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ABSTRACT 
  

 The processing of hyperspectral remote sensing data, for a variety of natural resource 
applications, is challenging due to its higher dimensionality and non-linear characteristics. 
Classification techniques based on machine learning algorithms such as Support Vector 
Machine is preferably applied for performing classification of high dimensionality data. 
However, in practice, prior to applying SVM classifier, performing dimensionality reduction 
on hyperspectral data is a conventional step. There is a requirement of a single-step unified 
framework, which can decide the intrinsic dimensionality of data and achieve higher 
classification accuracy through SVM. 
 
 This research work contemplates on developing a unified framework for 
dimensionality reduction and classification of hyperspectral remote sensing image using 
Support Vector Machine (SVMDRC). The study also evaluates the influence of 
dimensionality reduction on the feature separability. A comparative analysis of the 
classification accuracies using the two methods viz., SVMDRC and SVM completes the 
scope of the study.  

 
 There are four classes in the study area namely alunite, kaolinite, illite and limestone 
mineral mines which were to be classified. Separability analysis was applied by using Jeffries-
Matusita (JM) distance method, where, it was shown that dimensionality reduction does not 
influence the feature separability. Intrinsic dimensionality is calculated using modified broken 
stick method. The accuracy of the hyperspectral image classified by the framework has 
shown better results than the image classified using SVM alone. The accuracy of 
classification of SVM classified image was 64.70% (k=0.4361) whereas, the accuracy of the 
SVMDRC classified image was 82.35% (k=0.7197). The results thus indicate that SVM takes 
care of dimensionality to a limited degree. The complete framework is a single-step process 
written in an open-source language R. 
 
KEYWORDS: Unified Framework (SVMDRC), Dimensionality Reduction, SVM 
classification, separability analysis, intrinsic dimensionality.  
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1. INTRODUCTION 

1.1. Hyperspectral Remote Sensing 
 
 Hyperspectral remote sensing is a fast growing technology in the field of remote sensing. In 
the past few years, many advances in hyperspectral technology have taken place. Hyperspectral 
remote sensing increases the perception and knowledge of the earth’s surface (Muhammad et al., 
2012). It is a passive type of remote sensing technology. Hyperspectral remote sensing, also known as 
imaging spectroscopy, is a study and measure of spectra obtained by reflection of the electromagnetic 
radiation (light) from a target. Hyperspectral remote sensing combines imaging and spectroscopy into 
a single system, which results in large data sets. Hyperspectral imagery is typically as a data cube with 
spatial information collected in the X-Y plane, and spectral information in the Z-direction (Fig 1.1). 
Each pixel in the image represents the spectral signature of the material imaged (Burgers et al., 2009). 
 
 A hyperspectral image is a set of contiguous co-registered spectral bands. In this sense, it is 
different from multispectral images that have discrete broad spectral bands. The bands in the 
hyperspectral images are very narrow, mostly in the range of 5μm - 20μm, depending upon the 
imaging sensor. They range from ultraviolet to thermal infrared regions (Muhammad et al., 2012). 
Because of these narrow bands, hyperspectral images have a much higher spectral resolutions as 
compared to multispectral images. With these high spectral resolutions the chances of uncovering 
subtle objects by the hyperspectral sensors are superior to multispectral remote sensing, thus leading 
to better discrimination and identification of the target. This in turn provides a higher potential for 
deriving information from the area imaged than the conventional multispectral imaging systems. In 
many fields of study hyperspectral images are applied. They capture the spatial and spectral 
information of the target. Usage of hyperspectral images are mostly in the fields of geologic purposes, 
atmospheric analysis, land cover analysis, forestry analysis, agricultural mapping applications and 
surveillance applications like military and land mine mapping.   
  
 For classification of hyperspectral image, large number of bands could aid the classification 
of features, as the information available in them is large compared to other type of remote sensing 
data sets. However, at some point adding large number of bands to the classifier will deteriorate 
accuracy of classification unless addition of more number of training samples takes place. This is 
“Hughes phenomenon”. With insufficient training sets, the estimation of statistical parameters 
decreases hence, large amount of training samples are required. This requirement of increased 
number of training sets, as the dimensions increases is referred as “curse of dimensionality”. 
 
 Processing of hyperspectral data cube leads to lofty computational costs as the number of 
dimensions in the image acquired is high (150 – 300 bands). Data redundancy is a challenge in 
classification of a hyperspectral image (Burgers et al., 2009). Hyperspectral images can mapped 
therefore into less number of dimensions because a small portion of data can explain most of the 
variance of the hyperspectral image, while the original features of the data are preserved. Such a 
process is known as dimensionality reduction (Burgers et al., 2009). 
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Figure 1:1. Hyperspectral data cube of HyMap with 126 bands 

 Analysing hyperspectral data is not an easy task. Some of the most important factors that 
make it complex are atmospheric distortions, land cover class spectral signature variability and curse 
of dimensionality. It has several challenges like: 

1. Data storage is a big challenge as the volume and the size of the images are huge compared 
to other remote sensing datasets. 

2. Due to such immense data volumes, the processing of the data is a firm task.  
3. Hughes phenomenon and curse of dimensionality.     

 
 There are studies describing dimensionality reduction as an important pre-processing step for 
high dimensional data (Duda et al., 2009; Hastie et al., 2009). Dimensionality reduction is to be 
carried out in order to handle the so-called curse of dimensionality (Bellman, 2001). Due to high 
dimensionality, data becomes extremely sparse. Hence, reduction of dimensions can be an effective 
by removing the irrelevant, redundant and noisy features. Dimensionality reduction can be separated 
into supervised and unsupervised approaches ( Fukunga, 1990; Fisher, 2009). Generally, a supervised 
approach is superior to unsupervised one. 
 
 There are two types of feature reduction methods for remote sensing data viz., feature 
extraction and feature selection methods. In feature extraction method, original dataset is transferred 
into a smaller dataset by transforming the image into a new space, also called as ‘dimensionality 
reduction’. Feature selection methods identify a subset that maintains the information which is useful 
to separate the classes with highly correlated and redundant features of the original image which were 
excluded during classification analysis (Pal and Foody, 2010) 
 
 Processing of hyperspectral data involves the following steps:  

- Conversion of digital number to radiance. 

- Atmospheric correction.  

- Dimensionality reduction.  

- Pure end-members selection though pixel purity index.  

- Classifier training using the selected end-members for performing classification.  

 The commonly used classification algorithms for hyperspectral data classification are spectral 
angle mapper (SAM) and the spectral feature fitting (SFF). In these methods, classification is a non-
iterative process. Therefore, optimization of classification accuracy from misclassified pixels is not 
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taken care of (Soman, 2009). To overcome the drawbacks of SAM and SFF, an iterative process 
based classification algorithm, support vector machine (SVM) is used.   

1.2. Research Identification 
 

 Previous studies have shown that dimensionality reduction increases the classification 
accuracy (Burgers et al., 2009; Fong, 2007). So far, there are no clear guidelines for selecting 
dimensionality reduction procedures for using along with SVM classifier. In real-time most of the 
high dimensional datasets, do not follow normal distribution. Hence, there is a need to treat such 
high dimensional data with a nonlinear SVM based dimensionality reduction procedures for 
improving feature extraction and classification accuracy.  
 
Motivation and Problem Statement 
 
 In recent studies, SVM as a dimensionality reducer and classifier has been used for non-
spatial dataset (Yang, 2009) that have lesser dimensions compared to the hyperspectral images. 
Hyperspectral images are nonlinear and are of high dimension. Motivated by this an algorithm is 
introduced that classifies an image along with dimensionality reduction, using SVM. This algorithm 
implements dimensionality reduction and classification in a unified framework. Training samples 
from selected features are included into the algorithm so that it iteratively performs the assigned task. 

1.3. Research Objectives 
 
The main goal of the research is to develop a modified SVM based dimensionality reduction and 
classification algorithm in a unified framework for hyperspectral datasets and to evaluate its 
performance. 
Sub-objectives 

 To develop a modified SVM based algorithm for dimensionality reduction and classification 

in hyperspectral datasets by introducing a nonlinear function. 

 To find the influence of the dimensionality reduction on the feature extraction. 

 To compare the classification accuracies derived from proposed approach vis-à-vis 

conventional approach of support vector machine (SVM) classification. 

Research Questions 

 How effective is the application of nonlinear function for dimensionality reduction?  

 Does a dimensionality reduction technique show any impact on extraction of different 

features types from hyperspectral data?  

 How does SVM based dimensionality reduction and classification algorithm perform as 

compared to SVM classification on the hyperspectral data? 
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1.4. Study Area and Dataset 
 
 The study area of this research work is the Los Tollos area that is a part of the Rodalquilar 
district in the Sierra del Cabode Gata, in south-eastern Spain. The area has volcanic rocks of different 
compositions form pyroxene-bearing andesites to rhyolites. The intense alteration of rocks is due to 
two reasons viz., volcanic geothermal activity known as hypogene alteration and chemical weathering 
also known as supergene alteration.  Because of volcanic activity and alterations, there are deposits of 
different minerals. The most interesting mineral mines in this area are Gold deposits. This area is the 
first documented example of caldera-related gold deposit mineralization in Europe (Arribas et al., 
1995).  There are five distinguished hydrothermal alteration zones in this area classified by Arribas et 
al., (1995) viz., silicic, advanced argillic, intermediate argillic, serictic, and propylitic zones (table 1.1). 
In addition to hypogene advanced argillic alteration, supergene advance argillic alteration, also known 
as stage 2 alunite (Arribas et al., 1995), is present in the area, which is the interest of this research 
work. Large-scale mining of alunite has taken place in the area. A generalized geologic map is shown 
in figure 1.2. 
 
 The Los Tollos, Rodalquilar, Spain was selected as study area of the research thesis work 
because of availability of ground data and area remaining relatively undisturbed by previous mining 
activities. Gold (Au) mining has been abandoned and restricted in this area as so far 10 tonnes of gold 
has been mined (Bedini, 2005). The sparse vegetation cover in the area will allow better surface 
reflectance from the mineral deposits, however non-photosynthetic vegetation exists in few areas, 
which have low to moderate effect on the spectra of the surface reflection. Mineral mine area with 
similar climatic conditions (semi-arid) like that of Los Tollos Rodalquilar, also occur in Rajasthan and 
Selam (Tamil Nadu) regions of India. The problem for not selecting these areas is non-availability of 
airborne hyperspectral data. The availability of hyperspectral data for Indian region is only through 
space-borne Hyperion sensor, which is selectively available and the spatial resolution is coarse (30m). 
Atmospheric correction of Hyperion data also has challenges. The methodology developed in the 
Rodalquilar area will be useful in future studies in India once the better resolution, atmospherically 
corrected hyperspectral datasets become available. 
  

Table 1-1: Summary of alteration zones and dominant minerals in the Rodalquilar area 
(Arribas et al, 1995) 

Alteration Zone Alteration Minerals 

Silicic Quartz;  Chalcedony; Opal 
Advanced argillic Quartz;  Alunite; Kaolinite; Pyrophyllite; Illite; Illite - Smectite 
Intermediate argillic Quartz;  Kaolinite; Illite; Illite - Smectite 
Sericitic Quartz;  Illite 
Propylitic Quartz;  Illite; Montmorillonite 
Stage 2 Alunite Alunite; Kaolinite; Jarosite 
  
 A HyMap hyperspectral image shown in figure 1.3, is used in this research work. The image 
obtained from the HyMap sensor, has 126 contiguous spectral bands, covering 0.45 – 2.5μm of 
electromagnetic spectrum at spectral resolution between 15 – 20nm. Spectral coverage is nearly 
continuous in the SWIR and VNIR regions with small gaps in the middle at atmospheric water 
absorption bands (1.4 and 1.9μm) (table 1.2). The HyMap image of the area is a sub-scene of 
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285X375 pixels, covering the Los Tollos area. This subset is considered because the area is mostly 
covered with the four minerals alunite, illite, kaolinite and lime stone cover.  
 
 HyMap is an airborne hyperspectral imaging system operated by HyVista Corporation and 
owned by Integrated Spectronics, Sydney, Australia. It is flown at an altitude of 2.5km on a fixed 
wing aircraft. The study area was imaged on 11.07.2003 in 126 narrow bands, from 0.45 to 2.48μm 
with a pixel size of 5m. The subset image shown in the figure 1.3 is used in this thesis. One problem 
with the data set is that the SWIR-1 data is not available as there were technical complications at the 
time of imaging the area, hence data form that particular part of spectrum is missing. 

 
 

Table 1-2. HyMap Instrument details (Cocks et al, 1998) 
Spectrum Wavelength 

Range(μm) 
Bandwidth(nm) Spectral 

Sampling(nm) 
VIS 0.45-0.89 15-16 15 
NIR 0.89-1.35 15-16 15 

SWIR1 1.40-1.80 15-16 13 
SWIR2 1.95-2.48 18-20 17 
IFOV     2.5m along track   

     2.0m across track   
FOV 60º(512 pixels)   
Swath     2.3km at 5m IFOV   

     4.6km at 10m IFOV   
  
 The HyMap scene was atmospherically corrected by using parametric geocoding procedure 
(PRAGE), Airborne Atmospheric, and Topographic Correction Model (ATCOR4) software by 
German Aerospace Centre. Where the scanning geometry of the image has been reconstructed by 
using PRAGE with the aid of the pixel positions, altitude and terrain elevation data (Schlapfer and 
Ritcher, 2002).   
 
 

              
Figure 1:2. Generalized geologic map of Rodalquilar and outline of the HyMap image (after Arribas et 

al, 1995)and the subset image(Los Tollos in red box) . Image Courtesy (Bedini , 2005) 



SVM Based Dimensionality Reduction and Classification of Hyperspectral Data 

Page | 6 
 

 
Figure 1:3. HyMap image of Study area Los Tollos, Rodalquilar in FCC (R:22,G:17,B:4) 

Validation Data 

 
Figure 1:4. HyMap Image of the study area showing the positions of validation points  

 Collection of field spectra from some parts of the study area (shown in figure 1.4) was 
performed during the over-flight using the Analytical Spectral Device (ASD) fieldspec-pro 
spectrometer. This spectrometer covers the 0.35–2.50μm wavelength range with a spectral resolution 
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of 3nm at 0.7μm and 10nm at 1.4μm and 2.1μm. The spectral sampling interval is 1.4nm in the 0.35–
1.05μm wavelength range and 2nm in the 1.0–2.5μm wavelength range.  
 
 As shown in table 1.3, 17 validation points were available in the study area. Of the available 
17 validating points, 7 points are of alunite, 7 for kaolinite and 3 points for illite mineral.  
There were no points available for limestone.   
 

Table 1-3. Reference data from the ground 
Station             X           Y Determinant Secondary 

LT04-25 -2.019393 36.860440 Alunite   
LT04-15 -2.022093 36.860410 Alunite   
LT04-11 -2.025467 36.860381 Alunite  
LT04-12 -2.028400 36.860880 Kaolinite  
LT04-04 -2.032273 36.860528 - Illite 
LT04-10 -2.020156 36.862229 Alunite  
LT04-20 -2.023354 36.862200 Alunite  
LT04-6 -2.026024 36.862992 Alunite  
LT04-3 -2.029867 36.862699 Alunite  
LT04-14 -2.021799 36.864195 Kaolinite  
LT04-17 -2.030014 36.864958 Kaolinite  
LT04-23 -2.032860 36.864019 Kaolinite  
LT04-7 -2.020391 36.866425 Illite  
LT04-1 -2.023941 36.866161 Kaolinite  
LT04-24 -2.027579 36.866982 Illite Kaolinite 
LT04-9 -2.032126 36.866483 Kaolinite  
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2. LITERATURE REVIEW 

2.1. Feature Extraction and Dimensionality Reduction 
 Feature selection for classification of hyperspectral data by using Support vector machine has 
been performed by Pal and Foody (2010). The study had principally focussed on feature selection 
method by using SVM on the hyperspectral datasets. An attempt was made to addresses the key 
aspect of uncertainty over the sensitivity of the SVM and accuracy of classification of dataset to the 
dimensionality of the dataset.  Four main feature selection algorithms have been used for analysis viz., 
Recursive Feature Elimination (SVM-RFE), Correlation based feature selection (CFS), Minimum 
redundancy – Maximum Relevance (mRMR) and Random forest (RF). It was noticed that the 
accuracy of the SVM classification varied as a function of the number of features used and the size of 
the training set used. As the number of features were increased the accuracy of the SVM classification 
also increased. When a fixed size of training set were used the accuracy had initially rose when 
features to the peak were added but thereafter decreased with the addition of more features. 
However, the decrease in the accuracy was significant statistically. When small training sets were used, 
the curse of dimensionality reduction and the Hughes effect were observed with SVM classification. 
Finally, a conclusion was made that when larger training sets are used mostly the effect of the Hughes 
phenomenon could be reverted. Also as the features increases accuracy of the classification will be 
reduced. These points are useful and help in the research for selecting the training sets.            
 
 Burgers et al., (2009) have performed a comparative analysis of dimensionality reduction 
techniques aiming to evaluate the performance of the dimensionality reduction algorithms. Eight 
different algorithms viz., Principal Component Analysis, Kernel Principal Component Analysis, 
Isomap, Diffusion maps, Laplacian Eigen maps, Independent Component Analysis, LMVU and 
LTSA have been evaluated for  their performance on the dimensionality reduction and determination 
of the intrinsic dimensionality of the hyperspectral images. Nonlinear methods had given comparably 
better results but had a major setback of taking very long runtimes. Thus increasing the cost of the 
processes run. When the high dimensional data sets were used, their runtimes was very high 
compared to linear methods resulting in increase of the computational cost. Different hyperspectral 
data sets were used in the experiment and the performance evaluation has been done both on the 
classification accuracy and on the runtime of the algorithm. In this process, PCA was observed to be 
fastest in running and gave the most accurate results. But the dimensionality reduction algorithm 
performance depends on the image. After investigation has been performed, of all the odds PCA had 
outperformed and has been proved as the best dimensionality reduction technique giving the best 
results when performed. KPCA works best with the images, which have multiple edges, but PCA and 
ICA had performed comparably on the images without many edges. Target detection was 
comfortably performed by PCA, KPCA and ICA. PCA had the least error rates in the processes and 
outperformed in all the tasks compared to other methods.    
 
 A similar kind of comparative work has also been performed by Fong (2007), where, 
different dimensionality reduction techniques like Principal Component Analysis, Fast ICA 
(Independent component Analysis), Laplacian Eigenmaps, Local Linear Embedding (LLE), Local 
Tangent Space Analysis (LTSA), Linear Local Tangent Space Analysis (LLTSA) and diffusion maps 
are compared for their performances. According to Fong, Laplacian Eigenmaps LLE and LTSA are 
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local nonlinear techniques. They preserve the properties of small neighbourhoods around the data. 
LLTSA uses a linear technique to minimize the cost function of LTSA. The major disadvantage of 
these methods is that they are incapable to handle the images larger than 70X70 pixels. Kernel PCA 
(KPCA) is a nonlinear version of PCA having a disadvantage of drastically increasing the 
computation time and process as the size and dimensions the image increases. It gives a poor 
performance on the hyperspectral images as the size of the images and the dimensions are large. 
 
  Hyperspectral data dimensionality reduction and end member extraction has been 
performed by Muhammad et al., (2012). To present an algorithm for overcoming the computational 
complexities of hyperspectral data to detect the multiple targets and end members effectively with 
less computational time was the main aim. Standard deviation and chi square distance metrics 
methods are considered. The end member estimation was done by unbiased iterative correlation 
method.  
 
 Dimensionality reduction using sparse Support machines was performed on the 
hyperspectral datasets by Bi et al., (2003).  A method for performing variable ranking and selection 
using support vector machines (SVM), by constructing a series of sparse linear SVM’s to generate 
linear models that could be generalized was described. A subset of nonzero weighted variables was 
used, found by the linear models to find a final non-linear model. In addition, it claims the work 
exploits a fact that a linear SVM with l1–norm regularization inherently performs variable selection as 
a side effect of SVM model capacity minimization. The method is known as variable selection via 
sparse support vector machine (VS-SSVM). It consists of two parts: variable selection and non-linear 
induction where first part serves as a pre-processing step for the final SVR kernel induction. The VS-
SSVM has five components they are a linear model with sparse w, an efficient search using “pattern 
search” for optimal hyper parameter C and v in linear SVM, usage of bagging for reduce the 
variability of the variable selection, a method for discarding the least significant variables by 
comparing t with the random variables and a nonlinear model obtained by training the LP’s with RBF 
kernel on the final subsets. It concluded that VS-SSVM is effective on the specific problem and the 
number of the variables was reduced while maintaining the generalization ability. It is not a general 
method suitable for all types of problems. Demonstration for its effectiveness on very high 
dimensionality problems with little data was performed; it was proved that where the linear models 
cannot capture the relationships the method would fail. 
 

2.2. Classification 
 Classification of hyperspectral images using SVM has been performed by Melgani and 
Bruzzone, (2004). A brief discussion was made on SVM and its application to hyperspectral Images. 
SVM is a binary classification method, classifying only two classes. For multi class classification, this 
can be overcome by using certain strategies viz., parallel architectural approach and hierarchical tree 
bases architectural approach. Hierarchical approach is further divided into two type’s viz., Balanced 
Branches strategy and one against all strategy. Two experiments were performed such as classification 
in the original hyper dimensional feature space and Feature reduction and classification. The two 
major aims were one with assessment of SVM hyper dimensional space properties and the second is 
assessment of the effectiveness of strategies based on ensembles of binary SVM’s used to solve 
multiclass problems in hyperspectral data. The conclusions of the work were  
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 SVM is best classifier compared to the other nonparametric classifiers in terms of the 

classification accuracy and computational cost 

 SVM is more effective than the traditional pattern recognition approaches  

 SVM exhibit low sensitivity to the Hughes phenomenon.  

Four different multiclass strategies were considered from which each other differ from the manner in 
which the complexity of the multiclass classification is distributed over the single members (SVM’s) 
of the architecture. The parallel architectures showed better results than the hierarchical architecture. 
This is because the hierarchical approaches propagate the error to the next levels, because the final 
result is the combination of several hierarchal approaches and the error gets accumulated at the last 
level which gives the results. In terms of computational time hierarchical approaches were faster 
compared with the parallel approaches. So, depending on the application the multiclass strategies 
must be selected keeping the trade off in mind. Finally it was showed that the multiclass problem 
does not significantly affect the analysis of the hyperspectral data. All the SVM approaches showed 
the better results than the non-parametric classification approaches. 
 
 A unified framework for generalized linear discriminant analysis was developed by Ji and Ye, 
(2008). The work proposes a unified framework for generalized LDA through a transfer function. 
Linear discriminate analysis is a classical statistical approach for dimensionality reduction. It computes 
a projection by minimizing the in class distance and maximizing the between class distance 
simultaneously, thus achieving the maximum class discrimination. However, LDA has a major 
drawback of having the total scatter matrix used in the discrimination to be a non-singular matrix. 
But generally the matrix is a singular matrix for high dimensional data. This is known as singularity 
problem. However, a systematic study has not been implemented to know the common features in 
the algorithms and their intrinsic relationships. The proposed framework is basically a four step 
algorithm which computes a series of Eigen values and Eigen vectors and achieves an 
orthogonalization. This framework elucidates the properties and functionalities of different 
algorithms. 
 
 Hyperspectral image classification by performing dimensionality reduction was performed by 
Harsanyi and Chang (1994). A method, which performs dimensionality reduction and detecting 
signatures of interest from the hyperspectral images, was development and demonstrated. It is a 
combination of two linear operators, optimal rejection interference process and optimal detector in 
the maximum SNR sense, into a single classification operator. This approach could be applied to the 
images with both mixed pixels and spectrally pure pixels. Representative signatures of interest could 
be detected by this method, which could be as low as few percent of the SNR having a spectral 
resolution of less than 10nm. The performance could be varied with the varying datasets but this 
could be used for analyzing the sensor capabilities for solving a classification and detection problem. 
This method produces component images, which represent the class maps of various materials within 
the scene, which were almost comparable to the geological maps.  
 
 Reduction of the dimensionality of hyperspectral data for the classification of agricultural 
scenes was performed Silva et al., (2008). Usage of genetic algorithms (tournament and elitism) for 
yielding better classification accuracies and its feasible for hyperspectral images was established. A 
comparative study of the sequential and genetic algorithms with the same datasets having different 
bands and groups have been performed. The results showed that by performing the genetic 
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algorithms the accuracy and the kappa indices have been increased drastically. Genetic algorithms 
have outperformed in this case. The best results have been given by the elitism genetic algorithms, 
which have given the kappa values of around 0.9218 which is a very good value. 
 A review of support vector machines (SVM) in remote sensing was given by Mountrakis et 
al., (2011). A discussion was made on SVM and its importance in remote sensing. SVM has an ability 
generalize the data with very less training samples and give better accuracies compared to other 
training methods. As SVM is non-parametric, for classification it does not assume a statistical 
distribution. It needs and always sticks to global minima as it deals with quadratic problems. As the 
remote sensing data have unknown distributions this property of SVM is very much useful allowing 
to outperform than the other type for classification techniques. The main limitation of SVM is that 
the selection of SVM key parameters and the kernel function to be used. An optimal value must be 
chosen so that over fitting and over smoothing, might be avoided, which is usually made manually. 
This drawback holds good for all the methods involving kernels and hence holds good even for 
SVM. It was claimed that the one-against all type of strategy for multiclass classification is a 
problematic issue and needs some serious attention, leading to unclassified instances of data. In SVM 
kernel mapping is more vulnerable to dimensionality reduction, as the dimensions are high for the 
hyperspectral data. Mostly SVM’s are not made to deal with the noise component hence leading to 
outliers in the data. As, the training and validation sets used in SVM are smaller compared to those 
used for other machine learning algorithms the quality of them must be maintained. The performance 
of SVM could be abridged if the data have any mislabels. The work conclude by saying that SVM’s 
self-adaptability, swift learning pace and limited training size has become a reliable intelligent data 
processing technique in the field of remote sensing.  
 
 Hyperion hyperspectral image analysis combined with machine learning classifiers have been 
performed by Petropoulos et al., (2012). A comparison between SVM and artificial neural network 
(ANN) classification was performed. The results obtained by this work are as follows. Both the 
methods have produced comparable results in terms of spatial distribution and cover density of each 
land cover category. The work has also highlighted the important point of SVM that it has been 
designed to identify the optimal hyperplane for class separation with the least error among all the 
separating hyperplanes, which the other classifiers cannot. This produces the accurate classes at the 
end of classification addressing all ill-posted problems providing high classification accuracies even 
when the small training data sets were used. A similar pattern has been shown by both the methods 
as per the single class accuracies are concerned. However, as a whole, SVM has outperformed than 
ANN in their method as per the accuracy assessment reports.  
 
 Comparison of methods for multi class SVM has been performed by Hsu and Lin, (2002). 
One of the authors is involved in the development of lib-SVM, which is most used algorithm for 
SVM applications. SVM is developed for binary classification and can be extended to multi class 
classification. There are approaches like one-many type of classification approach where the user can 
use SVM for multiclass classification. This field is still under development and new techniques evolve 
as the time lapses. However, as of now this topic is not yet stabilized. The main aim of considering 
this paper in my literature is that even the research involved in this thesis is also involved with multi 
classes and uses SVM for it.     
 
 Multiclass approach for SVM classification was performed by Pal, (2008) describing different 
types of multi class techniques and comparison of the results obtained by them. Six multi class 
approaches viz., one vs. one, one vs. rest, Directed Acyclic Graph (DAG) and Error Corrected 
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Output Coding (ECOC) based multiclass approaches were compared. All the approaches were 
created from the binary classifier. Classification of the image was done by using all the above 
techniques and the kappa values were calculated. All the methods have given considerable results 
except ECOC (dense coding approach). It gave the least accuracy compared to all the other types of 
approaches. The highest accuracy was for ECOC (exhaustive approach). One against rest approach 
has a problem, that its produces unclassified data which leads to lower accuracies. One against one 
approach is the best approach for multiclass classification using SVM. A similar kind of approach was 
used in this research work.  

2.3. Other Related Work 
 
 A Recursive support vector machine (RSVM) for dimensionality reduction was discussed by 
Tao et al., (2008). A multidimensional maximum margin feature extraction approach was discussed 
extensively which is used for constructing an orthogonal based dimensionality reduction. The analysis 
shows that as the number of recursive components increases the objective function of the SVM 
decreases. RSVM shows better accuracy than the regular SVM and linear discriminant analysis (LDA) 
and have no singularity problems. The analysis was carried on standard benchmark non-spatial data 
sets. The main idea of considering this literature is to test the same on the spatial high dimensional 
hyperspectral dataset.    
 
 Sukens, (2001) have focused on SVM for classification and nonlinear function estimation and 
on least square SVM, which involves in the solution of the linear systems and nonlinear function 
estimation problems. Standard SVM’s are used for classification, regression etc that are standard static 
problems but the LS-SVM are developed for even more recurrent and optimal control problems. 
They also have good computational advantages. The disadvantages of using them are the cost 
function involved has lack of sparseness in the solution vector and Gaussian assumptions. Infinite 
number of weights can be possessed by LS-SVM systems as they are characterized by KKT systems 
in a primal weight space. By these views of the author on SVM, involvement of SVM is done in this 
research work to check the potential usage of it for hyperspectral imagery.  
 
  SVM has been used as a tool for mapping mineral prospectively by Zuo and Carranza, 
(2011). The work proved that SVM is the best geo-computational tool for spatial analysis. SVM was 
subjected to multiple variables for mineral prospective mapping. SVM algorithm with different kernel 
functions was tested with the mineral area. The results obtained were satisfactory and indicated that it 
is a useful tool for integrating multiple evidence layers in mineral prosperity mapping. These results 
encouraged the usage of SVM in this research work as the study area is occupied with different 
mineral mines. 
 
 The above literature review is extractions of the essence of individual works done by 
different authors. However, the most common points in them are discussed. SVM is a binary type of 
classifier and most powerful to the present. It is a machine learning technique, which makes the 
model trained with minimum number of training samples rather than large number required by the 
other type of classification methods. Apart from many advantages, there are also disadvantages that it 
is a kernel-based type of classifier hence the parameter selection is an issue and usually is done by trial 
and error method, the quality of the training samples must be the finest, and that cannot be possible 
in all the conditions and for all type of datasets. It gives the classification results as per the dataset, 



SVM Based Dimensionality Reduction and Classification of Hyperspectral Data 

Page | 14 
 

which means the same method applied for different datasets will give different results. Apart from 
these drawbacks SVM has been chosen in this research work as it is gives best results by 
outperforming over the other classifiers and is also simple to execute.      
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3. METHODOLOGY 

 The methodology followed in this research is shown in the flowchart (Figure 3.1). The 
research method is divided into two parts, SVMDRC and SVMC. SVMDRC is the work carried in 
this research, which includes the developing of the framework and applying it on the hyperspectral 
image, and SVMC part is performing SVM classification on the hyperspectral image using the same 
training samples used by the left part of the work. Here by the words SVMDRC and SVMC will be 
used for the two processes explained for ease of understanding and readability. The difference 
between the SVMDRC and is that, in the SVMC part no dimensionality reduction is performed and 
in the SVMDRC part dimensionality reduction is performed along with classification. Training 
samples are taken from the image, which are the endmembers of the class, which has to be classified. 
With the training samples provided, the SVM classifier decides the hyperplane and the support 
vectors are generated to separate the classes of the image. 
  
 The methodology in brief is as follows. An air borne hyperspectral image is taken which has 
to be classified. The image is preprocessed by atmospherically and geometrically correcting it. The pre 
processed image id then subjected to two types of classifications one using the unified framework and 
the second by conventional SVM. The classification is trained by giving the training samples. The 
classified images are then validated. The accuracies obtained from the validation report are compared.  
The feature separability is evaluated by using JM distance method.     

 
Figure 3.1. Methodology flowchart  
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3.1. Data Pre-processing and Training Dataset 
 
  The level 1 HyMap data was atmospherically corrected but not georeferenced. Atmospheric 
correction was performed using the Atmospheric and Topographic Correction (ATCOR 4) model at 
the time of receiving the data. The image is georeferenced and has been converted into geotiff 
format, for further processing.  The image is converted to geotiff format because it is easy for 
performing computation. 
 
 The hyperspectral image has four classes, alunite, kaolinite, limestone and illite. For 
classification, the training samples are extracted from the image and with these training samples, the 
classification model is run to perform classification of the image. Endmembers of these four classes 
are collected and the training set is made. Region of interest (ROI) containing the pure endmembers 
are identified in the image and extracted. These roi’s are further converted into tiff format for further 
processing.  
 
 In this research work a unified framework is developed which performs dimensionality 
reduction and classification in a single process. If the framework is provided with the hyperspectral 
image and the corresponding region of interest (roi’s) of the classes to be classified, it performs 
dimensionality reduction and classification using support vector machine (SVM).  

3.2. Support Vector Machine (SVM) 
 
 Support Vector Machine (SVM) concept was introduced by Cortes and Vapnik, (1995) to 
solve the regression and classification problems. SVM is based on statistical learning theory and 
structural risk minimization. It finds an optimal hyperplane that maximizes the margin between the 
classes by using a small number of training samples known as support vectors (Cortes and Vapnik, 
1995). As supposed by  Silva et al., (2008) it has become a very popular method for image 
classification. SVM has a property of simultaneously minimizing the empirical classification error and 
maximizing the geometric margin (Yang, 2009). 
 
 Support vector machine uses kernel method to perform regression and classification by 
transforming the data to the higher dimensional space by nonlinear transformation techniques. It 
separates the two classes by finding a linear spacing between them. This linear spacing is achieved, as 
the data is transformed into the higher dimensions it tends to spread the data out which makes a way 
to find the linear spacing between the classes to get separated (Gualtieri and Cromp, 1998).  Thus, the 
hyperplane is the greatest margin between the two classes. Figure 3.2 shows the concept of a 
hyperplane. Bold line shows the acceptable hyperplane which separates the data. 
 
 SVM is a supervised machine learning algorithm, where it is given a set of inputs with the 
corresponding labels. The inputs are in the form of attribute vectors. SVM constructs a hyperplane 
that separates two classes to achieve maximum separation between the classes. By separating the 
classes with a large margin, generalization error is minimized. The objective of achieving the 
minimum generalization error is to predict the correct class of the data without any error or minimal 
error, when it arrives for classification (Soman, 2009). 
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 The two planes parallel to the classifier and which passes through one or more points in the 
data are called ‘bounding planes’. The distance between these bounding planes is called ‘margin’. By the 
process of learning hyperplane, which maximizes this margin, is evaluated. The points of the 
corresponding class, which falls on the bounding planes, are called ‘support vectors’. These points are 
crucial in forming a hyperplane hence the name support vector machine (Soman, 2009). Figure 3.3 
shows the concept of support vectors, bounding planes and maximum margin.  
 
  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
                                             
  
 
 
 
 If the optimal hyperplane separates the training vectors without any errors, the ratio of the 
expectation of the support vectors to the number of training vectors limits the expected error rate. A 
good generalization is guaranteed if a small set of support vectors is found because this ratio is 
independent of the dimension of the problem (Cortes and Vapnik, 1995). 
 
 In spite of taking all the required measures for classification, there are chances likely for 
misclassifications. SVM takes care of them, by allowing misclassifications of pixels between classes. 
Figure 3.4 shows two classes for classification, class A with white dots and class B with black dots. 
The hyperplane gives its maximum efforts in all the possible ways to classify the image with very less 
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No 

No 
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Maximize Margin 

Support Vectors 

Bounding Planes 

Figure 3:2. SVM Hyperplanes between two classes 

Figure 3:3. Bounding planes, Support vectors and Maximum Margin in SVM 
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misclassification. The hyperplane is a straight line in this classification. It would be much more 
interesting if the hyperplane is a twisted line such that it surpasses the pixels of other class and classify 
the distinct classes without misclassification errors. Such type of classification with twisted separating 
boundary is known as nonlinear SVM classification.  

                                                      
 
  
 Broadly, SVM is of two types. They are linear and nonlinear type of SVM. If the hyperplane 
in the SVM classification is linear in nature, it is known as linear SVM and if the hyperplane in the 
SVM is a nonlinear equation, it is known as nonlinear SVM. A non-linear SVM is achieved by using a 
kernel trick.   

3.2.1. Linear SVM 
 
If the hyperplane of the SVM is linear then such an SVM is known as linear SVM. Linear SVM is 
applicable for two types of data. They are separable and non-separable type of data as discussed 
below (Gualtieri and Cromp, 1998). 
 
a) For Separable Data 
 
Consider 𝑙 training pairs (𝑦௜, 𝒙௜) where 𝑖 = 1,2, … 𝑙 having class labels  𝑦௜ ∈ {1, −1} and 𝑥௜ ∈ 𝑹ଶ. 
Figure 3.3 shows two classes A and B. In this equations class A is represented as +1 and class B as -1. 
Main aim of the SVM classifier is to introduce a hyperplane, which separates all the points belonging 
to -1 on one side and +1 on the other side as shown.  
The hyperplane is defined as a plane separating the classes such that the closest vector in the two 
classes are farthest from the plane separating them as shown in figure 3.3. It is denoted by the 
equation 3.1 𝐰. 𝒙 + 𝑏 = 0                                               (3.1) 
 
Where, 𝒙 is a point on the hyperplane and 𝑏 is the distance of the closest point on the hyperplane to 
origin and 𝐰 is a two dimensional vector pointing perpendicular to the hyperplane. 
The classifier for the data is represented by a function 𝑦 = 𝑓(𝐱; 𝜶), where, 𝜶 is the parameter of the 
classifier. Hence the classifier for the hyperplane in Equation (3.1) is  

     𝑓(𝐱; 𝐰, 𝑏) = 𝑠𝑔𝑛 (𝐰. 𝒙 + 𝑏)                (3.2) 
 

Class A Class A 

Class B 

Figure 3:4. Misclassifications in SVM 
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Let 𝑑௜ be the perpendicular distance of vector 𝒙௜ from any point 𝒙  on the hyperplane. It is given by 
the equation (3.3) 
 𝑑௜ = 𝑦௜ 𝒘|𝒘| . (𝒙௜ − 𝒙)                                                    (3.3)         

 
This is further simplified by placing the hyperplane equation and the distance 𝑑௜ as in equation (3.4)  
  𝑑௜ = 𝑦௜ 𝐰.𝒙𝒊ା௕|𝒘|                                                            (3.4) 

 
The distance of the hyperplane from all the vectors must be minimum and the distances over the 
entire hyperplane placement must be maximum. Hence, the classifier becomes 
 max𝐰,௕ min௜ୀଵ,…௟ ቂ𝑦௜ 𝐰.𝒙𝒊ା௕|𝒘| ቃ                                             (3.5) 

 
If 𝑖 is a support vector which is nearest to the hyperplane, then 𝑦௜(𝐰. 𝒙𝒊 + 𝑏) − 1  = 0  
If 𝑖 it is not a support vector the value is >0. 𝑦௜(𝐰. 𝒙𝒊 + 𝑏) − 1 ≥ 0 where 𝑖 = 1,2, … 𝑙                                 (3.6) 
 
Equation 3.5 is further simplified and the optimal hyperplane for separable data is given by equation 
3.7  min𝐰,௕ ଵଶ |𝐰|ଶ                                                             (3.7) 𝑦௜(𝐰. 𝒙𝒊 + 𝑏) − 1 ≥ 0 where 𝑖 = 1,2, … 𝑙 

 
To solve the hyperplane the optimization problem is solved by Lagrangian variables, where  𝜆௜ ≥ 0  𝑎𝑛𝑑 𝑖 = 1,2, … 𝑙                                                      (3.8) 
are Lagrangian multipliers. 
 ℒ(𝐰, 𝑏, 𝜆ଵ, … , 𝜆௟) =  |𝐰|మଶ −  ∑ 𝜆௟[𝑦௜(𝐰. 𝒙𝒊 + 𝑏) − 1]୪୧ୀଵ                          (3.9) 
 
and the problem becomes                                                              maxఒభ,…,ఒ೗ min୵,௕ ℒ(𝐰, 𝑏, 𝜆ଵ, … , 𝜆௟)                                                                    𝜆௜ ≥ 0  𝑎𝑛𝑑 𝑖 = 1,2, … 𝑙                                                  (3.10)     𝑦௜(𝐰. 𝒙𝒊 + 𝑏) − 1 ≥ 0 where 𝑖 = 1,2, … 𝑙 
 
From equation (3.10) and (3.12) the 𝜆௜ value must be maximized because by putting the Lagrangian 
multipliers minimum, the Lagrangian undetermined constraints reach the equality. Thus  
 𝜆௜[(𝐰. 𝒙𝒊 + 𝑏) − 1] = 0 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … 𝑙                          (3.11) 
Equation (3.13) is known as complimentary condition. This can be further minimized by 
differentiating the function with w and 𝑏 and we have the conditions as ௗℒௗ𝒘                                                                  (3.12) ௗℒௗ௕                                                                  (3.13) 
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The conditions in equations (3.6), (3.7), (3.11), (3.12), (3.13) are known as Karsh – Kuhn – Tucker 
(KKT) optimality conditions. 
By solving the Lagrangian dual with the above conditions the dual problem optimization eliminating 
w and 𝑏 is given as equation (3.16) 
                                            maxఒభ,…,ఒ೗ ቂ− ଵଶ ∑ ∑ 𝜆௜𝑦௜൫𝒙𝒊. 𝒙𝒋൯𝑦௝𝜆௝ + ∑ 𝜆௜௟௜ୀଵ௟௝ୀଵ௟௜ୀଵ ቃ                                                                   𝜆௜ ≥ 0  𝑎𝑛𝑑 𝑖 = 1,2, … 𝑙                                                   (3.14) ෍ 𝜆௜𝑦௜௟௜ୀଵ = 0 

 
b)  For Non Separable Data  
 
SVM classifier for non separable data is a relaxed version of the separable data known as soft margin 
classifier (Gualtieri and Cromp, 1998). A new variable known as slack variable (𝜉௜ ) is introduced 
which allows a certain amount of misclassification. Where 𝜉௜≥0 and 𝑖 = 1,2, … 𝑙. 
Hence the equation of the hyperplane with the slack variable can be written from equation (3.6) 
 𝑦௜(𝐰. 𝒙𝒊 + 𝑏) − 1 + 𝜉௜ ≥ 0 where 𝑖 = 1,2, … 𝑙                                (3.15) 

 
The equation of the optimal hyperplane is derived by solving the equation 
 min𝐰,௕,కభ….క೗ ቂଵଶ |𝐰|ଶ +  𝐶 ∑ 𝜉௜௟௜ୀଵ ቃ                                         (3.16) 

 
where, 𝐶 is a constant which minimizes the solution for which 𝜉௜ get larger. Hence, C is an important 
parameter, which decides the appropriate hyperplane of the classifier. 
The dual optimization for non-separable data is given by the equation (3.17) 
                                            maxఒభ,…,ఒ೗ ቂ− ଵଶ ∑ ∑ 𝜆௜𝑦௜൫𝒙𝒊. 𝒙𝒋൯𝑦௝𝜆௝ + ∑ 𝜆௜௟௜ୀଵ௟௝ୀଵ௟௜ୀଵ ቃ                                                                     𝐶 ≥ 𝜆௜ ≥ 0     and 𝑖 = 1,2, … 𝑙                                        (3.17) 
                                                            ∑ 𝜆௜𝑦௜௟௜ୀଵ = 0 and 𝑖 = 1,2, … 𝑙 
 
The only difference between the separable and non-separable dual problems is that in non-separable 
data the Lagrangian dual variables are bounded by the constant C making an impression that the non-
separable data is valid only when 𝜉௜ = 0. The classifier becomes soft when 𝜉௜> 0.   
The points, which are non-separable, are calculated and segregated by applying the condition 𝜆௜ = 𝐶. 

3.2.2. Non-Linear SVM 

 
 Not always non-separable data have a solution using liner SVM classifier. There exist certain 
cases where linear classifier fails to find an optimal solution of classification. In such situations, 
nonlinear type of classification is used. The decision surface is nonlinear in this type of classification 
unlike linear in the linear type of classification. A nonlinear hyperplane is achieved by introducing a 
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nonlinear kernel function into the SVM dual problem, which is responsible for deriving the 
hyperplane (Gualtieri and Cromp, 1998). 
 
 From equations (3.14) and (3.17) the training data is entering the optimization as a dot 
product. That means it is linear in nature. If a modification is done at that stage we can achieve a non-
linear function. That is performed by introducing a nonlinear function Φ:𝑹ଶ →  𝑇  where T is a 
Euclidian space where the feature vectors are mapped. Hence, the optimal problem can be replaced 
by 𝛷(𝒙௜). 𝛷(𝒙௝). Then the equation is used to solve the optimization solution, and the classifier 
function is derived is given in the equation (3.18) 
 𝑓(𝐱, 𝜆ଵ, … , 𝜆௟) = 𝑠𝑔𝑛(∑ 𝜆௜𝑦௜௟௜ୀଵ 𝛷(𝒙௜). 𝛷൫𝒙௝൯ + 𝑏)                      (3.18)  
The function 𝛷(𝒙௜). 𝛷൫𝒙௝൯ is denoted by 𝐾(𝒙௜, 𝒙௝) known as a kernel. This kernel function is known 
as a nonlinear kernel. Depending upon the nonlinear function used the hyperplane shape changes and 
generalization of the SVM could be achieved. The kernel matrix K for a non-linear  
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 The above figure 3.5 shows the difference between a linear and a nonlinear hyperplane of a 
SVM classifier. A nonlinear classifier solves a non-separable case of a linear classifier. The function 𝛷 
in a nonlinear classifier is not explicitly computed. This leads to very high computational cost. Instead 
the kernel 𝐾(𝒙௜, 𝒙௝) is computed directly. This is known as “kernel trick”, which SVM utilizes to 
reduce the computational cost making it to be the fast and efficient in performing classification. A 
nonlinear mapping of feature space is shown in figure 3.6. 

Non - Linear 
Separation boundary 

Linear 
Separation 
Boundary 

Points misclassified by 
linear separation 

boundary are crossed 

Class 1: y = +1 

Class 2: y = -1 

Figure 3:5.  A nonlinear SVM classifier and linear SVM classifier 
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                                              Figure 3:6. Non-linear mapping into feature space 

 The above description is for two class SVM classification where only two values of classes 
are considered +1 and -1 as basically SVM is a binary classifier. But the binary classification can also 
be extended for multi class classification. This can be following way. 
 
 In multi class classification, consider there are K classes, which are to be classified. Perform ቀ𝑲𝟐ቁ = 𝑲(𝑲ି𝟏)𝟐   binary classifications on all the pairs of the training data and apply to each vector of 

the test data. 

3.3. Types of Non-Linear Kernels 
 
Polynomial kernels 

Let 2x  i.e., 1

2

x
x
 
 
 

x = and if we choose  𝛷(𝑥) =  ቎ 𝑥ଵଶ√2𝑥ଵ𝑥ଶ𝑥ଶଶ ቏   (i.e., there is an  2 3

mapping, kernel function is ( i j, )K x x  = 
2 2 2 2
i1 j1 i1 i2 j1 j2 i2 j2x x 2x x x x x x    = T 2

i j( )x x  

The kernel function is a polynomial function. To calculate the scalar product in a feature space 

T
i j( ) ( ) x x , we need not perform the mapping 𝛷(𝑥) =  ቎ 𝑥ଵଶ√2𝑥ଵ𝑥ଶ𝑥ଶଶ ቏  , the function is directly 

calculated by computing T 2
i j( )x x  

 
Radial Basis Function Kernel 

The radial basis function is given by ( , )k x y = 
2exp( ) x - y  where   is a positive parameter 

controlling the radius. Expanding 
2exp( ) x - y we obtain 

2exp( ) x - y = 
2 2exp( )exp( )exp(2 )T   x y x y . 

Since exp(2 )T x y =
       

2 3
2 32 2

1 2 .....,
2! 3!

T T T 
  x y+ x y x y  

exp(2 )T x y is an infinite summation of polynomials . Thus it is a kernel whose mapping function 

maps a point to an infinite dimensional space. Also since
2exp( ) x  and  

2exp( ) y are 
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proved to be kernels and the product of two kernels is also a kernel, ( , )k x y = 
2exp( ) x - y  is 

a kernel (Soman, 2009). The reason for using RBF kernel is it performs well and gives considerably 
better results when data has large number of features. All the above discussed methods are done for 
two dimensions 𝑛=2 however, this also satisfies for even larger dimensions.  

3.4. Dimensionality Reduction and Classification 
 
Process of Dimensionality Reduction 
  
 Dimensionality reduction is performed by Eigen decomposition of the covariance matrix. In 
this process covariance matrix of the original image is calculated and the Eigen values and the Eigen 
vectors are calculated for each band. The scores for each band are calculated and the corresponding 
components are obtained. These components have the data in the order of decreasing variability. As 
per the above statements, it means that the first component obtained will have the data, which have 
maximum variability, and so the variability decreases. In this way, the initial components will have the 
maximum amount of data. However, selecting the optimum number of transformed bands for 
obtaining the dimensionally reduced image is real task, as there are no standards to calculate them.  
 
Modified Broken Stick Rule for Intrinsic Dimensionality  
  
 After the reduced bands of the complete hyperspectral image are obtained and their 
variability are calculated here comes the important part where the number of bands are to be selected 
for the further processing and analysis of the image. This process of selecting optimum bands where 
most of the data is contained is known as the intrinsic dimensionality of the image. The traditional 
statically methods used are to find the number of bands by calculating the number of bands falling 
into the threshold set on the percentage variability of the image. This is generally set between 98 – 
99% of variability. By these methods, we achieve the intrinsic dimensionality mostly between 2 to 5. 
This would give better results if the number of bands were low. However, if a dataset like 
hyperspectral image are used which have very high dimensions the number of dimensions achieved 
by that above method is not satisfactory. As the dimensions are very high, such a low intrinsic 
dimensionality will not be promising and the complete feature detection chances would be less. 
Therefore, by setting a bigger threshold could increase the chance of apt feature selection and 
detection form the hyperspectral image. However, which threshold must be set. It cannot be an 
arbitrary value. To find out that broken stick rule has been used to calculate the intrinsic 
dimensionality of the hyperspectral image (Bajorski, 2009). 
 
 Virtual Dimensionality, because of some undesirable properties, produces unreasonable 
results in case of hyperspectral images. Second moment linear dimensionality technique avoids the 
pitfalls of virtual dimensionality and is successful in identifying a certain number of components. It 
locates exceptionally large gaps in Eigen values and gives a unique solution if the recommended level 
is used (Jackson, 2003).  The results will depend upon the user-defined threshold, which in all cases 
may not be optimum, but Modified Broken-Stick Rule (MBSR) avoids it. In MSBR method, k is the 
number of principal components out of total dimension p and ‘λ’ are Eigen values of various 
dimensions. 
 
The value of k is defined as  
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ఒೕ∑ ఒ೔೛೔సೕ > 𝑏௝ for  𝑗 = 1,2, … , 𝑘  and   𝜆௞ାଵ ≤ 𝑏௞ାଵ 

Where, 𝑏௝ = ቀଵ௣ − 𝑗 + 1ቁ ∑ ቀଵ௜ ቁ௣ି௝ାଵ௜ୀଵ  is a fair share of total variability represented by 𝜆௝ within 𝜆௝, … , 𝜆௣ 
 
 SVM is a binary classifier. It classifies only two classes. Now, how to classify multi classes? 
For that, we have techniques like one – many and ad-hoc classification methods.  Although the 
application of SVMs to multiclass classification problems remains an open issue, in practice the one-
versus-the-rest approach is the most widely used in spite of its ad-hoc formulation and its practical 
limitations (Bajorski, 2011). 
  
 SVM is the classifier, which is used in this research work. Detailed description of SVM has 
been done in the previous chapters of this thesis. SVM used in the framework is a nonlinear SVM. 
Radial basis function (RBF) kernel is used in SVM. For dimensionality reduction the complete data is 
transformed into the lower dimensions using the Eigen decomposition method. 

3.5. Proposed SVMDRC Framework 
 
 The SVM based dimensionality framework developed in this study is an integration of 
dimensionality reduction procedure based on Eigen vector analysis, automatic selection of optimal 
transformed components and simultaneously classification of hyperspectral image using non-linear 
SVM. The proposed framework has been mathematically briefed as follows: 
Let X(x୧, y୧) where i = 1, … , n ∈ Rଶis the input data and X୘(y୧, x୧) where i = 1, … , n ∈ Rଶ be the 
transposed matrix of the input data. 
Calculate the covariance of the data denoted by K 
 K = cov൫X, X୘൯     =  ෍ (x୧ − Xഥ)(y୧ − Yഥ)(n − 1)୬

୧ୀଵ  

 
Apply Eigen decomposition to K and obtain the Eigen vector and Eigen values  
 VିଵKV = D 
where V is the Eigen values matrix and D is the Eigen vector Matrix  
Sort the values of V in the decreasing order K(p, q) = V(p, q) where p = 1, … , m and q = 1, … , l and 1 ≤ l ≤ m 

 ஛ౠ∑ ஛౟౦౟సౠ > b୨ for  j = 1,2, … , k  and   λ୩ାଵ ≤ b୩ାଵ 

 

Where, b୨ = ቀଵ୮ − j + 1ቁ ∑ ቀଵ୧ቁ୮ି୨ାଵ୧ୀଵ  is a fair share of total variability represented by λ୨  within λ୨, … , λ୮. J gives the intrinsic dimensionality. 
 C = (୶౟ିଡ଼ഥ)ୱ.୦  where c is the normalized value. 
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The dimensionally reduced and projected data is  Y =  W୘. C 
Applying SVM for the projected data y୧(w. x୧ + b) − 1 + ξ୧ ≥ 0 where i = 1,2, … l f(x, λଵ, … , λ୪) = sgn(෍ λ୧y୧୪୧ୀଵ Φ(x୧). Φ൫x୨൯ + b) 

 where Φ()  is the Radial Basis Function. 
 

3.6. Separability Analysis and The Jeffries-Matusita (JM) Distance 
 
 JM distance measure is used to define the distances (class separability) between two 
distributions. Consider two distributions 𝑝(𝑥|𝜔௜) and 𝑝(𝑥|𝜔௝)  which are polynomial populations 
each having N classes. The sum of the values is equal to 1 as per laws of probability.   
 
The JM distance is defined as in equation (3.19)  
 𝐽௜௝ = ∫ {ඥ𝑝(𝑥|𝜔௜) − ඥ𝑝(𝑥|𝜔௝)}ଶ 𝑑𝑥௫                                               (3.19) 
It is the measure of average distances between two class probability density functions. 
If the classes are normally distributed then the distance is given by the equation (3.20) 𝐽௜௝ = 2(1 − 𝑒ି஻)                                                                   (3.20) 
Where, B is Bhattacharyya distance. The importance of the exponential factor is that it gives the 
decreasing weight for the increasing separability between the spectral classes. The values of the 
distance are scaled between 0 and 2.0. The distance with a value 2.0 indicates that the classes are 
100% separable and a value 0 that the classes are not separable (Richards and Jia, 2006). 
 

3.7. Validation 
 
 Validation is an essential step for any classification, which assesses its accuracy. By 
performing validation one can evaluate the accuracy of the classification performed, whether all the 
classes in the image are classified correctly or not. For performing validation, we need to have the 
ground truth data. By using this ground truth data, pixel wise check is performed on the classified 
image and the accuracy is calculated.   
 
 Validation samples are collected and a list of the pixels is made. The pixels in the classified 
image for which the correct ground data available are taken and then the validation is performed. The 
result of the validation test is obtained which has the class wise accuracy of classification, over all 
accuracy of classification and the kappa ‘k’ value of the classification. The kappa statistic is the 
difference measured between the change of agreement between the reference data and a random 
classifier to that of actual agreement between the reference data and an automated classifier. This 
statistic is an indicator for degree to which the error matrix percentage values are true to that of true 
agreement versus chance agreement. The value of k lies between 0 and 1. The kappa value ‘k’ is 
mathematically defined as:(Lillesand et al., 1994) 
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 𝑘 =  𝑁 ∑ 𝑥௜௜ − ∑ (𝑥௜ା .  𝑥ା௜)௥௜ୀଵ௥௜ୀଵ𝑁ଶ −  ∑ (𝑥௜ା .  𝑥ା௜)௥௜ୀଵ  

where, 
r = number of rows in the error matrix 𝑥௜௜= the number of observations in row i and column i  𝑥௜ା= total observations in row i 𝑥ା௜= total observations in column i 
N = total number of observations in the matrix 
 
 Validation for the both the classified images, obtained from the two methods viz., SVMDRC 
and SVM, is performed.  

3.8. Software 
 
 The framework for the research work is completely written in R, a statistical programming 
language (R core team, 2008). As open source software, it is distributed under GNU Affero General 
Public License. Just like any other programming language, R also requires to import the required 
packages. R has many packages of which user have a liberty to choose the package of choice, which 
serves his need in accomplishing the tasks. In the same way certain packages has been imported for 
performing the task of developing the framework. Five packages have been used in the development 
of the framework. They are as follows 

 
 kernlab 

 rgdal 

 sp 

 raster 

 rioja 

 
 The above used packages have their own roles in the development of the framework. The 
“kernlab” (Karatzoglou, 2012) package is used to import the function ksvm which is the main 
function used for classifying the image. The “rgdal” (Timothy, 2013) is used to real the lat/long 
information present in the input image. The “sp” (Pebesma, 2005) is used to read the classes and 
methods of the spatial data. It is the main function which identifies the frames and grids in the images 
and creates the output frame for the final classified image. The “raster” (Robert, 2012) package is 
used to read/ write  raster files of the image. These raster files created are further processed in Erdas 
IMAGINE for validation and calculation of the accuracy of the classification. The “rioja” (Juggins, 
2012) is a package which is used to perform advanced statistical analysis. 



SVM Based Dimensionality Reduction and Classification of Hyperspectral Data 

Page | 27 

4. RESULTS AND DISCUSSIONS 

 By using the framework designed for dimensionality reduction and classification, the 
following results were obtained. All the results are discussed below: 

4.1. Pre-processing  
 As described in the methodology left part of it is the framework and is completely written in 
R. The code for the frame work is placed in appendix A. The code is divided into several parts for the 
ease of understanding, but the code runs in a single process. It is a combination of dimensionality 
reduction and classification using SVM. The first part of the code is the data reading part. Where the 
hyperspectral image is read by the code, form the folder containing the input data. Since the image is 
a spatial data which is georeferenced, ‘rgdal’ package is used to read the spatial content of the image. 
Then the image read by the code is displayed. The displayed image is shown in the figure 4.1.    

 
Figure 4:1. Input HyMap image displayed by the framework in RGB (bands 90, 60, 20) 

 The inputs required for it are the georeferenced hyperspectral image and the corresponding 
training sets of the classes. The input image is converted to tiff format because computations 
performed on the tiff image will be faster and near to accurate results are obtained.  The framework 
automatically reads the images once the path of the folder containing the input image and the roi’s are 
specified.   
 
 Once the input image is given and the training data sets are given to the framework it reads 
the inputs and the training sets for further processing. Figure 4.1 shows the image displayed in bands 
90, 60 and 20 of the input dataset read by the framework. The selection of the bands to be displayed 
is user defined and is not fixed to certain values. Then the image is forwarded to the second part 
where the dimensionality reduction and classification of the data is performed using SVM. The 
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Training data of the four classes to be classified is collected in the form of roi’s and are converted 
into geotiff image format. This step is performed to read the training sample by far for further 
processes. The framework for training the classifier reads the training samples.  

4.2. Dimensionality Reduction and Classification 
 The framework next performs dimensionality reduction and classification. The covariance 
matrix of the image is calculated and Eigen decomposition is performed. By this procedure, Eigen 
values and Eigen vectors for the image are obtained. They are named as scores and loadings. This is a 
standard followed by the developers and is incorporated in this research work. The Eigen values for 
each band are calculated and a list of them for all the bands is generated. Table 4.1, depicts the Eigen 
values of the first ten bands of the image. The remaining values are very small hence, they are not 
displayed. The first five bands contain 98.8% of data in it. So, in the traditional way the intrinsic 
dimensionality of the reduced transformed image is considered to be 5. Nevertheless, this is not true 
in the case of hyperspectral imagery. Due to high correlation between the bands and the data shown 
in the first 5 bands as per the traditional way is limited. To overcome this, modified broken stick rule 
is implemented to calculate the intrinsic dimensionality of the reduced image. 
 

Table 4-1.  Eigen values of the first 10 transformed bands of the image 

Transformed 
Bands 

Eigen Value 

1 114.49 
2     6.16 
3     2.40 
4     1.53 
5     0.41 
6     0.33 
7     0.19 
8     0.16 
9     0.07 
10     0.04 

4.2.1. Modified Broken Stick Rule 
   
By the MSBR method, the intrinsic dimensionality is the number of dimensions out of total 
dimension of the image, which is calculated and found out to be 27 for the dataset used in this 
research. This is how intrinsic dimensionality is calculated and the reduced data with 27 bands is 
classified. It is to be noted that the complete process of dimensionality reduction and classification is 
a single stepped processes, but the intrinsic dimensionality can be retrieved just for knowledge by 
passing the arguments in the code. In the figure 4.2, the transformed components selected by the 
broken stick rule along with remaining noisy transformed bands are displayed. After the 27th 
transformed band the noise content in the image is increased drastically, even though the transformed 
band have information the noise content is dominating it, which could be visually interpreted. Name 
written in yellow colour is transformed band considered in intrinsic dimensionality and red one is the 
band with noise.    
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Figure 4:2. Transformed Components  
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4.3. Training Set 
 
 Endmembers of all the four classes, which are to be classified, are collected from the image 
in the form of roi’s. These roi’s are used as training set for classifying the minerals alunite, illite, 
kaolinite and limestone. The training samples are renamed as C1, C2, C3, and C4 and converted to 
tiff format for the ease of programming. Figure 4.7, shows the HyMap image of study area displaying 
the roi’s used and table 4.2 gives their description.  
 

Table 4-2. Details of training data roi’s 

Region Color Number of Pixels 
Alunite (Region 1) Red              63 
Illite (Region 2) Green              99 
Kaolinite(Region 3) Blue            115 
Limestone (Region 4) Yellow            161 

 
Figures 4.3, 4.4, 4.5, 4.6 shows the spectra of the pure endmember spectra extracted which are 
processed as the training samples for further work. 

 
           Figure 4:3. Spectral profile of limestone 

 
               Figure 4:4. Spectral profile of alunite 

 

 
            Figure 4:5. Spectral profile of kaolinite 

 
          Figure 4:6. Spectral profile of illite 
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Figure 4:7. Band 35 of the dataset displaying roi’s used for training 

4.4. Dimensionally Reduced and Classified Image 
 
 The framework produces a raster image, which is dimensionally reduced and classified. There 
are two parts in the research work, the SVMDRC and SVMC part. Both of them give a classified 
image as output. However, the differences between them are one is dimensionally reduced and other 
is not dimensionally reduced and the other difference is the accuracy of the classification. The 
accuracy is checked by performing accuracy assessment.           

 
Figure 4:8. SVMDRC classified Image 

 The figures (4.8 and 4.9) shows the outputs obtained by two different processes of 
classification using SVM one with dimensionality reduction and other without dimensionality 
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reduction. The framework performs dimensionality reduction. A part of the framework is written for 
performing the dimensionality reduction. This part focuses on the reducing the dimensions of the 
image by projecting the original input image into a higher dimensional space. In dimensionality 
reduction, the intrinsic dimensionality of the image is estimated and calculated by modified broken 
sick rule method and the value is observed to be 27. The first 27 reduced bands are used for 
classification of the image. The dimensionally reduced and classified image is shown in the figure 4.8. 

4.5. Classified Image without Dimensionality Reduction 
 
 Figure 4.9 shows the image obtained by performing SVM classification without 
dimensionality reduction of the hyperspectral image.  The training of the SVM classifier is done with 
the same training sets used for SVM dimensionality reduction and classification process, to make sure 
that same type of classification occurs.  

 
Figure 4:9. Conventional SVM classified image without dimensionality reduction (SVMC) 

 

4.6. Validation 
 
 Validation is an important step, which gives the true assessment of the results obtained, i.e., 
it gives the accuracy of the classified image. Validation data has been collected from different parts of 
the study area. By this validation data also known as ground truth data, validation of the classified 
image is performed. 
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Accuracy Assessment Result 
 
 Accuracy assessment is performed by calculating the confusion matrix between the ground 
truth data and the classified image. This process is performed on both the classified images. The 
results of the SVM classified image and dimensionally reduced and classified image and are given in 
the table 4.3 and 4.4 respectively.  
 
 

Table 4-3. Validation result obtained from SVM classified image 

 Accuracy report  (Confusion Matrix) 

 Ground Truth 
 Class Name Alunite Kaolinite Illite Total  Users 

Accuracy 
 

Classified 
Image 

 
Alunite 

 
6 

 
1 

 
0 

 
7 

 
85.71% 

Kaolinite 1 3 1 5 60.00% 

Illite 0 3 2 5 40.00% 

Total  7 7 3 17  
 Producer 

Accuracy 
 

85.71% 
 

42.85% 
 

66.66% 
  

 
 

Overall Accuracy of classification is = ଺ାଷାଶଵ଻ =  ଵଵଵ଻ =  0.6470 X 100 =  64.70% 

 

The kappa value k is = (ଵଵ௑ଵ଻)ି[(଻௑଻)ା(ହ௑଻)ା(ହ௑ଷ)]ଵ଻మି[(଻௑଻)ା(ହ௑଻)ା(ହ௑ଷ)]  = ଼଼ଵଽ଴ =  0.4631 

 
k = 0.4361 

 
Table 4-4. Validation result obtained from dimensionally reduced and SVM classified image 

 Accuracy report  (Confusion Matrix) 

 Ground Truth 
 Class Name Alunite Kaolinite Illite Total  Users 

Accuracy 
 

Classified 
Image 

 
Alunite 

 
6 

 
0 

 
0 

 
6 

 
100% 

Kaolinite 1 6 1 8 75.00% 

Illite 0 1 2 3 66.66% 
 

Total   
 
7 

 
7 

 
3 

 
17 

 

 Producer 
Accuracy 

 
85.71% 

 
85.71% 

 
66.66% 
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Overall Accuracy of classification is = ଺ା଺ାଶଵ଻ =  ଵସଵ଻ = 0.8235 X100 = 82.35% 

 

The kappa value k is = (ଵସ௑ଵ଻)ି[(଺௑଻)ା(଼௑଻)ା(ଷ௑ଷ)]ଵ଻మି[(଺௑଻)ା(଼௑଻)ା(ଷ௑ଷ)]  = ଵଷଵଵ଼ଶ =  0.7197 

 
k = 0.7197 

 
 The above two tables show the accuracy assessment results of the two classified images. It is 
clearly shown that the accuracy of the SVM dimensionally reduced and classified image is higher that 
SVM classified image. There are four classes in the image, which have been classified. The accuracy 
of the individual classes has increased when dimensionality reduction is performed. The overall 
accuracy of the SVM classified image is 64.70% and the accuracy has increased to 82.35% when 
dimensionality reduction is performed on the image. This proves that even though SVM takes care of 
dimensionality of the image, performing dimensionality reduction will increase the classification 
accuracy. The individual accuracies of the classes have also been increased. The major change was 
with the class kaolinite. The accuracy of kaolinite was 42.85% before dimensionality reduction was 
performed and after it became 85.71%. Before dimensionality reduction, kaolinite has been classified 
into illite class. This is because of much similarity between both the classes. The spectra of kaolinite 
and illite classes showed in the figure 4.5 and 4.6 gives an estimate of spectral similarity between 
them. There is only a small change in the spectral values between the classes. This has lead to 
misclassification of pixels. By performing dimensionality reduction the separation between the two 
classes have increased leading to better classification of the pixels. This is explained in the next 
section.   
 
 The classification accuracy of the kaolinite mineral has led to the drastic change in the levels 
of accuracy and the framework has successfully separated them and gave a better level of 
classification accuracy.  

4.7. Influence of Dimensionality Reduction on Feature Extraction 
 
Jeffries-Matusita (JM) distance Method 
 
 In this analysis, it is observed that before dimensionality reduction, there was a moderate 
separability between the classes. The value was 1.34 and the separability values of remaining class 
pairs were. After dimensionality reduction, the same tests were performed on the image and the vales 
of all the class separability between the class pair kaolinite-illite was 1.38 and the remaining classes 
were between 1.3 and 1.41, which is a measure of good separability. Hence, it is shown that 
performing dimensionality reduction shows a positive index on the feature extraction  
 
Table 4-5. JM distances between the class pairs before dimensionality reduction 

Signature Name Alunite Illite Kaolinite Limestone 
Alunite              0.0 1.39 1.41 1.41 
Illite                  1.39 0.0 1.34 1.41 
Kaolinite           1.41 1.34 0.0 1.38 
Limestone         1.41 1.41 1.38 0.0 
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Table 4-6. JM distances between the class pairs after dimensionality reduction 

Signature Name Alunite Illite Kaolinite Limestone 
Alunite              0.0 1.41 1.41 1.41 
Illite                  1.41 0.0 1.38 1.41 
Kaolinite           1.41 1.38 0.0 1.38 
Limestone         1.41 1.41 1.38 0.0 

4.8. Discussions and Limitations 
 
 The processing of hyperspectral remote sensing data, for variety a of natural resource 
applications, is challenging due to its higher dimensionality and non-linear characteristics. Considering 
intrinsic dimensionality by taking the first few bands having maximum variability in the data produces 
unreasonable results in case of hyperspectral images. Second moment linear dimensionality technique 
avoids the pitfalls of virtual dimensionality and is successful in identifying a certain number of 
intrinsic dimensions. It locates exceptionally large gaps in Eigen values and gives a unique solution if 
the recommended level is used (Bajorski, 2011). The results of the intrinsic dimensionality usually 
depend upon the user-defined threshold, which in all cases may not be optimum, but Modified 
Broken-Stick Rule (MBSR) avoids it. 
 
 Separability analysis by JM distance method gave an interesting result. Before dimensionality 
reduction of the image, the separability analysis showed that two pairs of classes were having very less 
separability between them. This was the reason for the intermixing of the class pixels. There was poor 
separability between kaolinite and illite. Once dimensionality reduction is performed on the image the 
separability has increased between the class pair kaolinite and illite. The confusion matrix shows that 
the misclassification rate has decreased and hence the classification accuracy increases. This result 
gives an impression that if dimensionality reduction is performed the chances of having misclassified 
pixels will low. 
  
 After validation is performed on the classified images by using, the ground truth data the 
results obtained were rather interesting. The overall accuracy of the classified image was 64.70% 
without dimensionality reduction is performed and after dimensionality reduction the overall accuracy 
was 82.35%. This could be treated as positive response of the dimensionality reduction. This step 
depicts an important point that when dimensionality reduction is performed on the image the 
classification accuracy increases and hence this research work suggests that this step is necessary. 
 
 The key feature of this research work is the unified framework of dimensionality reduction 
and classification. There are certain advantages of using a unified framework. First is that the process 
of working will become shorter. Instead of a two-step process, the work is performed in a single step, 
this makes the work process faster and more efficient, the results of this research work have proved 
this point. The second advantage is the usage of SVM in the framework. SVM is a very effective 
powerful tool for classification. If SVM is applied on ordinary images, having lower dimensions than 
hyperspectral images there is no need of performing dimensionality reduction. Our results show that 
use of dimensionality reduction techniques in combination with SVM improves classification 
accuracy. The framework is completely written in open-source software hence it is accessible to the 
scientific community for the usage and further improvements.  
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 The major limitations of the research work are unavailability of sufficient ground truth data. 
The study area selected was in Spain and the feasibility to perform ground truth was very less and 
practically not possible as the research work is conducted in India. With the limited available ground 
truth data the accuracy assessment was performed. Out of the four classes classified only three classes 
had ground truth data to perform validation. With the very less points, the results obtained were 
satisfactory. If good amount of ground truth data were available validation process might have been 
conducted with stringent measures. In spite of very sparse ground truth, data the results obtained in 
this research work are satisfactory compared to the classified outputs of the same area performed in 
other related works. This shows the strength of framework developed in this research work. By this 
situation it can be said that the framework can work and produce good results with less training and 
validation data nevertheless it must be tested. 
  
 Another limitation of this research work is regarding the classes classified in the 
hyperspectral image. Out of four classes classified in the image, three classes have high similarity 
between them. As the classes classified are minerals, there exists a high similarity between the spectra 
of the minerals. Kaolinite and illite are having very high similarity between them and another pair 
kaolinite and alunite pair has moderate similarity between them. Despite of these limitations the 
framework has successfully classified the classes with reasonably good classification accuracy. 
  
 Similar kind of climate (semi-arid) and mineral mining areas like that of Los Tollos in 
Rodalquilar district of Spain are also there in India. But, availability of the hyperspectral datasets is an 
issue at this current scenario. There are no hyperspectral datasets for those areas except Hyperion. 
Once the datasets gets available, the framework could be tested on those datasets.   
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5. CONCLUSION AND RECOMMENDATIONS 

 As intended, the framework developed in this research work proved to be fruitful. The 
accuracy of the hyperspectral image classified by the framework has shown better results than the 
classified using SVM alone. This has also proved that SVM take care of dimensionality to a limited 
degree. Hence, dimensionality reduction is a compulsory step rather than taking it as a 
complementary step. Nonlinear type SVM is best suited for hyperspectral data. But the results for 
non-linear type dimensionality reduction were not conclusive. The framework developed was aimed 
for working with all types of hyperspectral datasets, subjected to a condition that atmospheric 
correction is done at prior. The framework is developed using open-source language R which can be 
widely assessable to the scientific community. 
 
 This research work mostly aims on dimensionality reduction and classification using support 
vector machine (SVM) and next is to prove whether the framework is comparable to that of the 
conventional method.  This chapter summarizes the results obtained by following the methodology 
adopted for this research work.   

5.1. How effective is the application of nonlinear function for dimensionality reduction? 
 
 Application of nonlinear function for dimensionality reduction on the hyperspectral data was 
not conclusive. The computational cost tremendously increases if a nonlinear function is used for 
dimensionality reduction, because hyperspectral images have extremely huge data for which nonlinear 
functions make the process much more complex and increasing the computational cost. A small 
50X50 pixel image takes more than 20min to perform dimensionality reduction where the same 
image get reduced within 50sec while a linear function is used. Hence, it is suggested to perform 
dimensionality reduction by using a linear function. 

5.2. Does a dimensionality reduction technique show any impact on extraction of different 
features types from hyperspectral data? 

 
 Yes, dimensionality reduction shows a positive impact on feature extraction. Separability 
between the classes of the hyperspectral image before and after dimensionality reduction is calculated. 
JM distances method is tested between the classes. The same training samples, which were used for 
classification, are used for this analysis. .    

5.3. How does SVM based dimensionality reduction and classification algorithm perform as     
compared to SVM classification on the hyperspectral data? 

 
 The framework in this research work have given better accuracy results compared to 
performing SVM classification directly on the hyperspectral image. The framework shows a good 
accuracy of classification. Performing SVM on the hyperspectral image have given an accuracy of 
64.70% whereas accuracy after the framework is applied was 82.35%. By this, it proves that 
comparatively the framework gives better results compared to the traditional method followed.  
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5.4. Recommendations 
 

 Despite the positive results of this study, it is still recommended that the performance of 

proposed framework should be tested with sufficient ground truth data at similar study site 

in order to adjudge its operationality.  

 Spectral similarities within mineral types poses difficulty in their discrimination, hence, 

narrow band width (< 5 nm) data should be tested to improve their discrimination by 

capturing subtle spectral differences.  
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APPENDIX 

Appendix A 
Code for dimensionality reduction and classification framework written in R 
rm(list=ls(all=TRUE)) 
require(kernlab) 
require(rgdal) 
require(sp) 
require(raster) 
require(rioja) 
require(Matrix) 
Root <- 'C:\\Users\\Pavan Kolluru\\Desktop\\trainingclasses' 
Path_in <- 'C:\\Users\\Pavan 
Kolluru\\Desktop\\trainingclasses\\input' 
Path_start <- getwd() 
setwd(Path_in) 
 
histstretch<-function(data) 
{ 
  cur.lim<-quantile(data,c(0.025,0.975),na.rm=TRUE) 
  data<-pmax(cur.lim[1],pmin(cur.lim[2],data)) 
  data<-floor(255*(data-cur.lim[1])/(cur.lim[2]-cur.lim[1])) 
  data[is.na(data)]<-0 
  data 
} 
 
image.fn <- "projj.TIF" 
A <- readGDAL(image.fn) 
 
# Image dimensions 
Nb <- dim(A)[2] 
Npix <- nrow(A) 
d <- A@grid@cells.dim   
M <- d[1] 
N <- d[2] 
A.image <- A 
 
#  RGB composition for viewing the input image data 
A.image@data$red   <-histstretch(A.image@data$band90) 
A.image@data$green <-histstretch(A.image@data$band60) 
A.image@data$blue  <-histstretch(A.image@data$band20) 
D <- array(0, c(Npix,Nb)) 
 
for(k in 1:Nb) D[,k]<- as.matrix(A@data[,k]) 
xyr <- coordinates(A) 
 
Colour_palette <- c("yellow","green","magenta","red") 
Class_names <- c("Class1","Class2","Class3","Class4") 
Ncl <- length(Class_names) 
 
windows() 
image(A.image,red="red",green="green",blue="blue",axes=TRUE) 
title("RGB=90:60:20") 
 
Dtr <- data.frame(array(0,c(0,Nb+1))) 
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for(k in 1:Ncl) 
{ 
  image.fn <- paste(Path_in,"/c",k,".TIF",sep="") 
  temp <- readGDAL(image.fn) 
  P <- temp@data 
  p <- temp@grid@cells.dim  
  Dtr <- rbind(Dtr,cbind(temp@data,rep(k,nrow(temp)))) 
} 
 
names(Dtr)[1:Nb]<- names(A) 
names(Dtr)[Nb+1]="class" 
 
 
C_SVM <- 100 
sigma_SVM <- .008 
 
# SVM model nonlinear ==>RBF 
svm_model <- ksvm(class~.,data=Dtr,type="C-svc",cache 
=2000,kernel="rbfdot",kpar=list(sigma=sigma_SVM),C=C_SVM,prob.mod
el=TRUE) 
 
# SVM 
SVM <- A 
temp <- predict(svm_model, D) 
SVM@data <- data.frame(class=temp) 
PP = SVM@data 
 
## displaying the SVM classified which is dimensionally not 
reduced.  
windows() 
image(SVM, col=Colour_palette,axes=TRUE) 
title("SVM classification") 
SVMM = raster(SVM) 
## storing the classified image in raster Format 
rf <- writeRaster(SVMM, filename="SVM.tif", 
format="GTiff",overwrite=TRUE) 
 
 
covmat <- cov.wt(D) 
n.obs <- covmat$n.obs 
cv <- covmat$cov *(1 - 1/n.obs) 
cen <- covmat$center 
sds <- sqrt(diag(cv)) 
cv <- cv/(sds %o% sds) 
edc <- eigen(cv, symmetric =TRUE) 
ev <- edc$values 
cn <- paste("eigVal", 1L:ncol(cv), sep = "") 
names(ev)<- cn 
sdev <- sqrt(ev) 
sc <- rep(1, ncol(cv)) 
names(sc)<- colnames(cv) 
 
scr <-    scale(D, center = cen, scale = sc) %*% edc$vectors 
edc <- list(sdev = sdev, loadings = structure(edc$vectors,class = 
"loadings"), center = cen, scale = sc, n.obs = n.obs,  
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              scores = scr) 
class(edc)<- "princomp" 
 
covr = cov(D) 
l = eigen(covr) 
lam = as.matrix(l$values) 
 
cork <- cor(D) 
ro = eigen(cork) 
rho = as.matrix(ro$values) 
 
KKK = bstick(cv) 
 
rhoo = round(rho, digits =3) 
lamm = round(lam, digits =3) 
 
zz <- intersect(rhoo,lamm) 
which(zz=TRUE) 
ZZ 
 
 
Nc <- 40 
redu <- edc$scores[,1:Nc] 
redu <- data.frame(redu) 
names(redu)<- 
c("rb1","rb2","rb3","rb4","rb5","rb6","rb7","rb8","rb9","rb10","r
b11","rb12","rb13","rb14","rb15","rb16","rb17","rb18","rb19","rb2
0","rb21","rb22","rb23","rb24","rb25","rb26","rb27","rb28","rb29"
,"rb30","rb31","rb32","rb33","rb34","rb35","rb36","rb37","rb38","
rb39","rb40") 
 
B <- A 
 
B@data <- B@data[,-(1:Nb)] 
 
 
B.image <- B 
B.image@data$red   <-histstretch(B.image@data$band1) 
B.image@data$green <-histstretch(B.image@data$band2) 
B.image@data$blue  <-histstretch(B.image@data$band3) 
 
windows() 
image(B.image,red="red",green="green",blue="blue",axes=TRUE) 
title("Dim reduced image") 
 
  
for(i in 1:Nc) 
{ 
  windows() 
  image(B.image,attr=i,col=gray((0:255)/255),axes=TRUE) 
  title(paste("rb ",i,sep="")) 
} 
 
 
Dtr_rb <- predict(edc,Dtr[,1:Nb]) 



 

Page | 46 
 

Dtr_rb<- Dtr_rb[,c(1:Nc)] 
Dtr_rb <- cbind((Dtr_rb),Dtr$class) 
Dtr_rb <- data.frame(Dtr_rb) 
names(Dtr_rb)<- 
c("rb1","rb2","rb3","rb4","rb5","rb6","rb7","rb8","rb9","rb10","r
b11","rb12","rb13","rb14","rb15","rb16","rb17","rb18","rb19","rb2
0","rb21","rb22","rb23","rb24","rb25","rb26","rb27","class") 
 
 
 
C_SVM <- 100 
sigma_SVM <- .008 
 
svm_model <- ksvm(class~.,data=Dtr_rb,type="C-svc",cache = 
2000,kernel="rbfdot",kpar=list(sigma=sigma_SVM),C=C_SVM,prob.mode
l=TRUE) 
svm_model 
 
SVM <- B 
temp <- predict(svm_model, redu) 
SVM@data <- data.frame(class=temp) 
 
 
windows() 
image(SVM, col=Colour_palette,axes=TRUE) 
title("SVMred") 
SVc = raster(SVM) 
## storing the classified image in raster Format 
rf <- writeRaster(SVc, filename="SVMred.tif", 
format="GTiff",overwrite=TRUE) 


