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ABSTRACT 

Forests sequester and store carbon stock and play an important role in the global carbon cycle through 
reduction of increasing carbon dioxide which leads to global warming. Estimation of the forest 
biomass/carbon stock using forest cover assessment over time is important to determine the extent of C 
emissions. In continuation to the relentless efforts to combat global warming and curb global risks 
associated, developing a method is increasingly important for monitoring, reporting and verification 
(MRV) mechanism of REDD+. A method to estimate aboveground biomass with sufficient accuracy to 
establish the increments or decrements of C stored in forests is needed. Thus, this study aims to develop a 
method which uses Terrestrial Laser Scanner (TLS) and Landsat-8 ETM+ data to upscale estimation of 
tropical rain forest above ground biomass/carbon stock.  
 
FCD mapper and model was used to classify Landsat-8 ETM+ data of the study area. The FCD mapper 
classification generated 11 classes (one non-forest and 10 forest canopy density classes) with intervals of 
10 percent. The accuracy of the classification was verified using ground truth and resulted in a strong 
correlation coefficient value of 0.84. In addition to this, the FCD mapper provides the area allocated to 
the different forest density classes. Out of 3,442 Ha of land classified, 34.5% is covered by water and the 
remaining is 65.5% covered by forest. The percentage share of each class out of the total area allotted for 
forest showed that, 95% of the area falls in the last 7 canopy density classes (class 4 up to class 10) of the 
FCD map. 
 
Terrestrial laser scanner (TLS) was used to generate point cloud data from multiple scans (one in the 
center and 3 outer). The multiple scans were registered with an average standard deviation of 1.03 cm. 
From the registered scans, out of 698 trees 604 trees were extracted. This showed 87% tree detection rate 
using multiple scans (four scans). For each of the 604 trees, DBH and height was determined. 
 
After the TLS derived tree parameters were obtained the relationship between basal area and FCD classes 
was examined and resulted in a strong correlation coefficient value 0.80. Then the relationship between 
FCD classes and biomass, calculated using allometric equation, was examined. Similarly, this resulted with 
a strong correlation coefficient value of 0.91. A model was then developed and validated with biomass 
prediction of R2 0.73. The prediction model estimated the above ground biomass is 344 MgHa-1 with 
RMSE 31%. The findings of the study are within IPCC (2006) mentioned 120-680 MgHa-1 range of 
biomass. Similarly,  Boscolo et al. (2001) study made in Malaysia which demonstrated an average above 
ground biomass of 428 tons/ha. 
 
The main objective of the study was to develop a method which can be used for monitoring, reporting 
and verification (MRV) mechanism of REDD+. This method is considered to be operational, 
inexpensive, practical, rapid, and accurate. In the same time it can be applied frequently for monitoring 
forests on a larger scale base. This method can meet requirements mentioned above for REDD+ 
demands. 
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1. INTRODUCTION 

1.1. Background 
 
Climate change arises from greenhouse gas emissions (GHGs). The growing concentration of GHGs in 
the atmosphere trap the thermal radiation released from earth surface and increases temperature of the 
earth, which leads to global warming and climate change. Carbon dioxide (CO2) is one of the principal 
gases that are contributors to the greenhouse effect in the atmosphere. It has been estimated that CO2 
increased from 1960 value of about 280 ppm to 379 ppm in 2005, which contribute to the increase of 
temperature by 1 0C to 4 0C (IPCC, 2007). Forests sequester carbon through the process of 
photosynthesis, when these forests are cleared or degraded the stored carbon is released to the 
atmosphere as CO2 (Gibbs et al., 2007). Emission of CO2 could be induced through natural process such 
as volcanic eruptions but is mostly caused by human activities. As a result our plant annually lose 7.3 
million hectare of forest land and this contribute to 12% of global CO2 emission (van der Werf et al., 
2009). The reasons for the increase in greenhouse gases in tropical countries are deforestation, fossil fuel 
combustion and forest degradation  (Gibbs et al., 2007).  
 
Forest covers 31% out of the Earth’s land surface and contains 283 Gts of carbon in biomass, 38 Gts of 
which is found in the soil (top 30 cm Litter) which exceed the amount of carbon (C) in the atmosphere 
(IPCC, 2007). Forests play important role in the global C cycle through reduction of increasing carbon 
dioxide (Brown, 1997). In particular, they provide a wide range of ecosystem services which are vital in 
supporting life (FAO, 2012). In light of this, retaining the existing forests and establishment of new forest 
is a cost effective option to mitigate global climate change (Zhang & Xu, 2003). Due to the above 
mentioned facts, estimation of the biomass/carbon pool of forests using forest cover assessment over 
time is important to determine the extent of C emissions.  

 
According to Varjo & Mery (2001) forest cover changes can be done either by detecting actual forest and 
land use change or by executing an inventory twice on the same area (IPCC, 2007). Biomass is considered 
as a useful indicator of structural and functional attributes of forest ecosystems across a wide range of 
environmental conditions (Brown et al., 1999). Besides, biomass governs the potential carbon emission 
that could be released to the atmosphere (Lu, 2006). Being able to estimate biomass is therefore important 
to assess the role of forests in the global C cycle, particularly when defining its contribution toward 
sequestering carbon (Brown, 2002; Parresol, 1999). Measuring carbon in forests is important to the two 
key policies; the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto 
Protocol (UNFCCC, 2014). 
  
The UNFCCC adopted the Kyoto Protocol in Kyoto, Japan, on 11 December 1997 and it entered into 
force on 16 February 2005. It sets a collective global target of reducing GHG emissions by about 5% of 
1990 levels by the first commitment period from 2008 to 2012. An amendment made to the protocol in 
Doha, Qatar, on 8 December 2012, known as the "Doha Amendment to the Kyoto Protocol", aims to 
reduce GHG emissions by at least 18 % below 1990 levels from 2013 to 2020 during the second 
commitment period (UNFCCC, 2014). This practice is expected to reduce the emissions to a safe level. 
The UNFCCC meeting in Conferences of parties (COP 15) introduced “REDD+” mechanism, which is 
concerned with both reducing and enhancing carbon stocks through actions that address deforestation, 
forest degradation, forest conservation and sustainable forest management (Cerbu et al., 2011). The UN-
REDD is a collaborative programme that supports reduction of forest emission from degradation and 
deforestation in developing countries. Moreover, it supports in providing tools and monitoring methods 
to accurately estimate above ground carbon stock by reporting on stock changes. The design of a forest 
monitoring system includes measurement, reporting, and verification (MRV) according to internationally 
agreed requirements (UN-REDD, 2009).   

http://www.sciencedirect.com/science/article/pii/S0378112706000235
http://www.sciencedirect.com/science/article/pii/S0378112706000235
http://www.sciencedirect.com/science/article/pii/S0378112706000235
https://unfccc.int/kyoto_protocol/doha_amendment/items/7362.php
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Above ground biomass (AGB) is the total living biomass above the soil surface. Carbon forms 
approximately 50% of the AGB (Drake et al., 2002). For estimating above ground carbon stock either 
destructive or non-destructive methods can be applied. Although destructive measurement gives accurate 
result, it cannot be applied to large areas. Conversely, non-destructive method can be applied to large 
areas. Non-destructive method include approaches such as process based models, remote sensing based 
models, forest yield models, carbon flux measurement and forest inventory based approach (Qureshi et 
al., 2012).  
 
Remote sensing (RS) is widely used for inventory. RS has increasingly attracted scientific interest because 
of precision of systematic and consistent data collection, a synoptic view, a digital format allowing fast 
processing of large data and covers vast areas, low in cost per unit area and the presence of correlations 
between spectral bands and vegetation parameters (DeFries et al., 2007; Lu, 2006; Patenaude et al., 2005). 
It also provides historical archives of span several decades and can therefore be used to reconstruct 
current and future time series. Remote sensing does not take direct measurement of AGB, it is supported 
by ground observations which are key to effective forest monitoring (DeFries et al., 2007).  
 
Several studies had been done on estimation of biomass using remote sensing techniques and some could 
be mentioned among the proliferated papers presented. A study combined remote sensing imagery with 
LiDAR data (Lopez Bautista, 2012). Similarly, Lu et al. (2012) coupled Landsat and LiDAR data for above 
ground biomass estimation. This indicated the need for a tool or set of tools that will assist in providing 
information on forest condition for planning and monitoring. Over the past years, Forest Canopy Density 
(FCD), a biophysical model which uses forest canopy density to monitor forest canopy conditions over 
time. The model played a great role for sustainable forest management (Hussin, 2000). Likewise, terrestrial 
laser scanner (TLS) is gaining rapid interest as an efficient tool for fast and reliable three dimensional (3D) 
point cloud data acquisition in forest inventory (Maas et al., 2008). As such forest canopy density (FCD) 
mapper and terrestrial laser scanner (TLS) data could be used for estimation of above ground 
biomass/carbon stock. 

1.2. Above Ground Biomass Estimation 
 
Estimation of above ground biomass stock is based on features of vegetation such as canopy. It is 
necessary in estimating carbon stocks. Canopy extends from top to bottom in a three dimensional 
arrangement of canopy elements (leaves, branch and trunk of a tree) (Drake et al., 2003). Features like 
canopy height, diameter at breast height (DBH), basal area & steam diameter can be obtained from field 
and remote sensing data (Drake et al., 2003; Chave et al., 2005). Apart from remote sensing and field 
inventory, AGB can also be estimated using allometric equations, biophysical models, carbon flux models 
etc. 

1.2.1    Remote Sensing Techniques for above ground biomass estimation 
 
Remote sensing data provide a useful means for estimating biomass of forests. Most remote sensing 
studies describe the empirical correlation between forest biomass and the intensity of electromagnetic 
energy that is received by the instrument (Drake et al., 2002). The relationship with AGB can be direct, 
using remotely sensed data with different approaches, such as multiple regression analysis (Nelson et al., 
2000; Zheng et al., 2004). AGB can be also estimated indirectly using remote sensors data of canopy 
parameters, such as crown diameter using multiple regression analysis or different canopy reflectance 
models (Phua & Saito, 2003; Popescu et al., 2003).  
 
These relationships enable AGB to be used as an indicator for accurate forest covers change estimation 
(Hougton, 1996). By far made remote sensing is a potentially useful tool for spatial changes in forest 
condition (Harrell et.al., 1997; Lu, 2006). With the advantage that “Satellite based remote sensing systems 
observe the Earth at wavelengths ranging from visible to microwave, at spatial resolutions ranging from 

http://www.sciencedirect.com/science/article/pii/S0378112706000235
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sub-metre to kilometres and temporal frequencies ranging from 30 minutes to weeks or months” 
(Rosenqvista et al., 2003). Having various remote sensors with different spatial, spectral and temporal 
characteristics has made estimation of biomass promising and thus it is important to distinguish the type 
of sensors for the intended application of biomass estimation. 
 
Remote sensors can be classified in to two types on the basis of the source of energy they use to collect    
information. Optical sensors regarded as passive sensors depend on sun radiation as their source of 
energy. While, active remote sensors like radar and LiDAR use their own energy (ITC, 2012). Optical 
remote sensing captures solar energy reflected from the earth's surface in the visible, near and middle 
infrared portion of the electromagnetic spectrum (~0.4 to 2.5 micrometer). They record spectral 
information for each pixel and allow the classification of the pixels into land cover classes (Patenaude et 
al., 2005).  
 
On the basis of spatial resolution, optical sensor data can be classified as coarse, medium and high. Coarse 
resolution is used for global, continental and national scale biomass mapping such as NOAA AVHRR 
(Dong et al., 2003; Asner, 2001). Moderate resolution Imaging Spectroradiometer (MODIS) (Baccini et al., 
2004), have been useful due to the good balance between spatial resolution, image coverage and frequency 
in data acquisition (Lu, 2006). Medium spatial-resolution ranges from 10 to 100 m. The most frequently 
used medium spatial-resolution data is Landsat data, which have become the primary source in many 
applications, including AGB estimation at local and regional scales (Lu, 2007; Phua & Saito, 2003; 
Sussman et al., 2006; Zheng et al., 2004). In monitoring land cover and land cover change at regional 
scales Landsat data being able to identify and map landscape features and patterns with sufficient detail 
and consistent data (Pax-Lenney et al., 2001). Besides, having proper spectral and spatial resolutions and 
relatively long historical datasets, as well as world-wide data availability which is free made it to be 
extensively applied for forest biomass  or carbon estimation (Lu et al., 2012). Whereas very high resolution 
(VHR) data for small area biomass estimation such as IKONOS and QuickBird with 1 to 4 m resolution 
from aerial photographs or satellite images (Petrokofsky et al., 2012). 
 
Optical sensor data has been widely used for estimation of AGB. Mostly, VHR data is used for AGB 
estimation. The data from satellite or airborne imagery requires image processing and interpretation such 
as,  tree crown delineation, species identification and crown density to retrieve information (Katoh et al., 
2008). Estimation of AGB done indirectly from the images and wall to wall (pixels) should be related with 
ground data. However, using VHR data tend to underestimate carbon in tropical areas due to dense 
canopy closure (Gibbs et al., 2007). There is also limit in the availability of good data to varying extent, 
since optical sensors relay on actual reflectance from the surface which can be obstructed due to the 
presence of clouds, aerosols and haze. In this kind of situations active remote sensors are more proper. 

 
Radar also called as synthetic aperture radar (SAR) is an active remote sensor operating in microwave part 
of the electromagnetic spectrum (~ between 1 cm and 10 m for VHF5). SAR sends out a signal detect and 
record the wave properties of the returned echoes (the backscatter amplitude). The returned echo and the 
orientation of the electromagnetic wave (the polarization) are measured (Patenaude et al., 2005). The 
frequency transmit/receive configuration of radar data is stated by a three-letter code, the first letter 
designates the band of the radar and the last two letters state the polarization (horizontal/vertical) 
configuration. The different bands  are C, L, K, S & X bands, that operate with different wave length and 
frequency provide different information about forest canopy (Gibbs et al., 2007). Whereas, polarizations 
have four combinations namely HH, HV, VH and VV (Lillesand et al., 2004).  

 
Radar systems offer advantages for forest monitoring by operating day and night. In addition, radar signal 
cannot be impeded by moderate rain fall, penetrate cloud and ground cover. However, error increases in 
mountainous or hilly condition and response to estimation of biomass provides low results in forests with 
sparse large trees and heterogeneous forest structure (Gibbs et al., 2007; Patenaude et al., 2005). 
 
 
 

http://www.sciencedirect.com/science/article/pii/S1462901105000158
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     Figure 1. Illustrations of conceptual difference between waveform recording and discrete-return LiDAR devices         
               (Lefsky et al., 2002) 
 
Owing to the return from signal characteristics, sensors can be distinguished as discrete-return sensors. 
That measures the distance between the sensors and a target based on the elapsed time between the 
emission and return of the laser pulse. Waveform-recording scanning sensors, recording the shape and 
intensity of the pulse reflected from targets (Lefsky et al., 2002).  
 
Laser scanners may be mounted on different platforms on satellites as space borne LiDAR system, on air 
craft as air borne LiDAR system, on tripod as terrestrial LiDAR system (Heritage & Large, 2009). The 
most common used formations of LiDAR systems are (1) airborne discrete-return scanning LiDAR, (2) 
airborne discrete-return profiling LiDAR, (3) airborne small-footprint waveform and (4) terrestrial LiDAR 
scanner. In this study, only terrestrial scanning will be investigated.  
  
LiDAR is becoming very promising in monitoring forest cover with the advantage it offers accurate 3D 
forest structural characteristics which can quantify such as canopy heights, stand volume, basal area, and 
above-ground biomass (Dubayah & Drake, 2000; Lefsky et al., 2002). Studies made at plot level forest 
stand characteristic using estimation of tree parameters automatically proven its relatively high accuracy 
(Holmgren et al., 2003). Moreover, LiDAR has proved to be an efficient tool in the study of forest 
structure in a variety of forest environments (Drake et al., 2002; Lefsky et al., 1999; Magnussen et al., 
1999). 
 
A series of remote data collection technologies are now available to provide ‘wall-to-wall’ observation of 
carbon stock proxies and estimation over large areas using uniform method in a short time (Qureshi et al., 
2012). According to DeFries et al. (2007), Drake et al. (2002), Lu (2006) and Patenaude et al. (2005), there 
is a growing interest in assessing biomass quantities accurately using remote sensors. However, there are 
still challenges encountered in quantification of forest carbon stock.  
 
Several studies combined remote sensing techniques to get better result (Lu, 2006). The integration of 
optical remotely sensed imagery and LIDAR data provides improved opportunities forest structure 

LiDAR (Light Detection and Ranging) is an 
active remote sensor uses a pulse of laser 
energy with a wavelength (900 - 1064 
nanometers) to travel from the sensor to the 
target (Drake et al., 2002; Lefsky et al., 
1999).  LiDAR sensors provide accurate 
measurements due to direct distance 
measurement. The distance measurement is 
calculated from the elapsed time from it is 
emitted by the sensor till it is received by. 
These measurements used to derive a precise 
three-dimensional characterization of an 
object, including forest canopy elements 
(Popescu, 2007).  
 On the basis of width of the beam and type 
of information collected from this return 
signal, LiDAR sensors are distinguished in 
to two broad categories (Figure 
1). According to the former characteristics, 
as small footprints sensors with laser beam 
less than 50 cm and large foot prints with 
diameter greater than 5 m (Dubayah & 
Drake, 2000).  
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attributes and changes (Wulder et al., 2007). Integration of airborne LiDAR and hyperspectral digital 
imagery demonstrated the potential of assessing AGB inventory with high accuracy for individual tress 
and tree components (Popescu, 2007).  

 
1.2.2     Allometric Equations 
 
Biomass can only be measure directly through destructive sampling. Instead of this destructive method, 
estimates are developed through allometric relationship between weight of harvested trees and measurable 
tree parameters. Allometric equation is then defined as an equation which uses quantitative relationship 
between independent measurable tree dimensions, including trunk diameter and height and add up 
individual mass of a tree to assess biomass to provide relatively accurate estimates (Kangas & Maltamo, 
2006; Phillips et al., 2002). The equation follows allometric regression models in estimating AGB, which is 
an important step in biomass estimation. DBH and height are the important tree parameters for biomass 
estimation, where DBH is measured at 1.30 m aboveground (FAO, 2004). More than 300 species can be 
found in 1 Ha of tropical forest (Oliveira & Mori, 1999). Grouping all species together and using 
generalised allometric relationships are highly effective in the tropics (Brown, 2002; Chave et al., 2005). 
Besides, Chave et al. (2005) developed a generic allometric equation and used a biomass regression model 
from DBH, height and wood specific gravity resulted with a bias of 0.5-6.5%. Thus, allometric equations 
are used because they are easy and non-destructive. 

1.2.3     Biophysical Models for biomass estimation 
 
The essence of a model is to relate quantitative data relate by a remote sensing system to biophysical 
features on the earth surface (Lillesand et al., 2004). These models synthesize and model absorbance and 
reflectance of vegetation, water, soil and other features of land. There are several biophysical models and 
can be grouped in different types of biophysical models on the basis of the relationship of remote sensing 
systems to the biophysical features of the earth. Although there is a wide classification of these models 
into a set of groups, for the purpose of biomass estimation we preferred to mention two set of groups. 
The first one as light use efficiency models, which use remotely sensed net primary production (NPP) to 
estimate maximum carbon assimilation rates to adjust suboptimal climate conditions using a series of 
simple climate response algorithms (Turner et al., 2003). The second one can be mentioned as simple 
empirical models, which use empirically derived algorithms that combine remotely sensing systems to 
vegetation properties. One example of these models is Forest canopy density model (FCD model) 
(Rikimaru et al., 2002).  

 
FCD mapping and monitoring model was developed by International Timber Trade Organization (ITTO) 
in 1997. FCD uses forest canopy conditions over time. Using these principles a software named as FCD 
mapper semi-expert was developed to analyze satellite imagery (Rikimaru et al., 1999; 2002). The FCD 
mapper uses forest canopy density essential parameter. It comprises biophysical modelling and analysis of 
four indices. FCD mapping expresses canopy density in percentages, going from 0 to 100% in class of 
10% for each pixel. It can only use imagery acquired by sensors that can measure thermal energy in 
addition to electromagnetic energy (visible-NIR-MIR). Landsat’s TM and ETM+ sensors have the 
capability to do this (Gelens et al., 2010). This has advantage over the conventional RS methods which are 
based on qualitative analysis of information derived from ground truth  and there is no direct involvement 
of remote sensing expert (Rikimaru et al., 2002; Musa et al., 2003). FCD-mapper offers useful system to 
the forester to implement FCD mapping process (Figure 2). 

   
 
 
 
 
 
 
                    Figure 2. The concept of  FCD-mapper (Rikimaru & Miyatake, 1997; Rikimaru et al., 2002) 

RS expert 

Conventional Processing system 

System Forester 

Semi-Expert system 

System 
(RS expert knowledge) Forester 
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Analysis of FCD mapping as compared to the convectional methodology is illustrated in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Analysis by FCD mapping model (Rikimaru et al., 2002) 

1.3. Problem Statement 
 
Climate change, a product of high carbon emissions have drawn global attention for high quality 
monitoring systems to estimate changes over time in biomass/carbon present on Earth’s land surface 
(Petrokofsky et al., 2012). One of the main objectives of the study of the Earth's carbon cycle is 
measurement of biomass at different scales (global, regional and local) (Yao et al., 2011). Understanding 
the rate at which forest ecosystems change, grow, and add new biomass is important in developing more 
accurate estimates of factors contributing to GHG concentrations in the atmosphere and global carbon  
cycle (Hougton, 1996; Brown, 2002; IPCC, 2007). The general lack of accurate spatial forest biomass data 
has been considered as one of the most persistent uncertainties concerning global C budgets (Harrell et al., 
1995).  
 
Estimating change in forest cover uses biomass as an indicator of forest structural attributes. As part of 
the biomass, forest canopy refer to the proportion of the ground covered by the vertical projection of 
forest can be efficiently obtained from satellite images. It is a measure of the forest status (Gibbs et al., 
2007). Since remote sensing images cannot measure forest biomass directly,  both remote sensing and 
forest inventory data are required to estimate AGB (Drake et al., 2003; Rosenqvista et al., 2003). 
 
Remote sensing images has been successfully assessing the distribution and rate of decline of tropical 
forests (Myers, 1980; Prince, 1987; Ringrose and Matheson, 1986; Ford and Casey, 1988; Iverson et al., 
1989; Sussman et al., 1996). Various efforts using remote sensing have been performed to estimate carbon. 
Recent methods used airborne LiDAR data and very high resolution imagery. Although these methods 
managed to improve the accuracy to a significant extent, they are expensive, applicable only to small areas 
and the image interpretation is quite time-consuming and labour-intensive (Gibbs et al., 2007; Pax-Lenney 
et al., 2001). 
 
Likewise metrics from synthetic aperture radar (SAR), such as backscatter, also tend to saturate in dense 
forest conditions (Drake et al., 2002; Gibbs et al., 2007, Kasischke et al., 1997; Patenaude et al., 2005) and 
have been shown to be insensitive to changes in AGB for secondary tropical forests with AGB levels  
greater than 60 Mg/ha (Luckman et al., 1997). In addition to this, a prior knowledge of the forest 
structural characteristics is required to analyse the SAR data adequately (Patenaude et al., 2005).  
 

http://www.sciencedirect.com/science/article/pii/S0303243405000735
http://www.sciencedirect.com/science/article/pii/S0303243405000735
http://www.sciencedirect.com/science/article/pii/S0303243405000735
http://www.sciencedirect.com/science/article/pii/S0303243405000735
http://www.sciencedirect.com/science/article/pii/S0303243405000735
http://www.sciencedirect.com/science/article/pii/S0303243405000735
http://www.sciencedirect.com/science/article/pii/S0303243405000735
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“ The need to increase the accuracy and the spatial coverage of carbon accounting in forest ecosystems 
has both political and scientific rationales ” (Patenaude et al., 2004). First, scientific rational is the issue of 
large uncertainty in estimation of carbon content. This urges to critically assess the accuracy and precision 
of the different remote sensing techniques and their applicability in geographically varied regions 
(Petrokofsky et al., 2012). Eventually to come up with cost efficient tools which  provide accurate and 
rapid estimation (Patenaude et al., 2004). Second, political motive is countries ratifying the Kyoto protocol 
are required to report on emissions. Therefore, to discern and develop techniques for carbon inventory 
with sufficient accuracy to establish the increments or decrements of C stored in forests is progressively 
more important. The objective of UNFCCC is global in one hand but implementation is by individual 
nation on the other. To develop and run national-scale land carbon inventory systems will cost several 
million dollars per year. This would be the sum of national costs when we sum up the global cost nation-
by-nation carbon (Bottom-up) inventory; this includes in turn the sum of individual project-scale 
inventories at national level. Therefore, the real total cost will be very high (Noble & Scholes, 2001).  
 
One of the greatest challenges of REDD+ programmes is to develop methods that can measure forest 
biomass accurately and monitor the changes effectively at national level. Moreover, to standardize the 
wide differences between countries and assessment methods (Kankare et al., 2013). Eventually, REDD+ 
monitoring must be conducted in a manner that is reliable, transparent, and as accurate as possible, as well 
as feasible for developing countries and acceptable by the global community (Aikawa et al., 2012; Stolle et 
al., 2013). 
 
Growing interest in the global C cycle demands estimating aboveground biomass with sufficient accuracy 
to establish the increments or decrements of C stored in forests is increasingly important (Henry et al., 
2011). The current forest inventory estimation process is less accurate, has more bias from one to another 
person, expensive and time consuming. TLS can replace  this inventory, as it is more efficient and accurate 
option for acquiring field data (Kankare et al., 2013). Presumably to alleviate the case with monitoring 
through provision of key constraint of data continuity, cost and technical capacity (DeFries et al., 2007). 
In line to this monitoring process, FCD Mapper which uses Landsat imagery data as the source data, a 
relatively inexpensive approach that requires only limited validation data. Moreover, FCD has been found 
to be technically simple, robust and quick, and can be applied frequently for forest monitoring on a large 
scale (Mon et al., 2012). To this the research aims to develop a method that combines FCD mapping and 
model with TLS data for upscaling carbon estimation. If successful the method can be used for estimation 
of carbon to meet the requirements of Kyoto Protocol and support the monitoring, reporting and 
verification (MRV) of REDD+ programme used for upscaling carbon estimation of forest AGB with low 
cost, less labour intensive, operational, practical and can be done frequently.  
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1.4. Overall Objective 
 
The overall objective of this research is to develop a method to upscale the estimate of biomass/carbon in 
Royal Blum tropical rain forest in Malaysia using FCD Mapper, Landsat-8 ETM+ and Terrestrial Laser 
Scanner (TLS) data.  
 

1.4.1  Specific objectives 
 

1. To assess forest canopy density of tropical rain forest of Royal Belum using FCD Mapper and 
Landsat-8 ETM+ data. 

2. To assess and validate FCD classes using field data (ground truth). 
3. To investigate the relationship between FCD classes and biomass/carbon of tropical rain forest 

of Royal Belum based on TLS measurements. 
4. Formulate a predictive model for up scaling biomass/carbon estimation using the above 

relationship. 
5. To estimate, map and assess the accuracy of biomass/carbon stock in the study area. 

1.5. Research questions 
 

1. How is the application of classification of FCD mapper work with Landsat-8 ETM+? 
2. What is the accuracy of FCD classification? 
3. What is the relationship between FCD classes and biomass/carbon from TLS measurements? 
4. How can a predictive model for up scaling biomass/carbon estimation using the above 

relationship be formulated? 
5. What is the accuracy of the model for biomass/carbon estimation from TLS measurements? 
6. How much carbon is stored in the study area? 

 
 

Hypothesis 

1. FCD can classify Landsat-8 ETM+ accurately (= 75%).  
2. There is a significant (correlation) relationship between FCD classes and biomass/carbon        

 (= 0.80). 
3. Upscaling biomass/carbon estimation can be done (Predicted AGB is approximately equal to 

Observed AGB). 
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1.6. Theoretical Framework of Research  
 
The research began with literature review followed by problem identification. After problem identification, 
research objectives and questions were formulated. Then, data required for research were defined and 
field work was carried out. Point cloud data, FCD classes and field data were analyzed. The results 
obtained were discussed and conclusions were drawn. The entire process is presented in Figure 4. 
 
                                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Theoretical framework of research 
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2. LITERATURE REVIEW, CONCEPTS AND DEFINITIONS 

2.1. Literature Review 
2.1.1   International agreements and reporting requirements 
 
The two important international agreements related to measuring carbon in forests with concerns to 
the unrelenting issue of reducing GHGs emissions in the atmosphere are: the United Nations 
Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol (Patenaude et al., 
2005). 

2.1.1.1 Kyoto Protocol 
 
Climate change is a response to addition of gases to the atmosphere, accumulation of GHGs beyond 
balance of atmosphere and biosphere pool exchange of gases would lead to detrimental effect on climate 
change. The situation steered international negotiations followed by agreements to reduce emission. This 
paved the road to Kyoto protocol related to UNFCCC with the goal to set international binding emission 
reduction targets to be achieved in first (2008-2012) and second (2013-2020) commitment periods. The 
emission reduction targets will enable stabilization of GHGs in the atmosphere naturally, reduce threats to 
food security and promote economic growth in a sustainable manner (Noble & Scholes, 2001). 
 
Countries ratified the protocol are required to meet their targets through national measures. In order the 
countries to meet their targets the protocol presented other supplementary means by three ways of 
market-mechanisms: international emission trading, clean development mechanism and joint 
implementation. This is expected to encourage green investment by supporting parties to meet their 
emission targets in a cost-effective way. It is the first leap towards a truly global emission reduction regime 
which can provide the structural design for the future international agreement on climate change 
(UNFCCC, 2014). 
 
Many tropical countries have at least one inventory of all or part of their forest area, although many of the 
inventories are more than 10 years old and very few have repeated inventories. Data from these 
inventories can be converted to biomass carbon in one of two ways depending upon the level of detail 
reported (Brown, 1997). The Kyoto Protocol forthcoming need to determine sources and sinks of carbon 
resulting from land-use change and desperately demand methods that can determine biomass accurately, 
repeatedly, and inexpensively. Provided that these methods are available, they would be used routinely by 
the world's nations (Houghton et al., 2001).  

2.1.1.2   REDD+ 
 
Tropical countries comprise 50% of the species on the earth in less than 5% of the earth’s land area. 
These forests sequester and store 375 billion metric tons of carbon and provide a wide range of ecosystem 
services to human beings. They depend directly or indirectly on the services that are provided by the 
forest. Forests are exploited to obtain these services in the form of timber, food and other goods, which 
directly or indirectly provide income. Over-exploitation, leading to deforestation and forest degradation 
has become the major contributors to emissions in tropics. As a remedy, payments to ecosystem service 
could reduce deforestation in forest dependent communities, the UNFCCC introduced the REDD+ in 
national conference of Bali Action Plan in the year 2007 and was launched in 2008 (Stolle et al., 2013). 

 
The REDD+ programme has 56 member countries from Africa, Asia-pacific and Latin America. It 
focuses on direct support to design and implementation of national programmed and complementary 
support to different incentives, training, methodology, approaches and development of national systems 
for measuring, reporting and verification (MRV).  
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MRV activities include field work, data processing, analysis and reporting (UN-REDD, 2009). The three 
components of MRV are defined as: 
- Measuring:- includes both actual and physical measurement of emissions or removal from forest area  
                       as well as the calculations used from simple formula to sophisticated models.  
- Reporting:- related to the documentation of estimates of GHGs, the methodology used, quality,  
                       quantity and uncertainty. 
- Verification:- involves internal and international checking of the inventory. 
 
Under the UNFCCC, the REDD+ mechanism agreed at the COP-16 of the UNFCCC in 2010 
implementation of mitigation action through: reducing from deforestation, forest degradation, 
conservation of forest carbon stocks, sustainable management of forest and enhancement of forest 
carbon stocks (Petrokofsky et al., 2012). Later at the COP 17 the REDD+ mechanism stated that 
implementation should be at national level or if possible at sub national level. Countries should include 
monitoring plans with institutional, legal and procedural arrangements for estimating emissions and 
mechanism for reporting and archiving. The mechanism supports countries to develop cost-effective, 
robust, operational and compatible monitoring systems. Moreover, the monitoring systems need to be 
coherent to UNFCCC regulations. 
 
Monitoring is crucial to assess emission levels so that compensation could be earned from emission 
reductions. Changes in carbon stock can be estimated through land use yearly inventory, conversion of 
forest to other land use and stocks of carbon that are subjected to change or not. Since it is not possible 
to measure all emissions and removals, the estimations can be made for emission rate before and after 
change in land use using inventories with different levels of complexity called “tiers”. Generally, there 
are three Tiers named as Tier 1, Tier 2 & Tier 3. Tier 1 uses globally available sources (deforestation rate, 
agriculture production statistics, fertilization rate etc.). Tier 2, uses emissions and stock change based on 
country or region-specific data whereas Tier 3 uses methods which include models and inventories 
tailored to address unique national circumstances. Inventories using higher tiers have improved accuracy 
and reduced uncertainty. In developing a monitoring system care should be taken to take in to account 
the scope, estimation methodology, cost and data needs. For estimation methodology REDD+ use 
remote sensing and thus active remote sensors radar and LiDAR are the most commonly used remote 
sensors. The spatial and temporal resolution of Landsat data provide source data for monitoring, with 
historical data archives of past and future (Stolle et al., 2013). 

2.1.2 Terrestrial Laser Scanner 
 
The principle of Terrestrial Laser Scanner (TLS), also known as ground based LiDAR, is based on a 
highly collimated laser beam that scans over a predefined solid angle in a regular scanning pattern and 
measures the time-of-travel of the laser signal. The scanning range of the midrange terrestrial system 
allows distance measurements between 2 m and 800 m (Kankare et al., 2013). TLS is composed of a 
laser range finding system and the beam deflection unit; the instrument is mounted on a tripod. TLS 
generates 3D (three dimensional) point clouds consisting of several million 3D points densely 
representing an object surface in a polar measurement mode by scanning in two directions and 
measuring distances (Figure 5). These points provide the possibility to document forest both vertically 
and horizontally in great detail. Terrestrial Laser Scanners are composed of rapid pulse lasers, precisely 
calibrated receivers, precision timing, high-speed micro controlled motors, precise mirrors and advanced 
computing capabilities (Fowler & Kadatskiy, 2010). 
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Figure 5. Illustrations of scanning mechanism of a TLS scanner (Dassot et al., 2011) and point cloud data of a tree                          
               

There are different TLS instruments currently on the market and these can be categorised according 
to the following criteria (Figure 6 and Table 1). 
 
1. Range measurement principle:- Most scanners use measurement of  the time-of-flight to  
     determine range. The precision of measurement is usually limit to 5-10 mm. some scanners use  
     phase modulation techniques to achieve a higher measurement precision of 1-3mm. 
2. Beam deflection principle:- scanners scan an object surface with the beam mirrors  
     sequentially in two scanning directions, deflected by galvanometric, polygon wheels, and rotating  
     elliptical mirrors; rotation of the instrument or combinations.  
3. Field of view:- Most laser scanners offer a panoramic 3600 horizontal field of view with a  
    vertical opening angle between 800 and 1350, with the latter offering the possibility of  
    hemispheric scans. Some scanners offer a camera-like rectangular field of view (Maas et al.,  
    2008). 

 
 
 
 
 
 
 
 

a. Riegl VZ-400        b. Riegl LMS-Z 420i                      c. Leica HDS6100 
Figure 6. Example of the latest scanners (www.riegl.com; www.leica-geosystems.com) 

Table 1. Specifications of the examples of terrestrial laser scanners shown in figure 6 

Type Riegl VZ-400    Riegl LMS-Z 420i Leica HDS6100 

Ranging method Pulse ranging 
(full-waveform) 

Pulse ranging Phase shift 

Wavelength (nm) 1,550 (near-infrared) 1,550 (near-infrared) 690 

Max. Measurement range (m) 280 - 600 350 – 1,000 0.4 - 79 

Accuracy (mm) 3 10 5 

Beam divergence (mrad) 0.3 0.25 0.22 

Footprint size at 100 m (mm) 30 25 22 

V X H field of view 1000 X 3600 800 X 3600 3100 X 3600 

Acquisition rate (pts/s) Up to 122,000 Up to 11,000 Up to 500,000 

Weight (kg) 9.6 16 14 

Operating temperature 0° to +40° C 0° to +40° C -10° to +45° C 

3200 

3600 

http://www.riegl.com/
http://www.leica-geosystems.com/
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These scanners follow two scanning mechanism to capture measurements: single scanning or multiple 
scanning methods (Figure 7). Single scanning method as its name implies uses only one location of the 
scanner (e.g. center of the plot) and only one scan is made. This method allows fast and easy method of 
tree scanning, but occlusion is unavoidable. Occlusion refers to the hiding of far trunks, branches, and 
foliage by closer objects. In the multiple scan method, several scans (three to four) are made in and around 
the object and it is much more time consuming. This allows for increased field measurement, ensures the 
most complete 3D description of objects and information about the trees from more than one direction  
(Bienert et al., 2006; Dassot et al., 2011). Registration is done to integrate the multiple scans using one 
reference point (Côté et al., 2009). 
 
. 

 

 
 

 

 

 

Figure 7. Single scan and multiple scan mode (Bienert et al., 2006) 

2.1.2.1 Application of Terrestrial Laser Scanner (TLS) for Above Ground Biomass Estimation 
 
Currently, AGB estimation is based on allometric relationships of DBH and heights and generally leads to 
errors. LiDAR is becoming a propitious technique in monitoring forest with the ability to provide detailed 
forest structure (Patenaude et al., 2005). TLS has the potential to provide more detailed information on 
canopy structure. The introduction of TLS measurement in forestry enables precise tree stand parameters 
measurement such as diameter at breast height (DBH), which is the crossection of trunk of the tree. Other 
such as canopy height, crown diameter, stem density (trees per unit area), basal area e.t.c. which are used 
to provide information about timber quality, volume, biomass and forest growth. The positional accuracy 
of TLS is within 0.5 -10 cm which is more than the accuracy of airborne LiDAR, 0.1 to 1 meter (Yang et 
al., 2013).  
 
Dassot et al. (2011) mentioned the potential of TLS in the future to improve forest measurements by 
providing faster and more detailed information of the forest structure than the time-consuming manual 
techniques. Moreover, it provides information inaccessible to large-scale airborne LiDAR measurement. 
They also mentioned that studies were made on plot level forest inventory and to mention some: standard 
denderometric parameter (DBH, height, stem volume, basal area & wood volume), species identification 
from bark analysis, external trunk quality, forest canopy characterization and advanced modelling of tree 
structure etc. The results show resonable accuracy, with approximately +5 cm errors in defining tree 
location, +1.7 cm in detemining DBH. These accuracies are very hard to achieve using human hand 
measurements using different ground truth data collection tools e.g. diameter tape, calliper, Haga 
hypsometer, etc. 
 
DBH is a critical forest inventory parameter in estimating biomass, timber volume and forest growth. 
Various studies indicated also the provision of TLS is more straightforward, which means for directly 
retrieving DBH values, usually by fitting circles, cylinders, or free-form curves to scattering points 
(Hopkinson et al., 2004, Pfeifer et al., 2004; Thies et al., 2004). Similarly Watt & Donoghue (2005) and 
Yao et al. (2011) in a study made on measurement of forest structure demonstrated a very strong linear 
relationship between DBH measured in the field and TLS data. Moreover, Bienert et al. (2006) application 
of TLS for determining forest inventory parameters using single and multiple scan got very good results 
namely: automatic detection of tress 97.4% using single scan in primary forest. 

     Position of the scanner                   tree 
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Furthermore, Antonarakis (2011), Kankare et al. (2013), Maan et al. (2014), Maas et al. (2008), Seidel et al. 
(2013) and Tansey et al. (2009) all report accuracies for tree detection of 52% in dense stocked plantations. 
These results showed that TLS could be used to measure tree DBH, height and stem volume accurately 
and estimated AGB and carbon for individual tree or at a plot level. 
 
The frequent scan records of these measurements allow to develop forest inventory for  temporal 
monitoring of forest (Watt & Donoghue, 2005). This provides the tools and methods that are required to 
support the monitoring, reporting and verification (MRV) for REDD+ projects. 

 
2.1.3 FCD Mapping and Model 
2.1.3.1 Characteristics of the FCD mapping and model 
 
The FCD mapper and model is composed of bio-physical phenomenon modelling and analysis of the data 
extracted from four indices: Advanced Vegetation Index (AVI), Bare Soil Index (BI), Shadow Index or 
Scaled Shadow Index (SI, SSI) and Thermal Index (TI) (Rikimaru et al., 2002). The indices have some 
characteristics as shown below in Table 2. It utilizes integrated data from the four indices. Fig. 8 illustrates 
the relationship between forest conditions and the four indices. Vegetation index is a response to all of 
vegetation items such as the forest, shrub land and the grassland. As the forest density increases so does 
the Shadow index increases. Similarly, as the vegetation quantity increases the Thermal index increases. 
Presumably black coloured soil area shows high temperature. Eventually, Bare soil index increases with 
degrees of ground. The model then calculates the four index values for every pixel are.  

 
 
 
 
 
 
 
 
 
 
 

         Figure 8. Illustration of the relationship between forest conditions and the four indices (Rikimaru et al, 2002;     
              Chandrashekhar et al., 2005) 

 
FCD value increases with increase in SI value; this is due to the presence of more shadow when there are 
more trees. On the other hand, TI decreases with decrease in BI. This means less bare soil and this 
indicate low TI value.  The analysis shown in the above graph indicates that VI reaches maximum value 
earlier than SI. The combination characteristics between the four indices are presented in Table 2.  

Table 2. Combination characteristics between four indices  

 Hi- FCD   Low-FCD Grass land Bare Land 

AVI Hi Mid Hi Low 

BI Low Low Low Hi 

SI Hi Mid Low Low 

TI Low Mid Mid Hi 

                           Source (Rikimaru & Miyatake, 1997) and (Rikimaru et al., 2002) 

 Note:              Vegetation               Shadow                
                         Bare Soil                 Temperature 

High 

Low 
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According to Rikimaru et al. (2002), the integration process of the four indices is presented in the 
following sections. 
 
1. Advanced vegetation Index (AVI) 
When assessing the vegetation status of forests, the FCD model first examines the characteristics of 
chlorophyll-a. The chlorophyll-a absorbs the red light and totally reflects the near-infrared light. This 
property is applied to compute the Advanced vegetation Index (AVI) using this formula: 
B1-B7: TM Band 1-7  
B43 = B4-B3 done once the data is normalized. 
CASE-a B 43 < 0 AVI = 0 
CASE-b B 43> 0 AVI = ((B4 +1) x (256-B3) x B 43) 1/3 

 
2. Bare Soil Index (BI) 
Estimating vegetation status in situations where there is low vegetation cover of the area (less than half), 
using vegetation index not reliable and thus bare soil index is incorporated by the model. The information 
of bare soil is extracted from the medium-infrared band of the satellite image. The logic behind then work 
on the inverse relationship (negative correlation) of the soil and vegetation status. The analysis combining 
these two indices will assist to assess the conditions of the forest in a sequence starting with more 
vegetation cover to a low vegetation cover left no more than bare soil. 
BI= [(B5+B3)-(B4+B1)] / [(B5+B3) + (B4=B1)] x 100 + 100; 0 < BI <200 
 
3. Shadow Index (SI) 
Forest is a three dimensional in structure. Information on the forest structure can be extracted from 
combination of RS data of the forest and shadow of the forest by itself. Forest stands have various crown 
arrangements and this governs the shadow pattern. The pattern of the shadow influences the thermal 
information and this in turn affects the spectral responses. Thus, mature forest stands have more shadow 
index than young aged stands. The formula uses low radiance (visible bands) to compute shadow index. 
SI = ((256-B1) X (256-B 2) X (256-b3)) 1/3 

 
4. Thermal Index (TI) 
Inside the forest the temperature is relatively cool, the cooling process is associated with the canopy and 
the leaves. The forest canopy acts as a shield in blocking the sun energy in one way and enhancing the 
absorption in the other. The evaporation process from the leaf surface also protects warming, to add 
cooling effect to the forest. The thermal index is generated from these phenomenons. The thermal band 
of the TM data provides the thermal information.  Temperature calibration for the thermal infrared band 
into the value of ground temperature has been done using the following equation: 
L + L min + ((L max-L min)/255) x Q 
Where: 
L max: value of radiance = 1.500 mw/cm2/str (Q=0) 
L min: value of radiance = 0.1238 mw/cm2/str (Q=255) 
 
The FCD mapper and model produces 11 classes (one non-canopy and 10 canopy classes) with intervals 
of 10 percent. To verify the accuracy of the density maps, ground truthing need to be carried out to 
compare the crown density. The model is founded on the growth phenomenon of forests, this enables to 
monitor forest conditions transformation including degradation and progress of reforestation activities 
overtime (Rana & Vickers, 2005). Furthermore, Jamalabad & Abkar (2004) applied forest canopy density 
for monitoring using satellite images in Iran. The study showed a strong relationship between FCD classes 
and field observations. 
 
Use of the FCD model upgrades the planning and management capacity of decision-making and increases 
information available to forest managers. The use of the semi-expert system in FCD Mapper is user-
friendly and provide accurate and unbiased data on forest status in easy format to understand (Hussin, 
2000; Rikimaru et al., 2002). In addition to this, a study made in estimating the FCD of mixed deciduous 
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forest in Myanmar and found that FCD mapper and model is cost-effective and saves time (Mon et al., 
2012).  

 
Previous research conducted in Australia and Korea suggested that FCD is a quick and robust 
method and has a promise for forest monitoring (Baynes, 2004; Kwon et al., 2012). Similarly, study made 
on implantation of FCD model to monitor deforestation in India has proven to be an effective means for 
measuring forest cover assessment in a very short period (Deka et al., 2012, and Chandrashekhar et al., 
2005). In addition to this, Panta & Kim (2006), Kandel et al. (2004) and Deka et al. (2012) used FCD for 
the spatio-temporal assessment of the tropical forest of Nepal and India using Landsat imagery and found 
that pixel based forest canopy mapping consistently detected the dynamic change of the forest.  

2.2. Concepts and definitions 

2.2.1 Above Ground Biomass (AGB) 
AGB is defined as “all biomass of living vegetation, both woody and herbaceous, above the soil including 
stems, branches, bark, foliage, bark and stumps”(IPCC, 2006b). According to Drake et al. (2002) AGB is 
the total amount of carbon within living tissues present above the soil surface in a specified area. Carbon 
forms approximately 47-50% of the AGB (Drake et al., 2002; IPCC, 2006a). 
 
The potential carbon emission that could be released to the atmosphere depends on biomass. Changes in 
biomass have been associated the roles and impacts of biomass on carbon cycles (Lu, 2006). “ Carbon 
inventory consist of estimation of stocks and fluxes of carbon from different land-use systems in a given 
area over a given period and under a given management system ” (Ravindranath & Ostwald, 2008).  

2.2.2 Pool, stock and flux 
According to Noble and Scholes (2001) definitions a ‘pool’ is a reservoir of carbon such as terrestrial 
vegetation (above ground and below ground) or surface ocean waters. ‘Stock’ refers to the amount of 
carbon each pool contains and ‘flux’ refers to transfer of carbon between pools through different process 
including photosynthesis, respiration and combustion. The Kyoto Protocol refers to the flux between the 
terrestrial carbon pool and the atmosphere as ‘emissions’ and the opposite flux between the atmosphere 
and the terrestrial carbon pool as ‘removals’ (often referred to as ‘uptakes’ in other literature about the 
Protocol, or as a ‘sink’). 

2.2.3 Forest Canopy Density 
Forest canopy density refers to the proportion of the ground covered by the vertical projection of forest 
floor (Howard, 1991). According to Lefsky et al. (1999) it is the percentage or fraction of sky obscured by 
vegetation. This can be efficiently obtained from satellite images as a measure of the forest status 
(Sussman et al., 2006). To analyze the forest status satellite images were used and estimates of the crown 
density were created using Forest Canopy density (FCD) mapper and model.  

2.2.4 Point Cloud Data 
The outputs of the TLS were presented in a point cloud data. For each return the point cloud data records 
position and intensity (x, y, z, i) as well as RGB or colorized point cloud data from image acquired. These 
point cloud data was further processed from plot level to tree level parameters such as tree height and 
diameter at breast height (DBH). 
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2.2.5 Upscaling 
Much effort has gone into developing tools and models that can ‘scale up’ or extrapolate destructive 
harvest data points to small scales based on proxies measured in the field or from remote sensing 
instruments (Brown, 1997; Chave et al., 2005). Previous studies come up with above ground woody 
carbon mapping with very high resolution digital camera imagery 0.45 m resolution (Maharjan, 2012) and 
Geo-eye imagery with and 0.5 m resolution map (Lopez Bautista, 2012). As a continuation to the 
underlined efforts, this study produced upscaled carbon map of the study area using Landsat-8 ETM+ (30 
X 30 m resolution) data. 
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3. STUDY AREA, MATERIALS AND METHODS 

3.1. Study area 
 
3.1.1    Overview of the study area 
The study area Royal Belum State Park (RBSP) lies in the northerly region of the State of Perak in 
northern Peninsular Malaysia (Figure 9). It is situated between 1010 21’14.495’’ - 1010 24’51.07’’ E and 50 
33’47.966’’ - 50 36’39.625’’ N. One of the oldest tropical rainforests in the world (older than Amazon and 
the Congo) and remains one of the largest untouched forest reserves with amazing flora and fauna in 
Malaysia. RBSP is bordered by Thailand on the north, Temengor Forest Reserve to the south, the state of 
Kelantan to the east, Sungai Gadong in the west. The park is a protected area which encompasses a total 
area of 117,500 ha (Royal Belum State Park, 2003).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 9. Location map of the study area 
Legend 
Study area  
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3.1.1.1     Topography 
The landscape of RBSP consists of forest, small areas of grassland, and abandoned agricultural plots, as 
well as a large man-made lake, Tasik Temengor. It extends from 260 m asl (above sea level) to 1,533 m asl 
(Royal Belum State Park, 2003). 

3.1.1.2     Climate 
The area benefits a tropical climate with high temperatures and high humidity throughout the year. The 
average minimum temperature is 23 0C and maximum 32 0C. 

3.1.1.3    Rainfall 
The area receives an average annual rainfall 2,205 mm. The wettest months are May to October on the 
west coast, while on the east coast the wettest months are September to December. 

3.1.1.4    Vegetation 
The main forest cover types found are mainly lowland Dipterocarp, hill Dipterocarp and upper 
Dipterocarp forests. The forest is characterized by tropical rain forest species; mostly dominated by 
dipterocarp species.  
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3.2. Materials 

3.2.1    Data set 
Landsat-8 ETM+ imagery obtained on February 11, 2014 is used. During the field work, point cloud data 
was collected using Riegl VZ-400 Terrestrial Laser Scanner (TLS) point cloud data was collected during 
the field work. 

3.2.2    Equipment’s used  
 

          Table 3 is showing the list of instruments used during the field work. 
 

Table 3. List of equipment’s used in field work 

 
 
 
 
 
 
 
 
 
 

3.2.3    Software used 
 
1. FCD-mapper  
FCD mapper was used generate canopy density classes from Landsat-8 ETM+ imagery. It uses four 
indices: AVI, BI, SI and TI and integration of four to generate one non-forest and 10 forest canopy 
density classes. 
 
2. RiSCAN PRO V1.8.1 
The software used for processing of point cloud data. To mention some of the task carried out include: 

- Registration 
- Filtering 
- Cleaning 
- Creating plane 
- Creating polydata  
- Visualization using different viewer modes (RBG, intensity, range & height). 
- Tree extraction 

 
3. CAN-EYE V6.3.13 
CAN-EYE is open source software used to generate canopy density percentage of plots from 
hemispherical camera images, also known as fisheye or canopy photography collected from the field work. 
The software helps to classify the image in to sky and vegetation, and then it provides the plot canopy 
percentage. 

 
 
 
 

S.N Type of Equipment Use 
1. iPAQ Navigation 
2. Garmin eTrex vista GPS Navigation 
3. Suunto compass Directional measurement 
4. Suunto clinometer Slope measurement 
5. Leica DISTO D5 Height measurement 
6. Hemispherical camera Crown cover measurement 
7. Spherical densiometer Crown cover measurement 
8. Diameter tape (5m) DBH measurement 
9. Measuring tape (30m) Distance measurement 
10. Data record sheet Field data recording 
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4. Other software used 
Furthermore, Landsat imagery was also processed by ERDAS imagine 2013 and ArcGIS 10.2. Statistical 
analysis was done using R studio, MATLAB, SPSS and Microsoft Excel. Other Microsoft office 2010 such 
as MS Word, MS Power Point was used for statistical analysis and thesis writing. 
 
3.3. Methods 
 
The method of this research consists of three major parts: satellite data processing, field data collection, 
terrestrial LiDAR processing and model development. Landsat-8 ETM+ imagery was processed using 
FCD mapper and FCD map with 11 classes was generated. Field work was done for ground truth and to 
collect DBH, height, crown diameter and plot level crown density. Furthermore, using TLS multiple scan 
of 32 plots were carried out to obtain point cloud data. The plot level point cloud data was processed to 
extract tree parameters such as DBH & height. The FCD classes were validated using field data. The 
relationship between FCD classes and TLS tree parameters was analyzed. A model was developed from 
tree parameters of acquired from TLS. This model was validated using field data. A regression model 
developed for upscaling biomass/carbon from tree parameters from TLS and validated FCD classes. 
Using map calculator carbon map was developed and amount of carbon of the study area was obtained. 
The process of the research methodology is presented in the flowchart in Figure 10. 
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    Figure 10. Flow chart of research methodology 
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3.3.1 Pre field work stage 
3.3.1.1     Radiometric and atmospheric correction 
Correct interpretation of scientific information from remote-sensing product requires the ability to 
discriminate between product artefacts and changes in the Earth processes being monitored. Radiometric 
characterization and calibration is a prerequisite for creating high-quality science data and products (Roy et 
al., 2002). Then follows step in pre-processing the image to mask cloud, cloud shadow and water. Unless 
they are corrected these effects have an adverse influence on the statistical treatment and analysis of 
imagery data (Rikimaru et al., 2002).  

3.3.1.2     Geo-referencing 
Remotely sensed image have no reference to a location. The image therefore must be geo-referenced to 
relate the scene of the image to reflect the surface of the study area (earth surface). Satellite images and 
aerial  photos were geo-referenced before image classification (Panta & Kim, 2006). 

3.3.1.3     FCD mapping 
The FCD mapper is a computer software package contains algorithms and other formulas utilized to 
compute values of several indices contained in the FCD model for the analysis of Landsat imagery data 
(Rikimaru et al., 2002). According to Rikimaru (1997), the processes of FCD-mapper can be explained as 
follows:- 
 
1. Create a new project 
The process started by creating a project named Malaysia under the expert name dialog box with file 
position, author and comment was created. The expert file contains all the information the FCD mapper 
uses to manipulate the different Landsat TM bands to calculate all the indices used to get the final forest 
canopy density map. 
 
2.  Image import  
Image subset of the study area from the Landsat-8 ETM+ prepared was imported. Each of the seven 
bands were imported to the software to start processing of the images in the FCD mapper. This step was 
careful undertaken in order to use the right band. This step transforms the TIFF type of file to FBI files 
where it can be recognized by the software. 
 
3. Opening & displaying images 
Shadow index (SI) was derived from each visible band low irradiance area. But this low irradiance data 
may confuse shadow phenomena was avoided by overlaying thermal index (TI). Black soil have high 
temperature due to its high absorption while shadow lead to a decrease in soil temperature. 
 
4. Noise reduction and normalization 
All the data had been adjusted to conform to a common standard. Variations in shade on different parts 
of image were normalized. Then, the water set was used to identify area using a histogram to set the value 
for masking the surface water. 
 
5. Calculation of vegetation and bare soil index 
For calculating VI, PCA was selected to calculate the VI in the form of NDVI. 

 
6. Calculation of thermal index (TI) 
In the software false select windows was applied to visualize the areas with high and low TL. Area with 
high TI displayed as very light area and vice versa. 

 
7. Calculation of shadow index (SI) 
The shadow index is a relative value.  The SSI is normalized value to integrate VI value and SI values. 
There is a directly relationship between SSI value and forest shadow value. Using the SSI it was observed 
that the vegetation in the canopy and vegetation on the ground could be clearly differentiated. 
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8. Vegetation density (VD) 
This index used to separate vegetation from non-vegetation area by setting the minimum and maximum 
threshold for VI. 

 
9. Scaled shadow index (SSI) 
In this process the study area was classified into clusters using VI, BI, SI and TI images. After the forest 
area was identified, the range of SI was adjusted to fit between 0 to 100%. This was called as scaled 
shadow index. 

 
10. The process of integration (SSI and VD) 
The forest canopy density (FCD) value transformed the integrated of VD and SSI indices. Since the two 
parameters had dimension and percentage scale unit of density, it was possible to synthesize both indices 
by means of corresponding scale and unit of each indices. 
 FCD = (VD+SSI+1) ½ - 1 
From this FCD model 11 classes were generated. Then the accuracy of the model was verified using field 
data. 

 
According to Azizi et al. (2008) results of previous studies in the Iran concerning to characterization of 
forest condition using FCD model shows 0.84 correlation with field data. It indicates higher correlation 
and accuracy compared to conventional remote sensing method. Similarly, Chandrashekhar et al. (2005) 
and  Joshi et al. (2006) result demonstrate the model lucrative accuracy more than other method to classify 
forest density. 

3.3.2 Field Work for Data Collection 
 

To verify the FCD Mapper 11 classes generated, ground truthing plots are required to compare the 
canopy density figures (Rikimaru & Miyatake, 2002; Mon et al., 2012). Purposive sampling, a type of non-
probability sampling technique was used. Purposive sampling is the proper one to use because it will 
evenly represent all existing classes. Inventory data from field plots have been the most practical means 
for estimating AGB (Brown, 2002). A reasonable number of sample of 3-5 plots for each class, were taken 
to ensure representation of 11 FCD classes. Representative plots were identified and their x and y 
coordinates were uploaded to iPAQ. 

 
1. Sampling Design 

 
Purposive sampling design was used to identify sampling points for ground truth of FCD map generated 
classes. A purposive sampling design was chosen to get representation of all the classes exist in the study 
area (Breidenbach, 2010). FCD Mapper is suitable to estimate forest canopy density in areas where 
collecting large amounts of field data is difficult because of inaccessibility or resource insufficiency (Mon 
et al., 2012). The sample size is often be a compromise between the desirability for more data and the cost 
of making measurements (IPCC, 2006a). The study area is inaccessible and untapped forest. Two data 
sets; which are biometric data from manual tree parameters measurement and point cloud data from TLS 
scanning were collected. Especially TLS scanning takes time compared to conventional forest mensuration 
and on average only three plots can be scanned using multiple scanning per day. During the field work 
data of 32 plots which represent 7 classes were collected. 
 
2. Biometric data 

 
The sampling unit of a circular plot with 12.62 m radius was delineated in the forest. Circular plot is widely 
used since it needs only as a single dimension, i.e. radius. This makes it easy to define and measure in the 
forest and has minimum perimeter for the given area without predetermined orientation and lowest 
number of borderline for tree selection (Husch et al., 2002). The radius can be changed with slope. In 
some of the plots slope correction table was used to define the radius with respect to the slope. Trees with 
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DBH 10 cm or greater within the plot were only measured as trees less than 10 cm diameter contribute 
little to the biomass carbon of a forest (Brown, 2002). Numbering of the trees with DBH more than 10 
cm was done by putting post on the trees. Measurement of tree DBH using diameter tape, tree height 
using laser ranger finder, crown diameter using measuring tape and plot wise crown cover density using 
hemispherical camera was carried out.  
 
3. TLS scanning 
 
Generally, TLS scanning is conducted after manual measurement to avoid movement of people during 
scanning process. Since it takes quite a long time than manual measurement, it can also be carried out 
along with manual measurement to save time. For each plot four (4) scan position (multiple scan) where 
one is in the center of the plot and three around and just outside (i.e., 3 m far from the boundary of the 
plot) were taken. The steps used for scanning are listed as follows: 
 

- Identification of plot center and numbering of trees 
The scanning process starts first by identifying the center of the plot. Since prior to TLS scanning manual 
measurement was conducted the center of the plot was already marked. Then, followed by numbering of 
trees using laminated posts bearing number’s facing to the center of the plot. The posts can be wrapped 
up around the tree using plastic tape or nails to place the post on the bark of the tree (Figure 11). This is 
very helpful in identification of trees during individual tree extraction from point cloud data. 
 

 
 

 
 
 

             Figure 11. Numbering of tree using post 

- Setting tripod 

 
 
 
 
 
 
 
 
 
 

                                                                            

                                                               Figure 12. Setting TLS on a tripod 

- Setting TLS 
The TLS setting involves selecting a new project and set scan for the form and pattern of scanning, 
camera setting and inclination (pitch, yaw & roll) value. Moreover, the range of scanning can be selected. 
The range was changed from 100 to 50 m to reduce time spend in scanning and save space for storage 
data. For every scan, a range form and full wave form scan was made. In the range form scanning 
panorama 60 form of pattern was used. The reflectance setting of amplitude reading for detection 
threshold of the instrument of 0.05 decibel (dB) and, cylindrical and circular tie points were used. 
 

 

Tripod set where the TLS instruments is mounted in the 
center of the plot (Figure 12). The instrument is equipped 
with inclination sensors which indicate boresight 
misalignment. The instrument offers a procedure to check 
misalignment error by means of calculating the roll, pitch 
and yaw angles. The angles will be calculated in to 
orientation values to be adjusted until optimal value is 
reached. It is advisable to have two tripods. This is 
important due to the fact that it will save time once the 
second tripod is set ahead for the next scan position. 
Whilst, every time the tripod will be removed from the 
previous scan position and will be carried along with the 
instrument to the next scan positions. 
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- Setting three scan positions 
Three outside scan position with an angular difference of 1200 in between the scan positions was 
measured and the positions were marked (Figure 13). In the study the outer scan position were 3 m far 
from the boundary of the plot were used. 

 
 
 
 
 
 
 
 
 
 

                  Figure 13. Setting the scan positions 

- Setting tie points  
  

 

 
 
 
 
 
 
 
 
 
 

                      

 

     

 
 

Figure 14. Tie points- a) Placing tie points in a plot b) tie points from Riegl (Bienert et al., 2006) 

. 

- Image acquisition 
The Riegl VZ-400 is equipped with Nikon D610 mounted camera with 20 mm and 50 mm lens camera. 
After every scanning is completed automatically images are taken of the scanned area. The number of 
images could be set and 7 images per scan are sufficient. These images will then be used to colorize point 
cloud data for better visualization during processing. 
 
 
 
 
 
 

1200 

1 

1200 

1200 

2 3 

When the scan position identified 4 cylindrical tie points 
along the line of sight of each scan position with a total of 12 
cylindrical (with 10 cm in diameter and 10 cm length) and 4 
additional circular, in total 16 tie points were used during 
scanning process (Figure 14). The tie points should be visible 
from the two ends; which the center and the three outer scan 
positions. In most of the plots minor clearing of leaves and 
twigs was carried out to clear the line of sight and placing the 
tie points on sticks (Wezyk, et al., 2007). When placing tie 
points they should not be aligned in a line, they need to be 
placed in a way that they form a rectangle to enhance tie 
points position during tie points marking and detection 
process. The four circular tie points were used as remarks and 
the 3D coordinates were taken using a total station. Having 
more tie points will take time especially during detecting 
individual tie points by the scanner, however it will maximize  
the number of tie points that might be blocked due to trees 
or part of tree during tie points scanning. This will guarantee 
the number of tie points needed for registration although a 
minimum of three tie points are required to register a scan 
(Simonse et al., 2003). 
 

a) 

b) 
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4. Total station 
 

The coordinates of the plots, scan position and tree positions were taken using total station GPS 
technique. RiSCAN PRO software allows adding externally the coordinates by creating new tie points to 
the different scan positions of the plots. This method of geo referencing point cloud could be connected 
to a total station (Simonse et al., 2003). The total station readings were taken by surveying team of 
University Technology Malaysia (UTM). 
 
3.2.3  Post Field Work Stage 
3.2.3.1 Cloud data processing for derivation of tree parameters 
1. Registration 

 

 
 
 
 
 
 
 
 
              Figure 15. Filtered plot (Bienert et al., 2006) 

2. Extraction of Trees 

Trees with more than 10 cm DBH are the most important objects in the plot. Recognition of tree can be 
done automatically (Aschoff et al., 2004) or manually. Segmentation and tree identification can be done in 
a horizontal cut of point cloud data and automatic detection reduces time (Bienert et al., 2007). As it was 
indicated in the field data collection plot identification these trees were identified and numbered with 
posts. The numbering made the identifying trees with in the plot possible using RiSCAN PRO V1.8.1 
software. 

 

3. Extraction of tree height 
 

 
 

 
 
 
 
 
 
 

Figure 16. Tree height determination (Bienert et al., 2006) 

 
 
 
 
 
 
 

The first pre-processing step was to register the four scan 
positions (multiple scan) in to a common reference point. 
Registration will ensures the most complete 3D information 
about the trees. Then filtering was applied to the point cloud 
data to remove noise and clip the data to exclude trees outside 
the plot (Aschoff et al., 2004; Simonse et al., 2003). Filtering to 
12.62 m was executed to exclude trees outside the plot. An 
example of a filtered plot is shown in Figure 15. 
 

Tree height is determined from the difference between the 
lowest point (Z-value) and the highest point inside the cut of 
cylinder (Hopkinson et al., 2004). After individual tree extraction 
from plot point cloud data completed. The individual tree point 
cloud data was exported to other programmes (e.g. MATLAB) 
and the height was generated (Figure 16). 
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4.  Extraction of DBH 
Determination of DBH is often done by fitting circle rings to all points situated in a layer 1.25 - 1.30 
meters above the ground to the tree trunks. According to Thies et al. (2004) study made in forest 
inventory in Germany used manual DBH measurement from TLS data. The height of DBH measuring 
depends on the DTM, which might be an error source when comparing the results to the field measured 
DBH. According to Watt & Donoghue (2005) found an average difference of 1.5 cm in DBH 
measurements between TLS and field measurement.  

3.2.3.2  FCD Map validation 
 

To verify the accuracy of the density maps, ground truthing was carried out by comparing the crown 
density figures produced by the FCD software with direct field observations. Correlation analysis 
between FCD map and field measured was used (Rana & Vickers, 2005). Similarly, Baynes (2004) used 
correlation to verify the accuracy of the FCD map of the landscapes in Australia and Philippines. 

3.2.3.3  AGB/Carbon estimation 
 

Carbon stocks and their changes of the biomass pool can be estimated from forest inventory data by 
using either biomass equations (BE) or biomass expansion factors (BEF) and conversion factors (i.e. 
wood density) (IPCC, 2006b). Allometric equations were used to estimate AGB/carbon. To calculate 
AGB since there no site specific equation for the tree species in the study area, a generalized allometric 
equation developed by Chave et al. (2005) was used. The equation is given as follows: 

 
  AGB = 0.0509 XpD2H       ……………….. (Equation 1) 

Where, 
AGB = above ground biomass [kg] 
p = wood specific gravity [Kg/m3] 
D = tree diameter at breast height (DBH) [cm] and 
H = tree height [m] 
 

Wood specific gravity for used species is used from the study made in Malaysia (King et al., 2005). Then 
carbon stock was calculated from AGB conversion factor 0.47(IPCC, 2006a) 

                        Carbon stock = 0.47 x AGB ……………….. (Equation 2) 

3.2.3.4  Correlation analysis  
 

Pearson correlation coefficient, also known as r, R, or Pearson's r, is a measure of the strength and 
direction of the linear relationship between two variables (Reimann et al., 2011).   

 
                                                                                                         

               …….. (Equation 3) 

                                                       
 

The closer r is to +1 or -1 the stronger the positive/negative correlation is. If the correlation coefficient 
(r) is equal to 1 exactly, the two variables are perfectly correlated. Generally, the correlation coefficient 
value of >0.70 or <-0.70 is usually considered as a strong relationship between variables (Reimann et al., 
2011). 
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3.2.3.5  Regression analysis and model validation 
 

Regression analysis has intensively been carried out for modelling the relationship between remotely 
sensed data and field measurements with the objective to quantify the relationship between the 
dependent variable and one or more independent variable. Correlation coefficient (r), coefficient of 
determination (R2) and root mean square error (RMSE) were calculated which shows the percentage of 
variation in one variable which associated to that variables. The R2 and RMSE are used to evaluate 
model performances. These two methods are important since R2 shows how much a model can explain 
and RMSE indicate the error in calculating estimates of the model. According to Lu (2006) a model with 
high R2 and low RMSE value indicate the goodness of fit. In this study, RMSE gives error in Kg. RMSE 
is calculated using the formula listed as follows: 

  
     RMSE =                            ……………….. (Equation 4) 

Where,        

Co = Observed carbon 

Cp = Predicted carbon 

  n = Number of observations 

RMSE is expressed in percentage, which is calculated from the ratio of RMSE and average observed 
carbon. 

3.2.3.6  Carbon Mapping 
 

A regression model was developed and validated once the regression analysis was accomplished. The 
model was used to estimate the AGB and carbon stocks of the study area. To achieve this, above ground 
biomass and carbon stock maps were generated. 
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4. RESULTS  
 
4.1. Descriptive statistics of TLS data 
 
From 32 purposive sample plots 30 plots of forest stand parameters (i.e., height and DBH) measurements 
of field and TLS point cloud data were collected. The two plots were excluded since trees were not able to 
be extracted from the plot level TLS data. From the 30 plots 604 field measured forest stand parameters 
(i.e., height and DBH) and 601 from TLS tress parameters measurement were used (see Appendix 3). 
Descriptive statistics were used to explore, summarize and present the data. The descriptive statistics are 
presented in two sections as distribution of species and measurements of the tree parameters. 
 
4.1.1.  Distribution of species 
There are 52 tree species found from 604 trees field measurement. Among them, 15 species were 
recognized as dominant species and the other species categorized in to one group named as “others”. 
Besides the five Shorea spp. are grouped in to one large Shorea group. The descriptive statistics of total 604 
trees sample are visualized in Figure 17 shows the detailed distribution of species.  

 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

Figure 17. Bar graph distribution of 15 species (from 100%) found in the study area 

4.1.2.  Tree parameter measurements of TLS data 
From the TLS measured tree parameters, 601 trees (excluding 3 incomplete observations from 604) DBH 
and heights were measured for trees in 30 plots. Descriptive statistics of total 601 trees sample shows that 
diameter and height of the trees sampled range from 10 to 110 cm and 4.95 to 40 m respectively. The 
summary of the descriptive statistics are presented in Table 4. 

       Table 4. Descriptive statistics of 601 TLS trees parameter measurements 

Variable Min Max Mean Standard 
Deviation 

Skewness Standard 
error 

Kurtosis Standard 
error 

DBH 10.0 111.20 22.74 16.01 2.556 .100 7.716 .199 

Height 4.95 40.25 15.13 5.88 1.291 .100 2.058 .199 

Annonaceae.
Artocarpus spp.

Dialium spp
Dipterocarpus spp.

Koompassia Malaccensis
Lithocarpus spp.

Mallothus biaceae
Mastixia trichotoma Blume

Others
Pentaspadon motleyi
Pimelodendron spp.

Shorea spp.
Syn. Acacia greggii

Syzygium spp.
Trypanosoma sp.

Vatica spp.

3.9 
1.9 

0.83 
1.1 

7.7 
1.1 
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9.1 
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Box Plot of DBH and height shows the full range of variation between minimum and maximum value 
(Figure 18). There is wide variation in DBH as compared to height. As is shown in the table, the mean of 
tree diameter is 22.7 cm and height is 15 m with considerable observation of outliers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Figure 18. Box plot of DBH and height of trees distribution in 30 plots 

The normality test was carried out to determine the normality of the data. Normality of the samples is 
calculated based on skewness and kurtosis of the data. It combines skewness and kurtosis into a statistic 
overall test. skewness measures the extent and direction of symmetry or asymmetry of the distribution 
whereas Kurtosis peakedness of the distribution and the thinness or thickness of tails in the distribution. 
The skewness and kutosis value is shown in Table 4 and Figure 19, the skewness is considerably high to 
the left (positive skew) for the both variable which implies that distribution of the data of diameter and 
height of trees is not normal. Normality test indicates the distribution of data in both variables is non- 
normal (Appendix 5). However, data below 10 cm DBH were not collected.  
 
Therefore, the skweness is present, otherwise both DBH and height would be more normal if data below 
10 cm DBH have been collected. 
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          Distribution of DBH                                                Distribution of height 
 
                                  Figure 19. Distribution of DBH and height of trees 

4.2. FCD mapping 
4.2.1  FCD classes 
The FCD mapper and model produces 11 classes (10 canopy classes and one non-canopy class) and the 
10 canopy classes (1– 100) are presented with intervals of 10 percent. The total area classified is 3,442 Ha, 
out of this 34.5% is covered by water and the remaining 65.5% by forest. The FCD map is shown in 
Figure 20.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                               Figure 20. FCD map of the study area 
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4.2.2  Distribution of FCD classes 
The distribution of the canopy density classes in the study area is summarized and presented in the Figure 
21. The figure shows the area (Ha) per class and percentage share of each class out of the total area in 
100%. Among canopy classes, maximum area falls in class 8 and the smallest area in class 1. Class 7 
second highest figure followed by class 9, class 6, class 10, class 5 and class 4. These seven classes make up 
95% of the forest area. 

 
 
 
 

 
 
 
 
 
 
 
                                     Figure 21. Class wise FCD area distribution in percentage 

4.3. Validation of FCD map 
 
To verify the accuracy of the canopy density maps, ground truthing was carried out by comparing the 
crown density figures produced by the FCD mapper software with direct field observations from 
classification of hemispherical photographs (see Appendix 9). The correlation between FCD map and field 
measurement was established and is presented in Figure 22. The result shows a strong correlation of 0.84 
between FCD map and field measurements of the canopy density of the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 22. Scatter plot of relationship between FCD classes and hemispherical photographs 

4.4. Point cloud data 

4.4.1 Registration 
The four scans (one in the center & three outer) are recognized as standalone scans and are not aligned 
when visualized before registration. Registration is done then to integrate the multiple scans using one 
reference point. The tie points were used to transform the four individual scan to a referenced point 
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which is the center scan. The registration process was carried out using the software RiSCAN PRO for the 
32 plot with minimum and maximum range or 1.01 to 4.21 cm. Figure 23 visualizes the alignment of the 
four scans after registration (see Appendix 8). In line with registration, geo referencing was also carried 
out by adding coordinates from total station readings externally to the scans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                          
                           Figure 23. Registration- a) tie point detection b) registered multiple scans 

4.4.2 Tree extration 
Trees with more than 10 cm DBH are the most important in the plot. Recognition of tree can be done 
using different view types of RiSCAN PRO, Figure 24 shows the colorized (RGB) mode point cloud data. 
Numbering of tress with post enhance recognition of trees inside the plot. Tree identified where sliced 
from plot level point cloud data and stored in a form of polydata for individual tree. From 698 trees of the 
30 plots, 604 trees were extracted from the multiple scan point data. The result shows missing of 94 trees, 
which accounts to 86.5 % detection rate was able to be covered by multiple scans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              
                           Figure 24. Tree extracted from plot wise colorized point cloud data 
 
 
 

   Scan position 
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4.4.3 Extraction of tree height 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             Figure 25. Extracting tree height from point cloud data 

4.4.4 Extraction of DBH  
Determination of DBH is often done by fitting circle rings to all points situated in a layer 1.30 meters 
above the ground to the tree trunks. Every tree 1.30 meters above ground was marked and measured as 
illustrated in Figure 26. Then, DBH was determined by measuring the distance manually. DBH 
measurement for 604 trees was performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                              Figure 26. Extracting DBH of a tree from point cloud data 

4.5. Relationship of FCD with TLS parameters 
 
Once the TLS parameters (DBH & height) are obtained their relationship with FCD classes need to be 
examined. Since FCD indicates surface area, single dimension of tree could not be directly correlated. 
Thus, basal area from DBH had to be calculated for trees inside the plot. Plot level basal area was 
correlated to FCD classes to assess the relationship. A scatter diagram of two variables was established in 
Figure 27 in order to assess the relationship between FCD and basal area. A strong relationship between 
the two variables is observed. 
 

After individual tree extraction from plot point cloud 
data was completed. Tree height was determined 
from the difference between the lowest point   (Z-
value) and the highest point of the sliced individual 
tree point cloud data. The individual tree point cloud 
data was exported to other programmes (e.g. 
MATLAB) and the height was generated from the 
difference as portrayed in Figure 25. Tree height of 
601 trees was determined. 
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                      Figure 27. Scatter plot of relationship between FCD classes and basal area 

4.6.  Relationship of FCD with Biomass/carbon 
 
Prior to developing a model for biomass prediction, a relationship between biomass of the plots, which 
was calculated using IPCC 2006 recommended allometric equation from TLS measured tree parameters 
(DBH and height) and FCD classes had to be examined. Log transformation was performed, since DBH 
and height variables were not normally distributed. Then biomass of the plots was calculated using 
Chave’s allometric equation. A scatter diagram of the two variables was portrayed in Figure 28 in order to 
see the relationship between biomass and FCD. Correlation coefficient and coefficient of determination 
(R2) was calculated. This shows the percentage of variation in one variable associated to the other 
variables and can be explained using a regression equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Figure 28. Scatter plot of relationship between FCD classes and biomass 

4.7.  Regression analysis 
 

4.7.1  Model Development 
To develop a biomass estimation model, variables FCD was used as a predictor. Analysis of the 
correlations coefficient among variables (DBH & height) was done in the previous (FCD & TLS 
parameters) which resulted in a strong relationship of those variables with independent variable FCD. 
Correlation between AGB prediction model and Observed AGB was developed to observe the 
relationship. Observed and predicted AGB were plotted against each other is illustrated in Figure 29 and 
R2 was calculated to see the goodness of fit (Figure 29). The model developed expresses 66% of the 
observations and with 22% error in prediction of AGB.  

 r  = 0.80 
R2 = 0.64 

 r  = 0.91 
R2 = 0.83 
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                    Figure 29. Summary of fit the regression model 

4.7.2  Model validation 
Models with higher adjusted R2 and low RMSE are indicative of reasonable predictive ability of biomass. 
The model developed resulted with R2 value of 0.66, meaning 66% of observations can be explained by 
this model. The model was validated using randomly selected 7 independent sample plots (35% of the 
data), then the AGB was upscaled to a pixel size (900 m2). When the model was validated the R2 value 
increased to 73%. The results of the summary of fit are presented in Figure 30. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                

         Figure 30. Summary of fit the regression model 

 
 
 
 
 
 
 
 

 Summary of fit  
==============      
Correlation coefficient  0.79 
R square   0.66 
Adjusted R square  0.61 
RMSE    0.22 
Intercept   1.37 
Power                0.89 
Observation     13 

 Summary of fit  
==============      
Correlation coefficient  0.85 
R square   0.73 
Adjusted R square  0.67 
RMSE    0.31 
Intercept   0.95 
Slope    0.34 
Observation        7 
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4.8. AGB and carbon stock mapping 

4.8.1 AGB mapping 
The AGB map of the study area was generated from the regression model that was validated. The result of 
AGB map is visualized in Figure 31. The average biomass was estimated in tons/ha in the study area 
which means about 344 MgHa-1 of biomass. The summary of the calculation is listed in Table 5. 
 

       Table 5. Summary of the average and total biomass calculation in the study area 

Average 
biomass per 
plot in  Kg 

Average 
biomass per 
Ha in  Mg 

Average 
Carbon per 
plot in  Kg 

Average 
Carbon per Ha 
in  Mg 

Total Biomass 
Mg 

Total 
Carbon 
Mg 

18233.24 344.19 8569.62 161.77 1184701.6 556809.75 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

                    

                        Figure 31. Above ground biomass map of the study area in Mg per pixel 
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4.8.2 Carbon mapping 
As indicated in Table 8 above, the study area has approximately an average 162 MgHa-1 of Carbon stock. 
The carbon map produced shows the stocking in Figure 32. In the figure, shows the details of carbon 
stock per pixel. The amount of carbon per pixel varies from less than 5 Mg per pixel to more than 20 Mg 
per pixel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                             Figure 32. Carbon map of the study area in Mg per pixel 
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5. DISCUSSIONS 

5.1. TLS parameters data 
DBH and height features of 601 trees obtained from TLS point cloud data showed a non-normal 
distribution. DBH is highly skewed while height slightly skewed. Skewness quantifies the degree of 
symmetry of the distribution around the mean. The skewness value may be negative, positive or zero 
(Reimann et al., 2011). If a distribution is normal, the skewness value is 0. In the case of the 601 sample of 
trees diameter and height are skewed to the right or positive skew (Figure 33). The non-normal 
distribution of the data may be caused due to the fact that measurements of diameter less than 10 cm were 
not taken, and only trees with DBH > 10 cm were sampled. Similarly, in the case of height, newly 
emerging seedlings stand more than 4 m high and value below 4 m are not included in the distribution. In 
addition, the sampled plots represent various types of FCD classes. As there are differences in FCD 
classes, there is quite variations in DBH and height of trees (see Figure 18).  
 
 
 
 
 
 
 
 
      Right/Positive skew             No skew                               Left/Negative skew 
 
 

Figure 33. Illustration of the different types of distributions (www.whatilearned.wikia.com.) 

5.2. FCD mapping  
 
Findings of the study indicated that FCD mapper classified Landsat-8 ETM+ data in to 11 classes (one 
non-forest and 10 forest canopy classes) with intervals of 10 percent (see Figure 20). This shows that FCD 
mapper can classify Landsat-8 ETM+ data with relatively reasonable accuracy. This finding is consistent 
with results of other studies which showed high FCD mapping classification accuracy when compared 
with other image classification methods (Chandrashekhar et al., 2005; Joshi et al., 2006; Nandy, et al., 
2003). Similarly, Mon et al. (2012) applied forest canopy density mapping satellite images classification to 
identify canopy openings which are useful parameter to monitor tropical forest. FCD mapper integration 
of biophysical indices attained from vegetation reflectance enabled it to acquire relatively high 
classification accuracy, when compared to other image classification approaches used in the afore 
mentioned studies, which consider only spectral reflectance.  

 
As it is noted in the literature review FCD mapper and model use four indices namely: average vegetation 
index (AVI), bare soil index (BI), shadow index (SI) and thermal index (TI). The relationship between 
these four indices and FCD condition is explained in Table 6 (Rikimaru & Miyatake, 1997; Rikimaru et al., 
2002). AVI increases as vegetation cover increases and it is observed to be high in forest and grass land. 
BI is a function of bare soil which increases with bareness of the ground and decreases with increments in 
vegetation. SI is high in forest areas, medium in grass land and low in bare land. To overcome 
underestimation of crown density in dense forest, where shadow cannot be sensed, SI is linearly 
transformed into scaled shadow index (SSI). Thus, SSI will correspond with the extent of the forest 
shadow. It starts at 0% with possible lowest shadow in forest and increases up to 100% in tropical forests 
with highest possible shadow. TI is negatively correlated with forest density. This is due to two main 
factors of the tropical forest, the blocking radiation and absorption of solar radiation on one hand and the 
cooling effect on the other hand as a result of evaporation from leaves (Baynes, 2004). SI and TI are 
combined to avoid misclassification of forest and bare soil, because shadow decreases soil temperature. 

Note:              Mode               Median              Mean 
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FCD mapper integrates all these indices to calculate vegetation density (VD). This will include forest and 
grass land while excluding bare soil. Separation of grass land from forest is carried out using an integration 
of SSI & VD, which is carried out to generate FCD map which shows FCD for each pixel (Baynes, 2004).  

 
             Table 6. Characterization of biophysical indices to contribution of different intensities of FCD 

 High FCD   Low-FCD Grass land Bare Land 

AVI High Medium High Low 

BI Low Low Low High 

SI High Medium Low Low 

TI Low Medium Medium High 

 
 
The process of integration of the biophysical indices can be shortly summarized in the flow chart 
presented below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           Figure 34. Flow chart of FCD mapping model (Rikimaru et al., 2002) 

Besides the FCD map, the model also quantified the area allocated to the different FCD classes. The result 
revealed a total area of 2,237 hectares of land which accounts 65% of the study area that represent the 10 
FCD classes (see Figure 21). Findings of the study concur with the designation made by Rikimaru et al. 
(2002) to FCD mapper and model as quantitative analysis to compute area of the canopy classes. This is 
the advantage of FCD over conventional remote sensing to estimate crown coverage or forest canopy 
cover based on qualitative data analysis derived from “training areas” with high cost requirements and 
time required for the establishment of training areas. The detailed analysis will add depth information in 
forest stand to analyze the growth, degree of degradation and the condition of the forest in general, each 
of which can assist foresters to assess and monitor the forest stand conditions.  

Note:              High FCD               Medium FCD                Low FCD 
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5.3. Validation of FCD map  
 
FCD model requires less information of ground truth for validation (Rikimaru & Miyatake, 1997). Mon et 
al. (2012) also noted suitability of FCD mapper in areas where there is difficulty in collecting large 
amounts of field data due to inaccessibility. To this verifying the accuracy of the FCD maps can be carried 
with less ground truth information using correlation analysis. Thus verification of the canopy density map 
of the study area was carried out by comparing the crown density figures produced by the FCD mapper 
software with direct field observations. As indicated in Figure 22, the analysis for this study revealed a high 
correlation coefficient value of 0.84 or R2 0.70 between FCD map and ground truth information derived 
from hemispherical photographs. The high correlation coefficient value indicates the high degree of 
compatibility between FCD map and ground truth. Previous studies carried out by Roy et al. (1997) in 
evergreen and dry forest of India discovered a correlation coefficient value of 0.9. Rana & Vickers (2005) 
also revealed the result of 0.6 correlation coefficient value between FCD map and field measurement of 
crown density with densiometer. Similarly, Baynes (2004) used correlation to check the accuracy of FCD 
classification between FCD map and field measurements, although in that particular case, the analysis was 
not disclosed. In addition to this, Jamalabad & Abkar (2004) applied correlation analysis and found 
correlation coefficient value of 0.83. The results of these studies are similar to the findings of this study. 
The high correlation coefficient value indicates the high degree of agreement between the FCD map and 
the ground truth. 

5.4. Attributes of FCD mapper and model 
 
FCD mapper and model was developed as an alternative tool for mapping and monitoring changes in 
forest cover in tropics. The model has attributes that include: the use of Landsat satellite images to identify 
canopy openings which is a useful parameter for estimation of growing biomass/carbon stocks of forests. 
Landsat satellite images are free and can be used for monitoring large scale over time (Achard et al., 2004). 
Assessments of relative performance of different image classification approaches, for example maximum 
likelihood, image segmentation and multiple linear regression indicated that FCD mapper generated 
relatively higher accuracy (Chandrashekhar et al., 2005; Mon et al., 2012). In addition to this, FCD mapper 
uses an approach of quantitative analysis to express the area coverage of FCD classes (Rikimaru et al., 
2002). Furthermore, it is robust and instantly derives an FCD map from satellite images. Finally, FCD 
mapper is inexpensive, technically easy to use and does not require specialized expertise. Therefore, FCD 
mapper is a very useful tool for tropical forest monitoring (Baynes, 2004; Mon et al., 2012; Rikimaru et al., 
2002). 
 
Finding of this study also revealed the fact that the model is a useful tool for estimation of 
biomass/carbon. As it is mentioned in the literature review, with all the above specified attributes FCD 
mapper and model can be used for estimation of biomass/carbon to meet MRV mechanisms of REDD+. 
As the MRV mechanism is looking for a tool that is operational, inexpensive, practical, and which can be 
applied frequently for monitoring over extensive area. 
 
5.5. TLS point cloud data 
 
TLS acquires three-dimensional data on standing trees rapidly and accurately. The plot level data is 
processed to derive tree level stand parameters (Dassot et al., 2011). The use of TLS for forest inventory is 
relatively new and the methods for extracting structural attributes are still being refined (Lovell et al., 
2011). The data processing technology has improved significantly with encouraging results (Dassot et al., 
2011). The processing results of this particular study in Royal Belum will be discussed in the following 
sections. 

 
5.5.1 Multiple scanning and registration 
Findings of this study indicated that the registration demonstrated an average 1.03 cm of standard 
deviation. Registration of the multiple scans was carried out by software that uses corresponding tie 
points. The low standard deviation of the registration indicates that the orientation of three outer scans in 
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1200 and increased number of tie points (16 in number) has played an important role in overlapping the 
area between the multiple scans to cover the trees parts from different directions. This is supported by 
Thies et al. (2004), who mention the importance of selection in orientation and overlapping area between 
the multiple scan positions. Additionally, Bienert & Maas (2009) pointed out the selection of a clear view 
of scan positions for multiple scan positions and the objective of tie points for automatic and manual 
registration (Figure 35). Results of the study made by Simonse et al. (2003) reported approximate error of 
5 cm for tree location. While Thies et al. (2004) applied multiple scans but did not indicate the results.  
 
For registration of multiple scans a minimum of 3 tie points is required (Bienert et al., 2007). In the study 
the use of many tie points enhanced the number of minimum tie points required for registration because 
of complex stand growth and high under growth. It should be noted, however, that increasing the number 
of tie points increases the time for tie points scanning, thereby increasing the time of scanning. However, 
it is advisable to increase the number of tie points (more than 3) depending on the degree of complexity of 
stand growth and under growth of the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 35. Illustration of a registered tree profile (Bienert & Maas, 2009) – a) detailed view of a stem of a tree and      
                 branch of a tree b) manual registration 
   
5.5.2    Filtering and tree extration 
Filtering with the range of 25 meters was performed prior to tree extraction to exclude trees outside the 
plot. This range of 25 meters was necessary because a filtering range of 12.62 m resulted in excluding long 
tree apexes. Aschoff et al. (2004) and Simonse et al. (2003) reported the importance and range (60m) of 
filtering of point cloud data and Bienert et al. (2006) used 12 m filtering range to remove noise and clip the 
data to exclude trees outside the plot. In addition, they have mentioned also the two most important 
things, the position and dimension in extracting trees. Furthermore, Bienert et al. (2007) used horizontal 
cut to segment the point cloud data to automatically detect trees. Whereas, Pfeifer et al. (2004) used 
manual segmentation of point cloud data. In this study tree were identified using numbered posts and 
segmentation was done manually. Finding of the study disclosed that with the multiple scan (4 scans) out 
of 698 trees, 604 trees were able to be extracted. This indicates the tree detection rate of 87 %. Bienert et 
al. (2007) noted automatic detection of 97.4% using single scan for primary forest (between 65-140 years) 
with mixed coniferous and deciduous trees with less undergrowth. Likewise, Thies et al. (2004) applied 
automatic tree detection to discover 26 trees out of 50 trees (52%) based on five registered scans, whereas 
on the basis of just one scan 11 trees (22%) were found. The finding indicates that increasing the number 
of multiple scans enhances tree detection. However complexity of the forest depends upon the degree of 
density in stand growth, slope and extent of undergrowth. These are the reasons that can be mentioned 
for high tree occlusion. 

5.5.3     Extraction of tree DBH and height  
Determination of tree height for 604 trees was carried out as the difference between the lowest point (Z-
value) and the highest point from the polydata of the individual trees. Hopkinson et al. (2004) applied the 
approach of using the difference between the lowest point (Z-value) and the highest point inside the cut 
of cylinder to determine height. Similarly, Antonarakis (2011) measured height as the difference  between 
the apex of the tree canopy and tree lowest point of the visible trunk. DBH of 604 trees was determined  

a) b) 
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Figure 36. Intensity image of a part of the sample plot. Reflecting tapes marks a height of 1.30 above  
                              ground (Thies et al., 2004) 

 
Similarly, studies made by Sium (2015) in tropical rain forest of Royal Belum in Malaysia showed errors of 
2.9 cm (14.5%) in DBH and 3.3 m (20.7%) for height. The result indicated that TLS measured tree 
parameters have variations to those obtained by the field inventory. 
 
In addition to the acceptable accuracy, the frequent scan records of these measurements allows an 
approach to be developed for forest inventory for temporal monitoring of forest (Watt & Donoghue, 
2005). This provides the tool and the method to support the monitoring, reporting and verification (MRV) 
for REDD projects. 

5.6. Relationship of FCD with TLS parameters and Biomass 
 
Canopy is the horizontal stretch ceiling of a forest that shows the amount and spatial distribution of above 
ground biomass. According to Drake et al. (2003) canopy extends from top to bottom in a three 
dimensional arrangement of canopy elements (leaves, branch and trunk of a tree), which means that there 
is also vertical extension to the horizontal one. He further discussed the dynamic nature of forest canopy 
structure both in time and space. The changes occur in horizontal (increase in basal area) and vertical 
(increase in stand height). Thus there exists an interconnection in vertical structure and above ground 
biomass as well. Measurement of the forest canopy cannot be acquired directly, and it must be derived 
from ground based empirical relationship (Fiala et al., 2006). Thus FCD mapper is a tool that measures 
the status of the canopy of the forest. The study explored the relationship between FCD, which is the 
horizontal dimension of the forest with the vertical dimensions derived from TLS parameters. Since FCD 
is a measure of area of the canopy, the best relationship was observed when it is related to the basal area 
(cross sectional area at breast height) of the plot, which means the sum of the basal area of the trees found 
inside the plot. The relationship was based on 20 plots. Plots with missing trees, which caused 
considerable decrease of basal area to obscure the relationship, were disregarded (see Figure 18). The 
result showed that there is a strong linear relationship with correlation coefficient value of 0.8 (see Figure 
27). Torres & Lovett (2012) reported the deficiencies in a non-linear relationship are due to allometric 
equations, which tend to decrease biomass while diameter increases. This is because some allometric 
equations have limits on diameter. Similarly, O’Grady et al. (2000) and Slik et al. (2010) found biomass 
strong correlation to basal area. Furthermore, the findings of this study agree with those of several other 
studies which found a strong correlation between LiDAR metrics and above-ground biomass (Drake et 
al., 2002; Lefsky et al., 1999).  
 
For investigating the relationship between FCD classes and biomass is concerned the same plots were 
used. The biomass of the plots was calculated using an allometric equation. The plot size (500 m2) is 

by measuring all points situated in a layer 1.30 meters above 
the ground to the tree trunks and marking the points to 
separate from the other point clouds. DBH was measured 
manually using a measuring function which is integrated in 
the analysis software. Similarly, Thies et al. (2004) study first 
applied durably marked DBH (1.30) of each single tree in 
the forest with reflecting tape to take manual measurements 
in forest inventory. Later, he determined DBH using 
manual measurement analysis software. 
 
Simonse et al. (2003) compared TLS derived tree 
parameters with field inventories and the results showed 
errors of approximately 1.7 cm for DBH. Hopkinson et al. 
(2004) also revealed 1.5 m error for height measurements in 
coniferous and deciduous forests. 
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almost about half size of the pixel size (900 m2) of the map and then it was upscaled to cover the entire 
pixel of the FCD map. The findings indicated that a strong nonlinear relationship with correlation 
coefficient value of 0.91 (see Figure 28). The study demonstrated the relationships between FCD and tree 
stand as well as FCD and plot level parameters. This revealed the fact that there is a relationship among 
the three dimensional elements of the canopy. Then the FCD was regressed to biomass for upscaling the 
estimation of biomass/carbon of the study area. The summary of the relationships between FCD and TLS 
parameters, basal area and canopy is illustrated in Figure 37. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
                        Figure 37. Relationship of FCD classes with tree stand and plot level parameters  

5.7. AGB Model development and validation 
 
For the distribution of 601 trees, the normality test of trees showed a positive skew for tree attributes of 
diameter (DBH) and height (H) which is non-normal (Appendix 5). Before applying allometric equation to 
calculate plot wise AGB these variables need to be transformed to improve hetroscedasticity. There is no 
standard procedure for transformation (Chave et al., 2005), but several studies suggest logarithmic 
transformed results in homoscedasticity (Zianis & Mencuccini, 2004). For this reason, the variables in this 
study were log transformed. 

 
A nonlinear relationship was established between FCD and biomass and a Quadratic regression model 
was developed using 13 plots. The coefficient of determination (R2) of the model is 66% which means 
66% of variables can be explained by the model. The summary of fit of the model developed is presented 
(see figure 29). Chave et al. (2005) stated that the goodness of fit measures the deviation between the 
predicted and measured. The goodness of fit is important based on the empirical relationship chosen 
(Ketterings et al., 2001).  
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The model was then validated using 7 plots. The coefficient of determination (R2) of the model is 73% 
which means that 73% of variables can be explained by the model. The summary of fit of the model 
developed is presented (see figure 30). Models with higher adjusted R2 and low RMSE are indicative of 
better predictive ability of biomass estimation from LiDAR-derived variables (Zhao et al., 2012). 
 
The model used general allometric equation from IPCC (IPCC, 2006). Chave et al. (2005) mentioned 
grouping species by broad forests types is more effective than generating species-specific allometric 
equations. Moreover, generic allometric equations must be employed since local equations will not 
improve accuracy significantly (Chave et al., 2005).  
 

5.8. Carbon mapping 
 
Finding of the study indicated the estimation of the total above ground biomass in the study area was 344 
MgHa-1

 with RMSE value of 4.3, which is approximately 31%. According to IPCC guidelines the range of 
above ground biomass of tropical rain forest in Asia is between 120-680 MgHa-1

 (IPCC, 2006). Similarly, 
Boscolo et al. (2001) study made in Malaysia found that the average above ground biomass of 428 
tons/ha. The finding of these studies is closer to the results of this study. 
 
As a summary of the findings of this research work, it can be concluded that using Landsat-8 ETM+ 
images and TLS we can assess AGB/carbon to approximately 84% accurate. Knowing that Landsat 
images are free, one country depending on the size of forest area can use few to several TLSs to come up 
with reasonable estimate of carbon in a very short time and inexpensive cost. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

The method applied in this research uses Terrestrial Laser Scanner (TLS) and Landsat-8 ETM+ data for 
upscaling the estimation of tropical rain forest above ground biomass/carbon stock. The method is 
operational, inexpensive, practical, rapid and accurate, which suggests that it can be applied frequently for 
monitoring extensive areas in order to meet REDD+ requirements for Monitoring Reporting and 
Verification (MRV). In relation to the main objective and each research question, the following 
conclusions were drawn. 

6.1. Conclusions 
 
How is the application of classification of FCD mapper work with Landsat-8 ETM+? 
FCD mapper classification found to be rapid, robust, not labour intensive and technically easy to use. 
 
What is the accuracy of FCD classification? 
The overall accuracy of the FCD classification resulted to 0.84 or 84% correlation coefficient value.  
 
What is the relationship between FCD classes and biomass/carbon from TLS measurements? 
The correlation analysis indicated a strong relationship with correlation coefficient value of 0.91 between 
FCD classes and biomass/carbon from TLS measurements. 
 
How can a predictive model for up scaling biomass/carbon estimation using the above 
relationship be formulated? 
A strong relationship between FCD classes and biomass/carbon from TLS measurements was first 
established and a quadratic regression model was developed. The developed model had a prediction 
accuracy of 66%. 
 
What is the accuracy of the model for biomass/carbon estimation from TLS measurements? 
The accuracy of the model for biomass/carbon estimation from TLS measurements was 73%.  
 
How much carbon is stored in the study area? 
The total amount of carbon stock in the study area was 556,810Mg and 162MgHa-1 carbon. 
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6.2. Recommendations 
 

• This work need to be repeated in another tropical forest to see if the results will be similar or not. 

• Manual processing is time consuming and labour intensive in consideration of the feasibility of 

terrestrial scanner use for efficient analysis. 

• Increasing the number of multiple scans enhance the rate (percentage) of tree detection. 

• More tree parameters such as stem density, stem volume, basal area etc. can be used for forest 

above ground biomass estimation. 

• The effect of slope in TLS point cloud data need to be studied. 

• It is advisable to mark DBH at 1.30 m using reflective tape during scanning to identify the exact 

spot where measurement can be done to minimize error encountered during measurement. 
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Appendices 
Appendix 1. Tally sheet for field data recording 
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                        Appendix 2. Slope correction table 
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  Appendix 3. Example of a Plot TLS tree parameters (DBH and height) used for data analysis 

 

 

 

 

 

 

 

 

 

 

 Appendix 4. Meta data of record sheet for TLS scanning 
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 Appendix 5. Normality test 

 
 
 
 
 
Appendix 6. Regression analysis for model development 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 7. Regression analysis for model validation 
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   Appendix 8. Registration result of multiple scans 
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Appendix 9. CAN-EYE classification result 
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Appendix 10. Photos from the field  

 
 
 
 
 
 
 


