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Abstract 
 
Accurate data on individual tree crowns and their species within 
stands is still limited affecting many remote sensing studies on 
allometric equations, timber volume, above ground biomass and 
carbon exchange. This study evaluated the synergistic use of fine 
resolution multispectral imagery (WorldView-2, 2 m) and high density 
LiDAR data (160 points/m-2) for individual crown segmentation and 
species identification and classification of two conifer species (Scots 
Pine-Pinus sylvestris L. and Mountain pine-Pinus uncinata Mill. Ex 
Mirb) in a mountainous area of the southern French Alps. The 
integration of WorldView-2 multispectral imagery and LiDAR data was 
considered during image segmentation and subsequent species 
identification and classification on a premise of complementarity. 
Three individual crown segmentation and species identification 
schemes were examined namely; segmentation and species 
identification based on LiDAR layers, spectral layers and a 
combination of the two datasets. A region growing segmentation 
approach was used. For each scheme, individual treetops were 
identified using a fixed-window local maxima approach and were used 
as seed pixels to grow individual tree crowns. The individual crown 
segments were subsequently used to derive one spectral and three 
physical parameters for species identification and classification. Tree 
height, crown diameter and the coefficient of variation of LiDAR 
intensity were the physical parameters derived from LiDAR data 
whereas the maximum WorldView-2 satellite albedo reflectance was 
the spectral attribute derived from the optical satellite data. Logistic 
Regression and Classification and Regression Trees (CART) modelling 
approaches were used to identify each tree to either Scots or 
Mountain pine. Quantitative segmentation quality assessment showed 
that the LiDAR derived segments were superior (Segmentation 
goodness = 86.4%) to the optical segments. However, given the 
distortions in the multispectral image, integration of the datasets for 
individual crown segmentation was not possible. Classification 
accuracy results showed that the integration of spectral and LiDAR 
data improved the species identification and classification compared 
to using either data sources independently. The highest classification 
accuracy (Kappa = 54%) was acquired when using both spectral and 
LiDAR derived metrics and a CART approach. This study concluded 
that although the integration of LiDAR and WorldView-2 was not 
possible to achieve for this study, it is still conceptually feasible and 
that the integration of the datasets for individual tree species 
identification and classification using a regression modelling approach 
provided increased interpretation capabilities and an opportunity for 
more reliable results.  
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Chapter 1 
 

1.1 INTRODUCTION 
 

1.1.1 Background 
 
Forests are important earth resources providing both ecosystem 
products and services (FAO, 2012). For this reason, forests require to 
be sustainably managed. However, if sustainable management of 
forests for purposes such as commercial logging, biodiversity 
management or for meeting wildlife, environmental and recreational 
goals is to be achieved, forests must be inventoried. Inventory has 
for long been a common practise for good forest management 
however, in the recent past, studies on inventory and improved forest 
management have particularly gained wider attention with the 
appreciation of global climatic change concepts and development of 
forest-centred climate change mitigation strategies (Nabuurs, 2007). 
For example, various developing countries will soon be seeking 
carbon financing for protecting their forests as part of the evolving 
(United Nations Framework Convention on Climate Change-Reducing 
Emissions from Deforestation Degradation) UNFCCC REDD+ 
negotiations. As a prerequisite to successful baseline, monitoring and 
accounting of these projects; the UNFCCC expects all REDD+ 
stakeholders to use methodologies that estimate emissions and 
removals in a demonstrable, as accurate as possible, complete, 
comparable, verifiable, and with consistence as stipulated in the 
Vienna convention for the protection of the ozone layer and the 
Montreal protocol on substances that deplete the ozone layer (UNEP, 
2000). With initiatives such as this, it is clear that forest inventory 
will remain a core aspect of forest monitoring and management. 
Therefore techniques that automate the inventory procedures and 
provide optimally accurate estimates will gain significance.  
 
There are different techniques of forest inventory. Traditionally, forest 
inventory was solely field-plot based but later emerged the manual 
aerial photographic interpretation of high resolution forest cover data. 
Then begun analysis of high resolution satellite imagery data and 
more recently, analysis of terrestrial and airborne photogrammetry 
data (Tomppo, 2009). Despite this evolution, all techniques aim at 
extraction of forest variables such as Diameter at Breast Height 
(DBH), tree density, basal area, tree height, stand volume, species 
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dominance, species composition, species diversity etc. (Kaartinen et 
al., 2012) aiming at improving the understanding of the forests’ 
growth structures and composition. Although a very useful forest 
inventory variable like DBH is still difficult to extract from airborne or 
spaceborne data (Dalponte et al., 2011; Bi et al., 2012), the future 
points to domination of remote sensing techniques in forest 
inventory. This is mainly because; (1) remote sensing techniques 
provide higher accuracies in prediction of many forest variables,  (2) 
data derived is easy to extrapolate over large areas since they are 
not dependent on stand boundaries, (3) the techniques can be used 
to relative accuracy in areas of limited access such as mountainous 
and dense forests (4) data acquisition and processing costs are less 
and (5) the ability to extract forest resource maps key in forest 
management (Wang et al., 2004; Tomppo, 2009; Véga & Durrieu, 
2011; Kaartinen et al., 2012).  
 
The issue of the prediction accuracies often arises in remote sensing 
studies on forest inventory. Theoretically, forest attributes can be 
estimated at higher accuracies if remote sensing techniques are 
integrated than used in isolation. This is because use of multi-
sensoral data together with improved integration methods may 
overcome some of the problems which are faced with single data sets 
(Koch, 2010). Leckie et al. (2003) demonstrate that Light Detection 
and Ranging (LiDAR) and high resolution optical imagery indeed 
complement each other while mapping crowns of individual trees in 
both open and closed temperate forest stands. They achieved 80%–
90% good correspondence with the ground reference tree 
delineations based on ground data. Shreuder et al. (2008) used an 
empirical analysis of LiDAR intensity data and found out that this data 
alone could distinguish broadleaved species from conifers and further 
distinguish various tree species within these broad groups with 
classification accuracies ranging between 70%-98%. On the other 
hand, Sugumaran and Voss (2007), utilized the LiDAR intensity data 
in integration with high resolution multispectral and hyper-spectral 
data to create image segments and user defined class rules and 
found that fusing LiDAR data with optical imageries enhanced the 
classification accuracies by 10%. Holmgren et al. (2008) combined 
LiDAR data with optical imagery for individual-tree-based species 
identification and presented the benefits of integrating very high 
resolution LiDAR data and high spatial resolution aerial imagery. 
Straub et al. (2009) and Popescu (2004) provide examples of 
research which utilized the combination of tree structural features 
from LiDAR with spectral information of multispectral image to 
improve biomass and volume estimates. Heinzel and Koch (2012) 
also investigated comprehensive sets of different types of features 
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which were derived from LiDAR height metrics, texture, hyperspectral 
data and color infrared for classifying four tree species. Kim et al. 
(2010) used fusion of aerial photography and LiDAR data for 
delineation of individual trees to improve carbon storage estimates.  
 
The aforementioned examples provide practical context to possible 
synergies between LiDAR and fine resolution optical imagery. The 
general idea in this study is that while LiDAR offers high geometric 
detail (peaks and valleys) to explain the height, structure and size of 
individual tree canopies (Chen et al., 2006), the lack of spectral 
signature remains an important limitation of this data in forest 
inventory studies (Leckie et al., 2003; Lim et al., 2003; Deng et al., 
2007; Suratno et al., 2009b; Swatantran et al., 2011). Consequently, 
foresters continue to rely on field survey and a priori knowledge of 
vegetation distributions and to some extent passive remote sensing 
to generate species data (Cho et al., 2011).  Therefore, by utilizing 
LiDAR vertical structural and intensity data as well as the optical 
imagery spectral data, output accuracies for individual tree crown 
segmentation and species identification may improve. 

1.1.2 Segmenting Individual Tree Crowns 
 
Segmentation of individual trees and extraction of relevant tree 
structure information from remotely sensed data is very useful in a 
variety of forest applications (Chen et al., 2006). For example, to 
estimate the stem volume, segmenting individual tree crowns and 
extracting relevant tree structure parameters is prerequisite (Erikson, 
2004). To obtain such individual tree parameters, the initial process 
is to isolate individual trees and delineate tree crown boundaries. 
Measuring precise crown segmentation is a challenging task, because 
the irregularity of many crown shapes is difficult to capture using 
standard forestry field equipment (Kato et al., 2009). Therefore, 
intensive research has been done on automated tree detection and 
crown delineation using remotely sensed data.  
 
Earlier remotely sensed data from space are not suitable for tree 
crown segmentation because the pixel size is usually much larger 
than a typical tree crown size. Strahler (1986) referred to spatial 
resolution of these images with respect to object size as low-
resolution. Due to the limitation in pixel resolution of earlier remote 
sensing data from space, a significant amount of work extracting tree 
crown size was based on high spatial resolution aerial photos 
(Brandtberg & Walter, 1998).  Pitt et al. (1997) concluded that only 
the very high-resolution capabilities of aerial photography and digital 
cameras would be suitable. Automatic tree crown detection from 
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aerial photos requires the pixel size to be much smaller than the tree 
crown size in order to define tree crown boundaries. However, high 
spatial resolution increases variation in within-crown brightness, 
making tree crown identification difficult (Song et al., 2010). 
Automatic detection often assumes that each tree has a distinct 
boundary with no overlap between adjacent crowns, but such overlap 
is common. Therefore, validation shows that direct delineation of tree 
crowns on high spatial resolution aerial photos can lead to significant 
errors in both the number of crowns and the crown size on a tree-by-
tree basis (Brandtberg & Walter, 1998).  
 
With the emergence of very high spatial resolution satellite images 
such as IKONOS and QuickBird, the pixel and spectral resolution gap 
which existed between satellite images and aerial photographs has 
decreased (Carleer & Wolff, 2004). They commend a more object-
oriented image analysis paradigm, one that shift from pixel-based 
techniques towards the delineation of individual tree crowns 
(Gougeon & Leckie, 2006). The object-oriented approach will reduce 
the local spectral variation caused by crown textures, gaps and 
shadows. In addition, any type of spatially distributed data such as 
elevation, intensity and population density can be used as input to 
image segmentation to produce image objects (Ke et al., 2010). 
Moreover, to detect and delineate individual tree crowns several 
algorithms can be applied on imagery including, the valley- following 
(Gougeon, 1995), edge detection using scale-space theory 
(Brandtberg and Walter, 1998), template matching (Pollock, 1996), 
local transect analysis (Pouliot et al., 2002), watershed segmentation 
(Wang et al., 2004), local maxima filtering with fixed or variable 
window sizes (Wulder et al., 2000), 3D modelling (Gong et al., 2002), 
marker-controlled watershed segmentation (Meyer & Beucher, 1990). 
These algorithms are mostly based on the assumption that there are 
“peaks” of reflectance around the treetops and “valleys” along the 
canopy edges. However, the “peaks” and “valleys” are not always 
distinct since canopy reflectance is affected by various factors such as 
illumination conditions, canopy spectral properties, and complex 
canopy structure (Chen et al., 2006). Palace et al. (2008) developed 
an automatic tree crown detection and delineation algorithm using 
IKONOS image, and found that the automatic algorithm was not able 
to detect understory trees and overestimated the size and frequency 
of large trees. Wulder et al. (2004) compared an IKONOS image with 
an airborne image collected at the same spatial resolution and found 
that the 1 m panchromatic IKONOS image can be used to identify 
85% of tree crowns, but with a 51% commission error.  
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Recently, researchers have begun to apply LiDAR data in individual 
tree isolation crown extraction (Persson et al., 2002). Compared with 
passive imaging, LiDAR has the advantage of directly measuring the 
three-dimensional coordinates of canopies. Therefore, the geometric, 
rather than spectral, “peaks” and “valleys” can be detected (Chen et
al., 2006). Several studies have extended methods developed for 
optical imagery and aerial photos into LiDAR data for tree detection 
(Hyyppa et al., 2001; Koch et al., 2006). Brandtberg et al. (2003) 
extended the scale-space theory to detect individual crown segments. 
Chen et al. (2006) applied the marker-controlled watershed 
segmentation into LiDAR data to avoid the over-segmentation 
problems. However, the studies have shown that over-estimation 
problems remain (Kim et al., 2010).  
 
Nevertheless, a few studies have tried to combine fine resolution 
optical imagery with LiDAR data for crown segmentation. In theory, a 
major limitation of the automated tree detection of spectral imagery 
has been the lack of tree height information (Leckie et al., 2003). If 
high-resolution data from spectral imagers and LiDAR systems can be 
combined, individual tree height information may be extractable 
along with the species and other tree attributes derived from 
multispectral images (Kim et al., 2010). Therefore, combination of 
high-resolution spectral imagery and LiDAR data for automated 
individual tree crown detection offers large potential benefits. For 
example, Leckie et al. (2003) applied the valley-following algorithm 
into both LiDAR data with digital camera imagery. They found that 
the LiDAR can easily eliminate most of the commission errors that 
occur in the open stands with optical image, whereas the optical 
image produced a better segmentation in the more dense stands. 
There is a complementarity in the two data sources that may help in 
individual tree crown segmentation. 

1.1.3 Identification of Tree Species 
 
Accurate tree species information is needed in several fields in forest 
management (Erikson, 2004). For example, to estimate the stem 
volume using species-specific stem volume equations, individual trees 
species must be identified. Conventionally, reliable methods for tree 
species recognition depend mainly on costly, time-consuming, and 
labor-intensive inventory in the field or on interpretation of fine 
resolution aerial photographs (Gong et al., 1997). However, the use 
of these methods is frequently limited by cost and time and is 
therefore not applicable to large areas (Puttonen et al., 2010).  
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Species identification from multispectral images can be relatively well 
achieved at the stand level as reported by Carleer and Wolff (2004), 
but for individual trees complications such as shaded crowns and 
variability of spectral signatures between trees of the same species 
combined with poor distinction of individual trees reduce classification 
performance (Heinzel and Koch, 2012; Leckie et al., 2003). Pixel-
based classifications, which rely on the concept of a “spectral 
signature”, often translate into poor classification accuracy for 
individual tree species (Franklin et al., 2001) because they can result 
in salt-and-pepper noise in the classification output (Yu et al., 2006). 
As an alternative to pixel-based approaches, object-based 
classification was introduced and has been widely used to solve the 
problems associated with the high spatial resolution domain for 
classification (Hay et al., 2005; Liu et al., 2006; Sugumaran & Voss, 
2007). In theory, the object-based approach will reduce the local 
spectral variation caused by crown textures, gaps, and shadows. In 
addition, with spectrally homogeneous segments of images, both 
spectral values and spatial properties, such as size and shape, can be 
explicitly utilized as features for further classification (Yu et al., 
2006). In the case of individual tree species classification, the object-
based image classifiers allow researchers to treat a crown as one 
object (Wang et al., 2004; Martinez Morales et al., 2008). As a result, 
it has been successfully applied to forest species classification using 
high resolution multispectral images (Thomas et al., 2003) or 
combined with ancillary topographic data (Yu et al., 2006). However, 
some studies have indicated that there are serious commission errors 
(false trees isolated) mostly related to sunlit ground vegetation using 
high resolution images (Leckie et al., 2003).  
 
The advent of LiDAR data coincided relevantly with fine resolution 
multispectral satellite imagery, which provides new sources for 
individual tree segmentation as well as forest species identification 
(Kim et al., 2009a; Suratno et al., 2009a). Structural features of the 
tree crowns and tree height can be derived from LiDAR height 
measurements and such features might be considered for tree 
species identification. The basic idea behind using structural features 
for tree species identification is that different species have different 
crown properties and different tree height distribution (Ørka et al., 
2009).  
Recent studies have shown that the LiDAR intensity data is also 
useful in distinguishing between tree species, particularly when used 
in conjunction with structural variables (Kim et al., 2009; Suratno et
al., 2009). For example, Ørka et al. (2009) combined intensity and 
structural features for identifying coniferous and deciduous tree 
species which resulted in an overall accuracy of 70%. Suratno et al. 
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(2009) also used both features for identifying individual trees in 
mixed coniferous forest and reported an overall accuracy of 50%. 
These studies indicated that the coarse resolution LiDAR data may 
cause the poor classification accuracy because low-posting-density 
LiDAR data has been largely limited to the extraction of topographic 
variables and structural features (Ke et al., 2010), which however are 
important for improving classification accuracy of forest species 
(Kosaka et al., 2005). Moreover, lack of spectral signature is also 
considered as an important limitation of LiDAR data in identifying tree 
species (Deng et al., 2007; Leckie et al., 2003; Lim et al., 2003; 
Suratno et al., 2009; Swatantran et al., 2011).  
 
The integration of high spatial resolution multispectral imagery and 
LiDAR data may produce more effective and efficient multi-scale 
forest classification. For example, Ke et al. (2010) combined low-
posting-density LiDAR data and Quickbird image for forest species 
classification using an object-based approach and has resulted in high 
identification accuracy with a Kappa of 0.91. In the case of individual 
tree classification, the information on the vertical structure of 
individual trees from the LiDAR data complements the spectral 
information from the optical imagery (Leckie et al., 2003).  

1.1.4 Overview of LiDAR Technology  
 
LiDAR stands for Light Detection and Raging. In its most common 
form, it is an active remote sensing technology that emits pulses of 
near infra-red and measures scattered light to find range and other 
information on a distant target resulting into a 3-dimensional point 
cloud (Ben-Arie et al., 2009). LiDAR technology exists in various 
forms namely; airborne discrete-return, airborne profiling, airborne 
waveform, satellite and ground-based LiDAR (Chen et al., 2012). In 
air-borne discrete LiDAR, as available for this study, a laser pulse is 
emitted from a device called a pulsing laser, the emitted light reflects 
off of canopy materials such as leaves and branches or the ground. 
The returned energy is collected back at the detector by a telescope 
while a global position system records locations of both the laser and 
the antennae (Figure 1). The range to an object is determined by 
measuring the time delay between transmission of a pulse and 
detection of a reflected signal known as returns (Jensen, 2007).  
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Apart from locating target features, the point cloud conveys 
information on elevation, structural geometry and intensity. Intensity 
is the measure of the signal strength associated with each return. It 
provides a measure of the peak amplitude of return pulses as they 
are reflected back from the target to the detector of the LiDAR 
system. There is no specific intensity signature but values vary 
depending on the flight height, atmospheric conditions, directional 
reflectance properties, reflectivity of the target and the laser settings 
(Shreuder et al., 2008; Suratno et al., 2009b). 
 
Depending on the method used to capture the data, the density of 
the resultant point cloud can be high (above five points per square 
meter) or low (below one point per square meter). Once the point 
cloud is collected, filtering and classification of points is often done. 
Standard specifications for classification exist (Table 1) and different 
LiDAR data storage formats are available of which the .LAS and .LAZ 
formats are most common.  

Figure 1: Understanding LiDAR systems and Returns (t stands for Time, I stands for 
Intensity)  

Source: (USGS, 2013)
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Table 1: Classification specifications for LAS 1.0 & LAS 1.2 formats 
 

Classification  Value Description 
0 Created (Never classified) 
1 Unclassified 
2 Ground 
3 Low Vegetation  
4 Medium Vegetation  
5 High Vegetation  
6 Building  
7 Low points (Noise) 
8 Model Key Point (Mass point) 
9 Water 

Source: (ESRI, 2011) 

1.1.5 Overview of WorldView-2 Optical Imagery 
 
The WorldView-2 satellite was launched in October 2009 and is the 
first high-resolution 8-band multispectral commercial satellite. 
Operating at an altitude of 770 km, WorldView-2 provides 46 cm 
panchromatic resolution and 1.85 m multispectral resolution. 
WorldView-2 has an average revisit time of 1.1 days and is capable of 
collecting up to 1 million square kilometer of 8-band imagery per day. 
The 8 multispectral bands of this imagery include; four standard 
colours (red, green, blue, and near-infrared 1) and four new bands 
(coastal/400 - 450 nm, yellow/585 - 625 nm, red edge/705 - 745 
nm, and near-infrared 2 / 860 - 1040 nm) (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
The coastal band supports vegetation identification, analysis and 
bathymetric studies based upon its chlorophyll and water penetration 
characteristics. The yellow band is used to identify "yellow-ness" 
characteristics of targets, important for vegetation applications. The 
red edge band aids in the analysis of vegetation condition and 
enhances biomass studies (Mutanga & Skidmore, 2004). The near-

Figure 2: WorldView-2 Bands 
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infrared 2 band overlaps the NIR 1 band but is less affected by 
atmospheric influence. It supports vegetation analysis and biomass 
studies (Digital-Globe, 2013)  

1.1.6 Problem Statement
 
Accurate data on individual tree crowns and their species within 
stands is still limited affecting many remote sensing studies on 
allometric equations, timber volume, above ground biomass and 
carbon exchange. Individual tree crown segmentation and species 
identification are still challenging to be done accurately from either 
LiDAR or high resolution optical datasets used in isolation (Koch et 
al., 2006; Shreuder et al., 2008; Kim et al., 2009b; Jing et al., 
2012). This is probably because a single species may exhibit variable 
physical structures limiting the usefulness of only structural variables 
in its identification or a species may exhibit low spectral separability 
with another species limiting its distinction if spectral attributes alone 
are utilized. Similarly, the forest canopy may exhibit the same 
reflectance characteristics as the understory, which appear as 
continuous or one big canopy in optical satellite imagery. Without 
height information, distinction of individual tree crowns becomes thus 
far difficult. Moreover, local spectral variation caused by crown 
textures, gaps, or shadows may affect individual crown delineation in 
optical imagery a problem that LiDAR derived canopy height imagery 
may alleviate. A fused approach may therefore provide increased 
interpretation capabilities and more reliable results since data with 
different characteristics are combined (Pohl & Van Genderen, 1998; 
Kim et al., 2010; Puttonen et al., 2010; Swatantran et al., 2011). 
LiDAR height, structural and intensity metrics may complement the 
spectral characteristics from optical data improving accuracies for 
both individual crown segmentation and species classification.  
 
In a multisource approach, some confounding factors related to the 
integration of geometry and spectral characteristics of the datasets 
may affect the process of extracting accurate crown segments and 
later identifying the tree species. For example, accurate pixel 
grouping is faced with challenges of how to define precise 
segmentation parameters or rules that are based on two datasets of 
varying geometric precision for tree crowns of varying size, shape 
and spatial distribution. The geometrical errors between the datasets 
(Figure 3) present a challenge of misalignment of segment 
boundaries between both data sets and in turn affect the spectral 
quality since they lead to different grey level values or digital 
numbers than the ones actually corresponding to the determined 
geographical position (Valbuena et al., 2011). This would affect 
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accuracies of both crown segmentation and species identification 
especially if accurate co-registration is not achieved. The challenge, 
therefore, is how to geometrically co-register two datasets of 
different spatial resolutions without getting either geometric or 
radiometric distortions in either datasets.  
 
The high signal to noise ratio in optical imagery affects the spectral 
quality while blurring crown edges due to illumination shadows affect 
the geometric quality of resultant image segments. Blurring edges in 
optical imagery are due to contradictions between spatial and spectral 
resolutions (Liu, 2000). In mountainous terrain, topographic 
discontinuities and distortions exacerbate blurring in optical imagery; 
owing from direct feature illumination shadows especially if the scene 
is taken during sunny conditions (Figure 4) (Dorren et al., 2003). This 
problem is not faced with high density LiDAR imagery, as the forest 
canopy features are of very high geometric precision and do not have 
illumination shadows (Figure 4). As a result of blurring, canopy 
boundaries are expected to misalign geometrically between LiDAR 
and Worldview-2 imagery affecting output crown segmentation and 
species identification accuracy. Using an object-based approach,  Lui 
and Yamazaki (2012) demonstrate that shadows in Worldview-2 
scenes of an urban environment could be detected and eliminated. 
However, whether this challenge can be overcome in forest 
environments still requires to be studied.  
 
This study explores methods that may overcome these confounding 
factors and addresses the explicit research problem on whether the 
combination of LiDAR and WorldView-2 imagery would enhance the 
identification of individual tree crowns and their species on the basis 
of complementarity.   
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Figure 3: Position of House in the images (Left: WV2 Right: LiDAR CHM Below: 
ortho-photo) before co-registration 

Figure 4: Shadows of Trees (Highlighted by arrow in bottom Right) 
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1.1.7 General Objective  
 
To compare and integrate high density airborne LiDAR data and fine 
resolution WorldView-2 satellite imagery for individual tree crown 
segmentation and species identification of Bois noir (Black Wood) 
forest, Barcelonnette, South French Alps. 
 

1.1.8 Specific Objectives
 
1. To compare and integrate high density airborne LiDAR data and 

fine resolution WorldView-2 satellite imagery for individual tree 
crown segmentation  

 
2. To compare and integrate high density airborne LiDAR data and 

fine resolution WorldView-2 satellite imagery for individual 
trees species identification and classification  

1.1.9 Research Questions
 
1. Is there any statistically significant difference in accuracy 

between the results of airborne LiDAR data and WorldView-2 
satellite imagery approaches for individual tree crown 
segmentation? 
 

2. Is there any statistically significant difference in accuracy 
between the results of airborne LiDAR data and WorldView-2 
satellite imagery approaches for species identification and 
classification? 
 

3. Does the combination of airborne LiDAR data and WorldView-2 
satellite imagery significantly improve the individual tree crown 
segmentation, when compared to LiDAR data or WorldView-2 
satellite imagery used in isolation? 
 

4. Does the combination of airborne LiDAR data and WorldView-2 
satellite imagery significantly improve individual tree species 
identification and classification, when compared to LiDAR data 
or WorldView-2 satellite imagery used in isolation? 
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1.1.10 Research Hypotheses 
 
1. The accuracy of individual tree crown segmentation using 

airborne LiDAR data and WorldView-2 satellite imagery based 
approaches is similar when using segmentation goodness 
measures described by (Clinton et al., 2010). 
 

2. The accuracy of individual tree species identification and 
classification using airborne LiDAR data and WorldView-2 
satellite imagery based approaches is similar, when using 
kappa statistics. 
 

3. The accuracy of individual crown segmentation produced in 
integration of airborne LiDAR data and WorldView-2 satellite 
imagery based approaches is similar to either outputs of LiDAR 
data and the optical imagery based approaches used in 
isolation assessed via segmentation goodness measures 
described by (Clinton et al., 2010). 
 

4. The accuracy of individual species identification and 
classification done in integration of airborne LiDAR data and 
WorldView-2 satellite imagery based approaches is similar to 
either classifications of LiDAR and the optical imagery based 
approaches used in isolation, when using kappa statistics. 

1.1.11 Thesis Outline 
 
This thesis report has been divided into five chapters. Chapter One 
introduces the study with a synthesis of advances, strengths, 
weaknesses, challenges and opportunities of LiDAR and optical 
satellite imagery approaches in tree crown and species identification. 
The research problem, objectives, questions and hypotheses have 
also been highlighted in this chapter. Chapter Two describes the 
study area, materials, methods and analysis undertaken to answer 
the study’s research questions. In Chapter Three, the results of the 
study are presented and have been discussed in Chapter Four.  The 
study’s conclusions and recommendations have been presented in 
Chapter Five.  
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Chapter 2 
 

2.1 STUDY AREA, MATERIALS AND METHODS 
 

2.1.1 Study Area 
 
The study site is located in the South Eastern part of France in the 
district of Barcelonnette at the Italian border; around latitude 44 25’ 
22.87’’ N and longitude 6 40’ 22.43’’ E. The site is about 1.3 km2. It 
is a part of a larger Bois noir Forest, located on the south-facing slope 
of the Barcelonnette Basin, 2.5 km to the South-East of Jausier 
(Alpes de Haute-Provence, France) (Saez et al., 2012). ‘Bois noir’ is a 
French word that figuratively translates to ‘Black Wood’ in English 
probably relating to the dark-bark of mountain pine, the dominant 
species of the forest. The Barcelonnette basin is a steep forested 
basin, extending from 1100 to 3000 m a.s.l. and about 26 km long 
(Buma, 2000; Maquaire et al., 2003). The basin is a catchment in the 
greater L’Ubaye river valley, a tourist hotspot, commonly known for 
winter holidays, ski games, mountain biking and paragliding flights. 
Figure 5 shows the location of the study site. 

Climate
The Barcelonnette basin lies in the dry intra-Alpine zone characterized 
by mountainous Mediterranean climate (Razak et al., 2011; Saez et 
al., 2012; Saez et al., 2013). Rainfall varies significantly inter-
annually.  At a gridded point close to Bois Noir (44°25  N, 6°45  E) it 
is 1,015±179 mm yr-1 for the period 1800–2004 (Saez et al., 2012) 
whereas it is  707 mm yr–1 for a period between  1928– 2010 at 
another close station (44°38 N, 6°65 E)(Saez et al., 2013). Razak et 
al. (2011) and Flageollet et al. (1999) report the general annual 
rainfall to vary between 400 and 1400 mm. The showers can be at 
times violent, with intensities >50 mm h–1, especially during frequent 
summer storms (Saez et al., 2013). Beside rainfall, the vegetation in 
this area accesses more water from melting snow that usually 
persists between December and March (Flageollet et al., 1999). Mean 
annual temperature is 7.5 °C with 130 days yr–1 of freezing (Maquaire
et al., 2003; Malet et al., 2008). 
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f

Figure 5: RGB Orthophoto of the study area within France (Inset). 
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Geomorphology and Landslides  
 
Many studies that have been carried out in the Barcelonnette basin 
have been in the area of disaster management especially landslides 
(Buma, 2000; Maquaire et al., 2003; Thiery et al., 2007; Razak et 
al., 2011; Remaitre et al., 2011; Saez et al., 2012). This follows after 
three slope failures in the basin during the 20th century (Maquaire et 
al., 2003) and earth flows in 2003 and 2008 (known from a picture 
exhibition on the conservation of the Ubaye valley at Seolane 
Association Centre, Barcelonnette, from the 21st -23rd of September 
2012). The Bois Noir slope segment is characterized by an irregular 
topography with slope gradients ranging between 10° and 35° 
(Thiery et al., 2007). The area has a 15 meter thick top soil layer of 
morainic colluvium, underlain by autochthonous Callovo–Oxfordian 
black marls (Flageollet et al., 2000; Maquaire et al., 2003) highly 
susceptible to weathering and erosion (Saez et al., 2012). The 
southern part of the Bois Noir slope segment has outcrops of 
limestone in the summit crest and is characterized by steep slopes of 
up to 70°, with extensive scree slopes (Saez et al., 2012). Figure 10 
and 11 show the steep slopes within the study area.  The mentioned 
geomorphic factors compounded by climatic factors predispose the 
area to landslides. In their study, Thiery et al. (2007) attribute 
landslides in this area to not only climatic conditions but also 
observed that slope instability can occur after relatively dry periods 
whether or not preceded by heavy rainfalls or earthquakes. 
Earthflows mainly occur during the summer and spring. In the 
summer, the slides are caused by hortonian runoff from heavy storms 
whereas in the spring, the marl is soaked by snow melting causing 
another type of erosion that Maquaire et al. (2003) describe as 
pellicular solifluction. The earth movements in this area affect the 
physical growth of vegetation hitherto; hence the forest is 
characterized by small, retarded, slanted or drunken and fallen trees.    

Vegetation 
 
The Barcelonnette basin has had forested slopes for just over a 
century although the advent of tree planting activities is not well 
documented. Saez et al. (2012) report that the oldest tree cored at 
Bois noir shows 173 annual tree rings at sampling height (AD 1837), 
while 50 growth rings (AD 1958) were counted in the youngest tree. 
They report that altogether, the trees showed a mean age of 100 
years with a standard deviation of 23 years. Over the years, Bios Noir 
forest has had minor silvi-culture and almost no studies have been 
published on the botanic aspects of the forest including: tree density, 
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diversity and composition. This study’s field data (Appendix 1) shows 
that mono-species stands of conifers dominate the study area with 
varied patches of mixed and broadleaved. Scots pine (Pinus sylvestris 
L.) and Mountain pine (Pinus uncinata (Mill. Ex Mirb)) are the 
dominant species of the forest. Norway spruce Picea abies ((L.) 
H.Karst.) and European Larch Larix decidua (Mill.) were the other 
conifers encountered. Various broad leaved species were also met 
during field work however these were not differentiated. This study 
focuses on distinction of Mountain and Scots pine - the dominant 
conifer species - and their brief descriptions are presented in the 
following paragraphs.  
 
The Scots pine is 15-30 meters tall at maturity, consisting of a single 
trunk and a rather broad irregular crown. The trunk is often crooked, 
but sometimes is straight. The crown can be conical-ovoid to ovoid in 
shape with widely spreading to ascending lateral branches. The 
density of these branches varies with the growth of the tree. Trunk 
bark at the base is reddish gray and shallowly furrowed or fissured, 
while the thin bark of the upper trunk and major branches is orange-
red and flaky. Young twigs are light brown and covered with needle-
like leaves, but they become more gray and scaly in appearance with 
age. The needle-like leaves occur in clusters of 2 along the twigs; 
they are 3–9 centimeter long, gray-green or blue-green, and twisted. 
The leaves are evergreen, remaining on the tree for 2-7 years (a 
shorter period of time for warm climates as opposed to cold 
climates). The upper surface of each leaf is slightly concave, while the 
lower surface is convex; there are 4-6 white lines that run along the 
length of the lower surface (Hilty, 2012). The Scots pine is 
distinguishable from the other pines by its orange and peeling bark in 
the upper half of the stem and female cones are symmetrical with an 
umbo centered on a thin apophysis or scale (Figure 6 A).  
 
The mountain pine is also called Swiss Mountain pine and is naturally 
found at the tree line. Mountain pine can grow from 12 to 20 m tall at 
maturity, consisting of a single trunk. The crown is conical with 
narrow spreading lateral branches. The density of these branches 
varies with the growth of the tree but generally more dense and 
continuing to a much lower crown base height compared to Scots 
pine. The entire trunk bark is greyish black and is shallowly furrowed 
or fissured. The needle-like leaves occur in clusters of 2 along the 
twigs; they are 3–7 centimeter long. Fauvart et al. (2012) observed 
that the distinction of Scots pine from Mountain pine can be doubtful 
based on stomata and cuticle characteristics of their needles 
especially in areas where the pine species are sympatric. The authors 
go ahead to use a morphometric method based on cones to 
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distinguish the species. Unlike Scots pine, the female cones of 
Mountain pine are asymmetrical with a hook-shaped umbo at the 
apophysis apex (Figure 6 B). However, the concave face of the cones 
(right side of the design) generally presents an umbo centered on a 
thin apophysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2.1.2 Materials 
 
The LiDAR and WorldView-2 datasets were acquired during leaf-on 
and snow free conditions in June of 2009 and September of 2010 
respectively. Table 2 shows additional meta-data for the LiDAR 
dataset. 

LiDAR
The LiDAR dataset was collected primarily for a geomorphological 
study on terrain model quality (Razak et al., 2011). The data was 
collected using a helicopter flying at an altitude of 300m above the 
ground by Helimap Company SA. The Company used the RIEGL VQ-
480 laser scanner system with a pulse repetition rate of up to 300 
kHz to record the data (Table 2). The spatial positioning was done 

Figure 6: Cones of Scots and Mountain pine 
Source: (Fauvart et al., 2012) 
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using a Topcon Legacy GGD capable of tracking GPS and GLONASS 
positioning satellites. The orientation of the aircraft was determined 
using the iMAR FSAS inertial measurement unit (IMU). In total, seven 
flight lines were achieved resulting into a cloud of 213.7 million points 
and a very high mean density of 160 points m-2 and 113 points m-2 
for all and last return records respectively. The system recorded a 
maximum of five returns per pulse, each pulse with the respective 
intensity value. The point cloud was stored in the LAS 1.0 format 
including four classes i.e. Never classified (204 million points), 
Unclassified (2926 points), Ground (9.3 million points) and Noise 
(772 points).  

WorldView-2 Imagery  
 
WorldView-2 Imagery was purchased in August of 2012 from 
DigitalGlobe Inc., Longmont CO USA, in GeoTiFF format, as part of a 
broader (PhD) project on integration of LiDAR and multi-spectral 
imagery for assessing forest inventory and biophysical parameters. 
This Imagery was acquired during bright and cloud free conditions at 
10:40:30 hours on the 13th September of 2010. At the time of 
acquisition, the average sun elevation and azimuth angles were 48.1 
and 161.7 degrees and the average satellite elevation and azimuth 
angles were 74.8 and 55.0 degrees respectively. The imagery consist 
a 16-bit panchromatic and eight 16-bit multispectral bands collected 
at 46 cm and 185 cm ground sample distance and resampled to 50cm 
and 200cm, respectively. Level 2a of image pre-processing had been 
done by the vendor on receipt of the image. This pre-processing 
entailed, standard ortho-correction using base elevation from a digital 
elevation model, nearest neighbour resampling using standard kernel 
filters and standard radiometric correction. The imagery was received 
in WGS84 Universal Transverse Mercator (UTM), zone 32N projection 
with local coordinates.  
 
Table 2: LiDAR Meta data  

Measurement rate  Up to 150 000 s-1 
Beam divergence 0.3 mrad 
Laser beam footprint 75mm at 250 m 
Field of view  60  
Scanning method  Rotating multi-facet mirror 
 
Source: Razak et al. (2011) 
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2.1.2 Methods 

Work Flow  
Figures 7 and 8 show the work flow for objective one on crown 
segmentation and objective two on species identification and 
classification, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Workflow for Objective One 
 
Abbreviation key: WV- WorldView-2, MS- Multispectral, CHM- Canopy Height Model, 
DEM- Digital Elevation Model, DSM- Digital Surface Model, DIM- Digital Intensity 
Model, DBH- Diameter at Breast Height 
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Figure 8: Workflow for Objective Two 
 
 
Abbreviation key: WV- WorldView-2, MS- Multispectral DBH- Diameter at Breast Height, CPA-
Crown Projection Area, CBH- Crown Base Height, SD- Standard Deviation   
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Sampling Design 
A stratified-random sampling design based on plots was used; 
however, the sampling unit was an individual tree. Stratification was 
done using a land cover map obtained from the French Forest Service 
(Office National des Forest, 2000), with the intention of spreading the 
sampling units across the study area. The land use map divided the 
study area into five strata (i.e. Scots pine, Mountain pine, broad 
leaved, mixed forest and bare rock) as shown in Figure 9. Using a 
spatial random point generator available in ArcGiS©, one hundred and 
fifty plots were spread across the study area (Figure 10). All points 
whose positions were randomly placed in the closed canopy were 
shifted to the nearest gap. This was done to enable accurate GPS 
recordings of plot centres during field work.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 9: Bios Noir Land Cover map  

Source: (Office National des Forest, 2000) 
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Figure 10: Sampling layout 
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Forty-eight plots were surveyed proportionately and serendipitously 
from the 150 plots shown in Figure 10 due to time available for this 
phase. Effort was made to sample as widely as possible in the study 
area.  All trees within the plots were measured for various physical 
parameters as elaborated in the field work section. A total of 671 
individual trees of known location were achieved. Ancillary data 
collected in 2011 using the same sampling and field techniques 
provided extra 287 individual trees of known location. Together, 958 
individual trees of known location were available for this study as a 
validation dataset.  

Field Work 

Field work for this study was done during the first month of autumn 
in September 2012. This time corresponded with the period of 
acquisition for the LiDAR and WorldView-2 datasets but with a three 
and two year lag, respectively. The inter-date variability in the 
remote sensing data acquisition and field work was not a significant 
problem for this study. This is because the forest exhibits a very slow 
growth rate explained by shallow soils along the mountain slopes, has 
a high tree density, no thinning has been done and also because no 
timber forest products are harvested. Therefore, aside tree or branch 
fall due to senescence and the ‘drunken nature’ of the forest, Bois 
noir’s physical structure has remained unaltered.  
 
The iPAQ was used to navigate into the selected plots until about ten 
meters shy of the plot centre. It was equally impossible to navigate 
using a Differential Global Positioning System receiver (DGPS) to the 
precise plot centres. The positioning error in both GPS receivers owed 
from poor satellite visibility due to canopy obstructions and cloud 
cover (Andersen et al., 2009). The plot centres were therefore 
determined using a new method that involved interpretation of the 
LiDAR-based canopy height model (CHM) and local ground distance 
measurements and triangulation. The accuracy and feasibility of this 
approach remains a new area of this study that requires further 
investigation. However, the feasibility of its application in this study’s 
setting is well justified as discussed in Chapter 4.  
 
Plot centres were therefore located using the following technique: 
while facing north at the approximate plot centre (as indicated by the 
iPAQ), at least two landmark features within the vicinity of the centre 
as seen on the CHM were identified. Using the distance from and the 
bearing of each land mark, each plot centre was determined by 
ground measurement using the CHM scale and a DGPS used to record 
the geographic coordinate for validation. The commonly used land 
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marks were: isolated trees and canopy gaps. We found out that the 
reflection of a canopy gap on the spherical densiometer as seen from 
the plot centre is similar in shape to the said gap as seen on the 
CHM; a secondary method we used to validate plot centres during 
field work.  
 
From each plot centre, a 500 m2 circular plot was laid after slope 
correction. Slope correction was done for all plots with a general 
slope larger than five degrees. The Suunto© PM5 clinometer was used 
to measure the slope and ground distance was corrected for using a 
slope correction table. The detailed slope correction procedure is as 
described in FAO (1998).  Within each plot, all trees of Diameter at 
Breast Height (DBH) larger than 7 cm were recorded by species. 
Canopy width (630 trees) and individual tree height (494 trees) were 
measured for all trees that could be located on ground as seen on the 
canopy height model i.e. trees whose precise geographic locations 
were known (671 trees). DBH was measured using a DBH calliper at 
an average height of 1.3 m above the ground. Canopy width was 
measured in the North to South and East to West directions with a 
measuring tape. Individual tree height was measured using Haga.  
Plot canopy cover was measured using a spherical densiometer from 
five locations within the plot representative of the plot’s crown cover. 

WorldView-2 Pre-processing
The WorldView-2 imagery was delivered after atmospheric and 
radiometric correction. Image pre-processing involved three steps; 
pan sharpening, image enhancement and geometric correction. 
 
Pan-sharpening is a type of data fusion that refers to the process of 
combining the lower resolution colour pixels with the higher 
resolution panchromatic pixels to produce a high resolution colour 
image. If the pan sharpening transformation is perfect, then the 
resulting imagery obtains same sharpness as the original 
panchromatic image as well as the same colours as the respective 
original multispectral images (Padwick et al., 2010). This step was 
done in ERDAS© software for Windows using the HCS resolution 
merge algorithm described by Padwick et al. (2010). The HCS 
resolution merge algorithm requires smoothing filters and therefore 
five dimension filters (3x3, 5x5, 7x7, 9x9 and 11x11) were varied 
outputting five pan-sharpened images. Visual interpretation was used 
to select the image with the least spatial artefacts (i.e. ghosting and 
blurring). The image pan-sharped with the dimension 7x7 convolution 
filter was chosen for further pre-processing analysis. 
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Image enhancement involved; false colour compositing, and 
contrast stretching. The selection of bands for false colour 
compositing was done using the following criteria: (1) the bands with 
high vegetation spectral response information, (2) correlation 
between the band spectral values as shown in Table 3. Band 
combinations with the least correlation were selected for composition 
so as to enhance feature distinction in the false colour image. Bands 
7, 5, 1 and 8, 5, 1 (highlighted in Table 3) in the red, green and blue 
colour guns respectively viewed using a standard deviation contrast 
stretch gave the optimal composite for this study. 
 
Table 3: Correlation across WorldView–2 bands (Highlighted are the lowest correlation 
values) 
 
  1 2 3 4 5 6 7 8 

1 1 0.99 0.98 0.95 0.92 0.85 0.81 0.80 
2   1 0.99 0.97 0.95 0.86 0.82 0.81 
3     1 0.99 0.98 0.91 0.86 0.86 
4       1 0.99 0.90 0.84 0.84 
5         1 0.88 0.81 0.81 
6           1 0.98 0.98 
7             1 0.99 
8               1 

Geometric correction was performed in two phases; (1) sensor-
specific geometric correction without ground control points and (2) 
ortho-rectification using ground control points. The challenge here 
was to match the 0.15 m resolution LiDAR CHM with the 0.5 m 
resolution WorldView-2 image.   
 
In the first stage, the WorldView-2 rational polynomial coefficients 
model (WorldView-2 RPC) available in ERDAS© LPS Tools for Windows 
was used. This step required the .RPB file supplied with the imagery 
to make a transformation from image coordinates to earth surface 
coordinates using the supplied Rational Polynomial Coefficients 
(RPCs). RPCs are simple empirical mathematical models relating the 
image space (i.e. line and column positions) to latitude, longitude and 
surface elevation. The model is expressed as the ratio of two cubic 
polynomials with one computing line position and one computing for 
the column position and with the coefficients of these two 
polynomials computed by the image provider from the satellite orbital 
position, orientation and the rigorous physical sensor model (Digital-
Globe, 2010).  
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Using this method, both the panchromatic and multispectral bands 
were shifted individually from their original position up to an average 
positional root mean square error of 12 meters i.e. using the aerial 
ortho-photo as the reference image.  
 
Ortho-rectification using ground control points and a 0.5 m resolution 
DEM was done in the second step using ERDAS© LPS Tools for 
Windows. The availability of a high resolution full colour aerial ortho-
image collected as the same time as the LiDAR dataset improved 
orientation around the study area for the image matching exercise. 
Image matching between the aerial ortho-photo and the optical 
composite was achieved using six tie points well spread across the 
study area - Table 4. This procedure output an ortho image with 
positional root mean square error of one pixel (0.5 m). Figure 3 
illustrates the final result of geometric correction.  
 
Table 4: Ortho-rectification Tie points (Projection: UTM Zone 32N, WGS 84) 
 
Point ID  X Y Elevation (m) 
1 321474.33 4917891.64 1595.000 
2 321430.55 4917706.62 1640.311 
3 321816.94 4918239.60 1479.827 
4 321179.19 4917668.62 1669.711 
5 320851.50 4917259.18 1795.038 
6 321158.48 4918125.23 1578.033 
 

LiDAR Pre-processing  
LiDAR pre-processing involved the generation of the Digital Terrain 
(DTM)/Digital Elevation (DEM), Digital Surface (DSM), Digital 
Intensity (DIM), and Canopy Height (CHM) Models. Many different 
software packages are available to resample point clouds into 2-D 
grids. This study utilized LAStools© software for Windows.  
 
Resolution of LiDAR Surfaces  

Point clouds are more often resampled to uniform grids in many 
forestry applications. Various surface interpolation methods are 
involved in the rasterization (Gurram et al., 2013). The resultant cell 
size influences the quality of 2D-models generated. Too fine a cell 
size results in many ‘no data’ cells whereas too coarse a cell size 
results in loss of detail. In ESRI (2011) a rule-of-thumb of four times 
the average point spacing is given. The point cloud available to this 
study had average inter-point spacing of 10 cm and therefore a cell 
size of 40 cm could be considered optimal. However, a 40 cm spatial 
resolution would be too low relative to the size of tree crowns in the 
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study area. The mean crown diameter measured in the field was 2.9 
m with the smallest crown at 50 cm diameter. Pouliot et al. (2002) 
suggested an alternative method where the pixel size is chosen 
relative to the image object size. We therefore chose a grid size of 15 
cm giving at least 11 pixels to the smallest crown in the area and 
falling within the ratio range proposed by Pouliot et al. (2002). 
  
DTM, DSM, CHM & DIM Generation  

Digital Terrain Models are a digital representation of variables 
relating to topographic surfaces, such as elevation (DEM), gradient, 
aspect, horizontal curvature or other topographic attributes 
(Florinsky, 1998). LiDAR DTMs are generated by interpolation of 
ground returns with the assumption that terrain changes gradually 
(McCullagh, 1988). In total, 9.4 million returns in the point cloud 
were classified as ground returns. The entire point cloud was 
delivered in 17 blocks and for purposes of easier management during 
rasterization, it was retiled to 6 blocks using the LAStile© tool for 
Windows. When performing the retiling procedure, we made sure the 
output tile area was a composite number of the output resolution so 
as to enable fitting of a uniform grid. A 25m buffer was added to each 
tile so as to reduce the boundary/edge effect (i.e. to enable use of 
boundary points in the interpolation) during interpolation (Brandtberg
et al., 2003). LASgrid© tool for Windows was used to generate the 
DTM, keeping ground returns only, highest elevation and a fill of 2 
pixels. The fill function determines the number of pixels to be 
considered in the prediction of ‘no data’ pixels based on the 
neighbourhood during rasterization. Figure 11 (Top Right) shows the 
DTM.
 
The DSM is similar to a DTM but envelopes the surface of features on 
the landscape without including pixels where pulses have penetrated 
the foliage and hit the ground or within the tree as shown in Figure 
11 (Top Left). The DSM pixels show elevation relative to the sea level 
i.e. ground elevation plus feature height. The DSM was generated 
using the same algorithm as used to generate the DTM using 
LASgrid© tool for Windows. However, the highest elevation of first 
returns and 2 pixel fill was kept.  
 
The CHM or the normalized DSM represents the absolute height of 
all aboveground features, Figure 11 (Bottom). To get the absolute 
object height from the raw points, the influence of terrain must be 
eliminated in a normalization step as illustrated in Figure 12. 
LASheight© tool for Windows was used to normalize the point cloud 
while dropping all the noise points (i.e. point with height below 0 and 
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above 40 meters). No tree up to 40 m in height was encountered 
during fieldwork and therefore all points above 40 meters were 
dropped as noise. LASgrid© tool for Windows was used to generate 
the CHM from the normalized point cloud keeping; the highest 
elevation of first returns and a 2 pixel fill. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each point in the cloud conveys X, Y, Z and intensity data. The DIM 
(Digital Intensity Model) is a gridded representation of the intensity 
data generated from the intensity signal of each return. Song et al. 
(2002) used inverse distance weighted average and Kriging 
interpolations to grid intensity. On the other hand, different 
researchers have previously opted to analyse intensity based on the 
raw cloud, a process that requires isolation of individual tree points 
(Shreuder et al., 2008; Suratno et al., 2009b). We opted to rasterize 
the point cloud so as to fit our data integration techniques. The 
Intensity raster was generated in LASgrid© tool for Windows; keeping 

Figure 11: Top Left: DSM, Top Right: DTM, Bottom Left: CHM viewed in 2D, Bottom 
Right: CHM viewed in 3D 
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the highest first return intensity as recommended by Shreuder et al. 
(2008) and a 2 pixel fill. Figure 13 (Left) shows the intensity image 
derived.  
 
 

 
 

 
 
 
 
 

Individual Tree Detection

Individual tree detection, in this study, refers to the procedure of 
identifying individual tree locations by treetops and demarcation of 
their respective crown segments. Treetop identification is particularly 
a crucial step towards individual crown isolation (Persson et al., 
2002; Pouliot et al., 2002; Kim et al., 2010; Kaartinen et al., 2012), 
especially when using a region growing image segmentation 
approach. Detection of individual treetops also provides the 

Figure 12: Left: un-normalized LiDAR point cloud, Right: normalized LiDAR point cloud 

Figure 13: Left: DIM, Right: Ortho-photo (Showing the same position on ground) 
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advantage of better precision in the prediction of many forest 
variables (Kaartinen et al., 2012; Kumar, 2012). Various individual 
tree detection methods have already been reviewed in this study’s 
background.   

A local maximum filtering approach was chosen to detect treetops 
mainly because the method could be applied to both datasets hence a 
good basis for comparison. The approach assumes that regardless of 
differences in measurement units, the local maximum pixel 
brightness value in both datasets represent the tree peak (Figure 14) 
(Wulder et al., 2000; Pouliot et al., 2002; Véga & Durrieu, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The panchromatic band and CHM (Figure 14) were the images used 
for this step. Spatial profiles of each dataset were evaluated to 
improve understanding of individual tree data contained in the 
images. Spatial profiles specifically evaluated the position of 
geometric and spectral peaks in both datasets.  The spatial profiles 
were generated by plotting the pixel values crossed by a 50 m 
transect line traversing the plot centre in a West to East direction 
over both open and closed canopy plots. The data peaks (local peaks) 

Figure 14: A 3D view of the panchromatic band (Left) and the CHM (Right) over the 
same area.  
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were evaluated to check if they corresponded to individual tree 
peaks.  

Different pre-processing filters were used on both images before 
applying the local maxima algorithm. Five 3X3 mean filters were 
applied on the CHM using the focal statistics function in ArcGIS©. The 
mean filter removed data pits (i.e. scattered small dark rectangles or 
squares without natural symmetry to the neighbourhood) in the CHM 
based on the local neighbourhood values (Ben-Arie et al., 2009). The 
filters also resulted in a reduction of height peaks. To replace the 
peaks, a pixel by pixel comparison was done between the original and 
smoothed CHM using the conditional function in ArcGIS© (command 
line: pitfilledCHM=con(smoothedCHM,originalCHM,smoothedCHM).  
The panchromatic imagery, on the other hand, was smoothed five 
times using a Gaussian filter of a 5x5 pixel kernel size and a bell 
shaped Gaussian distribution. Theoretically, Gaussian smoothing 
increases the value of the maximum, which represents the treetop 
(Gebreslasie et al., 2011). A 5x5 kernel was chosen to fit the average 
crown diameter of 2.9 meters measured in the field and also to fit a 
convex hull on the excessive number of peaks as seen in Figure 14 
(left). 
 
Forest gaps were masked on both images before local maximum 
filtering so as to exclude non-tree pixels and differentiate the tree 
crowns from the background, a step that theoretically minimizes 
commission errors. Natural break classification was used to define the 
threshold borderline between tree crowns and non-vegetation areas 
in the panchromatic imagery. The scene comprised the canopy, 
shadows, under-storey vegetation, housing and bare soil; hence six 
natural break classes i.e. including the image background, were used. 
The slice algorithm in ArcGIS© was used to classify the imagery based 
on natural breaks. The first and the last classes were assumed to be 
the non-tree areas and reclassified to gaps (Gebreslasie et al., 2011). 
Gap masking on the CHM was done using a height threshold of 2m. 
All pixels below 2m were located using the setnull function in ArcGIS© 
(Command line: forestgapmask=setnull(pitfilledCHM>2, pitfilledCHM) 
and later reclassified into a binary mask with zero values at the gaps.  
 
A fixed circular window of 1m radius was used to locate maxima 
among all crown pixels in either imagery. A circular window was 
preferred so as to fit the base of the cone-shaped crowns whereas 
the 1m radius corresponds to the mean crown width measured in the 
field. A maximum focal filter of the said window size was first run on 
the imageries before locating the treetops using the setnull function 
in ArcGIS© (the Command line:setnull(maxCHM<2, 
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setnull(maxCHM!=pitfilledCHM,maxCHM)) for the CHM and 
setnull(maxPAN!=smoothedPAN,maxPAN)) for the panchromatic 
imagery).  

Treetop Detection Accuracy Assessment  

Automatically detected peaks were assessed for accuracy using 807 
individual tree locations collected during fieldwork in 2011 and 2012. 
For each known tree location, a single detected apex between a 0.5 
m to 2 m buffer was chosen to represent an individual tree and the 
remainder, if any, were counted as commission errors. Omission 
errors were counted when no apex was detected within the boundary 
of a known tree location. The 2m buffer was chosen in congruence 
with the mean crown diameter considering that the exact position of 
the treetops is approximated from the field data but within less-than-
a-crown margin of error. The overall accuracy of each detection 
method was defined using an accuracy index: 

 

 
..Equation 1: Pouliot et al. (2002)

Where: AI is an accuracy index in present, O and C represent the 
number of omission and commission errors, and n is the total number 
of trees in the image to be detected.  
Pouliot et al. (2002) describes the accuracy index as; “counting all 
errors against the correct number of trees to be detected hence 
providing a single summary value for comparison of detection 
results.” 

Crown Delineation  

A region growing approach was used to spatially partition image 
pixels from both the panchromatic and CHM imageries using 
eCognition© version 8.7 software for Windows. Grow region is a 
unidirectional reshaping or classification-based algorithm that uses 
information about a class of the neighbouring image objects to be 
merged or cut while beginning the initial growth cycle with isolated 
seed image objects (treetops) (Trimble, 2011). The detailed 
parameter set used for this step are shown in Appendix 1. 

The main layers used were the pitfilledCHM for the LiDAR and the 
panchromatic imagery for the optical dataset. The gap masks and 
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treetops were added as thematic layers for each dataset, 
respectively. Treetops defined the seed objects from which tree 
crowns were grown. The imageries were first split into small square 
objects using the chessboard algorithm and individual crowns were 
gradually grown based on the colour and brightness homogeneity 
criteria. Crown growth was initially controlled by minima so as to 
prevent neighbouring crowns intruding each other’s space (Kumar, 
2012). In the final iteration, the minima were converted back to 
candidate objects and grown to the most similar adjacent crown 
based on the homogeneity criterion.  

Segmentation Accuracy Assessment  

Two segmentation (the LiDAR and the Satellite imagery) results were 
obtained by this study of which the optimal result had to be chosen 
for species classification. The closeness index (Equation 4) described 
by Clinton et al. (2010) was used to obtain a supervised 
interpretation of both segmentation results based on the ‘goodness of 
polygon matching’ i.e. relative to size, distribution and context. Over 
segmentation (Equation 2) and under segmentation (Equation 3)  
measures were computed (Clinton et al., 2010) which stand for 
generating too many or too few segments respectively (Möller et al., 
2007). The relative area metric proposed by Möller et al. (2007) was 
used to quantify the topological differences between the segment and 
reference object areas. These measures range in the following 
vectors: closeness index, [0, 2.5], over segmentation, [0, 1], under 
segmentation, [0, 1] and relative area, [0, 1]. Where zero is the 
perfect match between segments (Möller et al., 2007; Clinton et al., 
2010). While computing each accuracy measure, averaging over a set 
of all reference segments was done to produce a composite for 
assessing an optimal segmentation.  
 
 

 
 

..Equation 2 
 
 

 
 

..Equation 3 
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..Equation 4 
 
 

 
 

..Equation 5 
 
The reference polygons relative to which segmentation was judged 
were manually digitized by three study participants, each 
independently. Desktop computer screens of 1600 x 900 resolutions 
and a common map scale of 1:50 m were used during manual 
digitization. Each participant digitized trees randomly within a defined 
area and strata. Stratification distributed the manually digitized crown 
polygons across the area, between closed and open canopies, and 
between low and high vegetation. The CHM was chosen for reference 
because individual trees were easily recognizable. A total of 1615 
individual crown polygons were digitized and used in the assessment 
of segmentation accuracy. Considering that optimal geometric 
correction was achieved, polygons digitized from the CHM were also 
used in validation of the segmentation from the optical dataset.  

Extraction of Tree Physical Parameters  

Three physical parameters were extracted from the LiDAR data. 
These are; tree height, crown diameter and crown intensity. In this 
study, crown intensity was seen as a proxy for the canopy structure 
(Garcia et al., 2010) given the differential penetration of the laser 
pulses and hence can be considered a structural parameter. Intensity 
variability between species is therefore hypothesized (Shreuder et al., 
2008). 
 
Individual tree height was obtained from the CHM using the Extract-
values-to-points algorithm in ArcGIS©. An alternative method was to 
extract the maximum pixel value of each crown segment using zonal 
statistics in ArcGIS© or segment statistics in eCognition©. The area of 
the segments was used to calculate the crown diameter as if the tree 
crown had the shape of a circle (Persson et al., 2002). The alternative 
method was computing the mean distance covered by the major and 
minor axes of a fitted ellipse using ArcGIS©. Mean and standard 
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deviation (SD) of all-return intensity values were computed for each 
crown segment as a proxy for canopy structure (Garcia et al., 2010). 
To compare the variability of intensity among species, coefficient of 
variation (CV) was computed (Shreuder et al., 2008). The CV, defined 
as the ratio of the standard deviation to the mean. It is useful when 
comparing variability between data with different means thus 
accounting for changes in intensity across the flight lines due to laser 
power, incidence angle, target reflectivity, and area, atmospheric 
absorption (Garcia et al., 2010). 
 
The estimated tree height and crown diameter were assessed for 
accuracy by regression against field measurements and goodness of 
fit (R2) computed. No accuracy assessment was possible for intensity 
data.  

Extraction of Crown Spectral Parameters  

Individual crown segments were prerequisite to enable isolation of 
individual tree spectral data for species classification (Pouliot et al., 
2002). The optimal segments were used. Spectral parameters were 
computed based on the segments and mapped to treetops for 
regression modelling. 

The extraction of spectral parameters aimed at identifying the most 
appropriate bands, or band combinations, that contained useful 
information for distinction of the two conifer species. Initially, each 
individual band was evaluated for spectral distinctiveness using the 
segments corresponding to 807 trees of known species and locations. 
Within-crown pixels were evaluated for the following statistics; 
minimum, maximum, mean, range, standard deviation and median 
using the zonal statistics tool in ArcGIS© and evaluated against each 
other based on species distinctiveness. A spectral profile for each 
species was obtained by plotting means of within crown maximum 
digital number values among segments. Two band combinations were 
tested. The first involved summing up all bands to satellite albedo 
and the other, summing up bands rich in vegetation reflectance i.e. 
bands 6,7 & 8.  This analysis revealed that within-segment maximum 
pixel values of the bands 6-7-8 composite and satellite albedo 
provided the best distinction between the two conifer species and 
were hence chosen as the optimal spectral parameter.  

Regression Modelling
This study compared between two parametric modelling methods to 
classify two conifer species i.e. Logistic Multiple Regression (LMR) and 
Classification and Regression Trees (CART). These methods were 
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applied in a static and probabilistic way and have been chosen 
because they can be applied to predict categorical variables. The 
assumption here was that; there is predictive association between 
species’ physical and/or spectral characteristics whereby the species’ 
class is the dependent/response variable and the physical or spectral 
parameters are the independent/predictor/explanatory variables. This 
process was implemented in the statistical package R© for Windows 
and the code is presented in Appendix 2. 

Logistic multiple regression relates a categorical response variable 
with explanatory variables that influence the occurrence of a certain 
event without assuming the existence of variance homogeneity and 
residue normality (Hauser-Davis et al., 2012). Logistic Regression fits 
an S-shaped curve to the data. This curved relationship ensures two 
things – first, that the predicted values are always between 0 and 1, 
and secondly, that the predicted values correspond to the probability 
of the categorical variables being one or another. To achieve this, a 
regression is first performed with a transformed value of the 
categorical variable, called the Logit function and later the 
probabilities for distinguishing the categorical variable are estimated 
based on equation 6. 

 

..Equation 6  
 

Where P is the probability of the species being Scots pine or Mountain 
pine and X is the explanatory variable. a and b are coefficients in the 
equation. Depending on the relationship between the explanatory 
variables and species classes, the numbers of parameters and 
coefficients in the exponent of the curves change. 

Classification and Regression Trees (Breiman et al., 1984) (CART) is a 
rule based method that generates a binary tree through binary 
recursive partitioning. It is a process that splits a node based on 
yes/no answers about the values of the predictors. Each split is based 
on a single variable. Some variables may be used many times while 
others may not be used at all. The rule generated at each step 
maximizes the class purity within each of the two resulting subsets. 
Each subset is split further based on entirely different relationships. 
CART builds an over-grown tree based on the node purity criterion 
that is later pruned back via cross-validation to avoid over-fitting 
(Munoz & Felicisimo, 2004). 
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In order to identify an appropriate model and select variables with 
the greatest explanatory power from LiDAR metrics, spectral metrics 
and both combined, a step wise regression was initially carried out, in 
which the selection of explanatory variables was automatically 
performed. This method initially included the independent variable 
showing the highest R2 with the dependent variable. Additional 
variables were included in the model based on an F-test, under the 
assumption of normality of the variables.  

Considering that stepwise regression is an iterative process, the 
variables were previously checked for normality. The Variance 
Inflation Factor (VIF) was investigated to identify the existence of 
collinearity in the selected models. Although there is no unanimity 
regarding what values of VIF indicate the existence of collinearity 
between the explanatory variables, the rule-of-thumb of values above 
10 was used to flag multi-collinearity. 

The strongest models were selected considering; 1) spectral metrics 
alone, 2) physical metrics alone and 3) spectral and physical metrics 
combined. The Area Under Curve (AUC) was computed for all the 
models to evaluate their predictive power and the classification 
accuracy across the models was evaluated using Kappa. Since 
continuous predictions between zero and one were output by the 
models, a 50% threshold for classification of the two species was 
considered to distinguish the species. This was chosen based on the 
assumption that a species can either be one or another without 
intermediates; hence equal probability of classification.  
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Chapter 3 
 
 

3.1 RESULTS 
 
 

3.1.1 Forest Condition
 
Histograms of field measured DBH, Height and Crown Diameter 
(Appendix 3) show slightly negatively skewed distributions due to 
outliers (Figure 15).  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Bois noir is dominated by the two conifer species on which this study 
focuses. Mountain pine has a relative dominance and abundance of 
72% and 56% respectively whereas Scots pine has a relative 
dominance and abundance of 26% and 33% respectively. Cross 
correlation between height and DBH and crown diameter and DBH for 
each species showed Pearson’s correlation values below 0.6.  Scots 
pine had better correlation values compared to Mountain pine (Figure 
16). At the time of fieldwork, the trees in Bois noir forest were of pole 
size and low in timber volume. The basal area relative to the total 
area sampled was 30 m2/ha. 

Figure 15: Boxplots of field measurements 
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3.1.2 Individual Tree Detection
Figure 17 shows the spatial profiles at two sampling plots (Open and 
closed canopy) in both LiDAR and WorldView-2 datasets. These 
spatial profiles are to illustrate the geometric (LiDAR) and spectral 
(WorldView-2) peaks that hypothetically related to the position of 
individual trees in the image. Ground pictures of the same plots have 
been appended (Appendix 4) to improve the reader’s orientation. 
Whereas only three peaks are seen in the airborne LiDAR image, 
there are four peaks in the optical satellite image, over the open 
canopy plot. Three peak exists on ground as seen from the ground 
photo. Six peaks can be seen in the closed canopy from the LiDAR 
CHM compared to seven peaks in the panchromatic satellite image.  
Figure 17 (Top) shows that a reduction in the resolution of the LiDAR 
(up until 2m) had no effect on the number of local peaks identified in 
the CHM. Spatial evaluation of the other multispectral bands showed 
no visual correlation between the spectral peaks and individual tree 
positions (Figure 18). 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 Figure 17: Spatial profile or surface contour of plots. 

Top: LiDAR. Bottom: WorldView-2 Panchromatic. Left: Open canopy. Right: Closed 
canopy. 
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Gap Masking  

A more detailed gap mask was prepared from the LiDAR CHM 
compared to the satellite image. Visual interpretation shows that gap 
boundaries extracted from airborne LiDAR data were of a higher 
precision than the optical satellite data (Figure 19). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Gap Masks 

Figure 18: Spatial profile or surface contour of plots (Spectral Bands 1-8).  
Left: Open Canopy. Right: Closed Canopy
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Treetop detection  

Figure 20 shows 3D visualizations of the detected peaks in both 
images. A total of 102,332 and 94,850 treetops were identified from 
the airborne LiDAR and optical satellite data, respectively. Table 5 
shows the accuracy statistics of automatically detected treetops on 
the two datasets using 627 reference trees.  
 

 
 
 
 
 
 
 
 
 
 
 
Table 5: Accuracy of automatically detected treetop (Highlighted are the top three 
accuracies obtained). Buffer refers to search window size. 

 
Key: WV-2 stands for WorldView-2  
 
The highest detection accuracy of 79.7% was recorded when using a 
1.5 m radius search window which matched the average crown size of 
3 m measured during fieldwork. When using a search window smaller 
than the average crown size, the detection accuracy from the 

Dataset No. of 
Treetops 
detected 

Buffer 
(m) 

Commission 
error (%)/ 
No. of Trees 

Omission 
error (%)/ 
No. of Trees 

Accuracy 
Index 
(%) 

LiDAR  256 0.5 0/ 0 61.27/ 405 38.7 
494 1 0.91/ 6 26.17/ 173 72.9 
627 1.5 7.56/ 50 12.71/ 84 79.7 
813 2 23.15/ 153 0.15/ 1 76.7 

WV-2 50 0.5 0.04/ 2 94.05/ 759 5.7 
184 1 14.13/ 26 80.04/ 649 16.4 
392 1.5 26.28/ 103 64.19/ 518 23.0 
721 2 36.89/ 266  43.62/ 352 23.4 

Figure 20: Automatically detected treetops. Left: WorldView-2. Right: LiDAR CHM. 
Inset: Visualized area highlighted in white
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airborne LiDAR data was increasing. The detection accuracy began to 
decrease when the search window became wider than the average 
crown size. In the optical satellite data, detection accuracy continued 
to increase with a wider search window.  
 
Individual Crown segmentation  

 
 
 
 
 
It was hard to visually determine a better segmentation result 
between LiDAR and WorldView-2 data as shown in Figure 21. 
However, quantitative accuracy assessment with manually digitized 
crown data showed that the LiDAR crown delineation was more 
accurate. Over segmentation error was 11% and 23% in LiDAR and 
WorldView-2 datasets respectively. Under segmentation error was 
32% and 72% in LiDAR and WorldView-2 datasets respectively. Using 
the closeness index to obtain an overall segmentation accuracy 
measure, the segmentation from LiDAR data was 86.4% closer to the 
ideal segmentation in a space defined by the reference polygons. 
Segmentation from LiDAR had a D-Value score of 0.34. The 
WorldView-2 segmentation was 69% closer to the reference polygons 
with a D-Value of 0.76. The LiDAR segmentation output was therefore 
used to define the individual tree crown boundaries in extraction of 
the physical and spectral parameters for species identification and 
classification. 

Figure 21: Segmentation results. Left: LiDAR. Right: WorldView-2 
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3.1.3 Tree physical parameters 
A linear regression between the image estimated (LiDAR CHM) and 
ground estimated height showed R2 values of 0.65 and 0.81 before 
and after removing outliers respectively as shown in Figure 22 (Top). 
The correlation and R2 values between Image estimated (LiDAR) and 
ground estimated crown diameter was 0.18 and 0.41 respectively 
(Figure 22-2Bottom). QQ plots of all the physical parameters 
(appendix 5) show a normal distribution of the data.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: LiDAR derived Tree Height (Top) and Crown diameter (Bottom). Height with 
outliers (left), Height without outliers (Right), Crown diameter using a circular model 

(Left), Crown diameter using an elliptic model (Right) 
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The box plots of within crown standard deviation (SD) and coefficient 
of variation of intensity show overlap between the species (Figure 
23). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Key: PS – Pinus sylvestis PU – Pinus unicinata 

3.1.4 Crown spectral parameter
 
Figure 24 shows a species-wise boxplot of within crown maximum 
Digital Number (DN) values across the WorldView-2 spectral bands. 
More distinction information based on the mean is available in bands 
6, 7 and 8. The spread (distribution) of the DN values, across species, 
overlaps. The results of other within crown statistics evaluated are 
presented in Appendix 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23: Intensity Standard Deviation (SD) and Coefficient of Variation (CoV) 
of the two pine species 
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Figure 25 shows species-wise boxplots of within crown descriptive 
statistics of the WorldView-2 spectral Band678 composite. The largest 
distinction of the species is seen in the within crown maximum DN 
values of the Band678 and the satellite albedo composites. The 
boxplot of within crown albedo is shown in Figure 26.  
 
A WorldView-2 spectral bands profile of both species was generated 
based on the mean of the within crown maximum DN values using 
807 reference trees (Figure 27). The widest distinction between the 
species is seen in bands 6, 7 and 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.5 Regression modelling  
 
The role of Variance Inflation Factor (VIF) in identifying collinearity 
among predictor variables has already been discussed in chapter 2. 
VIF values for the individual tree spectral and physical parameters 
considered in the regression modelling are as shown in Table 6. There 
was no collinearity between the variables used to predict the species 
classes.  
  
 
 
 
 
 

Figure 27: WorldView-2 spectral profiles of the two tree species 
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Table 6: Variance Inflation Factors across explanatory variables 
 
Variable VIF 
Height 1.23 
Crown Diameter 1.24 
Intensity 1.04 
Albedo 1.04 
 
 
The six models evaluated in this study showed similar predictive 
power ranging from 0.73 to 0.76 of Area Under Curve (AUC) and the 
map accuracies from 0.44 to 0.54 of Kappa as shown in Figure 28. 
The best predictive power and map accuracy results were obtained 
when all the four variables were used as explanatory attributes in 
both Logistic Regression and CART models (Figure 28). Model 
coefficients and classification trees have been presented in Appendix 
7. The best classification result as obtained from the CART model 
using both spectral and physical parameters is shown in Figure 29. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Model accuracy results 
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Chapter 4 
 

4.1 DISCUSSION
 

4.1.1 Field Methods  

This study employed a novel field technique to locate plot centres and 
identify individual tree locations as has been described in Chapter 2 - 
field work section. The advantages of this method have been 
discussed in a section below on individual treetop detection. This 
method integrated the use of a GPS receiver, the LiDAR CHM, 
landmarks and ground distance measurements. The technique is well 
justified given that the accuracy of LiDAR spatial and elevation 
metrics in forest studies is appreciated (Hodgson & Bresnahan, 2004; 
Gobakken & Naesset, 2008; Andersen et al., 2009; Kaartinen et al., 
2012). LiDAR spatial and elevation errors can still occur especially 
when associated with system calibration, horizontal displacement, 
interpolation and the surveyor’s experience (Hodgson & Bresnahan, 
2004; Kaartinen et al., 2012). Our CHM showed accurate (Hodgson & 
Bresnahan, 2004) spatial and elevation information when tested at 
known locations during reconnaissance and therefore could be used 
to locate plot centres and individual tree positions in a faster as well 
as more accurate approach.  

However, replication of the aforementioned field technique requires to 
be done cautiously. This is because our approach does not alleviate 
the problem of accurately locating treetops during fieldwork at all 
image scales. Our method is greatly dependent on the image scale in 
question. At fine image scales, like our 0.15 m LiDAR CHM resolution, 
it guarantees less than a single crown margin of error. However, its 
application at larger image scales may introduce errors. In their 
study, Wang et al. (2004) note that image intensity changes can 
occur over a wide range of scales. At a fine scale - as in our LiDAR 
CHM - all branches in a tree crown image are visible thus enabling 
location of the treetop position near a local ‘geometric peak’. 
However, at a coarser scale – such as in the WorldView-2 image - a 
single tree crown may merge with its neighbours, thus introducing 
errors. This technique will therefore require further investigation 
specifically regarding the effect of scale and human error in the 
location of treetops on the CHM and plot centres in the field.   
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4.1.2 Forest Condition

The statistics showed that Bois noir forest is growing slowly 
considering that its documented age is over 100 years. The majority 
of trees in this forest remain low in DBH (Figure 16). Many tree 
crowns in the study area are small, overlapping, and with a high 
crown base height. This structure is indicative of competition for 
photosynthetic resources. Diameter growth is related to tree support, 
water absorption and leaf biomass, while the height growth is related 
to light interception (Sönmez, 2009; Li et al., 2011). The low 
correlation between DBH and height suggests a trade off in resource 
allocation which is indicative of either water or temperature stress 
(Wang et al., 2006). Both stresses appear to be at play in this area 
as the trees undergo both severe cold during winter and suffer water 
stress due to shallow soils along the steep slopes. These stresses are 
compounded by the lack of silvicultural practices like thinning and 
therefore despite the fact that needle leaved species can escape the 
harm of winter conductance, excessive branches on the tree stem 
cause the trees to suffer irreversible loss to water conductance of 
xylem during winter. Thus more resources are allocated for sap wood 
growth during the growing season to maintain the necessary water 
conductance (Wang et al., 2006). However, a few trees of high DBH 
exist in areas with lower slope and deeper soils, mainly on plateaus 
and are the outliers seen in Figure 16. On the other hand, the high 
tree density, could account for low correlations between crown 
diameter and DBH. While we fitted a linear function, Sönmez (2009) 
suggests a cubic relationship between crown diameter and DBH for a 
Pinaceae species (Picea orientalis) which further explains the low 
correlation values.  

4.1.3 Geometric co-registration of datasets   

This study achieved a co-registration root mean square error (RMSE) 
of one pixel (0.5 m) between the LiDAR and WorldView-2 datasets 
using six ground control points and a LiDAR derived DEM as 
illustrated in Figure 3. The use of more ground control points could 
have improved the co-registration accuracy. However, due to 
variability in the canopy structure, shadow effects (Figure 4) and 
topographic distortions (Figure 30), addition of tie points resulted in 
higher RMSE. The steep slopes of varying aspect, sun elevation 
(48.1) and azimuth (161.7) angles and the average satellite elevation 
(74.8) and azimuth (55.0) angles explain the shadows on the scene. 
The ragged landscape explains the geometric distortions. Fuzziness is 
spread across the image which made precise tying of features in the 
images impossible. Moreover, unlike man-made structures, natural 
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landscape features do not often have discrete symmetrical edges 
(Ben-Arie, 2009) hence introducing uncertainty in positioning of tie 
points. The use of accurate ground control points (GCP) would 
alleviate these uncertainties and improve the co-registration result; 
however this data was not available for this study and can be very 
time consuming to collect. A faster attempt (i.e. without connection 
to a local base station) to collect ground control points using a DGPS 
was made. However, the collected points required post processing to 
achieve within centimetre accuracy. We were not able to get 
recordings from a local base station within the time available for this 
study.  

4.1.4 Treetop Identification
 
The spatial profiles generated over the grey scale images (Figures 17) 
suggested higher commission errors in treetop detection from the 
satellite imagery than the LiDAR CHM. Our tree detection accuracy 
assessment results presented in Table 5 confirmed these higher 
commission errors in WorldView-2. The spectral peaks in the 
panchromatic image did not necessarily represent topographic peaks 
(as suggested by  Wang et al. (2004)) as did the geometric peaks in 
the LiDAR data. In some parts of the WorldView-2 satellite imagery, 
these local peaks represented the colour contrast between the tree 
crowns and the background an effect brought about by a high signal 
to noise ratio especially shadows. Figure 31 demonstrates this effect. 
However, although LiDAR performed better than WorldView-2 in 
individual tree detection (z-test P=7.9x10-7,  =0.05), there are 
considerable omission and commission errors. There was generally 
higher omission than commission error recorded in both datasets 

Figure 30: Topographic distortions. Left: WorldView-2 Image after geometric correction. 
Right: WorldView-2 Image before geometric correction. 
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(Table 5). These errors can be explained by the effect of a fixed 
window size based on the mean crown radius. It appears that a fixed 
window size was not representative of very small as well as very 
large crowns hence omission and commission errors, respectively. 
Even though Wulder et al. (2000) show that there is no significant 
difference between the rate of correct predictions between either the 
fixed or variable window size of local maximum strategy, they report 
a reduction in commission error when using variable window sizes. It 
therefore remains a trade-off between total proportion of trees 
correctly identified and the level of commission and omission error to 
be accommodated whereby a larger than optimal window results in 
higher omission error because it contains multiple tree apexes or a 
smaller than optimal window size, too many apexes are identified 
(commission errors) because the small window does not always 
contain a true tree apex (Pouliot et al., 2002). However, we note that 
a fixed window size based on mean crown diameter provides a simple 
and quick alternative to estimate tree positions from high density 
LiDAR to optimal accuracies even in forest with a complex condition 
as Bois noir. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This study’s tree detection accuracies are hard to compare with other 
studies given the variation in LiDAR point densities, satellite image 
resolutions, filtering and detection methods as well as terrain form. 
As previously mentioned, we employed a simpler and probably less 
preferred fixed window local maximum filtering approach. 
Nonetheless, our LiDAR result was good compared to other studies. 
Persson et al. (2002) had 71% tree detection accuracy employing 

Figure 31: Automatically detected treetops from WorldView-2 panchromatic image 
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variable Gaussian filters and local maximum filtering on a 2 points per 
m2 dataset at a site supposedly less mountainous. Similarly, Véga 
and Durrieu (2011) achieved a 73.97% tree detection using multi-
level 3x3 Gaussian low pass filtering before employing the local 
maximum algorithm on a 5 points per m2 dataset and at a site with 
mountainous terrain. We achieved better accuracy (79.7%) than the 
mentioned studies. 
 
Our ‘good’ treetop detection result from LiDAR data can be partly 
attributed to precise location of reference trees during fieldwork, a 
higher point density and a good choice of local maximum filtering 
window. We were able to accurately locate reference trees in the field 
a step that enhanced our accuracy assessment. Difficulty associated 
with identifying tree locations in the field has limited studies in the 
past to less robust aggregated accuracy assessments (Gougeon, 
1995) than individual tree detection accuracy assessments used in 
this study (Pouliot et al., 2002). Many other studies later in time 
(Wulder et al., 2000; Pouliot et al., 2002; Wulder et al., 2002; 
Wulder et al., 2004) have equally recognized this challenge of 
locating trees in the field as affecting individual tree detection 
accuracy results. With further investigation of our field method, this 
challenge of locating trees in the field could be alleviated. On the 
other hand, higher LiDAR point densities gave this study the upper 
hand given the reduced generalization of tree crown characteristics in 
the CHM. It was possible to locate treetops in the grey scale image. 
Higher height values are visibly brighter than lower values in the 
image enabling optimal location of treetops. A window size 
commensurate to the mean tree crown width measured in the field 
accounted for the challenge of identifying the right kernel in this 
moving-window procedure hence improving detection accuracies.  
 
Treetop detection in the WorldView-2 imagery gave a result similar to 
other studies despite the high signal to noise ratio, topographic 
distortions and low resolution in respect to crown sizes. While relating 
crown radius measured in the field to the proportion of correctly 
identified trees in 1 m resolution imagery, Wulder et al. (2000) had 
proportions of trees identified by local maximum filters at 13%, 32% 
and 51% for three fixed window sizes of 3x3, 5x5 and 7x7 
respectively. They attributed the low detection accuracies to 
generalizations applicable for the object resolution relationship 
existing between the 1 m spatial resolution image data and the field 
data under consideration. Bois noir forest is not privy to this as it is 
characteristic of small crowns (mean crown radius of 3m) and 
therefore a 0.5m resolution significantly generalizes the crown 
structure obscuring many peaks (Pouliot et al., 2002). Conversely, 
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Wulder et al. (2004) attribute their high proportions of correctly 
identified trees in IKONOS imagery (80%-92% across ranges of 
crown radii) to a high sun angle and lack of shadows in the imagery 
and therefore concluded that IKONOS provides sufficient information 
on individual tree locations to allow meaningful studies of forest 
structure. Although WorldView-2 satellite imagery has a finer spatial 
resolution than IKONOS imagery, its application in a mountainous 
terrain was not that good. Our individual tree detection result was 
poor mainly because the scene was greatly affected by off nadir 
viewing geometric distortions, low resolution in respect to image 
objects, topographic distortions and a low sun angle leading to 
shadowing. These factors accounted for a higher signal to noise ratio 
in the imagery which precluded accurate identification of individual 
tree locations by their treetop (Figures 30 & 31).  
 
Whether both omission and commission error accommodated in this 
study could be completely eliminated in a synergistic approach using 
variable window sizes remains a matter that this study could not 
address given its scope. Similarly, the combined application of LiDAR 
and WorldView-2 in tree detection was not feasible given the wide 
range in accuracies between the two datasets. Treetops from both 
datasets were therefore used independently as seed pixels to grow 
the individual tree crowns.  

4.1.5 Crown segmentation
 
A region growing segmentation method works well if only one seed 
point in each crown can be detected (Erikson & Olofsson, 2005). We 
attribute over segmentation and under segmentation errors to 
commission and omission errors accommodated at the tree detection 
step, respectively. These errors have been well described by Ke and 
Quackenbush (2011). As expected, LiDAR derived segments were 
more accurate than the WorldView-2 when analyzed against 1615 
reference individual crown polygons. A segmentation accuracy of 
86.4% was achieved from the LiDAR data. Unexpectedly, 
segmentation accuracy was higher than treetop detection accuracy at 
79.7%. This is because segmentation accuracy reported can be 
misleading due to the potential for accommodated commission and 
omission errors from the tree detection step to cancel out (Ke & 
Quackenbush, 2011). The visually distinguishable trees in the image 
are not always the trees on ground due to overlaps in the canopy. 
Similarly, some trees may grow in lower canopy strata and are 
missed in the imagery. This problem of overestimated segmentation 
accuracy can be tackled in part by using field delineated crowns as 
reference for accuracy assessment. However, collection of this data 
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will significantly increase the time required to conduct field work and 
will still remain inaccurate in the closed canopy.  
 
A significantly higher under segmentation error was observed in the 
WorldView-2 imagery even though the total number of seed pixels 
identified in both datasets was similar. This finding affirms the 
significant mislocation of treetops in the WorldView-2 satellite data as 
illustrated in Figure 31. The low performance of the WorldView-2 
satellite imagery in segmentation of individual crowns was mainly due 
to low resolution in respect to the crown sizes. Individual tree crowns 
must be visually distinguishable in the image before any thresholding 
based on colour or shape can be employed successfully. The 
generalizations coupled with shadows and distortions in the image 
obscured contrast between the tree crowns and the background 
which made accurate individual tree crown segmentation infeasible. 
Crown regions were overgrown leading to higher under segmentation 
error. 

4.1.6 Tree physical parameters 

A relatively low goodness of fit (0.65 for height and 0.18 for crown 
diameter) was achieved when field estimated and LiDAR estimated 
tree height and crown diameter were compared. This finding was 
unexpected for height estimates given that studies have showed 
higher correlations and R2  between tree measurements acquired 
from LiDAR and those acquired using traditional field methods 
(Persson et al., 2002; Andersen et al., 2006). However, most studies 
have compared LiDAR estimated height to field estimated height from 
laser instruments. In this study, we used a Haga© to estimate tree 
height in the field which could explain the inconsistence with our 
findings (Persson et al., 2002; Wing et al., 2004). Moreover, 
considering that the dominant source of error in LiDAR tree height 
measurement is due to the difficulty in measuring treetop locations 
during fieldwork, the existence of pits in the CHM may have led to 
underestimation of height if a field determined treetop location fell on 
a pit in the CHM. Ben-Arie et al. (2009) proposed a pit filling 
algorithm for LiDAR canopy height models to increase their quality. 
We were not able to employ such a pit filling algorithm in the time 
available for this study but used mean filters to eliminate pits. This 
could have introduced errors in estimation. Similarly, the accuracy of 
LiDAR data in tree height estimation in mountainous terrain also 
requires to be further investigated. Unlike the high correlation and 
low root mean square errors recorded in a review by Andersen et al. 
(2006), Kwak et al. (2007) had a  lower goodness of fit (0.74) 
working in a mountainous area in central South Korea. Whether or 
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not there was significant vertical error introduced by our LiDAR data 
was beyond the scope of this study but cannot be overlooked as 
having had an effect on the result. On the other hand, the low 
coefficient of determination between field estimated and LiDAR 
estimated crown diameter was expected. This is because of the 
already discussed treetop detection and segmentation errors, the 
well-known errors in field estimation and errors from the assumed 
elliptic shape of tree crowns.  
 
We opted to restrict our analysis to three physical parameters 
because a regression modelling approach was to be used for species 
classification. Predictor variables for regression modelling require to 
have low collinearity and other parameters like crown volume and 
crown projection area that could be computed from LiDAR metrics 
were derivatives of crown diameter and tree height. Other 
parameters like crown tilt, crown orientation, crown density, local 
crown gaps percentage could not be used because of issues related to 
model transferability. Crown intensity was introduced experimentally 
to evaluate whether it would have a significant contribution to species 
classification. However, Figure 23 shows that the intensity values 
between the species were closely related.  
 

4.1.7 Crown spectral parameter

Various statistical summaries of individual crown from WorldView-2 
satellite data were evaluated and a spectral signature (Figure 27) was 
extracted. The signature indicated spectral distinction between the 
two closely related tree species. Higher distinction information was 
possible in bands 6, 7 and 8. The maximum within crown values gave 
better distinction than other statistics evaluated (Figures 25 & 26 and 
appendix 6). This can be attributed to the high signal to noise ratio in 
the satellite image. The extraction of maximum spectral values 
appears to have distinguished the crown reflectance from background 
reflectance in the image and ‘purified’ the species spectral signal. 
However, this is a new technique that appears conceptually feasible 
but requires further investigation on a wider range of species.   

4.1.8 Tree species identification

By mapping the extracted within crown spectral and physical 
parameters to treetops, the integration of LiDAR and satellite data for 
species classification was possible through regression modelling. The 
predictive power of the models was similar (Figure 28) despite the 
classifiers using completely different approaches. This is a promising 
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finding as it affirms that spectral and physical characteristics are 
robust predictors of species classes. The low predictive power of the 
models can be qualified by the quality of the input data as previously 
discussed. More accurate estimates of predictor variables could result 
in higher predictive power by the models.   

Classifications accuracy has been evaluated using the Kappa 
coefficient. Kappa was similar across models as well as predictor 
variables. In this case, the Kappa value is highly dependent on the 
threshold assigned to distinguish the species. A 50% threshold was 
used in this study whereby the predicted values below 0.5 were 
assigned to Pinus uncinata and above 0.5 to Pinus sylvestris. 
However, using the same dataset to drive the model, variant 
thresholds would result into significantly different Kappa results. For 
example, the alternative threshold would be to use field estimated 
species abundance or dominance considering that these measures 
indicate the rate of species occurrence. A threshold based on the rate 
of occurrence could improve model specificity and sensitivity. This 
was not investigated in this study but can be considered an option for 
further research.  

The combination of LiDAR and spectral attributes showed a marginal 
increase in species distinction. Appendix 7 shows the model 
coefficients. The P-values show that all the variables had a significant 
contribution in the distinction of species. This was expected given the 
lack of collinearity among predictor variables. Spectral data had the 
most significant influence in the runs where both datasets were 
combined and for both model types (Appendix 7). This finding was 
unexpected, considering the signal to noise ratio in the WorldView-2 
spectral data. However, this finding further supports the idea of 
‘spectral purification’ using simple statistical summaries and can be 
considered in future work. We have tested our species classification 
approach with two basic models using easy to compute statistical 
variables. The time consuming task was variable extraction, but 
models run quickly for over 100,000 individual tree data. This 
approach can be further studied as we have proposed in the 
recommendations.    
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Chapter 5 
 

5.1 CONCLUSION AND RECOMMENDATIONS
 

5.1.1 Conclusion 
 
We have examined three individual crown segmentation and species 
identification and classification schemes i.e. segmentation and 
species identification and classification based on LiDAR layers, 
spectral layers and a combination of the two datasets. Using 
segmentation goodness measures proposed by Clinton et al. (2010) 
to assess individual crown segmentation quality and Kappa statistics 
to assess the accuracy of species identification and classification, we 
have found out that LiDAR derived individual crown segments were 
superior (Segmentation goodness = 86.4% closer to the reference 
polygons) to the WorldView-2 optical satellite individual crown 
segments (Segmentation goodness = 69% closer to the reference 
polygons). We also conclude that the integration of the datasets for 
individual tree species identification and classification using a 
regression modelling approach provided increased interpretation 
capabilities and an opportunity for more reliable results. The best 
classification result (Kappa=54%) was obtained from the 
Classification and Regression Trees model using both the crown 
spectral parameter derived from WorldView-2 satellite data and tree 
physical parameters derived from LiDAR data as predictor variables.  
 
Although the integration of LiDAR and WorldView-2 was not possible 
to be achieved for this study, it is still conceptually feasible. The 
application of WorldView-2 imagery at our mountainous study site 
was not that good. The poor performance of the WorldView-2 optical 
satellite imagery owed to the distortions and scale issues as has been 
discussed. These inconsistences in the WorldView-2 optical satellite 
data hindered the integration of the two datasets for individual crown 
segmentation.  
 
Both LiDAR and WorldView-2 optical satellite imagery had a similar 
contribution to individual tree species identification and classification. 
There was no significant difference in Kappa statistics of individual 
tree species classification maps obtained from either LiDAR derived 
tree physical parameters or the WorldView-2 optical satellite spectral 
parameter used in isolation. However we learn that the crown 
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spectral parameter was marginally stronger than the tree physical 
parameters in differentiation of the two tree species, a step we have 
attributed to ‘spectral purification’. Several novel techniques have 
proposed and experimented with and new findings discovered by this 
study that will require further investigation as highlighted in the 
recommendations.  

5.1.2 Recommendations 
 

1. This study was conceived on a conceptually firm ground as 
discussed in the background. However, various bottlenecks 
related to the quality of the WorldView-2 optical satellite 
imagery were met along the way. Many of these bottlenecks 
culminated from the effect of terrain and image sun elevation 
angle but not all WorldView-2 imagery have these negative 
effects. We therefore recommend a similar study in a flat 
terrain and an optimal sun elevation angle so as to eliminate 
the bias brought about by the high signal to noise ratio in the 
WorldView-2 optical satellite imagery used in this study. A 
good alternative will be to test our methods with the 15 cm 
ortho-photo collected with the LiDAR dataset. 

 
2. Further investigation of the field method used by this study to 

identify locations of individual treetops and plot centres in the 
field will be required so as to evaluate the effect of human 
error and image scale on the accuracy of the data collected.  

3. We proffer further investigation on the effect of variable 
window sizes in the local maximum filtering strategy to locate 
treetops on both the LiDAR CHM and the panchromatic 
WorldView-2 optical satellite imagery. This strategy may 
further reduce commission and omission errors in tree 
detection.  

4. The effect of a pit filling algorithm on improving the quality of 
the CHM for treetop detection and individual crown 
segmentation requires to be further studied. This study tried 
mean filters and found out that mean filters appear to 
introduce vertical error in height estimations and that they 
only reduce than remove the pits completely.  

5. There is need to investigate the accuracy of LiDAR height 
metrics versus field based estimates in mountainous terrain. 
Our experience using analogue instruments to estimate tree 
height in the field provides premise to raise suspicion towards 



Chapter 5 

 69

inaccuracies in field based height estimates than LiDAR 
derived height metrics. However, this requires further 
investigation. 

6. The ability to overcome the optical imagery high signal to 
noise ratios in a ‘spectral purification’ step using maximum 
within crown spectral values requires to be further 
investigated. This will be best done comparing among various 
tree species. The potential of this method to distinguish closely 
related species using hyper-spectral data appears promising. 

7. This study suffered effects of error propagation in the 
estimation of both crown spectral and tree physical 
parameters. Further study can be directed towards 
understanding the magnitude of error propagated and its 
effect on the quality of data extracted from both datasets 
(LiDAR and WorldView-2 optical satellite imagery). Similarly, 
regression modelling approaches with stronger predictive 
power like the boosted regression trees can be investigated for 
better predictive power and Kappa statistics in our species 
identification approach. 
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Appendix 2: Species classification procedure as implemented in R© 
 
## Set Working Directory  
setwd("C:\\School\\GEM\\MScProject\\Rawdata_RS\\LiDAR 
Surfaces\\pre_processingLiDAR\\CHM_0.15") 
a<-read.csv("Training.csv",header=TRUE, sep=",") 
b<-read.csv("FinalPeaks_AllData_new.csv",header=TRUE, sep=",") 
c<-read.csv("Validation.csv",header=TRUE, sep=",") 
 
library(ROCR) 
 
##Data exploration 
## Testing normality of the variables  
par(mfrow=c(2,2)) 
qqnorm(b$CHM_Height)            
qqnorm(b$eHeight) 
qqnorm(b$Crown_D) 
qqnorm(b$Crown_D_E) 
qqnorm(b$IntSD) 
qqnorm(b$IntCoV) 
qqnorm(b$S_Albedo) 
qqnorm(b$Band687) 
 
##Box plots 
boxplot (a$CHM_Height,a$eHeight,a$Crown_D,a$Crown_D_E, names=c('CHM 
Height','Ecog Height','Crown Diameter', 'Crown Diameter ellipse'), yaxis=F, 
ylab='Meters') 
boxplot (a$IntSD,xlab=('SD'), ylab='Units') 
boxplot (a$IntCoV,xlab=('CoV'), ylab='Units') 
boxplot (a$S_Albedo,xlab=('Maximum Satellite Albedo'), ylab='Digital Numbers') 
boxplot (a$Band687,xlab=('Maximum 678 Composite'), ylab='Digital Numbers') 
 
##Variable colinearity analysis  
##Correlation between variables 
Numeric<-data.frame(a$CHM_Height,a$eHeight,a$Crown_D,a$Crown_D_E, a$IntSD, 
a$IntCoV,a$S_Albedo,a$Band687) 
cor(Numeric) 
 
##Compute VIF for each variable 
model.CHM_Height <-lm(CHM_Height~Crown_D_E+ IntCoV+S_Albedo+Band687, 
data=b) 
r2.CHM_Height<-summary(model.CHM_Height)$r.squared 
VIF.CHM_Height<-1/(1-r2.CHM_Height) 
 
model.Crown_D_E <-lm(Crown_D_E~CHM_Height+IntCoV+S_Albedo+Band687, 
data=b) 
r2.Crown_D_E<-summary(model.Crown_D_E)$r.squared 
VIF.Crown_D_E<-1/(1-r2.Crown_D_E) 
 
model.IntCoV <-lm(IntCoV~CHM_Height+Crown_D_E+S_Albedo+Band687, data=b) 
r2.IntCoV<-summary(model.IntCoV)$r.squared 
VIF.IntCoV<-1/(1-r2.IntCoV) 
 
model.S_Albedo <-lm(S_Albedo~CHM_Height+Crown_D_E+IntCoV+Band687, data=b) 
r2.S_Albedo<-summary(model.S_Albedo)$r.squared 
VIF.S_Albedo<-1/(1-r2.S_Albedo) 
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model.Band687<- lm(Band687~CHM_Height+Crown_D_E+IntCoV+S_Albedo, data=b) 
r2.Band687<-summary(model.Band687)$r.squared 
VIF.Band687<-1/(1-r2.Band687) 
 
##Without Band 678 
model.CHM_Height <-lm(CHM_Height~Crown_D_E+ IntCoV+S_Albedo, data=b) 
r2.CHM_Height<-summary(model.CHM_Height)$r.squared 
VIF.CHM_Height<-1/(1-r2.CHM_Height) 
 
model.Crown_D_E <-lm(Crown_D_E~CHM_Height+IntCoV+S_Albedo, data=b) 
r2.Crown_D_E<-summary(model.Crown_D_E)$r.squared 
VIF.Crown_D_E<-1/(1-r2.Crown_D_E) 
 
model.IntCoV <-lm(IntCoV~CHM_Height+Crown_D_E+S_Albedo, data=b) 
r2.IntCoV<-summary(model.IntCoV)$r.squared 
VIF.IntCoV<-1/(1-r2.IntCoV) 
 
model.S_Albedo <-lm(S_Albedo~CHM_Height+Crown_D_E+IntCoV, data=b) 
r2.S_Albedo<-summary(model.S_Albedo)$r.squared 
VIF.S_Albedo<-1/(1-r2.S_Albedo) 
 
##Read categorical data 
a$Species_code<-factor(a$Species_code) 
 
##Checking data plots one by one  
plot(a$CHM_Height, a$Species_code) 
plot(a$Crown_D_E, a$Species_code) 
plot(a$IntCoV, a$Species_code) 
plot(a$S_Albedo, a$Species_code) 
 
##Load Library 
library(PresenceAbsence) 
 
##Logistic based on only LiDAR data  
model.small <- glm(Species_code ~ CHM_Height, data=a,family="binomial") 
model.large <- glm(Species_code ~ CHM_Height+Crown_D_E+ IntCoV,data=a, 
family="binomial") 
model.logistic.stepwise <- 
step(model.small,scope=list(lower=model.small,upper=model.large),direction="both") 
summary(model.logistic.stepwise) 
 
a$LogLiDAR<-predict.glm(model.logistic.stepwise,a,type='response') ##Make 
prediction for training  
 
##Validation  
c$LogLiDAR<-predict(model.logistic.stepwise, newdata=c, type='response') ##Make 
prediction for validation data 
 
a$LogLiDARClass<-ifelse(a$LogLiDAR>0.5,1,0) 
c$LogLiDARClass<-ifelse(c$LogLiDAR>0.5,1,0) 
 
combine<-c$Species_code 
label<-c$LogLiDARClass 
pred<-prediction(combine,label) 
perf<-performance(pred,"tpr","fpr") 
plot(perf,colorize=TRUE) 
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performance(pred,"auc")@y.values[[1]] 
 
##Make a prediction for all trees  
b$LogLiDAR<-predict(model.logistic.stepwise, newdata=b, type='response') ##Make 
prediction for all trees  
b$LogLiDARClass<-ifelse(b$LogLiDAR>0.5,1,0) 
 
##Logistic based on only Spectral data 
 
Log.Spectral <- glm(Species_code ~ S_Albedo, data=a, family="binomial") 
summary(Log.Spectral) 
a$LogSpectral<-predict.glm(Log.Spectral, a,type='response') ##Make prediction for 
Training 
 
##Validation  
 
c$LogSpectral<-predict(Log.Spectral, newdata=c, type='response') 
c$LogSpectralClass<-ifelse(c$LogSpectral>0.5,1,0) 
a$LogSpectralClass<-ifelse(a$LogSpectral>0.5,1,0) 
 
combine<-c$Species_code 
label<-c$LogSpectralClass 
pred<-prediction(combine,label) 
perf<-performance(pred,"tpr","fpr") 
plot(perf,colorize=TRUE) 
performance(pred,"auc")@y.values[[1]] 
 
##Make prediction for all trees  
b$LogSpectral<-predict(Log.Spectral, newdata=b, type='response') 
b$LogSpectralClass<-ifelse(b$LogSpectral>0.5,1,0) 
 
##Stepwise Regression Logistic Regression Spectral and LiDAR combined  
 
model.small <- glm(Species_code ~ CHM_Height, data=a, family="binomial") 
model.large <- glm(Species_code ~ CHM_Height+Crown_D_E+ IntCoV+S_Albedo, 
data=a, family="binomial") 
model.log.both.stepwise <- 
step(model.small,scope=list(lower=model.small,upper=model.large),direction="both") 
 
a$LogBoth<-predict.glm(model.log.both.stepwise,a,type='response') ##Make 
prediction for training  
 
##Validation  
c$LogBoth<-predict(model.log.both.stepwise, newdata=c, type='response') ##Make 
prediction for all trees  
 
a$LogBothClass<-ifelse(a$LogBoth>0.5,1,0) 
c$LogBothClass<-ifelse(c$LogBoth>0.5,1,0) 
 
combine<-c$Species_code 
label<-c$LogBothClass 
pred<-prediction(combine,label) 
perf<-performance(pred,"tpr","fpr") 
plot(perf,colorize=TRUE) 
performance(pred,"auc")@y.values[[1]] 
 
##Make predictions for all trees  
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b$LogBoth<-predict(model.log.both.stepwise, newdata=b, type='response') ##Make 
prediction for all trees  
b$LogBothClass<-ifelse(b$LogBoth>0.5,1,0) 
 
## Classification and regression trees  
library(rpart) 
 
##creating regression tree model (Spectral data) 
 
CART.Spectral<-rpart(Species_code ~ S_Albedo,data=a, method="class") 
 
par(xpd=NA) 
plot(CART.Spectral, uniform=TRUE) 
text(CART.Spectral, use.n=TRUE) 
CART.Spectral 
plotcp(CART.Spectral) 
 
a$CARTSpectral<-predict(CART.Spectral, data=a,type='class',na.action=na.fail) 
##Make prediction for Training 
 
##Validation  
c$CARTSpectral<-predict(CART.Spectral, newdata=c, type='class',na.action=na.fail) 
 
combine<-c$Species_code 
label<-c$CARTSpectral 
pred<-prediction(combine,label) 
perf<-performance(pred,"tpr","fpr") 
plot(perf,colorize=TRUE) 
performance(pred,"auc")@y.values[[1]] 
 
##Make predictions for all trees  
b$CARTSpectral<-predict(CART.Spectral, newdata=b, type='class',na.action=na.fail) 
 
##Creating regression tree (LiDAR Data) 
CART.LiDAR<-rpart(Species_code ~ CHM_Height+Crown_D_E+ IntCoV,data=a, 
method="class") 
opt <- CART.LiDAR$cptable[which.min(CART.LiDAR$cptable[,"xerror"]),"CP"]; 
CART.LiDAR.opt <- prune(CART.LiDAR, cp = opt); 
 
par(xpd=NA) 
plot(CART.LiDAR.opt) 
text(CART.LiDAR.opt) 
CART.LiDAR.opt 
plotcp(CART.LiDAR.opt) 
 
##Validation  
a$CARTLiDAR<-predict(CART.LiDAR.opt, newdata=a, type='class',na.action=na.fail) 
c$CARTLiDAR<-predict(CART.LiDAR.opt, newdata=c, type='class',na.action=na.fail) 
 
combine<-c$Species_code 
label<-c$CARTLiDAR 
pred<-prediction(combine,label) 
perf<-performance(pred,"tpr","fpr") 
plot(perf,colorize=TRUE) 
performance(pred,"auc")@y.values[[1]] 
 
##Make a prediction for all the trees  
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b$CARTLiDAR<-predict(CART.LiDAR.opt, newdata=b, type='class',na.action=na.fail) 
 
##Creating regression tree (Spectral & LiDAR) 
CART.Both<-rpart(Species_code ~ CHM_Height+Crown_D_E+ 
IntCoV+S_Albedo,data=a, method="class") 
opt <- CART.Both$cptable[which.min(CART.LiDAR$cptable[,"xerror"]),"CP"]; 
CART.Both.opt <- prune(CART.Both, cp = opt); 
 
par(xpd=NA) 
plot(CART.Both.opt) 
text(CART.Both.opt) 
CART.Both.opt 
plotcp(CART.Both.opt) 
 
##Validation  
a$CARTBoth<-predict(CART.Both.opt, newdata=a, type='class',na.action=na.fail) 
c$CARTBoth<-predict(CART.Both.opt, newdata=c, type='class',na.action=na.fail) 
 
combine<-c$Species_code 
label<-c$CARTBoth 
pred<-prediction(combine,label) 
perf<-performance(pred,"tpr","fpr") 
plot(perf,colorize=TRUE) 
performance(pred,"auc")@y.values[[1]] 
 
##Make a prediction for all the trees  
b$CARTBoth<-predict(CART.Both.opt, newdata=b, type='class',na.action=na.fail) 
 
###Write out the files for mapping 
write.table(b, file="FinalPeaks_AllData_predictions.csv") 
write.table(a, file="Training_predictions.csv") 
write.table(c, file="Validation_predictions.csv") 
 
##Computing Kappa  
DATA<-read.csv("Kappa.csv",header=TRUE, sep=",") 
KappaLogLiDAR<-Kappa(cmx(DATA, which.model = 1)) 
KappaLogSpectral<-Kappa(cmx(DATA, which.model = 2)) 
KappaLogBoth<-Kappa(cmx(DATA, which.model = 3)) 
KappaCARTSpectral<-Kappa(cmx(DATA, which.model = 4)) 
KappaCARTLiDAR<-Kappa(cmx(DATA, which.model = 5)) 
KappaCARTBoth<-Kappa(cmx(DATA, which.model = 6)) 
 
## Validation data  
DATA1<-read.csv("Kappa1.csv",header=TRUE, sep=",") 
KappaLogLiDAR<-Kappa(cmx(DATA1, which.model = 1)) 
KappaLogSpectral<-Kappa(cmx(DATA1, which.model = 2)) 
KappaLogBoth<-Kappa(cmx(DATA1, which.model = 3)) 
KappaCARTSpectral<-Kappa(cmx(DATA1, which.model = 4)) 
KappaCARTLiDAR<-Kappa(cmx(DATA1, which.model = 5)) 
KappaCARTBoth<-Kappa(cmx(DATA1, which.model = 6)) 
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Appendix 3: Histograms of field measurements 
 
Pinus sylvestris  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pinus uncinata 
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Appendix 5: QQ plots of explanatory variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clockwise from Top left: Height, Crown Diameter, Intensity coefficient of variation and 

Satellite Albedo. 
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Appendix 7: Species classification model summaries  
 
Logistic Regression based on LiDAR physical parameters 
 
glm(formula = Species_code ~ CHM_Height + Crown_D_E + 
IntCoV, family = "binomial", data = a) 

Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   0.64105    0.73191   0.876  0.38110     
CHM_Height   -0.13769    0.04474  -3.078  0.00209 **  
Crown_D_E     0.98795    0.15235   6.485 8.88e-11 *** 
IntCoV      -13.36202    2.22808  -5.997 2.01e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1

Logistic Regression based on Spectral parameters 
 
glm(formula = Species_code ~ S_Albedo, family = binomial", 
data = a) 

Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -5.6308089  0.7691736  -7.321 2.47e-13 *** 
S_Albedo     0.0026130  0.0003696   7.070 1.55e-12 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1

Logistic Regression based on both physical and spectral parameters 
 
glm(formula = Species_code ~ CHM_Height + S_Albedo + 
IntCoV + Crown_D_E, family = "binomial", data = a) 

Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -2.320e+00  1.036e+00  -2.240   0.0251 *   
CHM_Height  -9.912e-02  4.673e-02  -2.121   0.0339 *   
S_Albedo     1.722e-03  4.158e-04   4.141 3.46e-05 *** 
IntCoV      -1.263e+01  2.289e+00  -5.518 3.43e-08 *** 
Crown_D_E    6.648e-01  1.691e-01   3.930 8.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1
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CART based on LiDAR physical parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key: 0 = Pinus uncinata, 1 = Pinus u sylvestris 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key: cp = Complexity point 
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CART based on Spectral parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key: 0 = Pinus uncinata, 1 = Pinus u sylvestris 
 

 
 

Key: cp = Complexity point 
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CART based on both physical and spectral parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key: 0 = Pinus uncinata, 1 = Pinus u sylvestris 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
Key: cp = Complexity point 


