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ABSTRACT 

Monitoring landslides is of great interest because of the damages they cause to property as well as loss of 
lives to people. Several remote sensing techniques have been used over the years to monitor landslides. 
Terrestrial laser scanning is one of such techniques. It offers a promising way to monitor landslides 
because of its high repeatability and better resolution. The sub objects of a landslide unlike many man-
made objects don’t have crisp boundaries. Grouping points to objects of a landslide proves to be a 
challenge as a result. This research presents an object oriented approach that monitors objects in a shallow 
landslide using multi-temporal terrestrial lidar data. This is achieved by computing the properties of these 
objects as point attributes in single or multiple epochs. Segment growing, connected components and 
majority filtering are used to obtain meaningful objects. The height above lowest local point and height 
difference point attributes are used to separate and group points on trees to single tree segments. 
Roughness is used to group points on objects of the landslide and low laying vegetation. Post processing 
using majority filtering led to larger segments to be obtained. The surface separation distance is found to 
be a useful property of the objects to show change and the size of change. 
 
Key words: shallow landslide, multi-temporal, terrestrial lidar, segmentation, monitoring, surface 
separation distance 
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1. INTRODUCTION 

1.1. Motivation and problem statement 
The use of lidar in the study of gravity controlled flows like landslides is undergoing rapid developments 
(Ventura et al., 2011; Wang et al., 2013; Tarolli, 2014; Metternicht et al., 2005; Pesci et al., 2011). Airborne 
lidar has been used to detect historical and active landslides as well as scarps of landslides covered by trees. 
On the other hand, terrestrial laser scanning has been used to map the foot area of landslides because it 
achieves better resolution, is portable and has a higher repeatability than airborne lidar (Wang et al., 2013; 
Abellán et al., 2014)). Because of this, terrestrial laser scanning is mainly used for monitoring purposes and 
not mapping (Jaboyedoff et al., 2010). 
To monitor landslides, several measurements have to be taken at different time periods in order to detect 
changes. Several remote sensing techniques like satellite imagery, lidar, etc. have been used in literature to 
monitor these changes. 
Methods that use lidar and/ or in combination with other techniques have  been reported by some 
authors (Anders et al., 2013; Dewitte et al., 2008; Razak et al., 2013 ). These methods make use of DTM’s 
extracted from lidar at different time stamps and subtract these DTM’s for a specific geomorphological 
activity; changes are then interpreted from the results. The approaches that use DTM’s/ DSM’s to 
perform volume computations as an indicator of change don’t explicitly demonstrate which objects within 
the landslides changed i.e. they depict a general impression of change. In addition,  approaches that use 
DTM’s only the 2.5D structure of the scene is analysed instead of 3D structure which is offered by object 
based methods that use 3D point clouds (Rottensteiner, 2010). 
Image based techniques that group pixels into objects based on some homogeneity criterion have been 
researched and developed in (Lu et al., 2011; Van Den Eeckhaut et al., 2012). These methods extract 
features from imagery and classify them into classes based on some rules. Volume changes per category 
are computed to detect changes. Other methods detect changes by grouping pixels into change classes i.e. 
stable, positive and negative (Hervás et al., 2003). Pixel based methods have the disadvantage that  for 
places with mixed pixels, the centre pixel is an average/ aggregation of different DN values which could 
belong to different objects. In essence the information about objects is lost and the pixel value is not a 
true reflection of all objects within that pixel; this affects accuracy of the change detection. This is also the 
case with methods that use DTM which are also pixel based. 
However, there is still no technique that monitors objects within a landslide using lidar point clouds. 
Whereas a lot of work has focused on the detection and extraction of man-made objects like roads, 
buildings (Teo & Shih, 2013) and trees (Xiao et al., 2012) from point clouds, not much has been done for 
natural processes like landslides. Unlike man-made objects which have crisp boundaries and defined 
geometries, natural objects don’t have these properties. The challenge is then how to group points in a 
point cloud as landslide objects and monitoring how these segments/ objects change over time. In light of 
the limitations given by previous methods and the advantage that object based analysis offers, this study is 
motivated towards monitoring landslides by looking at objects/ segments in the point clouds to detect 
changes. The aim is to have a one to one relation between segments in order to link objects of interest 
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1.2. Research Identification 

1.2.1. Research objectives and questions 
The main objective of the proposed research is to develop an object oriented approach that detects 
changes of a shallow landslide in 3D multi-temporal terrestrial laser scanning point clouds. 
The main objective will be achieved through the following sub-objectives; 
 
1) To determine the characteristics of objects of a landslide. 

• What are the important properties of landslide objects? 

• What properties of landslide objects can be derived in a single epoch of a terrestrial laser scanning 
dataset? 

• What properties of landslide objects can be derived in multiple epochs of terrestrial laser scanning 
datasets? 

2) To group points of 3D terrestrial laser point cloud to objects of a landslide. 

• What is the optimal segmentation strategy to group objects? 

• How sensitive is the segmentation to noise? 

3) To detect changes at object level in TLS point clouds. 

• How to match corresponding objects in the two epochs? 

• What properties of these objects can be used to measure change? 

4) To perform quality assessment. 

• What is the quality of the segmentation? 
• What is the quality of the matching? 

 

1.2.2. Innovation aimed at 
The innovation in this research will be an approach that employs object based analysis to detect changes in 
landslide using 3D terrestrial laser scanning point clouds. This will be accomplished by segmenting the 
point clouds and monitoring what happens with the segments over time. 

1.3. Thesis structure 
The thesis is organised into six chapters. The first chapter is the introduction that contains the motivation 
and problem statement, research objectives and questions and innovation aimed at in this research. The 
second chapter covers the literature review on landslides, lidar in change detection and change detection 
for landslides. The third chapter describes the methodology that was used for this research. Chapter four 
presents the results and a discussion of the results. Chapter five describes the conclusions and 
recommendations for future research. 
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2. LITERATURE REVIEW 

2.1. Introduction 
In this chapter, a review is made on landslides and its different sub objects in section 2.2. The use of lidar 
in change detection is discussed in section 2.3 and then finally change detection for landslides is discussed 
in section 2.4. 

2.2. Landslides and its sub-objects 
Natural disasters such as earthquakes, tsunamis, floods, landslides and volcanic eruptions pose a threat to 
lives and property but also inflict heavy economic losses. Of these, landslides are especially more 
pronounced in mountainous regions. They are triggered by human activities, heavy rain fall and 
earthquakes (Chung et al., 2014). According to figures released by Center for Research on the Epidemilogy 
of Disasters (2012), landslides accounted for 7.5% of the total reported deaths and 11.8% of total damages 
caused by natural disasters. 
Landslides can be defined as downward  and outward displacement of materials that are induced by 
gravity (Gutiérrez et al., 2010). Several types of landslides exist and these are classified based on 
movement mechanism, nature of slope material, form of rupture surface and rate of movement (Goudie, 
2004). Martha et al. (2010) and Cruden and Varnes (1996) classified landslides based on the type of 
movement as falls, topples, rotational slides, translational slides, lateral spread, flows and complex. Regmi 
et al. (2013) further grouped landslides into shallow and deep seated landslides. In this study the focus is 
on shallow landslides (Figure 2-1), which are characterized by a maximum depth of 2m and it’s composed 
of debris slides, debris flow and soil slides. These shallow landslides are located in the Alpines slopes and 
are often caused by melting of snow and heavy rainfall (Wiegand et al., 2013). 
 

 
 
 
 
 
A landslide consists of several sub objects (Figure 2-2) that can be distinguished from another using 
various properties. 
 
 
 
 
 
 

Figure 2-1: Schematic sketch of a shallow landslide(Cruden & 
Varnes, 1996) 



MONITORING LANDSLIDES USING MULTI-TEMPORAL TERRESTRIAL LIDAR POINT CLOUDS 

 

4 

 

 
Figure 2-2:  Schematic sketch of a landslide and labelling of sub-objects of which a shallow landslide is composed of 

(Cruden and Varnes, 1996). 

2.3. Lidar in change detection 
The use of light detection and ranging (lidar) for change detection in many application fields is becoming 
more and more prominent. This is because of its capacity to acquire 3D information accurately and hence 
changes can be visualized in three dimensions. Several studies have used lidar for change detection.  
Choi et al. (2009) proposed a feature based change detection method for urban areas that uses two 
different lidar epochs. A height difference image from the digital surface models generated from lidar is 
computed from which segmentation and classification of the surface patches was performed to detect 
changes. Xu et al. (2013) detected changes in building using multi-temporal airborne laser scanner data. 
Surface separation was used to distinguish between changed, unchanged and unknown parts of buildings. 
This separation value was calculated as the distance a point and a plane fitted through the neighbours of 
its nearest point in the other epoch. The points of the buildings that changed were further classified using 
attributes like normal of the nearest roof, area and height to the nearest roof. Their approach correctly 
detected 80% of building changes. Vögtle and Steinle (2004) demonstrated the use of height difference for 
segmentation of laser scanner derived normalised DSM’s. With their approach nearly all buildings were 
segmented but vegetation points were not because they didn’t satisfy the set tolerance. The height 
difference was then used to detect changes. Murakami et al. (1999) also used DSM’s derived from airborne 
laser scanner for change detection. The authors used a difference image to detect changes in the buildings. 
This difference image was generated by subtracting the DSM’s from each other. 
Xiao et al. (2012) used multi-temporal airborne lidar point clouds to detect changes in trees in urban areas. 
The authors applied connected component algorithm to group point of trees together and then used the 
attribute of the component to distinguish vegetation from other features like buildings. 3D alpha shapes, 
convex hull and 3D tree modelling are used to derive the tree parameters. A point based tree to tree 
matching algorithm that utilizes overlapping bounding boxes and point to point distances is used to match 
the trees in the different datasets. Change is detected by comparing the volume and area of each tree 
component. Teo and Shih (2013) used multi-temporal interpolated lidar data for change detection and 
change type determination using geometric analysis. A height difference map was utilized to locate 
potential areas of change. 
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2.4. Change detection for landslides 
Numerous studies have reported the use of images for change detection of landslides. Roessner et al. 
(2014) employed multi-temporal satellite imagery to automatically detect changes in landslides using 
trajectories of NDVI values derived from the images. Hervás et al. (2003) on the other hand used multi-
temporal orthoimages to detect changes in a landslide. They proposed a method that is based on image 
differencing and subsequent thresholding into change classes i.e. stable, positive and negative. The positive 
and negative classes represent areas of change while the stable class shows areas that didn’t change. 
Lu et al. (2011) detected changes in a landslide using very high resolution optical images. They used scale 
optimization to segment the image and then applied spectral and textural metrics for multi-temporal 
analysis of the landslide objects. Martha et al. (2010) identified objects in a landslide by first segmenting 
the image using the multi-resolution segmentation algorithm. Post processing to resegment mixed 
segments was done using chessboard segmentation technique and false positives eliminated using NDVI 
values as a threshold. Classification of the extracted objects was done using expert knowledge. Their 
approach detected 76.4% of five landslide types with 69.1 % classification accuracy. Qiao et al. (2013) also 
used the NDVI value but in addition defined a vegetation damage index. This value was computed as the 
difference between NDVI values obtained from the pre and post landslide activity images. This vegetation 
damage index value is then used to recognise the landslides. 
 
 

 
Figure 2-3: Small patches of vegetation or bare land in the landslide eliminated using chessboard segmentation 
(Martha et al., 2010) 
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Automatic reconstruction techniques for landslides from optical images have also been researched on. 
Stumpf et al. (2015) monitored erosion and deformation on a landslide using Structure-from-Motion and 
Multi-View Stereo techniques. Point clouds from the images of the landslide were created through dense 
image matching and then registered using the Iterative Closest Point algorithm. In order to assess the 
accuracy of the derived point clouds, a Multi scale Model to Model Cloud computation (M3C2 algorithm) 
was used to compare the point clouds with terrestrial laser scanning and airborne laser scanning scans. 
Changes were using the M3C2 algorithm by looking at the distance between the point clouds. However, 
this approach is limited for monitoring landslides covered with vegetation since the passive optical sensors 
cannot penetrate through the vegetation. It is also less precise as compared to the use of terrestrial laser 
scanning data. 
Several studies have made use of lidar alone or in combination with other techniques. Ventura et al. (2011) 
monitored an active landslide in Italy using lidar derived digital terrain models acquired on different dates. 
Interpretation and statistical analysis of variations of surface roughness and residual topographic surface 
were utilized to reconstruct and track the landslide. Anders et al. (2013) in addition incorporated the use of 
stratified feature extraction algorithm to semi-automatically extract features. Volume change for each 
extracted object is used as a basis for detecting changes in the landslide. Van Den Eeckhaut et al. (2012) 
identified objects in a forested landslide using single pulse lidar derivatives like slope gradient, roughness, 
openness and curvature. Thresholding and multi-resolution segmentation are applied to extract features 
after which support vector machines are used for classification. Dewitte et al. (2008) used multi-temporal 
DTM’s derived from aerial stereo photogrammetry and airborne lidar data to measure landslide 
displacements. The difference between the DTM’s was used as an indicator of the horizontal and vertical 
movements of the landslide. With their approach they were able to identify displacements at the main 
scarp and within the landslide. 
Glenn et al. (2006) used surface roughness, slope, semi variance and fractal dimension derived from 
airborne lidar data to characterize and differentiate morphological components of a landslide. Surface 
roughness and fractal dimension were noted to be greater at the toe than at the body or upper block of the 
landslide. Their work also showed that high resolution topographic information can aid in the analysis of 
landslide activity and material type. However, the use of fractal dimension and semi variance to describe 
topographic variability is limited to the scale and the location of the area of interest. McKean and Roering 
(2004) used high resolution DEMs from airborne lidar data to characterize a landslide. In order to map 
roughness from the DEMs, one dimensional, two dimensional (circular) and three dimensional (spherical) 
statistics were used. The value of roughness was measured in sampling windows and was used to separate 
the landslide from adjacent stable areas. Kinematic units within the landslides were correctly delineated 
using local variability of aspect. However, the selection of the sampling window size and grid resolution is 
rather subjective. Similarly, Razak et al. (2011) proposed a method that maps and identifies morphological 
features of landslides using DTMs derived from airborne laser scanning data. However, they also included 
the use of filters for mapping the landslide i.e. one filter from progressive TIN densification and two 
filters from hierarchical robust interpolation. The landslide filter based on hierarchical robust interpolation 
is used because of the advantage it offers when dealing with complex terrain especially one that is forested. 
Their work demonstrates that the landslide filter yields the best outputs with errors for the scarps and 
cracks lower when no vegetation is present. On the other hand, the errors are fairly similar for both the 
forested and open terrain for the rock blocks. Consequently, the DTM derived from airborne laser 
scanner data shows a vast improvement in landslide recognition and classification in comparison with 
optical images. Although the use of a single DTM to assess a dynamic phenomenon like a landslide is not 
optimal. Tarolli et al. (2010) proposed a method to automatically detect crowns and bank erosion of a 
shallow landslide. Their approach used thresholds obtained from statistical analysis of curvature to detect 
these geomorphic features. Figure 2-5(a) shows the effects on selecting threshold values 1, 2, 3 and 4 on 
feature extraction. The authors also tested the effect of moving window size on curvature calculation as 
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shown in Figure 2-5(b). It was noted that small window sizes were not good since they took into 
consideration only a limited area. Very large windows were also found not to be optimal. Therefore, the 
window size should be related to the size of the features that will be extracted. A threshold value of 1.5 of 
the inter quartile range and a 21 x 21 moving window size yielded the best results for feature extraction. In 
addition, their work showed that the use of thresholds was efficient for the extraction of features.  
However this method is not suitable for areas with complex morphologies. Deng and Shi (2014) employed 
airborne lidar data to semi-automatically detect landslides. Landslide components are first extracted by 
identifying morphological features related to them and then the landslide is separated from other terrain 
objects using geometric and contextual analysis. 93.5% of recent and 23.8% of old landslides were 
extracted through this approach. Morphological features like the main scarp and rupture floor were 
identified using statistical significance tests. However, the thresholds used in their work are arbitrary and 
limited to the study area. Similarly, Chigira et al. (2004) also detected new and old landslides using airborne 
lidar data. In addition they made use of aerial photo graphs and geological based ground truth to 
investigate the landslides. Unlike the aerial photographs, the laser scanner map they created was able to 
show both previous and current landslides. 
 
 

 
(a)                                                                          (b) 

Figure 2-4: Final results of landslide identified (a) and the rectangle is for part of the study area in (b)(Deng and Shi, 
2014) 
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(b)                                                                          (b) 

Figure 2-5: Effects of thresholds on feature extraction (a) and window sizes on curvature calculations (b) (Tarolli et 
al., 2010) 

Travelletti et al. (2014) used an image based correlation on multi-temporal terrestrial laser scanning point 
clouds to measure 3D displacements fields and deformation of a landslide. The displacement field was 
first calculated in 2D using a normalized 2D cross correlation function. The calculated 2D displacements 
were the reconstructed to 3D by using a bilinear interpolation which linked the X, Y, Z coordinates in the 
point clouds to the displacement vectors in the images. A median filter was used to remove outliers from 
the displacements and thereafter strain fields were calculated to show the deformation patterns. Their 
approach showed that the use of displacement fields provided more insight on the movement of 
landslides. The bilinear interpolation used in their work reduces shadow effects on displacement field 
calculations. However, the 2D correlation function used in their work cannot handle distortions related to 
the use of perspective projection.  
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2.5. Summary  
Remote sensing is a powerful tool in the study of landslides. Several techniques like lidar and the use of 
images have been applied to this effect. Whereas a lot of literature on the use of images in object based 
change detection has been done, these techniques are limited because the pixel values that are grouped 
into segments don’t wholly represent all objects that fall within one grid cell. As a result, information 
about some objects is lost. Moreover these techniques only describe changes in 2D. Research has been 
done on the use of lidar in change detection predominantly uses DTM’s/ DEM’s to show changes. 
Because of this, we propose methods that group points in lidar point clouds to objects of a landslide. 
These methods make sure of the properties of these objects. 
 
 
 
 

Figure 2-6: Displacement fields calculated for different epochs (Travelletti et al., 2014). 
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3. METHODOLOGY 

3.1. Introduction  
In this chapter, we describe the methodology that was followed to answer the questions of this research. 
Section 3.2 describes the pre-processing that was done on the data and also the computation of point 
attributes. Section 3.3 describes how the segmentation process was done. Section 3.4 describes the 
matching process. Section 3.5 describes how the surface separation distance was computed. 

 
The frame work of the methodology as shown in Figure 3-1 was adopted because when a segmentation 
based on connected components was tested on the datasets, it didn’t yield a good output as shown in 
Figure 3-2. Most of the points were grouped into one large segment. As a result, we followed the 
methodology framework shown in Figure 3-1 that takes into consideration the properties of the objects of 
the landslide. These properties are computed as point feature values and are used to group points to 
objects and thereafter monitor if these objects change or not. Two methods i.e. object to object matching 
and the use of the surface separation distance were tested for monitoring of the objects. Object to object 
matching was used because it makes use of the object properties while the surface separation distance 
makes use of the multi-temporal epochs. 
 
 
 
 
 
 
 
 
 

Figure 3-2: Connected components on points of 2011 epoch. 

Figure 3-1: Framework of the Methodology 
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3.2. Data pre-processing 
It is often assumed that point clouds are usually correctly registered but this might not be the case so it’s 
good to check the point clouds before any processing is made on them. Landslides are 
geomorphologically complex and such consist of different sub objects with different characteristics (Van 
Den Eeckhaut et al., 2012). With this knowledge, we identified the characteristics of these sub objects that 
were present in the study area. The identification of appropriate characteristics is important because it has 
a bearing on the success of the extraction of the sub objects. These characteristics were calculated as point 
attributes in the point clouds with the idea that they could be used to distinguish the different sub objects. 
These included; slope, curvature, roughness, separation distance between two epochs, height above lowest 
local point and the height difference between the maximum and minimum Z value within a local 
neighbourhood. The height above lowest local point and the height difference point attributes were 
computed using a 2D neighbourhood of 120 points with a radius of 0.3m. The rest of the attributes were 
computed using a 3D neighbourhood of the same number of points and radius. Using a neighbourhood 
of 120 points means that the attribute calculation per point will be influenced by its nearest 120 
neighbours. Curvature however was computed using CloudCompare software. The rest of the attributes 
were calculated using C++ programming language. 

3.2.1. Height above lowest local point 
 

 
Figure 3-3: Height above lowest local point values for the 2011 large landslide 

 
Figure 3-3 shows values of the height above lowest local point calculated for the 2011 large landslide. The 
values varied from 0 to 6.17m. Large values were observed on trees and some low laying vegetation 
present in the data. The terrain was observed to have small the smallest values. The large values for the 
points on trees and some low laying vegetation was because in a 2D neighbourhood, the lowest point will 
most likely be at the bottom of the tree. Therefore, the difference between the Z value of any point and 
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height of the lowest local point will be lager as you go to the top of the tree. This is not the case for points 
on the terrain where the difference between the Z of any point and the lowest local in a 2D 
neighbourhood will be small since the points are in close proximity. This attribute was later used to 
eliminate points on trees from the dataset. In order to retain points on the terrain (which include the 
points on the sub objects of the landslide), this point attribute was used in combination with the height 
difference attribute to keep apart points on trees and low laying vegetation. This attributed was calculated 
as the difference between the Z value of a point and the lowest height value in a local 2D neighbourhood 
consisting of 120 points. 

3.2.2. Height difference 
 

Large height difference values were observed mostly on trees and some low laying vegetation as shown in 
Figure 3-4. This was as expected because the difference between the highest and lowest height values for 
points on trees and low laying vegetation is always large. For the points on the terrain, low height 
difference values were observed. This is because the terrain is largely flat so in a local neighbourhood, the 
height difference values are expected to be small. This attribute was used to in combination with the 
height above lowest point attribute to further separate terrain points that have high values of the height 
above lowest point attribute as shown by the grey circle in Figure 3-5 (a). These terrain points however 
have lower values of the height difference point attribute than trees and low laying vegetation. These 
terrain points are separated from the points on the tree by using the height difference point attribute 
(Figure 3-5 (b)). This point attribute was calculated as the difference between the maximum and minimum 
Z value in a local 2D neighbourhood of 120 points. This point attribute was used to separate points on 
the tree from points on the terrain. 
 
 
 

Figure 3-4: Height difference values for 2011 large landslide 
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3.2.3. Mean curvature 
In this study we used the curvature because it is a property that can be used to discriminate the scarp from 
the rest of the objects in the dataset. This is because the shape of the scarp means it will have high values 
for the curvature as compare to any other object.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-5: Before using height difference point attribute (a) and (b) after using the height difference point attribute. 

Figure 3-6: Mean curvature values for 2011 large landslide. 

(a) (b



MONITORING LANDSLIDES USING MULTI-TEMPORAL TERRESTRIAL LIDAR POINT CLOUDS 

 

14 

The values of curvature were computed at a radius of 1m using CloudCompare as shown in Figure 3-6. It 
was observed that the highest values were not necessarily on the scarp as expected but on other points on 
the terrain (red colour). The points on the scarp, boundaries of the landslide and some parts of the 
landslide had lower values as indicated by the green colour in Figure 3-6. This is likely due to the radius 
that was used in computing this point attribute. Probably a radius that approximates the radius of the 
scarp would be suitable since the curvature is a global value. But then again computational wise, its more 
tasking the longer the radius used to select points that are used in calculating this point attribute.   

3.2.4. Slope.  
The slope is a property that is characteristic of the scarp and flanks of the landslide. This is because they  
have steep slopes as compared to the rest of the sub objects of the landslide (Van Den Eeckhaut et al., 
2012). Van Den Eeckhaut et al. (2012) used thresholding on slope to extract the scarp. With a high 
threshold value they were able to extract the scarp. This point attribute in combination with the curvature 
would be good to group points on the scarp together after the trees and low laying vegetation have been 
separated from the terrain. 
 
The slope was computed as follows: 

• Slope = acos (fabs(normal.Z())) 

3.2.5. Roughness 
Roughness was calculated in a 3D neighbourhood consisting of 120 points. The choice of using a 3D 
neighbourhood is because since this attribute is a local value calculating values per point would mean 
using a few points around a particular point. This gives an accurate representation of this attribute value. 
With a 2D neighbourhood more points will be considered in point attribute calculation leading to low 
values since the influence of many points will introduce noise in point attribute calculation. 
 

 
Figure 3-7: Roughness values for 2013 large landslide. 
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High values for roughness were observed on points of trees and low laying vegetation. Points on the 
terrain had low values. This point attribute was later used an attribute in the segmentation process. 
 

• Roughness = (eigen [2] + eigen [0]) / (eigen [2] - eigen [0]).  
 

Roughness was defined as the inverse of flatness where the eigen values correspond to the eigen vector 
which describes the normal of the surface. 

3.2.6. Surface separation distance. 
In order to make use of the point clouds of the study area captured in different years, the surface 
separation distance was used. It is a property of the sub objects of the landslide that can be computed 
between multi-point clouds. This point attribute was used after the segmentation process to indicate 
which segments were changing and by how much they were changing. This attribute was computed for 
each point by looking for its nearest neighbour in the other epoch and then fitting a plane through its 
nearest 20 neighbours. Perpendicular distances to this plane were then calculated. This attribute was later 
used to differentiate between segments that are static and those that are dynamic. 
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3.3. Segmentation 
In order to detect objects, segmentation was performed on the points to group them into segments that 
belong to objects. Segment growing, connected components and majority filtering algorithms were used. 
In this study we used the segment growing segmentation method because the study area contains a large 
number of points that belong to non-planar objects. Segment growing algorithm is particularly suitable for 
non-planar segments (Vosselman, 2013). The connected components algorithm is good for grouping 
points close by belonging to a segment. Neighbouring points are only added to a segment if they are 
within a given distance threshold. Xiao et al. (2012) used the connected components algorithm to group 
points on trees and to separate vegetation from non-vegetation point. Majority filtering algorithm assigns 
unsegmented points to the most frequent segment number within a defined neighbourhood radius. 
Vosselman (2013) used this filter to obtain larger segments on vegetation. 

3.3.1. Separation of points on trees 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8: Workflow for segmenting points on trees. 
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In order to separate points on trees from the rest of the points, point attributes of height difference and 
height above lowest local point were used. The height above lowest local point was used as an attribute 
because points on trees and low laying vegetation will typically have large values than points on the terrain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The height difference attribute was used to further separate points on the terrain, low laying vegetation 
and trees that were still mixed after making a selection based on the height above lowest local point. 
Similarly, points on trees and low laying vegetation will have higher values than points on the terrain for 
this attribute. Figure 3-9 shows the working of these two point attributes. The grey arrows show values for 
the height difference attribute on top of the tree and on the terrain. The dark grey arrows show values on 
top of a tree and on the terrain for the height above lowest local point. This difference in value shows that 
with a threshold we can separate the points on the tree from the terrain. A selection was made on points 
with values for the height above lowest local point attribute greater than a given threshold value. Points 
below this value were kept away. These points belonged to the terrain. To further separate the remaining 
terrain points from points on trees and low laying vegetation, a selection was made on points with a given 
height difference value. This separated the terrain points from points on trees and low laying vegetation.  
 

 
 
 
 
 
 
 
 
 
 

Figure 3-9: Trees points with height 
above lowest local point and height 
difference point attributes 
calculated. 

6.111m 6.141m 

0.376m 0.233m 

Figure 3-10: Working of height difference attribute (a) before and (b) after 

Low 
laying 
vegetation 

(a) (b) 
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Figure 3-10 shows how the height difference attribute separates points on terrain from low laying 
vegetation. The grey circle in Figure 3-10 (a) shows the terrain points that were still present after using the 
height above lowest local point attribute. After using the height difference attribute these points were 
removed as shown in Figure 3-10 (b). This output was then combined with the terrain points previously 
kept to form an output of points on the terrain. The remaining point set containing points on trees and 
low laying vegetation were grouped into segments using a connected components analysis. Majority 
filtering was then applied to assign non-segmented points to segments that were nearby within some 
radius. The output was segments on trees and some low laying vegetation as shown in Figure 3-11. 
 

3.3.2. Segment growing 
Segment growing uses a set of neighbouring points with similar feature values as seeds (Vosselman, 2013). 
The seeds are grown by checking if neighbouring points have similar values to the average value of the 
segment. It makes use of a tolerance which is applied on the average value of the segment to control 
whether or not a point is added to the segment. Segment growing algorithm is particularly suitable for 
non-planar segments (Vosselman, 2013). A segment growing algorithm based on roughness was done on 
the remaining point set. Roughness was used as an attribute for growing because it separates objects with 
high roughness values from those with low roughness values. Therefore grouping points with this 
attribute was found to be suitable. The results of the segment growing contained correctly detected points 
for the ground so this was kept apart. We use the term ground to mean parts of the terrain outside the 
landslide area. Connected components algorithm is good for points that belong to the same object 
(Vosselman, 2013). As a result, it was used to group the remaining points on the landslide and low laying 
vegetation. These were the points with a high roughness value. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11: Trees segments after connected components and majority filtering 

Figure 3-12: Segments on the scarp and landslide boundary with high 
roughness value. 
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Majority filtering algorithm is suitable for post processing usually to assign points without segments to 
nearby segments. These points will typically be assigned to a segment that is most frequent within a 
defined radius. The output from connected component algorithm and the ground segment were combined 
and majority filtering applied to assign unsegmented points to a segment. Eventually, the segments of the 
ground, low laying vegetation, landslide and trees were combined to form final segmentation results. This 
strategy is shown in Figure 3-13. 
 
 
 

 
 
 
 
 
 
 
 
  

Figure 3-13: Workflow showing the segmentation strategy. 
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3.4. Object to object matching 
Object to object matching provides a platform to compare similar objects in different epochs. Xiao et al. 
(2012) used the location of trees to match trees in different epochs in order to calculate the change 
between them. In this study, we used two separate criteria to match similar objects in different epochs i.e. 
the object properties calculated as point attributes and the minimum distance. The object properties were 
used as a criterion because we made an assumption that corresponding objects have similar properties. 
The minimum distance was used because our study area is made of shallow landslides that are 
characterised by slow movement therefore with this criterion we can expect to obtain corresponding 
segments. For the matching process, an assumption was made that there is a one to one relation between 
segments/ objects in one epoch with corresponding ones in the other epoch. Each segment in the first 
epoch was compared with all segments in the second epoch based on some criteria. The objects we 
expected for a shallow landslide were the scarp and the main body because the rest of the objects of a 
landslide were not easily identifiable. 

 

3.4.1. Matching using point attributes 
Different point attributes were used independently to see which of them obtained a better match. For 
each segment, a mean value of the attribute value was computed. A similarity measure was used as 
criterion for matching. A segment was matched to another in the other epoch if it had the highest 
similarity measure. The similarity measure was defined as follows: 

Figure 3-14: Flow of the matching process. 
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Similarity measure = 1 - fabs(mean attributevalue1- mean attributevalue2)/(mean attributevalue1+ mean 
attributevalue2) 
 
Where mean attributevalue1 and mean attributevalue2 correspond to the mean of a given attribute for a 
segment in epoch 1 and mean of a given attribute for a segment in epoch 2 respectively. 

3.4.2. Matching using minimum distance 
For each segment in epoch 1, a point to point distance with each segment in epoch 2 was calculated. For 
each segment in epoch 2, its lowest point to point distance with the segment in epoch 1 was assigned as its 
lowest distance to the segment in epoch 1. Thereafter all the segments in epoch 2 were assessed to find 
out which of them had the lowest distance to the segment in epoch 1. Once this was found, it was taken 
as a match for the segment in epoch 1. This was done iteratively for all segments in epoch 1 in order to 
find matching segments for them in epoch 2. 

3.5. Surface separation distance 
Figure 3-15 shows the workflow that was followed when computing the separation distance between two 
epochs. In this section we describe how the separation distance was computed and how percentages per 
segment were computed to show parts of the landslide that are dynamic and static. 
 
 

 
 
 

 

Figure 3-15: Workflow showing how the separation distance is computed and used. 
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We adopted the workflow shown in Figure 3-15 because when we tested the use of a threshold, the output 
was a binary map showing values for the surface separation map below and above the threshold. 
Grouping of points based on similarity of values for the surface separation distance didn’t prove as fruitful 
as well. It was because all the values within in a given tolerance will be group into a segment and yet it’s 
possible that an object could have varying values for the surface separation distance. Consequently, we 
used the workflow shown in Figure 3-15 that makes use of the segmentation results and thereafter uses 
the surface separation distance to show how much change was taking placing in each segment. 

3.5.1. Calculation of the surface separation distance 
The surface separation distance between two epochs was computed as a point attribute. For each point, its 
neighbours within a given range were defined. The nearest point in the other epoch was then identified. 
For that point, its nearest neighbours were found and a plane fitted through them. The point to plane 
distance was then calculated. This was done iteratively for all the points. Thereafter a threshold was 
defined to show dynamic and static parts of the landslide. 

3.5.2. Object based change detection 
In order to show whether segments were static or dynamic, the percentage of points whose surface 
separation distance values were greater than a given threshold was calculated per segment. This percentage 
was calculated per segment as follows: 
 
 
Percentage = [(number of points with a surface separation distance greater than a given threshold)/ (total 
number of points with a surface separation distance)]* 100 
 

3.6. Summary  
Our approach starts by identifying what are the properties that describe objects in a landslide. Thereafter, 
which of these properties can be derived from point clouds? The task was then to decide which of these 
properties were appropriate for segmentation and at what stage in the segmentation process were they 
relevant. The matching process was to compare objects in the different epochs. The task was to find 
appropriate criteria to match these objects. Thereafter, how much change was taking place was 
investigated. The surface separation distance was also used to show much change was happening in the 
landslide area. 
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4. RESULTS AND DISCUSSION 

4.1. Introduction 
The proposed methodology was tested on three terrestrial laser scanner datasets for two shallow landslides 
located in Schmirntal, Austria. Section 4.1 describes the datasets and the study area. Section 4.2 shows 
how the computed point attributes vary across the study area. Section 4.3 shows the results of 
segmentation and filtering of the data. Section 4.4 describes how segments in two epochs were matched. 
Section 4.5 describes how the surface separation distance was used to show dynamic and static parts of the 
landslide. 

4.2. Data sets and study area 
The data used in this research was for a hill located in the region of Schmirntal in Austria. The data 
contained two landslides i.e. a large and a small landslide. The datasets were acquired using an Optech 
ILRIS 3D in October 2011, 2012 and 2013 respectively. Their average point densities are 1770 points/m2, 
655 points/m2 and 664 points/m2 respectively. 
 
To make the point processing much faster, the 2011 dataset was thinned by a factor of 2; this means the 
points were halved. Eventually average point density of approximately 885 points/m2 was used. The 2012 
and 2013 datasets were not thinned as they were not too large. The data was then cropped into points for 
the large and small landslides respectively using Cloud Compare software. 
 
 

Figure 4-1: Study area in Schmirntal 

Small 
landslide 

Large 
landslide 



MONITORING LANDSLIDES USING MULTI-TEMPORAL TERRESTRIAL LIDAR POINT CLOUDS 

 

24 

4.3. Registration 
The assumption that point clouds are always correctly registered was not valid for the datasets used in this 
thesis. Before the methodology was implemented, the tilt observed in the point clouds was eliminated by 
registration of the different epochs. This was implemented using CloudCompare software. The 2011 point 
cloud was used as the model to which the 2012 and 2013 point clouds were registered respectively. Figure 
4-2 shows the parameters that were used during the registration process. 
Different sets of transformation parameters were used to register the 2012 and 2013 point clouds 
respectively. These parameters are shown in Table 4-1 and Table 4-2. 
 

Table 4-1: Transformation parameters for 2012 point cloud. 

1.000 0.003 0.004 0.174 
-0.003 1.000 0.007 0.106 
-0.004 -0.007 1.000 -0.270 
0.000 0.000 0.000 1.000 
 

Table 4-2: Transformation parameters for 2013 point cloud. 

1.000 0.001 -0.011 -0.181 
-0.001 1.000 0.000 -0.087 
0.011 -0.000 1.000 0.450 
0.000 0.000 0.000 1.000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The distance between point clouds was calculated using CloudCompare before and after the registration 
to visualise the effects on the tilt and the results are shown in Figure 4-3 and Figure 4-4. 
 
 

Figure 4-2: Registration parameters. 
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Figure 4-3: Distance between 2011 and 2013 points clouds prior to registration. 

 
 
 

 
Figure 4-4: Distance between 2011 and 2013 points clouds after registration. 

 
 
 
 



MONITORING LANDSLIDES USING MULTI-TEMPORAL TERRESTRIAL LIDAR POINT CLOUDS 

 

26 

 

 
 

Figure 4-5: Distance between 2011 and 2012 points clouds prior to registration. 

Figure 4-6: Distance between 2011 and 2012 points clouds after registration. 
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In Figures 4-3 and 4-5 systematic effects of the tilt were observed in the upper parts of the point clouds. 
Points on the terrain were seen to have high values like points on the trees which is not the case in reality 
but the effects of the tilt. With the tilt removed after registration as shown in Figures 4-4 and 4-6, these 
systematic effects were eliminated. It was observed that points on the terrain had approximately even 
values through the point cloud with trees and parts that are changing having high values. The systematic 
effects of the tilt observed in Figures 4-3 and 4-5 were due to a poor distribution of the targets that were 
used to register the data initially. The results shown in Figures 4-4 and 4-6 showed that our approach was 
an improvement to the approach that was used earlier when the data was collected. The systematic effects 
due to tilt were significantly reduced which gave more confidence to computation calculated on these 
points thereafter. 

4.4. Segmentation 

4.4.1. Separation of points on trees and low laying vegetation 
Before a connected components analysis was done, the points on the trees were separated from the rest of 
the points. The point attributes of height above lowest local point and height difference were observed to 
have high values on trees and low laying vegetation as shown in Figure 3-3 and 3-4 respectively. Therefore 
they were used to separate the points on trees and low laying vegetation from the rest of the points. 
A selection was made on points with height above local point values greater than or equal to 0.5m. This 
value was reached at through several trials. Figure 4-7 shows the result of this selection. Points with values 
for the height above lowest local point less than 0.5m are shown in Figure 4-7(a) while those greater than 
or equal to 0.5m are shown in Figure 4-7(b). Most of the points belonging to the terrain are retained as 
shown in Figure 4-7(a) and likewise all points on trees and low laying vegetation are also captured as 
shown in Figure 4-7(b). However some points on the terrain were found to have values greater than or 
equal to 0.5m. Some of these points are shown using the red circles in Figure 4-7(b). These points are 
likely due to the low value of the threshold chosen to accommodate all points on the tree. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 4-7: Points with values less than 0.5m for the height above lowest local point (a) and 
(b) are points with values greater than or equal to 0.5m 
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In order to separate these remaining terrain points from points on trees and low laying vegetation, the 
point attribute of height difference was used. The reasoning behind the use of this attribute at this stage 
was that points on terrain will have smaller values as compared to points on trees and low laying 
vegetation. A value of 1.3m was found to be an optimal value for this attribute to use to distinguish 
between the points on the terrain and the points on trees and low laying vegetation. This value was 
reached at through several trials. A selection was made on points with values for the height difference 
greater than 1.3m. This captured the points on trees and low laying vegetation as shown in Figure 4-9. The 
rest of the points with values less than or equal to 1.3m as shown in Figure 4-8 were combined with the 
result in Figure 4-7(a) to eventually have points on the terrain. This result was kept and later used in the 
segment growing stage 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4-8: points with values for the height difference less than or 

equal to 1.3m 
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Generally all points on trees and low laying vegetation were captured. However, there were still a few 
points that belonged to the terrain that were not removed by the previous selection on points using the 
height above lowest local point and height difference point attributes. These points are shown by the grey 
circles in Figure 4-9. Their presence can be explained by the fact that using a threshold is not always 
precise. These points were grouped into objects and the results are shown in Appendix 1. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-9:  Points with height difference values great than 1.3m and height above lowest local point values greater 
than or equal to 0.5m. 
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4.4.2. Segment growing 
A segment growing based on roughness at a tolerance of 0.05m was done to distinguish between the low 
laying vegetation, ground and sub-objects of the landslide. The results of this segmentation are shown in 
Figure 4-10. 
 

                                                                                          

 
(a)                                                                                 (b) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                   (c)  
 

 
 
 

 
 
 
 
 
 
  

Figure 4-10: Segment growing results (a) 2011, (b) 2012 and (c) 2013. 
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Generally, most points on the ground were grouped together as a large segment. Non-segmented points 
were observed on the boundary of the landslide and some low laying vegetation. These were points which 
didn’t have neighbouring points with similar feature values to start a new seed. The large segment was 
kept away and connected components analysis was done on the remaining points as shown in Figure 4-11. 
As a result, the small segments previously seen in Figure 4-10 were grouped into larger segments. Points 
on the boundary of the landslide were grouped into clear segments. However, some unsegmented points 
(white points) were still observed as seen in Figure 4-11. These were points which didn’t meet the 
maximum distance criterion used during connected components analysis. This criterion was 1m. This 
output was combined with the previously kept large segment and a majority filter was used to assign these 
points to a segment. Points were assigned to a segment if it was the most frequent in a neighbourhood 
radius of 1m. The output was final segmentation results shown in Figure 4-12. This entire procedure was 
repeated for all the datasets i.e. 2011, 2012 and 2013. 
 
 
 

Figure 4-11: Connected components on points of 2011 large landslide. 
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(c) 

(b) (a) 

Figure 4-12: Final segmentation results (a) 2011, (b) 2012 and (C) 2013. 
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The final segmentation results were obtained for the three epochs used in this study i.e. 2011, 2012 and 
2013 as shown in Figure 4-12. The segmentation results in Figure 4-12 showed that the large ground 
segment correctly contained only points on the ground. The boundary of the landslide was segmented into 
many parts. This is likely due to those segments having different feature values than for neighbouring 
segments. Some patches of low laying vegetation were correctly detected. Over segmentation around the 
scarp area was observed at the scarp area for the 2011 and 2013 epochs as shown in Figure 4-13. The 2011 
data however shows a better segmentation result for the scarp although it also appears to be under 
segmented. This irregular pattern could be linked to the difference in feature values around the scarp for 
the different epochs. 
 

  
 
 
 
 
 
 
 
 
 
 
    

 
 

In the segmentation results for the 2011 epoch, over segmentation was observed along the boundaries of 
the landslide especially on the upper part of the landslide. At the bottom, the boundary was merged with 
the large ground segment. This was probably because of the similarity of feature values along that part. 
Within the landslide area, very many small segments were seen especially at the bottom. This was probably 
because in the initial segment growing phase points in these segments had distinct feature values as 
compared to those of neighbouring points. Even after applying the connected components they were not 
merged into larger segments because they didn’t meet the distance threshold of 1m used in the connected 
components segmentation. Similarly, the segmentation results of the 2013 epoch showed over 
segmentation along the boundaries of the landslide. Small segments were also observed on the ground. 
This was because these points had feature values that were different from those of neighbouring points 
therefore they were group into separate segments. In contrast, the segmentation results for the 2012 epoch 
showed the scarp and part of the landslide boundary merged into a single segment. This was because in 
the initial segment growing segmentation, these points had distinct feature values so they formed small 
segments. However, when connected components was applied, they were all grouped into a large segment 
since these segments were close by and the criterion for grouping into a segment was based on a distance 
threshold. In comparison with the 2011 and 2013 segmentation results, the 2012 results were poor. 
    

(a) (c) (b) 

Figure 4-13: Scarp area for 2011 (a), 2012 (b) and 2013 (c) data. 
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4.4.2.1. Influence of segmentation parameters 
The segmentation parameters i.e. neighbourhood, radius and tolerance were varied to see their influence 
on the segmentation results. The size of the neighbourhood i.e. number of points in a neighbourhood 
used to calculate the point attributes was varied for 200, 120 and 100 points. It was observed that the 
increase in the size of the neighbourhood had no effect on point attribute calculation. This is because the 
point density of the data is very high such that even if the number of neighbours around a point were 
increased, they would still be close to the point and would not greatly affect the feature value calculated. 
However, it was noted that increasing the size of the neighbourhood slows the processing speed. In that 
case it’s good to use a considerable number of points for fast processing. The radius used during point 
attribute calculation was also varied for 0.3m, 0.5m and 1m. No noticeable difference in the feature values 
calculated was observed. With increase in the radius, we could still find the number of points for feature 
value computation within a small radius for the point in question. This is likely due to the high point 
density of the data. When the tolerance for the attribute used for segment growing was altered, it was 
observed that for a large tolerance, most of the points were merged into large segments.  This was because 
the feature values between most of the neighbouring points were not too distinct. However, a very low 
value could also lead to over segmentation. Therefore, in order to obtain optimal segmentation results, a 
lower optimal value for the tolerance is suitable although this will also depend on the type of object 
expected to be extracted.  

4.4.3. Discussion 
By making use of different segmentation and post processing steps, final segmentation results that group 
points on the ground, trees, scarp, landslide boundary and low laying vegetation can be obtained. Most 
trees were grouped into single segments with a few exceptions having two or more segments. Over 
segmentation on the boundary of the landslide and scarp area is due to some points having very different 
feature values than those of surrounding points. The point attribute used can either be derived in a single 
or multiple epochs depending on what object or characteristic of an object is of interest. The shape of the 
neighbourhood used in calculating point attributes for the segmentation process should be varied 
depending on the characteristic/ property of the object of interest. Some object properties like slope and 
surface separation distance are more suitable to be used for thresholding than as an attribute for 
segmentation. The segmentation results have to be combined with knowledge of the area or an image of 
the area in order to obtain full value from them. This is because of the difficulty in interpreting the data on 
its own. In the absence of reference data, we used a manual interpretation using the knowledge of the data 
and image of the area to assess the quality of the segmentation. This was done using visual inspection. In 
such a case ascertaining the quality of the segmentation becomes rather subjective.  

4.5. Object to object matching 
After the segmentation process, the segments in one epoch were matched to corresponding segments in 
another epoch. The criteria used for matching was the minimum distance and the highest similarity 
measure. 

4.5.1. Matching using point attributes 
With this approach, the criterion used for matching was the similarity measure. This similarity measure 
was described in section 3.4.1. Segments were matched to each other if they had the highest similarity 
measure based on a given point attribute. The similarity measure was tested using point attributes of slope 
and roughness. These attributes were selected because they characterise the objects that were expected to 
be matched. The results for matching using this criterion were not good. Almost all matches were 
incorrect. This was probably due to values used in calculating the correlation. These values were calculated 
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as averages of a particular point attribute per segment. The dynamic nature of the data also made it 
difficult for the same segment in the different epochs to have similar values. 

4.5.2. Matching using minimum distance 
Matching based on minimum distance yielded mixed results. Some segments were correctly matched while 
others were incorrectly matched as shown in Figure 4-14. The green arrows represent correctly matched 
segments while the red ones represent incorrectly matched segments. The majority of the correct matches 
were obtained on the small segments. However, with the large segments, incorrect matches were obtained. 
This inconsistency in matching could be linked to the dynamic nature of the data.  
 
 

 

4.5.3. Discussion on matching process 
The matching between segments in different epochs could not be correctly implemented with the criteria 
used. Having said that, relatively some success was obtained with the minimum distance as a criterion for 
matching. In contrast, the use of point attributes yielded poor results.  We also explored the idea of 
matching using all point attributes per segment but it turned out to be cumbersome and difficult to 
implement. 
The quality of the matching was tested by manually checking for segments that matched. With the 
criterion of using the similarity measure of point attributes, the quality was poor. On the other hand, using 
minimum distance showed some good instances of matches between segments although still wrong 
matches were registered. It must be said that the quality of the segmentation has a bearing on the quality 
of the matching. With a good segmentation result, the expectation for good matching results is 

Figure 4-14: Matching results using minimum distance between 2011 and 2012 epochs. 
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significantly enhanced. In a scenario where a particular segment/ object in one epoch is either over/ under 
segmented and a similar one in the other is correctly segmented as shown in Figure 4-15, quantifying 
change becomes difficult. This is because the correctly segmented object will be matched with all similar 
over segmented segments in the other epoch. 
 

 
 
 
 
 
 
 
 
 
 

 
 

The knowledge on how the objects move could also be implemented to improve on the matching process. 
More properties of the objects can be added to the data and used as a matching criterion. This will likely 
increase the possibility of getting correct matches. The volume of the objects can be used as a measure of 
change by comparing the volumes of the object in one epoch with another similar one in the other epoch. 
However, the use of size as a measure of change is likely to yield results that don’t make a lot of sense. 
This is because the size is determined by the segmentation result than by the object itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4-15: Matching result showing several segments matched to one segments. 
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4.6. Surface separation distance 

4.6.1. Calculation of surface separation distance 
This point attribute was calculated between the 2011 and 2012, 2012 and 2013 and then finally for 2011 
and 2013 datasets. First, the 50 neighbours within a range of 3m were found. The nearest point in the 
other epoch was then identified. For that point, its nearest 20 neighbours were found and a plane fitted 
through them. The point to plane distance was then calculated. This was done iteratively for all the points. 
A threshold of 0.3m was used to distinguish between dynamic and static parts of the landslide. This 
threshold value was used so that the separation distance wouldn’t be confused with the registration error. 
The registration error for the datasets was approximated to be less than 0.2m. Points with values higher 
than the set threshold were taken as dynamic while those lower than the threshold were taken as static. 
Dynamic in this case means parts more affected by the landslide while static are parts less affected by the 
landslide. 
 

 

  

Figure 4-16: Surface separation distance between 2011 and 2012 epochs. 
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Table 4-3: Colour legend showing colours corresponding to value per point. 

Surface separation distance <0.3m >0.3≤0.5m >0.5≤0.7m >0.7≤0.9m >0.9m 
Colour       
RGB 255 150 0 0 0 255 255 0 0 150 255 0 255 153 255 
 
In Figure 4-16, the values of the surface separation distance for points is shown. Generally most points on 
the large landslide have values less than 0.3m. This implies that nothing much changed between 2011 and 
2012. A few points changed or moved and these are coloured blue, red, green or pink. The few points 
with large differences (coloured pink) on the top right hand corner are not because of any change but 
because of the two epochs not overlapping precisely at that point. 
 

 
  Figure 4-17: Surface separation distance between 2012 and 2013 epochs. 
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Figure 4-17 shows results for the surface separation distance computed between the 2012 and 2013 
epochs. Generally most points of the large landslide had small differences. Large differences were 
observed within the body of the landslide. This was probably due to something moving or changing 
within the body of the landslide. A few points at the edges of the epochs were observed to have large 
differences as well. This was because at those points the epochs didn’t precisely overlap. As a result, these 
points were assigned a value of 3m because no points were found within a range of 3m in the other epoch. 
The dynamic parts within the landslide were observed to increase as compared to the results in Figure 4-
16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4-18: Surface separation distance between 2011 and 2013 epochs. 
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Figure 4-18 shows most of the points with large differences are located within the body of the landslides. 
A few points were also observed on the boundaries. Most of the points for the surface separation distance 
calculated between 2011 and 2013 were observed to have small differences. From the results in Figure 4-
16, 4-17 and 4-18, it was observed that the points with large differences increased from 2011 to 2013. 

4.6.2. Object based change detection 
In order to show how much change was taking place per segment, the percentage of points that were 
dynamic was calculated. Points in each segment that had a surface separation distance greater than 0.3m 
were defined as dynamic. This was done for all the segments in each epoch. 
 
 

 

  

Figure 4-19: Segments coloured according to percentage of points that are dynamic between 2011 
and 2012 epochs. 
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Table 4-4: Colour legend showing colours corresponding to percentages  

Percentage <10 ≥10<20 ≥20<30 ≥30<40 ≥40<50 ≥50<60 ≥60<70 ≥70<80 ≥80 
Colour          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-20: Segments coloured according to percentage of points that are dynamic 
between 2012 and 2013 epochs. 
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Figures 4-19, 4-20 and 4-21 show the amount of change per segment in each of the epochs. Generally it 
was observed that the segments with in the landslide and also along its boundary had a high percentage of 
points that were changing. However, the ground around the landslide was relatively static with few points 
that were changing. 

4.6.3. Discussion  
From the surface separation distance computed in section 4.6.1., it was seen that the dynamic parts were 
increasing within the landslide from 2011 to 2013. This clearly shows that something was changing or had 
moved. This change could be attributed to erosion especially along the boundaries of the landslide. In all 
epochs, a large part of the data was seen to be relatively static. The surface separation distance shows the 
change and the size of change per point. Grouping per segment gave a new value which showed which 

Figure 4-21: Segments coloured according to percentage of points that are 
dynamic between 2011 and 2013 epochs. 
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segments were changing and by what amount. In all the epochs, various amounts of change were observed 
across the different segments with segments along and within the landslide having large amounts of 
change. This shows that the surface separation distance can be used as a property of objects to measure 
change. Although it must be noted that the quality of the change results is closely linked to the quality of 
the segmentation. With better segmentation results, the confidence in the change results would also 
increase. 

4.7. Summary 
In this chapter, the proposed methodology was tested using three terrestrial lidar point clouds. Before the 
data was used it was registered. Our registration approach improved the registration accuracy with the tilt 
identified in the data greatly reduced. Several point attributes that were related to the objects in the data 
were calculated. With the exception of the mean curvature, the rest of the point attributes were used in the 
different phases of the methodology. The segmentation results were fairly good; some over and under 
segmentation was noted though. It was also noted that for the segmentation results to be clearly 
interpreted, knowledge of the data/ are is crucial. This could be aided by an image of the area. Matching 
of the segments derived was tested but with limited success. The surface separation distance was found to 
show change and the amount of change taking place in each segment/ object. 
 
 
 
 
 
 
 
 
 
 
 
  



MONITORING LANDSLIDES USING MULTI-TEMPORAL TERRESTRIAL LIDAR POINT CLOUDS 

 

44 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 
In this study, an object oriented approach for monitoring changes in a shallow landslide was presented. 
Several point attributes were calculated and used in the different phases of the study. Segmentation was 
then carried out followed by change detection. The conclusions of this study are split into specific 
conclusions for each of the research objectives as follows. 

• Determining the characteristics of objects of a landslide requires knowledge of these properties. 
In this study, it has been shown that object properties such as slope, roughness, curvature, height 
above lowest local point and height difference can be derived as point attributes in a single epoch 
of a terrestrial lidar data. In addition, the surface separation distance was found to be useful as an 
object property and it was derived from multiple epochs of terrestrial lidar data. However, it 
important to consider the shape of the neighbourhood when computing the point attributes. This 
is so because some point attributes may be suited to either a 2D or 3D neighbourhood. The mean 
curvature and slope which are characteristic of the main scarp were not helpful in extracting the 
main scarp because their values were so low that using a threshold on them would introduce 
many false positives. 

• By combining segment growing, connected components and post processing using majority 
filtering, segmentation results were obtained that grouped points in the point clouds to objects of 
a landslide. Mixed segmentation results were observed on the scarp in the different epochs. The 
boundary of the landslide was over segmented in all segmentation results for the different epochs. 
The neighbourhood size and radius were found to have no effect on the segmentation results 
because of the high point density of the data. However, varying the tolerance used in the segment 
growing showed that a large tolerance would lead to under segmentation while a low tolerance 
value would lead to over segmentation. An optimal tolerance value was thus used for this study. 

• When matching objects/ segments between different epochs, an appropriate criterion needs to be 
used. In this study we tested the use of a similarity based on point attributes and minimum 
distance as criteria for matching. A considerable though minimal success was obtained with the 
later criterion. The matching of objects in the different epochs still remains a challenge because 
for proper matches to be obtained we need identical segments in the different epochs so that the 
feature values are similar. The criterion for obtaining correct matches was not completely resolved 
in this study. In order to measure change, the surface separation distance was presented as a way 
to determine change and the size of change per object/ segment. The quality of the segmentation 
result has a significant bearing on the quality of change results. Errors in segmentation like over 
or under segmentation will affect the change results. This is because this approach calculates the 
size of change as a percentage of the points in a segment. The volume of the object/ segment can 
also be used as a measure of change. 

• Over and under segmentation observed in the segmentation results needs to be resolved in order 
to improve the quality of the segmentation. More knowledge of the object properties could help 
to improve the quality of the segmentation. The quality of the matching was not good. The 
majority of the matches between segments were incorrect. Incorporating the knowledge of how 
these objects move could improve this. However, the quality of the matching is highly dependent 
on the quality of the segmentation. 
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5.2.  Recommendations 
• Our approach is based on calculating point attributes using a local neighbourhood. It would be of 

interest to see whether calculating these attributes at different scales would have an effect. 
• The matching criteria tested in study were based on correlation of point attributes and minimum 

distance between segments. It would be of interest to test if using different matching criteria for 
objects that are static and dynamic would have an effect. 
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Appendix 1: Tree segments 
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