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ABSTRACT 

Precision Agriculture (PA) aims to use Remote Sensing (RS) techniques to provide the meaningful 
information at small scales for farmer and decision makers. Water deficit is one of the important issues of 
water resource managements with respect to the relevant factors to crop water requirement; to control the 
irrigation networks by farmer and who wants to make a decision. EvapoTranspiration (ET) is one of the 
important elements in order to determine the quantity of water requirements in agricultural fields. 
 
Super Resolution Mapping (SRM) increases the resolution of classification result considering the 
resolution of the input image. During partitioning pixels of image to sub-pixels, Markov Random Field 
(MRF) as a contextual classification method that consider both spectral and spatial information of an 
image, try to overcome mixed pixels. Surface Energy Balance System (SEBS) is a remote sensing model to 
determine the actual ET with respect to the resolution of input RS data. Gram-Schmidt (GS) method as 
an image fusion technique applied to explore the possibility of integration of using SRM and the SEBS for 
assessing the crop water requirement. 
 
We utilized high resolution satellite image to provide a smooth classification result using SRM based MRF. 
The optimum result of SRM is based on parameter estimation and the result compared to the reference 
data using digital aerial photo to assess the overall accuracy regarding kappa coefficient; satisfied the 
optimum result of SRM at rows within the field and plants within the row. Because of absence of 
providing potential ET from RS data, the maximum value of actual ET assumed as potential ET and 
compared to the result of potential ET based on Penman-Monteith and shows a less different between 
them. Finally, this approach has the potential to serve the farmer and decision makers to draw the outline 
of planning and strategies at irrigation networks for precision agriculture. 
 
 
Keywords:  
Precision agriculture, Remote sensing, Super resolution mapping, , Markov random field, Surface Energy 
Balance System, EvapoTranspiration, Water requirement 
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1. INTRODUCTION 

1.1. Motivation and problem statement 
Precision Agriculture (PA) includes integration of using advanced technologies in Geomatics science such 
as Global Positioning System (GPS), Geospatial Information System (GIS) and Remote Sensing (RS). 
Many studies have been done regarding precision agriculture and remote sensing during last two decades. 
Because , there is an uncertainty whereas to adopt a policy of available techniques on the agricultural area 
(Zhang et al., 2002). Use of remote sensing technologies in PA applications allows farmers to manage their 
farm products as a maximization cost-benefit ratio in terms of field variation more than using traditional 
techniques (Brisco et al., 1998). The results of water consumption for various land cover types play a 
predominant role in PA regarding appropriate water resource management for decision makers (Wu et al., 
2012). Nowadays, water deficit is one of the major impacts of improper water resource management in 
agricultural areas. There are many factors considering the absence of knowledge about the water 
requirement in many agricultural fields. One of the important elements regarding this issue is to determine 
the amount of crop EvapoTranspiration (ET). In the agricultural irrigation systems, water is used to 
provide enough water for plant ET; that is the actual crop water requirement. There are many factors that 
indicate how much water will be lost during the ET such as crop type, vegetation cover and climate 
factors. Two types of ET can be distinguished, Potential EvapoTranspiration (PET) and Actual 
EvapoTranspiration (AET). SEBS (Surface Energy Balance System) (Su, 2002), contains integration many 
tools for determining physical properties of the land surface and it can assess AET (Wang et al., 2008). It 
requires three types of data input information including land surface properties from RS data, 
meteorological data and SW (Short Wave) and LW (Long Wave) radiation from direct measurement or 
model output (Wang et al., 2008). Some users, e.g. decision makers and farmers who want to manage their 
farms as of water plan irrigation, need to know the water requirements of each tree individually. 
The most important aim of image processing of Remotely Sensed (RS) data is extracting useful 
information from satellite data. These data need to be analysis to obtain useful information. The general 
approach for analyzing RS data is classification. Image classification method assigns labels to each pixel 
considering spectral behaviuor in order to translate the continuous variability of image data into map 
pattern that provide meaningful information for end users. Image with coarser resolution reduces the 
characteristics of an object and it leads to mixed pixels which are not quantified as of hard classification 
technique (Muad and Foody, 2010). Unlike fine spatial resolution imagery, coarse spatial resolution 
imagery consists of mixed pixels which are include several classes while a pure pixel has only a single class 
(Muad and Foody, 2010). There are several satellite images which provide a fine spatial resolution imagery 
in RS system such IKONOS, SPOT5, QUICKBIRD  with both multispectral and panchromatic images 
that contains finer spatial resolution (Muad and Foody, 2010). Using Very High Resolution (VHR) images 
aims to extract accurate objects individually but, there are some limitation in this issue based on restricted 
spectral information satellite sensors and their spatial resolutions (Tolpekin et al., 2010). 
The aim of this research is to achieve accurate information on plant scale vineyard from coarse spatial and 
spectral resolution of images. In addition, individual plants will be extracted by using Super Resolution 
Mapping (SRM) technique based on Markov Random Field (MRF) at finer resolution.  In order to achieve 
a finer spatial resolution by means of obtaining much spatial information in classification techniques, it is 
necessary to perform down-scaling method from the coarser resolution to finer resolution (Sepehri, 2011). 
The main objective of using SRM technique is to detect and identify rows within the field and plants 
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within the rows in order to execute a hard classification technique. SRM provides classification maps at 
finer resolution from coarser resolution compare to initial input image (Atkinson, 2009). The other 
problem is related to the coarse resolution images using the SEBS to retrieve actual ET. Fusion techniques 
will be proposed to overcome this issue. 
 

1.2. Research identification 
The main research objective is to explore the possibility of assessing crop water requirement using SRM 
and application of SEBS. The focus will be more on the application of SRM to provide relevant input data 
to be used for down-scaling the lower resolution result to the higher resolution. 
 

1.2.1. Research objectives  
The objectives of this research are: 

 To estimate the actual and potential EvapoTranspiration at plant scale vineyard by using SRM and 
the application of SEBS.  

 To assess applicability of integrated SEBS and SRM.  
 To determine the quantity of water requirements at plant scale using different fusion techniques.  

 

1.2.2. Research questions 
The research questions of this research are: 

1. Which satellite images are appropriate as a spatial resolution to support SRM for extracting 
information on plant scale vineyard? 

2. What could be the role of SRM at plant scale information for vineyard? 
3. How to extract information of indivitual plants of vineyard with SRM? 
4. How to validate the result of SRM? 
5. How to integrate SEBS and SRM? 

 
 

1.2.3. Innovation aimed at 
The novelty of this research is the application of SRM to extract plants information for supporting 
precision agriculture. 
 

1.3. Research approach 
The aim of this research is utilizing contextual MRF based on SRM in order to sub-divide image pixels to 
obtain finer spatial resolution. This study will focus on SRM based on MRF at the plant scale vineyard in 
order to identify each row and extract individual plants of grape trees. Figure 1.1 illustrates the flowchart 
that shows the suggested SRM based MRF methodology for this research. 
The general methodology of this research divides in three steps. In the first step, the SRM based on MRF 
supposes to detect rows and plants. Furthermore, assessing the result will be considered to decrease 
uncertainty. The second step, use the SEBS to determine the ET for plant scale vineyard for supporting 
precision agriculture. In last step (Figure 1.2), image fusion technique utilizes to integrate the SEBS and 
SRM result. 
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Figure  1.1: Schematic Diagram of the proposed method for extracting individual plants 

 
Figure  1.2: Schematic diagram of applying image fusion using the SEBS and NDVI for actual ET 
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1.4. Structure of thesis 
The thesis established in seven chapters. The chapter one presents the motivation and problem statement 
of this study, objectives, research questions and research approach of this research. The second chapter 
demonstrates overall review regarding alternative land cover classification methods, SRM and Surface 
Energy Balance System (SEBS) and image fusion technique. Chapter three explains the proposed 
methodology of research approaches. Chapter four presents a brief introduction of the study area and 
remote sensing data sets. Chapter five illustrates the result of SRM based MRF and retrieval daily ET 
regarding possibility of integration between the SEBS and SRM result. Chapter six discusses how the 
result analyzed  and how they can be linked. The last chapter makes the conclusion and recommendation 
for promotion researches. 
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2. LITERATURE REVIEW 

2.1. Land cover classification 
The most important aim of image classification of Remotely Sensed (RS) data is extracting useful 
information from satellite data. These data need to be analysis to obtain useful information. The general 
approach for analyzing RS data is classification that includes diverse methods which have many 
advantages and disadvantages. Image classification method assigns labels to each pixel considering spectral 
behaviour in order to translate continuous variability of image data into map pattern. This thematic map 
provides meaningful information for end users. Image classification methods have done using spectral 
bands in order to assign an appropriate land cover classes to each pixel. Generally, image classification 
methods comprise to two main methods which are supervised and unsupervised classifications. 
Supervised classification methods use training pixels with respect to class separability that defined by 
users. Taking training pixels needs experience in RS data and visiting field work. Unsupervised 
classification methods use spectral range for assigning label classes to generate a thematic map (Richards, 
2012). Supervised classification methods identified as parametric and non-parametric classification 
method. Maximum Likelihood Classification (MLC) is the most common supervised classification 
(Richards, 2012) as a parametric method which uses statistical parameters such as mean and covariance to  
allocate label class to each pixel. It means that the result of classification is sensitive to taking training 
pixels (Mahour and Abkar, 2012) . The result of MLC as the thematic map leads to the noisy result as 
mixed pixels. Support Vector Machine (SVM) is one of non-parametric classification method that has used 
in many researches recently. Non-parametric methods no need statistical parameters for calculation  pixel 
values considering training pixels. Classification methods contain diverse errors which are related to mixed 
pixels, sensor effects, atmospheric effects and radiometric overlap between land cover objects (Abkar and 
Fatemi, 2004). To improve these errors some methods were performed by related works such as object-
based and knowledge-based classification (Abkar et al., 2000) by using extra information at the object 
level. These methods deal to reach high evaluation but because of lacking reference data they cannot 
implement correctly. 

2.2. Mixed pixel and spectral unmixing 
The problem of land cover classification is related to the noisy result as mixed pixels. Identifying mixed 
pixels in boundary of two classes has a main role in classification results. It means that during satellite 
sensor scanning as Instantaneous Field of View (IFOV), one pixel size as spatial resolution of an image 
can have more than one class with respect to spectral reflectance of land cover on the earth (Foody, 2006). 
Fisher (1997) introduced four types of mixed pixels such as boundaries are among the more than one 
mapping unit, integration between phenomena, linear sub-pixel objects and small sub-pixel objects. Soft 
classification or sub-pixel classification classified mixed pixels in different classes using membership value 
(Haglund, 2000). Spectral unmixing is a technique that used fraction of each mixed pixel to assign the 
number of classes to each pixel (Foody, 2006). Moreover, this approach resolves the spectral mixture 
problem. 
 

2.3. Super resolution mapping 
Super Resolution Mapping (SRM) is a technique that partitioning pixel into smaller ones in order to 
achieve high spatial resolution from coarser imagery. SRM has been proposed using diverse algorithms 
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such as Hopfield neural networks, genetic algorithm, neural network predicted coefficients, knowledge-
based procedure and linear optimization (Sepehri, 2011). All abovementioned techniques take a coarse 
spatial image input (Muad and Foody, 2010). Tatem et al. (2001) developed SRM with Hopfield neural 
network to minimize energy as a tool for fuzzy classification result. After that, they applied their algorithm 
on Landsat TM data to exhibiting higher accuracy compare to traditional algorithms but not for 
complicated features (Tatem et al., 2003). Verhoeye and De Wulf (2002) proposed the application of linear 
optimization technique for sub-pixel mapping. Their algorithm had restriction as spatial dependency of 
objects of smaller pixels (Sepehri, 2011). Mertens, et al. (2003) applied the genetic algorithm in SRM and 
achieved the precise result. Unlike fast computation, some parameters have been found in genetic 
algorithm as of disadvantage (Sepehri, 2011). Boucher and Kyriakidis (2006) implemented the 
geostatistical method as of indicator kriging in SRM to evaluate spatial variety of classes. After two years, 
they utilized the training image for variogram model as of prior information. Kasetkasem, et al. (2005) 
introduced Markov Random Field (MRF) based on SRM for the first time. In their paper, MRF used to 
model spatial dependency of each pixel by the use of statistical correlation of neighboring pixels. They 
found that including MRF in SRM generate classified map with a few misclassified pixels and also their 
result on land cover map was smoother (Kasetkasem et al., 2005). Tolpekin, Stein (2009) used MRF based 
on SRM method of Kasetkasem, et al.(2005) to show the class separability by introducing smoothness 
parameters as of prior and conditional energy. They pointed out the result of SRM related to several 
parameters such as smoothness parameters, class separability and scale factor (Tolpekin and Stein, 2009). 
Lopez (2012) proposed MRF based on SRM for identification of urban trees in very high resolution 
images considering energy function, spatial smoothness prior and conditional probability. He achieved 
acceptable result for detecting tree crowns in residential area and concluded that the method decreases 
influence of spatial resolution in terms of large class spectral variance in input images (Ardila Lopez, 
2012). 
 

2.4. Markov random field 
Markov Random Field (MRF) is a contextual and probabilistic method that has been used in image 
segmentation and image restoration (Tso and Mather, 2009). Context means spectral, spatial and temporal 
attributes. The possibility use of context leads to correct the errors, omit the vagueness and cover again 
missing information (Li, 2009). MRF for supervised and unsupervised segmentation methods was 
developed by Hu and Fahmy (Hu and Fahmy, 1992). Sarkar (2002), compare the result of MRF as energy 
minimization with Maximum Likelihood Classification (MLC) and observed that the result of MRF was 
better than MLC in different samples. Tso and Oslen (2005) developed MRF based multi-scale fuzzy for 
image classification. They utilized IKONOS image consists of multispectral and panchromatic images and 
estimate the optimum parameters using probability histograms. 

2.5. Surface Energy Balance System 
Evapotranspiration is the important issue of water balance and it utilizes for irrigation network  and 
agricultural land intuition (Ma et al., 2012a). Evapotranspiration comprises to two separate and 
simultaneous processes which are evaporation and transpiration. Evaporation is the process of losing 
transferred water from the soil and the process of losing water from the vegetation through the 
atmosphere. These two processes occupy simultaneously and they required a source of water, a source of 
energy and a slope of vapour (Kalma et al., 2008). The three mentioned requirements for determining 
evapotranspiration extensively classified in three methods as mass budget methods, energy budget 
methods and methods base on atmospheric turbulence and mean profile measurements (Kalma et al., 
2008). Kalma et al. (2008) pointed out the surface energy models are a solution of the surface energy 
budget. There are several models based on remote sensing and field observation measurements such as 



EXPLORING THE APPLICATION OF SEBS FOR PRECISION AGRICULTURE: PLANT SCALE VINEYARD 

7 

the Surface Energy Balance Algorithm for Land (SEBAL) developed by Bastiaanssen et al. (1998) which 
uses the hot and cold points of satellite image to provide the empirical temperature difference equation. 
The Surface Energy Balance Index (SEBI) (Menenti and Choudhury, 1993), the Simplified Surface Energy 
Balance Index (S-SEBI) (Roerink et al., 2000), Mapping Evapotranspiration with Internalized Calibration 
(METRIC) (Allen et al., 2007). 
The SEBS (Su, 2002) from the SEBI components was presented to estimate atmospheric turbulent fluxes, 
the evaporative fraction and actual ET using satellite image data and meteorological information at an 
appropriate scale (Su, 2002). SEBS includes a toolbox for determining physical parameters of land surface 
such as albedo, land surface emissivity and land surface temperature from spectral radiance and reflectance 
measurements of satellite earth observation data. Ma et al. (2012b) retrieved the actual ET from the 
Landsat 5 TM by the use of SEBS for irrigation area. They used satellite images of different years for 
obtaining daily ET and then compared their result with ground measurements data and found that 
deriving ET from the SEBS are highly close to the field measurements. 
 

2.6. Image fusion 
Remote sensing satellite data provide finer spectral and coarser spatial resolution or lower spectral and 
higher spatial resolution with respect to optical sensor systems (Ha et al., 2012). Considering use of finer 
spectral and spatial resolution images, image fusion techniques have been proposed in many applications 
for irrigation management systems in precision agriculture. Wansook (2012) observed that image fusion 
methods have not potentially utilized in achieving finer resolution evapotranspiration images in application 
of precision agriculture. Thomopoulos (1990) first introduced the data fusion as an arranged seminar by 
NASA. Data fusion comprises of three levels from lowest to highest data viewing such as pixel level, 
feature level and decision level (Luo and Kay, 1992). In remote sensing images, data fusion has utilized as 
the pixel level in raster formats (Zhuang et al., 2011). Image fusion can be applied for various application 
of image enhancements such as improving the result of classification (Pohl and Van Genderen, 1998). 
There are many research have been done regarding image fusion techniques using two different satellite 
sensors. Most of these studies considering the merging Landsat Thematic Mapper (TM) and System 
Poourl’ Observation de la Terre (SPOT) satellite images (Ha et al., 2012). 
There are different methods as the data fusion methods in remote sensing image analysis such as Principal 
Component Spectral Sharpening (PCSS), IHS (Intensity, Hue, Saturation), Color Normalized (Broevy) 
Sharpening, Gram-Schmidt Spectral Sharpening (GS) and wavelet fusion. These methods use different 
algorithm but, the result of final fused images contains a subsequent goal (Zhuang et al., 2011). Image 
fusion merges a low resolution color or multispectral image with a high resolution image by the use of 
resampling the lower resolution image to the high resolution image (Vrabel, 1996). Zhuang et al. (2011) 
utilized different methods for image fusion and observed that extracted information from NDVI by using 
the GS method had better results in remaining spectral and brightness information compare to other 
methods. 
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3. STUDY AREA AND MATERIALS 

In this research, various remote sensing data sets will be utilized in order to apply the proposed 
methodology. Remote sensing data include GeoEye satellite image, UltraCam digital aerial photo and 
Landsat 5 TM image. This chapter presents a brief introduction of remote sensing data and explanation of 
the study area. 
 

3.1. Study area 
The study area is located in Sharifabad as a town in the center of the Ghazvin province in the north-west 
of Iran. Geographical information on the area is 36°11'21" N,  50°13'19" E. The area of open 
homogeneous land planted with grape trees as an industrial agricultural field (Figure 3.1). The area consists 
of grape trees as rows and length of each row is approximately 40 . The distance between each row is 3 

 and height of the plants are 2  respectively. In this research, from this field GeoEye satellite image, 
UltraCam digital aerial photo and Landsat 5 TM satellite image utilize for performing the proposed 
methodology. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure  3.1: Study area, Source: Google Earth 

3.2. Satellite data 

3.2.1. GeoEye -1 image 
GeoEye-1 is a high resolution satellite image which was launched by U.S. company GeoEye in September 
2008. It has taken highest ground resolution images as a civilian space observation system. GeoEye-1 is 
capable to acquire image data with 0.41  in panchromatic and 1.65  in multispectral resolution and 
because of U.S. government limitation the image provided to 0.5  resolution in panchromatic band for 
all customers (Dowman et al., 2012). GeoEye provides image products as simultaneous panchromatic and 
multispectral (pan-sharpened) product, only panchromatic and multispectral bands separately. Table 3.1 
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illustrates the description of the spectral and spatial information of panchromatic and multispectral bands 
of GeoEye.  
 

Table  3.1: Description of the spectral bands and ground resolution of GeoEye 

Band Number Bandwidth ( ) 
Ground Resolution 

( ) 
Description of 

Wavelength band 
Band 1 450 - 510 2 Visible (Blue) 
Band 2 510 – 580 2 Visible (Green) 
Band 3 655 – 690 2 Visible (Red) 
Band 4 780 – 920 2 Near Infra Red 

Pan 450 - 800 0.5 Panchromatic 
 
The GeoEye satellite image data as of four bands pan-sharpened, multispectral and panachromatic images 
used in Ghazvin province that were collected on June 19, 2011. The image data was projected in Universal 
Transfer Mercator (UTM) with the standard spheroidal reference surface WGS 84. Figure 3.2 displays 
different color composite of the multispectral and the panchromatic images of area of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure  3.2: GeoEye satellite image of area of interest A) Panachromatic image with 0.5  resolution B) RGB color 
composite of multispectral bands with 2  resolution C) NIR color composite of multispectral bands with 2  

resolution 
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3.2.2. Landsat 5 TM image 
Landsat 5 was launched by NASA in March 1984. It includes MSS (Multispectral Scanner System) and TM 
(Thematic Mapper). In August 1996, the MSS instrument was turned off but the TM instrument is still 
working after 28 years. In this study, the Landsat 5 TM image data used from the U.S. Geological Survey 
(USGS: http://glovis.usgs.gov) company on August 1, 2011 (Figure 3.3). The image contains seven 
multispectral bands of visible, near infrared and middle infrared with 30  ground resolution and a 
thermal band with 120  ground resolution for performing the SEBS methodology. Table 3.2 indicates 
the description of spectral bands of Landsat 5 TM image data. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure  3.3: Landsat 5 TM image at area of interest A) RGB color composite B) NIR color composite 

 
Table  3.2: Description of spectral bands and ground resolution of Landsat 5 TM 

Landsat 5 TM Wavelength ( ) Resolution (Meter) Description 
Band 1 0.45 – 0.52 30 Blue 
Band 2 0.52 – 0.60 30 Green 
Band 3 0.63 – 0.69 30 Red 
Band 4 0.76 – 0.90 30 Near Infrared 
Band 5 1.55 – 1.75 30 Mid Infrared 
Band 6 10.40 – 12.50  30* Thermal Infrared 
Band 7 2.08 – 2.35 30 Mid Infrared 

 
* Landsat 5 TM consist of seven spectral bands and the resolution of bands 1-5 and band 7 is 30 . The 
thermal infrared band (band 6) is collected 120  resolution but, as a level 1 product it was resampled to 
30  resolution (http://eros.usgs.gov/Find_Data/Products_and_Data_Available/TM).   
 

3.3. UltraCam digital aerial photo 
The Microsoft UltraCam group has been providing the most advance technological UltraCam 
photogrammetric digital aerial mapping cameras since 2004. The UltraCam products offer customers an 
alternative technology compare to using traditional film aerial technology. In this research, the UltraCam 
digital aerial photo was taken on July 17, 2012 with 14  ground resolution at visible and near infrared 
multispectral range. The digital photo was taken by Vexcel Imaging and the camera model is UltraCamXp. 
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Figure 3.4 shows the area of interest in different color composite of UltraCam photo. Table 3.3 indicates 
the description of spatial and spectral information of the UltraCam digital aerial photo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.4: UltraCam digital aerial photo of study area  
A) RGB color composite with 14  ground resolution 
B) NIR color composite with 14  ground resolution 

 

Table  3.3: Description of the spectral bands and ground resolution of UltraCam aerial photo  

Band Number Bandwidth ( ) Ground Resolution 
( ) 

Description of 
Wavelength band 

Band 1 400 – 600 30* Visible (Blue) 
Band 2 480 – 600 30* Visible (Green) 
Band 3 580 – 720 30* Visible (Red) 
Band 4 620 - 1000 30* Near Infra Red 

 
 

 Digital Aerial Photo Pre-processing* 
In order to make an accurate reference, the digital aerial photo was geometrically corrected (orthorectified) 
and georeferenced by the use of ERDAS Imagine and ArcGIS software respectively. The ground control 
points were extracted from the GeoEye satellite image. After orthorectifying the pixel size as ground 
resolution changed from 14  to 30 . 
 

3.4. Meteorological data 
The weather data was collected by the Ghazvin weather station in Iran during a day of August 1, 2011 for 
utilizing the SEBS methodology. Table 3.4 shows the recorded weather data. In this table, time of 
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recording data are based on Greenwich Mean Time (GMT) and the unit of each element such as wind 
speed is , temperature is centigrade, sunshine hours is hours (decimal), radiance is , rainfall 
is , air pressure is  and humidity is shown as percentage. Moreover, the time between 6 to 9 was 
used because of acquiring time of Landsat 5 TM data at 7 a.m. Furthermore, the sign (-) in the table means 
there is no any record at that time. 
 

 
Table  3.4: The ground meteorological data (Source: the Ghazvin weather station in Iran) 

 

Year 

 

Month 

 

Day 

 

Hour 

 

Wind 

Orientation 

 

Wind 

Speed 

 

Maximum 

Temperature 

 

Minimum 

Temperature 

 

Sunshine 

Hours 

 

Rainfall 

 

Humidity 

 

Air 

Pressure 

 

Radiance 

 

2011 

 

8 

 

1 

 

0 

 

60 

 

1 

 

- 

 

- 

 

- 

 

- 

 

25 

 

868.8 

 

- 

 

2011 

 

8 

 

1 

 

3 

 

0 

 

0 

 

- 

 

17 

 

- 

 

- 

 

39 

 

868.8 

 

- 

 

2011 

 

8 

 

1 

 

6 

 

130 

 

3 

 

- 

 

- 

 

- 

 

0 

 

17 

 

868.8 

 

- 

 

2011 

 

8 

 

1 

 

9 

 

100 

 

2 

 

- 

 

- 

 

- 

 

- 

 

10 

 

868.8 

 

- 

 

2011 

 

8 

 

1 

 

12 

 

210 

 

3 

 

- 

 

- 

 

- 

 

- 

 

10 

 

868.8 

 

- 

 

2011 

 

8 

 

1 

 

15 

 

0 

 

0 

 

37.4 

 

- 

 

- 

 

- 

 

20 

 

868.8 

 

- 

 

2011 

 

8 

 

1 

 

18 

 

0 

 

0 

 

- 

 

- 

 

12.7 

 

- 

 

31 

 

868.8 

 

2848 

 

2011 

 

8 

 

1 

 

21 

 

0 

 

0 

 

- 

 

- 

 

- 

 

- 

 

34 

 

868.8 

 

- 

 
 
The Ghazvin weather station is located in the north of the Ghazvin city in Ghazvin province which has 
approximately 17  distance from the study area. The geographical information of the weather station is 
36°15'00" N, 50°30'00" E. 

3.5. Software 
In this study, there were many different softwares utilized for applying the proposed methodology. 
 

 ArcGIS 
ArcGIS is a GIS software that is developed by ESRI as U.S. Supplier Company to provide GIS software. 
ArcGIS tools were employed for co-registering remote sensing datasets and obtaining meaningful results 
in this research. 
 

 ENVI 
ENVI is geospatial image analysis software that contains efficient tools for image processing. In this study 
ENVI was used for preprocessing of remote sensing images, extracting subsets of area of interest, sensor 
calibration, extract basic statistics of training sets from the GeoEye image and calculating input data for 
SEBS such as albedo and emissivity. 
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 ERDAS Imagine 
ERDAS Imagine is a remote sensing and a GIS software package with a raster graphic editor for 
geospatial applications. ERDAS embraces a professional toolbox which is Leica Photogrammetry Suite 
(LPS) to ortho-correct digital aerial photos. 
 

 ILWIS 
ILWIS (Integrated Land and Water Information System) is a vector and raster processing software that is 
developed by faculty ITC, university of Twente. It includes the SEBS tool and all procedure of data 
preprocessing such as atmospheric correction and computes land surface temperature, land surface 
emissivity, land surface albedo and brightness temperature. In the process of running SEBS in this study, 
it is used for atmospheric correction and performing the SEBS using Landsat 5 TM image data and 
integration of ground meteorological data. 
 

 R Software 
R software (CRAN) is an open source programming language for calculating statistics and creating 
different graphics. In this research it is used for executing SRM with MRF on the GeoEye satellite image 
and assessing the result using the UltraCam digital aerial photo. 
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4. METHODS 

4.1. Super resolution mapping based on Markov random field 
Detecting rows and individual plants in industrial agricultural fields from RS data requires spatial and 
spectral information. Traditional classification methods such as Maximum Likelihood Classification 
(MLC) as a pixel-based method cannot consider spatial characteristics of RS data and just consider the 
spectral behaviour of multispectral bands. In this research, SRM based on MRF as a contextual and 
probabilistic classification method (Tso and Mather, 2009) applied in high resolution image to identifying 
rows and extracting individual plants in the plant scale vineyard for supporting precision agriculture 
applications. Super Resolution Mapping (SRM) increases the resolution of the classification result with 
respect to the resolution of the input image. The average of pixel values of the finer resolution image is 
the same as pixels inside the coarse resolution pixels (Tatem et al., 2001). By using SRM, pixels in the 
coarse resolution image partitioned to finer pixels to assigning class labels at the finer resolution image 
respectively with maximum spatial dependency (Atkinson, 2009). Markov Random Field (MRF) as a kind 
of probability theory models the spatial dependency to each pixel at the finer resolution image regarding 
statistical correlation of neighboring pixels (Kasetkasem et al., 2005). 
Let  be a coarse resolution image and be the classified image from fine resolution image and let be 
the scale factor between  and fine resolution image. The number of pixels in the fine resolution image 
includes  dimension concerning the number of pixels have  dimension at the coarser 
resolution image. Therefore, each pixel in the coarse resolution image contains  number of pixels in the 
finer resolution image. It is assumed that the finer spatial resolution image comprises pure pixels compare 
to mixed pixels which occupy at the coarser spatial resolution image (Kasetkasem et al., 2005). Hence, 
each pixel in the coarse resolution image can include more than one class. Each pixel in the fine resolution 
image represents as ,   is identified as the pixels in the coarse resolution image (i.e., 

), and , as the included pixels in the fine resolution image. Let  , be the each pixel in 
the coarse resolution image as stated earlier. Finally the corresponding relation between  and  represents 
as a model which shows the degradation of each pixel of  :  

 
                                                                                                                     (3.1)                       

 
By down-scaling each pixel of the coarse resolution image, the initial SRM map will be provided as a scale 
factor , in the fine resolution image which are sub-pixels. During the down-scaling, the randomly labels 
assigned to each of these sub-pixels. However, there are no any correct class labels to all the sub-pixels. 
So, it is necessary to propose a method which renews the class level of sub-pixel correctly in initial SRM 
(Kasetkasem et al., 2005). In this research, MRF as a contextual classification method was utilized for 
finding the spatial dependency of each sub-pixel that produced from SRM. In this chapter, the following 
sections present the combination of SRM and MRF method. 
 

4.1.1. Neighbourhood system  
Let as a site which contains  number in which each random variable  takes a label 
from label set . Then  can be identified as a set of sites (Li, 2009): 
 

                                                                                                                                    (3.2)
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The image  with pixel  and  dimension a rectangular lattice which is spatially regular is written 
as: 
 

                                                                                                                 (3.3)
 

The sites in  are corresponding to each other neighbours regarding a neighbourhood system. The 
neighbourhood system for  is defined as: 
 

                                                                                                                               (3.4)
 

where  is the set of sites which neighboring . The relationship between neighbors contains the below 
properties: 
 
1) A site is not neighboring to itself:  
2) The relationship between the neighbors is mutual:  
  
Regarding the neighbourhood system in image analysis,  Li (2009) identified different type of ordering of 
neighbours. The first order neighbours of a pixel contains four pixels that share the border with pixel . 
The second order neighbours of a pixel include four pixels that share corner boundaries with a pixel , 
additionally. The higher order neighbours of a pixel can be extended in a similar way (Tso and Mather, 
2009). 

 
 
 
 
 
 
 
 
 
 

 
Figure  4.1:  Different orders of neighbourhood system on the lattice of regular site r, Source: (Tso and Mather, 2009) 

 
The pixels of two-dimensional image  include the sites as a rectangular lattice. The site  
contains four nearest neighbours as a first order neighboring system (Tso and Mather, 2009). There are 
three neighbours at the boundary side of image which consist of two neighbours at the corners. The scale 
factor in SRM as  will be affected on neighbourhood system (Figure 4.1). Let  as a awindow size, so 
the relation between scale factor and window size can be calculated as (Kassaye, 2006): 
 

                                                                                                                    (3.5) 
  
 

4.1.2. Markov Random Field and Gibbs Random Field  
During SRM, a contextual classification method which is Markov Random Field (MRF) is applied to 
overcoming mixed pixels with respect to both multispectral and panchromatic images as the spectral and 
spatial contextual information. There are various random field models which contain several methods of 
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labelling random variables. MRF is a model that takes the label set to the random variables from SRM 
with respect to spatial dependency of each pixel (Tso and Mather, 2009). 
Let  be a set of DN value with respect to each of pixel. The group  is called random field. The label set 

 is based on number of classes so, the label set  or considering detecting 
boundary, the label set  assigns a label to each value of  on site . 
A random field regarding the neighbourhood system is a Markov Random Field (MRF) and it has the 
three following properties with respect to probability density function (Tso and Mather, 2009): 
 
1) Positivity:  for all possible configurations of . 
2) Markovianity: , and 
3) Homogeneity:  is the same for all sites  
 
where  is the set difference that means all the pixels in the set  except ,  identified the set of 
labels at the sites in , and  is the neighbours of site . 
On the positivity as the first property of MRF,  can be calculated in practice by local conditional 
properties for all random fields. The second property which is markovianity means that labelling of a site  
is just depends on its neighboring sites . The third property is homogeneity which means the 
conditional property of pixel  given the labels from the neighboring pixels is not related to the position 
of site  in . 
A Gibbs Random Field (GRF) is defined in terms of global properties unlike the MRF that provides a 
local property. In MRF, the label classes to each pixel is based on its neighbours whereas, in GRF the label 
class that assigned to each pixel is affected by all other pixels. Considering the joint distribution of classes 
for all pixels, the unique theory of GRF can be used for every MRF as a MRF-GRF equivalence (Tso and 
Mather, 2009). The probability density function in GRF is written as: 
 
 

                                                                                                                    (3.6) 
 

where  is energy function,  is a constant termed temperature and  is partition function which is 
written as: 
 
 

                                                                                                                         (3.7) 
 

where summation is carried over all possible configurations of . as a energy function in GRF 
contains number of cliques  which are subsets. With respect to equation (3.6), it is obvious that by 
maximizing  the energy function is minimized. The energy function is written as: 
 

                                                                                                                          (3.8) 
 

where is potential function regarding clique . 
 
In traditional classification techniques, label class is assigned to each pixel with respect to pixel value as a 
DN (Digital Number) value so, there is no any consideration along the contextual information. In MRF, a 
context is a prior information which be modelled by MRF. Furthermore, the Bayesian formula can utilize 
to construct the global energy. The conditional probability for Bayesian formula can be written as: 
 

                                                                                                               (3.9) 
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The posterior energy is defined: 
 

                                                                                                          (3.10) 
 
 

where  is posterior energy,  is conditional energy and  is prior energy. 
 

4.1.3. Super Resolution Mapping 
SRM used energy function as conditional probabilities of multispectral and panchromatic images to 
provide optimum result of labeling classes as canopy and soil. The method is applied in the GeoEye 
satellite image to providing a 0.5  resolution grape tree map. In this method, firstly, SRM provides a 
classified map at the finer spatial resolution from input image. During this process, because of mixed 
pixels the class label of each finer pixel is not clear. 
Initial SRM of finer image  classified with MRF neighbouring and that image get class  as a label. 

 is prior probability and conditional probability is  in SR map. However,  is posterior 
probability. According to probability function energy function in GRF in Equation 3.6: 
 
 

                                                                                                                       (3.11) 
 
 

                                                                                                                 (3.12) 
 

  
                                                                                                                 (3.13) 

 
 

                                                                                                                 (3.14) 
 

where  is constant called temperature,  is the multispectral image,   is the super resolution map,   is 
the panchromatic image, ,  are normalization independent constant of ,   is prior 
energy, ,   and  are conditional energies functions. According to equation 3.6, by 
eliminating independent terms as , the energy function is written as: 
 

                                                    (3.15) 
 

where  is a smoothness parameter ( ) that provides a balance for contribution of prior and 
conditional energy functions.  as a smoothness parameter of panchromatic images ( ) 
provides the balance between two conditional energy between multispectral and panchromatic images of 
the GeoEye respectively (Ardila Lopez, 2012). 
 

 Simulated annealing 
When the posterior energy and optimized smoothness parameters were determined, an appropriate class 
label defines to  each pixel for estimating Maximum a Posterior (MAP) by means of minimizing the 
posterior energy. It means that the standard against the pixel labelling is to find the MAP (Tso and 
Mather, 2009). Tso and Mather (2009) pointed out Simulated Annealing (SA) compare to other algorithms 
contains lowest energy, highest classification accuracy and it is very time consuming. In this research, the 
SA algorithm applied to find the MAP solution. SA is one of the stochastic algorithm based on probability 
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statistics and random numbers. This algorithm includes the annealing parameters which are initial 
temperature  and updating temperature  to control the randomness. Higher temperature means 
high randomness and low temperature denotes less temperature which means the high temperature 
enlarge the probability of labelling pixels by means of replacing new class and the energy of new class is 
higher (Kassaye, 2006). It means, from high temperature to low temperature the system is slowly cooled 
and frozen that means this process is repeated until the system becomes frozen (i.e. ). The iteration 
is repeated three times for each temperature update value and if the label of the pixel is not changed 
during the iteration the algorithm allow to finish the process (Tso and Mather, 2009). 
 

 Row-based approach 
To test the proposed methods on the prepared remote sensing data sets, the area of interest is divided into 
28 rows which has the shared coverage in both GeoEye satellite image and UltraCam digital aerial photo 
(Figure 4.2). Moreover, the SRM grid is tiled using georeferencing to allocate the pixels of SRM and the 
images. 
 
 
 

 
 
 
 
 
 
 

 
Figure  4.2: Divided rows in A) GIS layer, B) GeoEye image, C) UltraCam digital aerial photo 

 
 Plant-based approach 

For preparing a map of individual plants, visual interpretation based on the UltraCam aerial image and the 
panchromatic image of Geoeye applied to make a block for each plant and create a reference data for 
evaluating the result (Figure 4.3). It is important to note that this work is not possible to perform for some 
rows and plants. Because, some trees in rows are not pruned and there is an interlock between trees. 
 
 
 
 
 
 
 
 

 
Figure  4.3: Creating blocks for each plant A) GeoEye panchromatic image  B) Reference polygons in the aerial photo 

4.2. Crop water requirement 
EvapoTranspiration (ET) comprises to two simultaneous processes which are evaporation and 
transpiration. Evaporation is the process that water is lost from the soil surface and transpiration is 
occupied when the water is removed from the wet vegetation (Allen et al., 1998). There are two different 
prospects of evapotranspiration which are Actual ET (AET) and Potential ET (PET). AET is the process 
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that water is eliminated from the surface with two separate processes which are evaporation and 
transpiration and, PET is the capability of the atmosphere to get rid of the water from the surface in 
consequence of evaporation and transpiration processes (Pidwirny, 2006). In agricultural irrigation 
management systems, it is important to distinguish how much additional water have needed for the crops 
to maximization of crop productivity. Crop water Requirement (CWR) identified by two important 
mentioned parameters as AET and PET (Pidwirny, 2006): 
 
 

                                                                                                                          (3.16) 
 

 
When the amount of AET is greater than PET, it means that the crop is irrigated extremely and, when the 
AET is less than PET there is water stress on the crop and it requires the water supplemental. 

 
 

4.2.1. Retrieved actual daily ET using SEBS model 
The Surface Energy Balance System (SEBS) is a remote sensing model for assessing the daily 
EvapoTranspiration per pixel based on the resolution of the thermal band of image data (Su, 2002). SEBS 
utilizes satellite earth observation data such as MODIS, ASTER and Landsat satellite images with a 
combination of ground meteorological data as inputs for calculating the surface energy balance. Generally, 
SEBS requires three input sets of information (Figure 4.4): 
 
1) The first set comprises of land surface emissivity, albedo, temperature and Normalized 
DiferenceVegetation Index (NDVI). These inputs can be derived from remote sensing data. 
2) The second set contains air pressure, humidity, temperature and wind speed at reference height. The 
reference height is the measurement height like weather stations. 
3) The third data set contains downward shortwave radiation and downward longwave radiation which 
can be measured directly or used output model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure  4.4: Three input data sets for the SEBS 



EXPLORING THE APPLICATION OF SEBS FOR PRECISION AGRICULTURE: PLANT SCALE VINEYARD 

21 

The result of actual evapotranspiration is very sensitive to temperature, wind speed, vapour pressure and 
shortwave and longwave radiations (Aghdasi, 2010). 
 
The surface energy balance is written as: 
 

                                                                                                                           (3.17) 
 
where  is the net radiation flux,  is the sensible heat flux,  is the latent heat flux and  is the soil 
surface heat flux. The unit of each term of the energy balance system is .   
 
In this research, the SEBS model is applied to the Landsat 5 TM data to evaluate the daily ET and its 
applicability within the SRM. First, the raw data of each band from Landsat 5 TM converted to radiance 
and reflectance. Then, the SMAC (Simplified Method in the Atmospheric Correction) method (Rahman 
and Dedieu, 1994) was used for atmospheric correction of the Landsat 5 TM data. The Land Surface 
Temperature (LST) is taken from the thermal band of Landsat 5 TM using the method by (Sobrino et al., 
2004). The Normalized difference Vegetation Index (NDVI) (Carlson and Ripley, 1997) is extracted from 
from red band and Near Infrared band of Landsat 5 TM.  
 
The surface net radiation flux  is estimated by incorporating of the retrieved surface emissivity, land 
surface temperature  and albedo from the Landsat 5 TM data and by the use of longwave and the 
surface solar radiation and surface thermal radiation downwards from the ECMWF (http://data-
portal.ecmwf.int/data/d/interim_full_daily) data portal. The net radiation flux is estimated as: 

 
                                                                                          (3.18) 

 
where  is albedo,  is the downward solar radiation,  is the downward longwave radiation, is 
the surface emissivity,  is the Stefan Boltzmann constant ( ) and  is the air 
temperature at reference height ( ). 
The surface albedo for shortwave radiation ( ) is derived from narrowband to broadband convertion by 
Liang (Liang, 2001). The five bands of Landsat 5 TM is appropriate for calculating the surface albedo. The 
equation is written as: 

 
0.373                                               (3.19) 

 
where and  are the surface reflectance bands which are derived from the Landsat 5 TM 
bands 1, 3, 4, 5 and 7. The Land Surface Emissivity (LSE) is estimated from the the NDVI method by 
Sobrino (Sobrino et al., 2004) from the visible and near infrared bands of Landsat 5 TM regarding type of 
mixed pixels as the pixel depending on the NDVI values from the atmospheric correction.. 
 
The soil heat flux equation is: 
 

                                                                                                     (3.20) 
 
 
where  is the fractional canopy coverage,   is an empirical constant that related to the ratio of 
soil heat flux to net radiation for full vegetation canopy and  is for bare soil (Su, 2002). 
The latent heat flux can be written as: 
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                                                                                                                             (3.21) 
 

Finally, the daily actual ET can be estimated as (Su, 2002): 
 

                                                                                                (3.22) 
 

where  is the daily actual EvapoTranspiration ,  is the daily average of net 
radiation,  is the latent heat of vaporization ,  is the density 
of water . In addition, the soil heat flux  is normally assumed for 24 hours. 
 

4.2.2. Estimating potential ET 
In this study, it is assumed that the largest value of actual ET from the SEBS equals potential ET. Because 
of the absence of retrieving potential ET using RS data. There are some methods for determining 
potential ET with respect to meteorological data. One of the most famous methods is based on FAO 
Penman-Monteith which is described in section 4.4.2 to compare with the assumed maximum value using 
actual ET from the SEBS. 

4.3. Image fusion for integration of actual ET and NDVI 
Laben and Brower (2000) were developed the Gram-Schmidt Spectral Sharpening (GS) method. This 
method has been executed only in ENVI (Environment for Visualizing Image) software by  (Ha et 
al., 2012) 

In this research, GS method was applied to resample the result of AET from the SEBS as the lower 
resolution image with 30  spatial resolution using NDVI extracted from the GeoEye satellite image as 
the high resolution data with 50  spatial ground resolution. In this study, it is assumed that the NDVI 
as high resolution image includes the vegetations which are contain higher AET estimated from the low 
resolution image which is daily AET from the SEBS. It means the pixel area which has the soil property is 
determined as the lower daily AET. 
The GS method contains four steps in ENVI (Laben and Brower, 2000). In step 1, a coarser spatial 
resolution image is simulated and GS transformation is performed at step 2 on the simulated coarser 
resolution image. In step 3, the statistical information at finer spatial resolution image is adjusted 
compared to statistical information of the first transform GS to provide an adapted finer resolution image. 
In the final step, the inverse GS transformation is applied and then provide the enhanced spatial 
resolution image. 
  

4.4. Validation 
To decrease the uncertainty from the result of ET that obtained from the SEBS, the FAO Penman-
Monteith methodology is used to estimate the the daily ET. Moreover, the result of SRM from each row 
and individual plants were evaluated by the use of UltraCam digital area photo and the panchromatic 
image of the GeoEye satellite image respectively. 
 

4.4.1. Generating reference data for validation of SRM 
For evaluating the result of SRM, a reference map as the rows and individual plants used to assess the 
result of SRM. The UltraCam digital aerial photo and the panchromatic band of GeoEye satellite image 
utilized for creating the reference map for selecting rows and individual plants respectively. Figure 4.5 
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illustrates the reference polygons that are taken from the UltraCam aerial photo with respect to the 
panchromatic image of the GeoEye per row. This reference data applied to evaluate the result of SRM.  
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure  4.5: Reference polygons in digital aerial photo for assessing the result of SRM 

 
After classification of SRM result, it is necessary to assess the accuracy of classification with respect to the 
reference data. The accuracy means how many pixels are classified in inside the polygon as reference 
considering the total classified pixels. Kappa coefficient is one the quality measurement that can be 
derived from the confusion matrix. Confusion matrix or error matrix represents user and producer 
accuracy. Producer accuracy means the relation between number of correct classified pixels in a polygon 
as the reference map and total number of the classified pixels. User accuracy is the probability of classified 
pixel that denotes information of class labels on the reference. Kappa coefficient indicates the overall 
agreement between reference polygons and classified map. 
 
The range of kappa coefficient is between 0 and 1. Landis and Koch (1977) pointed out the relative 
strength of agreement for kappa coefficient. If the kappa coefficient equals 1 it means a perfect agreement 
with polygons as reference data. The value of 0.6 or higher means a substantial and good correlation. In 
this research, the result will be assessed in terms of kappa coefficient which measured the accuracy. 
 

4.4.2. Determining reference ET based on FAO Penman-Monteith  
The uncertainty of estimated  actual ET from the SEBS is generally comparable to ground measured ET 
(Su, 2002). Because of the absence of in-situ data, there is a standard method for determining reference 
crop EvapoTranspiration ( ) considering FAO Penman-Monteith equation (Allen et al., 1998) by the 
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use of meteorological data. The amount of ET based on the FAO Penman-Monteith methodology is 
written as: 
 

                                                                                                                                  (3.23) 
 
where  is the crop evapotranspiration under standard condition, is reference crop 
evapotranspiration for grass as the reference crop and  is the coefficient factor for the well watered 
crop in the optimal agronomic condition. The  as a single crop coefficient of grape tree was chosen at 
middle season (based on Table 12 at FAO-56 (Allen et al., 1998)). The amount of  is determined as: 
 
 

                                                                                                    (3.24) 
 
 
where  is the net radiation at the crop surface ( ),  is the soil heat flux density 
( ),  is the air temperature at 2  height ( ),  is the wind speed at 2  height 
( ),  is the saturation vapour pressure ( ),  is the actual vapour pressure ( ),  is 
the saturation vapour pressure deficit ( ),  is the slope vapour pressure curve ( ) and  is the 
psychrometric constant ( ). 
In this study, because of the lack of potential ET from RS data, the maximum value of actual ET from the 
SEBS was assumed as the potential ET which is comparable with the amount of . 
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5. RESULTS 

5.1. SRM result from the GeoEye satellite image 
First of all, the result of SRM from the GeoEye image presents as a subset for detecting the rows. Then, 
some rows are taken as the row-based approach. Finally, with respect to the reference data and 
panchromatic image of the Geoye some individual plants extracted from a row. 
 

5.1.1. Detecting rows 
In this part, a subset of area of interest is taken from the GeoEye image which is included three rows. The 
aim of this part is to validate the result of SRM regarding the different parameter estimation. Despite the 
fact that we are interested in row detection so, two land cover classes as the canopy and soil are identified 
considering control the spectral mixing and also class mean and covariance matrices are estimated 
subsequently. These classes are recognized using feature space and visual interpretation. After parameter 
optimization, the best parameters are taken for detecting each row as a row-based and plant-based 
approaches. The scale factor equals four because, the aim of SRM result is to achieving finer spatial 
resolution image at 0.5  resolution. This subset includes three rows from row number 17 to row number 
19. To apply the SRM based MRF the best parameter values are chosen to maximize the accuracy of row 
detection regarding the energy function (Equation 3.15). Table 5.1 indicates the best optimal parameters 
with respect to the high quality of row detection in the optimal SRM result obtained as . 
 

Table  5.1: Optimum parameters of SRM based MRF 

    
3 0.9 0.9 0.4 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure  5.1: MLC result of panchromatic and multispectral images of the GeoEye data 
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Figure 5.1 illustrates the result of Maximum Likelihood Classification (MLC) with kappa 0.61.  is initial 
temperature and  is a parameter for updating temperature in the simulated annealing algorithm. By 
raising the updating temperature value, the amount of iterations for assigning class labels is increased. 
Tolpekin and Stein (2009) recommended 0.9 for updating temperature because of time consuming and 
lowest energy in the SA algorithm that leads to fast classification computation. Based on agreement of 
accuracy, Lopez (2012) observed that the best quality of optimum SRM result based on tuning subset is 
reached with smoothness parameters which are 0.75 and 0.3 for multispectral and panchromatic images 
respectively and the kappa for these parameters reached 0.69. Regarding Table 5.1 and selecting 
smoothness parameters 0.9 for multispectral and 0.4 for panchromatic images, we observed the highest 
quality of agreement which is 0.72 as kappa coefficient. With these optimum parameters (Table 5.1), the 
lowest energy and optimum number of iterations are observed (Figure 5.2).  
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5.2: The result of SRM based MRF for the subset with S=4, =3, =0.9, λ=0.9 and =0.4 

 
 

5.1.2. Rows within the field 
After row detection in section 5.1.1, 10 rows from number 11 to number 21 were selected for applying 
SRM. For performing SRM, the optimum parameters from section 5.1.1 utilized to identify each row. 
Figure 5.3 illustrates the optimized result of SRM per row.  
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Figure  5.3: Result of SRM based MRF from row number 11 to row number 21 

 
 
In this approach, each row is the input data as coarse resolution image. Based on optimum parameters in  
section 5.1.1, they are evaluated with kappa coefficient and then the number of canopy pixels is extracted 
per row for integration of using the SEBS. 
 

5.1.3. Plants within the row 
Three individual plants as reference polygons considered based on the proposed methodology in section 
4.1.3. Figure 5.4 displays the result of initial and optimized SRM for three individual plants in row number 
16. The parameters were chosen like the optimum parameters in section 4.1.1 for identifying these plants. 
The amount of  for three trees obtained as 0.64, 0.60 and 0.71 respectively. 
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Figure  5.4: The result of SRM for individual plants in row number 16 

 
Figure 5.4 shows that the optimum result of SRM include the smooth pixels in each individual plant with 
respect to the result of initial SRM. From tree number 1, the initial SRM took 18 pixels as canopy class, 
but the optimal SRM after SA consider 9 pixels. For tree number 2 and 3 these amount of pixels are from 
17 to 12 and form 22 to 17 respectively. 
 

5.2. Daily ET result from the Landsat 5 TM satellite image 
The result of actual evapotranspiration around the area of interest from the RS data and SEBS is indicated 
in Figure 5.5. The SEBS calculates the AET per pixel and the resolution of each pixel originates from the 
resolution of LST which estimated by Landsat 5 TM thermal infrared band. It means the resolution of 
AET equals 30  per pixel with respect to the resolution of the LST. 
 
The retrieval result of actual daily ET from the SEBS as a maximum value is 5.76  around the 
area of interested and it was assumed as the potential ET. This value is compared to the amount of 
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potential ET which is 5.71  based on the FAO Penman-Monteith methodology in section 
4.4.2.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  5.5: The result of retrieval actual daily ET based on the SEBS around the area of interest 

 

5.3. Image fusion between actual ET and NDVI maps 
In this part, the Gram-Schmidt (GS) method utilized for applying image fusion between an actual ET 
image from the SEBS and NDVI map of the GeoEye image. The image which contains the actual ET 
with 30 meter resolution is indicated as a coarse resolution image and the NDVI map with 0.5  
resolution is considered as a high resolution image. It is assumed that the NDVI as vegetation index which 
shows the live vegetations can be fused with the actual ET image in terms of vegetations include the 
higher actual ET and the rest of the area which covered by soil embraces the lower actual ET. With this 
assumption, it could be possible to perform the image fusion. Figure 5.6 shows the result of image fusion 
using the GS method. 
 
 
 

 
 
 
 
 
 

 
Figure  5.6: Result of (C) image fusion between (B) actual ET image and (A) NDVI image using the GS method 
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5.4. Application of SRM and SEBS for precision agriculture 
The aim of this part is to show the application of SRM for precision agriculture. First of all, the relation 
between SRM result and actual ET per row and individual plant displays. Then the specification of NDVI 
map as vegetation index indicates for rows and individual plants. 
 

5.4.1. Allocating the ET value per rows and individual plants 
In this part, the result of SRM with 0.5  resolution per row and individual plants allocating to fused 
image which includes the actual ET with 0.5  resolution from section 5.3. Figure 5.7 illustrates the actual 
ET in a row number 18 and three individual plants in row number 16 respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5.7: SRM result of (A) a row and (B) three individual plants for allocating actual ET 

 
Table 5.2 indicates the result of actual ET for row number 18 and three individual plants in row number 
16 respectively. For assigning actual ET for each row or individual plant the mean value per pixels was 
considered. 
 

Table  5.2: Result of actual ET in row number 18 and three individual plants in row number in row 16 

Row number and Individual Plants Actual ET 
18 5.34 

16_1 5.29 
16_2 5.33 
16_3 5.36 

 

5.4.2. Specifying the NDVI per rows and individual plants 
It is useful for farmers who want to know the information regarding the health of each plant. Because, 
NDVI as a vegetation index required to control at any agricultural field. Hence, by the use of SRM result 
per row and plant scale and combining that result with 0.5  resolution per pixel and the NDVI map with 
50  resolution, every farmer will be able to control the health of vegetations. Figure 5.8 displays the 
combination of SRM and the NDVI per row and individual plants. For allocating NDVI value for each 
row and plants, the mean value was considered.  
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Figure  5.8: Combination of SRM result with NDVI for row number 18 and three plants of row number 16 

 
Table  5.3: NDVI value for row number 18 and three individual plants in row number 16 

Row number and Individual Plants NDVI 
18 0.49 

16_1 0.49 
16_2 0.49 
16_3 0.50 
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6. DISCUSSION 

In this chapter, the result of SRM based MRF and actual ET from the SEBS in chapter 5 addresses and 
then the applicability of using SRM and the SEBS is discussed in detail to support the crop water 
requirement in precision agriculture. 
For implementing SRM based MRF, the set of training pixels as the canopy and soil are chosen in both 
multispectral and panchromatic bands. There was a limitation for selecting land cover classes in the 
multispectral image of the GeoEye; because of the absence of variation between soil and canopy pixels. 
So, for choosing training pixels as the soil, an area close to the area of interest was selected. Hence, the 
result of Jeffery-Matusita spectral class separability was confirmed for the two defined classes. Then, for 
the input image in SRM we decided to select an appropriate scale factor value (Tolpekin and Stein, 2009). 
The scale factor identifies the neighbourhood window size based on Equation 3.5. In this study, the scale 
factor equals four because of integration between the SEBS and SRM. Based on the scale factor, each 
pixel of SRM result has 0.5  spatial resolution. Moreover, for detecting rows in the area of interest, a 
small subset of three rows was chosen and based on  indicator that was presented by Lopez (2012) 
optimum smoothness parameters of SRM selected. There are other parameters for SRM that demonstrates 
the quality of SRM as smoothness ( ) parameters, class separability (Tolpekin and Stein, 2009), initial 
temperature ( ) and parmeter for updating temperature ( ) (Sepehri, 2011). The initial SRM obtained 
class labels randomly per pixel and because of the noisy result, smoothness parameters have a main role to 
provide a smoother optimum SRM result. Regarding Equation 3.15 in section 4.1.3, smoothness 
parameter controls the relation between likelihood and prior energy for energy minimization and 
determine a balance in the energy equation (Equation 3.15). Tolpekin and Stein (2009) pointed out that 
the optimum smoothness parameter for different scale factor in synthetic image is not the same. Lopez 
(2012) observed that the optimum  and  for the best quality in real data are 0.75 and 0.3 respectively. 
In this research, the optimum value of smoothness parameters based on the maximum kappa coefficient 
value which is 0.72 estimated as 0.9 and 0.4 for detecting rows. If  equals zero, it means that the 
information of panchromatic image is ignored (Ardila Lopez, 2012). For assigning class labels to each 
pixel, simulated annealing was applied (section 4.1.3) during the iterations until getting frozen point. Initial 
temperature ( ) controls the simulated annealing algorithm. Sepehri (2011) tested values of 0 and 3 for 
initial temperature ( ) and observed that selecting  leads to the result of initial SRM randomly 
reduce the iteration and using 0 value for initial SRM cannot be selected randomly in the synthetic image. 
In our results the initial temperature equals 3 and  is 0.9. Choosing the updating temperature about 
0.9 updated the pixels and changed their classes during the 63 iterations compare to  by 174 
iterations took the long time computation. Kassaye (2006) recommended values 0.8 and 0.9 for updating 
temperature as optimal values for simple and complex scene respectively. These parameters were 
considered for applying SRM based MRF for row-based approach in section 4.1.3. The important reason 
in this study for achieving low accuracy is due to the reference data, which is the UltraCam digital aerial 
photo. Because, the time of acquisition of the GeoEye image and aerial photo is more than a year and 
some changing during the growing season could be effected on selecting an appropriate boundary for each 
row and individual plants. Lopez (2012) obtained the maximum kappa for four subsets of urban trees as 
the optimal SRM result which are 0.73, 0.67, 0.68 and 0.54. We observed maximum kappa which are 0.64, 
0.60 and 0.71 in section 5.1.3 for three subsets of individual plants respectively. After a row-based 
approach and extracting individual plants, the plants and rows were extracted to linking  the SRM result 
and actual ET for supporting precision agriculture. 
 
The result of actual ET from the RS data was obtained using SEBS around the area of interest. Ma 
(2012b) compared the result of actual ET from Landsat 5 TM and the SEBS with in-situ measurements 
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and observed  a small difference between them. In this study, because of the lack of in-situ data we could 
not compare the result of actual ET to decrease the uncertainty of the SEBS. Just a maximum value of the 
actual ET around the area of interest was assumed as the potential ET because of the absence of retrieving 
potential ET from the RS data. The maximum actual ET value equals 5.76  and it was 
allocated as a potential ET. On the other hand, the potential ET was calculated based on the Penman-
Monteith methodology in section 4.4.2 and using ground meteorological data and it equals 5.71 

. The difference between these two values is small. So, the maximum value of actual ET using 
the SEBS was taken for potential ET for estimating crop water requirements for each row and individual 
plants. Water requirement of agricultural field is not always fixed and deterministic. The water stress at any 
particular position in the field or region shows variations. Characterization of variability depends on 
temporal, spatial and weather-related categories (Vintila et al., 2012). Besides differences in weather 
information, there is an effect on the variation on result of actual ET during the growing season. In many 
production situations, such as grape trees in a vineyard area only one type of crop is cultivated. At each 
crop growing season there is variation in temperature, solar radiation, humidity and other weather data 
whereas estimation of actual evapotranspiration information is sensitive on these data. 
 

 Integration of SRM and SEBS to support precision agriculture 
An important problem for linking the SEBS and SRM result is connecting the resolution of RS images. 
The Geoeye  provides high spatial resolution satellite images and on the other hand, Landsat 5 TM 
produces medium spatial resolution images. To overcome this problem, image fusion using Gram-
Schmidt (GS) method applied to increase the spatial resolution of the actual ET image from 30  
resolution to 0.5  spatial resolution equivalent to the resolution of the SRM result. For performing this 
method, the NDVI image from pansharpened GeoEye image utilized  for down-scaling. It was assumed 
that vegetation in the NDVI map represents a higher actual ET with respect to the soil, with smaller actual 
ET. 
The crop water requirement is identified in section 4.2. If the actual ET value exceeds the potential ET 
then, this means that the crop is irrigated. But, if the potential ET value exceeds the actual ET, there is 
water stress for crops. Based on Table 5.2, for row number 18 and individual plants in row 16 the amount 
of actual ET is 5.34, 5.29, 5.33 and 5.36  respectively. It means that all of the grape trees in 
row number 18 and individual plants in row number 16 have an actual ET below the potential ET which 
is 5.76 . So, there is water stress on these crops and plants have to be irrigated e.g. using 
irrigation network. 
 

 End product to support the irrigation networks and precision agriculture 
 
Precision agriculture aims at providing management strategy from multiple sources to support the decision 
makers and farm managers with crop production (Oliver, 2010) using advanced technologies in Geomatic 
science such as integration RS, GIS and GPS data. 
In this study, the water requirement was the main issue for farmers and decision makers. Decision maker 
or the farmer who wants to make a plan or strategy for irrigation networks of agricultural fields can use 
the applicability of RS data by running the SEBS on the basis of SRM. This product helps farmers and 
decision makers to decide on the amount of water requirements to maximize the cost benefit ratio of crop 
productivity. The application of using the SEBS on the basis of SRM provides the crop water requirement 
at the plant scale vineyard to support precision agriculture. This product provides a map of actual 
evapotranspiration and NDVI per row and plants to develop the farm management strategies on irrigation 
networks. It means that farmer and decision makers can utilize these maps per row or individual plants to 
assess the crop stress using NDVI and crop water requirement by the use of the actual evapotranspiration 
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map. At the end, they can utilize a strategy to how to optionally irrigate the area and select those irrigation 
methods that are appropriate to use and to make a plan for fertilization based on the NDVI map. 
 
 

 Limitations 
 

In this research, limitations undoubtedly exist. The below list shows several shortcoming limitations 
during this study: 
 

 Lack of ASTER image (ASTER SWIR data acquired since April 2008 are not usable) for the 
possibility of comparing retrieval actual ET from different satellite resolution and different 
sensors. 

 
 Absence of in-situ data for the retrieval actual ET result validation. 

 
 Lack of variation in the multispectral bands of the GeoEye image for taking training pixels. 

 
 Absence of complete weather information near the study area for meteorological data using the 

SEBS. 
 

 No possibility of field works to evaluate the observations 
 

 Absence of buildings around the field regarding taking ground control points for georeferencing 
the UltraCam digital aerial photo 

 
 Different time of acquiring between the GeoEye and Ultracam aerial photo for creating the 

reference data 
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7. CONCLUSION AND RECOMMENDATIONS 

The main objective of this study is to explore the possibility of assessing the crop water requirement using 
SRM and the application of SEBS. It includes the following sub-objectives: 
 

1. To estimate the actual and potential ET at plant scale vineyard using SRM and the application of 
SEBS. 

2. To assess applicability of integrated the SEBS and SRM. 
3. To determine the quantity of water requirement at plant scale using fusion technique. 

 
In order to address the objectives of this research, five research questions were formulated. Several 
methods carried out using RS data sets regarding to answer the posed questions. In chapter 5, the 
achieved results presented and in chapter 6, the results were discussed. In this chapter, we present a 
conclusion of this research on the basis of the perspective of the research questions. Then, limitation of 
the research will be presented and regarding the findings during the research some recommendations will 
be given for further research.  

7.1. Conclusion 
This study was undertaken to explore the possibility of integration using the SEBS and SRM for assessing 
the crop water requirement at plant scale. In this section, the research questions and corresponding 
answers are addressed: 
 
1. Which satellite images are appropriate as spatial resolution to support SRM for extracting information 
on individual plants? 
Detection of rows in the field and extracting information on individual grape trees in vineyard requires the 
use of high resolution images. The reason is that SRM based MRF uses information of both spatial and 
spectral of RS data to assign class labels to the pixels. There is spatial and spectral variation that can be 
obtained from low and medium satellite images useable at the plant scale. 
 
2. What could be the role of SRM at plant scale information for vineyard? 
Traditional classification methods consider spectral information of images. SRM helps to increase the 
resolution of the classification result obtained from a coarse resolution input image. MRF as a contextual 
classification method considers both spectral and spatial information data to deal with mixed pixels. Using 
SRM leads to a smoother result as compared to the use of classifiers, like the k-NN or maximum 
likelihood classifiers.  
 
3. How to extract information of individual plants at vineyard using SRM? 
For extracting information on individual plants, each plant was extracted as a block in the row by using 
visual interpretation and used as input to a coarse resolution image for performing SRM. The digital aerial 
photo and the panchromatic image of satellite images were used to ensure that each block contained one 
plant. Then, with SRM based MRF the optimum SRM result of plants was observed. Furthermore, the 
quality of agreement was assessed using kappa coefficient. 
 
4. How to validate the result of SRM? 
To decrease the uncertainty, the result of optimum SRM for each row and individual plant were evaluated 
using digital aerial photo with respect to the panchromatic image of the GeoEye image by creating the 



EXPLORING THE APPLICATION OF SEBS FOR PRECISION AGRICULTURE: PLANT SCALE VINEYARD 

38 

reference map. For assessing the SRM result, we used kappa coefficient that denotes the overall accuracy 
between a classified SR map and a reference polygon. 
 
5. How to integrate the SEBS and SRM? 
We applied the Gram-Schmidt image fusion for retrieval of actual ET using the SEBS with 30  
resolution as the low resolution image and a NDVI map of the GeoEye image with 0.5  resolution as 
the high resolution image. It was assumed that the NDVI image reflects that vegetation that has a higher 
actual ET as compared to the soil. The actual ET map was obtained at a 0.5  resolution and could be 
used for integration with the SRM ET and NDVI at a 0.5  resolution. 
 

7.2. Recommendations 
This research presents the role of remote sensing data to retrieve actual ET using the SEBS and SRM for 
the crop water requirement at the plant scale vineyard and extract information of grape trees. One of the 
problems regarding make a link between these two approaches related to the low and medium coarse 
resolution satellite images like MODIS, ASTER and Landsat. On the other hand, absence of thermal 
infrared and middle infrared bands in high resolution RS data is obvious. To improve the applicability of 
RS data for irrigation network at the plant scale vineyard, the shortcoming recommendations for further 
researches address as following: 
 

1. Combine high resolution satellite image with digital aerial photo for improving the result of SRM 
at plant scale. It means, improve the multispectral image of high resolution satellite images using 
image fusion is necessary to test the result of SRM method. 

 
2. Using different fusion techniques to assess the quality of image fusion using NDVI and actual ET 

maps. 
 

3. Besides using the SEBS for retrieving actual ET, it is possible to extract such the other 
information like Leaf Area Index (LAI) from the SEBS for contributing other applications in 
precision agriculture. 

 
4. Applying different time of satellite images during a year or growing season (temporal) to 

determine the water deficit and provide a meaningful product for the farmer and decision makers 
to make a strategic plan for irrigation networks. 

 
5. Using and developing Object-oriented SRM modelling and provide a model (not pixels) on the 

basis of a certain shape of the canopy for extracting individual plants.   
 
 

7.3. Future work 
 

 Integration of Low, Medium and High Resolution Satellite Data to Support Real Time 
Water Supply Strategies for Farm Management 

 
Precision agriculture aims at providing the management strategy from multiple sources to support the 
decision makers and farm managers with crop productions (Oliver, 2010). It supports assessment, 
management and evaluation of space-time in crop production and how to handle variation in diverse level 
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of detail that never before reached; and achieve the level of quality that never before obtaining correctly  
(Pierce and Nowak, 1999). All these questions have to be answered in an environment, with plenty of 
uncertainty related to adoption of proper policy on available techniques in agricultural area (Zhang et al., 
2002). Precision agriculture needs "Timely", "Updated" and "Localized" information that was not available 
before such as "Optimal Control" of irrigation water (Vintila et al., 2012). As an example, Farmers require 
weekly info regarding crop and soil moisture conditions during the growing season. Remote Sensing (RS) 
technology produces data from processes that are taking place on the earth in variety types, and 
resolutions. Satellite data can be divided into three different general products such as high resolution, 
coarse resolution (low resolution) and medium resolution. There are many coarse resolution products that 
are publicly available and easy to obtain and use in many applications. Higher resolution images have a 
high spatial resolution but lacking diverse spectral resolution such as middle infrared and thermal bands 
which are used for retrieving evapotranspiration, water content, leaf area index and other products 
necessary for precision agriculture. Fusion approaches can be carried out to produce a relevant RS product 
using high, medium and low resolution images. By means of the application of remote sensing 
technologies, satellite images such as the high spatial resolution images can be used to identify trees and to 
study spatial characteristics. However, application of coarse spatial resolution with high temporal and 
spectral resolution in farm managements is problematic, as they have a large pixel size that is not very 
useful for management at the farm level. This problem can be solved by means of fusion techniques. To 
produce the timely and localized end products, image fusion could be combined the high temporal and 
high spatial resolution satellite data in combination with high spatial resolution satellite data to produce 
proper information such as timely crop water requirement useful for farm management. Water 
requirement of agricultural field is not always fixed and deterministic. The water stress at any particular 
position in the field or region shows a variation. Characterization of variability depends on temporal, 
spatial and weather-related categories. Besides of differences in weather data have an effect on the 
variation during the growing season. In many production situations, such as grape trees in a vineyard area 
only one type of crop is cultivated. At each crop growing season there is variation in temperature, solar 
radiation, humidity and other factors of the weather data. These variations are in contrast with temporal 
and spatial variation (Oliver, 2010). For a farmer who needs the information on water demands at any 
plant scale during the next few days, it is possible to provide a geostatistical model to predict the water 
supplements. Satellite images like Senitel that observe every location on the earth every five days. By the 
use of remote sensing data, and a proper geostatistical model, the farmer can provide the predicted 
weather data for the next coming days at the plant level and get the appropriate information with respect 
to the crop water requirement.  
In this context, this research concept is aimed at achieving the following three objectives: 
 
1. Define a model with contribution of Super Resolution technique that can support identification of 

plants using medium and high resolution satellite data.  
2. Support down-scaling of low and medium scale publicly available RS products and produce high 

resolution thematic data useful for precision agriculture and using image fusion technique.  
3. Integrate and apply these two methods to support real time water supply strategies of the farm. 
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