.   Variables 

Variables Description Unit 

aspect Orientation Degrees 

asrad Area solar radiation Radiation/m2 

cld_xxx Cloud cover % 

dist_road Distance to main roads m 

dist_water Distance to permanent rivers m 

elevation Altitude from sea level m 

etp_xxx Potential evapotranspiration m 

etr_xxx Actual evapotranspiration m 

farmlands Cropland areas Dummy 

flowdir Flow direction 
 

forest Forest areas Dummy 

frs_xxx Frost day frequency  Days 

grasslands Grasslands areas Dummy 

lgp Length growing period Month 

maxt_xxx Mean maximum temperature ºC 

meant_xxx Mean temperature ºC 

mint_xxx Mean minimum temperature ºC 

mr_vbf Landform valley bottom flatness Dummy 

nd_rain_xxx Number of rainy days Days 

ndvi_av_xxx Average NDVI 
 

ndvi_sd_xxx SD NDVI 
 

rain_xxx Mean precipitation mm 

ro_xxx Run off mm 

scrublands Scrublands areas Dummy 

sink Sink areas Dummy 

slope Slope % 
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Variables Description Unit 

slope_length Slope length m 

sm_xxx Soil moisture m 

sparse Sparse areas Dummy 

substr Substrate (0 = acid; 1 = basic) Dummy 

sun_xxx Mean daily sun shine hx10  

urban Urban areas Dummy 

wet_xxx Wet day frequency (>1mm) Days 

(The postfix “xxx” in the climatic variables refers to annual (ann) and seasonal 
composite (aut, spr, sum and win) 

2.3.2.2 Study Area Comparison 

The study area comparison was performed by an analysis of 

multivariate outlier detection and visual inspection of boxplots (Figure 

4). Squared Mahalanobis Distance (SMD) was calculated between 

both environmental variables dataset in order to assess 1) if both 

areas had similar environmental conditions and indentified outliers 

variables (De Maesschalck et al., 2000). 

 

Andalusia

vs.

SW Australia

Test

Mahalonobis Distance

Visual Comparison of Boxplots 

 Research 

Question Q 1

 
Figure 4. Study Areas comparison flowchart 

Mahalanobis Distance (MD) measures the similarity between two 

variables based on the differences between a single variable value 

and the variable mean. 

 

MD calculates the distance between the centroids of multivariable 

dataset and considers the correlation within the data by including the 

covariance matrix of the target dataset. Therefore, similar variables 

should have a MD close to the centroid value and lie on a ellipse or 

ellipsoid distribution (Farber & Kadmon, 2003). However, outliers can 

be confused with values in the extreme of the distribution. In order to 

recognise outliers variables, SMD was compared with the chi-squared 

distribution (
2

p ) (Filzmoser, 2004). Moreover, in multivariable outlier 

detection data standardization was required to bring all variables to 

the same spatial scale. 
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For A and B two p-dimensional samples Ai (i = ai1, ai2, ... , ain) and Bi (i 

= bi1, bi2, ... , bin) where ūAi (i= μai1, μai2, ... , μain ) and ūBi (i= μbi1, μbi2, ... 

, μbin ) are the standardize means. The SMD is mathematically defined 

as: 

 

D2 = (ūAi - μ)T C-1 (ūBi - μ)   for i = 1, 2, .... , n 

 

Where D2 is the SMD, μ is the arithmetic mean and C is the 

covariance matrix. Variables with large SMD values could be 

considered as outliers (Farber & Kadmon, 2003; Filzmoser, 2004). 

The outlaying variables were indentified and deleted in a step-by–

step procedure until the (
2

p ) distribution requirements were fulfilled 

(SMD<P(
2

2 )) (Filzmoser, 2004). Confidence level of 95% and p-

values significance with p=0.05 were selected for statistical analysis 

for the degree of freedom (See Appendix I, Table 12). 

 

Moreover, variables were compared by boxplots and identified those 

with anomalous ranges (See Appendix I, Table 13). Boxplots defines 

variable location by the median and the spread by the distance 

between the edges of the box, hinges. The variability of the variable 

is determined by the distance between the whiskers and outliers are 

identified by points outside the whiskers. The hinges are at 25% 

quartiles from the mean while the whiskers are at 50% quartiles from 

the mean. Outliers are outside this range (Quinn & Keough, 2002).  

2.3.2.3 Variable Selection 

The original 93 variables (Table 3) were reduced until the final 

dataset by analysis of collinearity (Guisan & Thuiller, 2005; Franklin, 

2009), variable importance (model selection) stepwise procedure 

inherent to each model technique (Elith & Leathwick, 2009; Franklin, 

2009; Thuiller et al., 2013), and backwards elimination according to 

biomod2 outputs (Figure 5) (Thuiller et al., 2013). 

 

Initial 

93 Variables

Collinearity

(usdm)

Variable 

Importance

(BIOMOD)

Final 

Variables

Variable Selection

For both Study Areas

 
Figure 5. Variable selection general process flowchart 



Chapter 2 

 23 

2.3.2.4 Analysis of Multicollinearity 

Collinearity (Multicollinearity) is a statistical issue which indicate the 

strong correlation between two or more descriptive variables and 

induces uncertainty in regression models predictions. Collinearity 

refers to a linear relationship between two predicts variables, while 

multicollinearity refers to collinearity between two or more predicts 

variables. Collinearity affects the estimation of the regression 

coefficients and induces bias responses between outputs and 

explanatory variables. Collinearity can be detected by 1) analysis of 

correlation matrix and 2) Variance Inflation Factor (VIF) which is 

calculated as: 

21

1

jR
VIF


  Where Rj

2; it is the coefficient of determination. 

The uncertainty analysis was performed in R (R Core Team, 2012) 

using the “usdm” R-package (Naimi, 2013). We calculated the 

correlation coefficient and the Variance Inflation Factor (VIF). The 

analysis of collinearity was done within the 93 original variables in 

each study area (Figure 6). Variables with R2>0.90 and VIF>10 

performed a poorly estimation of the correlation coefficient due to 

collinearity and were deleted (Graham, 2003; Heikkinen et al., 2006). 

We found 46 common non collinear variables (See Appendix I, Tables 

14, 15 & 16). 

Data

SW Australia

Data

Andalusia

No Collinear

Variable 

Common 

Non Collinear 

Variables

Collinearity

     R
2
>0.90

     VIF<10

 
Figure 6. Diagram of collinearity analysis 
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2.3.2.5 Variable Importance (Model Selection) 
Analysis 

A backwards elimination procedure according to the variable 

importance function in biomod2 R-package (Thuiller et al., 2013) was 

done. Moreover, each model techniques performed itself a stepwise 

variable selection from the available variable dataset. The process 

was tedious and time consuming due to the large dataset and the 

numerous test performed (Figure 7). We did 4 replicates per each 

study area running the 10 model techniques 50 times each deleting 

variables one by one until there were 10 variables remaining (Figure 

8). In addition, we performed a fifth test where we took as initial 

dataset all the variables resultant from the 4 previous replicates and 

followed the same procedure until there were 10 variables remaining 

(Figure 9). We decided to stop at 10 variables randomly in order to 

ensure a final number of common variables between both areas. 

Finally, we did two final tests; one with an independent variables 

dataset, called final test, (Figure 10) and the other with a common 

variable dataset, called transfer test (Figure 11). 

 

Variable Importance

Initial 46 Variables

4 Replicates

Until 10 Variables

1 Replicate

Until 10 Variables

Variables to 

Final Test

Variable Importance

For both Study Areas
Common Variables

1
th

 to 4
th

 Tests 5
th

 Test

Variables to 

Transfer Test

15 Common 

Variables

Common Variables 

from the last 10

Until 1 Variable

 
Figure 7. Flowchart summarizing the variables selection procedure 



Chapter 2 

 25 

First Test 

We performed a multi-model variable selection, from the initial 46 

common non collinear variables, deleting in each run the less relevant 

variable, that with lower correlation coefficient in the variable 

importance table of biomod2 outputs, from the more accurate model, 

the one with higher AUC (Figure 7 & 8).  

 

The first test highlighted three models techniques as the more 

accurate (highest AUC). Therefore, we based our next variables 

selection procedure according to the variable importance output from 

one single model each time. The selected models were BRT, MaxEnt 

and RF (See Appendix I, Table 17). 

Second, Third and Fourth Test 

The next tests were performed following the same methodology as in 

the first one but following the variable importance classification from 

a single statistical model, BRT, MaxEnt and RF, each time (Figure 8) 

(See Appendix I, Tables 18, 19 & 20). 

Common 

Non Collinear 

Variables

Independent 

Variables 

Dependent

Variables

Biomod

SDM

Variables

Importance

Variable Selection

Variable Importance Analysis

Done in both Study Areas

Final 10 

Variables

4 Replicates

(Multy-Model,

BRT,  MaxEnt 

& RF)
 

Figure 8. Flowchart summarizing the first 4 runs of variables selection analysis 
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Fifth Test 

The fifth test was done using as initial variable dataset those 

variables in common founded in the 1st to 4th tests. Variable selection 

was done according to MaxEnt variable importance classification 

(Figure 9) (See Appendix I, Table 21 & 22). 

 

Common 

Variables 4 

Replicates

Independent 

Variables 

Dependent

Variables

Biomod

SDM

Variables

Importance

Variable Selection

Variable Importance Analysis

Done in both Study Areas

Final 10 

Variables

 
Figure 9. Methodology followed in fifth variable selection test 
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Final Test  

The final variable selection test was based on the common final 

variables resulted from the fifth test, 15 environmental variables (See 

Appendix I, Tables 23 & 24). During the step-by-step variable 

deleting process, standard deviation, maximum and minimum AUC 

values were calculated in order to assess how the number of 

variables influenced the model accuracy. This analysis was repeated 

until one variable remained (Figure 10). 

 

Common 

Variables

Fifth Test (15)

Independent 

Variables

SW Aus. 

Dependent

Variables

Biomod

SDM

Variables

Importance

Independent 

Variables

Andalusia 

Dependent

Variables

Biomod

SDM

 Variables

Importance
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Figure 10. Flowchart summarizing the final variable selection step 

Moreover, we did an intermediate variable selection which included 

the 10 most relevant variables in each study areas (10 variables 

each). Both dataset were compared and the common ones were 

elected to perform the transfer test (Figure 11) (See Appendix I, 

Table 24). 
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10 Variables

Final Variable Dataset to 

Test Model Transferability

SW Australia

10 Variables

Andalusia

Common 

Variables

 
Figure 11.  Description of the methodology followed to the common relevant 

variables dataset 

Independent Test 

The independent test was done with the more relevant variables in 

each study area, 5 for Andalusia and 7 for SW Australia. This time the 

model runs 300 with 10 different techniques with each variable set. 

In this analysis it was calculated the standard deviation, maximum, 

mean and minimum AUC values for each model technique (Figure 

12). 
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Figure 12. Independent test procedure diagram. (SW Aus: SW Australia) 

2.3.2.5.1 Ranking Variable Importance 

The variable importance function in biomod2 described in section 

2.3.1.2 give a good overview of the variable influence in the model 

but meaningless to compare between models. This lack of similarity 

of the variable importance classification led us to develop a ranking 

system so that we could compare importance variables between the 

different models. 

 

For all models we ranked the environmental variables from 1 to “n”. 

Being “n” the number of variables presented in the analysis. The rank 

1 was given to the most important variable. If there were two 

variables with the same importance we ranked both of them with the 

same number. Similar approach was used by Syphard and Franklin 

(2009). 

 

Later, to avoid model influence in the variable importance ranking we 

sorted the ranked variable importance into one single classification by 

mean and mode. The variable importance ranking was done 

considering those models with the highest AUC values per each model 

technique. 
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2.3.2.6 Model Transferability 

The models with highest AUCs values from each technique were 

transferred. Model transferability was done according to the common 

environmental dataset selected for the transfer test. Transferability 

was carried out in biomod2 (Thuiller et al., 2013) by projecting 

models in the “new environment”. Therefore, model trained and 

validated in SW Australia were projected in Andalusia and vice versa. 

Transfer predictions were validated using the complete set of point 

locations available in the new environment (Figure 13). In SW 

Australia model transferability was validated with same subsample 

that calibrated and validated the models initially. Model transferability 

projections were validated by the “PresenceAbsence” R-package 

(Freeman & Moisen, 2008).  
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Figure 13. Transferability flowchart description. (SW Aus: SW Australia) 
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Chapter 3: Results 

3.1 Study Areas Comparison 

3.1.1 Multivariate Outlier Detection 

The analysis of multivariate outlier detection revealed that 

considering the complete environmental variables datasets, both 

study areas did not present similar environmental conditions under a 

confidence level of 95.00% according to the chi-squared distribution 

test. After the outlier variables were indentified and deleted, 29 (See 

Appendix I, Table 12). The remaining dataset, without the 29 outlier 

variables, fulfil the SDM<P((
2

2 )) requirements, therefore both areas 

had similar environmental conditions (Figure 14). 

 

In plot (14a) points closer to the centroid represent variables with 

similar means. Points inside the ellipses are at 1 and 2 MD time 

radius from the centroid respectively. Points outside the ellipses could 

be considered as outliers, due to large difference in their means.  

 

Plot (14b) highlights variables that don’t follow a chi-squared 

distribution according to the elected confident level, those with larger 

SMD. Points above the red line represent variables which follows a 

chi-squared distribution, those with lower SMD. 

 

Plot (14c) presents the variables distribution after deleting outliers, 

points above the line follows a chi-squared distribution. Point apart 

from the line could be considered outliers. The point surrounding by 

the red circle is the one with highest SMD, although according with 

the selected confidence level was rejected as an outliers. The point 

represented the variable sun shine in autumn.  

 

Plot (14d) shows the final SMD density distribution, without outliers, 

where the red line indicates the variable with highest SMD value 

(SMD = 5.49), the one in the edge. The final variable distribution 

without outliers had a bell-shape normal distributed. 

 

Any variable was deleted in this step due to the principal aim was to 

verified if both areas were environmentally similar and detected those 

that could be problematic to perform transferability. 
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Mahalanobis Distance 
 

 
Figure 14. Mahalanobis Distance analysis plots of all environmental variables. 

(SW AUS: Southwest Australia; AND: Andalusia; sun_aut: sun shine in 

autumn) 

Plot (a) displays the standardized mean of variables values location 

between both study areas. It represents Andalusia in the horizontal 

axis versus SW Australia in the vertical axis in respect to the 

Mahalanobis centroid position, (red point). Plot (b) shows Q-Q plot of 

SMD vs. quantiles of chi-squared initial situation, including outliers, 

where in the horizontal axis is chi-squared distribution and in the 

vertical axis is the SMD. Plot (c) presents Q-Q plot of SMD vs. 

quantiles of chi-squared without outliers. Plot (d) density plot of 

squared SMD where in the horizontal axis are the SMD and in the 

vertical axis the SMD frequency respect to the total. 

a) b) 

c) 
d) 
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3.1.2 Boxplots 

Examples of boxplots are shown in Figure 15. 

 

 
a) Similar means 

 
b) Dissimilar means 

 
c) Enveloping range 

Figure 15. Examples of variable boxplots. (AND: Andalusia; SW AUS: Southwest 

Australia) 
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The boxplots analysis pointed out similarities and difference between 

variables. Among the numerous plots done, we recognised three 

mains patterns: similar means, dissimilar means and enveloping 

range. As similar mean were considered those variables with closer 

means and ranges. As dissimilar means those variables with different 

means and ranges; and enveloping range those variables that 

included the other area range in theirs. Boxplots visual inspection 

confirmed the results obtained in the analysis of multivariate outlier 

detection (Figure 15) (See Appendix I, Table 13). 

3.2 Variable Selection 

3.2.1 Analysis of Collinearity 

The Variance Inflation Factor (VIF) and the correlation coefficient 

between variables were calculated separately in each study area. We 

found 27 and 32 variables with collinearity problems in SW Australia 

and Andalusia respectively. Therefore, there were 66 and 61 

variables remaining of which 46 were common in both datasets. 

Those 46 variables were sorted in the next step. (See Appendix I, 

Table 16) 

3.2.2 Model Selection 

The model selection test showed that the number of variables did not 

influence in the model performance in terms of the highest AUC. The 

maximum and minimum AUC remained constant across number of 

variables, model techniques and study areas. However, in Andalusia 

the minimum AUC value in GAM, GLM, MaxEnt and RF decreased with 

<1 variables remaining (Figure 16), while in SW Australia, this fact 

was observed with <4 (Figure 17). 
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Figure 16. Maximum and minimum AUC variability across the number of 

variables and model techniques in Andalusia 
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Figure 17. Maximum and minimum AUC variability across the number of 

variables and model techniques in SW Australia 
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Model variability tested by the AUC standard deviation was minimized 

at 5 and 7 variables in Andalusia and SW Australia respectively. At 

lower number of variable the standard deviation increased drastically. 

Therefore, this numbers of variables, 5 in Andalusia and 7 in SW 

Australia, were set at this level to assess P. cinnamomi risk of 

invasion (Figure 18). 

 

 
Figure 18. Model accuracy variability across the number of variables and model 

techniques measured as AUC standard deviation.  
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Finally, models techniques differed in number and type of 

environmental variables and their respective importance rank to 

return an accurate response. ANN, BRT, CTA, MaxEnt, RF and SRE 

required more variables than FDA, GAM, GLM and MARS in order to 

return an accurate response. This fact was observed in both datasets 

(Figures 19 & 20). 

 

 
Figure 19. Variables importance by model technique independent dataset. Top: 

Andalusia; bottom: SW Australia 
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Figure 20. Variables importance by model technique common dataset. Top: 

Andalusia; bottom: SW Australia 
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3.2.3 Variable Importance Analysis 

The step-by-step variable selection procedure led to several results. 

On the one hand, we got two sets of variables which determined the 

fungus risk of invasion in Andalusia and SW Australia. On the other 

hand, we obtained a common variable dataset that was used to 

transfer the models (Table 4). 

Table 4.   Final variables dataset 

Selected Variable 

SW Australia Andalusia Common Set 

aspect        dist_water dist_water 

dist_water        elevation elevation 

elevation        meant_sum meant_sum 

etr_aut        slope ndvi_sd_sum 

flowdir        slope_length slope 

maxt_sum  wet_aut 

ndvi_sd_sum   

In bold variables in common in the three sets and highlighted variable that was 
selected in the common dataset but had a large SDM value. It was not included in the 
transfer analysis. 

 

P. cinnamomi risk of invasion was explained accurately in Andalusia 

by distance to water, elevation, mean temperature in summer, slope 

and slope length. AUC values ranged between 0.925 (BRT) and 0.733 

(SRE). MaxEnt, FDA, and RF gave AUCs>0.90 and the remaining 

model techniques achieved AUCs>0.80 (Table 5). Elevation, mean 

temperature in summer and distance to water were the variables that 

showed highest importance for P. cinnamomi prediction in Andalusia 

(Figure 21a). 

 

On the other hand, aspect, distance to water, elevation, actual 

evapotranspiration in autumn, flow direction, maxima temperature in 

summer and NDVI standard deviation in summer predicted accurately 

P. cinnamomi risk of invasion in SW Australia. Model performance 

ranged between 0.897 (FDA) and 0.675 (SRE) AUC values. In 

addition to BRT, MaxEnt, RF, CTA and MARS which gave AUC>0.80 

(Table 6). Actual evapotranspiration in autumn, maximum 

temperature in summer and distance to water were found the most 

important variables for P. cinnamomi prediction in SW Australia 

(Figure 21b). 
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Figure 21. Variable importance average rank with all model techniques and the 

individual variable dataset. a) Andalusia; b) SW Australia 

Furthermore, a common environmental variables dataset formed by 

distance to water, elevation, mean temperature in summer, NDVI 

standard deviation in summer and slope were elected to test model 

transferability. In deed frequency of wet days in autumn was also 

elected in the beginning, although it was removed for the 

transferability test because it was underlined as outliers by the 

analysis of multivariate outlier detection. The correlation with the 

prediction pointed out that in Andalusia elevation, distance to water 

and slope were the more important (Figure 22a). While in SW 

Australia NDVI standard deviation in summer, mean temperature in 

summer and distance to water had the highest influence in the 

predictions (Figure 22b). Finally, in Andalusia model accuracy ranged 

between 0.771 – 0.925 AUCs values in SRE and MaxEnt respectivility 

while in SW Australia varied from 0.643 (SRE) to 0.841 (MaxEnt) 

AUCs values (Tables 5 and 6). 

a) b) 
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Figure 22. Variables importance average rank among all models techniques 

considering the common variables dataset. a) Andalusia; b) SW Australia 

3.2.4 Model Accuracy 

Models performance was test by AUC and the map veracity was 

estimated by Kappa (κ). 

3.2.4.1 Individual Variable Datasets 

In Andalusia all models except SRE returned accurate results, 

AUCs>0.8. BRT gave the highest AUC and Kappa, and MaxEnt the 

highest mean and minimum AUC; and minimum AUC standard 

deviation (Table 5). Figure 23 shows an example of the fungus spatial 

distribution in Andalusia. 

Table 5.   Andalusian models accuracy 

Andalusia 

Models Max AUC Mean AUC Min AUC Std AUC KAPPA 

ANN 0.874 0.722 0.528 0.073 0.654 

BRT 0.925 0.792 0.627 0.047 0.780 

CTA 0.857 0.730 0.565 0.057 0.624 

FDA 0.904 0.797 0.689 0.042 0.689 

GAM 0.828 0.710 0.531 0.055 0.528 

GLM 0.888 0.743 0.547 0.050 0.748 

MARS 0.891 0.786 0.622 0.051 0.629 

MAXENT 0.920 0.810 0.667 0.041 0.721 

RF 0.909 0.797 0.646 0.044 0.661 

SRE 0.733 0.626 0.501 0.046 0.599 

(Underline more accurate models) 

a) b) 
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In SW Australia BRT, RF and CTA, gave reasonable maximum AUCs 

values >0.80. BRT presented highest minimum AUC and, BRT and RF 

had the highest mean AUC. However, the more accurate model was 

FDA which also had the best Kappa (0.745) and the highest AUC 

standard deviation. Further, MaxEnt returned also an accurate 

prediction (Table 6). Figure 24 displays an example of the fungus 

spatial distribution in SW Australia. 

Table 6.   SW Australian models accuracy (AUC and Kappa values) 

SW Australia 

Models Max AUC Mean AUC Min AUC Std AUC KAPPA 

ANN 0.742 0.582 0.379 0.061 0.540 

BRT 0.886 0.701 0.573 0.056 0.645 

CTA 0.829 0.674 0.547 0.062 0.612 

FDA 0.897 0.690 0.438 0.076 0.745 

GAM 0.740 0.581 0.446 0.059 0.463 

GLM 0.728 0.596 0.441 0.056 0.364 

MARS 0.820 0.644 0.412 0.069 0.533 

MAXENT 0.836 0.678 0.434 0.060 0.547 

RF 0.833 0.703 0.540 0.051 0.550 

SRE 0.675 0.527 0.400 0.052 0.331 

(Underline more accurate models) 

 
 



Results 

 44 

 
Figure 23.  Example of P. cinnamomi risk of invasion in Andalusia (BRT) 

 
Figure 24.  Example of P. cinnamomi risk of invasion in SW Australia (FDA) 
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3.2.4.2 Common Variable dataset 

In Andalusia, MaxEnt, RF and BRT showed better performance. 

Although, MaxEnt had highest maximum, mean, minimum AUC 

values and minimum AUC standard deviation. Moreover, all models 

except SRE predicted the risk of invasion accurately, AUCs >0.86 

(Table 7). 

Table 7.   Andalusian models accuracy (AUC values) 

Andalusia 

Models Max AUC Mean AUC Min AUC Std AUC 

ANN 0.915 0.720 0.528 0.072 

BRT 0.923 0.789 0.572 0.055 

CTA 0.868 0.730 0.530 0.062 

FDA 0.911 0.795 0.667 0.047 

GAM 0.879 0.713 0.400 0.067 

GLM 0.876 0.740 0.579 0.054 

MARS 0.909 0.782 0.565 0.059 

MAXENT 0.925 0.806 0.671 0.046 

RF 0.924 0.797 0.626 0.051 

SRE 0.771 0.640 0.470 0.050 

(Underline more accurate models) 

On the other hand, in SW Australia CTA, MaxEnt and RF were the 

models with better performance. However, CTA was the one with 

lower AUC standard deviation and higher mean AUC while RF had the 

minimum values (Table 8).  

Table 8.   SW Australian models accuracy (AUC values) 

SW Australia 

Models Max AUC Mean AUC Min AUC Std AUC 

ANN 0.741 0.570 0.352 0.066 

CTA 0.805 0.660 0.408 0.059 

BRT 0.784 0.603 0.364 0.063 

FDA 0.715 0.579 0.419 0.056 

GAM 0.724 0.573 0.419 0.058 

GLM 0.729 0.573 0.422 0.058 

MARS 0.767 0.579 0.433 0.061 

MAXENT 0.841 0.636 0.423 0.063 

RF 0.804 0.676 0.427 0.062 

SRE 0.643 0.503 0.325 0.051 

(Underline more accurate models) 
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Comparing both situations within the common dataset, MaxEnt was 

the model which gave better AUCs, SRE returns the lowest AUC and 

ANN presented the highest AUC standard deviation. 

3.2.5 Response Curve 

In Andalusia high risk of P. cinnamomi invasion was determined by 

areas between 0 – 1800 masl. within the complete range of mean 

temperature in summer and distance to water (Figure 25) 

 

 

 
Figure 25.  a) Elevation, b) mean temperature in summer and c) distance to 

water response curves in Andalusia 

On the other hand, In SW Australia the probability occurrences 

increased after 300 masl with temperatures above 30 ºC and 

together with actual evapotranspiration. Moreover, areas close to sea 

level where also pointed out by elevation as areas at high risk of 

invasion. Maximum temperature in summer had a pick of occurrence 

around 23 ºC with a soft decrease until 31 ºC and a later increase. 

Finally, there was found a negative correlation between distance to 

water and probability of occurrence (Figure 26). 

 

a) 
b) 

c) 
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Figure 26.  a) Elevation, b) maximum temperature in summer, c) distance to 

water and d) actual evapotranspiration in autumn response curves in SW 

Australia 

Significantly differences were found in both situations, influenced by 

elevation and temperatures in summer. These differences should 

affect transferability. 

3.2.6 Model Transferability 

3.2.6.1 Common Variables Boxplots 

The predictive variable initially selected to test models transferability 

were: distance to water, elevation, mean temperature in summer, 

NDVI standard deviation in summer, slope and wet frequency days in 

autumn. 

 

Elevation and slope boxplots revealed large difference in means and 

variability between the study areas. However SW Australian ranges 

were included in the Andalusian ones (Figure 27). 

 

c) d) 

a) b) 
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Figure 27. Right, elevation (m) and left, slope (%) boxplots. (AND: Andalusia; 

SW AUS: Southwest Australia) 

Andalusia presented relatively low distances in comparison with SW 

Australia the later included the Andalusian range. NDVI standard 

deviation in summer showed similarities between the study areas. 

Means were close however they differed in the inferior quartile 

(Figure 28). 

 

 
Figure 28. Right, distance to Water (m) and left, NDVI standard deviation in 

summer boxplots. (AND: Andalusia; SW AUS: Southwest Australia) 

Wet day frequency in autumn presents a significant difference. SW 

Australia presented a large mean and variability while in Andalusia 

both were lower. Moreover, Andalusia “box” fitted below SW Australia 

first quartile. In addition, wet day frequency in autumn was classified 

as conflictive variable by SMD and mean temperature in summer had 

one of the highest SMD in the non-conflictive variables remaining 
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(See Appendix I, Table 12). Consequently, wet day frequency in 

autumn was not considered to perform the transferability analysis 

(Figure 29).  

 

Although, mean temperature in summer also presented dissimilar 

means and ranges, this was not marked by the multivariate outlier 

detection analysis as a conflictive variable. 

 

 
Figure 29. Right wet days frequency in autumn (nº of days) and left, mean 

summer temperature (ºC) boxplots. (AND: Andalusia; SW AUS: Southwest 

Australia) 

The chosen environmental variables to assess model transferability 

differ in means, but the range involves both situations except mean 

temperature in summer.  
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3.2.6.2 Transferability Andalusia Models 

Models trained and calibrated in Andalusia and transferred to SW 

Australia presented a percentage AUC loss that ranges between 27.89 

– 40.84% in GLM and MaxEnt respectively (Table 9). Andalusian 

model performance was better in Andalusia than in SW Australia. 

However, SW Australian models showed a better transferability 

(Table 9 & 10). Figure 30 shows an example of the fungus spatial 

distribution in Andalusia and Figure 31 presents an example of the 

fungus spatial distribution in SW Australia performed with the model 

trained in Andalusia. 

Table 9.   Andalusian models transferability result 

Andalusia 

Models 
Max. 

AUC 

Transfer 

AUC 

%AUC 

Loss 

ANN 0.915 0.567 37.99 

BRT 0.923 0.637 31.01 

CTA 0.868 0.530 38.92 

FDA 0.911 0.607 33.42 

GAM 0.879 0.625 28.87 

GLM 0.876 0.632 27.89 

MARS 0.909 0.565 37.89 

MAXENT 0.925 0.547 40.84 

RF 0.924 0.550 40.43 

SRE 0.771 0.500 35.15 

       (Underline models with lower %AUC loss) 
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Figure 30. Example of P.cinnamomi risk of invasion prediction by Andalusia GLM 

model 

 
Figure 31.  Example of P.cinnamomi risk of invasion in SW Australia by 

Andalusia by GLM model transferred 
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3.2.6.3 Transferability SW Australia Models 

Models trained and calibrated in SW Australia and transferred to 

Andalusia presented a percentage AUC loss that ranges between 3.18 

– 33.73% in GAM and MARS respectively. Moreover, RF (3.61%) and 

GLM (5.39%) presented low loss in AUC (Table10). Figure 32 shows 

an example of the fungus spatial distribution in SW Australia and 

Figure 33 presents an example of the fungus spatial distribution in 

Andalusia performed with the model trained in SW Australia. 

Table 10. SW Australian models transferability results 

SW Australia 

Models 
Max. 

AUC 

Transfer 

AUC 

%AUC 

Loss 

ANN 0.741 0.667 10.00 

BRT 0.805 0.620 22.94 

CTA 0.784 0.705 10.13 

FDA 0.715 0.631 11.69 

GAM 0.724 0.701 3.18 

GLM 0.729 0.690 5.39 

MARS 0.767 0.508 33.73 

MAXENT 0.841 0.678 19.44 

RF 0.804 0.775 3.61 

SRE 0.643 0.500 22.24 

       (Underline models with lower %AUC loss) 
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Figure 32. Example of P.cinnamomi risk of invasion in SW Australia (RF) 

 
Figure 33. Example of P.cinnamomi risk of invasion in Andalusia by SW Australia 

transfer RF model 
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Chapter 4: Discussion 

4.1 Phytophthora cinnamomi Location 
The number of data point used in this research, (95 presence and 

120 absence, prevalence 44 – 56%), differed significantly with other 

studies that predicted the risk of invasion of Oak Decline 

(Meentemeyer et al., 2004; Kelly et al., 2007; Václavík et al., 2010). 

Nevertheless, Franklin (2009) stated that 100 – 500 data points with 

a prevalence of (50 – 50%) should be enough to obtain accurate 

predictions. On the other hand, using true absences it is an 

improvement in comparison with similar studies (Kelly et al., 2007; 

Václavík et al., 2010) because it have been found that true absences 

increase model accuracy (Václavík & Meentemeyer, 2009). 

 

The predictive variables differed with other studies that modelled 

Phytophthora sp. risk of invasion. While (Meentemeyer et al., 2004; 

Václavík et al., 2010) used pre-classified predictive variables, we use 

preconceived establishment conditions. However, we used 

environmental continuous variable as has already been done for  

macrofungi (Wollan et al., 2008), invasive species (Ficetola et al., 

2007) or Phytophthora ramorum (Kelly et al., 2007) with accurate 

results. We use preconceived establishment conditions because we 

wanted to determine which environmental variables determined the 

risk of invasion and compare predictions between Andalusia and SW 

Australia. 

4.2 Environmental Variables 
“The Niche Theory” considers that species occurrence is determined 

by environmental, dispersal and biotic interaction factors (Soberón & 

Nakamura, 2009). Our dataset included environmental information, 

variables that could suggest fungus dispersal (i.e. flow direction, 

distance to water and roads) and preferences areas (forest, 

scrublands and flat valley bottom areas). However, we missed 

relations with other plants or hosts considered in other studies (Kelly 

et al., 2007; Václavík et al., 2010) and highlighted in some biological 

descriptions of the fungus (Hardham, 2005). Moreover, some studies 

concluded that different soils types enhance fungus distribution 

(Weste & Marks, 1987) but we did not consider soil information. 

These assumptions were considered during the research because of 

the flora and soil types dissimilarity between both study areas (FAO & 

IIASA, 2000). A factor considered to influence model transferability.  
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4.3 Study Area Comparison 
Though SW Australia and Andalusia are both Mediterranean regions 

(Peel et al., 2007), the multivariate area comparison carried out 

revealed difference in climate variables such as maximum 

temperature, mean temperature and potential evapotranspiration. 

However, both areas had similar environmental conditions after 

deleting outliers. Moreover, visual inspection of boxplots confirmed 

those differences that we suggest could be related to topography.  

 

SW Australia is a relatively flat area, without mountain ranges. The 

altitude increases inland up to 700 masl. Andalusia is characterized 

by a central valley surrounded by mountains. Andalusia´s elevation 

range changes rapidly from sea level up to 3.800 masl. The difference 

in topography explains the variability in temperature and precipitation 

between the study areas. Moreover, Andalusia elevation variability is 

associated to climatic variability including sub-climates that range 

from desert to alpine (Junta de Andalucía, 2007). This is not the case 

in SW Australia which is characterized by a uniform climate. 

 

Our finding suggests that model transferability should be performed 

carefully between Andalusia and SW Australia. The limitations were 

highlighted by the analysis of multivariate outlier detection flagging 

dissimilar variables. Model transferability can be performed 

confidently between both regions excluding dissimilar variables. 

4.4 Variable Importance 

4.4.1 Number of Variables 

The number of variables to explain the species occurrence varies with 

the organism studied. Franklin (2009) included a revision of recent 

studies with SDMs and the number of explanatory variables used in 

each, varied from 3 - 4 up to 40. Other researchers found that 1, 2 

and rarely 3 explanatory variables were sufficient (van Gils et al., 

2012). 

 

The result for the optimal number of variables is inconclusive. We 

found that Maximum and minimum AUC values were not influenced 

by the number of variables used to make the predictions (Figures 16 

& 17). Moreover, model performance variability measured by AUC 

standard deviation fluctuated across the number of variables without 

any pattern. However, we decided to choose the number of variables 

that minimized the AUC standard deviation in the awareness that this 

result could be due to chance. Minimum AUC standard deviation 

measures the model accuracy variability across the number of 
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variables. So, more robust model can be identified by lower AUC 

standard deviation. Furthermore, we had to decide on a final number 

of variables and neither in the literature nor our test we found a 

conclusive approach. 

 

The fact that model performances were independent of the number of 

variables emphasized model ability to find relationships between 

occurrences and explanatory variables and disagree with other 

studies which suggest a decreases of model accuracy with the 

increase of number of variables, in some cases (Barry & Elith, 2006; 

Zhang & Zhang, 2012). Moreover, this issue might be influenced by 

the fact that we compared model performance according to the 

maximum and minimum AUCs values instead of the mean AUC as 

other studies did (Elith et al., 2006; Syphard & Franklin, 2009; 

Heikkinen et al., 2012; Zhang & Zhang, 2012). 

4.4.2 Variable Importance Comparison 

The process to assess variable importance could be unbiased due to 

the fact that we only considered the more accurate model from each 

single technique. The more accurate model was found among 300 

“runs”. Choosing the models that returned the highest AUC can be 

misleading. This is because maximum values do not represent model 

prediction variability and could in some cases be outliers. Therefore, a 

good model performance could be due to chance. A proper analysis 

could have been done considering all models and using the mean AUC 

instead of maximum AUC and an average of variable importance 

across models as preferred by Syphard and Franklin (2009). Mean 

AUC values and average variable importance would have taken into 

account all the models performance. 

 

We found that model techniques differed in number and type of 

environmental variables and in their respective importance rank to 

return an accurate response. So, model techniques could mimic 

complex relations between variables which enhance model 

performance but challenged the ecological relationship between 

predictive and response variables (Barry & Elith, 2006). Machines 

learning algorithms found complex relationships, with numerous 

variables involved, while linear models gave a smoother relation 

between variables with lower number of variables. Additionally, the 

lack of a single important variables have been considered as a source 

of uncertainty in model prediction (Barry & Elith, 2006), a general 

issue in our study (Figure 19 & 20). 

 

We suggest that our statistical models gave a reasonable approach of 

P. cinnamomi environmental response in consonance with the 
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variables selected but with unclear ecological information due to the 

variable importance misclassification. We found accurate model 

results using different variable sets to predict P. cinnamomni 

occurrence in each study area. 

 

Likewise, we found that P. cinnamomi risk of invasion is predicted by 

different environmental situations in each study area. In the 

individual datasets there were two common variables. Distance to 

water and summer temperature, were classified in 2nd and 3rd order in 

the more accurate model. However, the variables more related to the 

predictions (elevation and actual evapotranspiration) differed (Figure 

21, Table 11). 

Table 11. Variable importance summary 

High Correlated Variable 

Rank 
Andalusia SW Australia 

Individual set Individual set 

1 elevation etr_aut 

2 dist_water maxt_sum 

3 meant_sum dist_water 

 

According to our finding we can suggest that the risk of invasion of P. 

cinnamomi in Andalusia and SW Australia was determined by 

different environmental variables where distance to water was 

common. Moreover, temperature in summer seemed to be also a 

relevant variable although they differed in their description. A boxplot 

visual inspection comparing both variables showed difference in their 

means and range (Figure 34a). Furthermore, the boxplot shows that 

the temperature range defined by both temperature variables agree 

with the optimal growing range of P. cinnamomi defined by Weste 

and Marks (1987) in their biological description of the fungus. Finally, 

an inspection of correlation between evapotranspiration in autumn 

and elevation showed that there was a low relationship between both. 

This finding confirms that the fungus distribution is determined by 

different environmental conditions in each study area (Figure 34b). 
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Figure 34. Temperature variable importance comparison (right) and correlation 

between actual evapotranspiration and elevation (left) 

The difference in the methodological process to compare variable 

importance in this study with Syphard and Franklin (2009) suggest 

that our result could be doubtful because it just considered the 

average influence of the “best” single models between all techniques. 

4.4.3 Ecological Explanation of Important 
Variables 

The found predictive variables can be categorised by four classes: 

Climatic, topographical, land cover and dispersal. Temperature has 

been assessed as an important factor to P. cinnamomi growth and 

distribution (Weste & Marks, 1987; Sánchez et al., 2003). Mean 

temperature in summer and maximum temperature in summer were 

found as relevant variables. The fact that summer is the most 

influential season suggest that temperature in summer influences the 

survival of the fungus by forming Chlamydospores, a life-stage 

capable to resist unfavourable conditions (Weste & Marks, 1987). 

Visual comparison of summer temperatures response curves pointed 

out difference between both regions (Figures 25b & 26b). The high 

probability of occurrence in Andalusia for the complete temperature 

range (12 - 30ºC) coincided with fungus growing interval. However, 

this did not occur in SW Australia (Weste & Marks, 1987). 

 

Moreover, actual evapotranspiration in autumn is directly related to 

soil moisture (Droogers, 2000). Soil moisture has also been pointed 

out as an important factor of distribution and growth of P. cinnamomi 

(Weste & Marks, 1987). Warm temperatures and free water in the 

soils enhance dispersal, production and growth of P. cinnamomi 

(Weste & Marks, 1987). Our findings agree with some biological 

a) b) 
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studies which suggested that in warm climates the fungus distribution 

was controlled by soil moisture. Moreover, host resistance may vary 

with temperature (Weste & Marks, 1987). The response curve 

presented a positive relationship. The habitat suitability increased 

with the soil moisture which agrees with (Figure 26d) (Hardham, 

2005).  

 

Elevation might be related to the risk of invasion according to their 

relation with the main host species, Quercus in Andalusia and Jarrah 

in SW Australia. The vegetations cover maps (Figures 2 & 3) revealed 

that presence points were mainly located in Jarrah and Quercus forest 

which were in altitude range between 200 and 500 masl. However, 

this result could be biased due to sample strategy followed in each 

area. Sample were collected from Quercus and Jarrah forest while the 

fungus may occurs in a wider range (Dell et al., 2005). The visual 

comparison between response curves revealed opposite pattern. In 

Andalusia the altitude range might be related to Quercus forest which 

grows from sea level up to 2.000 masl in some cases (Aronson et al., 

2009). While in SW Australia, the pattern is incongruent because 

according to Weste and Marks (1987) the fungus avoid high altitudes. 

Moreover, in SW Australia temperature and dryness increased inland 

and these are unsuitable conditions for the fungus (Figure 25a & 

26a).  

 

NDVI standard deviation in summer explained the distribution of 

P.cinnamomi. This could be related to land cover and climate. NDVI 

might be linked to land cover in the same way that elevation is with 

Quercus and Jarrah forest. The SW Australian response curve shows 

that with lower NDVI standard deviation the probability of invasion 

was higher (Figure 35a). Forest NDVI standard deviation is often low 

through time. This means that the risk of invasion is associated with 

a low variability of NDVI as Jarrah forest cover. On the other hand, 

NDVI might be related to climate. The underline season was summer. 

In the Mediterranean, during long warm summers herbaceous 

vegetation dries out, so the NDVI low variability may describe forest 

and scrubland covers. The fungus affects woody species. 
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Figure 35. NDVI standard deviation in summer. SW Australia 

Distance to water, flow direction, slope and slope-length simulates 

the fungus natural dispersion by water flow (Shearer et al., 2007). 

Therefore, downhill and ponding areas have been defined at high risk 

of infection. The distance to water response curve for SW Australia 

presented a negative correlation with the probability of occurrence 

which might indicate the importance of this variable in the fungus 

dispersal, while in Andalusia remains almost constant possibly 

because of its dense waterway (Figure 25c & 26c). 

 

The visual comparison of the response curve revealed meaningful 

ecological relationship especially in SW Australia. We found positive 

correlation with actual evapotranspiration (soil moisture), negative 

correlation with distance to water (dispersing Agent) in addition to 

summer temperatures. 

4.5 Model Evaluation 
We compared model accuracy within and between study areas. We 

found that Andalusian models had better performance with higher 

AUC’s compared to Australian models. We suggest that this difference 

is due to the sampling strategy. Andalusia point location were 

collected by a systematic stratified sampling design in Quercus forest 

areas while the SW Australia points were taken by a purposive 

method within the areas where decline symptoms in trees and 

scrublands were present. Moreover, Edwards et al. (2006) found 

similar effects of sampling design although with (15-45%) prevalence 

ratio and Hirzel and Guisan (2002) demonstrated that regular and 

equal stratified sampling were the more accurate strategies. In 

addition, Andalusia point location were distributed throughout the 

entire study area while in SW Australia the points were not that well 

distributed (Figure 2 & 3), which may have influenced negatively the 

SDM extrapolation (Franklin, 2009). 

 

a) 
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AUC values with the independent dataset were higher in both study 

areas than with the common dataset which supported the variable 

selection process and verified that different variables predict 

accurately P. cinnamomi risk of invasion in Andalusia and SW 

Australia. 

 

In Andalusia BRT with an AUC = 0.925, high performance, and K = 

0.78, very good, was the “best” model in the individual test while 

MaxEnt with AUC = 0.925 had a high performance with the common 

dataset. 

 

In SW Australia FDA resulted as more accurate model with AUC = 

0.897 and K = 0.745 in the individual test which meant a high model 

performance and very good level of agreement between data and 

predictions. MaxEnt returned the highest AUC = 0.841 which was 

adequate result with the common dataset. 

 

A Comparison of the complete set of models across study areas and 

variable sets highlighted that machine-learning methods ANN, BRT, 

MaxEnt and RF had the overall higher accuracy. However, machine-

learning method tend to over-fit predictions even though this have 

been considered a desirable property to model invasive species 

(Jiménez-Valverde et al., 2011). Regression methods GAM, GLM and 

MARS together with classification methods CTA and FDA returned an 

acceptable to high accurate response. These techniques have been 

suggested to predict the fundamental niche more efficiently (Jiménez-

Valverde et al., 2011). On the other hand, the low predictive power of 

SRE has been also pointed out. SRE belong to bioclimatic envelop 

techniques which are the simple and “older” species distribution 

method. Therefore, the improvements on SDM techniques come also 

to light. 

 

Finally, the ability of AUC statistic to assess model performance 

individually have been criticized by several authors (Lobo et al., 

2008). They say that sensitivity and specificity should also be 

reported in model comparison. However, some drawbacks are not 

applicable to this research because same species are compared within 

the same extent (See Appendix I, Tables 25 & 26). 
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4.6 Model Transferability 
The transferability test highlighted the poor ability of machine-

learning methods (ANN, BRT, MaxEnt and RF) to extrapolate across 

space. Our results disagree with Heikkinen et al. (2012) who found 

good transferability in ANN, BRT and MaxEnt. However, we both 

agree about GAM and GLM good performance and transferability. 

Wenger and Olden (2012) also marked the transferability of GAM and 

GLM. We suggest that the transferability strengths of GLM and GAM 

versus machine-learning methods is linked to the common issue of 

feeding SDMs with lower number of variables to avoid complexity or 

over-fitting (Wiens et al., 2009). Complexity may come up due to 

fitting non-linear relationships between species and environment, as 

did BRT and MaxEnt (Elith et al., 2006). In addition, model 

complexity might be caused by the inclusion of too many descriptive 

variables (Thuiller et al., 2008). According to our results the latter 

might be the case why machine-learning methods have lower 

transferability in comparison with regression methods (Figures 19 & 

20, Tables 9 & 10). 

 

Moreover, the lack of transferability in machine-learning methods 

could be due to the inclusion of elevation as a predictive variable 

while GAM and GLM did not in SW Australia (Figure 20). The elevation 

response curve in MAxEnt highlighted a mismatch in ranges between 

high probability of occurrence and elevation in both areas (Figure 

36).  

 

 
Figure 36.  Elevation response curve in Andalusia (right) and SW Australia (left) 

MaxEnt. 

This also explains the high transferability power presented by RF 

between SW Australia and Andalusia (Figure 37). High probability of 

occurrence was not related to elevation in this RF model. On the 

contrary, Heikkinen et al. (2012) and Wenger and Olden (2012) 

Andalusia SW Australia 
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found poor transferability ability using RF in comparison with the 

other methods. 

 

 
Figure 37.  Elevation response curve RF model. Right, Andalusia; left, SW 

Australia 

The ability of MARS to produce realistic extrapolations is doubtful. 

MARS presented low results in both areas and agreed with Heikkinen 

et al. (2012). Additionally Prasad et al. (2006) pointed out MARS low 

extrapolation capacity to perform future projections. In the same line, 

the tendency to over-fit of CTA that was mentioned by Thuiller (2003) 

might explains its poor transferability results in addition to 

complexity. 

 

Finally, according to our results GAM and GLM are the “best” methods 

for extrapolation. Transferability together with their acceptable 

performance and their continuous response curves (Austin, 2007), 

makes these model techniques a suitable tool to; (1) predict species 

across regions, (2) indentify species occurrence in restrings areas, (3) 

predicts the influence of climate change on biodiversity and (4) 

predict the potential invasion of alien species. 

SW Australia 
Andalusia 
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Chapter 5: Conclusion 
Model transferability extrapolates predictions across regions. It 

requires similar environmental conditions between the regions. In 

some studies the environmental similarities between regions are 

assumed (Randin et al., 2006; Heikkinen et al., 2012). Our finding 

suggests that an analysis of dissimilarity between environmental 

conditions may exclude dissimilar environmental variables from 

modelling and improve model transferability. 

 

The risk of invasion by P. cinnamomi is predicted by elevation, 

distance to water and mean temperature in summer in Andalusia. 

While in SW Australia evapotranspiration in autumn, maximum 

temperature in summer and distance to water are found as the most 

important variables. The environmental conditions differ between 

both areas. The visual comparison between response curves result 

ambiguous, although ecologically meaningful. Finally, our research 

emphasize the importance of the variable selection process that 

should be done carefully and requires expert ecological knowledge of 

the species modelled (Barry & Elith, 2006).  

 

Species distribution models predicted Phytophthora cinnamomi risk of 

invasion accurately in Andalusia (AUCs>0.85) and SW Australia 

(AUCs>0.72) with nine out of ten model techniques. The predictive 

power of machine-learning methods as BRT, RF and MaxEnt (AUCs> 

0.90 in Andalusia and >0.83 in SW Australia) and the classification 

method FDA (AUCs>0.89 in both) were superior to the others. The 

sample strategy design may have caused the lower model 

performance in SW Australia (Edwards et al., 2006). 

 

We found that machine-learning methods ANN, BRT, MaxEnt and RF 

give an accurate response in the training area while having a low 

transferability. On the contrary, regression methods as GAM and GLM 

show lower AUCs in the training areas but have best transferability. 

MARS, CTA and FDA show a similar predictive power as regression 

methods, though with lower transferability. SRE predictive and 

transferability ability are the lowest. A lower number of explanatory 

variables might increase model transferability although further 

research should be done in this area. In conclusion, GAM and GLM are 

the models that provide good performance combined with 

transferability results. 

 

Our results suggested to consider carefully model predictions outside 

their training data range, so that in extrapolation through time or 

space. In order to achieve more confident results in SDM 
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extrapolations we suggest to tests model transferability and 

incorporate its results to model accuracy analysis. In addition, it is 

suggested to use different SDM techniques depending on the aim of 

the study. In studies where the aim is to predict species occurrence in 

inaccessible area, predict the distribution of rare species or predict 

the potential distribution of an invasive species we recommend to use 

GAM or GLM. 
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Appendix I 
Table 12. Multivariate outlier detection 

Conflictive variables (SMD>
2

2 ) 

asrad, cld_aut, cld_sum, cld_win, etp_sum, maxt_sum, cld_ann, etr_ann, mint_spr, 
sun_spr, sun_sum, cld_spr, meant_spr, mint_sum meant_aut, mint_aut, wet_win, 
meant_ann, nd_rain_spr, sun_win, etp_spr, nd_rain_win, wet_spr, meant_win, 
ndvi_sd_win, wet_aut, etp_ann, maxt_aut, etp_win 

Similar Variables (SMD<
2

2 ) 

aspect, dist_road, dist_water, elevation, etp_aut, etr_aut, etr_spr, etr_sum, etr_win, 
farmland, flowdir, forest, frs_ann, frs_aut, frs_spr, frs_sum, frs_win, grassland, lgp, 
maxt_ann, maxt_spr, maxt_win, meant_sum, mint_ann, mint_win, mr_vbf, 
nd_rain_ann, nd_rain_aut, nd_rain_sum, ndvi_av_ann, ndvi_av_aut, ndvi_av_spr, 
ndvi_av_sum, ndvi_av_win, ndvi_sd_aut, ndvi_sd_spr, ndvi_sd_ann, ndvi_sd_sum, 
rain_ann, rain_aut, rain_spr, rain_sum, rain_win, ro_ann, ro_aut, ro_spr, ro_sum, 
ro_win, schrubland, sink, slope, slope_length, sm_ann, sm_aut, sm_spr, sm_sum, 
sm_win, sparce, substr, sun_ann, sun_aut, urban, wet_ann, wet_sum 

Table 13. Boxplot variable Classification  

Similar means 

Aspect, lgp, mr_vbf, ndvi_sd_ann, ndvi_sd_sum, ndvi_sd_ann, substr, forest, sparce, 
grassland, urban, farmland, schrubland, 

Dissimilar means 

asrad, cld_aut, cld_sum, cld_win, etp_sum, maxt_sum, cld_ann, etr_ann, mint_spr, 
sun_spr, sun_sum, cld_spr, meant_spr, mint_sum meant_aut, mint_aut, wet_win, 
meant_ann, nd_rain_spr, sun_win, etp_spr, nd_rain_win, wet_spr, meant_win, 
ndvi_sd_win, wet_aut, etp_ann, maxt_aut, etp_win, sm_ann, sm_aut, sm_spr, 
sm_sum, sm_win, sun_ann, sun_aut 

Enveloping range 

dist_road, dist_water, elevation, etp_aut, etr_aut, etr_spr, etr_sum, etr_winflowdir, 
forest, frs_ann, frs_aut, frs_spr, frs_sum, frs_win, maxt_ann, maxt_spr, maxt_win, 
meant_sum, mint_ann, mint_win, nd_rain_ann, nd_rain_aut, nd_rain_sum, 
ndvi_av_ann, ndvi_av_aut, ndvi_av_spr, ndvi_av_sum, ndvi_av_win, ndvi_sd_aut, 
ndvi_sd_spr, rain_ann, rain_aut, rain_spr, rain_sum, rain_win, ro_ann, ro_aut, ro_spr, 
ro_sum, ro_win, sink, slope, slope_length, , wet_ann, wet_sum 
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Table 14. Analysis of collinearity results in Andalusia. 

Variables VIF Variables VIF 

aspect  1.016584 ndvi_av_spr NaN 

asrad  2.80241 ndvi_av_sum NaN 

cld_aut  4.416347 ndvi_av_win NaN 

cld_spr  3.075054 ndvi_sd_aut 1.473013 

cld_sum  6.880399 ndvi_sd_spr 1.401879 

cld_win  4.605479 ndvi_sd_sum 1.488448 

dist_road  1.314359 ndvi_sd_win 1.446093 

dist_water  1.110111 rain_spr  2.603423 

elevation  4.58486 rain_sum  3.475938 

etp_aut  5.028966 ro_aut  2.961508 

etr_aut  3.189802 ro_spr  4.706019 

etr_spr  2.464264 ro_sum  2.425971 

etr_sum  2.047741 shrubland  1.244987 

etr_win  8.021377 sink  4.530363 

farmland  1.393689 slope  1.246836 

flowdir  1.063668 slope_length  1.173909 

frs_aut  5.977137 sm_aut  5.207821 

frs_spr  5.509032 sm_spr  3.965157 

frs_sum  2.437951 sm_sum  1.419309 

grassland 1.056727 sm_win  2.149801 

lgp  3.45744 sparce  1.017311 

maxt_ann  7.668116 substr  2.004189 

maxt_sum  3.972388 sun_sum  5.16054 

meant_sum  5.138166 sun_win  5.415015 

mint_sum  5.565177 urban  1.030116 

mint_win 5.131128 wet_ann  4.787577 

mr_vbf 1.077351 wet_aut  5.933211 

nd_rain_sum  1.762096 wet_spr  3.698527 

nd_rain_win  1.647782 wet_sum  2.156721 

ndvi_av_ann NaN wet_win  4.214086 

ndvi_av_aut NaN   

Table 15. Analysis of collinearity results in Southwest Australia. 

Variables VIF Variables VIF 

aspect 1.56265 nd_rain_spr 5.383356 

asrad 2.208482 nd_rain_sum 6.583005 

cld_win 7.408131 ndvi_av_ann NaN 

dist_road 2.433441 ndvi_av_aut NaN 

dist_water 4.920254 ndvi_av_spr NaN 

elevation 3.723748 ndvi_av_sum NaN 

etp_ann 4.389227 ndvi_av_win NaN 

etp_aut 4.613975 ndvi_sd_ann 1.632248 
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Variables VIF Variables VIF 

etp_spr 5.825692 ndvi_sd_aut 7.792278 

etr_aut 5.781966 ndvi_sd_sum 7.193667 

etr_win 8.060153 ndvi_sd_win 5.089221 

flowdir 1.638937 rain_aut 3.157844 

forest 4.872873 rain_spr 8.834589 

frs_sum 3.727892 rain_sum 6.932753 

frs_win 4.669365 ro_aut NaN 

grassland 3.007996 ro_spr NaN 

lgp 2.471522 ro_sum NaN 

maxt_ann 5.89776 ro_win 1.508466 

maxt_aut 8.115661 shrubland 4.679568 

maxt_spr 6.535298 sink 2.622465 

maxt_sum 4.529628 slope 1.939261 

meant_ann 7.524935 slope_length 1.589986 

meant_aut 4.497451 sm_aut 2.048551 

meant_spr 6.336262 sm_spr 9.94033 

meant_sum 4.407796 sm_win 8.115136 

meant_win 7.817776 sparce 1.988436 

mint_ann 5.498913 substr 1.758227 

mint_aut 6.149601 sun_aut 6.844044 

mint_spr 6.8774 sun_spr 8.185003 

mint_sum 8.199376 sun_win 5.746109 

mint_win 5.433885 urban 2.868092 

mr_vbf 1.574735 wet_aut 3.033147 

nd_rain_aut 4.046758 wet_sum 6.146046 

Table 16. Remnant common variables after collinearity analysis 

N Variables 
Variables  
SW Aus. 

Variables 
And. 

1 aspect aspect aspect 

2 asrad asrad asrad 

3 cld_ann  
 

4 cld_aut  cld_aut 

5 cld_spr  cld_spr 

6 cld_sum  cld_sum 

7 cld_win cld_win cld_win 

8 dist_road dist_road dist_road 

9 dist_water dist_water dist_water 

10 elevation elevation elevation 

11 etp_ann etp_ann 
 

12 etp_aut etp_aut etp_aut 

13 etp_spr etp_spr 
 

14 etp_sum  
 

15 etp_win  
 

16 etr_ann  
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N Variables 
Variables  
SW Aus. 

Variables 
And. 

17 etr_aut etr_aut etr_aut 

18 etr_spr  etr_spr 

19 etr_sum  etr_sum 

20 etr_win etr_win etr_win 

21 farmland  farmland 

22 flowdir flowdir flowdir 

23 forest forest 
 

24 frs_ann  
 

25 frs_aut  frs_aut 

26 frs_spr  frs_spr 

27 frs_sum frs_sum frs_sum 

28 frs_win frs_win 
 

29 grassland grassland grasslands 

30 lgp lgp lgp 

31 maxt_ann maxt_ann maxt_ann 

32 maxt_aut maxt_aut 
 

33 maxt_spr maxt_spr 
 

34 maxt_sum maxt_sum maxt_sum 

35 maxt_win  
 

36 meant_ann meant_ann 
 

37 meant_aut meant_aut 
 

38 meant_spr meant_spr 
 

39 meant_sum meant_sum meant_sum 

40 meant_win meant_win 
 

41 mint_ann mint_ann 
 

42 mint_aut mint_aut 
 

43 mint_spr mint_spr 
 

44 mint_sum mint_sum mint_sum 

45 mint_win mint_win mint_win 

46 mr_vbf mr_vbf mr_vbf 

47 nd_rain_ann  
 

48 nd_rain_aut nd_rain_aut 
 

49 nd_rain_spr nd_rain_spr 
 

50 nd_rain_sum nd_rain_sum nd_rain_sum 

51 nd_rain_win  nd_rain_win 

52 ndvi_av_ann ndvi_av_ann ndvi_av_ann 

53 ndvi_av_aut ndvi_av_aut ndvi_av_aut 

54 ndvi_av_spr ndvi_av_spr ndvi_av_spr 

55 ndvi_av_sum ndvi_av_sum ndvi_av_sum 

56 ndvi_av_win ndvi_av_win ndvi_av_win 

57 ndvi_sd_ann ndvi_sd_ann 
 

58 ndvi_sd_aut ndvi_sd_aut ndvi_sd_aut 

59 ndvi_sd_spr  ndvi_sd_spr 

60 ndvi_sd_sum ndvi_sd_sum ndvi_sd_sum 
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N Variables 
Variables  
SW Aus. 

Variables 
And. 

61 ndvi_sd_win ndvi_sd_win ndvi_sd_win 

62 rain_ann  
 

63 rain_aut rain_aut 
 

64 rain_spr rain_spr rain_spr 

65 rain_sum rain_sum rain_sum 

66 rain_win  
 

67 ro_ann  
 

68 ro_aut ro_aut ro_aut 

69 ro_spr ro_spr ro_spr 

70 ro_sum ro_sum ro_sum 

71 ro_win ro_win 
 

72 schrubland schrubland schrubland 

73 sink sink sink 

74 slope slope slope 

75 slope_length slope_length slope_length 

76 sm_ann  
 

77 sm_aut sm_aut sm_aut 

78 sm_spr sm_spr sm_spr 

79 sm_sum  sm_sum 

80 sm_win sm_win sm_win 

81 sparce sparce sparce 

82 substr substr substr 

83 sun_ann  
 

84 sun_aut sun_aut 
 

85 sun_spr sun_spr 
 

86 sun_sum  sun_sum 

87 sun_win sun_win sun_win 

88 urban urban urban 

89 wet_ann  wet_ann 

90 wet_aut wet_aut wet_aut 

91 wet_spr  wet_spr 

92 wet_sum wet_sum wet_sum 

93 wet_win  wet_win 
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Table 17. Final variable datasets in the first test. 

1st test 

Model MaxEnt AUC 0.747 Model MaxEnt AUC 0.868 

Variables SW Australia Variables Andalusia 

aspect asrad 

dist_water dist_water 

elevation elevation 

etr_aut etp_aut 

flowdir frs_sum 

meant_sum maxt_sum 

mint_win meant_sum 

rain_spr mint_win 

slope sun_win 

wet_aut wet_aut 

Table 18. Final variable datasets in the second test. 

2nd test (RF) 

Model RF AUC 0.842 Model MaxEnt AUC 0.903 

Variables SW Australia Variables Andalusia 

aspect asrad 

dist_road dist_water 

elevation elevation 

maxt_ann maxt_sum 

maxt_sum meant_sum 

meant_sum mint_sum 

mint_sum nd_rain_sum 

nd_rain_sum ro_spr 

ndvi_sd_sum ro_sum 

slope sun_win 

Table 19. Final variable datasets in the third test. 

3rd test (BRT) 

Model BRT AUC 0.852 Model BRT AUC 0.890 

Variables SW Australia Variables Andalusia 

cld_win aspect 

dist_road dist_road 

dist_water dist_water 

elevation elevation 

etr_aut meant_sum 

meant_sum mint_sum 

ndvi_sd_sum ro_spr 

slope ro_sum 

sm_aut slope_length 

wet_aut sun_win 
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Table 20. Final variable datasets in the forth test 

4th test (MaxEnt) 

Model MaxEnt AUC 0.901 Model MaxEnt AUC 0.913 

Variables SW Australia Variables Andalusia 

cld_win dist_water 

dist_water elevation 

elevation meant_sum 

etr_aut mint_win 

frs_sum ndvi_sd_sum 

meant_sum ro_aut 

ndvi_av_win ro_spr 

ndvi_sd_sum slope 

sm_aut slope_length 

wet_aut wet_aut 

Table 21. Initial variables dataset in the fifth test 

Fifth Test’s Initial Variable Dataset 

Variables SW Australia Variables Andalusia 

aspect aspect 

cld_win asrad 

dist_road dist_road 

dist_water dist_water 

elevation elevation 

etr_aut etp_aut 

flowdir frs_sum 

maxt_ann maxt_sum 

maxt_sum meant_sum 

meant_sum mint_sum 

mint_sum mint_win 

mint_win nd_rain_sum 

nd_rain_sum ndvi_sd_sum 

ndvi_sd_sum ro_aut 

rain_spr ro_spr 

slope ro_sum 

sm_aut slope 

wet_aut slope_lenght 

 sun_win 

 wet_aut 
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Table 22. Final variable datasets in the fifth test 

5th test (Combine) 

Model MaxEnt AUC 0.830 Model MaxEnt AUC 0.921 

Variables SW Australia Variables Andalusia 

aspect dist_water 

dist_water elevation 

elevation meant_sum 

etr_aut mint_win 

flowdir ndvi_sd_sum 

meant_sum ro_aut 

ndvi_sd_sum ro_spr 

rain_spr slope 

slope slope_lenght 

wet_aut wet_aut 

Table 23. Final variable datasets in the final test 

Final test  

Final Variables Dataset 

aspect ndvi_sd_sum 

dist_water rain_spr 

elevation ro_aut 

etr_aut ro_spr 

flowdir slope 

maxt_sum slope_lenght 

meant_sum wet_aut 

mint_win  

Table 24. Final 10 variable datasets in the final test 

6th test (FINAL 10 Variables) 

SW AUSTRALIA ANDALUSIA 

Model MARS AUC 0.822 Model BRT AUC 0.925 

Final Variables Dataset 

aspect dist_water 

dist_water elevation 

elevation meant_sum 

etr_aut mint_win 

flowdir ndvi_sd_sum 

maxt_sum ro_aut 

meant_sum ro_spr 

ndvi_sd_sum slope 

slope slope_length 

wet_aut wet_aut 
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Table 25. Andalusia models. Sensitivity and specificity 

Models 

Andalusia 

Individual dataset Common dataset 

Sensitivity Specificity Sensitivity Specificity 

ANN 75.86 91.67 86.21 91.67 

BRT 82.76 94.44 68.97 100.00 

CTA 75.86 86.11 79.31 83.33 

FDA 82.76 86.11 82.76 91.67 

GAM 68.97 83.33 89.66 83.33 

GLM 79.31 94.44 86.21 83.33 

MARS 86.21 80.56 79.31 88.89 

MAXENT 86.21 86.11 100.00 75.00 

RF 86.21 80.56 86.21 83.33 

SER 82.76 63.89 93.10 61.11 

Table 26. SW Australian models. Sensitivity and specificity 

Models 

SW Australia 

Individual dataset Common dataset 

Sensitivity Specificity Sensitivity Specificity 

ANN 53.57 60.00 75.00 77.14 

BRT 78.57 85.71 82.14 71.43 

CTA 75.00 85.71 82.14 65.71 

FDA 89.29 85.71 53.57 91.43 

GAM 78.57 68.57 60.71 77.14 

GLM 92.86 45.71 75.00 71.43 

MARS 96.43 45.71 78.57 71.43 

MAXENT 71.43 82.86 75.00 94.29 

RF 75.00 80.00 89.29 57.14 

SRE 89.29 45.71 57.14 71.43 
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