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ABSTRACT 

Ghana is at the “readiness stage” of REDD+ project implementation. REDD+ mechanisms may affect 

agriculture in Ghana because, agriculture is one of the major drivers of deforestation and the main 

occupation in Ghana. Many scientists are of the view that, agricultural systems which conserve trees in the 

farms and incorporate tree planting fall within the REDD+ mechanisms of conservation, sustainable 

management of trees and carbon stock enhancement, and therefore farmers who practice such systems have 

to be compensated. However, in Ghana, farmers are not compensated when they conserve trees on their 

farmlands. As a result, some of the farmers deliberately fell matured trees from their farmlands, leading to 

a serious impact on the carbon stock of trees. Though the REDD+ mechanisms may offer an economic 

breakthrough for the farmers, the carbon stock potential of trees, a major requirement for the carbon 

financial credit has not been substantiated. Methods to monitor, report and verify (MRV) the changes in the 

carbon stock of trees, are usually not well developed. The aim of this research was to develop a method 

from Remote Sensing and Geographical Information Science techniques in combination with field 

measurements, to improve on a carbon stock simulation model, developed for Goaso Forest District and  

use the model to project the changes in the above-ground carbon stock of trees into the future, under 

Business as Usual (BAU) scenario, whereby the farmers expand their farms and fell trees from the Forest 

District, and a scenario whereby they are offered incentives to conserve the trees (REDD+). The 

deforestation rate and the effect of environmental drivers on deforestation and consequently on the carbon 

stock model were also analysed. The results indicated that, an annual net deforestation rate of 3% was 

recorded in Goaso Forest District from 2000-2012. The environmental drivers (elevation, distance to 

protected areas, roads, streams and towns) investigated in this research were all found to exhibit a significant 

effect on deforestation and consequently carbon stock, except the effect of distance to the protected areas, 

which recorded an insignificant effect on deforestation. The general trend was that, nearby distances 

favoured deforestation, whilst faraway distances inhibited it. The only exception from this trend was distance 

to town which was found to favour and exacerbate more deforestation in faraway distances. The research 

estimated that, the above-ground carbon (AGC) stock in Goaso agro-ecosystem is about 28.0 tons /hectare, 

out of the total AGC stock of 54.5 tons/hectare estimated for the whole Forest District. Signifying that, 

without the carbon stock in the agro-ecosystem, there would be only 26.5 tons of AGC stock per hectare 

in the Forest District. This demonstrates the importance of the AGC stock of trees in the agro-ecosystem 

to the Forest District. The carbon stock model also projected about 44.3 % decrease in the total AGC stock 

in the future under BAU scenario from 2001 to 2025 and a decrease of 16.4 % from 2015 to 2025 under 

BAU scenario as compared to 9.2 % and 1.4% decline in the forest carbon pool under REDD+ scenarios 

whereby the annual net deforestation rates were assumed to be reduced to 2% and 1% respectively. In 

contrast, the model predicted about 7% gain in the forest carbon pool from 2015-2025 under the REDD+ 

scenario with an assumption that there will be no deforestation but other conversions will continue. The 

conclusion from the research was that, both the agro-ecosystem and the forest reserve in Goaso Forest 

District have carbon stock potentials. Thus, the conservation of trees under REDD+ will lead to an increase 

in future AGC stock of trees in the Forest District. The AGC stock model was also seen as a major 

improvement on the existing model because, the  average uncertainty in tons  per hectare  for the  simulation 

over 25 years was very low (0.10 tons / hectare) as compared to the average uncertainty in tons per hectare 

(95.71 tons/hectare) for 12 years simulation recorded by the existing model. 

 

Keywords: Forest, Carbon Stock, Modelling, REDD+, Agro-Ecosystem, Segmentation 
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1. INTRODUCTION 

1.1. Background 

The interest in the world’s forest has grown over the years, not because of the basic ecosystem services 

(food, shelter, water) it provides, but in response to the increasing awareness of the role it plays in the global 

carbon cycle. According to FAO (2010), healthy trees in the forest sequestrate about 289 Giga tons of 

carbon in their biomass. The assertion is that, sustainable management of forest through replanting and 

rehabilitation may increase carbon sequestration world-wide. Nevertheless, about 7.3 million hectares of the 

world’s forests are destroyed by deforestation every year. Deforestation accounts for about 20% of the 

global greenhouse gas emissions (UN-REDD, 2009).  

 

Reducing emissions from deforestation and forest degradation (REDD+) is recognized as a cost effective 

way of mitigating greenhouse gas emissions (UN-REDD, 2009). Against this background, the United 

Nations Framework Convention on Climate Change (UNFCCC), set up REDD+ to mitigate climate change 

by reducing carbon emissions due to deforestation and degradation in many countries (UN-REDD, 2009). 

However, the REDD+ mechanisms may indirectly affect agriculture, since agricultural expansion is one of 

the  major drivers of deforestation and a major occupation in many countries (Gibbs et al., 2007; Houghton, 

2005; Olander et al.,  2012).   

 

According to Horowitz (2010), agricultural systems, which incorporate tree planting or conservation fall 

within the REDD+ mechanisms of conservation, sustainable management of trees and carbon stock 

enhancement. Yet, conservation of trees is not attractive to small holder farmers because, the process of 

conservation does not translate into short term rise in income and social welfare (Gelens et al., 2010). 

Takimoto et al. (2008) emphasized that, without incentives and legal ownership rights, offering any part of 

the limited land for conservation, afforestation and reforestation will not be an option in many countries. 

Antle (2002) and Jindal et al.(2012) are also of the view that, farmers who conserve or plant trees on their 

farmlands need to be compensated. Since this may reduce the income they generate from food production 

which is their main source of livelihood.  

 

Nonetheless, farmers in Ghana for example, are not compensated or offered any kind of incentives from 

legal logging of trees on their farmlands by the government. In view of this, some farmers deliberately 

engage the services of chainsaw operators to illegally fell matured trees from their farmlands or use fire or 

“ring barking” to gradually remove the trees to  avoid and minimize damages as well as trees competition 

with their crops (Gelens et al., 2010). Though, the REDD+ carbon financial incentives, may help small 

holder farmers who conserve trees on their farmlands to achieve financial independence, many countries 

(Funder, 2009), including Ghana, do not have the technological capacity (methods, software programs, 

satellite data, technical experts), to ensure that these small holder farmers benefit from the REDD+ carbon 

financial credit (Ghana REDD+ R-PP, 2010). It is obvious that, the conservation of trees under REDD+ 

mechanisms may lead to an accrued gain in carbon stock in the future, but the amount or  how much  is not 

known. According to Qureshi et al. ( 2012), correct assessment of  the amount of carbon stock in trees may 

help REDD+ member countries to identify and target priority areas of management intervention and 

farmers to also benefit from the carbon financial credit.  
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Ghana is among the member countries preparing the grounds to implement the REDD+ mechanisms. The 

country’s “readiness preparation proposal (R-PP)” to benefit from the REDD+ carbon financial incentive 

was accepted in 2010. The R-PP is a starting point in the REDD+ capacity building, and presents a 

comprehensive overview of the current situation, the challenges and the steps towards the national REDD+ 

strategy development. The challenge for Ghana now is the identification of REDD+ priority areas, 

monitoring, reporting, and verification (MRV) of changes in carbon stock under different scenarios. It is 

explicit in the R-PP that, the country requires technical capacity building (methods, software programs, 

VHR satellite data, human resources and so on)  to be able to monitor, report and verify  the  amount of 

carbon stock in trees (Ghana REDD+ R-PP, 2010).  

 

In order for  farmers to be considered for REDD+ carbon  financial incentives, the contribution of trees in 

the agro-ecosystem to the country’s carbon pool must be monitored, reported, verified and included in the 

estimates from the forest reserve because, the  REDD+ member countries are only eligible for carbon credit 

payment, following an accurate carbon stock monitoring, reporting as well as verification (MRV) of the 

reduced emissions (Ghana REDD+ R-PP, 2010). Therefore, a method for assessing and modelling the 

current and future carbon stock of trees in both the forest reserve and the agro-ecosystem (off-forest 

reserve) in the country under different scenarios is crucial to unravel the amount of AGC stock being lost 

through deforestation. 

1.2. Guidelines for carbon stock measurement and reporting 

The International Panel Conversion on Climate Change IPCC (2003), Good Practice Guidance for Land 

Use, Land Use Change and Forestry Inventory Methods, for carbon emissions reporting, highlighted on the 

possible carbon pools to be measured for carbon emissions reporting under REDD+, namely; above-ground 

biomass (AGB), below-ground biomass, dead wood, litter and soil carbon. It is proposed that, only the 

carbon pools which are continuously changing and can be monitored cost effectively must be measured. 

Carbon pool from AGB of trees (AGC) is an example of carbon stock which is continuously changing, 

highly affected by deforestation and can be measured cost effectively as compared to the other carbon pools. 

AGC also accounts for the largest carbon pool (60-90%) of the total carbon stock estimated from trees. 

Furthermore, reduction in carbon emissions from other pools such as litter, soil and so on, have not yet 

been considered for carbon financial incentives under REDD+ (CIFOR, 2009).  

 

The IPCC’s guidance permits forest carbon stock inventories at different levels of complexities, often 

referred to as “tiers”. Three main tiers are proposed for carbon inventories and reporting under REDD+. 

The tier one uses carbon stock default values provided at the continental scale, which is stratified by the 

ecological biome with a very high level of uncertainty. The tier two, uses some country specific data from a 

look up table for the assessment of the carbon stock dynamics. The uncertainty associated with this tier is 

high to medium. The tier three on the other hand, uses advanced methods and detailed country specific data 

including national inventories, measurement systems repeated through time with low uncertainty level. 

Generally, inventories with higher tiers are more accurate and  less uncertain (IPCC, 2003). 

 

Two approaches are available under the tier3. One option is to create two carbon maps for two different 

years and estimate the differences between the two carbon maps or compare the two carbon maps over 

time. This approach is only feasible when historical data on carbon stock estimates are available for the past 

years. Another option is to combine land cover change maps over a period of time with carbon stock maps 

or carbon stock estimates. This means that, the tier three requires Remote Sensing (RS) and Geographical 

Information Science (GIS) techniques in order to be able to estimate changes in AGC stock. According to 

Rossillo-Calle et al. (2007), electromagnetic response from RS image can be combined with structural 

parameters from trees for AGC stock estimation. The approach has been more successful in boreal and 



MODELLING ABOVE-GROUND CARBON STOCK OF TREES IN AGRO-ECOSYSTEM AND FOREST RESERVE UNDER REDD+ MECHANISMS 

 

    3 

temperate forests and in “young stands” with less density of biomass (Rosenqvist et al., 2003), but has not 

been more promising in the  tropical areas due to the complex ecosystem (canopy structure), which causes 

the RS signals to be saturated. Also, the use of optical RS in the tropics is limited by cloud cover.  

 

However, current methods such as Radar System can penetrate through clouds and can operate both day 

and night (Asner, 2001). According to Leckie et al. (2003), the invention of VHR satellites, such as 

IKONOS, Quick Bird, OrbView-3, GeoEye and Worldview-1 and 2 have offered the opportunity to extract 

very detailed information at the individual tree level. This has offered more hope for extraction of forest 

parameters for accurate AGC stock estimation. VHR imageries facilitate individual tree crown delineation, 

species identification, estimation of crown density and forest stand polygon delineation. Worldview-2 for 

instance, has high spectral diversity. Its new bands; Red Edge, NIR1, NIR2 can be used to identify trees in 

the tropics even at the specie level. Many segmentation algorithms and software programs (e.g. eCognition) 

for Object based Analysis (OBIA) are now available for extraction of biophysical parameters from trees.  

1.3. Approaches to monitor changes in AGC stock at the national level 

Monitoring changes in AGC stock repeatedly at the national level, requires deforestation rates, estimated 

from land cover maps of different years to be combined with AGC stock estimates. It is often recommended 

that, the deforestation rate (land cover change rate) is estimated from the same strata from which the carbon 

stock sampling was done, by employing “wall to wall” mapping or by targeting sampling using the same 

stratified sampling method as the carbon stock. The major strength of this approach is that, it offers the 

opportunity for carbon stock estimates to be used to model emissions in the past, present and the future 

(Gibbs et al., 2007). RS approach can be used to assess and estimate land cover changes due to deforestation 

(deforestation rate). Deforestation rate estimated from RS satellite data has been found to be more reliable, 

consistent and more accurate than the rates estimated from census data (Houghton, 2005). Nonetheless, it 

was argued by Houghton (2005) that, this method has not been used often in the tropics. 

 

According to Gibbs et al. ( 2007), RS methods alone may not be able to model changes in carbon stock and 

therefore it must be combined with process models. Process models can map deforestation risk areas in 

addition to carbon value quantification. They offer the opportunity to establish a link between drivers and 

the rate of deforestation. Aguilar-Amuchastegui and Forrest ( 2013) noted that, it is possible to simulate and 

compare multiple land use scenarios with models and re-run the scenarios again with respect to changes in 

drivers. Modelling under different scenario facilitates creative ways of thinking that enables stakeholders to 

modify established patterns of assessing situations and future planning actions in order to ensure that, they 

are in the best position to cope with the future as in the case of tropical forest with forest fringe communities 

(Wollenberg et al., 2000).  

Schoemaker (1993), explained that, scenarios are more suitable when uncertainties are high as in the case of 

carbon stock estimation. Several land use change models are now available and they have provided 

opportunities to develop a scenario and project the future role of land cover change in earth system 

functioning. According to Veldkamp and Lambin (2001), a land use change scenario modelling, done in a 

“spatially–explicit integrated and multi-scale manner”, serves as a technique for projecting alternative 

scenarios into the future and to also undertake experiments that increase our understandings of  the major 

processes in land use changes. A mentioned was made to the fact that, part of the complexities in the land 

use system can be represented by land use change models to allow testing of the sensitivity of land use 

patterns to changes in the variables under study. Veldkamp and Lambin (2001) stressed that, through 

scenario building, the robustness of the integrated socio-ecological systems can be tested.  
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Two main scenarios are vital under the carbon compliance market. Business as Usual (BAU) assumes that, 

historical trends continue in to the future in the absence of policy intervention and socio-economic changes. 

Interventional or Management scenario, assumes that historical trends are intervened to alter the rate or 

pattern of change. Examples of such Interventional scenarios are: REDD+ Projects, Forest Investment 

Programme, Carbon Voluntary Markets, Policy Changes, Land Use Intensification Programmes, Cultural 

Practices and so on (Mckenzie et al., 2012).  

Many tools are available for modelling carbon stocks of trees under REDD+ mechanisms. Examples of such 

tools are: Land Use Change Modeller, Dinamica EGO, GEOMOD, MAXENT, Clue S, Invest Scenario 

Generator, AFOLU Carbon Calculator and many more. Aguilar-Amuchastegui and  Forrest ( 2013) gave an 

overview of the various tools and how they are operated as well as their pros and cons. Among the software 

programs which are freely available, Dinamica EGO (Environment for Geo-processing Objects), an open 

source modelling platform has been found to model future carbon stock under different scenarios more 

accurately than all the others (Aguilar-Amuchastegui & Forrest, 2013).  

1.4. Research Problem and Justification 

Despite the fact that, many studies have stressed on the important roles trees in the agro-ecosystem and the 

forest reserve may play in mitigating greenhouse gases, the role played by trees in the agro-ecosystem has 

not received International recognition (Albrecht & Kandji, 2003; Takimoto et al., 2008). This is attributed 

to the lack of sufficient data on carbon stock dynamics in the agro-ecosystem to support climate change 

decisions. Specific information on the amount of carbon stock in the agro-ecosystem is often not available 

in many countries because, the quantification of the carbon stock potential of trees in the agro-ecosystem 

has not been undertaken (Takimoto et al., 2008). Many of the studies (Baral, 2011; Basuki et al., 2009; Bayat 

et al., 2012; Samalca et al., 2007; Karna, 2012), conducted to substantiate the carbon stock potential of trees 

did not include the estimates from the agro-ecosystem in their analysis. This is because, methods to measure 

carbon stock in the agro-ecosystem are usually not well developed (Takimoto et al., 2008).  

 

Methods for accurate carbon stock assessment and modelling, which takes into an account, the contribution 

of carbon stock of trees in the agro-ecosystem and the carbon stock estimates of trees in the forest reserve 

are crucial in Ghana because, according to the Ghana’s R-PP, the development of a historically adjusted 

reference emission scenario in the country is at the embryonic stage. This will involve quantifying historical 

emissions and removals and then developing future trajectories based on economic development and 

agricultural scenario data. Also, methods for accurate carbon stock assessment and modelling may provide 

the requisite information and data required for the implementation of REDD+ mechanisms in the country, 

since REDD+ member countries are only eligible for carbon financial credit payment, following an accurate 

carbon stock monitoring, reporting as well as verification (MRV) of the reduced emissions (Ghana REDD+ 

R-PP, 2010).  

 

Houghton (2005), highlighted that, a comparison of carbon stock estimates against ground truth data is 

needed in the tropics for the validation of carbon stock estimates. Nevertheless, ground truth data to validate 

the contribution of carbon stock of trees in climate change mitigations are few on the global front (Takimoto 

et al., 2008). Bosetti and Lubowski (2010) mentioned the availability of field data for monitoring and 

assessment of carbon stock as the main challenge confronting the implementation of REDD+ mechanisms 

in developing countries. Rosenqvist et al. (2003) also stressed that, the establishment of a national carbon 

stock baseline dataset and the assessment of changes in carbon stock, may provide the information and data 

needed to fulfil the implicit requirement for carbon stock monitoring under the article 3 of the Kyoto 

protocol of the UNFCCC. This requires that carbon stock estimates are combined with deforestation rate 

estimated from land cover maps of different years as well as drivers of deforestation (environmental or 
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socio-economic variables) to allow the carbon stock estimates to be used to model emissions in the past, 

present and the future (Gibbs et al., 2007).  

 

According to Maeda et al. (2011), models offer opportunities to simulate land cover changes as well as 

deforestation rates to discover the underlying causes and determinants of the changes. They emphasized 

that, models present the platform to anticipate the impact of changes and also to foresee the appropriate 

measures to control such changes and mitigate the effects. Qureshi et al. ( 2012) also explained that, correct 

modelling of carbon stock may help REDD+ member countries to identify and target priority areas of 

management intervention and the farmers to also benefit from the REDD+ carbon financial credit.  

 

Over the years, many studies (Maeda et al., 2011; Soares-Filho et al., 2009; Soares-Filho et al., 2007; Soares-

Filho et al., 2006; Soares-Filho et al., 2004; Soares-Filho et al.,  2003; Soares-filho et al. 2002; Veldkamp & 

Lambin, 2001) have used models to investigate deforestation so as to understand the drivers and dynamics  

of forest conversion into other land uses and the environmental side-effect associated with them. Dinamica 

Ego software program is among the various spatial model software programs which have been used over 

the years to model the future scenarios (Maeda et al., 2011; Soares-filho et al., 2002; Soares-Filho et al., 

2009). The aforementioned authors all dwelled on Remote Sensing (RS) and Geographical Information 

Science (GIS) applications in combination with field measurements (ground truth data) to facilitate 

modelling under different scenarios.  

Though, RS and GIS techniques are appropriate for estimating AGC stock in inaccessible areas (Gibbs et 

al., 2007), not many studies have focused on this in Ghana. In a situation whereby RS and GIS applications 

have been used to study the land use systems in Ghana, the focus has always been on the forest reserve 

only, even though the agro-ecosystem (off-forest reserve) constitutes a greater part (70%) of the forest pool 

in Ghana (Bih, 2006). An attempt to use RS and GIS applications in Goaso focused on land use change 

detection and tree density measurement. This study, which was undertaken by Gelens et al. (2010) under 

the auspices of the Tropenbos International Ghana Programme was able to map and detect changes in the 

various land cover types using RS and GIS applications in combination with field measurements.  

However, the study did not look into the carbon stock modelling in the  whole Forest District [forest reserve 

and the agro-ecosystem] (Gelens et al., 2010). In 2012, Mutanga estimated the carbon stock of trees on 

farmlands in Ejisu Juabeng  District of Ghana, but did not  ascertain the amount of carbon stock which was 

available in the past and the expected amount in the future as required by the REDD+ mechanisms 

(Mutanga, 2012). Carbon stock dynamic model, which can model past and future changes in carbon stock 

under different scenarios and satisfies the requirement of the “Good Practice  for Monitoring, Reporting 

and Verification (MRV)” for REDD+ is required in Ghana (Ghana REDD+ R-PP, 2010).   

Therefore, this research improved on an unpublished method for modelling past and future carbon stock 

of trees under different scenarios, developed for Goaso Forest District. This method, which was developed 

by Groen (Personal Communication,  2014), used the tier 1 of the IPCC (2003), Good Practice Guidance 

for AGC stock reporting. But the uncertainty surrounding this tier, is very high. However, Ghana has  

indicated  in the REDD+ readiness proposal to use at least the tier two in carbon emissions reporting (Ghana 

REDD+ R-PP, 2010). Therefore, the model was improved by using the IPCC tier3 (IPCC, 2003). Historical 

data on AGC estimates are not available in Ghana and hence the option one of the tier 3 was not feasible. 

Landsat-7 (2000-2012) imageries and WorldView-2 image were available for the adoption of the option 2 

of the IPCC tier 3. These data facilitated the current AGC stock assessment and future modelling under 

BAU scenario, whereby deforestation continues into the future and REDD+ scenario, whereby farmers are 

offered financial incentives to halt deforestation and conserve trees. Ground truth AGC stock estimate of 

trees in the agro-ecosystem was also included in the analysis of the current AGC stock estimates for the 
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whole study area (forest reserve and the agro-ecosystem) because, this may serve as a basis for small holder 

farmers to be considered for REDD+  carbon financial incentives.  

The model improvement was implemented by harnessing  on the  pixel based land cover classification ability 

of ARCGIS software program (Bakker et al., 2009), carbon stock estimation ability of the eCognition 

software program (Definiens, 2009; Leckie et al., 2003) and the heuristic ability of the Dinamica EGO 

software program ( Soares-Filho et al., 2009). The research was undertaken in Goaso Forest District (GFD) 

because, the model developed by Groen was based on this Forest District. It is also one of the potential 

high forest zones in Ghana, which can serve as a priority area for REDD+ pilot project implementation due 

to the dramatic agricultural expansion in the District. The new developments in the Forest District, 

mentioned earlier, made it a representative area  and  also a very good case for this research (Gelens et al., 

2010).   

1.5. Main Objective 

To assess the current AGC stock in woody biomass and improve on a method for modelling future changes 

in the AGC stock based on two scenarios (BAU and REDD+). 

1.5.1. Specific Objectives 

1. To estimate the AGC stock of trees per hectare from VHR satellite image in the whole GFD 

and only the agro-ecosystem. 

2. To estimate the annual net deforestation/change rate from 2000-2012 in GFD. 

3.  To analyze the effect of drivers (explanatory/environmental variables) on deforestation and 

consequently carbon stock in GFD. 

4. To model the effect of the BAU and REDD+ scenarios on the future AGC stock. 

1.6. Research Questions  

1. What are the AGC stock estimates of trees per hectare in the whole GFD and the agro-

ecosystem only? 

2. What are the annual deforestation/change rates from 2000-2012 in GFD? 

3. What are the effects of the drivers (explanatory/environmental variables) in GFD on 

deforestation and consequently carbon stock? 

4.  What are the expected effects of the BAU and REDD+ scenarios on the future AGC stock in 

GFD? 
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2. LITERATURE REVIEW 

2.1. Definitions  

2.1.1. Forest Land 

Forest land is categorized by FRA ( 2010), as all land with woody vegetation, covering more than 0.5 

hectares, with tree height higher than 5m, and a canopy cover more than 10% or the trees are capable of 

reaching these threshold “in situ”. Land predominantly under agricultural activities and urban land use are 

not included. 

2.1.2. Canopy Cover/ Crown Projection Area (CPA) 

Canopy cover is defined by FRA ( 2010) as the percentage of ground, covered by vertical projection of the 

outermost perimeter of the natural spread of the foliage of plants which cannot exceed 100%. It is calculated 

by measuring the maximum crown diameter assuming a circular crown projection (Kuuluvainen, 1991).  

2.1.3. Deforestation 

IPCC (2006) defines deforestation as “the direct human-induced conversion of forested land to non-

forested land”. 

2.1.4. Cropland 

According to IPCC ( 2003), cropland is characterised by arable and tillage land and agroforestry system 

whereby, vegetation falls below the threshold for forest classification which is consistent with the selection 

of national definition. 

2.1.5. Fallow land 

Fallow land is an uncultivated land capable of regenerating into forest land. A land must be uncultivated 

for many years, between 6-10 years before it can be classified as a fallow land (Gelens et al., 2010). 

2.1.6. Above-ground biomass 

 Above-ground biomass (AGB) is defined as all living biomass above the soil, including stems, foliage, 

branches, stumps, barks and seeds. About 45%-50% of AGB is equivalent to the above-ground carbon 

(AGC). Biomass of living roots are classified as below-ground biomass (FRA, 2010). 

2.1.7. Allometric equations 

According to Kettering et al. (2001), allometric equations are the quantitative relationship between 

measurable tree variables like DBH and height to other variables, which are too difficult to be assessed such 

as above-ground biomass, above-ground carbon, and standing volume and so on. Brown (2002) established 

that the relationship between an allometric equation and measured DBH can provide a reliable estimate of 

the total biomass for broad range of forest categories and ecological zones. 

2.1.8. Uncertainties in carbon stock estimates 

Uncertainties in carbon estimates refer to the inaccuracies and errors involved in carbon stock estimation.  

This is estimated by calculating the mean of the carbon estimate, plus or minus two standard deviation 

away from the mean (IPCC, 2003). 
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2.2.  REDD+ mechanisms 

The United Nations’ Framework Convention on Climate Change (UNFCCC), endorsement of the forest 

rich countries call, to include economic incentives in the Kyoto Protocol, marked the genesis of REDD+ 

mechanisms in many countries. The REDD+ mechanisms are aimed at offering financial incentives to 

motivate countries to freely reduce national deforestation rates and associated carbon emissions below a 

baseline, be it historical or future. Countries can therefore trade their emissions reduction for carbon credit 

on the International Market. It is expected that, the reduction in carbon emissions due to deforestation and 

forest degradation may lead to climate change mitigation, conservation of biodiversity, and protection of 

ecosystem services and goods (Gibbs et al.,  2007; Olander et al., 2012). 

2.3. Approaches for above-ground biomass and carbon stock measurement 

A myriad of approaches and data sources are available for AGB and AGC stock measurements. According 

to IPCC (2003), AGC= 0.47*(AGB). A cursory review of literature shows that, the methods for the AGB 

estimation can be categorized based on the sources of data used (Lu, 2006). AGB estimation from field 

measurement may involve destructive sampling or direct measurements and the use of allometric equations 

(Jia & Akiyama, 2005; Liddell et al., 2007; Miksys et al., 2007). Though, destructive sampling may improve 

the accuracy of the forest carbon stock estimation, it may be expensive and time consuming over a large 

areas (Gibbs et al., 2007).  

Allometric equation on the other hand, uses regression relationship between measured destructive harvest 

sample and an independent variables such as diameter at breast height (DBH), crown diameter, tree height 

and tree density to estimate forest AGB (Fehrmann & Kleinn, 2006; Muukkonen & Heiskanen, 2007). Chave 

et al. (2005) and Brown (2002) indicated that, DBH alone may account for about 95% of the variation in 

AGB and hence it is not worthwhile to use specie specific allometric equations for AGB estimation. They 

stressed that; generalised allometric equations may be effective in tropical forest AGB estimation, provided 

the ecological zones and the forest types are taken into consideration. 

However, they cautioned that, estimates from allometric equations must be validated with sampling of 2 to 

3 large trees especially, in Africa where there are limited ground based dataset for developing allometric 

equations. AGB is therefore estimated from allometric equation by applying an expansion factor to 

extrapolate the results over a large area. In some instances, correlations between AGB and look-up tables 

are coupled to estimate AGB in other pools (Gibbs et al., 2007). According to Houghton et al. (2001),  20% 

of the  forest AGB is equivalent to root biomass. Likewise, AGB in dead wood or litter has been found to 

be equivalent to 10-20% of AGB in matured forest. 

RS data can also offer opportunities for forest AGB measurement. It is seen as an alternative to the 

traditional methods for estimating biomass or changes in carbon stock. RS approach has gained an 

International recognition due to its capacity to clearly capture spatial information and the possibility of 

allowing monitoring and evaluation of carbon stock to be repeated in areas which are inaccessible and also 

in a cost effective manner. However, RS instruments are unable to measure carbon stock directly and 

therefore ground based data are needed in addition to RS data. Over the years, research focus has been 

directed towards the development of relationship between structural parameters such as tree height, DBH, 

CPA, basal area, biomass and many other parameters extracted from trees in the forest or plantation and 

the electromagnetic response from RS image (Rossillo - Calle et al., 2007).  

Recent global scale mapping relies on multi-spectral optical RS data. Optical RS is a passive sensing system, 

which uses the visible and near-infrared reflectance from solar radiation reflected from the earth surface. 

Optical remote sensors can relate field measurements of AGB to the observation from satellite sensitivity 

of the optical reflectance and canopy structure variations (Goetz et al., 2009). In many cases, biomass is 
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estimated by using a direct relationship between spectral response and multiple regression analysis (Roy & 

Ravan, 1996). K nearest neighbour (Tomppo et al., 2002), neural network as well as indirect relationship 

between parameters extracted from RS data such as leaf area index (LAI), crown closure and height or 

shadow fractions have also been used to estimate biomass and carbon stock (Feng et al., 2007; Leboeuf et 

al., 2007; Luther et al., 2006; Suganuma et al., 2006; Zheng et al., 2007). Satellite based RS approach has the 

strength of providing “wall to wall observation of carbon stock proxies” (Drake et al., 2003).  

Information, derived from Synthetic Aperture Radar (SAR), Light Detection and Ranging (LIDAR), Optical 

and synergetic measurements of multi-sensors can also be combined with ground based measurements for 

carbon stock estimation (Goetz et al., 2009). The use of RADAR for AGC stock estimation has been fruitful 

since it operates in the microwave region and therefore can penetrate through clouds (Patenaude et al., 

2005). However, this approach is also limited due to data saturation problems in tropical forest (Gibbs et 

al., 2007). Though, the LIDAR system can estimate carbon stock accurately, it is very expensive and limited 

in spatial extent (Rosenqvist et al., 2003).  

Many options are now available to delineate individual tree crowns from VHR images for carbon stock 

estimation (Bunting et al., 2010). For instance, the eCognition software program has opened the way for 

object based information extraction from VHR images (Wei et al., 2005). On top of providing the 

opportunity to delineate individual tree crowns, VHR images also provide the platform to differentiate the 

species (Ke et al., 2010). The relationship between CPA and tree diameter at breast height (DBH) has been 

established (Shimano, 1997). Therefore AGC stock can be estimated from the relationship between CPA 

and AGC stock estimated from field measured DBH (Muukkonen & Heiskanen, 2007). This approach has 

been found to improve the accuracy of AGB and AGC stock estimation ( Zheng et al., 2004). Table 1, is an 

overview of the benefits and limitations of the available methods to estimate national level forest carbon 

stocks as  it was put forward by Gibbs et al. (2007).  
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Table 1: Benefits and limitations of the available methods to estimate national level forest carbon stocks 

 

Source: (Gibbs et al., 2007a) 

2.4. Pixel based image classification 

A process whereby pixels are assigned to “nominal or thematic” classes is termed as pixel based image 

classification in RS and GIS platforms. In the process of image classification, a multi-band image is inputted 

into an image classification software program (ARCGIS, ERDAS etc.) which produces a raster cell with a 

thematic code. The classification relies on different spectral characteristics of different materials of the earth.  

Five main steps are involved in the image classification process. The first step involves acquisition and 

processing of RS image to be classified. Followed by the definition of the clusters in the feature space (a 

graph depicting the feature vectors). Two main approaches (supervised and unsupervised) are employed in 

the definition of the clusters. The supervised cluster definition approach allows the user to define the clusters 

during training of sample data. In contrast, unsupervised cluster definition is executed automatically by a 

clustering algorithm.  
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After the clusters are defined in the feature space, a classification algorithm (Box classifier, Minimum 

distance to mean, Maximum likelihood, Interactive classifier, Iso data classifier and so on)  is used to assign 

pixels to classes. The actual classification is then ran by assigning each “multi-band pixel” in the image to a 

predefined class based on the digital numbers of the pixels leading to a classified image. The quality of the 

classified image (accuracy assessment) is assessed by a comparison between a reference or ground truth data 

and image classification results. An error matrix or a confusion matrix is produced as an output (Bakker et 

al., 2009). 

2.5. Object based image analysis in eCognition software program 

The emergence of very high resolution satellite images such as WorldView-2 with spatial resolution of less 

than one metre, Quickbird, Ikonos , Geoeye and many more (Blaschke, 2010), have increased the use of 

optical satellites systems in many areas (Gibbs et al., 2007). As a result, many techniques have been 

developed to facilitate the extraction of important features from an image (Blaschke, 2010). Object based 

Image Analysis (OBIA) technique is now in existence to better extract object features such as Crown 

Projection Area (CPA) from VHR images since it is impossible to extract such features from pixel based 

image classification algorithm owing to the fact that, object features of interest are bigger than pixels (Ardila 

et al., 2011).  

According to Ardila et al. (2011), spectral geometric and contextual characteristics of objects are employed 

by OBIA to generate homogenous objects which provide more information than a single pixel. OBIA has 

been successful in improving the accuracy of forest biomass estimation. It is now possible to group objects 

with similar properties in an image with OBIA (Lamonaca et al., 2008). Morales et al. (2008) established 

that, segmentation techniques are effective in separating tree crowns from objects of similar size and 

reflectance. Features of trees extracted from image object can be related to ground based field measurements 

in a regression model for AGB and AGC stock estimation (Gibbs et al., 2007). Many Segmentation 

algorithms are now available for object based image classification. 

2.5.1. Segmentation algorithms 

According to Möller et al. (2007), segmentation is a spatial clustering technique, which results in non-

overlapping subdivided segments or units. During image segmentation, original image is partitioned into 

homogenous regions by the process of subdivision, merging and reshaping operation of the image objects 

(Liu & Yang, 1994). Image segmentation serves as a fundamental and crucial step in object-based image 

classification, mainly because object-based classification result is influenced by the output of the 

segmentation process (Gao et al., 2011). 

 

Different segmentation techniques are available and can be categorized either as boundary based/edge based 

or region based algorithms. Another way of classifying these algorithms is by grouping them as either top-

down strategy or bottom-up strategy. Top-down strategy involves cutting bigger objects into smallest pieces. 

Examples are chessboard, quad tree, contrast filter and contrast split segmentation. Bottom-up strategy on 

the other hand, involves merging of small pieces to obtain bigger objects based on homogeneity criteria 

often termed as region based. Multi-resolution segmentation is an example. This algorithm extracts 

information from the image by grouping similar pixels spatially and spectrally into homogenous areas to 

produce an image object (Definiens, 2009). 

2.5.1.1. Multi-resolution segmentation  

 Multi-resolution segmentation algorithm in eCognition software program is applied to subdivide an image 

into non-overlapping segments (Möller et al., 2007). Multi-resolution image segmentation is vital since it is 

the building block of the object based classification employed in the individual tree crown delineation.  
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The segmentation permits the identification of homogenous areas to allow grouping of specific objects (Kim 

et al., 2010). It also necessitates the extraction of information from the image by grouping similar pixels to 

form homogenous image object (Blaschke, 2010).  

 

Multi-resolution segmentation algorithm reduces the average heterogeneity and increases the homogeneity 

in a given number of image objects. This is important because, image objects produced by heterogeneous 

data are smaller than homogeneous data. The homogeneity of the object is influenced by colour, 

smoothness, shape, and compactness. For instance, the value of the shape field controls the relationship 

between shape and colour criteria, the colour criteria increases when the shape is decreased (Saha, 2008). 

This is an indication of how much spectral values of the image layers affect the heterogeneity of the 

segmented objects.  

 

More spatial uniformity and less spectral uniformity are introduced into the image segments when the value 

of the shape field is increased. The compactness homogeneity criterion on the other hand is employed when 

different image objects are compact and can be separated from non-compact objects by weak spectral 

contrast. A higher value of compactness creates compact segments (Definiens, 2009). The multi-resolution 

segmentation involves the following steps: 

 

A. Image fusion 

According to Pohl and Van Genderen (1998), image fusion which is the combination of two or more 

different images to form a new image can be grouped into three main levels in RS, namely; pixel data level, 

feature level and decision level. At the pixel level, fusion of optical image is done to improve spatial 

resolution, retain the spectral conformity of the original multi-spectral data, and also to enhance the 

structural and textural details. Zhang (2010) termed this process as pan-sharpening. According to him, pan 

sharpening is a pixel level fusion technique that combines lower resolution colour pixels with higher 

resolution panchromatic pixels in order to produce a high resolution colour image. Intensity Hue and 

Saturation (IHS), Principal Components Analysis (PCA), High Pass Filter (HPF), Gramm-Schmidt (GS) 

and Watershed Transformation are some of the image fusion techniques which are often used for pan-

sharpening.  

 

B. Filtering 

Filtering is an image enhancement technique which involves the altering of spatial features of an image 

(Leica Geosystems, 2011). Filtering is often conducted to enhance the edges of pixels or features (trees) in 

the scenes before the segmentation process. 

 

C. Estimation of Scale Parameter (ESP) 

The multi-resolution image segmentation process involves a lot of subjective decisions (trial and errors). 

Therefore, in order to introduce objectivity into the segmentation process, ESP tool is used to select the 

best scale parameter at which the image is to be segmented and the size of the object prior to the 

segmentation process. The ESP tool operates in a bottom up approach. It generates image objects at 

multiple scales iteratively. It is based on the principle of Local Variance (LV) of object’s heterogeneity at 

multiple scales within an image, thereby calculating the local variances for each scale. The variation in 

heterogeneity can be investigated by plotting the LV against the scale parameter (Dragut et al., 2010). A 

scale parameter refers to the maximum allowed heterogeneity for the resulting object of the image. It 

determines the presence or absence of an object. Objects appear differently when a scale parameter is 

altered. Land cover classification for instance requires a bigger scale than tree crowns identification (Benz 

et al.,  2004). The value of the scale parameter can be adjusted to produce the required size of an object.  
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Dragut et al. (2010), after discovering that, the threshold of the LV alone cannot predict the scale parameter 

of the segmentation, introduced the Rate of Change of Local Variance (ROC_LV), whose peaks determine 

the scale at which the image can be segmented in addition to the LV curve. A graph of the LV against each 

scale or average object size can be plotted as well as rate of change of the local variance. The rate of change 

of the local variance is inversely proportional to the scale parameter, whereas the local variance is directly 

proportional to the scale parameter. 

 

D. Watershed transformation 

According to  Wang et al. (2004), watershed algorithm facilitates splitting of  overlapping tree crowns into 

individual tree crown based on threshold conditions. Image to be processed is seen as topographic surface 

by this algorithm. Three basic notions are applied. These are local maxima, catchment basins and watershed 

lines (Chen et al., 2004). Wang et al. (2004) emphasized that, when a grey scale image is inverted, the local 

maxima turn up to be the local minima with holes perforated at the local minima. The catchment basins 

which correspond to the tree crowns can be found in between the local maxima and minima.  

 

Wang et al. (2004), further explained that, the watershed lines in the inverted image are the local maxima. 

This makes the image assumes the shape of watershed catchment. Therefore, each valley collects water from 

the local minima until water spills over the watershed into adjacent valley when water is introduced in the 

system. Closed contours represent watersheds surrounding areas which separate the whole area into 

different basins and form the desired boundaries of each object and hence, when this transformation is 

applied to forest, clusters of trees are considered as the catchment and the under flooding water scenarios. 

The trees which represent valleys touch each other and therefore such trees can be separated into individual 

trees.  

Chen et al. (2004) accentuated that, after executing the process, the algorithm calculates an inverted distance 

map based on the inverted distances for each pixel to the image object so as to determine the maximum 

distance from the edge. The point farther away from the image object border is assumed to be the local 

maxima. The distance from each point in the object to the local maxima are estimated by the algorithm. All 

the pixels within the specified threshold of the local maxima are merged as one new segment. The process 

continues until splitting of image objects into smaller units satisfies the specified threshold condition. 

 

E. Morphology 

According to Shafri et al. (2011), morphology is the study of shape and size of objects. Morphological 

operations are performed to smooth the borders of the image in order to give shape to the objects. Two 

morphological operations are available in the eCognition software program. These operations are pixel 

based morphological operation, which removes pixels from an image which is completely separated from 

an image object called “open image object algorithm”. On the contrary, “close image object algorithm” adds 

isolated pixels in the surroundings to an image object. Definiens (2011) defined closing as the 

complementary area to the surrounding area of an image object that can accommodate a mask completely. 

2.6. Regression analysis  

Over the years, regression analysis has played an important role in modelling the relationship between field 

measurement and RS data. The rationale behind, is to determine the relationship between a response 

(dependent variable) and one or more explanatory variables (independent variables). The two variables are 

proportional to each other. Change in one variable causes a change in another variable (Husch et al.,  2003). 

According to Hemery et al. (2005), there is a strong linear relationship between trees with DBH range of 

20-50cm and CPA. Dawkins (1963) also shared the same sentiments and added that, for the common range 

of forest tree sizes between 20cm and 50cm DBH, there will be a negligible distortion of the linear 

relationship between DBH and CPA.  
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Nevertheless, Hemery et al. (2005), stressed  on the reduction in the rate of  growth in CPA due to the effect 

of senility and competition for DBH with range exceeding 50cm. Whereas, CPA of trees in open and less 

dense forest continue to grow without the effect of competition from the nearby trees. 

2.7. Overview of the Dinamica EGO software program. 

The Dinamica EGO software program, is a cellular automata model which serves as a spatial simulation 

model of landscape dynamics. It has a multi-scale vicinity-based transitional (change) functions, which 

incorporate “spatial feedback approach to a stochastic multi-step simulation engine”. The software applies 

weight of evidence or logistic regression to calculate spatial dynamic transition probabilities (Soares-Filho et 

al., 2002). The “EGO” in the software’s name stands for Environment for Geo-processing Objects. The 

software is designed to develop both simple static spatial model and complex dynamic model (Soares-Filho 

et al., 2009).   

According to  Soares-Filho et al. (2003), the operations in the software involve “nested iterations, dynamic 

feedbacks, multi-region approach manipulation,  and algebraic combinations of data in several formats, such 

as maps, tables, matrices and constants, decision processing for bifurcating and joining pipelines and a series 

of complex spatial algorithms for the analysis and simulation of space-time phenomena”. The software, is 

the home of spatial analysis algorithms, often used in GIS environment as well as algorithms, designed for 

spatial simulations such as “transition functions, calibration and validation methods”. These algorithms are 

termed as “functors” in the software program and they are arranged in sequence to allow data flow in 

graphical format. Models can be created in the software platform by “dragging and connecting the functors” 

via their ports which represent connectors to the data types, ranging from maps, tables, matrices, 

mathematical expressions and constants. 

2.7.1. Building a land-use and a land-cover simulation model in Dinamica EGO software program 

The Dinamica EGO software program can be used to develop a space-time model whereby the state or an 

attribute of a certain geographical location is driven by a set of drivers and changes over a time span. The 

modelling process, involves calibration, running, and validation. The following steps can either be ran as a 

separate model or be combined as single model in the software: 

2.7.1.1. Transition rate calculation (deforestation rate)  

Deforestation rate (change rate) is described as “transition rate” in Dinamica EGO software platform. 

Therefore, deforestation rate and “transition rate” may be used interchangeably in this thesis. Transition 

rate is defined in the software as the, “system that changes over discrete time increments, in which the values 

of any variable in any given period is the sum of fixed percentages of all  the variables in the previous time 

step”. The rate can be fed into a Land Use Change Model as a fixed parameter or updated from the feedback 

of the model ( Soares-Filho et al., 2009).   

According to Soares-Filho et al. (2009), two different matrices can be produced as a result of transition rate 

calculation. A single step matrix, one of the matrices, encompasses a time period represented as a single 

step. Whereas, multiple-step matrix corresponds to a time step unit per year, month or day, determined by 

dividing the time period by a number of time steps. Net quantity of change, which is the percentage of land 

that will change to another state, is fixed by the transition rate (change rate).  

2.7.1.2. Calculating ranges to categorize gray-tone variables 

The weight of evidence method (“A Bayesian method in which the effect of a spatial variable on a 

transition/change is calculated independently of a combined effect”) works with categorical data only and 

hence, quantitative data (Distance maps, altitude, and slope) must be categorized. To ensure preservation of 

data, the weight of evidence ranges are calculated based on the data structure. Details of it can be found in 
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Agterberg and Bonham-Carter (1990) and Soares-Filho et al. ( 2009). The categorization employed in 

Dinamica EGO software program, selects the number of intervals and their buffer sizes so as to preserve 

the data structure. Land cover maps of different years and a set of co-registered map layers (raster cubes) 

are inputs for the weight of evidence ranges calculation. The output from the categorization, can be used as 

input data in calculation of the “Weight of Evidence Coefficients”.  

2.7.1.3.  Calculating weights of evidence coefficients 

Dinamica EGO software program uses weight of evidence method adapted from Agterberg and Bonham-

Carter (1990) to convert historical land cover maps and drivers of change into transition  probability maps 

(Kamusoko et al., 2011). According to Soares-Filho et al. ( 2002), a transition probability shows the most 

favourable areas for a change. The influence of each driver on the spatial probability of transition is denoted 

by the weight of evidence.  

The weight of evidence coefficient calculation uses the same input data as the weight of evidence ranges 

calculation. The output data from the calculation of the weight of evidence ranges (weight of evidence 

skeleton) are also used in addition as an input data for the weight of evidence coefficient calculation. After 

the model is ran, the weight of evidence coefficient is calculated automatically. The model produces as an 

output, a log file with six columns. The first column displays the weight of evidence ranges, the second 

demonstrates the buffer size in cells, the third depicts the number of transitions (change) occurring within 

each buffer, the fourth shows the coefficients obtained from the model, the fifth column also shows the 

contrast measure and the last, the results from the statistical significance test ( Soares-Filho et al., 2009).  

The weight of evidence contrast measures the effect of the environmental variables on deforestation or land 

cover change. A positive weight of evidence contrast means, there is a significant effect which favours 

deforestation, a negative weight of evidence contrast also demonstrate a significant effect which inhibit 

deforestation, whilst weight of evidence of zero or near zero depicts that the variable under study does not 

exert effect on deforestation or the effect of the variable on deforestation at a particular range is   

insignificant ( Soares-Filho et al., 2009). A graph of the weight of evidence contrast against the ranges can 

be plotted from the output log file. 

2.7.1.4. Setting up and running simulation model with “expander and patcher”  

Two or more categorical maps, annual deforestation rates, weight of evidence coefficients, statistic variables 

are the major input data into the simulation model. The model can be simulated in annual steps or a single 

step. The major functions which play a role in the simulation are “mux categorical map” which enables 

dynamic update of the input land cover maps, “calc weight of evidence probability map” which calculates a 

transition/change probability map for each transition specified by adding the weight of evidence, “calc 

change matrix” which receives the transition matrix. The “calc change matrix” calculates crude rates of the 

quantities to be changed by multiplying the transition rate by the number of available cells specified for a 

change. The “expander and patcher”, two complementary transition functions from local cellular automata 

rule, designed to reproduce spatial patterns of change are used by Dinamica EGO software program as a 

“transition engine”.  

The “expander function” is responsible for the expansion and contraction of the previous patches of a 

certain class, whilst the “patcher function” is designed to generate or form new patches through “seeding 

mechanisms”. The patcher searches for cells around a selected location for a joint transition. The process is 

initiated by selecting the core cell of the new patch and subsequently a specified number of cells around this 

core cell. The two functions allow the formation of patches of change in a variety of sizes and shapes. The 

number of iterations can be set by the “repeat” function (Soares Filho., 2009). Dinamica EGO software 

program allows modelling of the effect of a complex scenarios such as REDD+ on a transition rate. 

Economic, social and political scenarios can be integrated into the model. The effect of these underlying 
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factors on deforestation can be analysed in Dinamica Ego software program. The software can act as a 

heuristic device, useful for assessing the short term and long term impact of socio-economic, political and 

environmental framework on greenhouse gas emissions (Sampaio et al., 2007; Schneider et al., 2006). A flow 

chart depicting the steps in the modelling process is shown in Figure 1.  

 

 

 

Figure 1:  The major steps undertaken in Dinamica EGO software program  

Source:  Soares-Filho et al.,  2002 
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3. MATERIALS AND METHODS 

3.1.  Satellite data and their uses 

Landsat-7 2000 and 2012 with 30m spatial resolution were used to create initial and final land cover maps 

respectively for deforestation rate estimation. The two images had already been geo-referenced into the 

UTM 30N projection, WGS1984 spheroid datum. The focus of this research was to estimate the carbon 

stock in trees only and hence it was essential to delineate trees from the different land cover types for the 

carbon stock measurement. This task could not be accomplished by the Landsat imageries. This is because, 

research has shown that, Landsat imageries cannot be used to estimate AGC stock accurately. It often leads 

to uncertainty in the carbon stock estimates (Thenkabail et al.,  2004). In the tropical forest, Landsat  

imageries are not effective in estimating carbon stock in dense canopy closure and have the tendency to 

underestimate carbon stock results (Waring & Running, 2010). Therefore, a VHR Worldview-2 image (2012) 

with 4 spectral bands of 2m multi-spatial resolution and a panchromatic band of 0.5m spatial resolution 

were pan-sharpened and used for tree crown delineation and AGC stock estimation. Google earth image 

and Topographic map of Ghana also aided in the land cover classification. Other ancillary data such as 

forest inventories of trees also facilitated the identification of trees on the field. Table 2 and Table 3 give 

details of the field instruments and software programs used for this research.  

 

Table 2: Field instruments 

S.N Instruments Purposes 

1 IPAC, GPS Geospatial Location of Sample Plots 

2 Clinometer Haga Tree Height Measurement 

3 Calliper 100cm  DBH Measurement 

4 Clinometer Suunto Aspect and Slope Measurement 

5 Spherical Densiometer  Crown Density Measurement 

6 Compass  Bearing and Direction Measurement 

7 Measuring tape (30 and 50m), 

Diameter tape (5m) 

Radius of Sample Plots and  DBH Measurement 

8 Digital camera Taking Photos of Trees 

 

Table 3: Software programs 

S.N Software Programs Purposes 

1 ArcGIS version 10 GIS Analysis 

2 eCognition Developer 8,  Object Based Image Analysis 

3 ESP tool Estimation of Scale Parameter 

4 Dinamica EGO Carbon Stock Dynamics Modelling 

5 ERDAS IMAGINE 2010 Image Processing 

6 Microsoft Excel 2013 Statistical Analysis 

7 Microsoft Power Point 2013 Presentation 

8 Microsoft Visio 2013 Flow Chart and Conceptual Diagram 

9 Microsoft Word 2013 Writing Thesis 

10 Mendeley Referencing 
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3.2. The study area 

3.2.1. Description of the study area 

The study was undertaken in Goaso Forest District (GFD). GFD is located between the latitude 6o 47”48’’ 

and 7o06’44” N and longitude 2o17” 53” and 2o38’46” W in the southern part of Ghana, specifically, Brong 

Ahafo Region. GFD covers a total area of 2,188km2. The area is one of the forest rich zones in Ghana. It 

lies within the moist semi deciduous tropical zone. The climate is humid with an estimated annual rainfall 

ranging between 1250-1750mm. The rainfall pattern is bimodal. The major rainfall is from April to July and 

the minor rainfall is from September to October. The average monthly rainfall ranges between 1250mm and 

1750mm. The relative humidity in the dry season is between 70% and 75% and between 75% and 80% in 

the wet season. The topography is undulating lowland and with an elevation of 100-300m above the sea 

level. The type of soil commonly found in the area is forest ochrosol which is reddish in colour and well 

drained in the upper horizons and brownish in the middle horizons. The soil is more fertile and supports 

the growth of many crops. The nutrients are often leached since  most of them are located at the upper part 

and are prone to soil erosion (Bih, 2006; Gelens et al., 2010). Figure 2 is a map of the study area. 

 

             

       Figure 2: Map of the study area 
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3.2.2. Land tenure system 

The Complex land tenure system in Goaso deserves to be mentioned in the scientific literature. Traditional 

heads (chiefs) are the custodian owners of all the lands in the Goaso Forest District. Parcels of land for 

farming are leased out to the farmers for farming within a period of time or are given to them for farming 

in the form of “share cropping”. Trees in the agro-ecosystem (off-forest reserve) are seen as public assets 

and therefore 75% of the royalties from timber logging goes to the Government and the remaining 25% to 

the Chiefs. The farmers do not receive any form of incentives. On some few cases, they are given small 

token when the crops are damaged by legal logging or not at all. The farmers have responded to this by 

felling any matured trees and samplings of timber trees even before they reach maturity. Fallow period has 

also been drastically reduced from 10 years to 4 years due to the scarcity of land for farming (Gelens et al., 

2010). 

3.2.3. Land use system 

The land outside the forest reserve (off-forest reserve) has suffered a severe agricultural expansion and illegal 

logging of trees and intensive land use. The condition was declared as degraded in 1995. However, it is 

common to find trees on agricultural land, particularly, in shaded cocoa farms, secondary forest in 

abandoned agricultural land, along the stream, and sacred groves. The major land cover types in the area 

are: crop (annual and perennial), tree crop (Cocoa, oil palm), forest, tree fallow, shrub fallow, and grassland. 

The forest fringe communities depend mainly on the resources found in the off-forest reserve such as food, 

medicine, firewood as their source of livelihood. The main occupation in the area is farming. Approximately 

70% of the population are employed in this sector. Food crops such as maize, cocoyam, cassava, and 

plantain are mostly cultivated in the area (Bih, 2006; Gelens et al., 2010).   

3.3. Methodology 

The methodology employed in this research involved four major steps. These are: Pixel based classification 

of the Landsat Imageries in ARCGIS, AGC stock estimation from field measurement, AGC stock 

estimation from Worldview-2 satellite image in eCognition software program and future AGC stock 

modelling in Dinamica EGO software program. The research estimated AGC stock from a regression model 

between Crown Projection Area (CPA), extracted from a Very High Resolution (VHR) Worldview-2 satellite 

image in eCognition software program and an AGC stock, estimated from the relationship between DBH 

and site specific allometric equation. The deforestation rate from 2000-2012 was also estimated. The effect 

of environmental drivers on deforestation was then ascertained to facilitate modelling of the changes in 

carbon stock of trees in Dinamica Ego software program, under a scenario whereby farmers expand their 

farms and remove trees from the agro-ecosystem and the forest reserve, that is the Business as Usual (BAU) 

scenario, and a management scenario, whereby farmers were assumed to be offered carbon financial 

incentives to maintain, conserve and protect trees (REDD+). Figure 3 is a flow chart of the methodology. 
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Figure 3: Flow chart of the methodology 
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3.4. Pre field work 

A work plan, detailing all the activities to be done on the field was developed using Microsoft Word. Also, 

recording sheet for field inventory, data collection and observations to be made in the field was developed 

using Microsoft Excel. 

3.4.1. Image processing and sampling design 

 A multi-spectral Worldview-2 image with four bands was pan-sharpened with panchromatic Worldview-2 

band. The image had already been geo-referenced and co-registered with the UTM 30N projection, WGS 

1984 spheroid datum. The study area was therefore stratified into four major strata (cropland, forest, fallow 

and cocoa). According to Husch et al. ( 2003), stratification of the study area  yields more accurate estimates 

of the tree parameter than simple random sampling. Stratification ensures homogenous strata (CIFOR, 

2009). The centre of the sample plots were distributed in the stratified area of interest on the image. The 

shape file of the sample plots was overlaid on the Worldview-2 image. Circular plots covering an area  of 

500m2 and with a buffer of radius, 12.62m on a flat terrain were laid on plots found on forest stratum (Husch 

et al., 2003). However, on croplands, fallow lands and cocoa plantations with less tree density,  squared plots 

of 625m2 were laid (Altrell & Vuorinen, 2002). Due to the limited time which was available for the field 

study, 83 sample plots were laid. Twenty-seven (27), 31, 7 and 18 of the sample plots were distributed on 

cocoa plantation, cropland, fallow and forest respectively. 

3.5. Field work 

3.5.1. Data collection 

 The Worldview-2 image which was saved in a jpeg format was converted into enhanced compression 

wavelet format together with the sample plots. The image and the sample plots were loaded and saved on 

the IPAC and printed at the same time to facilitate navigation and measurement on the field. The study 

centre point of the first plot was found by the nearest well defined point on the maps using the IPAC, GPS 

as a back-up, compass and the printed map. The distance and the bearing to the plot centre from this known 

point were found by the compass, the maps, and a protractor. The sample plots were laid by placing a stick 

at the centre of the sample plots. The slope correction table was used to define the appropriate radius of the 

sample plot especially on sloping grounds. The slope measurement was done in the direction of maximum 

slope whilst ensuring the use of a correct scale. Areas with slope less than 5% were considered flat. 

 

The aspect was measured with a compass in N/S and E/W direction for all the square plots to prevent 

introduction of bias into the sampling process. The coordinates of all the sample plots and the natural trees 

to be measured were taken. The trees were demarcated and marked with a chalk visible from the centre of 

the plots. The diameter tape was used to measure the DBH of the individual natural trees with diameter 

greater than 10cm at a height above 130cm. The assumption was that, trees with diameter less than 10cm 

contribute less to the total biomass estimation ( Brown, 2002). The crown diameters of some of the trees 

were measured with a tape under the crown on the ground and towards the plot centres perpendicular to 

the tape direction whilst the edges of the crowns were gauged. 

3.6. Post field work 

The field data were processed in Microsoft Excel. The tree crowns in the sample plots were digitized by 

overlaying the shape file of the sample plots on the Worldview-2 image in ARCGIS software program. This 

allowed an information exchange between field measurements and Crown Projection Area (CPA) extracted 

from the Worldview-2 image. They were also used as training data for accuracy assessment. The following 

land cover types were observed on the field: forest, fallow, grassland, shrubland, oil palm plantation, cocoa 
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plantation, cropland and settlement. These land cover types were merged into 3 classes (forest/trees, 

cropland, others) after field data collection using the method of interactive supervised classification in 

ARCGIS environment. The rationale behind the merging was that, the areas covered by some of the land 

cover types (shrubland, grassland, oil palm) were small. Besides, the tree densities on some of them 

(settlement, grassland, shrubland, and oil palm plantation) were discovered to be minimal. On top of the 

training samples collected from the field, Google earth and Worldview-2 images also aided the classification 

process.  

3.6.1. Above ground carbon stock estimation per stratum from the field data 

 Several allometric equations have been developed for tropical rainforest (Basuki, 2012; Brown, 2002; Keller 

et al., 2001). Though, specie specific allometric equations are available for some tree species in Ghana, 

allometric equations for the calculation of the total AGB involving DBH only were not available for many 

of the tree species identified from the field. Allometric equations, involving DBH, developed for some trees 

species (Ceiba pentandra, Nauclea diderrichii and Daniellia thurifera) in Ghana were found to be the same and 

therefore were used to represent the allometric equations of all the tree species identified on the field since, 

according to Chave et al., (2005) and Brown (2002), DBH alone explains about 95% of the variation in 

AGB. AGB was therefore calculated using field measured DBH of the trees from the allometric equation 

below:  

Equation 1: Allometric Equation 

Above Ground Biomass = 0.16502*DBH^ (2.3351) 

        Where, 

     

         0.16502 = the allometric parameter  

  

           ^2.3351 = the average wood density   

The allometric equation is published at “GloballomeTree” website. The AGC stock was therefore estimated 

from AGB by multiplying the individual results by 0.47. 

3.6.2. CPA extraction from the Worldview-2 image 

Crown Projection Area (CPA) of trees, delineated or extracted from VHR satellite has been found to provide 

a reliable estimate of AGB and subsequently AGC stock when it is combined in a regression relationship 

with AGB or AGC stock, estimated from the relationship between field measured DBH and allometric 

equation (Muukkonen & Heiskanen, 2007). Therefore, the image segmentation algorithm in eCognition 

software program was used to extract the CPA of trees from Worldview-2 image. This research used multi-

resolution segmentation as well as contrast split segmentation for the CPA extraction. The multi-resolution 

segmentation was used to segment the image whilst the contrast split segmentation was also used for 

separating vegetation from non-vegetation areas. The whole segmentation processes are summarised in 

Figure 4. 
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Figure 4: The segmentation processes 

 Source: Barel, 2011 

3.6.2.1. Pre-processing 

A. Image fusion / Pan-sharpening 

This research employed hyper-spherical colour sharpening (HCS) technique, which is one of the latest pan-

sharpening algorithms developed purposely for Worldview-2 imageries for the pan-sharpening. The 2m 

multi-spectral Worldview-2 image band was therefore pan-sharpened with 0.5m panchromatic Worldview-

2 band to produce a pan-sharpened image of 0.5m spatial resolution, with all the multi-spectral information 

retained (Leica Geosystems, 2011). The HCS was used because; it accepts any number of bands and can 

also handle spectral and spatial recovery over a large variety of scenes. Padwick et al. (2010) compared HCS, 

IHS, GS and PCA, and discovered that, HCS maintains the best balance between spectral and spatial quality. 

The pan-sharpening was done in ERDAS software program. 

B.    Filtering  

 The panchromatic image was filtered with a 3× 3 low pass convolution filter. The convolution filter 

estimates the averages of small sets of pixels within the window size to produce an image, whose features 

are more enhanced. According to Definiens (2011), the convolution filter removes noise and also intensity 

of variation due to the internal structure of the trees. 
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C. Estimation of a Scale Parameter (ESP) 

The image segmentation process involves a lot of subjective decisions (trial and error). Therefore, in order 

to introduce objectivity into the segmentation process, ESP tool was used to select the best scale parameter 

at which the image was to be segmented and the size of the object prior to the multi-resolution segmentation 

process. The scale parameter for the segmentation rule set which had already been developed in the ESP 

tool was loaded into the eCognition software program to obtain the optimal scale parameter for the multi- 

resolution image segmentation. In this research, a scale parameter of 45 was used for the segmentation. 

 

3.6.2.2. Multi-resolution segmentation 

The aim of the multi-resolution segmentation was to subdivide the image into non-overlapping segments 

(Möller et al., 2007). Segmentation of the image was vital since it is the building block of the object based 

classification employed in the individual tree crown delineation or extraction from the other land covers. 

Segmentation permits the identification of homogenous areas to allow grouping of specific objects (Kim et 

al., 2010). It also necessitates the extraction of information from the image by grouping similar pixels to 

form homogenous image object (Blaschke, 2010). This algorithm was adopted because, it reduces the 

average heterogeneity and increases the homogeneity in a given number of image objects.  

 

The shape homogeneity criterion was set to 0.8 to produce uniform shapes with little emphasis on the 

uniformity. The compactness homogeneity criterion on the other hand, is employed when different image 

objects are compact and can be separated from non-compact objects by weak spectral contrast. A higher 

value of compactness creates compact segments (Definiens, 2009). Therefore the default value of 0.5 was 

chosen for this segmentation to obtain a balance between compact and non-compact segments. Plants 

exhibit high reflectance in the near infra-red region of the spectrum and hence they are easily separated from 

each other objects in this band. Therefore, 4 was assigned to the image layer weight field since the image 

layer weight shows the level at which the bands in the image influence the segmentation process (Definiens, 

2009). 

A. Identification of trees 

GFD is a complex ecosystem with different land cover types. It is composed of settlements, bare land, 

cocoa, oil palm plantation, trees, shrubland, and grassland. The image was also covered with shadows and 

clouds. Also, due to the nature of the forest (closed canopies), intermingling crowns were common. 

Therefore it was essential to mask and remove all the undesirable materials from the image to allow accurate 

tree crowns delineation. 

 

I. Masking of shadows, clouds and settlements 

Brightness values of the pixels were used as criteria to mask out clouds and shadows from the image. Pixels 

with very high and low brightness values were masked out as clouds and shadows respectively. Objects with 

brightness values less than or equal to 320 were classified as shadows. The remaining objects were separated 

by contrast split segmentation and classified as vegetation and non-vegetation. This was possible by the use 

of Difference Vegetative Indices of the objects. Simple ratio was chosen over the other vegetation indices 

because, the contrast in reflectance between vegetation and non-vegetation (buildings, cloud) areas were 

more distinct within the near infrared and red band. A simple ratio is a division of the near infrared band 

and the red band reflectance. Vegetation has higher values in these regions of the spectrum. It is one of the 

greenness vegetation indices which measures the total quantity and vigour of green vegetation (Sims & 

Gamon, 2002). The Equation 2, in the next page was used to calculate the simple ratio. 
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Equation 2: Simple Ratio 

 

   

The ratio ranges from 0-30. Non vegetative objects were found to have a simple ratio less than or equal to 

3.5 and hence they were classified as such. Whilst the remaining objects with simple ratio greater than 3.5 

were classified as vegetation (Tucker, 1979). After the separation, the objects which were classified as 

shadows and non-vegetation were merged. 

II. Watershed transformation  

The results from the segmentation and the basic classification depicted some large segments. These large 

segments were assumed to be some clusters of trees with intermingling crowns (Wang et al., 2004).  Because 

of the nature of the forest canopy (closed) in the study area. Watershed transformation was used to split 

these clusters since the aim of the whole segmentation process was to delineate the individual tree crown 

but not clusters. The size of the largest tree crown observed in the field was used as the maximum crown 

size to split clusters of tree crowns. On the field, the maximum crown size was observed to be 36m. This is 

equivalent to 72 pixels in the image and therefore 72 was entered in the “length factor field” of the watershed 

transformation algorithm.  

 

Chen et al. (2004) emphasized that, after executing the process, the algorithm calculates an inverted distance 

map based on the inverted distances for each pixel to the image object so as to determine the maximum 

distance from the edge. The point farther away from the image object border is assumed to be the local 

maxima. The distance from each point in the object to the local maxima are estimated by the algorithm. All 

the pixels within the specified threshold of the local maxima are merged as one new segment. The process 

continues until splitting of image objects into smaller units satisfies the specified threshold condition. 

 

III. Morphology 

This research applied “open image object algorithm” to smooth the edges of the segmented tree crowns 

since it was found to be faster as compared to the “close image object algorithm” when it was applied on 

the whole segmented image. Stemming from the fact that, tree crowns are round, a circular mask of pixel 

size 10 was created. The mask in eCognition software program is seen as a structuring element. 

IV. Refining the shape of the tree crowns 

There is an expansion of cocoa plantation in the study area. In view of this, it was essential to ensure that, 

the segmentation result was not affected by the tree crowns of the cocoa plantation. Therefore, further 

morphological operation was applied to remove undesirable objects from the segmented image. Cocoa trees 

have intermingling crowns and small crown diameter and therefore some of the small and elongated objects, 

presumed to be cocoa plantations were removed from the segmented image. 

The size of the maximum crown diameter of cocoa tree and minimum crown diameter of the other trees as 

well as geometric shape of the image objects were used as threshold conditions to remove crowns of cocoa 

trees from the image. Objects with roundness greater than or equal to 0.7 and pixel length of 20 which is 

equivalent to 10m were removed from the segmented image. The rule set developed for the entire processes 

is shown in Figure 5. 
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Figure 5: The segmentation rule set 

3.6.2.3. Validation of the segmented image 

Validation of the segmentation results is required for the assessment of the quality of the segmented image. 

The segmented tree crowns must reflect true tree crowns in reality (Clinton et al., 2010). The segmented 

image was validated by using a reference polygon obtained from manual digitization of the tree crowns. The 

coordinates of the trees measured on the field which were identified on the image were manually digitized 

and saved to serve as reference polygons for the validation of the segmentation. The area of intersection 

between the manually digitized reference polygons and the polygons obtained from the automatic 

segmentation of the image was assessed.   

Best scores were assigned for reference polygons with one to one  matching with the automated segments 

(Zhan et al., 2005). Polygons were assigned one to one matching if the area of intersection was above 50%. 

The relative area approach developed by Möller et al. (2007)  was also used. This approach is based on visual 

interpretation and judgment of the degree of fit of the segmented objects with reference objects. Best scores 

were assigned with segmented objects, completely covered by the reference objects. 
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3.6.3. Regression modelling and uncertainty analysis 

 DBH of the trees in this research were sampled from both dense and open forest, as well as croplands, the 

possibility of the relationship between the field calculated AGC stock and the CPA deviating from the linear 

relationship was high. The linear relationship between the carbon, calculated from the field and the CPA, 

extracted from the Worldview-2 image, predicted some negative carbon values. Though this may be 

expected, since the developed model is valid for trees with DBH, equal to or greater than 10cm only, and 

also due to the fact that young trees with DBH less than 10cm were not measured on the field, negative 

carbon values are not acceptable in reality. Therefore, other relationships were explored to ensure that only 

positive carbon stock values were predicted by the model.  

Power function was observed from the DBH allometric relationship (Above Ground Biomass = 

0.16502*DBH^ (2.3351)), which indicated that, the regression relationship between the carbon, calculated 

from the DBH and the CPA was also likely to exhibit a power relationship as observed by Shimano (1997). 

According to Shimano(1997), CPA grows with the second power relationship with the DBH and the 

increase rate of CPA slows as DBH increases with transformation. Therefore, the CPA was transformed to 

the second power (CPA^2) to address this challenge. A linear regression model was then developed between 

the transformed CPA (CPA^2) and the AGC stock, calculated from the field. Giving rise to a linear equation 

below: 

Equation 3 : CPA^2 linear equation 

Above ground carbon = 𝜷o +𝜷i*CPA^2       

Where, 

 

𝜷o is  the intercept  

 

𝜷i is the slope or the coefficient of the CPA^2 

 

The equation from this relationship predicted only positive carbon values and hence it was adopted to 

calculate the AGB from the Worldview-2 image and subsequently AGC stock. The aim of this research was 

not to test the relationship between the two variables (AGC stock from DBH and CPA), but to develop a 

robust equation (model) from the variables which can be used to estimate the carbon stock from the 

segmented image. Therefore, only tree crowns which were classified accurately and demonstrated one to 

one matching were selected for the model development and validation. 

This was necessary because, according to Pouliot et al. (2002), unidentified and misclassified trees are not 

suitable for model development and evaluation. Over segmented and under segmented tree crowns were 

removed before the model development. Outliers were also removed since according to Mora et al. ( 2010), 

a good and a robust model must have a few outliers. 70% of the data were used for the model development 

and 30% were also used for validation.  

 The quality of the model was assessed by the R2 and standard error. R2 explains the variation in the predicted 

AGC stock values and the calculated AGC stock values. Uncertainty involved in the carbon estimates per 

land cover type was then estimated by calculating the mean ± 2×standard deviation away from the mean 

(IPCC, 2003). The equation 4 was used to calculate the uncertainty involved in the AGC stock estimation. 

Equation 4: Uncertainty 

Uncertainty = Mean ± 2 × Standard Deviation (IPCC, rule)  
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3.6.4. Modelling changes in the AGC stock in Dinamica EGO software program 

Modelling future carbon stock requires a software program with heuristic ability (Sampaio et al., 2007; 

Schneider et al., 2006). However, the eCognition software program, which was used to estimate the current 

AGC stock does not have a heuristic ability for future scenario creation. Therefore, the future AGC stock 

modelling was implemented in Dinamica EGO software program because, it has a heuristic ability. The 

“patcher isometry index” which is a heuristic parameter in Dinamica EGO software program act as a 

heuristic function for future scenario creation ( Soares-Filho et al., 2002). 

3.6.4.1.  Input data 

Two historical land cover maps: initial ( 2000) and final ( 2012), carbon density in tons per hectare in excel 

csv format (area statistics), annual change rate (transition matrix) also in excel csv format, environmental 

raster cubes (digital elevation model , distance to road, distance to town, distance to streams, distance to 

protected forest resampled to the same spatial resolution ) were used as input data into the carbon stock 

dynamic model (Yi et al., 2012). The environmental variables were selected based on the finding from the  

literature review (Gelens et al., 2010) and  field observation.   

3.6.4.2. Data selection and preparation for the model development  

Historical land cover maps were represented by the Landsat-7 land cover maps (2000-2012). The dates for 

the two images were chosen based on the availability of the images, the ongoing agricultural expansion 

(Gelens et al., 2010) and at the same time the introduction of  agroforestry in Ghana (Kalame et al., 2011) 

between the two periods. The 2012 image was chosen to represent the current land cover map due to the 

absence of cloud on the image. Also, all the images covering the study area from 2012 upwards, which were 

freely available were covered by clouds. Each of the two images was classified into three classes (forest/trees, 

cropland, and others). These three classes were developed to monitor the rate at which the trees in the GFD 

were being converted to croplands and other land cover types. The assumption was that, the AGC stock in 

croplands and the class “others” were 0, since only the AGC stock of trees were measured on the field and 

estimated from the Worldview-2 image. The classification was done by using, pixel based “Interactive 

Supervised Classification Algorithm” in ARGIS environment. Approximately, 50% of the ground control 

points collected from the field were used as the training samples and 50% were used as ground truth data 

for the accuracy assessment.   

The deforestation (change) rates also referred to as global transition rates were then calculated from the 

initial (2000) and final (2012) land cover maps in Dinamica Ego by using “two categorical maps” and 

“determine the transition matrix” functions. The “determine transition matrix function” calculates the 

change rates without taking into an account the spatial distribution of such changes. The total amount of 

changes for each type of land cover given in the simulation period were therefore calculated (Soares-Filho 

et al., 2002). Multiple change rates (annual) and single change rates (combined change rate from 2000-2012) 

were produced as outputs.  

3.6.4.3. Calculation of transition probabilities 

After the change rates and the role of each land cover maps were clearly defined, the continuous variables 

such as distance to roads were categorized and weight of evidence ranges were calculated. The weight of 

evidence skeleton produced as an output from the categorization was used as an input for the weight of 

evidence coefficient calculation. The local transition probabilities were also calculated by the software for 

each grid cell by considering the driving factors of the study area (the environmental variables). These 

probabilities are termed as local transition probabilities and it is different from global transition rate since 

the later does not take the spatial distribution of the changes into an account. Methods such as logistic 

regression and neural networks can be used to estimate the transition probabilities in Dinamica EGO 

software. However, the 2009 version of the software which was used for this study uses Weight of Evidence 
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(WoE) method explained earlier in Chapter 2 of this thesis ( Soares-Filho et al., 2002, 2009). Equation 5 is 

used by the software to estimate the spatial probability of a transition.  

Equation 5: Probability of a transition 

 

 

                  

where Pxy is the probability of the transition or change occurring in each cell with coordinates x, y; T is the 

land cover transition/change; Vi is a cell with all the possible environmental variables (explanatory variables) 

i designated to explain the transition T; and O {T} is the odds of a transition which is represented by the 

ratio between an estimated transition probability and the complementary probability of non-occurrence 

transition which is given by the equation below: 

Equation 6: Odds of a transition 

 

 

 

Where P{T} is the probability of a transition T occurring  which is described by the number of cells where 

the relevant land cover transition took place, divided by the total number of cells covering the study            

area;        is the probability of a transition T not occurring determined by the number of cells where the 

relevant land cover transition is absent which is divided by the total number of cells in the study area;              

and           is the weight of evidence for an estimated environmental variable range illustrated  by the equation 

below: 

Equation 7: Weight of Evidence 

 

  

 

Where         is the probability of variable Vi occurring in the presence of transition T, defined as the                       

number of cells where both Vi and T are located, divided by the total number of cells where T is located; 

whereas            is the probability of variable Vi occurring in the absence of transition T which is defined as 

the number of cells where both Vi and   are located divided by the total number of cells where T is not 

located.  

Therefore, the W+ value is a representative of the relationship between an estimated land cover transition 

and a specified variable. Higher value of W+ is an indication of a greater probability that a particular 

transition occurred. Contrary, negative W+ indicates a lower probability that an estimated transition 

occurred in the presence of the corresponding variable range. Dinamica Ego produces a spatially explicit 

probability maps and weight of evidence log file, in which each cell is assigned the probability for an 

estimated transition based on the W+ values of each range for every variable investigated. The weight of 

evidence log file gives the details of the weight of evidence contrast, weight of evidence coefficient, buffer 

size, the results of the statistical significant test, the weight of evidence ranges, and the number of transition 

executed. 
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3.6.4.4. Calibration of the Dinamica–EGO software program internal parameters 

Stochastic algorithm is used by the Dinamica Ego software program for allocating land cover change. The 

“expander and patcher transition algorithms” are responsible for the land cover change allocation. The 

expansion of the previously existing patches of a particular class is executed by the “expander function”, 

whilst the “patcher function” is designed to produce new patches through seed formation mechanisms 

(Soares-Filho et al., 2002). The algorithms scan the initial land cover map to sort out the cells with the 

highest probabilities and arrange them in a data array. Cells are therefore randomly selected from the top to 

the bottom of the data array.  

The internal stochastic selection mechanisms can be controlled by loosening and tightening the degree of 

the randomization. Finally the land cover map is again scanned to execute the selected transitions. The 

percentage of changes executed by the two algorithms are the first parameters to be calibrated in the 

simulation. The mean and variance of new patch sizes were also adjusted. This was done individually for 

the “expander and patcher” functions. Patcher isometry index which is a heuristic parameter also forms part 

of the internal parameters of the model. Compact patches are produced by high isometry index whilst 

fragmented patches are generated by low isometry values ( Soares-Filho et al., 2009). 

3.6.4.5. Future Scenario Creation 

After the model has been calibrated by changing the internal parameters of the “patcher and expander 

functions” as well as the input parameters simultaneously, the simulation was ran under BAU and REDD+ 

scenarios. The BAU scenario was simulated by applying exploratory approach. This approach is a sequence 

of emerging events (Alcamo & Ribeiro, 2001). The annual transition rate (deforestation rate) from the year 

2000-2012 obtained from the transition matrix calculation was used to represent the change rate under BAU 

scenario whereby farmers remove trees from the Forest District. Deforestation rate under the BAU was 

assumed to be static and not affected by any external policy. REDD+ scenario was made to represent the 

targeted future whereby farmers are offered carbon financial incentives to conserve trees in the Forest 

District. Therefore, the Ghana REDD+’s mission of reducing deforestation rate by 100% in the future was 

adopted and hence the net annual deforestation rate which was obtained from the multiple transition 

calculation was assumed to be reduced from 3% under BAU scenario, to 2%, 1% and 0% under three 

different and independent REDD+ scenarios from 2015 to 2025.  

The carbon stock/carbon density and the uncertainty values in tons per hectare, estimated from the 2012 

Worldview-2 image in the eCognition software were used as baseline carbon stock and uncertainty values 

(area statistics) for the simulation. This is because, Dinamica Ego software program does not have the 

algorithm to extract the carbon stock values from the VHR images. The number of iterations was set to run 

25 times under BAU scenario (from 2000-2025), with the initial (2000) carbon stock and uncertainty values 

calibrated as 0.   

 The “calculate weight of evidence algorithm” applies the principles of Bayesian’s rule to estimate the  

conditional probability by taking constraints into consideration ( Soares-Filho et al., 2009). The “patcher 

and expander functions” allocate the changes accordingly, taking into account the average size and the shape 

of the patches and whether new patches should emerge (patcher) or existing ones should expand (expander). 

The “calculate carbon density function” therefore calculates the carbon density per year, whilst the “calculate 

uncertainty value function” calculates the uncertainty values per year.   

The simulated land cover maps (2001-2025), carbon stock and uncertainty values (2001-2025), probability 

maps (2001-2025), weight of evidence coefficients, and area statistics were produced as outputs. The BAU 

scenario was rerun again by representing the initial and final land cover maps by the simulated 2015 land 

cover map, obtained from the BAU simulation and was used to project the AGC stock from 2015 to 2025 

under BAU scenario. The results were compared with the results obtained from the 2001-2025 simulation, 
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ran by using the actual and original land cover maps (2000-2012). After the results from the 2015 simulated 

land cover map and the one obtained from the actual land cover maps were verified to be the same, the 

2015 simulated land cover map was again used to represent the initial and final land cover maps under the 

three different REDD+ scenarios whereby the annual net deforestation rate was assumed to be reduced 

from 3% to 2%, 1% and 0% from 2015 to 2025. The simulated 2015 land cover map was used because, the 

original 2015 land cover map for the study area was unavailable. Figure 6 is an illustration of the carbon 

stock model implemented in the Dinamica EGO software program. 
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Figure 6: Carbon stock modelling in Dinamica EGO software program 

3.6.5. Validating the carbon stock model in Dinamica EGO software program 

According to Soares-Filho et al. (2009), “maps which do not match exactly cells by cells” may exhibit similar 

spatial patterns and agreement within certain cell vicinity. Over the years, different comparison methods 

have been developed to alleviate these problems. One of such comparison methods is the multiple 

resolution fitting procedure, introduced by Costanza (1989). This comparison method is based on a map fit 

within an increasing window sizes. A method to differentiate errors due to location and quantity was also 

developed by Pontius (2002). Hierarchical fuzzy pattern matching method, developed by Power et al. (2001) 

has also been used for validation.  

The comparison method employed in Dinamica Ego is a modified form of Kfuzzy method by Hagen (2003), 

which is similar to Kappa statistic and fuzzy similarity of a location and category within a cell neighbourhood 

context. This method, known as; “Calc Reciprocal Similarity” in  Dinamica Ego software program makes 

use of an exponential decay function with distance, to weigh the cell state distribution around a central cell 

(Soares-Filho et al., 2009).  

Initial land cover map (2000), final land cover map (2012) and the simulated land cover map (2012) were 

used as input data for the validation. The validation method uses the initial and the final land cover maps in 

addition to the simulated map (2012) instead of only the final land cover map which in this case was the 

2012 land cover map and the simulated 2012 map. This is because, according to Soares-Filho et al. ( 2009), 

simulated maps tend to look like the initial land cover map (2000 land cover map), and therefore this 

validation method evaluates the spatial fit between change maps to get rid of the spatial inheritance that 

might have arisen between the initial land cover map and the simulated map.  
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The output map from this validation shows changed cells. A “two way similarity” is calculated from the first 

map to the second map and from the second map to the first map. Soares-Filho et al. (2009) recommended 

that, minimum similarity values should be chosen as the validation results because random maps tend to 

give rise to an artificially high fit when univocally compared. This is attributed to the fact that, changes are 

spread over the entire area of a random map.  

 The following, were produced as an output from the validation: Two similarity maps (maps showing the 

degree of spatial match from first to the second input map and vice versa), the similarity varies from 0 (no 

match) to 1 (a perfect match). Minimum similarity index (the similarity obtained by comparing the simulated 

changes against the actual ones) as well as two values of similarity (first and second mean index for a given 

window size, comparing the first mean map to the second mean map and vice versa). 

Owing to the fact that, the results from this study may be used in decision making, the validity of the model 

was critical. Therefore, “multiple window similarity” approach was also used to measure the spatial fitness 

between the simulated changed map (2012) and the actual 2012 changed map. “A constant decay function 

within a variable window” was employed in this method (Soares-Filho et al., 2009).   

The first part of this method was not different from the “Calc Reciprocal Similarity”, in that, they have the 

same input data. The model fitness was assessed with reference to the location of changes only because; a 

fixed quantity of transition matrix was received by the simulation. The method also takes into an account 

the cell resolution of the input map. Half of the input map resolution was the window search radius. A 

window size of 11*11, starting from 1 to 11 by an increment of two, ranging from 1*1, 3*3, 5*5, and 7*7 to 

11*11 was set. This was essential because, according to Soares-Filho et al. ( 2009), the window size must be 

odd. After the validation, a graph showing the model fitness per spatial resolution was drawn from the 

multiple minimum similarity values in percentage and the resolution of the window search radius in meters. 
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4. RESULTS AND DISCUSSION 

4.1. Above-ground carbon stock estimation per stratum  from the field measurements 

The research revealed four major strata (cocoa, cropland, fallow, and forest), in the study area for the 

purpose of the field measurement. These strata constituted the major land cover types with a considerable 

tree density in GFD. The remaining land cover types (oil palm plantation, grassland, shrubland, water, bare 

land, settlement) were classified as the class “Others”. The Table 4 is an overview of the trees and DBH 

distribution from the field measurements. Table 5 also gives details on AGC stock per stratum estimated 

from the field measurement.  

Table 4: Tree and DBH distribution  

Strata Number of plots Number of trees Number of 

trees/ha 

Sum of  DBH/cm Average 

DBH/cm 

Cocoa 27 82 49 5842.10 71.25 

Cropland 31 86 44 4411.30 51.90 

Fallow 7 18 41 1410.00 78.33 

Forest 18 321 357 8476.00 26.41 

Overall 83 507 102 20139.40 39.57 

 

Table 5: Above-ground carbon stock per stratum estimated from the DBH of the sampled trees 

Strata Total 

area/sqrm 

Total Area/ha  Sum  

of AGC stock 

kg/stratum 

AGC stock  

tons/ha 

Average AGC stock in  

tons / plot 

Cocoa 16875 1.6875 193037.04 114.39 71.49 

Cropland 19375 1.9375 140067.01 72.29 45.16 

Fallow 4375 0.4375 76729.01 175.38 10.96 

Forest 9000 0.9000 128419.06 142.69 7.13 

Overall 49625 4.9625 538252.12 108.46 6.48 

 

Forest recorded more trees per hectare than all the other land cover types. The number of trees recorded in 

the forest stratum alone constituted about 63.31% of the total number of trees sampled in the study area. 

This is because, the impact of human activities such as illegal logging on farmlands (cocoa, cropland) hinder 

the growth of young trees (Gelens et al., 2010). Furthermore, policies to protect trees outside the forest 

reserve are not strict and uniform in Ghana (Wiggins et al., 2004). Meanwhile, the forest is a reserve and 

under the strict protection by the government.  

 

Despite the fact that, the forest recorded the highest tree density per hectare, the average DBH of the trees 

in the forest was the lowest among all the other land cover types (strata). This may be attributed to the fact 

that, the sizes of the trees in the forest were found to be smaller as compared to the trees found on the other 

strata (fallow, cocoa and cropland). Selective logging of matured trees in the forest reserve may also have 

accounted for that (Blackett & Gardette, 2008). Fallow land, which on the other hand, recorded the lowest 

number of trees per hectare, recorded the highest average tree DBH. The reason is that, this stratum is often 

an unproductive cropland (tree crops, annual crops and perennial crops) left uncultivated for a period of 

time to enhance the fertility of the soil.  
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Some farmers intentionally conserve some tree species (Ceiba Petandra and Alstonia boonei) on croplands to 

provide shades for the crops, particularly, in the traditional cocoa farms. As the parcels of the land are left 

uncultivated, the trees are also left behind to mature, resulting in trees with large DBH and higher AGC 

stock per hectare as compared to the other land cover types in the study area, irrespective of the lowest 

number of trees per hectare recorded in this stratum. This also explains why the average DBH of trees on 

cocoa plantation and croplands respectively were larger than the average DBH of trees found on the forest 

stratum. However, when the results were extrapolated at a landscape level (per hectare), forest recorded 

more above-ground carbon stock per hectare than cocoa and cropland. This may be due to the fact that, 

the tree density on forest stratum was found to be denser than cocoa and cropland. A similar observation 

was made by Mutanga ( 2012) in a study conducted in Ejisu Juabeng District of Ghana.  

4.2. CPA extraction from the Worldview-2 image  

4.2.1. Estimation of Scale Parameter 

The ESP tool revealed different peaks of scale parameters at which the Worldview-2 image could be 

segmented. Among the peaks revealed by the ESP tool as the best scale for the segmentation, a scale 

parameter of 45 was found to be suitable for segmenting the whole image after a number of trial and error 

with different scales. The scale parameter of 45 resulted in object (tree crown) size close to the one observed 

on the field. This suggests that, a scale parameter for segmentation is instrumental in the accuracy of multi-

resolution segmentation. Kim et al. (2008), described the scale parameter as the determinant of maximum 

heterogeneity in the image.  

The scale parameter of 45 was however, found to be very huge as compared to the best scale parameters 

(19-25) selected by other studies for segmenting tree crowns from VHR image (Karna, 2012; Mutanga, 

2012). This was expected because, the average DBH of the trees per stratum observed at the study area was 

found to be larger than the average DBH of the trees per stratum observed by Mutanga (2012) in Ejisu 

Juaben District of Ghana for instance. The observation made from the field was that, trees with larger DBH 

tend to have bigger CPA. According to Saha (2008), a scale parameter determines the average image object 

size. A higher scale parameter allows more merging and consequently bigger objects. Therefore, a higher 

scale parameter is used when a bigger CPA is expected and vice versa. The figure 7 below, shows the peaks 

of the scale parameter for the segmentation produced by the ESP tool. 

 

 

 

Figure 7: A graph showing different peaks of the scale parameter. 
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4.2.2. Multi-resolution segmentation 

A combination of object scale 45, shape 0.8 and compactness 0.5 were found to be more appropriate for 

segmenting the Worldview-2 image, after a number of iterative processes. Masking of shadows   was possible 

at a brightness value of less than or equal to 320. A simple ratio greater than 3.5 was able to split a contrast 

between tree crowns and other objects. A length factor of 72 pixels, which is 36 meters was able to split 

clusters of tree crowns (intermingled crowns).   

Though “close image object algorithm” is often used over the “open image object algorithm”, and it is 

recommended for smoothing (shaping) tree crowns and also to fill the holes created inside the segmented 

image, especially in a situation whereby removal of shadows, undesirable features and differences in spectral 

properties from the image objects have left spaces in the image, it was however observed that “close image 

object algorithm” was not suitable for smoothing tree crowns of a very huge image. Since its application 

was not successful in smoothing the whole Worldview-2 image. The morphological processes could not be 

completed when the algorithm was applied. Baral (2011), also applied “close image object algorithm” in 

smoothing tree crowns and attributed the failure of the algorithm to complete the morphological process 

to the inability of the eCognition software program to process a very huge image. Contrary, “open image 

object algorithm” was faster and more successful in smoothing the whole WorldView-2 image in this 

research.  

It was also discovered that, a roundness value of 0.7 was able to get rid of most of the crowns of cocoa trees 

from the image. This procedure was also believed to remove pockets of oil palm crowns found on the image. 

Some other studies used vegetative indices such as red-edge band comparison (Digital Globe, 2008) and 

modified vegetative indices (Sims & Gamon, 2002) to automatically mask oil palm crowns from the 

segmented images. Nevertheless, the Worldview-2 image which was used for this study contained only four 

bands (the 3 visible bands and the near infrared). Also, the coastal blue and the red edge band needed for 

the calculation of the modified vegetative indices and the red edge comparison respectively were absent in 

this Worldview-2 image and hence it was not possible to use this approach. 

Besides, the use of vegetative indices to automatically mask out oil palm in a similar study was found to 

affect tree crown delineation (Mutanga, 2012). Furthermore, a comparative study to mask oil palm manually 

and automatically conducted by the same author revealed that, oil palm masking by manual delineation 

yielded a better accuracy than automatic delineation using vegetative indices. This was attributed to the fact 

that, oil palm exhibits a homogenous distinct star shape which is obvious and explicitly different from tree 

crowns to facilitate manual masking.  

It can be deduced from the findings that, automatic removal of the crowns of the oil palm and the cocoa 

trees from the image causes the removal of most of the crowns of the desirable tree crowns from the image. 

Therefore, when the shape condition decreases, the removal of the oil palm and cocoa tree crowns increases 

and vice versa and this was recognized to hinder the accuracy of the segmentation output. On the other 

hand, automatic tree crown delineation was very suitable for separating the crowns of vegetation from other 

objects such as shadows, water, clouds, bare land, settlements and roads. A length pixel of 20 and an area 

pixel of 20 were able to remove extremely tiny objects in addition to elongated objects from the image. 

Figure 8 and 9 depict the segmented image before and after separation of tree crowns from the other objects. 
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Figure 8: Segmented image before separation of other objects 

 

Figure 9:  Segmented image after separation of other objects 

4.2.3. Segmentation accuracy 

The worldview-2 image was covered by shadow, built up areas, dense forest with relatively closed canopy 

and intermingling crowns, cocoa trees also with elongated and intermingling crowns, oil palm plantation 

and other vegetation such as grass, shrubs and crops. All these, were capable of hindering the accuracy of 

the segmentation, yet the accuracy of the segmentation was found to be high. Out of the 1000 reference 

polygons (manually delineated tree crowns), about 808 (80.8%) were found to exhibit 1:1 matching with the 

automated tree crowns. This signifies that the accuracy of the segmented tree crowns was high.   

Blue = 

Others 

Yellow 

= Tree 

Crowns 

CccCcC

r6wns 

Tree 

Crowns 

Others 



MODELLING ABOVE-GROUND CARBON STOCK OF TREES IN AGRO-ECOSYSTEM AND FOREST RESERVE UNDER REDD+ MECHANISMS 

 

    37 

This was not surprising, because the accuracy assessment of the segmentation is based on the positional 

accuracy of the manually delineated segments (reference polygons) with respect to the automated segments 

(Zhan et al., 2005). Mutanga (2012) also obtained segmentation accuracy between 72-83% when multi-

resolution segmentation algorithm was applied for tree crown delineation in a similar setting (Ghana).  

It can therefore be inferred that, the multi-resolution segmentation algorithm in the eCognition software 

program is an opportunity to extract biophysical parameters of trees from very high resolution satellite 

image, such as Worldview-2. A proven evidence to support the assertion that, high resolution image can 

offer the opportunity to extract very detailed information at the individual tree level (Leckie et al., 2003). 

Therefore, there is more hope for extraction of tree parameters for accurate AGC stock estimation in Ghana, 

irrespective of the complex ecosystem.  

4.3. Regression modelling 

4.3.1. Linear regression model between CPA and field calculated AGC stock 

It was discovered from the results that, the DBH of the trees which were measured on the field and the 

CPA, delineated from the Worldview-2 image were not normally distributed. The results from a scatter 

diagram depicted that, the data were skewed. A linear regression model between 70% samples of the above-

ground woody carbon stock of the trees, estimated from the DBH and the CPA extracted from the 

Worldview-2 image resulted in R2 of 0.59 and multiple R of 0.77. Indicating that, the CPA was able to explain 

about 59% and 77% of variation in AGC stock estimated from the DBH respectively. The equation from 

the regression model is shown below:  

Equation 8: Linear Regression Model between CPA & AGC Stock 

              Y=11.236 X -219.72 

            Where, 

              Y is the AGC Stock from the Worldview-2 image 

              X is the Segmented CPA  

The validation model also predicted some negative AGC stock values as in the case of the estimation model, 

despite the very high R2 (96%) which was recorded. Baral ( 2011) also obtained negative predicted AGC 

stock values from a linear relationship between CPA and field calculated AGC stock values in sub-tropical 

forest of Nepal. The negative carbon values predicted by the model was expected because, GFD is a 

complex ecosystem with DBH range (26.4-78.3cm), exceeding 50cm. As Hemery et al. (2005) pointed out, 

the DBH range exceeding 50cm may lead to distortion of the linear relationship between DBH and CPA 

due to the effect of senility and competition by the nearby trees.  

Goaso forest reserve is a natural forest, very dense with closed canopies and intermingling tree crowns and 

hence competition with neighbouring trees and the problem of senility might have affected the growth of 

the tree crowns and this might have accounted for the negative values predicted by the linear regression 

model. The DBH of the trees in the cocoa plantation might also have contributed to this distortion, because 

the crowns of the cocoa trees were also found to be intermingling and might have caused competition with 

the other tree crowns. Furthermore, this model only works for trees with DBH above 10cm since trees with 

DBH below 10cm were not measured on the field and hence applying the model below 10cm of trees DBH 

may lead to distortion of the model. 
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Nonetheless, the removal of the outliers from the data set might have accounted for the high R2 (96%) 

obtained by the validation model for instance, since more outliers were removed from the forest and cocoa 

strata. This observation is in support with the explanation presented by Mora et al. (2010) that, removal of 

outliers from a data set results in a good and a robust model.  Figure 10 and Figure 11 illustrate the regression 

model between CPA and field calculated AGC stock for the estimation and the validation samples 

respectively. More details of the summary results can also be found in the Appendix 1 and Appendix 2. 
 

 

Figure 10: A graph showing the linear regression model between field calculated AGC stock and CPA 

 

 

Figure 11: A graph showing validation of the linear regression model between field calculated AGC stock and CPA 

4.3.2. Linear regression model between CPA^2 and field calculated AGC stock 

Linear regression model between the AGC stock, estimated from the DBH and CPA^2 (transformed CPA) 

on the other hand, predicted only positive AGC stock of trees. The model yielded R2 of 0.52 and multiple 

R of 0.72, indicating that the model explained about 52% and 72% of the variation in the AGC stock 

respectively. The Table 6 and Figure 12 below throw more light on the results from the model.  
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Table 6: Summary of the regression model between field calculated AGC stock and CPA^2 

SUMMARY OUTPUT 

  

Regression Statistics 

Multiple R 0.72 

R Square 0.52 
Adjusted R 
Square 0.50 

Standard Error 810.74 

Observations 37 

 

ANOVA      

  df SS MS F 
Significance 

F 

Regression 1 245 24535702 37.33 5.54E-07 

Residual 35 23005749 657307.1   

Total 36 47541451       

       

  Coefficients 
Standard 

Error t Stat P-value 
Lower   
95% 

 Upper 
95% 

Intercept 352.91 175.21 2.01 0.05 -2.78 708.60 

CPA^2 0.03 0.01 6.11 
5.54E-

07 0.02 0.05 

 

 

 

Figure 12: A graph showing the linear regression between field calculated AGC stock and CPA^2 
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4.3.3. Validation of the AGC  stock and  CPA^2 Model 

The R2 (0.87) and the multiple R (0.94) obtained from the validation samples were higher than the ones 

obtained from the estimation samples. The values obtained were an indication that the model explained 

about 87% and 94% of the variation in AGC stock.  The details of the results from the validation model are 

shown in Table 7, Figure 13 and Figure 14.  

The positive AGC stock values predicted by the AGC stock and CPA^2 regression model confirm the claim 

made by Shimano ( 1997) that, CPA grows with the second power (square) relationship with the DBH, and 

the increase rate slows as DBH increases with transformation. This assertion holds because when the model 

was also fitted with second order polynomial equation, the model resulted in high R2 and predicted only 

positive AGC stock. However, this approach was not used because when a polynomial is forced through a 

data, the implication of the imposed shape of the function is that, the range at which the model could be 

applied will be limited since errors may be extrapolated when the model is applied beyond the range of the 

model development as it was observed from the negative values predicted by the CPA and AGC stock 

model (Anderson et al.,  2000).   

Table 7: Summary of the validation of regression model between field calculated AGC stock and CPA^2 

SUMMARY 
OUTPUT  

  

Regression Statistics 

Multiple R 0.94 

R Square 0.87 

Adjusted R Square 0.86 

Standard Error 258.03 

Observations 10 

 

ANOVA      

  df SS MS F 
Significance 

F 

Regression 1 3720767.17 3720767 55.88 7.09E-05 

Residual 8 532639.29 66579.91   

Total 9 4253406.46       

 

 

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 246.21 96.97 2.54 0.03 22.60 469.83 

CPA^2 0.02 0.003 7.48 7.09E-05 0.01 0.03 
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Figure 13: A graph showing validation of the linear regression between field calculated AGC stock and CPA^2 

 

 

 

Figure 14: A graph showing the observed AGC stock against the predicted AGC stock from CPA^2 and AGC stock 

model 

4.4. AGC stock estimation from the Worldview-2 image. 

Approximately 210470 tree crowns were extracted from the Worldview-2 image. The equation 9 from the 

CPA^2 and the observed AGC model, yielded a total AGC stock of 157628003.4 Kg over the entire area 

(2894.339429 hectares) covered by the extent of the Worldview-2 image. This amount is equivalent to 54.5 

tons per hectare. An average AGC stock of 761.54 Kg and standard deviation of 1688.96 Kg were also 

estimated from the Worldview-2 image.  
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      Equation 9: CPA^2 & AGC Linear Regression    

         Y = 0.0343x+352.91  

       Where, 

       Y is AGC stock estimated from the Worldview-2 image 

        X is CPA^2 

The uncertainty surrounding the total AGC stock estimate was found to be 0.0014 tons per hectare. Out of 

the total carbon density per hectare estimated for the whole area (GFD), the agro-ecosystem (off-forest 

reserve) recorded 28.0 tons per hectare and an uncertainty of 0.0020 tons per hectare, whilst the forest 

reserve also recorded 26.5 tons per hectare and an uncertainty of 0.0008 tons per hectare. Signifying that, 

without the trees in the agro-ecosystem, the carbon stock in the Forest District would have been only 26.5 

tons per hectare.  Figure 15 is a carbon map of the study area created from the final segmented tree crowns. 

 

           Figure 15: Carbon map of Goaso Forest District 

Though it was expected that, the estimates in the agro-ecosystem would be higher than the forest reserve 

due to its bigger extent in terms of area coverage, other factors might have also contributed to the differences 

between the two estimates. One of the contributing factors is the tree size; the sizes of the trees in terms of 

DBH in the agro-ecosystem were found to be extremely bigger than the trees in the forest reserve. It was 

observed from the field that, DBH is correlated with the CPA. The bigger the DBH of a tree the wider the 

CPA, it was on some few instances when trees with huge DBH were found to have small CPA. Ceiba 

The white spaces are the areas which were occupied 
by the undesirable features e.g. shadows, bare land, 
cocoa, oil palm and settlements  
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pentandra is one of the tree species which exhibited such abnormality. Mutanga (2012) also came across the 

same finding on the field in Ghana.  

Another factor which might have accounted for the higher AGC stock estimates in the agro-ecosystem as 

compared to the forest reserve was the presence of cocoa, oil palm, other vegetation and shadow on the 

image. Though, morphological operations were applied to get rid of crowns of the undesirable  features (e.g. 

cocoa trees and oil palm) from the image, not all of them  were removed. Particularly, the crowns of oil 

palm plantation. Effort to remove all of them also removed some of the desirable tree crowns. For instance, 

some of the threshold conditions used to remove the crowns of the cocoa tree were crown diameter and 

shape. Tree crowns with crown diameter less than 10m (20 pixels) and roundness greater than 0.7 were 

presumed to be  the crowns of cocoa trees, owing to the fact that the crown diameter of  cocoa trees are 

small and intermingling with elongated shape as compared to the natural trees.  

However, some of the tree crowns in the forest reserve were also small in diameter, intermingling and 

elongated in shape and therefore many of such tree crowns in the forest reserve were also removed as 

undesirable features, thereby affecting the carbon estimates in the forest reserve. According to Preece et al. 

(2012), the contribution of small trees with stems <10cm to AGC stock estimates in plantings <20 years 

old is about 15%. Selective logging of desirable tree species in the forest reserve also attest to this fact since, 

annual allowable cuts in the forest reserves in Ghana have been increased from 1million to 2 million,  cubic 

meter  (Blackett& Gardette, 2008). 

The carbon estimates from this research is not too different from the estimates published in scientific 

literature in tons per hectare for Ghana. In 1997, Brown hypothesized a potential AGB (without human 

intervention ) of 182 tons per hectare equivalent to 85.54 tons per hectare AGC stock as well as 83 tons/ 

hectare actual AGB (with human interventions) equivalent to 39.01 tons AGC stock per hectare from RS 

estimates for forest in Ghana ( Brown, 1997). In 2000, Brown reviewed the AGB default values and 

published default values of 121.5 Mg /hectare and 68.3 Mg per hectare for closed and opened forest found 

in Ghana respectively, equivalent to 57.10 Mg C/hectare and 32 Mg C/hectare of AGC stock respectively. 

Carbon in Mg/hectare is in the same quantity and comparable to carbon in tons per hectare. Ministry of 

Land and Natural Resources (2012) also published an AGB of 275-400 Mg/hectare (129.3-188 Mg 

C/hectare) for forest reserve and 125-225 Mg/hectare (58.75- 105.75 Mg C/hectare) for the off-forest 

reserve. Furthermore, Mutanga (2012) also obtained an AGC stock of 45.9 Mg C/hectare for trees on 

farmlands in Ejisu-Juaben District of Ghana.  

4.5. Pixel based image classification and accuracy assessment 

The results from the pixel based classification of the Landsat-7, 2000 (initial land cover map) and Landsat-

7, 2012 (final land cover map) as well as the accuracy assessment of the classification results are shown in 

Figure 16 and Table 8 respectively. The overall accuracy of the 2012 image classification was 71.69%, despite 

the fact that the image suffered from “line stripping”. This is because, the classification result was improved 

by the field observations and World-view-2 image. Also, on the Landsat-7 imageries, there was a clear 

distinction between the various land cover types. The only constraint was the distinction between the natural 

trees and the tree crops (cocoa, oil palm). A major conversion of forest to cropland and the class “others” 

was observed on the 2012 final land cover map. Expansion of cocoa plantation in the Forest District was 

evident on the field. Bare land emanating from logging of trees was also observed on the field. 
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Figure 16: Initial (2000) and Final (2012) Land Cover Maps 

 
Table 8: Error matrix from the accuracy assessment of the 2012 image classification  

 Image 
Classification 
Results 

Reference Forest/trees cropland others Total Error  of 
Commission 
% 

User 
Accuracy/% 

Forest/Trees 37 25 3 65 43.08 56.92 

Cropland 16 65 4 85 23.53 76.47 

Others 2 10 50 62 19.36 80.64 

Total 55 100 57 212   

Error of 
Omission % 

32.72 35 12.28 

Producer 
Accuracy % 

67.28 65 87.72 

Overall 
accuracy % 

71.69 
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4.6. Modelling in Dinamica EGO software program 

4.6.1. Change Rate  

The Table 9 and 10 give detailed account on the change rate from one land cover to another under BAU. 

Table 9: Single transition matrix (overall change rate from 2000-2012 (12 years period)) 

Conversion 

From* 

 To*  Rate 

Forest / Trees Cropland 0.39 

Forest / Trees Others 0.04 

Cropland Forest 0.12 

Cropland Others 0.14 

Others Forest/Trees 0.08 

Others Cropland 0.45 

 

Table 10: Multiple transition matrix (annual change rate from 2000-2012) 

Conversion From*  To*  Annual Rate 

Forest/Trees Cropland 0.05 

Forest/Trees Others - 

Cropland Forest 0.01 

Cropland Others 0.02 

Others Forest/ Trees 0.01 

Others Cropland 0.06 

 

Analysis of the change rates revealed that, the forest district witnessed an unparalleled change rate of (39%) 

from forest/trees to cropland between the periods of 2000-2012. An annual conversion of 5% was also 

observed from forest/trees to cropland. The results also revealed that, on the annual basis, there was no 

conversion from forest/trees to the class “others”. Suggesting that annual conversion from forest/trees to 

the class “others” was minimal. Over the entire period (2000-2012), forest/trees recorded a total loss of 

43% and a total gain of 20% resulting in a net loss of 23%. The 20% gain in the forest/tree cover may be 

attributed to the re-introduction of tree planting (Agroforestry), popularly known as “Taungya” in the 

country by the Government of  Ghana in 2002 (Kalame et al., 2011; Ros-tonen et al.,  2013). A period (2000-

2012) within which the change rate of this research was calculated. The tree planting exercise was a call in 

the right direction because, it had a positive effect on the deforestation rate which was reflected in the 

findings by Damnyag et al. (2013), when a comparison, was made between the rate of deforestation between 

1986-2000 and 2000-2011. A faster rate was found within the period of 1986-2000 than within the period 

of 2000-2011. 

Annually, 3% net decreased in forest/trees was recorded and it was found to be above the national 

deforestation rate which is approximately 2% annually (FAO, 2010). Damnyag et al. (2013), found an annual 

deforestation rate of 2% which was in line with the national estimate of Ghana as well as 39% deforestation 

rate for a period of 25 years in Ankasa Conservation Area of Ghana. The lump percentage of deforestation 

rate (39%) for the 25 years period is equal to the conversion from forest to cropland only over a period of 

12 years in this research, implying that the situation in GFD calls for an urgent attention. 
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For the conversion from the class “others” to cropland, a very huge rate (44%) was observed from 2000-

2012. A total loss of 53% and a total gain of 18% were recorded for the class “others”, giving rise to a net 

loss of 35% in this class. These results were expected because, bare land is one of the constituents of the 

class “others” and some of the areas covered by the bare land may be a harvested cropland which could be 

easily converted back during the planting season. On the annual basis, there was a net loss of approximately 

5% from the class “others” to forest/trees and cropland.  

Cropland recorded an unprecedented total increase of 84% and a total loss of 26% leading to a net gain of 

58% in land area between the periods of (2000-2012). A net annual increase of 8% was also recorded for 

the cropland. The results are indication that, crop expansion is booming in the Forest District. Most of the 

conversion from forest to cropland was found at the periphery of the forest reserve. Damnyag et al. (2013) 

also identified a higher rate of deforestation at the periphery of Ankasa Conservation Area of Ghana as 

compared to the core protected and the farthest areas.  

4.6.2. Effect of the environmental variables on deforestation 

Figure 17 and Figure 18 depict the effect of the environmental variables on deforestation and subsequently 

AGC stock. Figure 17 shows the effect of the environmental variables on the conversion of forest to the 

class “others”, whilst the Figure 18 shows the effect of the environmental variables on the conversion of 

forest to cropland. It was discovered from the results that, the effect of distance to protected areas on 

deforestation was insignificant because, the weight of evidence contrast of zero was recorded at all the 

ranges (weight of evidence contrast = 0 means no significant effect, contrast > 0 means significant effect 

which favours deforestation, contrast < 0 means significant effect which inhibits deforestation). The effect 

of all the other spatial variables (distance to town, distance to road, distance to streams, digital elevation 

model), investigated in this study were found to exhibit a significant effect on deforestation.  

The general trend was that, nearby distances favoured deforestation whilst distances farther away opposed 

it. The only exception to this trend was the effect of distance to town on deforestation. Though, distance 

within 0-3000m was found to favour conversion from forest to others, distances (2780-31000m), very far 

away from town, favoured more conversion of forest to the class “others”. The intermediate distances 

(>3000<27800) were found to inhibit the conversion of forest to the class “others” but with some few 

pockets of distances which favoured the conversion. This trend could be attributed to the selective logging 

of trees and encroachment in the core area of the forest reserve. It was noticed from the 2025 projected 

BAU map that, most of the conversion from the forest to the class “others” will take place in the future 

around Kenyanse, one of the towns in the Forest District where Newmont Mining Company operates. 

On the other hand, distances (100-2000m) nearby towns favoured more conversion of forest to cropland. 

The fact that farmers in Goaso prefer to have their farmlands not too far from their residence might have 

accounted for that (Gelens et al., 2010). Above 2000m, distance to town inhibited deforestation but was 

observed to favour deforestation again beyond a distance of 15200m. This could be explained as the 

degraded land in the core area of the forest reserve which was given to some farmers to practice agro-

forestry (Kalame et al., 2011). The findings from the  distance to towns on deforestation contradicts the 

findings by Gelens et al. (2010), when they examined the effect of distance parameters on deforestation 

from 1986-2004. Distance to town was found to favour more deforestation within a distance of 0-3000m. 

This discrepancy may be attributed to the fact that, they examined the effect of distance to town up to a 

maximum of 4000m, whilst this study examined the effect of distance to town on deforestation up to 

31000m. The differences in the year of study (1986-2004) by Gelens et al. (2010) and (2000-2012) by this 

study might have also contributed to the differences in the findings. Apart from distance to town, all the 

other findings from the effect of the environmental variables on deforestation were found to be in 

agreement with the findings by Gelens et al. (2010).   
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                 Figure 17: The effect of the environmental variables on the conversion of forest to the class “others” 
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                       Figure 18: The effect of the environmental variables on the conversion of forest to cropland 
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In general, distance to town was found to exacerbate more deforestation than all the other spatial variables 

investigated in this study. Low elevation between (0-200m) was seen as the next to  favour more conversion 

of forest to cropland after distance to town and this is attributed to the fact that, farmers in Ghana prefer 

farming on a low land, an observation which was made on the field. This is also due to the fact that, highlands 

may be prone to erosion when trees on them are cut and hence this may discourage the farmers from 

farming there. More details of the results from the effect of the environmental variables on deforestation, 

can be found in Appendix 4 to Appendix 8. 

Figure 19 and Figure 20 also depict the most favourable areas of change from forest to the class “others” 

and forest to cropland respectively. The blue regions on the maps indicate areas with low probability of 

change. The yellow regions indicate areas with medium probability of change and the red regions also 

indicate areas with high probability of change. It can be observed from the maps that, the agro-ecosystem 

(off-forest reserve) has a higher probability of change than the forest reserve. This means that, enacting 

strict laws to protect the trees in the agro-ecosystem will help to boost the AGC stock in the Forest District. 

More details of other conversions can also be seen in the Appendix 14 to Appendix 17. 

Figure 21 depicts changes in 2001, 2015 and 2025 under BAU scenario. It can be seen from the 2025 BAU 

map that, some of the core areas of the forest reserve would be  depleted and converted to the class “others” 

in the future if the BAU trend continues. It can also be observed that more changes will occur closer to 

roads, rivers/streams and towns but some conversions of forest to the class “others” would also be seen far 

away from towns if the BAU trend persists. Another observable feature on the maps is that, the forest 

reserve looks more depleted under BAU scenario in 2025. Figure 22 on the other hand, is simulated land 

cover maps depicting changes from 2015-2025 under three different REDD+ scenarios. Whilst Figure 23 is 

a comparison between BAU simulated map in 2025 and the three different REDD+ scenarios. It can be 

observed from the map that, the forest looks greener under REDD+ scenario at 0% annual net deforestation 

rate in 2025.  
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Figure 19:  Probability map depicting favourable areas of change from forest to the class “others”. 

 

 

 

 

 

The blue indicates areas with low probability of change, the yellow indicates areas with medium 

probability of change and the red indicates areas with high probability of change whilst the black is 

not involved in the analysis. 
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Figure 20: Probability maps depicting favourable areas of change from Forest to Cropland  

 

 

 

 

 

 

 

 

 

The blue indicates areas with low probability of change, the yellow indicates areas with 

medium probability of change and the red indicates areas with high probability of 

change whilst the black is not involved in the analysis. 
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Figure 21: Simulated land cover maps 2001, 2015, 2025 under (BAU) 

 

Figure 22: Comparison of 2025 simulated maps under three different REDD+ scenarios 
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       Figure 23: Comparison of simulated land cover maps (2025) under BAU and three different REDD+ scenarios  

4.6.3. Carbon stock model under Business as Usual and REDD+ scenarios and uncertainties 

The model predicted total AGC stock values of 15014811.36 tons, 9998535.78 tons and 8355896.51 tons 

for the past (2001), present (2015) and the future (2025) respectively under BAU scenario. A decline of 

about 33. 4 % in the forest carbon pool  for the Forest District from 2001 to 2015 as well as 44.3% decrease 

in the forest carbon pool from 2001-2025 were projected by the model under the same scenario respectively. 

Implying that, the forest carbon pool will be shrinking at an alarming rate if this trend is allowed to continue 

in the future. Also, the model predicted a decline of about 16.4 % from 2015 to 2025 under BAU scenario 

as compared to 9.2 % and 1.4% decline in the forest carbon pool under REDD+ scenario whereby the 

annual net deforestation rates were assumed to be reduced to 2% and 1% respectively. In contrast, the 

model predicted about 7% gain in the forest carbon pool from 2015-2025 under the REDD+ scenario with 

an assumption that there will be no deforestation (net annual deforestation rate at 0%) but other conversions 

will continue. Details of the total AGC stock estimates and uncertainties under BAU and REDD+ can be 

found in the figure 24 and the Appendix 9 to Appendix 13. 
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 Figure 24: Total AGC stock density in tons per year in Goaso Forest District under BAU and REDD+ scenarios  

The corresponding uncertainties in the AGC stock estimates were 21471.18 tons, 14297.91 tons and 

11948.93 tons for 2001, 2015 and 2025 respectively in the whole GFD under BAU scenario. The average 

uncertainty per hectare was found to be approximately 0.10 (10%) under the BAU scenario. This does not 

deviate from the uncertainties (10-15%) known to be involved in combining Remote Sensing data and field 

surveys for carbon measurement, in IPCC (2003) report. Though, it was highlighted that, this uncertainty 

range (10-15%) is low, this had a serious implication on the model because, the annual changes in the carbon 

stock in the model were controlled by a net annual deforestation rate of 3%, whilst the model was predicting 

with an error margin of 10%. This resulted in over-estimation of the available carbon stock per year. For 

instance, the observed carbon stock for 2012 was 54.5 tons C/hectare and the amount predicted by the  

model for 2012 when converted to hectare is equal to 70.9 tons C/hectare, resulting in relative error of 0.30 

(30%).  According to Alvarez et al. (2012), the relative error can be derived from the formula below: 

 Equation 10: Relative Error Equation  

Relative Error = Predicted Carbon-Measured Carbon / Measured Carbon  

Consequently, this led to a situation whereby the model predicted an initial (2001) carbon  stock of 99.2 

tons /hectare and a final (2025) carbon estimate of (55.2 tons C/hectare) in tons per hectare at the end of 

the simulation. This final amount is slightly more than the observed (2012) carbon estimate in tons per 

hectare (54.5 tons c/ ha) in the Forest District. Thus, such discrepancies may create confusion in the minds 

of users and policy makers if the software program is adopted for modelling, though, it can be used to mimic 

how the carbon stock is changing every year. The discrepancies in the carbon stock simulation can clearly 

be observed from the comparison between the original 2012 land cover map and the 2012 land cover map 

simulated by the model, displayed in Figure 25. The differences between the two maps are explicit.  
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Figure 25: Comparison between the original and simulated land cover maps (2012) 

Setting  the number of  iteration, a model in the Dinamica Ego software must run, without specifying the 

years within which the model simulation must start and end is a major drawback of the Dinamica EGO 

software program in future carbon stock modelling. This is because, in reality, the REDD+ scenario must 

run from the current date into the future. But this was seen as a challenge because, the Dinamica EGO 

software program does not allow the user to specify a particular year a simulation must start from and end. 

Users can only specify the number of iteration of a simulation. The software automatically count the 

beginning of the iteration from the date of the initial land cover map.  

For instance, the carbon stock model required two land cover maps before changes in carbon stock as well 

as future projection could be simulated. However, in the model, if the acquisition date of the initial land 

cover map is 2000, and a projection in to 2012, 2015 2025 and so on are required by the user, the number 

of iterations are set to 12, 15 and 25 and so on respectively. Thus, the exact year within which a simulation 

is to be ran cannot be specified by the user. Starting the initial simulation beyond the acquisition date of the 

initial land cover map is impossible in the software. This resulted in a situation whereby a simulated 2015 

land cover map from BAU scenario was used to represent the initial and final land cover maps under 

REDD+ scenarios since the actual or original 2015 land cover map of the study area was also unavailable at 

the time of the simulation. 

The Dinamica EGO software program, may not be the only cause of the error propagation. Brown (2001) 

questioned the accuracy of carbon estimates and mentioned that “errors may come from sampling (variation 

among sampling units e.g. the number of plots within the population), measurement (parameter of interest 
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e.g. stem diameter), regression (error based on the regression equation) and so on”. Another major factor, 

which might have accounted for the error propagation in this research is the exclusion of small trees (trees 

with diameter<10cm) from the analysis at the plot and the CPA extraction levels. AGC stock modelling in 

Dinamica EGO software program however, took into an account every tree in the forest class. According 

to Preece et al. (2012), the contribution of small trees with stems <10cm to above-ground carbon stock 

estimates in plantings <20 years old is about 15%. This amount is equivalent to the error propagation 

observed in the carbon stock model in the Dinamica EGO software program.  

Also, the Landsat 7 imageries which were used for the modelling had some strips on them which were also 

capable of hindering the accuracy of the model. The result goes on to buttress the fact that, Landsat satellite 

imageries often lead to uncertainty in the carbon stock estimation (Thenkabail et al., 2004).  It is also in line 

with the claim that,  Landsat imageries are not effective in estimating carbon stock in dense canopy closure 

and have the tendency to underestimate or overestimate carbon stock results in tropical forest (Waring & 

Running, 2010). 

4.6.4. Validation of the Carbon Stock Model.  

4.6.4.1.  Exponential Decay Function 

The Table 11 below illustrates the minimum similarity of difference obtained for the carbon stock model. 

The minimum similarity of difference for the carbon stock model under BAU and REDD+ scenarios ranges 

between 0.697-0.740. This constituted about 69-74% validity. A minimum similarity difference of 1 or 100% 

represents a perfect fit. The similarity map in Figure 26 also places more emphasis on the validity of the 

model. The blue areas (0) indicate a poor fit, whereas red and yellow (1) areas demonstrate high to moderate 

fit. 

  Table 11: Exponential decay function 

Type of Scenario First Similarity Mean  Second Similarity 

Mean 

Minimum Similarity 

Of Difference 

Business As Usual 0.66 0.66-0.67 0.70 

REDD+  0.66-0.71 0.67-0.71 0.70-0.74 
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Figure 26: Similarity Map 

4.6.4.2. Multiple Windows and Constant Decay Function 

It can be seen from the Table 12 and Figure 27 that, the model went from 43% at 1 cell by 1 cell resolution 

to 87% at cell 11 by 11 cells resolution. Due to the fact that, the simulation received as an input, a fixed 

transition matrix (change rates), setting the quantity of changes, the model fitness was assessed with respect 

to location changes. The fact that the cell resolution of the Landsat-7 is 30m and the window search radius 

is half of the resolution, it can therefore be deduced from the graph of the model fitness per spatial 

resolution in Figure 27 that, the simulation reached a similarity fitness value of over 59% at a spatial 

resolution of 45 meters and 87% at a spatial resolution of 165m. The results from the two validation methods 

suggested that, the validity of the carbon stock model in Dinamica ranges from 74-87%. Signifying that, the 

model can predict with error margin between 13-26%.  
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Table 12: Multiple window decay function 

Window 

Size/cells 

Spatial 

Resolution/meters 

 Minimum 

Similarity 

Percentage 

Minimum Similarity 

 Maximum 

Similarity 

1 15 0.41 40.72 0.43 

3 45 0.54 54.36 0.59 

5 75 0.63 63.08 0.70 

7 105 0.70 69.61 0.77 

9 135 0.75 74.58 0.83 

11 165 0.78 78.41 0.87 

 

 

 

Figure 27: Model fitness 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The major conclusions from the research can be drawn from the answers to the following research 

questions: 

1. What are the AGC stock estimates of trees per hectare from VHR satellite image in the whole 

GFD and the agro-ecosystem only?  

The AGC stock in the Whole GFD was estimated at 54.5 tons per hectare with an uncertainty of 0.0014 

tons per hectare. Out of the total, the agro-ecosystem (off-forest reserve) alone recorded an AGC stock of 

28.0 tons per hectare and an uncertainty of 0.0020 tons per hectare, whilst the forest reserve also recorded 

an AGC stock of 26.5 tons per hectare and an uncertainty of 0.0008 tons per hectare. Signifying that, without 

the trees in the agro-ecosystem, the carbon stock in the Forest District would have been only 26.5 tons per 

hectare. 

It can therefore be inferred from the results that, the contribution made by the trees in the agro-ecosystem 

into the AGC pool is more than that of the forest reserve. This is an evidence to support the claim that, 

conservation of trees in the Goaso agro-ecosystem by the farmers warrant carbon financial incentives. The 

Forest District can also serve as a priority area for REDD+ pilot project implementation. 

2. What is the annual net deforestation/change rate from 2000-2012 in GFD? 

GFD recorded 3% net annual deforestation/change rate from 2000-2012.  

3. What are the effects of the major drivers (Explanatory/Environmental variables) of change in 

Goaso Forest District on deforestation? 

The effect of the major spatial drivers: elevation, distance to protected areas, roads, streams and towns on 

deforestation in GFD were investigated. All the drivers were found to exhibit a significant effect on 

deforestation at all the weight of evidence ranges except the effect of distance to protected area, which 

recorded an insignificant effect on deforestation at all the weight of evidence ranges.  

The general trend was that, nearby distances favoured deforestation whilst faraway distances opposed or 

inhibited deforestation. The only exception from this trend was distance to town which was found to favour 

and exacerbate more deforestation in faraway distances. It can also be concluded from the results that, the 

trees in the agro-ecosystem have the higher probability of changing to other covers than the trees in the 

forest reserve and hence enacting policies to protect the trees in the agro-ecosystem, as in the forest reserve 

may lead to conservation of trees and consequently carbon stock enhancement in the Forest District. 

4. What are the expected effect of the BAU and REDD+ scenarios on the AGC stock in the whole 

GFD in the future?  

The total carbon stock in the Whole GFD was simulated to be 15014811.36 tons, with an uncertainty of 

21471.18 tons in 2001 and declined from 2001 to 9998535.78 tons with an uncertainty of 14297.91 tons in 

2015 and further declined from 2015 to an amount of 8355896.506 tons with an uncertainty of 11948.93 

tons in 2025 under BAU Scenario. The research revealed a decline of about 44.3% in the total AGC stock 

from 2001-2025 under BAU scenario for the whole Forest District.  Also, the model predicted a decline of 

about 16.4 % from 2015 to 2025 under BAU scenario as compared to 9.2 % and 1.43% decline in the forest 

carbon pool under REDD+ scenario whereby the annual net deforestation rates were assumed to be reduced 

to 2% and 1% respectively. In contrast, the model predicted about 7% gain in the forest carbon pool from 
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2015-2025 under the REDD+ scenario with an assumption that there will be no deforestation (net annual 

deforestation rate at 0%) but other conversions will continue. The total simulated AGC stock in 2025 under 

REDD+ scenarios whereby the net annual deforestation rates were assumed to be reduced to 2%, 1% and 

0% from the current year (2015) were: 9072937.45 tons, 9855275.57 tons, 10708367.73 tons with the 

corresponding uncertainties of 12974.30 tons, 14093.04 tons and 15312.97 tons respectively. The model 

was seen as a major improvement on the existing model because, the average uncertainty in tons per hectare 

under BAU scenario for  the simulation over 25 years was very low (0.10 tons / hectare) as compared to the 

average uncertainty in tons per hectare (95.71 tons/hectare) for 12 years simulation recorded by the existing 

model. 

5.2. Recommendations 

a. The research measured the AGC stock of trees only. A research which will estimate the carbon 

stock of all the land covers (shrubs, crops, grass, and water) is recommended. 

b. Integration of socio-economic drivers such as population growth, income level, crop yield, food 

prices, government policies, land tenure issues into the carbon stock dynamic model in the Forest 

District is highly recommended since deforestation in the District is partly driven by such factors.  

c. The assumption of the weight of evidence method is that, the input data must be spatially 

independent. Meaning that, correlated variables must be disregarded or combined before the model 

is ran. It is therefore recommended that, future research on correlation analysis of the 

environmental variables must be undertaken. 

d. Practical implementation of the REDD+ scenario to explore the actual effect of this scenario on 

deforestation and carbon stock must be studied on a long term research to better understand 

whether the scenario will lead to a positive gain on the carbon stock of trees.  

e. The use of other software programs for the carbon stock modelling must be explored in further 

research. The ideal situation will be the comparison of validity of two or more software programs. 
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APPENDICES 

Appendix 1: A summary of the regression analysis between CPA and field calculated carbon 

 

SUMMARY OUTPUT 

  

Regression Statistics 

Multiple R 0.77 

R Square 0.59 
Adjusted R 
Square 0.58 

Standard Error 744.91 

Observations 37 
 

ANOVA        

  df SS MS F 
Significance 

F   

Regression 1 28120353 28120353 50.677 2.69E-08   

Residual 35 19421098 554888.5     

Total 36 47541451         

 

       

  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

Intercept -291.716 224.497 -1.299 0.202295 -747.47 164.038 

CPA 11.23604 1.578 7.119 2.69E-08 8.032 14.440 
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 Appendix 2 : A Summary of the regression analysis between (CPA) and validation samples of field calculated carbon 

SUMMARY OUTPUT 

  

Regression Statistics 

Multiple R 0.98 

R Square 0.96 
Adjusted R 
Square 0.96 

Standard Error 142.28 

Observations 10 
 

ANOVA      

  df SS MS F 
Significance 

F 

Regression 1 4091444.797 4091445 202.0945 5.8383E-07 

Residual 8 161961.6577 20245.21   

Total 9 4253406.455       
 

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -85.46675 67.92462324 -1.25826 0.243778 -242.10121 71.167712 

CPA 7.03428238 0.494814666 14.21599 5.84E-07 5.89323771 8.175327 

 
Appendix 3: Total area per land cover type 

Land Cover Type Area/ Cells Area/Hectares Area/Sqrm 

Forest/ Trees 1603999 151336.4988 1513364988 

Cropland 3763071 355043.856 3550438560 

Others 926488 87413.67677 874136767.7 

 

Appendix 4: Effect of digital elevation model (DEM) on the model 

Conversion  Range Possible 

Change 

Executed 

Change 

Weight 

Coefficient 

Contrast Significant? 

Forest  to  Cropland 0-200 646484 3833530 0.75 1.00 yes 

Forest  to Cropland 200-300 1927348 706155 -0.17 -0.55 Yes 

Forest to Cropland 300-400 147964 30816 -0.96 -1.01 Yes 

Forest to Cropland 400-500 43958 11015 -0.72 -1.73 Yes 

Forest to Cropland 500-600 18519 3759 -1.00 -1.00 Yes 

Forest to Cropland 600-700 328 18 -2.47 -2.47 Yes 

Forest to Others 0-200 294203 31249 0.67 0.88 Yes 

Forest to Others 200-300 1286616 65423 -0.12 -0.41 Yes 

Forest to Others 300-400 118917 1769 -1.39 -1.44 Yes 

Forest to Others 400-500 33872 929 -0.76 -0.78 yes 

Forest to Others 500-700 15575 505 -0.59 -0.60 Yes 
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Appendix 5: Effect of distance to roads on the model 

 

Changes  Range Possible 

Changes 

Executed 

Changes 

Weight 

Coefficient 

Contrast Significant? 

Forest  to  Cropland 0-100 326470 174443 0.52 0.60 yes 

Forest  to Cropland 100-300 569266 294589 0.457 0.58 Yes 

Forest to Cropland 300-600 622024 291476 0.26 0.34 Yes 

Forest to Cropland 600-700 136357 57349 0.07 0.07 Yes 

Forest to Cropland 700-900 223672 86970 -0.65 -0.07 Yes 

Forest to Cropland 900-1000 81035 28556 -0.22 -0.23 Yes 

Forest to Cropland 1000-1200 140071 45367 -0.35 -0.37 Yes 

Forest to Cropland 1200-1300 55128 16095 -0.50 -0.51 Yes 

Forest to Cropland 1300-1500 97127 25952 -0.62 -0.64 Yes 

Forest to Cropland 1500-1600 43753 9919 -0.84 -0.85 yes 

Forest to Cropland 1600-2000 138699 27378 -1.01 -1.06 Yes 

Forest to Others 0-100 166951 14924 0.50 0.57 Yes 

Forest to Others 100-500 555149 44105 0.37 0.60 yes 

Forest to  Others 500-600 100610 6429 0.13 0.14 Yes 

Forest to Others 600-900 228113 12403 -0.04 -0.04 yes 

Forest to Others 900-1000 55011 2532 -0.21 -0.22 Yes 

Forest to Others 1000-1500 212879 7967 -0.43 -0.48 Yes 

Forest to Others  1500-1600 34722 888 -0.83 -0.83 Yes 

Forest to others  1600-5600 360875 7421 -1.05 -1.21 yes 
     

Appendix 6: Effect of distance to stream on the model 

Changes  Range Possible 

Changes 

Executed 

Changes 

Weight 

Coefficient 

Contrast Significant? 

Forest  to  Cropland 0-100 630080 275814 0.13 0.17 yes 

Forest  to Cropland 100-200 620946 263991 0.08 0.10 Yes 

Forest to Cropland 200-300 511485 209469 0.02 0.02 Yes 

Forest to Cropland 300-500 652082 245786 -0.12 -0.16 Yes 

Forest to Cropland 500-600 115636 38375 -0.32 -0.33 Yes 

Forest to Cropland 600-2400 121525 42764 -0.23 -0.24 Yes 

Forest to Others 0-100 377051 22785 0.06 0.084 Yes 

Forest to Others 100-300 700110 41139 0.03 0.06 yes 

Forest to  Others 300-600 510677 27120 -0.07 -0.10 Yes 

Forest to Others 600-2400 82737 3976 -0.18 -0.19 yes 
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Appendix 7: Effect of distance to towns on the model 

Changes  Range Possible 

Changes 

Executed 

Changes 

Weight 

Coefficient 

Contrast Significant? 

Forest  to  Cropland 0-100 1903 1276 1.08 0.11 yes 

Forest  to Cropland 100-2000 533687 328166 0.84 1.05 Yes 

Forest to Cropland 200-2100 41667 22002 0.49 0.49 Yes 

Forest to Cropland 2100-2400 125084 61841 0.35 0.37 Yes 

Forest to Cropland 2400-2600 81918 37799 0.22 0.23 Yes 

Forest to Cropland 2600-2800 81033 34793 0.09 0.09 Yes 

Forest to Cropland 2800-2900 41244 16557 -0.03 -0.03 Yes 

Forest to Cropland 2900-4400 515057 186627 -0.19 -0.23 Yes 

Forest to Cropland 4400-4500 29219 8960 -0.44 -0.45 Yes 

Forest to Cropland 4500-5200 187700 52003 -0.59 -0.62 yes 

Forest to Cropland 5200-5300 23617 5878 -0.73 -0.74 Yes 

Forest to Cropland 5300-7700 392418 100090 -0.70 -0.80 Yes 

Forest to Cropland 7700-7800 10436 3587 -0.27 -0.27 yes 

Forest to  Cropland 7800-15200 500706 173757 -0.26 -0.31 Yes 

Forest to cropland 15200-15300 2986 1542 0.44 0.44 yes 

Forest to Cropland 15300-31100 215871 100383 0.23 0.25 Yes 

Forest to Others 0-100 696 69 0.60 0.60 Yes 

Forest to Others  100-3000 465107 37892 0.38 0.56 Yes 

Forest to others  3000-3100 24940 1432 0.01 0.01 No 

Forest to Others 3100-4500 316791 15350 -0.17 -0.21 Yes 

Forest to Others 4500-4700 40994 1592 -0.40 -0.41 Yes 

Forest to Others 4700-8300 467931 21343 -0.24 -0.31 Yes 

Forest to Others 8300-8400 7161 409 0.00 0.00 No 

Forest to Others 8400-9300 60346 2912 -0.18 -0.18 Yes 

Forest to Others 9300_9400 6441 234 -0.47 -0.48 Yes 

Forest to Others 9400-14800 226559 9797 -0.29 -0.33 Yes 

Forest to Others 14800-14900 1805 145 0.37 0.37 Yes 

Forest to Others 14900-26400 126702 8542 0.18 0.19 Yes 

Forest to Others 26400_26500 345 1 -3.04 -3.04 Yes 
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Appendix 8: Effect of distance to towns on the model (Continued)    

Forest to Others 26500-26600 316 7 -0.98 -0.98 Yes 

Forest to Others 26600-26700 325 2 -2.28 -2.28 Yes 

Forest to Others 26700-26900 690 8 -1.64 -1.64 Yes 

Forest to Others 26900-27000 330 6 -1.85 -1.87 Yes 

Forest to Others 27000-27100 288 1 -2.86 -2.85 Yes 

Forest to Others 27100-27200 217 2 -1.87 -1.87 Yes 

Forest to Others 27200-27500 600 11 -1.18 -1.177 yes 

Forest to Others 27500-27600 97 4 -0.34 -0.34 Yes 

Forest to Others 27600-27700 50 3 0.05 0.05 No 

Forest to Others 27700-27800 44 6 0.96 0.96 Yes 

Forest to Others 27800-27900 27 7 1.75 1.75 Yes 

Forest to Others 27900-31000 357 99 1.85 1.85 Yes 
 

 

Appendix 9: Simulated carbon density and uncertainty under BAU from 2001-2025 

Time/year Total Carbon 

Stock  in tons 

Carbon Density in tons 

/hectare 

 Total 

Uncertainty 

in tons 

 Uncertainty in tons  /hectare 

2001 15014811.36 99.21 21471.18 0.142 

2002 14489145.41 95.74 20719.48 0.137 

2003 13996215.41 92.48 20014.59 0.132 

2004 13533955.76 89.43 19353.56 0.128 

2005 13100419.07 86.56 18733.6 0.124 

2006 12693801.79 83.88 18152.14 0.120 

2007 12312403.15 81.36 17606.74 0.116 

2008 11954640.57 78.99 17095.14 0.113 

2009 11619023.96 76.78 16615.2 0.110 

2010 11304165.97 74.70 16164.96 0.107 

2011 11008766.62 72.74 15742.54 0.104 

2012 10731613.28 70.91 15346.21 0.101 

2013 10471554.97 69.19 14974.32 0.099 

2014 10227528.08 67.58 14625.37 0.097 

2015 9998535.78 66.07 14297.91 0.094 

2016 9783642.90 64.65 13990.61 0.092 

2017 9581960.52 63.32 13702.2 0.091 

2018 9392681.94 62.06 13431.54 0.089 

2019 9215026.13 60.89 13177.49 0.087 

2020 9048278.87 59.79 12939.04 0.085 

2021 8891756.78 58.75 12715.21 0.084 

2022 8744832.99 57.78 12505.11 0.083 

2023 8606916.57 56.87 12307.89 0.081 

2024 8477442.37 56.02 12122.74 0.080 

2025 8355896.51 55.21 11948.93 0.090 
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Appendix 10: Simulated carbon density and uncertainty under BAU 3% rate from 2015-2025 

Time/year Total Carbon  

Stock in tons 

Carbon Density in 

tons/hectare 

 Total 

Uncertainty 

in tons 

 Uncertainty in tons 

/hectare 

2015 9998535.78 66.07 14297.906 0.094 

2016 9783642.90 64.65 13990.609 0.092 

2017 9581960.52 63.32 13702.204 0.091 

2018 9392681.94 62.06 13431.535 0.089 

2019 9215026.13 60.89 13177.487 0.087 

2020 9048278.87 59.79 12939.039 0.085 

2021 8891756.78 58.75 12715.212 0.084 

2022 8744832.99 57.78 12505.111 0.083 

2023 8606916.57 56.87 12307.891 0.081 

2024 8477442.37 56.02 12122.743 0.080 

2025 8355896.51 55.21 11948.932 0.079 

 
 

Appendix 11: Simulated carbon density and uncertainty under REDD+ 2% rate from 2015-2025 

Time/year Total Carbon Stock 

in tons 

Carbon Density in tons 

/ hectare 

 Uncertainty in 

tons 

 Uncertainty 

in tons/ 

hectare 

2015 9998535.78 66.07 14297.906 0.094 

2016 9883628.57 65.31 14133.589 0.093 

2017 9774332.35 64.59 13977.295 0.092 

2018 9670390.21 63.90 13828.658 0.091 

2019 9571550.38 63.25 13687.317 0.090 

2020 9477576.50 62.63 13552.934 0.090 

2021 9388232.19 62.04 13425.172 0.089 

2022 9303301.67 61.47 13303.721 0.088 

2023 9222579.39 60.94 13188.289 0.087 

2024 9145854.69 60.43 13078.572 0.086 

2025 9072937.45 59.95 12974.301 0.086 
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Appendix 12: Simulated carbon density and uncertainty under REDD+ 1% rate 2015-2025 

Time 

/year 

Total  Carbon 

Stock in tons 

Carbon Density in tons 

/hectare 

 Uncertainty in 

tons 

Uncertainty in 

tons /hectare 

2015 9998535.78 66.07 14297.906 0.095 

2016 9983614.234 65.97 14276.568 0.094 

2017 9968702.964 65.87 14255.245 0.094 

2018 9953863.63 65.77 14234.025 0.094 

2019 9939147.614 65.68 14212.981 0.094 

2020 9924590.885 65.58 14192.165 0.094 

2021 9910224.272 65.48 14171.621 0.094 

2022 9896088.881 65.39 14151.407 0.094 

2023 9882205.27 65.30 14131.553 0.093 

2024 9868599.12 65.21 14112.097 0.093 

2025 9855275.57 65.12 14093.044 0.093 

 
 

Appendix 13 : Simulated carbon density and uncertainty under REDD+ 0% rate from 2015-2025 

Time/year  Total Carbon 

Stock  in tons 

Carbon Density in 

tons/hectare 

 Uncertainty 

in tons 

 Uncertainty in 

tons /hectare 

2015 9998535.78 66.07 14297.906 0.094 

2016 10083594.76 66.63 14419.541 0.095 

2017 10165062.09 67.17 14536.039 0.096 

2018 10243143.30 67.68 14647.695 0.097 

2019 10318013.08 68.18 14754.759 0.097 

2020 10389835.87 68.65 14857.465 0.098 

2021 10458765.81 69.11 14956.035 0.099 

2022 10524957.05 69.55 15050.689 0.099 

2023 10588532.91 69.97 15141.602 0.100 

2024 10649632.12 70.37 15228.974 0.101 

2025 10708367.73 70.76 15312.966 0.101 
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Appendix 14: Probability map depicting favourable area of change from Cropland to the class “Others” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The blue indicates areas with low probability of change, the yellow indicates areas with 

medium probability of change and the red indicates areas with high probability of 

change whilst the black is not involved in the analysis. 
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                Appendix 15: Probability map depicting favourable area of change from Cropland to Forest 

            

         

 

 

 

 
   

 

        

     

 

 

 

The blue indicates areas with low probability of change, the yellow indicates areas with 

medium probability of change and the red indicates areas with high probability of change 

whilst the black is not involved in the analysis. 
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                  Appendix 16 : Probability Map depicting favourable area of change from the class “Others” to Forest 

 
 

 

 

 

 

 

 

 

 

 
 

The blue indicates areas with low probability of change, the yellow indicates areas with 

medium probability of change, and the red indicates areas with high probability of 

change whilst the black is not involved in the analysis. 
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Appendix 17: Probability Map depicting favourable area of change from the Class “Others” to Cropland 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

The blue indicates areas with low probability of change, the yellow indicates areas with medium 

probability of change and the red indicates areas with high probability of change whilst the 

black is not involved in the analysis. 
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Appendix 18: Diversity of tree species identified from the field 

Local Name Scientific Name Number of trees 

Afena Strombosis pustulata 6 

Akasa Chrysophyllum alb. 2 

Akata Bombax buonopozense 9 

Akuakuo_Ninsuo Spathodea campanulata 6 

Akumaba Unknown 1 

Akyere Blighia sapida 4 

Apro Unknown 3 

Aprofita Aprofita 1 

Aprokuma Antrocaryon micraster 6 

Atabene Chrysophyllum per 15 

Awiemfosamina Albizia ferruginea 1 

Beko Unknown 2 

Cashew Unknown 1 

Celtis zenkeri Celtis zenkeri 1 

Dahoma Piptadeniastrum africanum 6 

Danta Nesogordonia papaverifera 4 

Duasika Annickia polycarpa 1 

Dwene Unknown 1 

Edinam Entandrophragma utile 11 

Emire Terminalia ivorensis 4 

Enoko Unknown 1 

Esa Celtis mildbraedii 84 

Esa_Fufuo Unknown 3 
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Appendix 19: Diversity of tree species identified from the field (continued) 

Local Name Scientific Name Number of Trees 

Esakosua Celtis adolfi friederici 13 

Esamfra Pouteria  spp 5 

Esia Petersianthus quadrialatus 2 

Fotor Glyphaea brevis  8 

Fruntum Funtumia elastica 8 

Hyedua Daniella ogea 8 

Kakapenpen Rauvolfia vomitoria  4 

Koto Bussea accidentalis 13 

Kroma Klainedoxa gabonesis 2 

Kumanyine Lanea welwitschii 5 

Kusia Nauclea diderrichii 4 

Kweku_aduaba unknown 1 

Kyenkyen Antiaris toxicaria 12 

Mahogany Khaya angolensis 1 

Mango Mangifera indica  1 

Nakwa Holoptela grandis 7 

Nwaduaba Ficus sur 2 

Nwama Ricinodendron heudelotii 3 

Nwonekyene Cleistopholis patens 11 

Nyamedua Alstonia boonei 15 

Nyankyere Ficus  exasperata 21 

Odum Milicia excelsa 9 

Ofram Terminalia superba 15 

 Ohaa Terminalia oblonga 13 

Okoro Albizia zygia 20 

 Otwisi Vitex ferruginea  3 

Onyina Ceiba pentandra 12 

Onyinakoben Rhodognaphalon brevicuspe  3 

Opam Unknown 2 
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Appendix 20: Diversity of tree species identified from the field (continued) 

Local Name Scientific Name Number of Trees 

Oprono Mansonia altissima 10 

Orange Citrus 3 

Otia Pycananthus angolensis  6 

Pampenama Corynanthe pachyceras 5 

Pear Persea americana 1 

Pepea Maragaritaria discoidea 2 

Sapele Entandrophragma cylindricum 1 

Sesramonso Unknown 2 

  Sesea  Trema orientalis  3 

Susromasa Unknown 1 

Tamatama Unkown 12 

Tanuro Trichilia monadelpha 3 

Wama Ricinodendron heudelotii  6 

Watapuro Cola gigantea 7 

Wawa Triplochiton scleroxylon  20 

Wawabema Sterculia rhinopetala 3 

Woetea Unknown 1 

Wonton Morus mesozygia 4 

Wotrowotro Unknown 1 

Yaya Amphimas pterocarpoides 6 

Not given Zanthoxylum leprieurii 1 

Unclassified  13 
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Appendix 21: A typical cropland with felled Trees 

 

 

 

 
 

 

 

 

 



MODELLING ABOVE-GROUND CARBON STOCK OF TREES IN AGRO-ECOSYSTEM AND FOREST RESERVE UNDER REDD+ MECHANISMS 

84 

 
Appendix 22: A typical cropland with standing trees 
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         Appendix 23: A typical cocoa plantation with intermingling crown
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