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Abstract 
 
New Caledonia, a French overseas territory located in the southwest 
Pacific Ocean, faces major environmental concerns because of soil 
erosion. The island provides favourable conditions for erosion with its 
steep slopes, extreme rainfall events and vulnerable soils. The 
process is accelerated by anthropogenic-induced land cover changes, 
which cause serious degradations of the fragile environment. 
Susceptibility to erosion is particularly strong during the beginning of 
the wet season due to the frequent occurrence of tropical depressions 
and cyclones. These events generate intense precipitation, which 
often leads to flooding and the disruption of vegetation cover. Areas 
affected by resulting land cover changes, such as the reduction of 
vegetation cover, are especially prone to erosion. The main objective 
of this research was to assess changes in land cover after an extreme 
rainfall event using high resolution satellite imagery, and to model 
potential soil erodibility to better understand resulting impacts on the 
environment. 
 
In this study, land cover situations of October 2011 and January 
2012, framing a tropical depression, were mapped and temporal 
changes over this period were evaluated. Additionally, potential soil 
erodibility was modelled, and the results compared to the observed 
changes in land cover.  
 
Land cover was successfully mapped and the overall accuracy of the 
image classification resulted in 92.25 % and 93.06 % for 2011 and 
2012, respectively. All land cover classes were affected by change, 
while sparse vegetation experienced a reduction by 0.38 km², bare 
soil increased by 0.39 km². Areas where soils of high silt contents 
coincide with sparse vegetation cover and steep slopes are highly 
erodible. 
 
Optical remote sensing is helpful to extract information on land cover, 
it poses however an inadequate approach for detecting changes in 
land cover across seasons due to the influence of external factors. 
Soil erodibility can successfully be modelled and provides preliminary 
understanding of which areas might potentially be affected by 
erosion. Due to uncertainties concerning the data sources, it is 
difficult to estimate how reliable these results are. Consequently, no 
final statement can be made whether soil erodibility contributed to 
land cover changes. 
 
Key words: Land cover, change detection, remote sensing, soil 
erodibility, New Caledonia 
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1 Introduction 
 

1.1 Background 
New Caledonia is a French overseas territory located in the southwest 
Pacific Ocean. It has an exceptionally rich terrestrial and marine 
ecosystem, with one of the highest rates of endemic1 species in the 
world. The archipelago is thus considered as a global biodiversity 
hotspot2 (SPREP, 2012). The main island, Grande Terre, is 
furthermore surrounded by the second longest double-barrier coral 
reef in the world, which has been listed on the World Heritage List of 
UNESCO3 in 2008 (David et al., 2010; Ministère des Outre-Mer, 
2012). The protection of this fragile environment is consequently 
extremely important.  
 
Soil erosion is a major problem on the island, causing significant 
environmental degradations. On one hand, conditions on the island 
make it susceptible for erosion due to natural pressures, such as 
extreme rainfall events during the wet season, vulnerable soils and 
steep slopes (Université de la Nouvelle-Calédonie, 2010). On the 
other hand, anthropogenic pressures, such as forest fires, 
exploitation of natural resources, unsustainable agricultural practices 
and urbanisation, accelerate the erosion process (Dumas et al., 2010; 
Rouet et al., 2009).  
 
The archipelago holds about 25% of the global nickel ore reserves, 
thus mining has been the major driver of the island’s economy for 
over a century. Nickel ore is being extracted by surface mining, which 
requires the removal of vegetation, and therefore makes an area 
more prone to erosion. In their search for copper and nickel, which 
has been mined since 1872, prospectors burned away vegetation to 
gain better access to the countryside. This has consequently resulted 
in a drastic modification of the original landscape. The native flora 
and fauna were damaged in such a way that the impacts are still 
evident today (Chabanet et al., 2010; David et al., 2010; SPREP, 
2012; United Nations, 2003).  
 

                                           
1 Native or restricted to a certain place (Oxford University Press, 2012) 
2 Biodiversity hotspot are areas “that (a) feature exceptional concentrations of species 
with high levels of endism, and (b) face exceptional threats of destruction” (Meyers, 
1990: 243). 
3 The United Nations Organization for Education, Science and Culture 
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Today, “over 40 watersheds throughout New Caledonia and, 
indirectly, the downstream estuaries and reefs, are affected by 
various levels of mining activities” (David et al., 2010: 328). Most of 
the damage observed, results from old and abandoned mines, due to 
the mining techniques, which were applied during the time of the 
“nickel boom” until the 1970s, and the lack of legislation protecting 
the environment until the 1980s. During these times, mining 
companies usually had poor management concerning surface runoff, 
and the storage of mining tailings was quite common (Tranap, 2004; 
Université de la Nouvelle-Calédonie, 2012a). Therefore, water 
management is not only a major challenge for new mining projects 
but also for rehabilitation sites, as well as exploited and abandoned 
mines (Université de la Nouvelle-Calédonie, 2012a).  
 
Rainfall is considered as the driving force of soil erosion in tropical 
climates. Rainfall rates often follow a seasonal pattern (Dumas et al., 
2010; Morgan, 2005). During the early stage of the wet season, 
November and December, the erosive force of rainfall is particularly 
strong due to the occurrence of tropical depressions and cyclones. In 
addition, the vegetation cover is not yet sufficient enough to protect 
the soil (Vrieling, 2006). “In an era of increasing tropical storms, the 
phenomenon of erosion is the foremost cause of coastal, fringe reef 
and lagoon deterioration, particularly on the east coast” of New 
Caledonia (SPREP, 2012: 112).  
 
Vegetation cover protects the soil from erosion and surface runoff. 
Once this cover is removed, for example due to extreme rainfall or 
because of the strip mining process, the lateritic soils are extremely 
vulnerable (Morgan, 2005; Savy, 2011). Intense precipitation strips 
particles from sensitive soils, leading to increased soil erosion and 
transportation of excavated waste materials to the catchment (Rouet 
et al., 2009). Soil removed by rainfall-runoff can result in major 
sediment inputs in the watersheds, with immediate and recurrent 
impacts on the environment and the local population. When 
sediments are carried to the rivers and coastal zones, they cause 
serious degradation of the littoral system, e.g. damages of coastal 
flora and fauna. Furthermore, they contribute to increased risk of 
flooding due to rising of waterbeds, resulting in damages of 
agricultural areas and marine habitats as well as hyper-
sedimentation. Hyper-sedimentation4, seen in Figure 1, may lead to 
coral bleaching due to increased water turbidity (David et al., 2010; 
Dumas et al., 2010; Rouet, 2009).  
 

                                           
4 Severe water turbidity caused by suspended sediments 
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Figure 1: Bay of Poro, a mining village on the east coast, after intense rainfall 
on April 16th, 2011. 

Many New Caledonians, mostly the indigenous habitants of the island, 
the Kanak, still live a traditional way of life, which is largely based on 
subsistence agriculture and fishing. Accordingly, “any threat to the 
marine and terrestrial ecosystems could have grave and widespread 
consequences” (Ali, 2006: 373). It is essential to address the problem 
of erosion immediately to minimize and prevent the consequences on 
the population and environment (Université de la Nouvelle-Calédonie, 
2012a).  

1.2 Problem statement 
In a context, where not only human but also natural drivers play a 
role in contributing to erosion, it is necessary to characterize the 
pressures on watersheds in mining areas to better assess the 
environmental impacts on coastal zones. In order for mitigation 
actions to become effective in minimising erosion impacts on the 
environment, the key components of the erosion process have to be 
determined and areas affected by erosion and sedimentation need to 
be identified (Rouet et al., 2009; Université de la Nouvelle-Calédonie, 
2012b).  
 
Figure 2presents the causal framework of the problem. As mentioned, 
the erosive force of rainfall is particularly strong towards the 
beginning of the wet season due to the combination of frequent 
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occurrences of extreme rainfall events, dry soils and sparse 
vegetation cover (Morgan, 2005). According to Terry et al. (2008), 
tropical depressions and cyclones cause intense precipitation, which 
often result in flooding and the disruption of vegetation and the 
landscape. Areas affected by land cover changes, such as the 
reduction of vegetation cover, are especially prone to erosion 
(Morgan, 2005). It is consequently necessary to identify areas 
affected by land cover change after extreme rainfall.  
 
New Caledonia was affected by an exceptional rainfall event over 
Christmas 2011. The tropical depression, which affected the entire 
island, had been particularly intense on the east coast. In Houaïlou, 
528.5 mm of rainfall was measured in approximately 26 hours, this is 
about half of the annual average rainfall Southampton, UK receives 
(Met Office, 2013). Rainfall has been measured since 1952, but this 
event has been exceptional as the equivalent of more than a quarter 
of the average annual amount of precipitation (1914.2 mm) fell 
within 24 hours. The amount of rainfall is furthermore equivalent to 
more than three times the amount of rain that usually falls in the 
month of December (Méteo France, 2011).  
 
The present study aims at contribute to the project "Fonctionnement 
des petits bassins versants miniers"5, implemented by the “Centre 
National de Recherche Technologique”6 (CNRT) in New Caleodnia. 
Spatial information about land cover and its changes after the 
extreme rainfall event of December 2011 are obtained by applying an 
image classification and change detection using remotely sensed 
data. Furthermore, spatial information on soil erodibility in a small 
watershed is provided by applying an erosion model. This shall 
contribute to a better understanding of the impact of rainfall on land 
cover changes and its consequences on the environment. 

                                           
5 Functioning of small ‘mining’ watersheds  
6 National centre for technological research 



Chapter 1 

 5 

 
Figure 2: Casual framework of the problem. 

 

1.3 Project: “Fonctionnement des petits 
bassins versants miniers" 

This study was conducted as part of an internship with the “Institut 
de recherche pour le développement”7 (IRD) in Nouméa, New 
Caledonia, under the framework of the project "Fonctionnement des 
petits bassins versants miniers". The project, which was implemented 
in 2010, aims to improve water management in mining areas by 
improving the understanding of functions and mechanism of small 
watersheds in New Caledonia, and quantifying the upstream flows for 
minimizing the impact of sediment transport in the downstream areas 
(CNRT, 2009).  
 

                                           
7 Research institute for development 
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1.4 Objectives and research questions 

1.4.1 General objective 
 
The overall aim of this research is to assess changes in land cover 
after an extreme rainfall event, and to model potential soil erodibility 
in a small watershed, which contains mining activities, in Poro, New 
Caledonia, to better understand resulting impacts on the 
environment.  
 

1.4.2 Specific objectives 
 

1. To map the land cover situations of October 20th 2011 and 
January 18th 2012 for the study area based on high-resolution 
satellite imagery.  
 

2. To quantify land cover changes over the period of October 
2011 to January 2012, framing a strong rainfall event in 
December 2011. 
 

3. To model potential soil erodibility in a small watershed in the 
study area. 
  

4. To compare areas with high soil erodibility to areas of land 
cover change. 

1.4.3 Research questions 
 
Objective 1 

 Can land cover be assessed based on the available satellite 
imagery? 

 How are the different land cover classes distributed over the 
study area? 

 
Objective 2 

 Can land cover changes be assessed based on multi-temporal 
satellite imagery? 

 Did land cover changes occur in Poro between October 2011 
and January 2012? 

 If so, where did these changes occur and to what extent? 
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Objective 3 
 Is it possible to model soil erodibility in a small watershed in 

Poro? 
 Which areas are affected by soil erodibility? 

 
Objective 4 

 Did soil erodibility contribute to land cover changes? 
 
The research matrix, shown in Table 1, highlights the connections 
between the specific research objectives and the research questions. 
Additionally, it indicates what methods will be used to complete the 
objective and answers the research questions, along with the source 
of the data that will be used. 
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Table 1: Research matrix  
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2 Literature review 
 

2.1 Remote sensing 
“Remote sensing (RS) is the science and art of obtaining information 
about an object, area or phenomenon through the analysis of data 
acquired by a device that is not in contact with the object, area, or 
phenomenon under investigation” (Lillesand and Kiefer, 1994: 1). To 
obtain this information, sensors8, mounted on airplanes or satellites 
and, collect image data by using electromagnetic radiation, which is 
emitted and / or reflected by the target on the ground. Sensors can 
be divided into two groups: active and passive systems. Active 
remote sensing systems, such as radar, send out radio waves and 
record the returning wavelength, while passive remote sensing 
records natural radiation. The sun is the most common source of 
radiation for passive RS (Liew, 2001; Vrieling, 2006).  
 
Passive remote sensing can be distinguished into optical, thermal and 
microwave remote sensing. This study uses optical remote sensing, 
which operates in the visible, near infrared, middle infrared and short 
wave infrared range of the electromagnetic spectrum. Materials differ 
in their reflection and absorption, consequently, targets, such as 
different land covers, can be distinguished based on their spectral 
properties.  
 
Optical remote sensing sensors can broadly be classified into 
panchromatic, multispectral and hyperspectral imaging systems. 
Panchromatic sensors, such as IKONOS PAN, only record black and 
white images, while multispectral imagine systems capture data 
across the electromagnetic spectrum. Earth observation satellites, 
such as SPOT HRV-XS and Landsat TM, are multispectral platforms9 
and are often used to map land cover.  Hyperspectral satellites, such 
as NASA’s Hyperion record several hundred spectral bands and 
consequently collects very detailed spectral information (Liew, 2001).  
 
Advantages of remote sensing are the rapid data collection over large 
or inaccessible areas. It furthermore replaces time consuming and 
expensive field data collection. Remote sensing represents one of the 
most powerful tools to map and extract key information on land 
cover. Its consistent and regular data acquisition allows for the 

                                           
8 Device which records satellite image 
9 Satellite or airplane which carries the sensor 



Literature review 

 10 

extraction, analysis and monitoring of changes in a timely and cost 
effective manner (Cihlar, 2000; Lu and Weng, 2007; Mas, 1999). 
 

2.2 Land cover classification techniques 
The term land cover describes the (bio) physical coverage, both 
natural and artificial, of the Earth’s surface. However it does not 
consider information about it how it is being used by humans (Food 
and Agricultural Organisation, 2000). There is a growing need for 
information on land cover, as changes in land cover affect ecosystem 
services, contribute to climate change, and are regarded as the 
primary source of soil degradation. For a better understanding of 
environmental changes, successful natural resource management and 
policy development, the detection and analysis of such changes is 
required (Dash et al., 2007; Lambin et al., 2001; Srivastava et al., 
2012).  
 
The most common approach to map land cover is digital image 
classification, which is “the process used to produce thematic maps 
from imagery” (Schowengerdt, 2006: 387). Based on their spectral 
properties pixels in the images are assigned to different land cover 
categories according to their values (Lunetta, 1998). As mentioned, 
materials can be distinguished based on their spectral signature as 
they reflect and absorb differently. Depending on the aim of the study 
and the available information, either a supervised or unsupervised 
classification approach is selected. When selecting an unsupervised 
approach, the image is mechanically classified based on spectral 
properties. Supervised classification on the other hand requires prior 
knowledge and more user interaction. Once information about land 
cover classes exists, the supervised classification approach should be 
the method of choice. But this information may not always be 
available, especially over large areas. A hybrid approach is considered 
when these two classifications are combined (Dash et al., 2007; 
Lillesand and Kiefer, 2004; Lu and Weng, 2007).  
 
Factors, such as the complexity of landscapes, the selected remote 
sensing data, image pre-processing as well as the classification 
process pose a challenge when classifying data into a thematic map, 
and can influence the overall classification result. Performing an 
accuracy assessment provides information about the amount of 
correctly classified ground truth pixels (Cihlar et al., 1998; Lillesand 
and Kiefer, 2004; Lu and Weng, 2007). Several image classification 
techniques were developed (Foody, 1996; Gallego, 2004; Gong and 
Howarth, 1990; Pal and Mather, 2003; San Miguel-Ayanz and Biging, 
1997), however currently only one comprehensive review of these 
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classification approaches exists by Lu and Weng (2007). A short 
description of unsupervised and supervised classification approaches 
will be provided in the following sections.  
 
Unsupervised pixel based classification techniques 
In an unsupervised classification approach no a priori information on 
land cover and its distribution is required. A clustering-based 
algorithm is applied to classify the image into natural groupings by 
assigning image pixels with similar spectral properties into a 
particular category. These categories then need to be labelled and 
merged by the analyst. Advantages of this approach are that the 
minimum user interaction minimizes human error (Cihlar, 2000; 
Lillesand and Kiefer, 2004; Ramsey, 2008). The proposed categories 
are however not always logical, thus merging them into meaningful 
land cover classes is not always easy. Furthermore, it is not possible 
to improve the overall results by including expert knowledge about 
the study area into the process (Jain et al., 2000). The most common 
unsupervised classification approaches are the iterative self-
organizing data analysis (ISODATA) and K-means clustering 
algorithm (Lu and Weng, 2007).  
 
Several studies have successfully implemented unsupervised 
classifications to map and monitor land cover and forest changes 
(Bruzzone et al., 2002; Huiping et al., 2011; van Lier et al., 2011). In 
other studies, Manyatsi and Ntshangase (2008) used an unsupervised 
classification approach on Landsat images to map land cover and 
analyse soil erosion in Swaziland. Saadat et al. (2011) applied a 
hybrid approach to map land use and land cover in Iran in order to 
help soil erosion control efforts. 
 
Supervised pixel based classification techniques 
The supervised classification approach is more complex than the 
unsupervised classification and requires prior knowledge about land 
cover types that are to be classified and mapped (Cihlar, 2000). 
Knowledge can be obtained from maps, aerial photography or field 
work. This method can be divided into three stages: training, 
classification and testing. Training samples characterize the spectral 
properties of each feature class in an area with known properties. 
Before selecting training samples, the analyst has to determine the 
land cover classes into which the image should be classified. Once 
these are determined, points in areas of known land cover are 
selected to define training samples and then applied for the training 
of the classifier in order to classify the spectral data in a thematic 
map (Lillesand and Kiefer, 2004; Lu and Weng, 2007). Because 
classifications are prone to errors, the overall accuracy of the 
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classifier needs to be assessed in the final step, based on ground 
truth data10. Advantages of the supervised approach are the control 
over the selected class and the detection of possible classification 
errors with the help of accuracy assessments. The selection and 
definition of training data is however time consuming, costly and not 
always representative throughout the whole study area. Furthermore, 
the analyst applies a structure to the data, which does not always 
correspond with reality (Cihlar, 2000; Lillesand and Kiefer, 2004). 
 
The maximum likelihood classification (MLC) is one of the most 
common applied supervised techniques. It is known for its ability to 
establish good separation between classes, improving the accuracy of 
classifications. However, it is highly dependent on having strong 
training data and that the datasets follows a normal distribution. It 
applies an algorithm which is based on Bayes’ theorem of decision 
making and assumes multivariate normal distribution of a class 
sample (Lillesand and Kiefer, 2004; Richards and Jia, 2006; 
Srivastava et al., 2012). Maximum likelihood algorithms were 
successfully used on multi-date data to monitor land cover changes in 
Central Chile (Schulz et al., 2008), and to map land cover in order to 
derive input parameters for soil erosion prediction (Baban and Yusof, 
2001; Beskow et al., 2009; Cyr et al., 1995; Meusburger et al., 
2010a).  
 
More advanced classification algorithms are artificial neural network 
(ANN), support vector machine (SVM) and decision trees (DT).  These 
are considered learning algorithms since they can be trained by the 
user to detect and analyse specific patterns (Otukei and Blaschke, 
2010). Several studies suggested that ANN is superior to traditional 
approaches, such as MLC, because it does not rely on the assumption 
of normally distributed data, its learning function is based on training 
samples (Shao and Lunetta, 2012; Szuster et al., 2011). Its logical 
rules are however not always easy to comprehend, why it is often 
referred to as a ‘black-box’ (Kotsiantis, 2013; Szuster et al., 2011). 
 
SVM are a type of “theoretically superior machine learning 
algorithms, [which] employ optimization algorithms to locate the 
optimal boundaries between classes” (Huang, 2002: 726). Shao and 
Lunetta (2012) compared SVM with neural networks (NN), and 
classification and regression trees (CART) by using MODIS time-series 
data to classify land cover with limited training point data. They 
concluded that SVM performed superior to the other two, especially 
when working with a limited number of training samples. 

                                           
10 Actual field measurements 
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Decision tree classifiers (DT), a non-parametric classifiers, require no 
prior assumption about the distribution of the dataset (Otukei and 
Blaschke, 2010). Advantages of DTs are that their logical rules are 
easier to comprehend than the ones in artificial neural networks 
(Kotsiantis, 2013), expert knowledge is however often necessary in 
order to define decision boundaries (Otukei and Blaschke, 2010). 
Otukei and Blaschke (2010) assessed the potential DTs, SVM and 
MLC algorithms for land cover mapping, and conclude that DTs 
performed better than the other two applied techniques.  
 
Pal and Mather (2003) tested the effectiveness of DTs, MLC and ANNs 
classifiers using multispectral Landsat ETM+ and hyperspectral 
DAIS11 imagery, and conclude that “the ML algorithm is preferred 
unless there are particular reasons for believing the data do not 
follow a Gaussian (or, at least, a unimodal) distribution” (Pal and 
Mather, 2003: 564). 
 
The results of a classification process depend on several factors, such 
as the image quality or the analyst’s skills. It is thus not possible to 
conclude that a certain classifier will always lead to good results. In 
order to determine the most suitable one for a particular study, the 
most common approach is to compare different classifiers and select 
the one, with the best results (Lu and Weng, 2007).  
 
In previous research, land cover in New Caledonia was mapped over 
the period of 2003 to 2008 using SPOT5 images. A membership 
function was applied to the images, classifying them into 19 different 
land cover classes with an overall accuracy of 75.5 % (Direction des 
Technologies et Services de l’Information, 2008). Additionally, land 
cover of the years 1998, 2002, 2006 and 2010 was mapped, partly 
based on RapidEye images. The results are used for land cover maps 
and change detection applications within the national geo-portal by 
the Observatoire de l’Environnement Nouvelle-Calédonie (OEIL).   

2.3 Change detection techniques 
Change detection can be defined as “the process of identifying 
differences in the state of an object or phenomenon by observing it at 
different times” (Singh, 1989: 989), which requires reliable and 
frequent data acquisition (Lu et al., 2004b). For successfully 
managing natural resources, land cover changes, a key driver of 
global environmental change, need to be mapped, quantified and 
monitored (Lambin and Strahler, 1994). Conventional approaches for 
collecting environmental data, such as field survey, are “time 
                                           
11 Digital Airborne Imaging Spectrometer 



Literature review 

 14 

consuming and often ineffective at delivering the required information 
in a cost and time efficient manner”  (Hirata et al., 2001: 508). 
 
Data acquired from satellites, radar and aerial photography are the 
major data sources for identifying and analysing spatio-temporal 
patterns of land cover changes. Their repetitive coverage at short 
intervals and consistent image quality, as well as the availability of 
historical images, allows the extraction of landscape information, that 
can help to successfully monitor land cover transformations (Coppin 
et al., 2004; Lu et al., 2004b; Théau, 2012). The launch of the first 
series of Landsat Satellites in 1972 guaranteed the regular acquisition 
of data in multispectral bands (Coppin and Bauer, 1996). From then 
on, it was possible obtain consistent data for monitoring changes over 
large areas with a spatio-temporal resolution of 15-60 m every 16 
days (NASA, 2013). Due to the continuity of the Landsat missions, 
and the development of new sensors and platforms, great progress 
was made in the field of remote sensing and the development of 
change detection techniques (Coppin and Bauer, 1996; Lambin and 
Strahler, 1994; Mas, 1999; Singh, 1989).  
 
Changes can be distinguished into abrupt and gradual changes. To 
detect gradual changes, which result from changes over time, a 
series of multi-date images are required. For the detection of abrupt 
changes, two sets of images, that surround the event causing the 
change, are sufficient (Coppin and Bauer, 1996; Théau, 2012). 
Furthermore, changes in land cover can be distinguished into two 
types, “land cover conversion” and “land cover modification” (Coppin 
et al., 2004). The first type represents a complete conversion from 
one land cover class into another, typically induced by human land-
use activities (deforestation or urban growth for example). While land 
cover modifications reflect landscape alterations within one class, due 
to natural processes, such as different phenological conditions, or 
climatic changes (Coppin et al., 2004; Coppin and Bauer, 1996; 
Lunetta et al., 2006). 
 
A successful change detection analysis should provide information 
about whether a change has occurred and identify its nature, 
measure the extent of the occurring change and finally assess its 
spatial pattern. Identifying the optimal method for this is however a 
difficult process and it is often best to test and compare different 
techniques and then select the most suitable one. The selection 
should be based on the results of an accuracy or a qualitative 
assessment (MacLeod and Congalton, 1998).  
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According to Singh (1989), “the basic premise in using remote 
sensing data for change detection is that changes in land cover must 
result in changes in radiance values [,] and changes in radiance due 
to land cover change must be large with respect to radiance changes 
caused by other factors”. These 'other' factors concern (1) the remote 
sensing system, (2) the environmental characteristics and (3) the 
method of image processing. Data selection and image pre-
processing consequently pose major steps when implementing a 
change detection, otherwise inherent noise might create erroneous 
change phenomena and hereby lead to a falsification of the results 
(Lu et al., 2004b). 
 
By selecting appropriate data, the influence of external factors can 
partially be reduced. Acquiring data of anniversary dates12 for 
example minimises the impact of phenological changes and sun angle 
effects (Coppin and Bauer, 1996). Once appropriate remotely sensed 
data has been acquired, it is necessary to pre-process these images 
in order to remove data acquisition errors and image noise. The main 
pre-processing steps include: geometrical rectification13 radiometric 
correction14, and if necessary the masking of clouds, water bodies 
and other irrelevant features Without a reliable radiometric 
calibration, spatial and temporal changes might occur due to 
differences in the sensor calibration, atmosphere, and / or sun angle 
(Coppin and Bauer, 1996; Jensen, 1996; Lu et al., 2004b). 
 
Assessing the accuracy of the image classifications and the change 
detection analysis is a crucial step for accurately understanding and 
estimating the changes in land cover. Several factors, such as the 
image quality, pre-processing, image classification, applied change 
detection algorithm, availability and quality of ground truth data, as 
well as the interpreter’s knowledge and skills in working with remote 
sensing data can influence the accuracy of the result (Coppin et al., 
2004; Jianya et al., 2008; Lu et al., 2004b). According to Lu et al. 
(2004b) the combination of different change detection techniques can 
help improve the change detection accuracy. The most common 
accuracy assessment elements include: overall accuracy, producer’s 
accuracy, user’s accuracy and Kappa coefficient. 
 
The last element to consider before implementing a change detection 
concerns the definition of change and change direction. While some 
change detection techniques only provide change and no-change 
                                           
12 Images acquired during the same month but in different years 
13 Process of correcting spatial distortions within the image 
14 Process of correcting distortions due to illumination variations, viewing geometry, 
etc. within the image 
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information, such as image differencing, other techniques, such as 
post-classification comparison, provide information about from-to 
changes in a matrix (Lu et al., 2004b).  
 
Several methods to detect land cover changes have been developed 
by Singh (1989), Lambin and Ehrlich (1997), and Mas (1999), and 
been reviewed among others by Jensen (1996), Lunetta et al. (2006), 
Coppin et al. (2004) and Lu et al. (2004b).   
 
Singh (1989) believes digital change detection methods can be 
characterized based on (1) data transformation procedures, and (2) 
the analysis techniques used to delimit areas of significant changes. 
He furthermore distinguishes two approaches, namely “comparative 
analysis of independently produced classifications”, also known as 
post-classification comparison, and “simultaneous analysis of multi-
temporal data”, also referred to as pre-classification spectral change 
detection. Lunetta et al. (2006) and Coppin et al. (2004) drew similar 
conclusions in their reviews, and classified change detection methods 
in pre-classification and post-classification as well. 
 
The post-classification method is a straight forward approach, in 
which two multi-temporal images are independently classified and 
then used to detect detailed “from-to” changes (Singh, 1989). 
Common techniques include the post-classification comparison, 
change vector analysis (CVA) and hybrid change detection. According 
to Lu et al. (2004b) the advantage of these techniques is the 
compensation of impacts of atmospheric and sensor differences, as 
well as phenological conditions between multi-temporal images. 
Additionally, they can provide a complete change detection matrix. 
This approach does however have its limitations. The individual image 
classifications can be very time consuming and require knowledge in 
the classification process. Errors could occur during the two initial 
classifications and affect the final accuracy (Coppin et al., 2004; Lu et 
al., 2004b; Mas, 1999; Singh, 1989). Additionally, changes within 
land cover classes cannot be determined by comparing different land 
cover classifications (Lambin and Strahler, 1994).  
 
Pre-classification is a widely used approach, which includes 
techniques such as image differencing, image rationing, principal 
component analysis (PCA), and vegetation index differencing (VID) 
(Coppin et al., 2004; Lu et al., 2004b; Singh, 1989). Singh (1989) 
suggests that image differencing is the most common pre-
classification method, which involves the subtraction of the oldest 
image from the newest. Lu et al. (2004b) concludes that image 
differencing is easy to implement and interpret. However it can only 



Chapter 2 

 17 

be used to detect binary changes and cannot provide a detailed 
change matrix. According to studies by Weismiller et al. (1977), 
Jensen and Toll (1982), and Coppin and Bauer (1996) image 
differencing performs better than the other pre-classification methods 
and produces excellent results. But they also conclude that the 
techniques may be too simplistic to adequately describe many of the 
surface changes and that the selection of threshold values of change 
and no-change in the resulting images might pose a challenge.  
 
Coppin et al. (2004) groups the different change detection methods 
based on temporal characteristics in two broad categories: bi-
temporal change detection and temporal trajectory analysis. The bi-
temporal method examines the changes between two fixed dates, 
while time-trajectories also considers “the progress of the change 
over the period” (Jianya et al., 2008: 759). Jianya et al. (2008) 
adopted the distinction proposed by Coppin et al. (2004) but builds 
on this by dividing the “bi-temporal” category into (1) direct 
comparison, (2) post-analysis comparison and (3) uniform modelling. 
 
Additional classifications of change detection techniques were 
proposed by Deer (1995) and Mas (1999), who both define the 
approaches into three categories. Deer (1995) categorizes the 
approaches into (1) pixel based, (2) feature based15, and (3) object 
based, while Mas (1999) groups them into (1) image enhancement, 
(2) multi-date classification and (3) the comparison of two 
independent land cover classification. Lu et al. (2004b) discuss seven 
different types of change detection methods: (1) algebra, (2) 
transformation, (3) classification comparison, (4) advanced models, 
(5) Geographical Information Systems (GIS) approaches, (6) visual 
analysis and (7) other approaches. Lu et al. (2004b) conclude that 
image differencing, principal component analysis (PCA) and post-
classification comparison are the most commonly used methods. They 
furthermore state that spectral mixture analysis (SMA), artificial 
neural networks (ANN) as well as the integration of geographical 
information system and remote sensing data have become important 
techniques for change detection applications.  
 
In the last few years, interest in change detection techniques 
applying time series analysis, as artificial intelligence or knowledge-
based expert systems, has grown. According to Coppin et al. (2004) 
artificial intelligence and knowledge-based approaches pose 
advantages because it is possible to overcome some of the limitations 
of the traditional statistical classifiers by integrating additional 

                                           
15 Features, such as shape, colour and texture 
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aspects of vegetative cover categories other than merely relying on 
its spectral change. 
 
Dhakal et al. (2002) compared four change detection techniques, 
including (1) Spectral Image Differencing (SID),  (2) Tasseled Cap 
Brightness Image Differencing (TCBID), (3) Principal Component 
Analysis (PVA), and  (4) Spectral Change Vector Analysis (SCVA), for 
their effectiveness in detecting areas associated with flood and 
erosion caused by heavy rainfall. SCVA was found to be the most 
accurate for detecting affected areas. Prenzel and Treitz (2004) 
successfully tested a “hybrid” change method for extracting thematic 
land surface change information in a watershed in Indonesia. El-Kawy 
et al. (2011) and Shalaby and Tateishi (2007) both concluded that 
their approach of integrating visual interpretation with a supervised 
classification of satellite imagery is an effective method to detect land 
use and land cover changes in Egypt. Zanotta and Haertel (2012) 
proposed a new approach to detect land cover changes using multi-
temporal image data, in which they defined change “in terms of 
degrees of membership to the class change [instead of] allocating 
pixels to one of two disjoint classes (change, no-change)” (Zanotta 
and Haertel, 2012: 2927). Their results indicated the soundness of 
the proposed methodology, there are however circumstances, in 
which this approach may not be the most adequate one, such as 
monitoring the changes in the vegetation cover as well as other 
environmental problems.  
 
Most techniques discussed and reviewed above, focus on bi-temporal 
based change detection approaches, such as “the single analysis of a 
combined dataset of two or more dates, or the comparative analysis 
of images obtained at different moments after previous independent 
classification” (Mas, 1999: 143). Only little attention is paid to 
temporal trajectory analysis, such as time series analysis. By 
collecting data throughout the growing season, approaches based on 
time series analysis have the advantage of resolving issues, such as 
the influence of phenology on the change detection results (Coppin et 
al., 2004). Up to now, only a few studies focus on land cover 
monitoring on a continuous basis. In order to establish time profiles, 
high temporal resolution data is required, which can only be derived 
from coarse (AVHRR) and moderate (MODIS) spatial-resolution 
sensors. The application of this data however poses a serious 
disadvantage, the loss of spatial details makes auto-classification 
difficult and “limits the change categories that can be detection and 
monitored” (Coppin et al., 2004: 1569), making the temporal 
trajectory analysis a limited approach (Jianya et al., 2008). 
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Despite the amount of change detection reviews, there is no 
consensus about the optimal or most effective technique (Jianya et 
al., 2008; MacLeod and Congalton, 1998). Numerous studies, which 
addressed the problem of accurately monitoring land cover changes, 
commonly agreed that change detection is a complicated process 
(Coppin et al., 2004; Lu et al., 2004b; Mas, 1999; Singh, 1989). An 
algorithm, which led to reliable results in one study, is not necessarily 
the best choice in a similar study. Selecting a suitable change 
detection algorithm is therefore of great significance, and deserves 
careful consideration(Coppin et al., 2004).  
 
To date no previous research has been found on land cover changes 
in New Caledonia.  

2.4 Soil erosion and erosion modelling 
Erosion refers to the three stage process of detachment, transport 
and deposition of soil particles by erosive agents. It can be 
distinguished into wind, and rainfall and runoff erosion, based on the 
agents inducing the degradation process (Aksoy and Kavvas, 2005; 
Vrieling, 2006). This phenomenon affects all types of landscapes, 
however areas with steep slopes and erodible soils are especially 
susceptible, particularly when sparse vegetation cover coincides with 
high intensity rainfalls (Vrieling et al., 2008).  
 
Natural erosion, also known as geologic erosion, is the natural soil-
forming process, which occurs in all soil types and is not influenced 
by anthropogenic activities. Once the natural equilibrium between soil 
properties and soil profile is disturbed and a certain threshold level is 
exceeded, it is considered as accelerated erosion and can become a 
major environmental concern. This kind of erosion is usually triggered 
by human activities, such as deforestation, unsustainable agriculture, 
anthropogenic climate change and intensive land use. These 
processes lead to a reduction of vegetative cover, expose soils and 
consequently make them vulnerable to rainfall-runoff (Blanco-Canqui 
and Lal, 2008; Shrestha, 2011; Toy et al., 2002).  
 
Soil erosion by water can be distinguished into three types: sheet, rill 
and gully erosion. Sheet erosion is regarded to be the least severe 
type, while gully erosion can lead severe environmental damages 
(Toy et al., 2002). Water erosion, one of the most important causes 
of land degradation worldwide (Eswaran et al., 2001), is a complex 
process, which occurs as a direct result of rainfall. It responds to the 
rainfall amount, the differences in rainfall intensity are however the 
determining factor (Nearing et al., 2005). The effect of rainfall on 
erosion differs with factors as soil type, relief and predominant 
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vegetation type. According to Morgan (2005) the erosivity of rain, the 
erodibility of soils, the slope of the terrain and the nature of plant 
cover are the four most important ones for soil erosion.  
 
Soil properties, such as soil texture, organic matter content, soil 
structure and infiltration, influence the erodibility of soils, its 
resistance to detachment and transport (Cebecauer and Hofierka, 
2008: 191). Soils containing clay are less prone to erosion than soils 
with large amounts of silt-sized particles. Clay binds particles better 
together and thereby increases its physical resistance to erosion. 
Furthermore, soils containing high levels of organic materials are 
more resistant to erosion because organic materials create a stronger 
structure, increase infiltration, and thereby reduce surface runoff 
(Blanco-Canqui and Lal, 2008; Lal, 1994; Morgan, 2005). 
 
The erosivity of rainfall is determined by the climate. Frequent and 
intensive rainfalls cause saturated soils, which reduces the rate of 
rainfall infiltrating the soil, and results in higher levels of surface 
runoff. The impact of rainfall hitting the exposed and saturated soils 
causes the detachment of soil particles from the Earth’s surface, 
which are then transported by water flow and deposited once the flow 
velocity is no longer sufficient to transport the particles (Lal, 1994; 
Morgan, 2005; Pimentel et al., 1995). But rainfall duration also poses 
another important factor, long durations with low intensity rainfall can 
lead to increased soil moisture, resulting in more surface runoff 
(Blanco-Canqui and Lal, 2008; Lal, 1994; Morgan, 2005).  
 
Effect of vegetation cover on soil erosion 
Vegetation cover decreases potential soil erosion by protecting the 
soil from rainfall. Above ground cover, such as canopy cover, reduces 
the speed of rainfall and prevents it from directly hitting the  surface 
(Meusburger et al., 2010a). The effect of vegetation on the erosion 
process does not only depend on its density, but also on the type and 
structure of vegetation. Once the process of erosion has started and 
the topsoil, the most nutrient rich layer, is being removed, plant 
growth is reduced, resulting in more erosion (Morgan, 2005; Pimentel 
et al., 1995; Shrestha, 2011). Terrain conditions play another 
important role in the process. Erosion risk increases with slope 
steepness and slope length because of a higher velocity in surface 
runoff (Morgan, 2005; Wischmeier and Smith, 1978).   
 
Erosion is recognized as a worldwide problem leading to 
environmental degradation (Vrieling, 2006). It not only causes severe 
environmental impacts, but also leads to high economic costs due to 
its effects on agricultural productions and water quality (Lal, 1994; 
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Pimentel et al., 1995). Environmental impacts of accelerated erosion 
are, among others, the degradation of arable land and soil 
productivity, the pollution of water by sediments and an increased 
risk of flooding (FAO, 1977; Lal, 2004). According to Nearing et al. 
(2005), climate change leads to an increase in rainfall amounts, and 
their erosive power results to higher soil erosion rates. Erosion on the 
other hand results in the emission of soil organic carbon, in form of 
CO2 and CH4, which in return contributes to global warming (Nearing 
et al., 2005; O'Neal et al., 2005).  
 
Erosion modelling 
For a better understanding of erosion and its causes, it is necessary 
to monitor and model its process (Blanco-Canqui and Lal, 2008; 
Ouyang et al., 2010). According to the Food and Agriculture 
Organization of the United Nations (FAO, 1977), a clear 
understanding of the effects of soil erosion is fundamental for 
controlling and modelling the process. The number of different factors 
involved in the process however poses a challenge when modelling 
erosion. Vrieling (2006) stated that remote sensing presents a 
reliable source because it provides homogeneous data over larger 
areas with a regular revisit capability, and can therefore successfully 
contributes to the assessment of erosion. 
 
Several erosion and sediment transport models, such as the Universal 
Soil Loss Equation (USLE), the Revised Universal Soil Loss Equation 
(RUSLE), the Limburg Soil Erosion Model (LISEM) and the Areal Non-
point Source Watershed Environment Response Simulation 
(ANSWERS), were developed to estimate soil erosion on different 
temporal and spatial scales and to detect affected areas (Jetten et al., 
2003; Morgan et al., 1998; Renard et al., 1997; Wischmeier and 
Smith, 1978). Erosion models can be distinguished as empirical, 
conceptual and physically based models, and differ in complexity and 
input parameter requirements. Empirical models are primarily based 
on empirical observations, while physically based models aim at 
representing each individual process of the overall natural processes 
and then combine them into a complex model. Conceptual models on 
the other hand are a combination of empirical and physically based 
models (Aksoy and Kavvas, 2005; Merritt et al., 2003; Nearing et al., 
2005). Most of these models were developed for a certain 
environment and scale. Therefore, their application in other regions 
or scales may cause errors in results, leading to a constant 
development of new models and the modification of existing 
techniques (Jetten et al., 1999; Jetten et al., 2003; Vrieling, 2006).   
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According to Vrieling (2006), USLE and its revised version, RUSLE, 
which both predict average annual soil loss from hill slopes due to 
sheet and rill erosion, are the most widely applied method for 
agricultural land and forest watersheds. Both approaches calculate 
soil loss by multiplying the following factors: rainfall and runoff (R) in 
USLE, erosivity (R) in RUSLE, soil erodiblity (K), slope-length (L) and 
slope steepness (S), land cover (C) as well as support practices (P) 
(Merritt et al., 2003; Wischmeier and Smith, 1978). These models 
are often applied due to their simplicity and the option of combining 
them with remotely sensed data and Geographic Information Systems 
(GIS). They have however a number of limitations, it is for example 
not event-based and therefore “cannot identify events most likely to 
result in large-scale erosion” (Merritt et al., 2003: 774). Additionally, 
it does not consider gully erosion and mass movements (Beskow et 
al., 2009).  
 
Soil erodibility modelling using the Universal Soil Loss 
Equation  
According to Nearing et al. (1994), adapting USLE to a new 
environment is a time-consuming and cumbersome process. The 
model requires long term data on soil and rainfall, which are not 
always available. Detailed information about the input parameters for 
different regions is scarce, especially in data-poor environments 
(Morgan, 1995), therefore it is often required to develop a new 
database in order to run the model in a new region (Nearing et al., 
1994). Due to these limitations, a variety of modifications and 
revisions of the basic USLE model have been proposed, such as the 
revised USLE (RUSLE) (Renard et al., 1997; Renard and Freimund, 
1993) and the modified USLE (M-USLE) (Kinnell and Risse, 1998).  
 
A key factor influencing the vulnerability of an area to erosion is land 
cover (Cebecauer and Hofierka, 2008; Meusburger et al., 2010a). 
Several researchers concluded that an increase of vegetation cover is 
the most effective method to reduce and control soil erosion risk (Cyr 
et al., 1995; Huiping et al., 2011; Marques et al., 2007; Xu et al., 
2005; Zhongming et al., 2010; Zhou et al., 2008). Within the USLE 
model, the factor C depends on the type of vegetation, as well as the 
management and fractional vegetation cover (Meusburger et al., 
2010a). This factor is however also considered as one of the most 
difficult parameters to estimate, therefore several approaches exist 
(De Asis and Omasa, 2007).  
 
Traditionally, C-factor values, which range between 0 and 1 
depending on the vegetation density, are simply derived from 
literature and field data, and then assigned to the different vegetation 
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types in a classified map (De Asis and Omasa, 2007; Morgan, 2005). 
Cebecauer and Hofierka (2008) used the CORINE land cover database 
to define the C-factor by assigned values for each vegetation type 
based on rough estimates using available literature. For the 
prediction of potential soil loss in a watershed in Brazil, Beskow et al. 
(2009) used Landsat images for the classification of land cover, and 
assigned values to the C-factor based on previous studies carried out 
in different parts of Brazil with similar land use and cover. Mati et al. 
(2000) developed a land cover map for a basin in Kenya, based on 
visual interpretation of multispectral SPOT image and field surveys, 
and estimated C-factor values using USLE guide tables.  
 
Assigning C-factor values based on literature however leads to 
relatively constant C-factor values over large areas, and does not 
accurately reflect the variation in vegetation cover (Wang et al., 
2002). Additionally, classification errors are often transferred into C-
factor maps (De Asis and Omasa, 2007). The application of direct 
linear and non-linear regression models between image bands and 
ratios can help to increase the spatial variability and decrease the 
influence of classification errors (De Asis and Omasa, 2007; Vrieling, 
2006; Zhongming et al., 2010). Another approach for deriving 
information on vegetation cover is to apply spectral indices and 
spectral unmixing (Meusburger et al., 2010a; Vrieling, 2006). Liu et 
al. (2004), Thiam (2003), Gay et al. (2002) and Goel et al. (2002) 
used spectral indices, such as the normalized difference vegetation 
index (NDVI), as an indicator for the mapping of vegetation cover. 
Ouyang et al. (2010) explored the relationship between NDVI with 
corresponding soil erosion and sediment yield in the Yellow River 
Basin and stated that vegetation has a significant impact on sediment 
formation and transport. NDVI is considered to be the most 
commonly method for assessing vegetation cover by using remote 
sensing (Cyr et al., 1995). De Jong (1994) and De Jong et al. (1999) 
however concluded that Landsat derived vegetation indices, such as 
NDVI, have a low correlation with the C-factor. Reasons are the 
sensitivity to the vegetation’s vitality as its condition does not 
necessarily relate to its function of protecting the soil, well as the 
effect of soil reflectance (De Asis and Omasa, 2007). NDVI starts to 
saturate once the vegetation cover exceeds 50%, furthermore it is 
not sensitive to greenness of lower vegetation, leading to 
underestimates in vegetation cover for certain areas  (Zhongming et 
al., 2010). De Asis and Omasa (2007) concluded that traditional 
methods for extracting of vegetation information from remote sensing 
data were found to be inaccurate. 
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According to Meusburger et al. (2010a), the problem of low 
correlation between NDVI and C-factor can be avoided by applying 
linear spectral unmixing (LSU). This method is however mainly 
applicable in (semi-) arid environments (Vrieling, 2006). Another 
approach to overcome the problem of low correlation is the 
application of soil adjusted vegetation indices, such as TSAVI. Cyr et 
al. (1995) compared four different vegetation indices (NDVI, PVI, 
SAVI and TSAVI) and concluded that TSAVI performed better for 
vegetation assessment than NDVI. They furthermore concluded that, 
when estimating ground cover, it is important to carefully select a 
vegetation index, which can successfully discriminate vegetation from 
bare soil. 
 
De Asis and Omasa (2007) proposed a new approach based on 
Spectral Mixture Analysis (SMA) of Landsat ETM data to map the C-
factor for modelling soil erosion. The linear SMA proved to be superior 
to NDVI when deriving and mapping the C-factor. Zhou et al. (2008) 
used the non-parametric k-nearest neighbour technique (k-NN) in 
order to estimate vegetation cover in a mountainous watershed. 
Furthermore, the performance of predictions to those by NDVI and 
multivariate regression were tested.  The study concluded that the k-
NN method proved to map vegetation cover more accurately. 
Meusburger et al. (2010a) stated that the availability of high-
resolution satellites such as IKONOS and QuickBird increased the 
options for mapping of vegetation parameters. In their approach they 
explored how high resolution maps of fractional vegetation cover 
(FVC) and land cover improve soil erosion risk mapping using USLE 
and the Pan-European Soil Erosion Risk Assessment model (PESERA) 
in an alpine catchment. High resolution maps of land cover and FVC 
were obtained from image classification and linear spectral unmixing 
analysis (Meusburger et al., 2010a). 
 
According to De Asis and Omasa (2007) the research on improving 
ways to estimate the C-factor with remotely sensed data is important 
because reliable vegetation cover plays an essential role in accurately 
identifying and estimating soil erosion.   
 
Erosion research in New Caledonia 
Erosion research in New Caledonia has been conducted among others 
by Dumas et al. (2010) and Rouet et al. (2009). Rouet et al. (2009) 
compared different approaches for soil erosion mapping and hazard 
assessment in data poor regions, such as New Caledonia. Both 
approaches, the erosion mapping and the data mining approach, 
showed potential in contributing to the erosion and hazard 
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assessment on the island, improvements on the methods are 
however required.  
 
Dumas et al. (2010) mapped areas prone to erosion on the west 
coast of the island by applying a multi-criteria evaluation model and 
the Universal Soil Loss Equation (USLE). The results can be 
considered as “an initial step towards a more accurate estimation of 
the terrigenous discharge into the lagoon”. Printemps (2007) and 
Bui-Duyet (2011) also conducted research on soil erosion using the 
USLE model. All studies concluded that the combination of areas of 
bare soils, steep slopes and high precipitation make an area 
especially vulnerable to erosion.Dumas et al. (2010) A major 
drawback on the application of USLE in New Caledonia is however the 
missing validation of the results. 
 
 



26 



27 

3 Study area and data description 
 

3.1 Study area 
New Caledonia is an archipelago located in the Southwest Pacific 
Ocean (21°30’S–165°30’E) about 1200 km east of Australia, as 
shown in Figure 3. It was considered an overseas territory of France 
until 1998 when it became a special collectivity of France. The 
territory has an area of 18,575 km² and comprises the main island 
Grande-Terre with the capital Nouméa, the four Loyalty Islands in the 
east (Ouvéa, Lifou, Tiga and Maré), the Isle of Pines in the south, as 
well as numerous smaller islands. The estimated population was 
252,000 in 2009 (Haut-commissariat de la République en Nouvelle-
Calédonie, 2011; Ministère des Outre-Mer, 2012).  
 
Geography 
Grande Terre, which is elongated northwest-southeast, is the largest 
island with an area of 16,000 km². Its length of 400 km is dominated 
by a high mountain range, the “Chaîne Centrale”. These mountains, 
of which some are over 1500 m high, influence the rainfall patterns 
and thus divide the island into two distinct regions. The east coast, 
which is exposed to southeast trade winds, receives high amounts of 
precipitation and is covered by dense vegetation, such as primeval 
rain forests. The west coast on the contrary is protected from the 
trade winds by the mountain chain, resulting in a drier climate within 
the rain shadow. This part of the island is dominated by large 
savannahs and sclerophyll forest (Dumas et al., 2010; Ministère des 
Outre-Mer, 2012).  
 
Ultramafic rocks cover about 30 % of Grande Terre. These rocks are 
mainly composed of a ferruginous crust, a very erodible layer of 
laterites underneath, a layer of serpentinite and the parent rock, 
peridotite, as seen in Figure 4. Under the wet and hot climate, a 
weathering process forms lateritic nickel ore deposits from ultramafic 
rocks, which are the major source in the nickel mining process 
(Guillon and Lawrence, 1973; L'Huillier et al., 2010; Proctor, 2003).  
 
The New Caledonian Lagoon, which has been designated on the World 
Heritage List of UNESCO since 2008, is one of the largest lagoons in 
the world, with a total area of 24,000 km². Furthermore, the island 
has the second largest barrier reef in the world. The New Caledonia 
Barrier Reef, which has a length of 1,500 km, surrounds Grande-
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Terre, the Isle of Pines and a few smaller island (Chabanet et al., 
2010).  
 

Figure 3: Location of New Caledonia (MODIS Terra Satellite Image, source: 
NASA). 
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Figure 4: Weathering profile characteristics 
of hilltop plateaux on ultrabasic massifs in 
New Caledonia (after Paris, 1981). 

 
Climate 
The territory has a tropical climate with two seasons, determined by 
the position of the inter-tropical convergence zone (ITCZ). The hot 
and humid period from mid-November until mid-April is characterised 
by the high frequency of tropical depressions and cyclones, average 
temperatures range from 25°C to 27°C. During the cooler period 
from mid-May to mid-September the average temperatures range 
from 20°C to 23°C (Ministère des Outre-Mer, 2012). Rainfall is highly 
seasonal and is influenced by the central mountain chain and 
southeast trade winds. The frequent tropical depressions and 
cyclones during the wet season cause heavy rainfall and strong 
winds, the amount of precipitation however varies according to 
elevation and wind exposure (Dumas et al., 2010). The east coast 
receives an annual precipitation of up to 4000 mm/year, while the 
annual precipitation on the west coast ranges between 1000-2000 
mm/year (Stevenson et al., 2001).  
 
Environment 
New Caledonia was separated from the continent of Gondwana about 
75 million years ago. This had an effect of isolating the fauna and 
flora, allowing it to evolve in a unique way and resulting in one of the 
highest rates of endemism in the world (Bui-Duyet, 2011). According 
to Pascal et al. (2008) about 90% of the flora on the island are 
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endemic. Most of the soils are derived from ultramafic rocks, which 
have high contents of chromium and nickel and can thus be toxic to 
vegetation. Over the years, the native vegetation has however 
adapted to these acidic soil conditions, resulting in 3380 endemic 
species on less than 20,000 km² (Futura Environnement, 2004). 
Additionally, the island has a high rate of endemic animals, currently 
3121 wildlife species are recorded, including 316 endemic species 
(ENDEMIA, 2008).   
 
Economy 
New Caledonia’s economy is mainly driven by the mining sector and 
financial transfers from Metropolitan France and the European Union. 
Having about 25 % of the world’s nickel resources, mining is the main 
economic resource. Only 0.32 % of the land is suitable for cultivation, 
agriculture only contributes a very small part to the gross domestic 
product (GDP) (David et al., 2010; Ministère des Outre-Mer, 2012).   
 
Study area  
The study area, Poro, is located in the mountain chain on the east 
coast of New Caledonia. It was chosen because both, the natural 
pressures as well as the anthropogenic pressures, which contribute to 
the erosion process, can be found here. The size of the area is 
approximately 30 km². The site is characterized by steep slopes 
facing the sea and red lateritic soils, which are covered by dense 
forest and shrubland. While land cover changes were assessed over 
the entire area, shown in the inset in Figure 5, potential soil 
erodibility was analysed in a small watershed within this area. This 
small watershed, called Denise, is located on the mine Française 
operated by the “Centre de Formation des Mines et des Carrières”16 
(CFTMC). It covers an area of 30.4 ha (0.304 km²) and is divided into 
four sub-watersheds. Within this study the watershed is however 
treated as a whole.  
  

                                           
16 Training Centre for Mining and Quarry 
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Figure 5: Location of the study area Poro, New Caledonia. 

 

3.2 Data description 

3.2.1 Satellite imagery 
Images used for this study were acquired by RapidEye satellites on 
October 20th, 2011 and January 18th, 2012, see Appendix A. RapidEye 
satellites acquire images by a constellation of five satellites with 
identical sensors, meaning that images obtained from two different 
sensors will be identical in characteristics. The satellites were 
launched in August 2008 and operate at an altitude of 630 km. 
RapidEye provides high resolution and multispectral images, which 
are collected in five distinct bands of the electromagnetic spectrum, 
as seen in Table 2 and Figure 6. The spatial resolution of the images 
is 6.5 m, and 5 m after pre-processing. The satellites have a daily 
revisit time17 for off-nadir18 and 5.5 days at nadir19 (RapidEye AG, 
2011). 

                                           
17 The amount of time it takes the satellite to capture the same location on the ground 
again. 
18 The point the sensor is pointing to, which is however not perpendicular below the 
satellite.  
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Band Wavelength (nm) 
Blue 440-510 
Green 520-590 
Red 630-685 
Red Edge 690-730 
Near-Infrared 760-850 

Table 2: RapidEye's spectral bands 

 
Figure 6: Spectral range of the five RapidEye bands showing the visible to the 
near infrared (NIR) (RapidEye AG, 2011). 

Details of the obtained images are presented in Table 3. 
  
Acquisition date October 10 2011 January 18 2012 
Acquisition time 00:14:50 00:03:02 
Cloud cover (%) 8 7 
Sun elevation (°) 77.2 75.13 
Sun azimuth (°) 30.5 90.8 
View angle -16.45 12.76 
Orbital direction Descending Descending 
Table 3: Metadata of the two RapidEye images 
 
Pre-processing 
The image acquisition by remote sensing is disturbed by several 
factors, such as characteristics of the sensor, atmospheric and 
weather conditions, solar angle and the Earth’s surface. Before the 
obtained images can be used for further analysis, pre-processing is 
required to reduce these data distortions and improve the quality of 
the images. Pre-processing usually consists of two steps: radiometric 
and geometric corrections (Natural Resources Canada, 2008).  
 
Radiometric correction 
Radiometric correction helps to minimise variations in illumination, 
sensor characteristics, viewing geometry or atmospheric conditions 
within the image. Some areas within the image might receive more 
sunlight due to different solar illumination conditions causing 
                                                                                                       
19 A point on the ground the satellite is pointing at, which is perpendicular below the 
satellite. 
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variations in reflectance. Additionally, electromagnetic waves are 
influenced by suspended particles within the atmosphere causing 
scattering and absorption. This leads to changes within the direction 
and spectral distribution of the electromagnetic energy. In order to 
avoid false interpretation of the images, corrections are required 
(Chen X. et al., 2005; Song et al., 2001; Yang and Lo, 2000). 
Atmospheric correction is however not always required. It can be 
omitted when for example classifying single date images and 
comparing them using a post-classification change detection 
approach (Song et al., 2001).  
 
Geometric corrections 
Geometric corrections minimise distortions caused by the curvature of 
the Earth, its rotation or the topography of the terrain. The aim is to 
obtain a “geometric representation of the imagery [which is] as close 
as possible to the real world” (Natural Resources Canada, 2008). 
Geometric correction is an important pre-processing step in rough 
terrain, such as in New Caledonia, to avoid relief displacement. 
Otherwise, the effects of terrain and shadow might lead to problems 
such as misclassifications. A part of the study area is seen in the 
images displayed in Figure 7, the image on the left is not 
geometrically corrected, while the one on the right is. This illustrates 
the influence of shadow due to the rugged terrain. 
 

 
Figure 7: FORMOSAT-2 image of June 2011 without geometric correction 
(left) and a RapidEye image of October 2011 with a geometric correction 
(right). 

RapidEye images are provided at two processing levels: RapidEye 
Basic (Level 1B) are sensor level products, which are geometrically 
uncorrected. The second level, RapidEye Ortho (Level 3A) are 
orthorectified images which are radiometrically and geometrically 
corrected in a cartographic map projection (RapidEye AG, 2011). The 
applied RapidEye images of this study were pre-processed by AAM 
Pty Limited in Brisbane, Australia and delivered on a Level 3A. 
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Orthorectification, the correction of terrain displacement, has been 
corrected using a digital terrain model (DTM)20 supplied by IRD and 
digital terrain elevation data obtained from the Shuttle Radar Terrain 
Mission (SRTM). A total of 10 ground control points (GCP), old aerial 
photography and vector data were used during the orthorectification 
process and an accuracy of 1 pixel or less was achieved. Due to 
different atmospheric and weather conditions (presence of cloud 
cover, haze and shadows), variations in colour or reflectivity occur 
between the two images. By pre-processing their effects were 
reduced to the best possible.  
 
The image obtained in October 2011 had a viewing angle of -16.45°, 
while the image obtained in January 2012 had a viewing angle of 
12.76°. A visualisation of this difference is given in Figure 8. When 
performing the image classification, this difference needs to be taken 
into account as “the detected spectral reflectance of the Earth’s 
surface materials varies as a function of the angles at which they are 
illuminated by the Sun and viewed by the sensor. Consequences 
might be errors in the classification” (Barnsley et al., 1997: 1937).  
 

                                           
20 A digital model of the topography of the Earth’s surface  
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Figure 8: View angle of the satellite in October 
2011 and January 2012. 

 

3.2.2 Ancillary data 
The following ancillary data was used within this research: 
 

 
Table 4: List of ancillary data used. 
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3.2.3 Software used  
The following software programs were applied within this research: 
 

 
Table 5: List of software used. 
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4 Methodology 
 
The overall research can be split into several phases, as seen in the 
overview diagram (Figure 9). The first phase included a literature 
review on the applied techniques, as well as the formulation of the 
research problem and research objectives. The second phase included 
the field work, during which data for the image classification were 
collected. This phase was followed by the actual image classification 
and the land cover change detection. During the final phase potential 
soil erodibility was modelled and results were compared to the results 
of the change detection.  
 

 
Figure 9: Flowchart of the research process. 
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4.1 Land cover classification 
 
Before performing the actual land cover classification several steps 
were necessary. Pre-processing of the satellite images was not 
required anymore, as this had already been completed (as mentioned 
in sub-section 3.2.1).  
 
Extraction of the study area 
The original RapidEye images cover a larger area than needed. In 
order to reduce the processing time, the extent of the two images 
was cropped to the extent of an aerial photograph of 2010 of the 
study area, seen in Appendix B. 
 
Masking of irrelevant features 
The ocean was considered irrelevant for the aim of the study as it 
focuses on terrestrial land cover changes. Since the ocean might have 
led to spectral confusion, it was masked. For the creation of the 
mask, it was necessary to determine a threshold in order to 
differentiate between water and land. In a first attempt, the 
Normalized Difference Vegetation Index (NDVI) was calculated in 
ENVI 4.8, and its data range used to build a mask for the ocean. 
Vegetation indices, such as NDVI, are often applied to distinguish 
between vegetated and non-vegetated land cover classes (Dash et 
al., 2007). NDVI values range from -1.0 to +1.0, bare soil has low 
positive values and vegetation high positive values, while water 
values range in the negative. This approach was however problematic 
because the coral reefs are clearly visible in the shallow water and 
resulted in positive NDVI values, while the water, due to its low 
reflectance, resulted in negative values. Consequently, a mask built 
on these NDVI values did not cover the entire ocean but resulted in a 
perforated mask. Therefore, this method was neglected. 
 
In a second attempt, an unsupervised classification was completed on 
images using the ISODATA classifier implemented in ENVI 4.8. The 
image was, based on statistics, classified into seven basic categories, 
which showed a clear distinction between land and water. In a post 
classification process, the classes representing “land” were merged 
into one single class, leaving only two classes: land and water. This 
classification was exported to ERDAS IMAGINE 2011, where a few 
pixels had to be re-coded due to misclassifications. The final 
classification was used to create a mask for the ocean and then 
applied to both images. 
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Development of a classification system 
In the next step, a classification system for the study area was 
developed, which would allow the analysis of different land covers, 
such as dense and open forest, dense and sparse shrubland. “A 
suitable classification system and a sufficient number of training 
samples are prerequisites for a successful classification” (Lu and 
Weng, 2007: 825). Several classification systems exist, such as the 
ones proposed by the Food and Agriculture Organization of the United 
Nations (FAO) (Jansen and Gregorio, 2002), the United States 
Geological Survey (USGS) (Anderson et al., 1976) or the CORINE 
Land Cover (CEC, 1995). These classification systems are however 
not applicable in the context of New Caledonia. As the island has an 
exceptionally endemic flora, it was necessary to develop a more 
suitable bespoke classification system for the study area.  
 
The land cover classes considered in the first approach were proposed 
by IRD. During field research it became clear that this initial 
classification system was not detailed enough for the variety of 
existing land covers and needed improvement. The second 
classification system was based on a nomenclature for New 
Caledonia, proposed by the “Observatoire de l’environnement 
Nouvelle-Calédonie” (OEIL) 21. Instead of just mapping bare soil, it 
was decided to map the different soil types as this information was 
required for future research within the project. The final classification 
scheme resulted in fourteen soil and land cover types, as seen in 
Table 6.  
 
Vegetation classes were defined according to the density of tree and 
shrub layer cover, described in Figure 10. Areas with a tree cover of 
more than 60% were considered as dense forest, while areas with a 
tree cover between 20 – 60 % fell into the category open forest, a 
mix of predominantly forest and little shrub. Areas with shrubland as 
the most dominant land cover were distinguished into dense and 
sparse shrubland. Dense shrubland is covered by a dense vegetation 
cover and smaller trees, while sparse shrubland has a very sparse 
vegetation and tree cover and bare soil is visible in several parts. The 
major vegetation type in both shrubland categories is the endemic 
type “Maquis minier”, a plant mostly found on ultramafic rocks. 
Fragmented vegetation it is covered by a low growing dense 
vegetation layer without any trees. The most dominant vegetation 
type in this class is “Fougère”, a fern like plant. Areas with almost no 
tree and shrub cover, however a dense grass layer are considered as 
savannah. Photos of the different soil and land cover types are shown 
in Appendix C. 
                                           
21 Environmental observatory of New Caledonia 



Methodology 

 40 

 

 
Table 6: Description of the soil and land cover 
classes in Poro. 
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Figure 10: Definition of the land cover classes found in the study area based 
on vegetation structure. 

Training samples selection 
IRD provided a set of initial training samples, so called Regions of 
Interest (ROI), which were originally selected on a FORMATSAT-2 
satellite image of 2010. It was however only partly possible to use 
these points for the classification due to two reasons: first of all, 
several points selected on the 2010 image were covered by clouds in 
the images of 2011 and 2012. Second of all, the satellite image of 
2010 covered a different area extent than the images of 2011 and 
2012, consequently numerous points were not lying within the same 
extent. Therefore, new points had to be collected.  
 
In ENVI 4.8, on-screen selection of training samples was performed 
using the point application. With the help of a geologist, Isabelle 
Rouet, aerial photographs and a preliminary land cover map derived 
from the FORMOSAT-2 image, new training samples of homogeneous 
spectral reflectance were selected for each land cover class. Later on, 
additional points collected during two fieldwork phases were merged 
with the ROIs and used to improve the classifications. 
 
Due to different phenological conditions, cloud cover and water levels 
of the river, two sets of ROIs were selected for each image, as seen 
in Table 7. Several points taken in the image of 2011 were covered 
by clouds in the image of 2012, additionally points for the class of 
water were areas of bare soil during the dry season. The amount of 
ROIs varies between the different classes, for some classes only 25 
points were selected, while other classes have more than 100 points. 
This can be explained by the spatial distribution of the different land 
cover types over the areas. Some classes are larger in size, or were 
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easier to identify than others, for example training samples for 
“Savannah” were easier to select than for the soil type “Dunite”. 
 

 
Table 7: Number of ROIs selected for 
the image classification. 

 
First classification approach 
Because prior knowledge about the study area existed, a supervised 
classification approach was applied. The images were separately 
classified using an implemented supervised classification approach in 
ENVI 4.8. A variety of the available classification methods 
(Parallelpiped, Minimum Distance, Mahalanobis Distance, Maximum 
Likelihood and Support Vector Machine) were run and their results 
compared to one another. The Support Vector Machine (SVM) 
classification method provided the best results and was therefore 
selected. An advantage of this classification algorithm is that it can 
obtain high results with relatively small numbers of training data 
points (Bishop, 2007; Pal and Mather, 2003). Preliminary land cover 
classifications were performed on the two images and validated 
during a first field work in November 2012. 
 
Field work 
During field work in November 2012 and December 2012 in the area 
of Poro, the preliminary land cover maps were validated and field 
data collection was carried out. Areas, which proved to be difficult to 
identify on the satellite images and the aerial photo, as well as areas 
affected by misclassification, were visited in order to gain more 
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knowledge about their land cover. The aim of the field work was to 
visit as many locations as possible and to compare the results of the 
classification with the actual land cover on-site. For each land cover 
class points were taken with a global positioning system (GPS) and 
information about land cover type and estimation of vegetation cover 
were collected. Furthermore, photos of each point were taken to 
document specific features.  
 
Several problems regarding the classification scheme were identified 
during the first field work, explaining why the initial classification 
scheme proposed by IRD was discarded and an adapted version of 
the scheme developed by OEIL was applied. Within the initial 
classification scheme different soil types were merged into one single 
class. During field work it became clear that this class had to be 
distinguished into three different soil types. Additionally, 
misclassifications were observed between roads and river beds in 
several locations, cloud cover caused further problems.  
 
Second classification approach 
Based on the identified problems in the field, clouds and cloud 
shadow, and roads were masked by manual digitalization in both 
images using ENVI 4.8. Additionally, the land cover classes were 
revised and the class combining several soil types was split into three 
separate classes, adapting the classification scheme proposed by 
OEIL. 
 
Once the masking process was finished and the collected GPS points 
were integrated into the existing ROIs, a supervised classification was 
performed. Again, two different ROIs were used for the two images. 
Several algorithms included in ENVI 4.8 were tested and compared, 
and the most accurate classifier, the SVM classification, was selected. 
The land cover classification was separately performed on both 
images and validated again during a second field work period in 
December 2012. Further field data was collected and used to improve 
the classification.  
 
Accuracy assessment of the classification 
The final classification of the 2011 and 2012 images were first 
qualitatively evaluated by a local geologist, and then with a 
quantitative assessment. In most assessment approaches, the 
dataset is split into two sets, the training set which trains the 
classifier, and the test sets, which estimates the error rate of the 
trained classifier (Lu and Weng, 2007). Instead of splitting the 
dataset into training and validation sets, the accuracy assessment 
was carried out using a k-fold cross validation using the software R. 
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This approach was chosen because some classes were very small with 
only 25 points. Splitting these classes into training and test sets 
might have led to a reduction of the overall classification result.  
In the k-fold cross validation the dataset is randomly split into k-
equal size subsamples. One subset is used as validation data, while 
the remaining subsets are used as training data. This process is 
repeated k-times on N observations. Within the k-fold cross 
validation, N equals the observations considered in each fold. The 
advantage of this approach is that every subsample is being used as 
validation and training data respectively (Boissieu et al., 2009; 
Institute of Microbial Technology). A five-fold cross validation with 25 
observations per class was applied to the classifications of 2011 and 
2012. In this case N equals 25, the smallest amount of selected 
points of one land cover class. Four datasets were used to train, while 
one was used to test. This process was repeated five times to obtain 
a mean accuracy, see Figure 11.  
 

 
Figure 11: Process of the cross validation (Institute of 
Microbial Technology). 

 
Potential problems with the land cover classification 
Seasonal differences between the images made it difficult to exactly 
distinguish between sparse and dense vegetation. Furthermore, field 
data were collected in November and December, when the 
vegetation’s growing stage is again different from the one in January. 
Additionally, it has to be kept in mind that the viewing angles were 
different and that atmospheric and weather conditions led to 
variations in colour and reflectivity in the image. All these factors 
might influence the overall classification results.  
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4.2 Land cover change detection 
 
Re-classification of the land cover classes 
Prior to performing the change detection on the two classified 
images, the 14 soil and land cover classes were reclassified. A change 
detection with 14 categories would result in 196 possible from-to 
change possibilities, which is cumbersome to analyse. Therefore, the 
change detection was performed on a broader level and the fourteen 
classes were reclassified into five major classes, as seen in Table 8. 
 
Analysing changes between different soil types is difficult, 
consequently all soil classes were merged into the class “Bare soil”. 
Since the observed vegetation classes differ quite considerably in 
their density, two classes were created. Dense forest and open forest 
were merged into the class “dense vegetation”, while the classes of 
dense and sparse shrubland, fragmented vegetation and savannah 
were merged into the class “sparse vegetation”. The last two classes 
“water” and “built up” only changed the code but retained their old 
name because it was not possible to merge them with any of the 
other classes.  
 
 

 
Table 8: Reclassification of the original land cover classes. 

 
Application of masks 
The cloud cover masks of 2011 and 2012 were combined into one 
mask and applied to both classifications in order to avoid false 
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changes. Additionally, the same was done with the road masks as 
these were manually and separately digitized for each image, 
resulting in a slight displacement between the two masks.  

 
Change detection  
The re-classified land cover maps of October 2011 and January 2012 
served as input for the change detection process. A first change 
detection was performed for identifying statistical differences between 
the two classifications, using ENVI 4.8. The application “Change 
Detection Statistics” compiles a detailed tabulation of the changes 
between two classification images. The re-classified image of 2011 
presented the initial state, while the re-classified image of 2012 
presented the final state. The statistics output provided detailed 
information about occurred changes between classes in pixel count, 
percentage as well as in area size (km²).  
 
The output was exported into statistical software to analyse the 
changes between the two dates. The information about the direction 
and the amount the changes between initial and final class is however 
only available as statistical information. Consequently, a second 
change detection was performed to allow a spatial analysis of the 
change directions between the different classes. 
 
In a second approach, the “Matrix union”, implemented in ERDAS 
IMAGINE 2011, was performed on the two classification files. The 
user obtains a detailed map, which allows a better understanding of 
spatial distribution of the changes. Additionally, a more detailed 
change detection matrix was calculated based on the information 
obtained from both processes. 
 
Potential problems with the change detection  
As mentioned, the two images were acquired during different times of 
the year, the different phenological conditions might thus have 
resulted in false changes. Additionally, errors within the classification, 
for example due to the different viewing angle, need to be kept in 
mind when analysing the results. 
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4.3 Modelling soil erodibility with the 
Revised Universal Soil Loss Equation 
(RUSLE) 

 
The Revised Universal Soil Loss Equation (RUSLE) was selected from 
a variety of erosion models to spatialise soil erodibility. Most erosion 
models require large amounts of input data, which is not always 
available, especially in a data poor region such as New Caledonia. 
Previous research on erosion in New Caledonia was conducted using 
USLE, which provided important information concerning the input 
parameters, explaining the choice of the model.  
 
The Universal Soil Loss Equation (USLE), an empirical model, 
developed by Walter H. Wischmeier and Dwight David Smith in the 
1960s in the United States, predicts long term average annual rate of 
soil loss due to sheet and rill erosion. Due to its simplicity and low 
data requirements, it is one of the most used model in the world 
(Aksoy and Kavvas, 2005; Merritt et al., 2003). Input parameters 
require information on rainfall, soil erodibility, topography, land 
cover, and support practices. The model was later on reviewed and 
adjusted, resulting in the Revised USLE (RUSLE). The Revised 
Universal Soil Loss Equation (RUSLE) remains the basic structure of 
the original model USLE, but incorporates new technologies to 
calculate the input parameters (Renard et al., 1997). 
 
The RUSLE equation, as seen in Equation 1, is composed of six 
different factors, which are multiplied to obtain the annual soil loss 
(A), given in ton per hectare and year per unit area. As the original 
model is expressed in U.S. imperial units, it was converted to the 
International system of Units (SI metric system) (Foster et al., 
1981).  
 
 

      Equation 1 

  

Where: 
A:  Annual average soil loss [t.ha-1.yr-1], 
R:  Erosivity factor [MJ.mm.ha-1.h-1], 
K: Soil erodibility factor [t.ha.h.ha-1.MJ-1.mm-1], 
C: Factor of vegetation cover, [dimensionless], 
LS:  Slope angle [%] and slope length [m], 
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P:  Factor related to soil conservation practices 
[dimensionless].  

 
The result is a map, in which soil loss is calculated for each pixel of 
the grid, expressed in [t.ha-1.yr-1]. This is however only feasible when 
all factors are constant. In the case of the present study, 
measurements of rainfall vary significantly over the years of 
measurements (2009–2012) as seen in Appendix D. Due to technical 
problems only two events were measured in 2010, while there were 
20 measurements in 2011. It was consequently decided to exclude 
the factor R, explaining why soil erodibility was modelled rather than 
calculating the potential soil loss. Due to lack of information on 
support management within the study area, the factor P was 
excluded as well. 
 
When assuming that the layers K, LS and C are constant, it is 
possible to spatialise potential soil erodibility in the watershed. By 
combining the factors of soil (factor K), slope length and steepness 
(factor L and S) and vegetation cover (factor C), according to the 
RUSLE equation, an index is obtained, which expresses soil erodibility 
in [t.ha.h.ha-1.MJ-1.mm-1]. 
 

4.3.1. Definition and calculation of the input 
parameters 

The following sections give a short definition of each input parameter 
of the RUSLE Equation as well as the way of deriving them for this 
research, the process is presented in Figure 12.  
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Figure 12: Process of deriving the input parameters for the soil 
erodibility index. 

Definition - Soil erodibility factor (K)  
The factor R represents the sensitivity of different soil types to 
erosion by precipitation, expressed in t.ha-1 lost by MJ.mm.ha-1.h-1. 
The factor ranges between 0 to 1, 0 being non-erodible and 1 highly 
erodible. Soils differ in their resistance to erosion as a result of 
different texture, structure, soil moisture, organic matter content, as 
well as permeability (Wischmeier and Smith, 1978). Several methods 
to estimate the K factor values exist, the approach proposed by 
Wischmeier and Smith (1978) is considered as the most common 
one. This approach is based on Equation 2, which can be applied for 
soils that have a silt content of 70 % or less, and particle sizes 
ranging from 0.1 – 0.002 mm (Renard et al., 1997). Information on 
percentages of sand, fine sand and clay, organic matter content, 
structure of soil and permeability are required to calculate soil 
erodibility. Soil structure and permeability are defined according to 
Table 9. 
 

 

Equation 2 

Where:  
M:  (% silt + % very fine sand) (100 - % clay), 
a:  Organic matter content (%), 
b:  Soil structure, 
c:  Permeability.  
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Table 9: Codes of soil structure and permeability (Wischmeier and Smith, 
1978) 

 
Calculation - Soil erodibility factor (K) 
As there is no detailed up-to-date soil map for the study area in New 
Caledonia, the soil erodibility factor K was derived from two maps: a 
geological map of the watershed and the detailed soil and land cover 
classification of 2011 with 14 classes.  
 
The geological map was considered to be the more accurate because 
of its complete validation in 2012, it thus served as the primary data 
source for the K factor definition in the watershed. Since the 
geological map does however not cover the entire watershed, missing 
areas were filled with data derived from the soil and land cover 
classification. The classification of 2011 was chosen to assess 
whether soil erodibility contributed to changes in land cover. 
 
Based on the combination of these two maps, different soil types 
were identified in the watershed, seen in Table 10. These classes 
were then re-classified into three major soil classes based on tables 
by L'Huillier et al. (2010). Not all soil classes were however included 
in the further process due to the following reasons: 
 

 Detailed information was not available for “Peridotite 
(dominant)”. It was not possible to completely determine the 
exact soil type in the field as it includes different types, further 
research is needed.  

 Soil types containing no particles smaller than 2 mm are 
hardly affected by erosion and thus not considered in the 
model.  
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Table 10: Reclassification of soil classes. 
 
The equation proposed by Wischmeier and Smith (1978) requires 
information on the percentage of clay, silt and sand content, as well 
as the percentage of organic matter, which were derived from 
L'Huillier et al. (2010). Soil structure and permeability were 
empirically determined. Validation of these codes is required, but due 
to time constraints this was not possible.  
 
Overall, three soil classes were defined, ferrasols, altered ferritic and 
ferralitic soils, as well as cambisols, and their K-factor values were 
calculated according to Equation 2. The final K-factor values are 
presented in Table 11.  
 

 
Table 11: K-factor values (according to the Wischmeier and Smith approach) 
and texture classes of the three soil classes. 
 
Based on these values, the spatial distribution of the K factor was 
computed, resulting in a raster map with a 5m resolution, seen in 
Figure 13. Classes with a value of zero (0) correspond to soils that 
are hardly erodible, such as bare rock, or soils that contain only few 
or no particles smaller than 2 mm. Most of the watershed has a K 
factor between 0.0376 and 0.0448 t.ha-1 / MJ.mm.ha-1. h-1. Erodibility 
occurs in an ascending order: first ferralsols (horizon 45-50 cm) 
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being the most erodible layer with a value of 0.0448, then followed 
by ferralsols (horizon 0-15 cm) with a value of 0.0376, thirdly 
ferralsols with a value of 0.0208, and finally cambisols with a value of 
0.0114.  
 

 
Figure 13: K-factor values in the watershed. 

 
Definition - Cover and management factor (C)  
The factor C represents land cover, which limits the impact of rainfall 
on the soil. The C-factor depends among others on the density of 
coverage, canopy height, density of the lower strata and the humus 
coverage. It ranges from 0 to 1, 0 being a completely covered 
ground, and 1 being bare soil (Mazour and Roose, 2002; Wischmeier 
and Smith, 1978). Different ways to determine vegetation cover 
exist, for example by mapping land cover based on digital image 
classification or the interpretation of aerial photographs. C-factor 
values are then assigned to each land cover map, either based on 
previous research or derived from literature. Furthermore, the C-
factor value can be calculated as a function of  height and percentage 
of vegetation cover using nomographs, such as the one proposed by 
Roose (1994) seen in Appendix E. 
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Calculation – Cover and management factor (C) 
The soil and land cover map with 14 classes derived from the 
supervised classification of the 2011 RapidEye image served as the 
major source for the definition of the C-factor. Out of the 14 land 
cover classes, six were vegetation classes: 

 Dense forest,  
 Open forest, 
 Dense shrubland, 
 Sparse shrubland, 
 Fragmented vegetation, and 
 Savannah 

 
Since most of the flora in New Caledonia is endemic, no useful 
literature was found to determine C-factor values. Thus, values 
between 0 and 1 were assigned to the different vegetation classes 
based on previous researches conducted by Bui-Duyet (2011) and 
Printemps (2007). Areas with sparse or no vegetation cover represent 
the greatest vulnerability to erosion and consequently have a high C-
factor, while areas of dense vegetation cover, such as forests, limit 
the erosion process and were assigned a low value. Table 12 provides 
an overview of the land cover classes, the assigned C-factor value 
and the source on which the value is based. 

 

Table 12: C-factor values. 

 
The spatial distribution of the C-factor is quite heterogeneous, as 
seen in Figure 14. Vegetation is only found in a small area of the 
watershed, while bare soil represents most of the area due to the 
mining activities. Since the protective vegetation cover is missing, 
these parts have the highest C-factor value. Out of the six different 
vegetation types identified for the overall study area, only three can 
be found in the watershed: dense shrubland, fragmented vegetation 
and sparse shrubland.  
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Figure 14: C-factor values in the watershed. 

 
Definition - Slope length and steepness factor (LS)  
The factor LS introduces the effect of slope angle and slope length 
into the model. L characterizes the length of the slope and S its 
angle. The longer the slope, the greater the amount of cumulative 
runoff, and the steeper the slope, the higher the velocity of the 
runoff, which contributes to erosion (McCool et al., 1987).   
 
Calculation - Slope length and steepness factor (LS)  
A common approach to derive slope length and slope angle is by 
applying an Arc Macro Language (AML) script under the software 
ArcInfo, which was however not available during the research. An 
alternative approach was chosen, in which the factor LS is calculated 
based on a recently proposed algorithm developed by Zhang et al. 
(2013). The layer LS is derived by using their free software, LS-
TOOL, which is based on the formulation by McCool et al. (1989), 
Desmet and Govers (1996) and Remortel et al. (2004). The 
programme applies an algorithm, which requires a cumulative area 
threshold, and a DEM in ASCII format as input. A 10 m DEM was used 



Chapter 4 

 55 

was input, all other settings retained their default settings. The final 
raster layer is presented in Figure 15. 
 

 
Figure 15: LS-factor values in the 
watershed. 

 
Calculation of the soil erodibility index 
In the last step, the three raster layers of soil, vegetation and slope 
were multiplied according to Equation 3 to derive a soil erodibility 
index, expressed in [t.ha.h.ha-1.MJ-1.mm-1] for the small watershed. 
 

 
        Equation 3 
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5 Results and analysis 

5.1 Land cover classification 
 
Spatial distribution of soil and land cover  
The supervised classification process, based on the two RapidEye 
images of October 2011 and January 2012, resulted in two soil and 
land cover maps with 14 distinguished categories, which are 
presented in Figure 16 and Figure 17. As seen in the Figures below, 
the spatial distribution of soil and land cover is similar in both images. 
The two mines in the north are clearly visible in the maps. These 
areas are predominantly covered by overburden, bare rock, 
peridotite, laterite, ferruginous crust and dunite, displayed in yellow 
and brownish colours. Built up areas, in red, are located at the coast 
in the north between the two mines. Areas of higher altitude are 
found towards the central part and are vegetated by open forest, 
while areas of lower altitude, in the east, are covered by fragmented 
vegetation. Savannah covers the riparian areas along the Koua River 
in the south-east. It is apparent that vegetation cover becomes 
denser towards the south. Dense forest, displayed in dark green, is 
mostly found on steep slopes in the south-east, an area undisturbed 
by anthropogenic activities.  
 

 
Figure 16: Soil and land cover classification of Poro, October 2011. 
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Figure 17: Soil and land cover classification of Poro, January 2012. 

Area statistics of land cover classes 
Area statistics, which were derived from the land cover maps, are 
illustrated in Figure 18, and in a more detailed Table 16 in Appendix 
F. As the second image was acquired during the wet season, it is 
affected by more cloud cover, the total classified areas of both 
images consequently differ. While the total classified area of 2011 
accounted for 31.02 km², the classified area of 2012 was slightly 
smaller with 27.68 km². Consequently, Figure 18 does not indicate 
changes between the two dates. 
 
As shown in Figure 18, the class of “Open forest” was the most 
dominant land cover class for both dates, representing 28% (2011) 
and 27% (2012) of the total area. The second major land cover class, 
“Fragmented vegetation”, covered an area of 6.8 km² in 2011 and 
6.2 km² in 2012. Water, built up and dunite were the smallest land 
cover categories for both dates. Most of the study area was covered 
by vegetation. In 2011, 25.02 km² of the total area of 31.02 km² was 
covered by vegetation, and in 2012, 21.86 km² of the total area of 
27.68 km² was covered by vegetation. The different soil types only 
covered small areas each, but considered together as one class of 
bare soil it covered an area of 5.8 km² and was thereby almost as 
large as the area of fragmented vegetation.  
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Figure 18: Proportion of land cover classes in 2011 (blue) and 2012 (red) in 
Poro. 

 
Accuracy assessment  
A five-fold cross-validation was performed on the dataset to evaluate 
the accuracy of the support vector machine classifier. The training, 
test and overall accuracy are presented in Table 13 the according 
confusion matrices for 2011 and 2012 can be found in Appendix G. 
Both images achieved overall accuracies of more than 90 %, 
according to Ismail and Jusoff (2008) an image classification is 
acceptable if the accuracy assessment has a level of 85 %. By 
masking irrelevant features, such as clouds and cloud shadows, 
significant spectral confusion was avoided. It was possible to 
distinguish between the 14 soil and land cover categories and no 
major difficulties occurred due to the large amount of classes. The 
terrain did not pose any problems as the images were geometrically 
corrected. Points collected in the mountainous terrain were all 
correctly classified. The expected problems due to the large amount 
of land cover classes did not appear. All categories were successfully 
distinguished. As it was easier to distinguish between bare soil and 
vegetation during the wet season in 2012 than during the dry season 
in 2011, the overall accuracy for the classification of 2012 is 93.06 
%, while it is 92.25 % for the image of 2011. However, occasional 
spectral confusion was observed because of seasonal differences 
between the image acquisition dates and the field data collection.  
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 Training (%) Test (%) Average 
accuracy 

(%) 

Overall 
accuracy 

(%) 
2011 93,45 +- 0,7 91,43 +- 1,5 92,97 92,25 
2012 92,49 +- 0,7 90,29 +- 1,6 92,53 93,06 

Table 13: Accuracy assessment results. 

 
As seen in the confusion matrix in Appendix G, the classes of water 
and ferruginous crust, as well as ferruginous crust and fragmented 
vegetation in the classification of 2011 were affected by spectral 
confusion. Within the classification of 2012, spectral confusion was 
limited to the categories of dense and open forest. In order to 
understand why spectral confusions occurred, spectral signatures of 
the concerned classes were analysed. Figure 19 displays spectral 
reflectance curves of five different land cover classes. The x-axis 
corresponds to the wavelength range, while the y-axis displays 
reflectance in percentage.  
 
As mentioned in sub-section 2.1., land cover types can be 
distinguished based on their spectral properties as they differ in 
reflection and absorption at different wavelengths (Liew, 2001; 
Vrieling, 2006). Consequently, it is easy to distinguish bare soil from 
dense vegetation as their reflectance is significantly different. As seen 
in the Figure below, the spectral signature of laterite (bare soil) 
differs from the one of dense forest (vegetation). While the reflection 
of dense forest is low within the blue and red bands and peaks in 
band five (near-infrared, 760-850 nm), the reflectance of laterite 
increases with increasing wavelength. The spectral reflectance of bare 
soil depends on its soil composition, while the one of vegetation 
depends on the content of leaf moisture and the plant’s health. 
Different soil and vegetation types have consequently different 
spectral reflectance curves (Liew, 2001; Vrieling, 2006). This 
becomes clear when looking at the spectral properties of different soil 
types and vegetation densities in Figure 19. 
 
The class fragmented vegetation is made up of the plant “Fougère”, 
which is a fern-like type of vegetation. During the dry season, it turns 
completely grey, as seen in Figure 35 in Appendix C, and its leaf 
moisture is low. Its spectral reflectance is consequently different from 
dense forest but very similar to the one of ferruginous crust. This 
overlap within spectral reflectance leads to confusion within the two 
classes and they are misclassified.  
 
Variations in colour and reflectivity due to atmospheric and weather 
conditions, as well as the viewing angle contribute to this spectral 
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confusion. Although variations in colour and reflectivity have been 
reduced to the best possible during the image pre-processing, it is 
highly likely that they have affected the overall results of the image 
classification. 
 

Figure 19: Comparison of spectral profiles. 

 

5.2 Land cover change detection 
 
In the following, the final results of the land cover change detection 
are presented. Firstly, areas affected by changes in general are 
quantified, followed by the assessment of change directions and 
change dynamics.  
 
General land cover changes 
The post classification comparison, based on the merged soil and land 
cover maps presented in Figure 38 in Appendix H, resulted in a map 
of general changes presented in Figure 20. The spatial distribution 
shows that changes, displayed in red, occurred over the entire study 
area.  
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Figure 20: General land cover changes in Poro, New Caledonia. 

 
Area statistics  
In the next step, area statistics of the land cover categories were 
derived from the merged land cover maps. The results are presented 
in Figure 21, and Table 19 in Appendix I. Figure 21 provides a general 
comparison of the distribution and size of the different classes over 
the study area in October 2011 and January 2012, while Table 19 in 
Appendix I gives more detailed information about net change and 
growth. Changes including the class of “Built up” were excluded, 
given that these are very unlikely within such a short period of time.  
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Figure 21: Proportion of different land cover classes in Poro in October 2011 
and January 2012. The labels indicate the area in km² for each class. 
 
As it can be seen from Figure above, all land cover classes were 
affected by change. Dense and sparse vegetation were the dominant 
land cover types in October 2011 and January 2012 and covered 
about 80% of the study area together. Both declined over the 
observed time period by 0.38 km² and 0.06 km² respectively. 
Nevertheless, they remained the dominant cover types in 2012. While 
sparse vegetation covered a larger area than dense vegetation in 
2011, it was the other way around in 2012. Bare soil and water on 
the other hand slightly increased. Bare soil furthermore registered the 
largest increase with 0.39 km², while sparse vegetation was the class 
that experienced the largest decline with -0.38 km². Water registered 
the largest growth with almost 43%, as it increased from 0.07 to 
0.10 km².   
 
Change detection matrix 
Figure 21 and Table 18 quantify the extent of land cover change 
between October 2011 and January 2012. However, they do not 
provide detailed information about the direction and dynamics of the 
observed changes. Only looking at net changes can lead to false 
conclusions as it does not consider inter-class changes. A class might 
have only registered a small net change, but this does not mean that 
no significant change dynamics occurred. It might have registered a 
loss in one location and experienced a gain somewhere else, 
neutralizing the loss. As these change dynamics are not apparent 
from the land cover statistics, it is important to analyse change 
directions and dynamics by establishing a change matrix. The results 
are presented in Figure 22, and Table 20 in the Appendix J. As 
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mentioned above, the class of built up areas was excluded, the 
remaining four classes resulted in 16 possible change combinations. 
Changes within one land cover were not considered in the analysis 
and changes between dense vegetation and water were not observed, 
resulting in ten possible “from-to” change combinations.   
 
The detailed “from-to” change combinations, in km², are given in 
Figure 22. Sparse vegetation, which covered about 40% of the study 
area in 2011, is the most dynamic classes. It experienced gains and 
losses of 3.6 km². While it lost almost 2 km² to bare soil and dense 
vegetation, it also gained 1.58 km² from the same two classes, 
resulting in a final area of 10.6 km². A decline in sparse vegetation 
was predominantly observed in areas close to the mines in the north 
of the study area. Furthermore, the steepness of the slopes must 
have contributed to the decline, as changes were often found in areas 
with steep gradients. Dense vegetation and bare soil on the other 
hand were more stable and only registered gains and losses of about 
1.8 km² each. Bare soil, which registered the largest overall increase 
from October to January, lost an area of 0.71 km², mostly to sparse 
vegetation. In other locations it however gained 1.11 km² from other 
land cover classes. Changes from bare soil to sparse vegetation were 
registered all over the study area. Dense vegetation, the second 
largest land cover class with a total area of 10.94 km² in 2011, 
registered a decrease of -0.06 km² until 2012. While it gained 0.87 
km² from sparse vegetation, it however also lost 0.93 km² to the 
same class, which resulted in an overall decrease of dense 
vegetation. The change from sparse vegetation into dense vegetation 
was predominantly found in the south-west of the study area and 
along the coast, while the degradation from dense to sparse 
vegetation mainly occurred closer to the mining areas. Areas covered 
by water accounted for 0.07 km² in 2011, but due to gains, such as 
of bare soil into water, it increased by 0.03 km² to 0.1 km² in 
January 2012. Changes from bare soil into water were restricted to 
the areas of the water bodies in the study area. 
 
Based on the change detection matrix, a simplified “from-to” change 
detection map (Figure 23) was derived, which only focuses on the 
conversion to bare soil, to water and to vegetation. Changes were not 
predominantly located in one area but found all over the study area 
in Poro. Large parts of stable areas are located in the south-east, 
which is covered by dense forest. Areas of vegetation reduction on 
the other hand were mostly located close to the mines, while areas of 
vegetation increase were predominantly found in the central part. 
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Figure 22: Change matrix of land cover changes between October 2011 and 
January 2012, units in km². 

 

 
Figure 23: Main land cover changes in the study area. 

Assessment of the observed land cover changes 
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In order to fully exploit information about change directions and 
dynamics, external factors, which might have affected the change 
detection procedure and results, need to be taken into consideration. 
As it is likely that external factors introduced errors into the overall 
results, it is necessary to analyse the nature of the observed 
changes. Not all observed changes are logical, such as the change 
from water to bare soil and vegetation, thus changes were grouped 
into two categories: 
 

 Actual land cover changes, and 
 Detected changes, which are due to external factors.  

 
As expected, the different acquisition dates of the imagery affected 
the results of the change detection. The phenology of vegetation and 
water levels in rivers were visibly different between the two images. 
The transitions from bare soil to sparse and dense vegetation, as well 
as the change from sparse to dense vegetation, are considered as 
consequences of different phenological conditions. Changes from bare 
soil to water are furthermore results of seasonal differences between 
the two dates, an example is presented in Figure 24. These changes 
should therefore not be regarded as real land cover changes as they 
are annually occurring changes.  
 

 
Figure 24: Example of the seasonal change from bare soil to water 
in the Koua River (displayed in false colour composite). 

 
The changes from bare soil to sparse vegetation, and sparse to dense 
vegetation however also often followed a systematic pattern, 
occurring along the edge of the particular two classes. During the 
analysis a shift of one pixel between the two images was observed, 
an error which might have occurred during the image registration 
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process (Foody, 2002). Consequently, the observed changes might as 
well have occurred because of this registration error. The change 
from bare soil to sparse vegetation might in addition be related to the 
observed misclassifications. It is difficult to determine the exact factor 
which caused this change, but in any case these changes should not 
be considered as actual land cover changes.  
 
According to the change matrix, 1.09 km² of sparse vegetation 
changed into bare soil in the study area, two examples are given in 
Figure 25. The images in the top row present the situation of October 
2011, while the images in the bottom row present the situation of 
January 2012. The images are displayed in false colour composite as 
this makes it easier to detect vegetation (red) and bare soil (green). 
According to example (1), an erosion scar occurred within the period 
of October 2011 to January 2012. In example (2) an area of bare soil 
is clearly visible at the end of a small creek in the second image. 
Measuring the extent of the erosion scar in example (1) showed that 
its width stayed the same. Example (1) can consequently be 
considered as a false land cover change, while example (2) presents 
an actual change in land cover. This illustrates the difficulty of 
distinguishing between actual and false land cover changes.  
 

 
Figure 25: Examples of a (1) false land cover change and (2) actual change 
between sparse vegetation to bare soil (displayed in false colour composite). 
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The changes from water to bare soil, water to sparse vegetation and 
sparse vegetation to water are highly unlikely and most likely 
occurred due to errors within the classification. 
 
Table 14 classifies the land cover changes into the two categories of 
actual and false changes. This table should be interpreted with 
caution as it is difficult to finally determine the driver of each land 
cover change. The change from sparse vegetation to bare soil for 
example can be classified either as an actual land cover changes that 
occurred due to natural or anthropogenic drivers, but on the other 
hand it might as well be a consequence of the different viewing 
angles between the images. The table remains very theoretical and 
requires further research and validation.  
 

Table 14: Factors that might have affected the change detection results. 
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5.3. Soil erodibility modelling 
 
Soil erodibility was estimated by taking into account soil type, 
vegetation cover and slope. As seen in Figure 26, the watershed can 
be divided into four classes of soil erodibility: none, low, medium and 
high.  
 

 
Figure 26: Soil erodibility in the watershed in Poro. 

For certain areas it was not possible to determine the exact soil type, 
these areas correspond to “no data” areas and are displayed in white. 
Areas which are the least sensible to soil erodibility, displayed in 
yellow, correspond to classes, such as dunite and peridotite, where 
no erosion occurs as their particle sizes are bigger than 2 mm. They 
are therefore assigned a value of KCLS = 0. Low erodibility, displayed 
in light orange, occurs in areas with sparse vegetation cover on 
moderately steep slopes and soil types, such as cambisols, 
ferruginous crust and plinthosols. These soils have high silt contents 
and are therefore more resistant to erosion. Areas displayed in dark 
orange and red correspond to medium and high erodibility. Here, 
areas of sparse or no vegetation cover coincide with steep slopes and 
soils such as laterite and saprolite. These soils have higher silt 
amounts compared to the other soil types in the watershed and are 
thus more vulnerable to erosion (Morgan, 2005). This map has not 
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been calibrated with field measurements and should only be regarded 
as a qualitative assessment. 
 
The watershed was affected by three types of land cover changes: 
bare soil to water, bare soil to sparse vegetation and sparse 
vegetation to bare soil, as seen in Figure 27. Bare soil to sparse 
vegetation can be considered as a natural change, which occurs when 
the wet season sets in. The change from bare soil to sparse 
vegetation occurred either because of phenological changes or is 
observed due to misclassification. It can be assumed that soil 
erodibility did not have influence on these two changes. It is however 
highly likely that soil erodibility contributed to the change from sparse 
vegetation to bare soil. But given the uncertainties regarding the 
change detection and soil erodibility modelling, it is difficult to 
determine whether soil erodibility contributed to this change. 
 

 
Figure 27: Comparison of soil erodibility index with observed land cover 
changes in the watershed. 
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6 Discussion 
 
The image classification and change detection have two main 
findings. First, the major land cover in October 2011 and January 
2012 in the study area is open forest (vegetation). Second, all land 
cover classes were affected by changes, while vegetation experienced 
a reduction in its coverage by 0.44 km², bare soil and water 
increased in the study area by 0.39 km² and 0.3 km², respectively.  
 
Given the natural conditions and human pressures in the study area, 
extreme rainfall events and nickel mining were initially considered as 
the driving forces of the observed land cover changes. As nickel ore is 
being extracted by surface mining, which requires the removal of 
vegetation in order to access the deposits, it seemed reasonable to 
regard it as the main driver of the change from sparse and dense 
vegetation to bare soil (United Nations, 2003). Additionally, high 
amounts of precipitation, generated by frequent cyclones and tropical 
depressions during the early wet season, often result in extensive 
flooding and the disruption of vegetation cover in New Caledonia 
(Terry et al., 2008). Soils are still dry during the beginning of the wet 
season and have poor absorption abilities. In situations of severe 
rainfall, soils are unable to absorb the amount of rainfall quickly 
enough, often resulting in flash floods and landslides, which 
contribute to the removal of bare soil and sparse vegetation (Morgan, 
2005). Flash floods occur when rainfall exceeds the infiltration rates 
or soils capacity and are “a major source of erosion” (Foody et al., 
2004: 49). 
 
The observed results of this study are partially similar to previous 
studies by Latifovic et al. (2005); Schulz et al. (2008); Wasige et al. 
(2013); Zomer et al. (2001), who analysed land cover changes in 
Canada, Chile, Kagera Basin of Lake Victoria, Africa and in Nepal and 
have reported about reductions of natural vegetation and the 
expansion of bare areas. Tovar et al. (2013) analysed land cover 
changes in the tropical Andes and observed an overall reduction in 
vegetation cover due to the expansion of mining and agriculture. 
Townsend et al. (2009) reported that the process of surface mining 
results in severe land cover alterations, ecologically as well as 
hydrologically.  
 
No study on land cover changes was however found which 
particularly mentioned rainfall as its driver. When assessing the 
relation between rainfall and land cover changes, previous research 
focused on flash floods, or mass movements, such as landslides, that 
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were either triggered by extreme rainfall and caused changes in land 
cover (Blaschke et al., 2000), or were the consequence of land cover 
changes (Alcántara-Ayala et al., 2006). Alcántara-Ayala et al. (2006) 
analysed landslides related to changes in land cover and stated that 
land cover changes might be considered either as the cause or the 
effect of landslides. While they concluded that the observed landslides 
in their study area in Mexico are a consequence of vegetation cover 
reduction, Blaschke et al. (2000) identified landslides as the driver of 
vegetation cover reduction, which are often consequences of the 
combination of extreme rainfall and steep slopes. 
 
According to Lambin et al. (2001) and Shrestha (2011), agriculture, 
such as shifting cultivation, and deforestation are regarded as the 
primary drivers of land cover changes in tropical environments. 
Arable land in New Caledonia however only makes up 0.32 % of the 
land use (Central Intelligence Agency, 2009). Other studies named 
population growth and economic development as the major causes of 
land cover changes (Wasige et al., 2013). Population growth cannot 
be considered as a driving factor either since it slowed down over the 
last years (Institut national de la statistique et des études 
économiques, 2011). Consequently, these drivers were not 
considered as potential drivers of the observed land cover changes.  
 
In an area, where both the natural and anthropogenic pressures are 
present, it is not always possible to determine the exact driver of the 
observed changes in land cover. Consequently, it cannot be 
differentiated which pressure contributed to which change in this 
case. The amount of external factors additionally complicated the 
analysis of the changes. As a result it is difficult to conclude whether 
the observed changes are actual changes in land cover or were only 
observed due to the influence of external factors.  
 
A major obstacle when using optical remote sensing in tropical 
regions is the frequent cloud cover, especially during the wet season 
(Asner, 2001). According to Coppin et al. (2004) “for most 
documented studies, the periodicity of the data acquisition seems to 
have been determined according to the availability of satellite sensor 
data of acceptable quality”. In the present study, it was important to 
use images, which frame the rainfall event of December 2011 as 
close as possible. The closest and most cloud cover free images were 
the ones obtained in October 2011 and January 2012. Singh (1989), 
Pons et al. (2002) and Lambin and Strahler (1994) regarded the 
application of different acquisition dates as major sources of 
uncertainties to post-classification change detection. In the present 
study, this has at least two constraints on the process. 
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First of all, using images from different times of the year implies that 
each image represents the phenological conditions of its acquisition 
date. Additionally, the images are likely to be affected by different 
sun angles. Changes due to seasonal differences and sun angles are 
considered as changes by the software program and need to be 
manually separated by the analyst, which is not always easy and time 
consuming. The problems due to seasonal differences are comparable 
to the ones by Barreda-Bautista et al. (2011) who experienced similar 
difficulties when mapping tropical forest cover. As they worked with 
images acquired during different times of the year, forest was often 
misinterpreted with non-treed ecosystems during the dry season. 
According to Barreda-Bautista et al. (2011) using images of different 
times can be necessary when assessing vegetation cover in tropical 
regions as cloud-free satellite imagery is often difficult to obtain 
during the wet season, and vegetation is often sparse or leaves fall 
off during the dry season. This however also implies a high error 
potential when comparing these images. 
 
Secondly, when the first image was acquired towards the end of the 
dry season, vegetation cover was sparse and the soil dry. The second 
image was obtained during the wet season in January when 
vegetation cover was denser and consequently more protective 
against rainfall. Soils however had a lower infiltration rate as they 
were more saturated after several rainfalls. Comparing land cover 
changes based on images obtained in the dry and wet season might 
lead to different results than assessing land cover changes measured 
during the wet season. The observed results should thus not be 
extrapolated over the entire year. 
 
This explains why most research focusing on assessing land cover 
changes applied images of anniversary dates as this partially reduces 
the impact of seasonal and sun angles differences (Bayarsaikhan et 
al., 2009; Prenzel and Treitz, 2004; Zomer et al., 2001), only a few 
exceptions used images across a season (Pouliot et al., 2009; Zhan 
et al., 2000). When assessing land cover changes due to strong 
rainfall it is however necessary to apply images framing the particular 
event as close as possible to be certain that only changes, which were 
triggered by this event, are identified. Imagery of anniversary dates 
are however not an option as they cover too long of a time span and 
consequently make it too difficult to determine which changes 
occurred because of the rainfall and which are due to other causes. 
An alternative is the application of time series. A major advantage of 
their application is “the fact that the issue of influence of phenology 
on change detection performance is resolved, because data are 
collected throughout the growing season. As such, changes inherently 
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linked to seasonality can be separated from other changes” (Coppin 
et al., 2004: 1569). A significant trade-off of the application of time 
series is however that this data is presently only available in coarse 
to moderate spatial resolution (AVHRR, MODIS) and consequently 
leads to the loss of spatial information (Coppin et al., 2004; Jianya et 
al., 2008). Consequently, time series are only an option when looking 
at a larger study area with coarser resolution. 
 
Further constraints to the study are related to the different viewing 
angles of the sensor, which introduce major uncertainties into the 
analysis as they lead to different image perspectives (Mas, 2004). 
Although form and magnitude vary, these factors often result in 
differences in reflectance. This consequently caused errors in the 
individual image classification process leading to false changes within 
the change detection (Barnsley et al., 1997). Changes, which seemed 
logical and expected at first, such as the change from sparse 
vegetation to bare soil, became difficult to evaluate after further 
analysis as they might only be a consequence of the different viewing 
geometry. 
 
The mentioned misregistration between the two images is another 
limitation to the study. “Perfect co-registration of multi-temporal 
images is impossible as there is always residual error in rectification 
models” (Verbyla and Boles, 2000: 3553), but according to Aguirre-
Gutiérrez et al. (2012) “slight errors […] can be overcome by 
applying correction rules for the size and width of the changed 
patches”.  
 
Given the limitations and uncertainties related to the results, it is 
difficult to make a sound statement about the impact of rainfall on 
the observed changes and whether the changes can actually be 
considered as actual changes in land cover. 
 
As mentioned, according to MacLeod and Congalton (1998), four 
aspects are important when performing a change detection: detecting 
whether changes have occurred, determine their nature, and assess 
extent as well as spatial pattern of the observed change. In this case, 
it is difficult to determine the exact nature of the changes due to the 
amount of external factors influencing the results. Consequently, the 
change detection cannot be considered as successful.  
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Erodibility modelling 
According to the soil erodibility index, areas are prone to soil 
erodibility if they are affected by the combination of soils with high 
silt contents, sparse or no vegetation cover and steep slopes. Similar 
findings were reported in the studies by Dumas et al. (2010) 
Printemps (2007) and Bui-Duyet (2011).  
 
Several studies using RUSLE were conducted in New Caledonia and 
other tropical regions in order to assess potential soil loss. These 
studies applied the model in its original form and are consequently 
not comparable to the results of the present studies, the ways of 
deriving the input parameters are however similar. Soil information, 
the K factor values, were derived based on the nomograph by 
Wischmeier and Smith (1978), the obtained values are compatible to 
studies conducted in other parts of New Caledonia (Dumas et al., 
2010) and Haiti (Delusca, 1998; Durosier, 1990). The cover and 
management factor C is based on the land cover classification of the 
RapidEye image of October 2011, a common approach in previous 
erosion research (Erencin, 2004; Mati et al., 2000; Meusburger et al., 
2010b). The derived C-factor values are similar to the ones obtained 
by Printemps (2007) and Bui-Duyet (2011). 
 
It is questionable in whether high soil erodibility can be considered as 
a driver of the observed land cover changes. Most studies focused on 
the consequences of land cover changes on soil erosion (Cebecauer 
and Hofierka, 2008; Koirala, 2010; Paiboonvorachat and Oyana, 
2011; Quan et al., 2011) and not the other way around. Only Bakker 
et al. (2005) focused on the soil erosion as a driver on land use 
changes. 
 
This study faced several limitations and uncertainties, which are 
related to the data sources, which were used to derive the different 
input parameters. Finding suitable indices for each input parameter 
was a major difficulty due to the rare soil types and endemic 
vegetation. Mati and Veihe (2001) reported similar difficulties when 
deriving factors for the input parameters from USLE guide tables.  
 
Finding a suitable erodibility index in tropical conditions was a major 
problem as most of the existing indices were developed for soils in 
temperate regions (Dumas et al., 2010). According to Vanelslande et 
al. (1987), the nomograph used to derive K-factor values proposed 
by Wischmeier and Smith (1978) is not always applicable to tropical 
soils. Soils in New Caledonia are of ultrabasic origin and only little soil 
research has been conducted on the islands. Due to time constraints 
the collection of soil samples and their detailed analysis was not 
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possible. Consequently, it was difficult to derive representative K 
factor values. In order to obtain information on the different soil 
types in the watershed, it was necessary to merge two maps. As only 
one of these maps was validated, the error potential of the derived K- 
factor values is high.  
 
The same problem was observed when deriving C-factor values. 
Nomographs, such as the one proposed by Roose (1994), were not 
applicable because of the endemic flora in New Caledonia. Thus, C 
factor values were based on previous research performed by Bui-
Duyet (2011) and Printemps (2007). Additionally, it has to be kept in 
mind that the classification of 2011 was used to derive a map for C- 
factor values. Different C factor values apply during the different 
seasons of the year, resulting in different soil erodibility indices in the 
wet or dry season. The obtained results can consequently not be 
extrapolated over the entire year. Furthermore, assigning C-factor 
values to vegetation classes derived from image classifications 
implies that areas affected by misclassifications were assigned wrong 
values and thus caused wrong overall results.  
 
A common approach to derive slope length and slope angle is an Arc 
Macro Language (AML) script under ArcInfo developed by Remortel et 
al. (2004). As the software ArcInfo was not available during the 
research, an alternative approach had to be selected. In this case, 
slope length and slope angle are combined in the factor LS, which is 
calculated based on a recently proposed algorithm developed by 
(Zhang et al., 2013). To what extent this approach presents 
advantages and disadvantages when conducting soil erosion 
assessments is unknown as the software was just recently published.  
Another limitation concerns the factor P, the effect of support 
practices. Due to lack of information on it, this factor was not 
included. This seems to be a common problem, as several other 
studies faced a lack of information as well and consequently excluded 
this factor (Beskow et al., 2009; Cohen et al., 2005). According to 
(Knijff et al., 2000), this alters the model as the management 
practices is one of the most important factors affecting erosion.   
 
According to Lu et al. (2004a) “uncertainties regarding data sources 
may introduce larger uncertainties in soil erosion estimates”. This 
highlights why it is difficult to estimate how reliable the results of the 
soil erodibility index are and whether they can be related to the 
observed changes in land cover.  
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7 Conclusion & recommendations 
 
Conclusion 
This study showed that the application of remote sensing data is 
helpful to extract information on land cover in New Caledonia. While 
the northern part of the study area is mostly covered by bare soil due 
to the mining industry, the southern part is covered by dense 
vegetation cover as it is undisturbed from human activities. The 
optical remote sensing based approach has however clear 
implications for detecting changes in land cover after extreme rainfall 
when using images across two seasons. Areas affected by change 
were identified, but the results are significantly affected by external 
factors, such as seasonal differences between the two images, the 
different viewing geometry as well as errors related to the image 
classification process. Seasonal differences are considered as the 
most constraining factor when assessing changes over the dry and 
wet season. As the analyst will always face problems due to 
phenology, it can be consequently be concluded that optical remote 
sensing is an inadequate approach for detecting land cover changes. 
Given that the erosive force is particularly strong in the beginning of 
the wet season due to the combination of the frequent occurrence of 
extreme rainfall events, sparse vegetation cover and dry soils, there 
is a pressing need to develop more efficient and accurate methods to 
effectively detect land cover changes after a particular event and 
across seasons.  
 
Soil erodibility can successfully be modelled based on the Revised 
Universal Soil Loss Equation when assuming that the input 
parameters remain constant. Areas, in which soils of high silt 
contents coincide with sparse or no vegetation cover and steep slopes 
are especially prone to soil erodibility. But due to the listed 
uncertainties concerning the data sources and the missing calibration, 
it is difficult to estimate how reliable the results of the soil erodibility 
map are. The generated soil erodibility index can however be 
regarded as a first step towards an assessment of soil erosion risk in 
the watershed as it provides a preliminary understanding of which 
areas might potentially be affected by erosion. Given the limitations 
and uncertainties regarding the change detection results and the soil 
erodibility modelling, it is difficult to make a sound statement about 
their relation. Consequently, it is questionable to which extent soil 
erodibility contributed to the observed land cover changes.  
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Recommendations 
Although cloud cover poses a major problem in tropical regions, a 
possible future approach could be to assess changes after a rainfall 
event based on two images obtained at the very beginning of the wet 
season. Another approach includes the application of time series, 
even though this is only possible on coarser resolution and should 
consequently address a larger area as explained in chapter six. 
 
Several studies applying either USLE or RUSLE were conducted in the 
southern Pacific Ocean, such as in New Caledonia, Tahiti, Fiji and 
Vanuatu. A major drawback of these studies is the missing validation 
of the results. By including the rainfall factor R in the model, the 
obtained results can be compared with actual measurements on 
suspended sediment load in the water, which can be regarded as a 
validation of the model. A future objective is the modelling of 
potential soil loss by including the rainfall factor R in the model. 
Rainfall data can be either obtained from the meteorological station in 
the neighbour village Houaïlou or from the Tropical Rainfall 
Measurement Mission (TRMM), which is available for free online.  
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Appendix A: RapidEye images 
 

 
Figure 28: RapidEye image of October 20th, 2011. 



RapidEye images 
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Figure 29: RapidEye image of January 18th, 2012. 
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Appendix B: Aerial photograph 

 
Figure 30: Aerial photograph of the study area Poro 
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Appendix C: Soil and land cover 
classes  
 

 
Figure 31: Bare rock (left) and overburden (right) 

 
Figure 32: Laterite (left) and Peridotite (right) 

 
Figure 33: Ferruginous crust (left) and dense forest (right) 



Appendix C: Soil and land cover classes 
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Figure 34: Open forest (left) and dense shrubland (right) 

 
Figure 35: Sparse shrubland (left) and fragmented vegetation (right) 

 
Figure 36: Savannah (left) and built up (right) 
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Appendix D: Rainfall measurements  
 

 

Table 15: Rainfall measurements from the watershed Denise in Poro between 
the years 2009 to 2012. 
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Appendix E: Vegetation nomograph 
 

 
Figure 37: Nomograph to derive C factor values based on the percentage of 
soil covered by vegetation and vegetation height (according to Roose 
(1994)).
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Appendix F: Land cover statistics for 
2011 and 2012 
 

Table 16: Soil and land cover statistics derived from the land cover 
classifications of the RapidEye images of October 2011 and January 2012. 
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Appendix G: Confusion matrix 

 
 

Table 17: Confusion matrix of 2011, derived from 5-fold cross validation.



Appendix G: Confusion matrix 
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Table 18: Confusion matrix of 2012, derived from 5-fold cross validation
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Appendix H: Merged land cover maps  
 

 
Figure 38: Land cover maps of October 2011 and January 2012 with five 
classes.
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Appendix I: Net changes between 
2011 and 2012 
 

 
Table 19: Distribution, net change and growth for the five land cover classes 
in 2011 and 2012. 
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Appendix J: Change detection matrix 
 

 
Table 20: Change detection matrix, the initial situation of October 2011 is 
presented in the column, while the rows display the final situation of January 
2012. 
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