
MultEYE
Real-time Vehicle Detection
and Speed Estimation from
Aerial Images using
Multi-Task Learning
Navaneeth Balamuralidhar

MSc. Systems and Control
University of Twente

MultEYE
Real-time Vehicle Detection and Speed
Estimation from Aerial Images using

Multi-Task Learning
by

Navaneeth Balamuralidhar
to obtain the degree of Master of Science in Systems and Control

at the University of Twente,
to be defended publicly on Wednesday November 4, 2020 at 2:00 PM.

Student number: s2070707
Project duration: March 1, 2020 – September 30, 2020
Thesis committee: Prof. dr. ir. M.G. Vosselman, Committee Chair, University of Twente

Dr. ir. F. Nex, Supervisor, University of Twente
Dr. ir. D. Dresscher, External Examiner, EEMCS Faculty,

University of Twente
Subject Advisor: S. M. Tilon,MSc PhD Candidate, University of Twente

An electronic version of this thesis is available at https://essay.utwente.nl//.

https://essay.utwente.nl//

Acknowledgement
The master’s thesis before you, started out as an idea, to build an end-to-end system that can
be used to monitor traffic situation using an Unmanned Aerial Vehicle and be used off-the-
shelf. This idea when presented to me by my supervisor, Dr.Francesco Nex, little did I know
that the path this research took me would elate, frustrate, confuse, excite and demoralize me
through the course of seven months . At times, all in the course of a single day. Eventually,
I began seeing the light at the end of the tunnel and an end result to my months worth of
toil. However, all the hard work would have been for naught if there was no one to guide my
work towards a focal point. I was fortunate as a student to have involved supervisors like
Dr.Francesco Nex and Sofia Tilon, who made sure I was on track and were always available to
address any queries that I had.For this reason, I would like to thank them for their excellent
guidance and support during this process.
Working on a research through a global pandemic like COVID-19 would have put a tremen-
dous amount of additional mental strain on me if it wasn’t for my family and friends who
supported me through these grey days. Last but not the least, my parents deserve a partic-
ular note of thanks: your wise counsel and kind words have, as always, served me well

Navaneeth Balamuralidhar
Delft, October 2020

iii

Abstract
Though traffic monitoring systems, in the recent years, has seen automation incorporated
into its infrastructure, the area under the scope of surveillance is still small. The per square
kilometer investment required deters authorities from large-scale deployment plans. A UAV
mounted surveillance solution can address this issue at a fraction of the cost. During the
course of this research, an end-to-end system that can detect vehicles from aerial image se-
quences and estimate their speed in real-time was built. The system consists of three parts:
Vehicle Detector, Vehicle Tracker and Speed Estimator. The vehicle detector uses the concept
of multi-task learning to learn object detection and semantic segmentation simultaneously
on an architecture custom designed for vehicle detection called MultEYE, which achieves
1.2% higher mAP score while being 91.4% faster than the state-of-the-art model on a cus-
tom dataset. An extremely fast algorithm called MOSSE, that runs multi-object tracking at
around 300FPS, serves as the vehicle tracker for the system. Speeds of the tracked vehicles
are estimated using a combination of optical flow for motion compensation and known es-
timates of vehicle sizes as reference for scale. Further, the complete system’s performance
is also optimized and benchmarked on an NVIDIA Jetson Xavier NX embedded computer to
prove its deployability on mobile platforms capable of running on UAVs. The optimized sys-
tem runs at an average frame-rate of upto 33.44 FPS on frame resolution 3072×1728 on the
embedded platform.1

1The code for this project can be found at https://gitlab.com/Navaneeth-krishnan/multeye

v

https://gitlab.com/Navaneeth-krishnan/multeye

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Objective and Questions . 2
1.3 Outline . 3

2 Background and Related Work 5
2.1 Artificial Neural Networks . 5

2.1.1 Neuron Model. 5
2.1.2 Network of Neurons . 6

2.2 Convolutional Neural Network . 6
2.2.1 Convolutional Layer . 7
2.2.2 Pooling Layer . 7
2.2.3 Dropout Layer . 8
2.2.4 Backpropagation . 8
2.2.5 Loss Function. 9
2.2.6 Learning Rate Scheduling . 9
2.2.7 Hyperparameter Tuning . 9
2.2.8 Applications of CNNs : A brief timeline . 10

2.3 Fully Convolutional Networks . 10
2.3.1 Introduction . 10
2.3.2 Transposed Convolutional Layer . 10
2.3.3 Types of FCNs . 11
2.3.4 Semantic Segmentation . 11

2.4 Object Detection . 15
2.5 Multi-Task Learning. 19
2.6 Multi-Object Tracking. 20
2.7 Vehicle Speed Estimation . 21

3 Vehicle Detection 23
3.1 Semantic Segmentation Head . 24

3.1.1 Model Architecture . 24
3.1.2 Dataset preparation for Multi-class Semantic Segmentation 26
3.1.3 Training . 28
3.1.4 Results and Discussion . 28

3.2 Object Detection Head . 30
3.2.1 Model Architecture . 30
3.2.2 Dataset preparation for Object Detection . 32
3.2.3 Training . 35
3.2.4 Results and Inference . 38

3.3 Multi-task Learning . 39
3.3.1 MultEYE Model Architecture . 40
3.3.2 Training . 41
3.3.3 Results and Discussion . 41

3.4 Hyperparameter Optimization . 43
3.4.1 Results . 45

3.5 Summary . 46

vii

viii Contents

4 Vehicle Tracking and Speed Estimation 49
4.1 Minimum Output Sum of Squared Error based Tracking 49
4.2 Experiment and Results . 51
4.3 Speed Estimation. 52

4.3.1 Parameter Estimation using known context Priors andOptical Flow (Non-Parametric
Method) . 52

4.3.2 Parameter estimation using Real-time Flight Data (Parametric Method) 54
4.3.3 Method Comparison . 55

5 Inference on Embedded Platform 59
5.1 Graph Optimization. 60
5.2 MultEYE Model Inference on Jetson Xavier NX . 60
5.3 Pipeline Inference . 61
5.4 Streaming Optimization . 63
5.5 Summary . 64

6 Conclusion and Future Work 65

Bibliography 67

List of Figures

2.1 Example of a biological neuron . 6
2.2 Neural network with hidden layers . 7
2.3 Single channel image 𝐼 convolving with kernel 𝐾 and stride 1. 8
2.4 Neural network before and after a dropout layer [108] 8
2.5 Depiction of how the class location information is encoded in a classification

network [1] . 11
2.6 Difference between Unpooling and Deconvolution [85] 11
2.7 Generalized depiction of a typical Encoder-Decoder architecture [19] 12
2.8 U-Net model architecture[100] . 13
2.9 Generalized depiction of a typical Image-Pyramid architecture[19] 13
2.10Generalized depiction of a typical Spatial Pyramid Pooling architecture[19] . . . 14
2.11Generalized depiction of a typical architecture that uses Atrous Convolutions[19] 14
2.12Visualization of different dilation rates of a 3×3 kernel 15
2.13RCNN Framework [40] . 16
2.14Fast-RCNN Framework [38] . 16
2.15Faster-RCNN Framework [97] . 17
2.16YOLO Framework [96] . 18
2.17SSD Framework [68] . 18
2.18RetinaNet Framework [65] . 18
2.19A general multitask learning framework for deep CNN architecture. The lower

layers are shared among all the tasks and input domains.[94] 19
2.20An overview of the GOTURN algorithm.[48] . 21

3.1 An overview of the architecture template for the Multi-task network 24
3.2 ENet bottleneck module . 25
3.3 Sample images from the Aeroscapes dataset along with the annotation visual-

ization [82] . 27
3.4 ENet decoder with MobilenetV3Small backbone 29
3.5 Modified ENet decoder introduced in this research with MobilenetV3Small back-

bone . 30
3.6 Integration of CSP module with a native Darknet53 Residual block 31
3.7 The original PANet that is used as a feature aggregator in the architecture.[66] 31
3.8 Examples of Anchors and how they are initialized on to grid cells(black) 32
3.10Generated color mask . 33
3.11Canny-Edge Contour . 33
3.13Mosaic data augmentation introduced in YOLOv4 [12] 34
3.14SenseFly SODA camera(left) and the DeltaQuad on which it is mounted(right) 36
3.15Evidence of the reason many neural-network based object detectors fail when

using 𝑙1 or 𝑙2 loss functions [98] . 37
3.16GIoU loss vs IoU with varying overlap [98] . 37
3.17Example detections from the test dataset . 38
3.18Vizualization of the MultEYE . 40
3.19The comparison of the difference in features learned in a standard learning

methodology and the features learned with an auxiliary segmentation task . . 42
3.20Evidence of high generalising ability of the MulEYE network 43
3.21Visual Schematic of the Invasive Weed Algorithm (IWO) 45
3.22Results of IWO optimization of MultEYE hyperparameters. The best seed of the

hyperparameters from each iteration is plotted in the x-axis versus the fitness
score in represented in the y-axis . 46

ix

x List of Figures

4.1 Initializing the MOSSE filter requires the Fourier transformation of the image
and a synthetic gaussian peak that represents the position of the vehicle that
is being tracked . 50

4.2 The MOSSE filter (middle) of the tracked car (left) and its predicted position
(right) . 50

4.3 Tracking of manually initialized vehicles through 5 frames of the test dataset . 52
4.4 Visualization of optical flow when the camera frame is static with respect to the

inertial frame. It can be observed that the majority of the flow magnitude is 0
which corresponds to the flight velocity. 53

4.5 Visualization of optical flow when the camera frame is moving with respect to
the inertial frame. It can be observed that the flow magnitudes vary linearly in
the vertical direction but the flow immediately surrounding the car has similar
values. 53

4.6 Probability Density Function of flow magnitude of the frame with hover and
forward flight conditions . 54

4.7 Visualization of the difference between nadir and off-nadir angle of view. . . . 55
4.8 Locations of the data gathering experiments and the planned flight path at the

University of Twente campus . 56
4.9 Sample frames from 6 image sequences captured at Drienerlolaan and Boerder-

ijweg with different flight altitudes . 57
4.10Comparison of speeds of static targets estimated using parametric and non-

parametric methods while the UAV is in hover mode 58
4.11Comparison of speeds of moving targets estimated using parametric and non-

parametric methods while the UAV is flying at 27 km/hr 58
4.12Examples of detections when the flight velocity is 0 and non-zero 58

5.1 NVIDIA Jetson Xavier NX (left) and its user interface with all attached peripherals 59
5.2 Steps involved in improving the computation throughput of the model graph . 60
5.3 MultEYE inference speeds for different input resolutions for 10W and 15W power

modes . 61
5.4 Contribution of algorithms in the pipeline running at 15 W power mode (Non-

parametric speed estimation) . 61
5.5 Contribution of algorithms in the pipeline running at 15 W power mode (Para-

metric speed estimation). The contribution of the parametric speed estimation
cannot be plotted due to it being in the order of 10ዅ seconds. 62

5.6 The flow of information through the pipeline when streaming from a camera in
real-time . 63

List of Tables

3.1 The original architecture of ENet proposed by Pazke et al. [90]. The number
adjascent to the bottleneck module represents the stage which the bottleneck
module belongs to. 25

3.2 Architecture of the Modified ENet for semantic segmentation. 2 additional bot-
tleneck modules are introduced in stage 4 of the decoder along with 3 skip
connections from the encoder (additional modules are highlighted) 26

3.3 Comparison of the Modified ENet with other commonly used segmentation mod-
els.The speed was benchmarked on an Intel i5 CPU 29

3.4 The architecture of the lite version of the CSPDarknet53 backbone 31
3.5 Results of YOLOv4 and Custom Tiny-YOLOv4 with different backbones and eval-

uated on 10% set of Aeroscapes images resized at 512×512 resolution.The eval-
uation was bechmarked on a single NVIDIA Titan Xp GPU with CUDA 10.1.
Output models are in the Keras model format. 39

3.6 Comparison of the MultEYE network with other state-of-the-art models eval-
uated on a combination of 10% set of Aeroscapes and SODA Dataset images
resized at 512×512 (Except the SSD network that was trained with 300×300
resolution).The evaluation was benchmarked on a single NVIDIA Titan Xp GPU
with CUDA 10.1. *:Segmentation Decoder is detached from the model 41

3.7 Optimized Hyperparameter Values and their respective 95% Confidence Intervals 46

4.1 Comparison of commonly used trackers with established state-of-the-art deep
learning based trackers on a custom dataset.The ∗ denotes that the tracker
algorithm is deep-learning based and the speed was evaluated on a GPU (NVIDIA
Titan Xp). 51

4.2 Average errors in the speed estimation on the collected image sequences . . . 57

5.1 Percentage contribution of each algorithm in the pipeline towards the total run-
time for 4 different resolutions(Non-Parametric method) 62

5.2 Percentage contribution of each algorithm in the pipeline towards the total run-
time for 4 different resolutions(Parametric method) 62

5.3 Average frame rates for the pipeline for a sample stream buffer size of 10 images
for 4 different resolutions. 64

xi

1
Introduction

Highway traffic is a known complex phenomenon which depends on a multi-level interaction
between vehicles and the interactions between the vehicles and the local road infrastructure.
The control and and management of highway traffic is a complex task due to the constraints
imposed by infrastructure and rising number of vehicles in the recent years. Enforcement of
traffic control laws and situation monitoring has always been major choke-points in traffic
management in the past 10 years due to these constraints.
Until a decade ago, traffic surveillance involved nothing other than the presence of patrol
police personnel on the roads who responded to road violations or incidents. However, re-
cently, a steady growth of automated solutions for traffic monitoring are seen, especially in
the Netherlands. The Dutch government has implemented and integrated these automated
systems into the road infrastructure network. In situ technology, like embed magnetome-
ters and inductive detector loops, and video and image processing techniques have found
widespread use across the country. Image and video processing based monitoring solutions
have seen greater popularity in highways due to advantages like:

• Multi-lane monitoring

• Ease of modification of detection zones

• Availability of a rich array of data

• Wide area can be monitored if the cameras are used in a network

Such vision based solutions provide a plethora of data from which vehicle characteristics
and its motion information can be extracted. This information can be used to detect over-
speeding infractions, reckless driving or use of reserved lanes like the bus-lane. Further, it
can also be used to identify traffic congestion and incidents after locating the same.
A typical vision basedmonitoring system consists of a CCD (Charged Coupled Device) camera,
mounted on a high platform (typically a bridge), which captures video images online and
sends the digitized version of the images to a computer. The algorithms on the computer
process the image and perform detection and tracking of vehicles. The function of this system
can be broadly classified into two types:

• Traffic Monitoring: This includes functions such as passive gathering of various traffic
parameters, such as: traffic density, vehicle classification, average speed, etc. It also
includes monitoring in order to detect vehicle crashes, also known as AID (Automatic
Incident Detection). AID focuses on detecting traffic anomalies, such as: stopped or
little traffic flow, traffic jams, vehicles outside of the road area(indicating crashes) etc.

• Traffic Law Enforcement: This consists of focusing on identifying traffic violations and
uniquely identifying vehicles in case of speeding, reckless driving and unauthorised
access of specialized infrastructure.

1

2 1. Introduction

1.1. Problem Statement
Despite the advantages of vision based solutions and their role in helping the promotion of
road safety and infrastructure development, large scale use of the system has not become
widespread due to the high costs involved in the installation of the required number of cam-
era units to effectively monitor a highway network. In 2013, each camera unit tendered to
cost $125, 000 with installation and software charged separately [36]. The main reason for the
cost stems from the fact that the field of vision of bridge-mounted camera span from 200𝑚ኼ
to a maximum of 1000𝑚ኼ. This problem can potentially be solved by a UAV mounted camera
system.
Unmanned Aerial Vehicles (UAVs) were developed in the 1950s for the Central Intelligence
Agency in the United States for the sole purpose of carrying out surveillance and reconnais-
sance missions in hostile territory. This was lauded as great decision morally as the vehicle
was unmanned and no soldiers’ lives were at stake.It also was a great financial investment
as the UAVs cost only a fraction of the cost of a manned aircraft. Since entering the civilian
domain, UAVs have been used extensively in various low altitude Remote Sensing based ap-
plications like crop-health monitoring [73, 93], forest cover estimation / tree crown extraction
[34, 126] and Urban Planning [86].
In 2015, the Dutch ministry for infrastructure development successfully demonstrated the
use of drones for traffic monitoring [92]. They used three remotely-piloted UAVs to monitor
the traffic leading to and from the Concert at Sea festival in Zeeland. Together, the three
drones monitored around 30 sq.km of area. Though there were no automated monitoring
algorithms implemented during this flight, the demonstration proved that an aerial platform
can cover a much larger area at a fraction of the price of ground based cameras. Further, the
mobility of the UAV platform enables ease of deployment to areas of interest. The efficiency
of UAV based traffic monitoring can be boosted significantly if the system is autonomous.
Compared to traditional transportation sensors located on the ground or low angle cameras,
UAVs exhibit many advantages, such as minimal cost, ease of deployment, mobility, greater
scope of view, uniform scale, etc. In comparison with low angle cameras, UAV videos have
lesser chances of occlusion which aids in tracking vehicle’s position more accurately from
the nadir or isometric view [29]. There have been several pieces of research in the field of
autonomous UAVs for traffic monitoring [30, 58, 83], however, there have not been any sig-
nificant works yet on automated vehicle detection and tracking system for these autonomous
UAV systems. Most of the autonomous UAV solutions erroneously assume the state of the art
vehicle detection algorithms can work off-the-shelf on these aerial platforms. The state-of-
the-art solutions are generally designed to perform their best on curated benchmark datasets
and their performance suffers when applied to real-world scenarios. These algorithms also
perform their best when a lot of computational power is at hand which is not the case with
mobile platforms. Therefore, there is a need to design a vehicle detection and tracking system
that performs reliably in real-world scenarios while maintaining real-time processing speed
on a mobile platform. This type of a system can also greatly benefit emergency service per-
sonnel, like fire brigade, police and ambulance, in assessing the situation while en route to
the location of disturbance. The legal framework has not yet caught up with the increasing
reliability of such technology but once this comes through, this system will be at hand to be
deployed at large scale.

1.2. Research Objective and Questions
The main objective of this thesis is to develop and evaluate a vehicle detection and tracking
system that can run real-time on an autonomous aerial surveillance platform. Adding situ-
ational awareness capabilities through multi-class semantic segmentation.
In order to achieve this, the following research objectives have to be addressed:
1) Detect vehicles from an aerial perspective image in real-time.

• What are the existing approaches to vehicle detection in aerial images?

• What methods can be used to improve the performance of a real-time approach that
can be comparable to a computation heavy approach?

1.3. Outline 3

• Which approach strikes a good balance between performance and speed?

2) Enable real-time performance on a computationally constrained mobile platform.

• By how much does the speed performance suffer when a particular approach is trans-
ferred onto a mobile platform?

• Is there a way to optimize the approach such that the performance has little or no
suffering?

• Does the approach work fast enough to run real-time?

• Can a tracking algorithm be run alongside this approach without adversely affecting the
run time?

1.3. Outline
This thesis starts with a background on the deep learning leading up to state-of-the-art de-
tection algorithms. This is followed by the methodology which involves data preparation,
experiments with semantic segmentation and object detection separately and then together.
The results for these experiments are presented right after each of the experiment method-
ology is presented. This is followed by the implementation of an optimized solution on a
mobile computing device. Finally, the results are summarised and discussed, looking into
any possible improvements that could be made in future research.
The main contributions of the research are :

1. A novel and tuned multi-task learning architecture to boost the performance of a com-
putationally light vehicle detector that is robust to scale and view changes in aerial
images

2. A novel vehicle speed estimation methodology for moving camera when extrinsic camera
parameters are not available

3. An implementation methodology to enable fast execution on an embedded platform

2
Background and Related Work

This chapter introduces the topic of fully convolutional neural networks and networks de-
voted to semantic segmentation and object detection. It also introduces the concept of Multi-
task learning and how the combination of object detection with semantic segmentation task
results in improved performance of the object detector. An introduction to the basic artifi-
cial neural networks is given in section 2.1. Further, an artificial neural network capable of
processing image data, known as Convolutional Neural Networks (CNNs), will be described
in section 2.2. A variation of CNNs called Fully Convolutional Network (FCN) is discussed in
section 2.3. The history and the latest developments in the field of semantic segmentation
and object detection are described in sections 2.3.4 and 2.4 respectively. Final sections 2.5
and 2.6 introduce the concepts of multi-task learning and object tracking respectively.

2.1. Artificial Neural Networks
Artificial Neural Networks (or known simply as neural networks) is a computational model
made as an information processing paradigm whose design was based on the biological cen-
tral nervous system. A typical simple neural network consists of 3 parts: an input layer,one
or more hidden layers and an output layer. The role of neural networks as function approx-
imators was suggested by Cybenko [25]. He showed that a neural-network with one hidden
layer could function as a universal function approximator as long as the function is contin-
uous and the number of neurons in the network are finite.
The unambiguously named Cybenko’s Theorem, states that if 𝜎 is a continuous discrimina-
tory function, the finite sums of the form:

𝐺(𝑥) =
ፍ

∑
፣ኻ
𝛼፣𝜎 (𝑦ፓ፣ 𝑥 + 𝜃፣) (2.1)

are dense in 𝐶(𝐼፧) . In other words, given any 𝑓 ∈ 𝐶 (𝐼፧) and 𝜖 > 0, there is a sum 𝐺(𝑥), of the
above form , for which:

|𝐺(𝑥) − 𝑓(𝑥)| < 𝜖 ∀𝑥 ∈ 𝐼፧ (2.2)

Hence, provided a target function 𝑓(𝑥), that is to be approximated with a certain degree
of accuracy 𝜖 > 0, Cybenko’s theorem states that there is always a network with output 𝐺(𝑠)
which satisfies |𝐺(𝑥) − 𝑓(𝑥)| < 𝜖, given that a sufficient number of (hidden) neurons are used
.

2.1.1. Neuron Model
A mathematical neuron model is used to model a neural network. Earlier, works show that
the development of neural networks was initially based on the imitation the biological neural
system in a computational sphere. A neuron is the basic computational unit of the brain. It
receives inputs on its dendrites and the output is delivered through its axons (Fig.2.1). The

5

6 2. Background and Related Work

axon terminals are called synapses which connect to the dendrites of other neurons. The
synaptic strength is the factor that decides the degree of neuron interaction. These strengths
are mathematically analogs toweights (𝑤።) in the artificial neural networks and these weights
are learnable. The dendrites convey the input signal 𝑥። to the cell-body, where these inputs
are summed. The neuron then produces an output which is sent out through the axon once
the sum crosses a certain threshold. The rate of the output generation is modeled by an
activation function 𝑓(𝑥) that is non-linear in nature. An activation function decides the state
of activation of a neuron by calculating a weighted sum and an additional bias. The input is
transformed non-linearly which enables the network to learn tasks of high complexity.

Figure 2.1: Example of a biological neuron

The decision making by an activated neuron can be modeled the following way:

𝑎። = 𝑓 (Σ። (𝑤።𝑥።) + 𝑏።) (2.3)

The activation of a neuron is represented by 𝑎። while 𝑓(𝑥) is the non-linear activation function.
𝑤። , 𝑥። and 𝑏። represent weight, input signal and bias respectively. Initially, the neurons were
activated by a simple sigmoid or a hyperbolic tangential function but in the recent years,
the Rectified Linear Unit (ReLU) [79] function has shown great promise as it was observed
that ReLU was more computationally efficient that its counterparts[59][42]. This efficiency
stems from the ability of ReLU to identically propagate all the positive inputs, which alleviates
gradient vanishing and allows the supervised training of much deeper neural networks and
additionally just output zero for negative inputs.

2.1.2. Network of Neurons
A Neural Network is a state of interconnected neurons arranged in layers. As seen in nature,
the outputs of one layer of neurons become the inputs for the succeeding neuron layer.
The inputs are generally passed forward without any signal-loops present in the network.
Further, the neurons of a layer are not connected to each other. The hidden layers (Fig.2.2)
are the layers of neurons arranged between the output layer and the input layer. Data can
be perceived to be more abstracted the more layers the input passes through. The number
of hidden layers constitutes the depth of the neural network.
The network is made to learn a general rule using a given set of examples. This process is
called Training. It is done by updating the weights using a method called backpropagation.
This method is further explained in section.2.2.4.

2.2. Convolutional Neural Network
A Convolutional Neural Network (CNN) [60] is a network of neurons that can process fea-
tures from spatial data especially images. A CNN layer has neurons that are arranged in 3
dimensions. This arrangement enables it to not only process the 2D pixel arrangement in
an image but also the channels of each pixel. CNNs have grown rapidly in the past 10 years
and are now used to solve many of the image processing tasks such as image classification,
segmentation and object detection. This section introduces the essential parts that influence
the performance of a CNN such as Convolutional layer, Pooling layer, Backpropagation, Loss
function, Learning Rate Scheduling and Hyperparameter Tuning. This section also describes
a brief timeline outlining the development of CNNs through the ages.

2.2. Convolutional Neural Network 7

Figure 2.2: Neural network with hidden layers

2.2.1. Convolutional Layer
A standard digital image can be represented in a three-dimensional matrix of the form ℎ×𝑤×3,
where ℎ represents the height of the image, 𝑤 the width and the last dimension represent the
number of channels with colour information which takes the value of 3 for the majority of im-
ages that have an RGB (Red-Green-Blue) or BGR (Blue-Green-Red) colour encoding. Multi-
and Hyper-spectral images can expect the third dimensions to be of higher order. On the
other hand, images can also have only 1 channel (Grayscale images). These representations
are then fed into a convolutional layer. Convolutional layers are the most essential units of a
CNN as they produce a mapping of features from input image or from other encoded features
that are mappings from other convolutional layers .

Kernel is one of the center pieces of a convolutional layer. If kernel K has 𝑥 rows, 𝑦 columns
and depth of 𝑑, the kernel that has a size of (𝑥×𝑦×𝑑) works on a receptive field of size (𝑥×𝑦)
on the image. The kernel by design is smaller than the image. The kernel slides over the
image (thereby convolving with it) and produces a feature map. A Convolution is the result
of summation of element-wise multiplication of the spatial information with the kernel. The
kernel stride is a parameter that is defined prior to training. Another parameter that is found
in the definition of a convolutional layer is the stride,which is the number of pixels the kernel
traverses during a convolution operation. Larger the stride, smaller is the resulting output.
Equation.2.4 shows the relation between the size of the output 𝑂 and size of the input image
𝐼 after convolving with kernel 𝐾 with stride 𝑠.

𝑂፱ =
𝐼፱ − 𝐾፱
𝑠 + 1

𝑂፲ =
𝐼፲ − 𝐾፲
𝑠 + 1

(2.4)

After the convolution step, each pixel is then activated with an activation function (for
example, ReLU non-linearity operation where every negative value is replaced with a 0). The
output of this operation then proceeds either to another convolutional layer or a pooling layer.

2.2.2. Pooling Layer
Pooling Layers are used to decrease the size of the input by a certain fraction while attempting
to retain the feature information of the input, essentially encoding them. The most commonly
used pooling technique is the max pooling. The output of this layer is generated by choosing
the maximum value within a selected kernel and replacing the pixel value with this chosen
maximum value. Average pooling and L2-norm pooling are other pooling methods commonly
used. The kernel and stride of this layer have the same length. Pooling layers decrease the
number of trainable parameters thus reducing the chance of overfitting.

8 2. Background and Related Work

Figure 2.3: Single channel image ፈ convolving with kernel ፊ and stride 1.

2.2.3. Dropout Layer
Overfitting is the phenomenon in which a neural network loses its ability to generalize. By
design, neural networks are overdefined and overfitting happens when there are too few
training samples. Dropout layers prevent overfitting by randomly dropping nodes and its
connections which adapts the network to the training samples while prevents the weights
to be too much fitted to the training set. This will result in a significant reduction of the
difference between the validation and training accuracy. Dropout layers are removed or
deactivated during validation and testing.

Figure 2.4: Neural network before and after a dropout layer [108]

2.2.4. Backpropagation
The training of a CNN involves adjusting the weights of the kernels. Backpropagation is an
efficient method that calculates the gradients that are used by optimization algorithms [101].
The optimization problem is considered solved when the optimizer finds a unique combina-
tion of parameters that result in a minimum value of a loss function. The method involves
calculation of gradient of the loss function. One of the pre-requisites of a loss function is
that there should always exist a gradient in its domain or in other words, the loss function
should always be continuous and differentiable through out its domain.
The weights of a neural network is initially assigned randomly. At, first, the network doesn’t
have a relation between the input image and output. The network is then trained by adap-
tation of the weights in a such a way that the difference between the predicted output and
the expected output is minimized. There are two phases of computation of these weights,
the forward pass and the backward pass. Forward pass: The image is quantized and fed to
the input layer of the network which outputs an activated feature map which serves as the
input for the second hidden layer which in turn computes its own feature map. This process
is sequentially repeated for every connected layer in the network which eventually ends at
the output layer.
Backward pass: The backpropagation updates the network weights. A single epoch of back-
propagation has many parts and multiple epochs are required to be performed for a single
image. Parts in an epoch are:

• Loss function A predefined loss function 𝐿 minimizes the difference between the pre-
sented input-output pair. The weights are adjusted based on the calculated gradients
from the loss function.

2.2. Convolutional Neural Network 9

• Backward pass The total loss is reduced in this step by adjusting weights that had
majority contribution to the calculated loss.

• Weight update Finally, all the weights are updated in the negative direction of the loss
function gradient.Finally, all the weights are changed in the opposite direction of the
gradient of the loss function.

As it can be seen, the main crux of the backpropagation problem is the computation of
the loss function gradient with respect to the weights. This is done by minimizing the value
of loss function using the computed partial derivative Ꭷፋ

Ꭷ፰ . A common method for neural net-
work optimization is the Stochastic Gradient Descent (SGD).

2.2.5. Loss Function
A function 𝐿 that can quantify the difference between the input image and the annotated
output after it has passed through the network is known as a loss function. A few of the
most widely used loss functions are listed below. Assume 𝑥። is the array of predicted outputs
and ̂𝑥። is the array of required outputs.
Quadratic Loss Function One of the simplest and most used loss functions is called the
Mean Squared Error (MSE). It is defined as follows:

𝐿 = 1
𝑁

ፍ

∑
።ኻ
(𝑥። − �̂�።)ኼ (2.5)

Cross-entropy Loss Function This loss function is used in the context of convolutional
neural network applications.

𝐿 = 1
𝑁

ፍ

∑
።ኻ
(�̂�። ln (𝑥።) + (1 − �̂�።) ln (1 − 𝑥።)) (2.6)

Exponential Loss Function The exponential loss function requires an additional parameter
𝜏.

𝐿 = 1
𝑁𝜏 exp

1
𝜏

ፍ

∑
።ኻ
(𝑥። − �̂�።)ኼ (2.7)

2.2.6. Learning Rate Scheduling
The learning rate of an optimization algorithm refers to the step-size it needs to take to get to
a local or a global-minimum. Determination of the appropriate learning rate so as to achieve
a global minimum is a complex problem. If the learning rate is too high, the model may
never converge which leads to a sub-optimal performance while a learning rate set too low
would lead to a slow convergence or the model may get stuck in a local minima. Learning
scheduling is done to exploit the exploring nature of a high learning rate during the initial
iterations in order to obtain a coarse estimation of the output and then decreased during
further iterations to fine tune the model.

2.2.7. Hyperparameter Tuning
As explained in 2.2.4, the training of an artificial neural network is done using backprop-
agation. This process presents many choices a researcher should take, for example, batch
size, optimizer, learning rate etc. These choices are what make up hyperparameters which
act as a setting for the Neural Network. The optimal choice of values for these hyperparam-
eters makes sure that the network gives its best performance. In order to make educated
guesses on the values of these hyperparameters, the nature of each of these settings must
be understood in the context given by the problem and the dataset. For example, the batch
size is chosen based on the memory availability of the training machine. Larger the batch
size, more memory required. The appropriate learning rate can be chosen by tracking the

10 2. Background and Related Work

loss per epoch (or a cycle of forward and backward pass). High learning rates will result in
fast decrease of loss but may result in sub-optimal performance. The degree of over-fitting
can be observed by comparing the training loss and the validation loss.

2.2.8. Applications of CNNs : A brief timeline
When CNNs were first introduced, they were designed to solve the Image Classification prob-
lem. Classification aims at labeling images and sorting them into pre-defined categories.
LeCun et al. were the pioneers in applying CNNs for complex tasks in 1998 [60]. LeNet was
the first successful CNN built which was capable of reading handwritten digits and zip-codes.
These were not widely popular until Krizhevsky et.al. [59] improved the CNN architecture to
use Graphical Processing Units(GPU) to improve accuracy and faster training time. This pro-
vided a lauchpad for interest in Deep Learning for computer vision. AlexNet [59] is a deeper
and larger version of LeNet. The network won the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), by a large margin. It introduced the Rectified Linear Unit (ReLU) activa-
tion which significantly sped-up the optimizer (SGD), as expensive computational elements
like tangentials and exponents were not required. Data augmentation and drop-out layers
were used to further improve the network performance and reduce over-fitting.
In 2015, Google introduced inception module, as a part of the network called GoogLeNet
[110] which won the ILSVRC2014 and made use of breakthrough approach in the design of
CNN networks.
The Visual Geometry Group of the University of Oxford realised that a certain number of
hidden layers were instrumental in efficiently encoding features, which resulted in VGGNet
[107], which secured the second place in the ILSVRC 2014.

Microsoft, who introduced the ResNet architecture [46], won the ILSVRC2015. This net-
work was considered a breakthrough by achieving an all time low rate of error of 3.6% which
beat human performance which averaged around 7%. This network contains 152 layers.

Image classification later paved way for semantic and instance segmentation. Section.2.3
introduces and expands on Fully Convolutional Networks (FCNs) that were designed for the
task of such segmentations.

2.3. Fully Convolutional Networks
Image segmentation is the classification of each pixel to the feature it belongs to in the image.
The following sub-sections introduce Fully Convolutional Networks and their role in semantic
segmentation.

2.3.1. Introduction
Fully Convolutional Network (FCN) was introduced for image segmentation in 2015 by Long
et. al.[69]. FCNs are essentially modified CNNs. To make it suitable for pixel-wise segmenta-
tion, some layers are modified to enable generation of segmented maps as output. In other
words, FCNs are created by replacing the fully-connected layers with convolutional layers.
The main objective of an FCN is to extract contextual information; an object’s identity and
location. The architectures of FCNs inherently balances the coarse tuning of large-scale fea-
tures and the fine tuning of small-scale local features.
Standard classifier networks can be used to learn semantic segmentation by the method of
Transfer Learning. In this method, the location encoded in the trained classification network
is exploited to generate segmented output maps by replacing the fully connected output layer
by a convolutional layer.

2.3.2. Transposed Convolutional Layer
A Transposed Convolutional layer is used to obtain a dense map from a downsampled and
coarse input [69]. They are also known as, Deconvolutional Layer but it is a misnomer as the
layer also performs convolution.

2.3. Fully Convolutional Networks 11

Figure 2.5: Depiction of how the class location information is encoded in a classification network [1]

This process differs from the process of UnPooling in a basic concept that the unpooling
increases the size of the receptive field by a simple operation of nearest-neighbour or bilinear
interpolation, while a transposed convolutional layer maps a single activation to a field of
activations.

Figure 2.6: Difference between Unpooling and Deconvolution [85]

2.3.3. Types of FCNs
Since the introduction of FCNs, they have dominated the field of online image segmenta-
tions. The original FCN proposed by Long et.al [69] has a drawback of producing outputs
of low-resolution due to the pooling and convolution operations in the layers. New network
architectures have been proposed to tackle the output resolution problem. These methods
have different approaches to collect both global and contextual features. The major four are
:

• Encoder-Decoder

• Image Pyramid

• Spatial Pyramid Pooling

• Atrous convolutions

Thesemethods have seen widespread use in the context of scene understanding, especially
in the problem of semantic segmentation. The use of thesemethods in semantic segmentation
is further discussed in section 2.3.4.

2.3.4. Semantic Segmentation
Image segmentation is an important aspect of many of the vision based systems. It involves
classification of image pixels based on a high-level understanding of the type of information

12 2. Background and Related Work

which the pixel is a part of [111]. Segmentation plays an important role in many appli-
cations seen today [35], including medical imaging analysis (Tissue volume measurement,
Tumour identification etc.), autonomous vehicles (ego-lane extraction, pedestrian detection,
etc.), video surveillance and augmented reality. A plethora of semantic segmentation algo-
rithms have been published in the past decade, from early pieces, such as thresholding [89],
Clustering based on histogram [84], k-means clustering [28], local pixel topography based
algorithms [80], to more modern and complex methods like Energy minimizing snakes [55],
minimizing energy using computational graphs [14], advanced computational graphs in the
form of random fields [1] and segmentation methods based on sparsity priors [109].
In the recent years, with widespread availability and accessibility of higher computational
power, Deep Learning algorithms have enabled the development of segmentation algorithms
that significantly outperforms its predecessors. These algorithms are popularly regarded as
the front-runners of the paradigm shift that the field experienced.
FCNs were popularized in the field of semantic segmentation with the introduction of skip
connections. Skip-connections are used to merge final layers of a network with a similarly
sized initial layer in order to preserve features that may have been lost in the encoding pro-
cess. This method of feature map merging results in a healthy mixture of fine and coarse de-
tails in the segmentation map. This resulted in performance bossts that propelled the FCNs
to the top of standard benchmark challenges like PASCAL VOC, NYUDv2, and SIFT Flow.
However, despite its popularity and effectiveness, traditional FCNs have a major limitation–
it is not light enough to be implemented on an embedded platform, it could not perform real-
time segmentation and it does not process the global context information efficiently. There
were many efforts to over-come these limitations of standard FCNs.A few of these methods
discussed in this section are, Encoder-Decoder, Image-Pyramid, Spatial Pyramid Pooling and
Atrous Convolutions.

Encoder-Decoder

Figure 2.7: Generalized depiction of a typical Encoder-Decoder architecture [19]

The Encoder-Decoder type of network architecture (fig.2.7) consists of an encoder part
and a decoder part. The encoder reduces the spatial dimensionality of the features and is
known as the latentspace. The decoder part recovers the features encoded in the latent space
and the spatial dimensions. A few examples of such an architecture are SegNet [4], U-Net
[100], and RefineNet [63]. The SegNet architecture relies heavily on the VGG-16 model to re-
duce the dimensionality of the input image. The SegNet introduced a novel concept of using
pooling-indices that are calculated in the max-pooling step of the encoder. These indices are
then used to up-sample the feature maps in the decoder part non-linearly without having to
use learnable parameters. Due to the absence of additional deconvolutional layers, SegNet
is lighter than its contemporary models. SegNet was later upgraded to a Bayesian version of
the same which could model the uncertainty inherent in the standard SegNet[56].

2.3. Fully Convolutional Networks 13

Onemain drawback of SegNet is that it cannot be used to get a high-resolution feature map
as small artifacts are not efficiently encoded in the latent space. A solution for that problem
was tackled by U-Net [100] and V-Net [78]. These architectures, though intended for medical
image segmentations, it found widespread use in other domains too. Ronneberger et al. [100]
proposed the use of U-Net to segment microscopy images. The architecture (Fig.2.8),inspired
by the traditional FCNs and the encoder-decoder architecture, consists of two parts, an con-
tracting encoder part used to encode contextual information, and a symmetric expanding
decoder part that provides precise localization. The downsampling layers extracts features
using 3×3 convolution much like FCNs. The upsampling layers use deconvolution layers
which are concatenated with its corresponding encoder layer which helps it retain pattern
information and avoid losing small features while encoding into the latent space.
The U-Net has been modified numerous times to cater to various types of images, for ex-

Figure 2.8: U-Net model architecture[100]

ample, a U-Net architecture was proposed for 3-D images by Cicek et al. [23]. A nested
architecture was proposed by Zhou et al. to produce a more robust architecture [134]. U-Net
was also modified and applied to other problems such as road extraction and segmentation
[131].

Image-Pyramid

Figure 2.9: Generalized depiction of a typical Image-Pyramid architecture[19]

An Image Pyramid network architecture (Fig.2.9) works on multiple image resolution that
accounts for multiple levels of feature encoding (from coarse at low resolution to dense at
high resolution). An image is passed at multiple scales through the network and eventually
merged at the end. The major disadvantage of such a structure is that it is not suitable for
larger architecture as this requires high GPU memory to hold images at multiple resolutions

14 2. Background and Related Work

during training. One of the major model architectures employing this method is the Feature
Pyramid Network (FPN) proposed by Lin et al. [64] which was aimed at use in object detection
but was also applied to image segmentation.

Spatial Pyramid Pooling

Figure 2.10: Generalized depiction of a typical Spatial Pyramid Pooling architecture[19]

Networks that use spatial pyramid pooling method, learn features at varying levels of
details (Fig.2.10). Parse-Net[67] and PSPNet[132] are examples of networks that makes use
of Spatial Pyramid Pooling.
The Pyramid Scene Parsing Network (PSPNet) [132] uses the Spatial Pyramid Pooling to better
represent the global contextual information of a scene. Residual Network (ResNet) is used
to extract the features and encode it into the latent space. The pyramid pooling identifies
patterns in these feature maps that occur at varying levels of scaling. The outputs of these
pyramid modules are upsampled and merged with the initial layers to capture varying levels
of information resolution.

Atrous Convolutions

Figure 2.11: Generalized depiction of a typical architecture that uses Atrous Convolutions[19]

Some of the more recent network architectures use a new method that uses atrous con-
volutions [19] to recover spatial details rather than Deconvolutions like the older methods.
This method introduces another parameter into the convolution layers called the ’dilation
rate’. The atrous convolutions (or dilated convolution) (Fig.2.12) of a signal 𝑥(𝑖) is defined
as 𝑦። = ∑ፊ፤ኻ 𝑥[𝑖 + 𝑟𝑘]𝑤[𝑘] , where 𝑟 specifies the space between the kernel weights 𝑤, also
termed as dilation rate. In other words, a kernel of size 3×3 with 𝑟 = 2 will produce the same
map size as a kernel with size 5×5 meanwhile retaining the original number of parameters
of 9 which will result in an enlarged map with minimum computations. Atrous convolutions
have seen popularity in many state-of-the-art papers in the field of real-time segmentation.
A few of the notable publications include the DeepLab family of networks [18], Multi-scale

2.4. Object Detection 15

Figure 2.12: Visualization of different dilation rates of a 3×3 kernel

context aggregation [129], Hybrid dilated convolution [122], densely connected Atrous Spatial
Pyramid Pooling (DenseASPP)[127],and the ENet [90].

Section.2.4 introduces another computer vision problem, Object Detection and section.2.5
describes how segmentation can be used to improve the accuracy of Object Detection models.

2.4. Object Detection
Object detection is a popular computer vision task that involves detecting instances of objects
in an image that belong to a particular class. The task essentially locates and classifies class
objects. As we have seen in the previous sections, advances in computer vision and deep
learning have reached a saturation point with regards to the classification problem which
caused a shift in focus to topics like adversarial image generation, neural style transfer, vi-
sual storytelling, and the topics of this thesis, object detection and tracking. This section
tracks the significant milestones in the field of object detection up until the state of the art.
This will pave way to the more specific problem of vehicle detection and tracking.

Most of the earliest object detectors were built around 20 years ago based on handcrafted
features. This was necessary at that time as powerful computational resources were not
widely available which resulted in algorithms that designed sophisticated feature represen-
tation algorithms. P.Viola andM.Jones achieved a real-time detection of human faces without
using standard constraints like skin color segmentation which was a hundred times fastest
that the state-of-the-art at that time [119] [120]. The detector was later dubbed ”Viola-Jones
(VJ) Detector” by the research community honoring their contributions.

The algorithm uses a simple method of sliding windows for the detection process, which
slides through all possible locations and scales. However, the computations behind this
simple process was too computationally expensive for the time which resulted in most of the
algorithms of the time to be extremely slow. VJ Detector sped up the process by incorporat-
ing techniques like integral image, feature selection and detection cascades.

Histogram of Oriented Gradients (HOG) feature descriptor was introduced by Dalal et al.
in 2005 [27]. Feature invariance and non-linearity is balanced by the computation on a grid
of cells that are uniformly spaced and dense in nature to improve the accuracy. Though HOG
was initially designed for detection of pedestrians, it was shown to work well for other object
classes too. To detect object of multiple sizes, the input image is scaled keeping the bounding
box size constant. The HOG has been an important part of many pieces of research on object
detection [32, 33, 74] and computer vision applications.

As the performance of handcrafted features saturated at around 2010, the rebirth of Con-
volutional Neural Networks and its ability to learn high level features robustly, garnered
interest and gave birth to a whole family of CNN based object detectors.

CNN based Detectors
The earliest breakthrough achieved by a CNN-based object detector was proposed by R.Girshik
et al. named Regions with CNN features (RCNN) for object detection [39, 40]. The RCNN
(fig.2.13) detection pipeline starts with the generation of object proposals by selective search

16 2. Background and Related Work

[117]. The proposals are then scaled to a pre-defined size and fed into a pre-trained model
to extract features. In the end, the presence of objects in the proposal and its eventual clas-
sification is handled by an SVM classifier.The RCNN yielded a significant performance boost
on the PASCAL VOC 2007 dataset with the mean Average Precision (mAP) jumping to 58.5%
from the then top performance of 33.7% achieved by DPM-v5 [41] .

Figure 2.13: RCNN Framework [40]

Though RCNN made significant progress, it suffered from the problem of computing re-
dundant features in the case of overlapping proposals result in extremely slow detection
speeds (14s per frame on a GPU). SPPNet [45] was introduced later that year to overcome the
problem.

The major advantage SPPNet had over other peer networks is that it was not constrained
by the input image dimensions due to the presence of the Spatial Pyramid Pooling layer. The
detection pipeline calculated the the entire feature map only a single time and the represen-
tations of fixed-size extracted from this feature map and used to train the model which made
SPPNet about 20 times faster than RCNN without compromising on the detection accuracy
(VOC07 mAP=59.2%).

In 2015, the authors of RCNN proposed an improvement model called Fast RCNN de-
tector [38](Fig.2.14). The speed improvement was attributed to the ability to parallely train
both a regressor and detector under the same hyperparameters of the network. Faster RCNN
showed an 11.5 % improvement of mAP from the traditional RCNN on the VOC07 dataset
while it clocked 200 times faster than its predecessor.
Though Fast RCNN exploits the characteristics of both RCNN and SPPNet, the detection

Figure 2.14: Fast-RCNN Framework [38]

speed was still limited by the proposal detections. This was solved by Faster RCNN by gen-
eration of object proposals by CNN.

The Faster RCNN [97](Fig.2.15) detector was proposed by Ren et al. shortly after the Fast
RCNN. This was the first end-to-end , near-realtime deep-learning detector which brought the
VOC07 mAP upto 73.2% running at 17 fps with ZFNet [130]. Near cost-free region proposals
were generated using the Region Proposal Networks (RPN) and the unification the individual
blocks like proposal detection, feature extraction, box regression etc. enabled the researchers
to create such a fast end-to-end framework.

2.4. Object Detection 17

Figure 2.15: Faster-RCNN Framework [97]

Though the speed bottleneck was essentially broken through, there were quite a few com-
putational redundancies in the detection stage. Although, many improvement models were
subsequently proposed (RFCN [26] and Light head RCNN [62]), Feature Pyramid Networks
(FPN) [64] proposed by T.Y.Lin et al. showed most promise among the detectors based off
of Faster RCNN. This piece of research enabled building high-level semantics at all scales
which earned it the position of state-of-the-art in MSCOCO dataset (COCO mAP@.5=59.1%).
This is the reason why most of the latest detectors have made the FPN as a standard building
block.

Despite the significant improvements of accuracy, widespread use of the methods in real-
world applications were limited due to computational limitations of the commonly used mo-
bile platforms. This brought the researchers to focus from accuracy-oriented solutions to a
speed oriented one.

You Only Look Once, commonly known as YOLO[96], was proposed in 2015 by Redmon
Joseph et al. This was regarded as the earliest deep-learning based one-stage detector. The
family of YOLO (Fig.2.16) was very fast: The tiny-YOLO (a version designed for speed) ran
at 155FPS achieving a mAP=52.7% on the VOC07 dataset. As the name suggests, the au-
thors, completely rewrote the object detection paradigm from ”detection and verification” to
the application of a single neural network to the whole image. This is done by dividing the
whole image into grid cells and predicting bounding boxes and probabilities for each region
simultaneously. Further versions of YOLO managed to improve detection accuracy while
managing to keep the high detection speed.
Despite, the extremely fast detection speed, YOLO suffered a drawback. It suffered a sig-
nificant drop in localization accuracy when compared to two-stage detectors especially when
the objects in question were small. Later the Single Shot Detector addressed this problem.

Single Shot MultiBox Detector (SSD) [68] (Fig.2.17) was introduced in 2015 by Liu et al.
This was the next generation of single-stage detectors to be introduced in the deep learning
era. The main contribution of the paper was that SSD introduced multi-reference and multi-
resolution detection techniques which significantly improved detection accuracy , especially
for small objects. The SSD achieved a VOC07 mAP=76.8 % for a fast version that runs at
59fps.
In 2017, T.Y.Lin et al. claimed to have discovered the reason why the accuracy of one-stage
detectors always trailed their two-stage counterparts. They had claimed that the extreme
foreground -background class imbalance was the main reason for the gap. They attempted to
bridge the gap using RetinaNet[65](Fig.2.18) which introduced a novel loss function designed

18 2. Background and Related Work

Figure 2.16: YOLO Framework [96]

Figure 2.17: SSD Framework [68]

specifically for the task of object detection called ’Focal Loss’. This loss is calculated by
reshaping the cross-entropy loss such that extra attention is paid to wrongly classified and
difficult examples during training. This resulted in RetinaNet achieving similar performance
levels to that of the two-stage detectors while maintaining high processing speeds (COCO
mAP@.5=59.1 %).

Figure 2.18: RetinaNet Framework [65]

InMay 2020, the final version of YOLOwas proposed by A.Bochkovskiy. Named YOLOv4[12],
it is currently considered as the state-of-the-art real-time object detector. It uses the com-
binations of various features such as Weighted Residual Connections (WRC), Cross-Stage-
Partial-connections (CSP), Cross mini-Batch Normalization, Self-adversarial Training, Mish
Activation, Mosaic Data Augmentation, Drop-Block Regularization and CIoU loss. These are
categorised by the authors into Bag of Freebies (Methods that improve the accuracy of de-
tections which may influence the training time but inference time is not affected) and Bag of
Specials (Methods that can be applied which slightly increases the inference time but signifi-
cantly improves the detection accuracy). This results in performance much better and faster
than its peer networks (COCO mAP@.5=65.2 %).
Recent research has shown that combining two related tasks together can boost up the ac-
curacy of both the tasks simultaneously by the use of multi-task loss functions. This is

2.5. Multi-Task Learning 19

discussed further in section 2.5.

2.5. Multi-Task Learning
Multi-task learning is a method employed to improve learning efficiency and prediction ac-
curacy by learning multiple objectives from a shared representation [17]. The use of multi-
task learning has been prevalent in many applications like natural language processing and
speech recognition. In the setting of visual scene understanding in computer vision, multi-
task learning method has been used to improve object detection performance with the help
of semantic segmentation.
Semantic segmentation has been shown to improve object detection due to 3 main reasons:

Figure 2.19: A general multitask learning framework for deep CNN architecture. The lower layers are shared among all the
tasks and input domains.[94]

• Improves Category Recognition: Human visual cognition consists of edges and bound-
aries [7, 88]. In the setting of scene understanding, objects(eg. car, pedestrian, tree
etc.) and background artifacts (sky, grass, water etc.) differ in the fact that the former
has well defined boundaries within an image frame while the latter does not. As se-
mantic segmentation clearly distinguishes these boundaries, it could help in category
recognition.

• Improves location Accuracy: A clear and well established visual boundary is what de-
fines an instance of an object in a ground truth. Some objects have special characteristic
parts (for example long feathers of a peacock) that may result in incorrect or low loca-
tion accuracy. As semantic segmentation problem encodes these boundaries very well,
learning segmentation along with detection improves the localization accuracy.

• Context Embedding: Most of the objects in the scene understanding context have a
standard pattern of surrounding backgrounds such as car is almost always found on
road and not the sky. These arrangements constitute the context of an object which
helps the object detection to improve object confidence accuracy.

There are two major training methodology employed when using segmentation to improve
detection. One way is end-to-end learning with enriched features. This means that the
segmentation is used as a fixed feature extractor which is integrated to the detection as ad-
ditional features[15, 37, 106]. Though this method is easy to implement, a major drawback
is the heavy computation cost of always having to calculate the segmentation even if only the
detection is of interest during inference.
However, another training methodology introduces a segmentation head on top of the detec-
tion framework which trains the network with a multi-task loss function [15, 47]. Here, the
input to the network produces two or more outputs each with its own loss function. During
the backpropagation step, the optimizer tries to strike a balance between minimizing all the
loss functions. This results in a sort of tug-of-war between the parameters in the backbone
of the architecture which are shared between the tasks. This is beneficial when the tasks are

20 2. Background and Related Work

related as the relationship of the tasks can reduce the search space of the parameters in the
backbone.

As long as there is no regularization connections between the segmentation and detection
heads, the segmentation head can be decoupled during inference, the detection speed of the
detector will not be affected as the computations required to calculate the segmentation map
is no longer needed.

2.6. Multi-Object Tracking
Object tracking in a sequence of visual data is commonly known as Visual Object Tracking
(VOT). Object tracking has been a focal point and have inspired many pieces of research in
the past years due to the challenges faced by large variations in viewpoint, illuminations and
occlusion. VOT tracking is broadly classified into two categories based on the number of ob-
jects tracked in the sequence: Single-Object Tracker (SOT) and Multi-Object Tracker (MOT).
Kalmann and Particle filtering methods have been employed widely for single-object tracking
tasks. These methods consider the object speed and position of motion which result in ac-
curate object tracking [24] [87].
Bochinski et al.[11] proposed a simple Intersection over Union (IoU) based matching done
by overlapping frames. This resulted in very fast tracking due to the use of positional in-
formation, however, the accuracy of this method suffered when used for complex objects or
in difficult scenes. A similar position based tracking method gained popularity as an online
tracker which means that the tracker learns the features of the object while performing the
tracking task. This was called the Simple Online and Real-time Tracking (SORT) algorithm[9].
This predicts object location using Kalmann filtering using the location of the object in the
previous frame. The Hungarianmethod is used tomatch the objects in the predicted locations
and the IoU score of the detected and predicted bounding boxes are used as an affinity mea-
sure. The accuracy and precision of SORT outperforms the traditional IoU based methods
but has a tendency to produce more false positives. DeepSORT [124] partially solved this
issue by introducing re-identification to affinity between tracks and detection. Recurrent
Neural Networks (RNNs) that use a combination of features, motion and affinity information
have shown promising tracking performance [102]. Here deep learning methods are used
for MOT for both object detection and affinity modeling by re-identification approach. Other
deep learning based trackers relying on Correlation Fliters (CF) have shown greater perfor-
mance accuracy when compared to peers using keypoint matching[54].

Multi-Domain Network (MDN)[81] makes use of the multi-task learning methodology to
improve its tracking performances in different domains. While the shared layers, are trained
in an offline fashion, the domain-specific layers are trained online. This results in a highly
accurate tracking system but the methodology is rather slow. This method is recommended
only if the accuracy of tracking is of much importance.

GOTURN [48] was an algorithm designed to improve the tracking speed while preserving
the accuracy of tracking. The CNN layers of GOTURN are pre-trained on sequences images
and video frames with bounding box annotations. These weights are frozen and used during
inference without online training. This enables the algorithm to reach speeds of up to 100
FPS. The overview of the GOTURN algorithm is shown in Fig.2.20.

2.7. Vehicle Speed Estimation 21

Figure 2.20: An overview of the GOTURN algorithm.[48]

2.7. Vehicle Speed Estimation
Visual speed estimation is done usually by tracking the objects through sequential frames.
The displacement of the objects in pixels per second is converted to an inertial frame of
reference using the camera’s estimated pose. Speed estimation of tracked objects is often
considered a sub-task when compared to object detection and tracking as it involves only
the conversion of the speed of the bounding boxes across the frames to inertial frame. Due
to this, it has been a neglected field in most traffic monitoring research pieces. The rise of
vehicle speed estimation can be traced back to the beginning of the rise of computer vision
applications for traffic monitoring. Most of the early methods involve using cameras mounted
on road infrastructures that monitor and track vehicles[104][133]. The drawbacks in these
methods is that they do not need to address the issue of a dynamic environment as the
camera is fixed. This issue was addressed by Jing Li et al.[61] where they estimated the
vehicle velocities from UAV video using motion compensations and priors. However, the
method was tailor made for nadir view video frames and ran at a low frame rate on a GPU
accelerated main-frame.

3
Vehicle Detection

The process of designing an end-to-end system pipeline that estimates the vehicle speed is
divided into three major divisions: Vehicle Detection, Tracking and Speed Estimation. This
chapter deals with the first step in the pipeline, that is vehicle detection. Object detection
problems vary in difficulty depending on the object and scene complexity, which entails that
the methods developed for object detection in ground context differs from that of aerial im-
agery.Therefore, there is a need to customize the object detector to extract the maximum
performance out of object detectors benchmarked on standard ground datasets. One of the
methods of customizing to boost performance is by training an object detector along with
a segmentation head with shared backbone parameters. This is called Multi-task Learning.
This chapter enumerates the process involved in building the custom object detector for ve-
hicles using the concept of multi-task learning.
In order to build the architecture for the multi-task network, a modular approach is used.
A broad template used to approach the architecture in a modular way is depicted in Fig.3.1.
This schematic shows the propagation of image data from left to right. The image is fed into
a backbone module which contains all the parameters that are shared between the object
detection and segmentation tasks. The function of a backbone module is to extract all the
features essential for both the tasks from the image and encode them into a lower dimen-
sional representation called the latent space. This latent space representation is then sent
to the task specific modules called heads, which contain parameters that are independent
of the other task parameters. These task heads interpret the latent space information and
present the required task outputs: detections and segmentation maps. Here it is aimed to
design the best possible backbone and head modules.
The designing process starts with finding a segmentation task head that is optimized for
speed and accuracy. Then the backbone and object detection task head are designed to pro-
vide maximum accuracy while managing real-time performance. The object detector and the
segmentation head are individually trained to make this choice before being trained together
using the multi-task methodology. The whole design is done keeping in mind that the final
implementation of the model should run on embedded platforms like NVIDIA Jetson Xavier
NX. The chapter begins with Section.3.1 that presents the choice of segmentation head for
the multi-task network and its comparison to other commonly used segmentation decoders
while section3.2 is where the choice of the object detector is presented for the detection task
and compared with other state-of-the-art algorithms. Section.3.3 finally combines both of
the choices and presents the improvement of performance. The chapter is concluded with
further improvement of performance by performing hyperparameter tuning using the method
described in section.3.4.

23

24 3. Vehicle Detection

Figure 3.1: An overview of the architecture template for the Multi-task network

3.1. Semantic Segmentation Head
We start with the process of choosing the semantic segmentation head. The role of the se-
mantic segmentor in this project is to provide contextual information to the object detector by
shared representation in the latent space. In order to maximize the detection performance,
there is a need for a semantic segmentor that efficiently classifies pixels into their respective
categories as well as recognize small scale objects in the images. However, the effectiveness
of a segmentation arm in a multitask network saturates after the segmentation reaches above
a certain level of accuracy as shown in [113]. These saturation points vary with the type of
tasks and the determination of this out of the scope of this research. An assumed saturation
point of 0.9 average dice coefficient was chosen based on an observation made that differ-
ences in the segmentation map was barely noticeable to the naked eye for models with dice
coefficient between 0.9 and 0.93. Therefore, the focus is to choose a segmentor that is small
but achieves a dice coefficient score of at least 0.9 on the test dataset. This approximation is
made under the assumption that higher accuracy levels focus on the fine details of the object
in question which is not helpful to the extent that affects the detector as the detector only
concerns itself with the location and size of the object and not the finer details like shape.

3.1.1. Model Architecture
The architecture for the segmentation is presented in table.3.2. This architecture is inspired
by ENet proposed by Adam Paszke et al. [90] however, it is modified to get better results on
the current problem statement. This is done mainly for the reason that the original ENet (Ta-
ble.3.1) contains a very long backbone that consists of many atrous (or dilated) convolutional
layers which results in a latent space that has a larger spatial dimension which is quickly
and efficiently scaled up by a smaller decoder to generate a segmentation map. However, the
object detector’s latent space is much smaller than the one generated by the original ENet
which requires some additional modification to the original architecture.
The encoder is not much in focus here as for the multi-task network, only the decoder

is used as a branch from the object detector’s backbone. For the sake of comparison, the
MobileNetV3Small[50] is used as a common encoder here. The decoder network consists of
bottleneck modules which have two branches: a branch that have convolutional layers and
a main branch that merges with the first branch using element-wise addition.
Bottleneck:A bottleneck(Fig.3.2) in the context of deep learning, is a layer or a group of lay-
ers that reduces dimensionality of data. Bottleneck modules such as these help in forcing
the backbone to retain only essential features as passing them along to the next layer which
improves efficiency. In an ENet decoder bottleneck, the dimensionality is first reduced and
then increased again using a deconvolutional layer. Each bottleneck module contains 3 con-
volutional layers. The first one is a 1×1 layer which reduces the spatial dimension of the input
feature map. The second is the main convolutional layer which is a deconvolutional layer and
finally, a 1×1 projection is used for expansion. A Batch Normalization[51] and PReLU[44] is
placed between all convolutional layers in the bottleneck. The activations are zero-padded to
match the number of feature maps. The regularizer used is the Spatial Dropout[114], with
𝑝 = 0.1. The bias term in the 1×1 layers are not used in order to limit the calls to the ker-
nel, resulting in faster computations. This is because cuDNN [20] uses separate kernels for

3.1. Semantic Segmentation Head 25

Name Type Output size
initial 16 × 512 × 512
bottleneck1.0 downsampling 64 × 128 × 128
4× bottleneck 1.x 64 × 128 × 128
bottleneck2.0 downsampling 128 × 64 × 64
bottleneck2.1 128 × 64 × 64
bottleneck2.2 dilated 2 128 × 64 × 64
bottleneck2.3 asymmetric 5 128 × 64 × 64
bottleneck2.4 dilated 4 128 × 64 × 64
bottleneck2.5 128 × 64 × 64
bottleneck2.6 dilated 8 128 × 64 × 64
bottleneck2.7 asymmetric 5 128 × 64 × 64
bottleneck2.8 dilated 16 128 × 64 × 64
Repeat stage 2, without bottleneck 2.0
bottleneck4.0 upsampling 64 × 128 × 128
bottleneck4.1 64 × 128 × 128
bottleneck4.2 64 × 128 × 128
bottleneck5.0 upsampling 16 × 256 × 256
bottleneck5.1 16 × 256 × 256
fullconv 𝐶 × 512 × 512

Table 3.1: The original architecture of ENet proposed by Pazke et al. [90]. The number adjascent to the bottleneck module
represents the stage which the bottleneck module belongs to.

convolution and bias addition. Also on the single main branch, Max Unpooling layers and
spatial convolution layers are used in the decoder. A bare regular convolutional layer is used
as the final output layer with 𝐶 feature maps (12 in the case of Aeroscapes dataset).
The main modifications made on the ENet module are:

• Two additional upsampling bottleneck modules are introduced in the first stage of the
decoder(bottlenecks 4.1 and 4.2) to compensate for the increase in the latent space
dimensionality due to the lack of dilated convolutions in the backbone.

• 3 skip connections are introduced from the backbone to the outputs of bottlenecks
4.0, 4.2 and 5.0 respectively to enable learning of smaller scale features (as used in
UNet[100])

Figure 3.2: ENet bottleneck module

26 3. Vehicle Detection

Name Type Output size
MobileNetV3Small Backbone/Encoder 16 × 16 × 576
bottleneck4.0 upsampling 32 × 32 × 256
Concatenate skip connection from backbone 32 × 32 × 544
bottleneck4.1 upsampling 64 × 64 × 128
bottleneck4.2 upsampling 128 × 128 × 64
Concatenate skip connection from backbone 128 × 128 × 136
bottleneck4.3 128 × 128 × 64
bottleneck4.4 128 × 128 × 64
bottleneck5.0 upsampling 256 × 256 × 16
Concatenate skip connection from backbone 256 × 256 × 32
bottleneck5.1 256 × 256 × 16
Deconvolution 512 × 512 × 𝐶

Table 3.2: Architecture of the Modified ENet for semantic segmentation. 2 additional bottleneck modules are introduced in
stage 4 of the decoder along with 3 skip connections from the encoder (additional modules are highlighted)

3.1.2. Dataset preparation for Multi-class Semantic Segmentation
Supervised Learning method in Deep learning algorithms require training, validation and
testing data. Most of the algorithms require a large number of training examples with good
degree of context variety to effectively generalize the task at hand and prevent data overfit-
ting.
Though multi-class segmentation is mainly used in this project as a performance enhance-
ment technique for the object detector, a good segmentor can be instrumental in maximizing
the potential of the object detector.
Semantic Segmentation has seen great improvements in the context of ground images but
the scarcity of aerial datasets has highly limited the progress in developing methods for aerial
images. A few well known aerial image semantic segmentation datasets are Inria Aerial Image
Labeling Dataset [72], DLR-SkyScapes [2], Air-Ground-KITTI [76]and UAVID [71].However,
in the context of aerial traffic monitoring, there are a few constraints that need to be taken
into consideration.

• Altitude: As the system is designed to be implemented on a Hybrid-VTOL drone, the im-
ages should be captured between 20m and 150m (maximum allowed operating altitude
by the Dutch Government[118]). This constraint eliminates most of the aerial images
taken from an airplane and satellite images.

• Number of Classes: Higher the number of classes, greater the contextual awareness the
object detector can learn. With this in mind, a minimum of 5 annotated classes are set
as a requirement. This eliminates datasets with only road and/or buildings segmented.

• Viewing Angle: A charter on Drone Regulations by the Dutch Government states ”the
flight is not performed over areas of contiguous buildings or structures, including industrial
and port areas, or over crowds of people or over railway tracks or paved public roads
accessible to motor vehicles”[118]. This essentially renders all orthographic-only image
datasets unusable in our context. There for only datasets that view the scene in a rough
isometric as well as orthographic view would be used.

These constraints deplete an already scarce pool of candidate datasets. However, there are a
few multi-class segmentation datasets that fall into this category which can be used to design
and fine-tune a segmentor.
The Aeroscapes[82] dataset is an aerial semantic segmentation benchmark which is collected
using a DJI Phantom3 fleet of drones between the altitudes of 5 and 50m. The dataset
consists of 3269 720p non-sequential images and their respective 11 class annotations. The
dataset is split in the ratio of 70:20:10 as training, validation and testing datasets. In other
words, 2288 training samples, 654 validation samples and 327 test samples.

Once the design dataset is finalized, the data is prepared for training. The following steps
are taken to prepare the data for training.

3.1. Semantic Segmentation Head 27

Figure 3.3: Sample images from the Aeroscapes dataset along with the annotation visualization [82]

• Image Resize: As a full-size (1280×720 pixels) requires a great amount of computa-
tional power during training, the image is resized to a respectable 512×512 and higher
resolution images can be processed during inference by sliding a 512×512 window
over the image. The resizing is done without affecting the aspect ratio by employing
a method called letterboxing. This resizes the image to a desired dimension without
loosing the aspect ratio (which holds a lot of object characteristics information) and fill-
ing the resulting empty pixels with a grey color. However, it should be noted that the
resizing essentially increases the Ground Sampling Distance(GSD) (the distance on the
ground the corresponding pixel on the image covers). This makes it difficult to identify
the objects when the UAV altitude for inference is outside the range trained using the
Aeroscapes dataset. This issue is resolved by using the previously mentioned sliding-
window method to splice large images to smaller chunks which preserves the GSD.
Thus, the model trained with 512×512 images can easily be used to infer larger image
sizes.

• Normalization: Image Normalization is an important step in semantic segmentation
as this process ensures that the pixel intensity and channel values have a similar
data distribution throughout the image and the dataset. It is performed by finding
the pixel-wise difference of the value and the global average of the pixels and then
dividing it by the standard deviation of the original pixel values. It essentially con-
verts an image of N channels: 𝐼 ∶ {𝕏 ⊆ ℝ፧} → {Min, … ,Max} to a normalized image
𝐼ፍ ∶ {𝕏 ⊆ ℝ፧} → {NewMin, … ,NewMax} with pixel intensities ranging from (Min,Max) and
(NewMin,NewMax) respectively, using eq.3.1.

𝐼ፍ = (𝐼 −Min) newMax − newMin
Max−Min

+ newMin (3.1)

• One-hot Encoding: As annotations are mainly done by humans as of now, these an-
notations are usually done with different colors(which often fall in a finite set). These
colors represent which class a pixel at that location in the original image belongs to. As
humans, it is trivial to understand this type of classification. However, these annota-
tions are not machine-readable. A neural network algorithm can understand 1s and 0s.
Hence, we apply color mask to each of the colors corresponding to their respective class
and extract a binary image for each of the classes. This will transform a 512×512×3
annotation into a 512×512×12 encoded annotation, where 12 is the number of classes.

28 3. Vehicle Detection

It must be noted that Normalization is not applied to the annotations as the color value
of the annotation changes that would affect the one-hot encoding process. However, all
non spectral transformations on the original image must be reflected in the annotation
too.

3.1.3. Training
The architecture was trained with the following model settings set:

• Batch Size: 5

• Number of Epochs: 250

• Optimizer: ADAM

• Loss Function: Tversky Loss[103]

• Initial Learning Rate: 1 × 10ዅኽ

• Learning Rate Decay factor: 0.5 with a patience of 5 epochs

These setting values are chosen based on default settings used by Keras[22] platform and
are not tuned to work on this task. The technical hardware and software specifications are
listed below:

• Training System Specification: Intel Xeon Processor with 12 GB NVIDIA Titan Xp
GPU

• Software Packages:Keras with Tensorflow 2 backend (Python3.7)

• Evaluation Speed Bottleneck: 1.8 GHz Intel Core i5

As it is has been shown to prevent overfitting due to dataset imbalance, the loss function
used is the Tversky Loss[103] function. This function is based on the Tversky index[115]
which is defined as:

𝑆(𝑃, 𝐺; 𝛼, 𝛽) = |𝑃𝐺|
|𝑃𝐺| + 𝛼|𝑃\𝐺| + 𝛽|𝐺\𝑃| (3.2)

Where P and G are predicted and the ground truth segmentation maps respectively and 𝛼
and 𝛽 control the penalties of False Positives and False Negatives respectively. Based on this,
the tversky loss function is formulated as:

𝑇(𝛼, 𝛽) =
∑ፍ።ኻ 𝑝ኺ።𝑔ኺ።

∑ፍ።ኻ 𝑝ኺ።𝑔ኺ። + 𝛼∑
ፍ
።ኻ 𝑝ኺ።𝑔ኻ። + 𝛽∑

ፍ
።ኻ 𝑝ኻ።𝑔ኺ።

(3.3)

Where 𝑝ኻ። is the probability that the pixel does not belong to the particular class and 𝑝ኺ። is the
probability that the pixel belongs to the particular class. The values of 𝛼 and 𝛽 were chosen
to be 0.3 and 0.7 as per the original paper.

Further the evaluation is done on the test dataset using the Dice Similarity Coefficient
measure which is defined as:

𝐷(𝑃, 𝐺) = 2|𝑃𝐺|
|𝑃| + |𝐺| (3.4)

3.1.4. Results and Discussion
The trained model is evaluated against other commonly used semantic segmentation models
like SegNet[4], UNet[100] and the parent ENet[90]. As the decoder is the part of the model
being evaluated, MobilenetV3Small[50] is used as a control backbone across all the tested
models. This choice was made with the sole purpose of speeding up the training time and
reducing GPU load. The models were evaluated on a CPU which served as the speed bot-
tleneck which helped determine its suitability to be deployed on mobile platforms without
GPU accelerated computing. SegNet[4] provided a very poor processing speed benchmark
during the evaluation. This is attributed to the large memory requirement of the network .

3.1. Semantic Segmentation Head 29

Decoder Average Tversky Loss Average Accuracy Average Dice Coefficient FPS
Segnet[4] 23.15 0.8697 0.8968 -
U-Net [100] 23.115 0.9004 0.9208 2.3
ENet [90] 23.141 0.874 0.9019 4.1

Modified ENet 23.149 0.8855 0.9117 3.2

Table 3.3: Comparison of the Modified ENet with other commonly used segmentation models.The speed was benchmarked on
an Intel i5 CPU

However, this network despite its slow segmentation, provides a good accuracy which helps
set a benchmark to compare the other algorithms to. U-Net and ENet comparable in terms
of performance by the fact that U-Net is able to capture small-scale features due to the skip
connections from the encoder where as the ENet is able to scale up the image from the latent
space with a small but efficient decoder which speeds up the inference time.

The skip connections introduced in the modified ENet decoder enables the model to rec-
ognize objects in small scale even with low resolutions like 512×512, which can be evident
from the Figures 3.4 and 3.5. Table 3.3 shows that with a little sacrifice of frame rate, the
modified ENet model gives an average Dice Coefficient of just above 90%. This drop in la-
tency would not be of any consequence if the decoder is only used to boost object detection
performance during training and later decoupled during inference. This decoder architec-
ture is shallow when compared to the state-of-the-art, however, as discussed earlier, the
performance of it would provide a reasonable guide for the object detector backbone to learn
contextual information in an efficient way.

Figure 3.4: ENet decoder with MobilenetV3Small backbone

30 3. Vehicle Detection

Figure 3.5: Modified ENet decoder introduced in this research with MobilenetV3Small backbone

3.2. Object Detection Head
Object Detection research in the past years has focused more on improving accuracy on
carefully curated datasets at large costs of computational resources and time. However,
recently, this trend has been shifting towards faster detection speeds while maintaining the
accuracy levels. Recent one-stage detectors have shown promise in high-accuracy and low-
latency detection with successful implementation on mobile platforms like NVIDIA Jetson
TX2 and Xavier NX.

3.2.1. Model Architecture
YOLOv4 [12] is the obvious choice of detector as it is currently the state-of-the-art real-
time object detector which has been shown to reach two-stage detector level accuracy with
significantly lower computational cost. The Darknet implementation of YOLOv4 on the Jetson
Xavier NX runs at around 8 FPS and at 2 FPS on the Jetson Nano on a 512x512 frame size.
The research customizes a light version of YOLOv4 that has at least achieve 20FPS with
a good and usable accuracy on the Jetson NX. YOLOv4 architecture is split into 3 parts:
Backbone, Neck and the head.

Backbone
The YOLOv4 uses a CSPDarknet53[121] backbone which was shown to be the backbone
that most effectively captures features for object detection [12]. This backbone consists of
two modules: Space-to-Depth Transformation and the CSP Bottleneck module.

• Space-to-Depth Transformation: Thismodule is inspired by input procedure described
in TResNet[99] (dedicated to improving GPU inference throughput). The paper argues
that as most neural networks aim to quickly reduce the input dimensions at the ini-
tial layers, this can be efficiently achieved by using a Space-to-Depth Transformation
layer which arranges blocks of spatial data into depth.This results in the transforma-
tion of data from the form [𝑏, ℎ, 𝑤, 𝑐] → [𝑏, ℎ/2, 𝑤/2, 4𝑐]. Where 𝑏 is the batch size, ℎ is the
height of the images, 𝑤 is width and 𝑐 is the number of channels of the image. This is
followed by a simple 1×1 Conv layer to match channel depth of the network. This type
of dimensionality transformation resulted in 4.2% increase in computational speed on
ResNet50 backbone with 0.1% increase in the Top-1 accuracy.[99]

• Cross-Stage Partial Bottleneck: The Cross-Stage Partial(CSP) Bottleneck is designed
based on the CSPNet [121] which was proposed as a network that respects the vari-
ability of the gradients by integrating feature maps from the beginning and the end of a
network stage, which reduces computations by 20% without any detrimental effect on
the accuracy. A CSP block integrated with a residual block of Darknet53 architecture
is visualized in Fig.3.6

3.2. Object Detection Head 31

Figure 3.6: Integration of CSP module with a native Darknet53 Residual block

Name Times Repeated Filter size
Input 1 -
Space-to-Depth 1 64
Conv 1 128
BottleneckCSP 1 128
Conv 1 256
BottleneckCSP 3 256
Conv 1 512
BottleneckCSP 3 512
Conv 1 1024

Table 3.4: The architecture of the lite version of the CSPDarknet53 backbone

The custom light CSPDarknet53 obtained by reducing the number of convolutional residual
blocks of the Darknet53 and replacing them by BottleneckCSP modules. Though the number
of convolutional layers are almost the same, the CSP blocks have higher inference speed as
compared to the native convolutional-residual blocks of Darknet53. The standard convolu-
tional block (convolutional layer+batch normalization) and the BottleneckCSP modules are
placed in an alternating way to optimize speed and accuracy of the standard and bottleneck
layers as per BlockType selection experiments by Ridnick et al.[99]

Detection Head: YOLO Neck and Head
The complete detection head consists of 2 parts:The YOLOv4 Neck and the YOLOv3 Head.
The neck consists of the following modules: Path-Aggregation Network or PANet[66] and
Spatial Pyramid Pooling Module or SPP[45]. The function of the neck is to combine various
scales of features that are generated in the different levels of the backbone. This is done by
attaching an SPP module to the backbone in order to increase the receptive field and choose
the most important features from the backbone. These features are then fed to the PANet that
does the feature aggregation(Fig.3.7). The YOLO head generates detections from the multi-

Figure 3.7: The original PANet that is used as a feature aggregator in the architecture.[66]

32 3. Vehicle Detection

level aggregated features generated by the PANet. The head used is the same head used by
YOLOv3[96]. The PANet generates 3 levels of features of size 13x13, 26x26, and 52x52. The
head divides these features into a grid of 9 cells each. Then, there are anchor boxes assigned
to each grid cell in each level. There are 9 different anchor boxes defined, each with its own
aspect ratio with each feature level being assigned 3 anchor boxes. The anchor boxes that
are closest to the ground truth are retained and rest are discarded during the inference by
the process called non-maximum suppression.

Figure 3.8: Examples of Anchors and how they are initialized on to grid cells(black)

3.2.2. Dataset preparation for Object Detection
As the task requirements dictate to perform multi-task training for both multi-class semantic
segmentation and object detection of class vehicles, a dataset with both task annotations are
required. However, keeping view of the constraints discussed in 3.1.2, there are no available
datasets with multi-class semantic segmentation as well as vehicle detection annotations on
the same training image. Thus the Aeroscapes dataset was annotated for vehicle class using
the existing multi-class segmentation ground-truth visualization.

The steps involved in the automatic label generation methodology is enumerated below:

1. A training image is retrieved from the dataset and its corresponding label visualization
image is taken in for processing.

(a) The training image sample from Aeroscapes [82] (b) Multi-class segmentation ground truth visualization

2. The colour ID (R,G and B values) of the vehicle class is extracted from the class dictio-
nary (Grey[128,128,128]) and a binary color mask is generated(Fig.3.10) that isolated
vehicle class pixels. The binary image is then eroded with a kernel of size 10 pixels by
10 pixels so that nearby car classes do not fuse and merge into a single blob.

3. The contour is extracted from the resultingmask using the computational edge detection
method proposed by J.Canny [16]. The threshold range for this is set between 1 and
2. A padding of thickness 1 pixel is recommended in order to obtain a complete closed
contour when the object to be annotated is at the edge of the image. Multiple contours
are extracted in case of multiple object instances.

4. Once the contour is extracted, a bounding box can be fit over this contour by finding
the xmin,ymin,xmax and ymax of each contours(1 here) in the image.

3.2. Object Detection Head 33

Figure 3.10: Generated color mask

Figure 3.11: Canny-Edge Contour

5. Once the bounding boxes are extracted, the box information can be written into the
annotation file in either PASCAL VOC format or YOLO format.

There are a few images in the dataset where the vehicle instances are clustered together
which shows up as a big blob in the segmentation visualization. These images were manually
annotated in the same format as the automatic method.
Once all of the data is annotated and verified, dataset augmentation techniques are used
to balance the dataset. These methods have been heavily inspired by the Bag-of-Freebies
introduced in [12], which essentially refers to a set of techniques which improves the model’s
generalizing ability. The geometric transformations performed on the images are replicated
on the annotations but the spectral transformations are only performed on the images. The
augmentation is performed for each pass through the dataset which results in a different
dataset being trained during each forward pass.

The following image augmentation techniques are used to prepare the data for training:

• Letterbox Resize: As explained in section.3.1.2, letterboxing resizes the image while
maintaining the aspect ratio of the image which makes sure that the image objects are
not distorted by the resizing. This is applied to all the images uniformly.

• Random Resize and Crop: Training images are randomly chosen and are reshaped to a
random aspect ratio. The image is then cropped to the target image size (512×512).

• Probabilistic Horizontal Flip: The training images are chosen and flipped about the y-axis
based on a pre-defined probability.

• Random Brightness: The intensity of each pixel changed uniformly across the image by
a random level.

34 3. Vehicle Detection

(a) The estimated box fit on the label visualization (b) The estimated box translated onto the original image

• Random Color Level Adjustment: The chroma of an image is enhanced by a random
value.

• Random Contrast: A random contrast value is randomly applied to a randomly chosen
image

• Random Sharpness: A random sharpness value is randomly applied to a randomly cho-
sen image

• Random Grayscale: A randomly chosen images is converted to a 3-channel grayscale
image.

• Probabilistic HSV Distort: The hue,saturation and value of all the pixels are changed by
a set of probabilities.

• Random Mosaic Augment: The mosaic augmentation technique arranges 4 different im-
ages, at different scales, into a single one that encourages the model to learn small
scale features and also helps it to generalize the variations present in the images. This
method was introduced in the YOLOv4 paper [12].

Figure 3.13: Mosaic data augmentation introduced in YOLOv4 [12]

Other image augmentation methods introduced in [12] like Vertical Flip, Shear and MixUp
essentially generates images that have negligible chance of being observed in reality and
hence were not implemented. Vertical flip augmentation does not make sense to include
unless the UAV is acrobatic in nature and ends up flying up-side-down. Shear augmentation
modifies the aspect ratio of the vehicle which does not reflect the reality of how vehicles look
in the wild. Finally, MixUp augmentation mixes up two images by changing the transparency
of one and overlaying it on the other. This was introduced to improve multi-class detections
of the original model benchmarked on PascalVOC and MSCOCO datasets. This does not
make sense in this research context as there is only one class.
Apart from data augmentation, a set of anchor boxes have to be determined for a particular

3.2. Object Detection Head 35

dataset to be able to effectively detect objects. Anchor boxes are defined by their width and
height parameters, and these boxes generate region proposals for the object through out the
image in the last layers of the detector. The k-means clustering methodology is generally used
to determine the anchor boxes.
The following algorithm is used to determine the anchors:

• Step 1 :The algorithm generates a TXT file containing the position of the anchor box, each
of which contains (𝑥፣ , 𝑦፣ , 𝑤፣ , ℎ፣) , 𝑗 ∈ {1, 2, … , 𝑁} that is, the coordinates of the annotated
boxes with respect to the original image, where (𝑥፣ , 𝑦፣) is the centre of the box and (𝑤፣ , ℎ፣)
is the width and height of the box respectively and N is the number of all the label boxes.

• Step 2 : First give k cluster center points,(𝑊። , 𝐻።) , 𝑖 ∈ {1, 2, … , 𝑘} , where 𝑊። and 𝐻። are the
width and height of the anchor boxes. Since the anchor boxes are not fixed, there is no
(x, y) coordinates, only width and height.

• Step 3 :Calculate the distance d=1-IOU (labeling box, cluster center) of each label box
and each cluster center point. When calculating, the center point of each label box
coincides with the cluster center, so that the IOU value can be calculated.

𝑑 = 1 − 𝐼𝑂𝑈 [(𝑥፣ , 𝑦፣ , 𝑤፣ , ℎ፣) , (𝑥፣ , 𝑦፣ ,𝑊። , 𝐻።)] , 𝑗 ∈ {1, 2, … , 𝑁}, 𝑖 ∈ {1, 2, … , 𝑘} (3.5)

Assign the anchor box to the nearest cluster center of Distance.

• Step 4 :After all the label boxes are allocated, the cluster center point is recalculated for
each cluster using the formula below.

𝑊ᖣ
። =

1
𝑁።
∑𝑤። , 𝐻ᖣ። =

1
𝑁።
∑ℎ። (3.6)

Where 𝑁። is the number of label boxes of the i-th cluster, which is the average of the
width and height of all the label boxes in the cluster.

• Step 5 :Repeat steps 3 and 4 until the cluster center has a small amount of change.

Once the anchor sizes are determined, the data is ready for training. Both the data prepa-
ration method, for the segmentation and detection, is combined in order to prepare the data
for the multi-task training. The dataset is split just as it was done for segmentation in the
ratio of 70:20:10 as training, validation and testing datasets. In other words, 2288 training
samples, 654 validation samples and 327 test samples. However, the test data is expanded
further using the SODA Test Dataset.

SODA Test Dataset
Defining a test dataset as a subset of the aeroscapes dataset makes sense from a qual-
itative evaluation standpoint. However eventually, the designed system is planned to be
implemented on the DeltaQuad drone(Fig.3.14) which uses a Sensefly SODA camera to cap-
ture images. The SODA dataset contains 52 images taken at 30,60 and 120m altitudes at
5472×3648 resolution using the DeltaQuad UAV. The images in the dataset were manually
annotated for cars using the LabelImg tool[116].

3.2.3. Training
The primary focus after deciding the model architecture is to choose the loss functions in-
volved in training and the hyperparameters. The loss used in the training of the object
detector comprises of a combination of three different loss functions used to achieve their
respective objectives. They are namely: Confidence loss, Class loss and Location loss. The
choice of loss functions for each of the losses are discussed as follows:

• Confidence Loss: The Focal loss function[65] is used to obtain the confidence loss
as it has been proven to be effective in handling the class imbalance problem.This is

36 3. Vehicle Detection

Figure 3.14: SenseFly SODA camera(left) and the DeltaQuad on which it is mounted(right)

formulated as a weighted cross-entropy function. The standard cross-entropy function
can be written as follows

𝐶𝐸(𝑝, 𝑦) = { − log(𝑝), 𝑦 = 1
− log(1 − 𝑝), otherwise (3.7)

Where 𝑝 is the predicted output and 𝑦 is the ground=truth label. A simplified modifica-
tion of this can be written as

𝑝፭ = {
𝑝, 𝑦 = 1

1 − 𝑝, otherwise (3.8)

𝐶𝐸(𝑝, 𝑦) = 𝐶𝐸 (𝑝፭) = − log (𝑝፭) (3.9)
An additional 𝛼 term is added to eq.3.9 to account for the class imbalance. It is a
hyperparameter which can be used with the CE loss for cross-validation. 𝛼፭ is the
weight term that assumes the value of 𝛼 for the positive value of class and 1 − 𝛼 for the
negative value of class.

𝛼፭ = {
𝛼, 𝑦 = 1

1 − 𝛼, otherwise
𝐶𝐸 (𝑝፭) = −𝛼፭ ∗ log (𝑝፭)

(3.10)

However, eq.3.10 only takes into account the class positivity. A final modification is
done to this function to take hard and easy samples into account during training.

𝐹𝐿 (𝑝፭) = −𝛼፭ (1 − 𝑝፭)᎐ log (𝑝፭) (3.11)

Where 𝛾 is the relaxation parameter.

• Location Loss: The most commonly used location loss functions are the ℓኻ norm and
the ℓኼ norm. However, these loss functions have been shown to be unreliable due to the
reliance on distance measure more than the degree of overlap as evidenced by fig.??. It
is generally common practice to train with norm function losses and Intersection over
Union (IOU) is used to evaluate the overlap quality of each of the predicted bounding
boxes. However, IOU cannot be used as a loss function due to two reasons. The IOU
does not discriminate between predictions that are closer to the ground truth when there
is no overlap. Secondly, the backpropagation algorithm requires that the loss function
be differentiable throughout its domain. This is not possible in the case of IOU where
no gradient can be obtained when there is no overlap and there exists a sharp corner
at the point of first overlap.
To counter this drawback, Rezatofighi et al. proposed a new loss function called the
Generalised Intersection over Union (GIoU)[98], which is formulated as follows.

𝐺𝐼𝑜𝑈 = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| −

|𝐶\(𝐴 ∪ 𝐵)|
|𝐶| = 𝐼𝑜𝑈 − |𝐶\(𝐴 ∪ 𝐵)||𝐶| (3.12)

3.2. Object Detection Head 37

(a) Example of situations where the ፥ኻ loss is the same
with different IOU and GIOU score

(b) Example of situations where the ፥ኼ loss is the same
with different IOU and GIOU score

Figure 3.15: Evidence of the reason many neural-network based object detectors fail when using ፥ኻ or ፥ኼ loss functions [98]

Where 𝐴 and 𝐵 are the prediction and ground truth bounding boxes. 𝐶 is the smallest
convex hull that encloses both 𝐴 and 𝐵. Fig.3.16 shows that the GIoU loss function

Figure 3.16: GIoU loss vs IoU with varying overlap [98]

is differentiable everywhere even when there is no overlap. It can be seen that GIoU
falls in the range [-1, 1] and the negative values occur when the area enclosing both
bounding boxes,𝐶, is greater than IoU. As the IoU component increases, the value of
GIoU converges to IoU.

• Class Loss: As there are only 1 class of object in the research scenario, the class loss
is calculated by a simple binary cross-entropy function.

These losses are added with equal weighting to obtain a final loss value which the optimizer
tries to minimize.

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠 = (giou × 𝐺𝐼𝑜𝑈) + (obj × 𝐹𝐿) + (cls_pw × 𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑠𝑠) (3.13)

Once the losses are decided, the model training settings are declared before training.The
architecture was trained with the model settings used for the original YOLOv4 model:

• Batch Size: 4 (Minimum for the Mosaic Data Augmentation)

• Number of Epochs: 250

• Optimizer: ADAM

• Initial Learning Rate: 1 × 10ዅኼ

• Learning Rate Decay factor: 0.5 with a patience of 5 epochs

The technical hardware and software specifications are listed below:

38 3. Vehicle Detection

• Training System Specification: Intel Xeon Processor with 12 GB NVIDIA Titan Xp
GPU

• Software Packages:Keras with Tensorflow 2 backend (Python3.7)

The custom lite-version of the CSPDarkNet53 was first trained on the ILSVCR ImageNet[59]
dataset with a classifier head. This dataset with annotations for 1000 classes, consists
of around 14 million images of varying sizes and the average resolution was found to be
469×387. The training was performed on the cloud system, by Google called Colaboratory,
for 200 epochs. This is done so that a basic representation of common visual objects are
encoded into the latent space which would serve as a guide to training the full network.
Once the weights are finalized for the backbone, the classifier head is replaced by the YOLOv4
neck and head. For the first 20 epochs of training, the weights of the backbone were frozen
and only the head is trained. After 20 epochs, the backbone is unfrozen and the whole net-
work is trained to fine-tune the accuracies. This training strategy is used to stabilize the
losses and to prevent division by 0 errors that frequent when training on non-standardized
datasets like Aeroscapes.

3.2.4. Results and Inference

(a) Example of a large-scale detection

(b) Example of multiple scales in a single image

(c) Examples of different vehicle types

Figure 3.17: Example detections from the test dataset

3.3. Multi-task Learning 39

Model Backbone mAP@0.5 No. of Parameters FPS

YOLOv4[12]

CSPDarkNet53 (Lite) 0.8073 27.4M 43.88
CSPDarkNet53[12] 0.8172 37.3M 31.19
EfficientNet(B1)[112] 0.824 58.6M 22.72
MobileNetV3[50] 0.746 29.13M 41.5

MobileNetV3Small[50] 0.694 11.6M 57.13
TinyYOLOv4
(Custom)

EfficientNet (B1)[112] 0.7082 27.42M 37.2
MobileNetV3 Small[50] 0.6733 5.41M 110.11

Table 3.5: Results of YOLOv4 and Custom Tiny-YOLOv4 with different backbones and evaluated on 10% set of Aeroscapes
images resized at 512×512 resolution.The evaluation was bechmarked on a single NVIDIA Titan Xp GPU with CUDA 10.1.

Output models are in the Keras model format.

The trained network is evaluated on the images from the SODA dataset which were not
used for training. Evaluation is done by calculating Mean Average Precision (mAP). mAP for
general object detection is formulated as follows:

𝑚𝐴𝑃 = 1
∣ classes ∣ ∑

∈classes

𝑇𝑃(𝑐)
𝑇𝑃(𝑐) + 𝐹𝑃(𝑐) (3.14)

Where TP stands for total number of true positive in the evaluation batch and FP stands for
the total number of false positives in the evaluation batch. As the current research scenario
has only one class, this equation boils down to:

𝑚𝐴𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (3.15)

This evaluation metric works well in classification problems however in a detection prob-
lem, mAP is related to the IoU threshold. A detection is classified as true positive if the IoU
score of the predicted bounding box and the ground truth are above the declared IoU thresh-
old.Here, the IoU threshold was set at 0.5. The detection speed evaluation was performed on
an NVIDIA Titan Xp GPU on the same evaluation dataset. The speed of detection as well as
the time taken for Non-Maximum Suppression (NMS) is accounted during the frame speed
calculations. The YOLOv4 with the modified backbone is compared with other backbones
which are commonly used and also with a custom built tiny version of YOLOv4 following the
model ablation techniques used to design tiny-YOLOv3. The result for the evaluations have
been tabulated in Table.3.5.

It can be observed that the modified CSPDarknet53 backbone has reduced the size of
the model by 31.1% and increased the inference speed by 38% when compared to the orig-
inal YOLOv4 architecture at a low cost of mAP. The EfficientNet backbone gives the maxi-
mum mAP for the Aeroscapes dataset however, the model size is above 250 megabytes which
makes it hard to deploy on a mobile platform. The custom designed Tiny YOLOv4 provides
small models with high inference speed which make it attractive for deployment on low-
computational platforms however, the modified CSPDarknet53 model is shown to perform
slightly faster than the best performing tiny-YOLOv4 model with much higher mAP.
In conclusion, themodified CSPDarknet53-YOLOv4 achieves 2 times the computational speed
than the model with the highest accuracy (YOLOv4 with EfficientNet backbone) with a small
sacrifice of mAP score which makes it an optimal choice for the object detection arm of the
multi-task network.

3.3. Multi-task Learning
Now that we have the choice of the best model architectures for both object detector and the
segmentation head, we combine the both architectures to enable multi-task learning.
The contextual information provided by the semantic segmentation is very useful in locating
instances of objects in an image frame. Multi-task Learning is a training strategy that exploits
the features extracted for one task to perform a related task or tasks. This is done by the

40 3. Vehicle Detection

concept of parameter sharing where two or more tasks share the same feature extractor and
negotiates the trainable parameters within the shared network. There are two main types of
parameter sharing architectures: Hard-parameter sharing and Soft-Parameter sharing. In
Hard-parameter sharing, a set of parameters mainly in the hidden-layers are shared between
two ormore distinct but related tasks. However, in soft parameter sharing, the layers of all the
tasks are kept separate while regularizing interconnections between the hidden layers of the
tasks encourage the parameters of the layers to obtain similar values . The hard parameter
sharing methodology is used to build the architecture in this research as it is known to greatly
reduces the risk of overfitting. Baxter et al. [6] showed the risk of overfitting reduces by the
order of the number of tasks sharing a set of parameters. This is intuitive as higher number
of tasks forces the model to find a parameter value that produces satisfactory representation
that makes sense to all the other tasks simultaneously. This results in a lower chance of
the model overfitting to any one task. The following sections discusses the methodology of
combining two related tasks discussed in previous sections: Object Detection and Semantic
Segmentation.

3.3.1. MultEYE Model Architecture
The model for implementing a multi-task learning system would be a conglomeration of the
semantic segmentation and the vehicle detection. The backbone used for this network is the
same as the one used for the vehicle detection. This choice is made because vehicle detection
is the focus of this research and a backbone enabling a good vehicle detection is of greater
importance than the one designed for semantic segmentation.Therefore, the vehicle detection
head and the semantic segmentation decoder are used with themodified CSPDarkNet53 or
CSPDarkNet53(Lite) backbone.The same backbone used in sec.3.2.1.
A major addition to the architecture that is not seen in the respective individual task ar-
chitecture is that the loss is calculated as a layer.In other words, the losses are calculated
within the architecture. This entails that the losses of each tasks are combined and the ar-
chitecture’s output is this combined loss. This implemented because it was observed during
experiments that the Keras[22] platform tries to minimize the output when using a custom
layer using the lambda function which is used to define the YOLOv4 post-processing head.
This was also required for the segmentation decoder when training it with the multi-task
strategy. The complete architecture can be visualized in Fig.3.18.
It can be observed that the training architecture accepts the training image as the input.
The detection ground truth and the corresponding segmentation ground truth are given to
the network as auxiliary inputs only for the purpose of calculating the corresponding losses.
These losses (segmentation and detection) are added to produce output of total loss, which
is minimized during training. However, the ground truth inputs and loss layers are stripped
from the architecture during inference. This multi-task model is namedMulti-task Entwined
YOLO and ENet(MultEYE) for reference in the rest of the report.

Figure 3.18: Vizualization of the MultEYE

3.3. Multi-task Learning 41

Model Backbone mAP@0.5% No. of Parameters FPS
MultEYE* CSPDarkNet53(Lite) 0.834 12.4M 43.5
MultEYE CSPDarkNet53 (Lite) 0.834 27.5M −

YOLOv4[12]

CSPDarkNet53 (Lite) 0.8073 12.4M 43.88
CSPDarkNet53[12] 0.8172 37.3M 31.19
EfficientNet(B1)[112] 0.824 58.6M 22.72
MobileNetV3[50] 0.746 19.13M 41.5

MobileNetV3Small[50] 0.694 11.6M 57.13
TinyYOLOv4
(Custom)

EfficientNet (B1)[112] 0.7082 27.42M 37.2
MobileNetV3 Small[50] 0.6733 5.41M 110.11

YOLOv3[95] Xception[21] 0.7625 42.53M 20.8
SSD[68]
(300x300)

VGG 16[107] 0.7739 24.0M 39
MobileNetV3[50] 0.7156 9.6M 59.3

Faster RCNN[97] VGG 16 [107] 0.7910 71.93M 6.62

Table 3.6: Comparison of the MultEYE network with other state-of-the-art models evaluated on a combination of 10% set of
Aeroscapes and SODA Dataset images resized at 512×512 (Except the SSD network that was trained with 300×300 resolu-
tion).The evaluation was benchmarked on a single NVIDIA Titan Xp GPU with CUDA 10.1.
*:Segmentation Decoder is detached from the model

3.3.2. Training
The training strategy used for the multi-task training is similar to the one employed for the
vehicle detection. The backbone is initally loaded with pre-trained ImageNet[59] weights.
Once the pre-trained weights are loaded, the backbone is frozen and only the detection head
(and neck) and the segmentation decoder are trained for 20 epochs.For comparison purposes,
the hyperparameters used for MultEYE training are kept the same as the one used for the
vehicle detection which is as listed:

• Batch Size: 4

• Number of Epochs: 250

• Losses: Tversky Loss[103] for Segmentation, GIoU[98] for Vehicle Location and Focal
loss[65] for Vehicle confidence.

• Segmentation Loss Weight:1

• Optimizer: ADAM

• Initial Learning Rate: 1 × 10ዅኼ

• Learning Rate Decay factor: 0.5 with a patience of 5 epochs

The technical hardware and software specifications are listed below:

• Training System Specification: Intel Xeon Processor with 12 GB NVIDIA Titan Xp
GPU

• Software Packages:Keras with Tensorflow 2 backend (Python3.7)

A new hyperparameter is introduced called the Segmentation Loss Weight which essentially
adds a weighing factor onto the level of influence that the segmentation task has on the
vehicle detection.This value is set as 1 for the testing phase which gives equal weighting to
both detection and semantic segmentation.

3.3.3. Results and Discussion
The MultEYE network was evaluated against the best performing models of different state of
the art models that claimed real-time (>30 FPS)performance. The network was evaluated in
two different modes: the inference version of the multi-task trained network that generates

42 3. Vehicle Detection

the detections as well as the segmented maps of the input frame and the stripped down ver-
sion that only generates the detections. The performance throughput of the model with the
segmentation head attached could not be benchmarked due to a technical issue with saving
the Keras model with multi-task heads. However, as expected intuitively, stripping the seg-
mentation head doesn’t affect the accuracy of the detection head. The main improvements

(a) The original 512×512 letterbox
resized image fed to the networks

(b) Feature activation map from the
ኽᑣᑕ Conv module of the backbone of

the single task network

(c) Feature activation map from the
ኽᑣᑕ Conv module of the backbone of

the multi task network

Figure 3.19: The comparison of the difference in features learned in a standard learning methodology and the features learned
with an auxiliary segmentation task

that were observed have been described below:

Higher Test mAP:
As evidenced in table.3.6, having an auxiliary task improves the performance of the main
task.

The effect of having an auxiliary task to learn the features can be visualized in Figure.3.19.
This figure depicts the activation in the first channel of one of the final convolutional layer out-
put of the backbone. It can be observed that the single task backbone activation(Fig.3.19b)
is much more noisier than the same learned with a multi-task methodology(Fig.3.19c). This
could be explained by the implicit data augmentation capability of multi-task learning which
essentially states that all tasks generally tend to be noisy and have their own noise signature
which the network learns to ignore and generalizes well. Different tasks have different noise
pattern as the errors propagate differently each of these tasks. Therefore, learning the vehicle
detection task along with the semantic segmentation enables the network to better learn the
features by averaging out the noises.

Better Generalization:
It was also observed that MultEYE network exhibited a better generalizing ability on the
SODA image set. This was more apparent in some of the images that were taken at 120m
altitude which was the maximum flown by the DeltaQuad. Such images are much harder to
get good detections from due to the scale of the vehicle and the low resolution (512×512). An
image example of the generalizability can be seen in Fig.3.20b. The YOLOv4 detection has a
low IoU score of 0.132 while the detection using MultEYE has a high IoU score of 0.844 while
the object confidences of both remain similarly low.
This difference in detection accuracies could be attributed to the limited training dataset
causing the YOLOv4 to overfit to the aeroscapes image pattern while the MultEYE avoids
this due to the introduction of inductive bias which in turn helps in regularization. Such
regularization provided by having the segmentation task is most likely the reason why the
model does not overfit and may reduce its Rademacher complexity (the ability to fit to random
noise).

3.4. Hyperparameter Optimization 43

(a) YOLOv4 detection on a SODA image taken at 120m altitude.The region of interest is zoomed in and
displayed at the bottom right corner.

(b) MultEYE detection on a SODA image taken at 120m altitude.The region of interest is zoomed in and
displayed at the bottom right corner.

Figure 3.20: Evidence of high generalising ability of the MulEYE network

3.4. Hyperparameter Optimization
Most of the applications of deep learning models tend to use the model settings or hyper-
parameters that are used for benchmarking the model architecture. Setting these hyper-
parameters that are tuned for another task would not enable the model to perform to its
maximum capacity. These hyperparameters need to be tuned to extract the model’s full po-
tential. However, the YOLOv4 has 15 tunable parameters which makes it impossible to tune
manually. In the recent years, hyperparameters for deep learning models are tuned using
meta-heuristic algorithms like Genetic Algorithms [75], Particle Swarm Optimization[57] and
Bayesian Optimization algorithms[125] etc.
The algorithm chosen to optimize the MultEYE model is the Invasive Weed Optimization
(IWO)[77] as it has been shown to find isolated global minima better that peer meta-heuristic
algorithms for at least 40 parameters[5]. The IWO algorithm is based on the colonizing be-
haviour of weeds found in the ecological sphere. Before the algorithm is explained, some key
terms are defined below.

• Seed: The individual in the colony that represents a value of a variable to be optimized.

• Fitness: The value representing how good the solutions is.

• Plant: Seed after the fitness is evaluated.

• Colony: The entire set of seeds.

• Population Size: Number of plants in the colony

44 3. Vehicle Detection

• Max. Number of Plants: The maximum number plants that can produce seeds.

The variables that are optimized during this process are:

• Initial learning rate (lr0) : The initial value of learning rate which is later decayed as
the validation loss reaches a plateau.

• Adam 𝛽ኻ (momentum) : The exponential decay rate for the first moment estimates of the
adam optimizer

• Adam weight decay (weight_decay) : Decay rate of the learning rate from the initial
learning rate.

• GIoU Loss gain (giou) : Percentage contribution of the GIoU loss to the total loss

• Class loss gain (Segmentation Loss weight) (cls) : Percentage contribution of the classes
in the tversky loss for the segmentation task

• Weighting for the positive class (cls_pw) : Percentage contribution of the binary cross-
entropy loss to the object detection task.

• Focal Loss gain (obj): Percentage contribution of the Focal loss to the total loss

• Object Binary Cross-entropy Loss positive weight (obj_pw) : Percentage contribution of
the binary cross-entropy for object confidence.

• Anchor-multiple threshold (anchor_t): The threshold-multiple filter out generated an-
chors based on the IoU score for the three scales of detection proposals.

• Hue, Saturation and Value augmentation (hsv_h,hsv_s,hsv_v): The values for hue,
saturation and value for image augmentation used in train.

• Translation augmentation (translate): Probability of a random translation augmenta-
tion applied to a training image

• Image scale augmentation (scale): Probability of random image scale augmentation
applied to a training image

• Mirror augmentation probability (fliplr): Probability that a training image is mirrored
before training

These hyperparameters are arranged so that they are augmentable by the optimization
algorithm. The steps involved in the optimization algorithm are described as follows:

1. The 15 parameters to be optimized are selected and a 15-dimensional search space is
defined in which the solution is searched.

2. The parameters or seeds are initialized by randomly distributing them in the previously
defined search space. Each seed is an initial solution and thus the population is ini-
tialized.

3. The fitness of each seed is calculated by running the training for 200 epoch using these
initial hyperparameters and obtaining the score as a weighted sum of their test mAPs
(both at 0.5 and 0.75 IoU), class confidence, object confidence and the Tversky loss.
Each seed then becomes a flowering plant that creates its own seeds.

4. The number of seeds produced by a flowering plant is decided by the fitness value.
Therefore the plants generated from seeds with better solution to the optimization prob-
lem creates more seeds around itself in the search space.

3.4. Hyperparameter Optimization 45

5. The newly generated seeds are dispersed around the search space with their mean as
the location of the parent plant and with varying variance. The standard deviation of
dispersion during a particular iteration is calculated as follows.

𝜎።፭፞፫ =
(𝑖𝑡𝑒𝑟max − 𝑖𝑡𝑒𝑟)፧

(𝑖𝑡𝑒𝑟max)፧
(𝜎።፧።፭።ፚ፥ − 𝜎፟።፧ፚ፥) + 𝜎፟።፧ፚ፥ (3.16)

Where, 𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟፦ፚ፱ are the current iteration index and the maximum number of
iterations, 𝜎።፧።፭።ፚ፥ and 𝜎፟።፧ፚ፥ are defined initial and final standard deviation respectively
and 𝑛 is the non-linear modulation index. This makes sure that for the initial iterations,
the majority of the seeds are dispersed widely to search for a global optima while the
dispersion variance reduces as iterations progresses in order to fine-tune the solutions
gradually.

6. The newly planted seeds are evaluated and thus generated plants are ranked together
with their parent plants. Lowest ranking plants are eliminated to maintain the maxi-
mum population size.

7. The surviving plants then produce seeds of their own based on their ranking in the
population. This process from step 3 is repeated till a desired fitness value is obtained
or the maximum iteration is reached.

These steps can also be visualized in Fig.3.21.

Figure 3.21: Visual Schematic of the Invasive Weed Algorithm (IWO)

3.4.1. Results
The MultEYE is optimized by running a 200 epoch training for 300 iterations using the hyper-
parameters as the arguments. The results of the optimization can be visualized in Fig3.22.
The figure plots the values tested in the scope of the optimization procedure against the fit-
ness score obtained during that particular iteration. The colours represent the density of the
weeds that survived the population limit. Highest density is indicated by the colour red while
sparsely distributed individuals are marked in blue. It can be noted that the chosen value
of the hyperparameter (indicated with a + sign) lies close to the most dense cluster. This
shows that the algorithm is able to localize the local minimum with good precision. Further,
the presence of multiple red clusters, indicates the presence of multiple local minima and

46 3. Vehicle Detection

Figure 3.22: Results of IWO optimization of MultEYE hyperparameters. The best seed of the hyperparameters from each
iteration is plotted in the x-axis versus the fitness score in represented in the y-axis

Hyperparameter Value 95% Confidence Interval
lr0 0.00868 [0.00793,0.00869]

momentum 0.965 [0.959,0.970]
weight_decay 0.00056 [0.00053,0.00057]

giou 0.0403 [0.0371,0.0418]
cls 0.653 [0.058,0.073]

cls_pw 0.967 [0.959,1.142]
obj 1.13 [1.083,1.292]

obj_pw 1.01 [1.0, 1.088]
flip_lr 0.59 [0.55,0.622]

anchor_t 3.92 [3.918,3.924]
translate 0.147 [0.13,0.156]
hsv_h 0.0127 [0.0125,0.0136]
hsv_s 0.566 [0.45,0.6]
hsv_v 0.336 [0.31,0.354]
scale 0.517 [0.47, 0.589]

Optimized Model mAP: 0.862

Table 3.7: Optimized Hyperparameter Values and their respective 95% Confidence Intervals

the algorithm has managed to find the global minimum in the course of the optimization
process.
The optimized hyperparameter values and their 95% confidence interval are tabulated in
Table3.7. A 95% Confidence Interval is the range of parameter values where the probabil-
ity of the location of the solution is 95%. It was observed that training with the optimized
hyperparameters improved the test mAP from 0.834 to 0.862.

3.5. Summary
This chapter describes the steps involved in building a detector model optimized for accuracy
and performance throughput. The model uses a stripped down version of the CSPDarkNet53
network as the backbone. Then the network branches out to two heads: The detector head
and the segmentor head. The detector head is the same used for YOLOv4 and no further
modifications are made. The segmentor head is designed based on the ENet model with
additional modules and skip connections from the CSPDarkNet53 backbone. The complete
model is named MultEYE and is trained on the Aeroscapes dataset with a set of tuned hy-
perparameters and tested on a combination of both Aeroscapes and SODA datasets. Once

3.5. Summary 47

the MultEYE model is trained, the segmentation head is detached from the model in order
to boost its performance throughput to prepare its implementation on the Jetson Xavier NX
platform.

4
Vehicle Tracking and Speed Estimation

Vehicle tracking is the next step after a successful detection of vehicles in the aerial images
acquired by the UAV. The vehicle detections provided by the object detector serves as an
initialization for the tracking algorithm. There are two main reasons why tracking of vehicles
is important in the context of traffic surveillance: Firstly, the computationally heavy neural
network running a detection for each frame of the video input costs time and energy, the later
of which could be made better use of extending the flight time of the UAV. This computational
cost can be reduced by using the neural network model to only initialize the detections in
the video while a computationally light algorithm tracks these detections across frames. Sec-
ondly, neural network detectors consider each frame to independent to the previous frames
and therefore does not track any detections across frames. In other words, standard neural
network detections do not preserve identity across image sequences.
This chapter discusses the choice of tracker used for the project and presents a comparison
between the choice and the other state-of-the-art trackers and also some classic trackers.
Further, two methods of extracting the inertial speed estimates from the tracked objects are
compared.

4.1. Minimum Output Sum of Squared Error based Tracking
The tracking algorithm used for the current problem of tracking vehicles is a form of Opti-
mized Correlation Output Filter called theMinimumOutput Sum of Squared Error (MOSSE)[13].
The tracker uses the first two frames to initialize itself. The area enclosed by the bounding box
of a detection is cropped from the first frame of the sequence which is used as the template for
initialization. This template is first transformed using a natural logarithmic transformation
to reduce lighting effects and for contrast enhancement. This is done using eq.4.1.

𝑦 = ln(𝑥 + 1) (4.1)

Where, x and y are the input and output pixel values. Once the logarithmic transformation
is done, the template is normalized to reduce the effect of variant illumination. Further, the
template is expressed in its frequency domain by finding its Discrete Fourier Transform (DFT)
using eq.4.2(Fig.4.1b).

𝐹(𝑢, 𝑣) =
ፌዅኻ

∑
፱ኺ

ፍዅኻ

∑
፲ኺ

𝑓(𝑥, 𝑦)𝑒ዅኼ።(
ᑩᑪ
ᑄ ዄᑪᑧᑅ) 𝑢 = 0,… ,𝑀 − 1; 𝑣 = 0,… ,𝑁 − 1 (4.2)

Once the DFT is generated, a synthetic target has to be generated to be used in the ini-
tialization of the tracker and for updating the filter during tracking. This synthetic target
contains a Gaussian peak centered at the object in the template and is generated using the
eq.4.3(Fig.4.1c).

𝐺። =∑𝑒ዅ
(ᑩᎽᑩᑛ)

Ꮄ
Ꮌ(ᑪᎽᑪᑛ)

Ꮄ

ᒗᎴ (4.3)

49

50 4. Vehicle Tracking and Speed Estimation

(a) Original Image (b) Image in frequency domain (c) Synthetic Gaussian Peak

Figure 4.1: Initializing the MOSSE filter requires the Fourier transformation of the image and a synthetic gaussian peak that
represents the position of the vehicle that is being tracked

Where, 𝐺። represents the synthetically generated target of 𝑖፭፡ frame, 𝑥 and 𝑦 are the pixel
location coordinates and 𝑥፣ and 𝑦፣ specify the coordinates of the centre of the object to be
initialized on. The 𝜎 term represents the radius of the gaussian peak.
With the Fourier transform and the synthetic target extracted, the MOSSE filter is initialized
using the following formula.

𝐻∗ =
∑። 𝐺።⊙𝐹∗።

∑። 𝐹።⊙𝐹∗። + 𝜖
(4.4)

Where 𝐻∗ is the complex conjugate of the filter, 𝐹። and 𝐺። are the fourier transform and the
synthetically generated target of the template in the 𝑖፭፡ frame respectively, 𝐹∗። is the complex
conjugate of 𝐹።. The symbol ⊙ denotes an element-wise multiplication. The value of 𝜎 in
eq.4.3 is taken to be 2 as per the original paper and 𝜖 is the regularizing variable introduced
to prevent division by 0 and has a value of 0.001.
Once the filter has been initialized, the tracking filters can be estimated using the following
formula.

𝑁። = 𝜂 (𝐺።⊙𝐹∗።) + (1 − 𝜂)𝑁።ዅኻ
𝐷። = 𝜂 (𝐹።⊙𝐹∗። + 𝜖) + (1 − 𝜂)𝐷።ዅኻ

𝐻∗። = ፍᑚ
ፃᑚ

(4.5)

The term 𝜂 represents the learning rate which ranges from 0 to 1. Once 𝐻∗። (the MOSSE filter of
𝑖፭፡ frame) has been determined, the position of the new object is determined by element-wise
multiplication of the MOSSE filter with the cropped and transformed tracking window(eq.4.6).

𝐺 = 𝐻∗⊙𝐹 (4.6)

This describes the original MOSSE tracker that uses the first 2 frames for initialization .

Figure 4.2: The MOSSE filter (middle) of the tracked car (left) and its predicted position (right)

However, tracking performance can be boosted if there are higher number of training sam-
ples or initialization frames. This can be achieved by increasing the number of initialization
frames by performing geometric affine transformations on the image in addition to the nor-
malization and logarithmic transformation. Scale ,translation and rotation transformation
are performed using the following equations.

[
𝑢
𝑣
1
] = [

1 0 𝑡፱
0 1 𝑡፲
0 0 1

] [
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

] [
1 0 −𝑡፱
0 1 −𝑡፲
0 0 1

] [
𝑥
𝑦
0
] (4.7)

4.2. Experiment and Results 51

MOTA MOTP Avg.Framerate(FPS)
BOOSTING[43] 35.92 44.32 <1
Multiple Instance Learning[3] 60.4 64.0 <1
Kernalized Correlation Filters[49] 80.2 87.8 8.3
Tracking Learning and Detection[53] 78.34 82.3 <1
MEDIANFLOW[52] 94.73 63.14 6.6
GOTURN∗[48] 67.5 75.2 20.0
CSRT[70] 95.0 94.3 1.3
MOSSE[13] 90.91 92.11 227.5
POI∗[128] 96.83 97.71 11.2
DeepSORT∗[124] 94.85 93.29 40.4

Table 4.1: Comparison of commonly used trackers with established state-of-the-art deep learning based trackers on a custom
dataset.The ∗ denotes that the tracker algorithm is deep-learning based and the speed was evaluated on a GPU (NVIDIA Titan

Xp).

[
𝑢
𝑣
1
] = [

1 0 𝑡፱
0 1 𝑡፲
0 0 1

] [
𝑠 0 0
0 𝑠 0
0 0 1

] [
1 0 −𝑡፱
0 1 −𝑡፲
0 0 1

] [
𝑥
𝑦
0
] (4.8)

Where, 𝑢 and 𝑣 are the coordinates of the new pixel and 𝑥 and 𝑦 that of the old pixel. The
symbols 𝑡፱ and 𝑡፲ represents the distance of the centre of the image from the x and y axis
respectively. The rotation angle and the scale is represented by 𝜃 and 𝑠 respectively.

4.2. Experiment and Results
The MOSSE algorithm’s multi-object tracking capability is evaluated on a custom dataset
with 100 image sequences which is a derived subset of the KIT AIS Dataset [123]. The image
sequences are captured 0.33 seconds apart with an average of 14 targets to track throughout
the 100 images. There is no movement of the camera frame and none of the targets in the
image are occluded from the point of their appearance in the sequence and their eventual
exit from the frame of observation. The vehicle initializations are manually annotated so that
the errors caused by an object detector does not influence the performance evaluation of the
tracker.
The evaluation metrics used for the trackers are: Multi-object Tracking Accuracy (MOTA),
Multi-object Tracking Precision (MOTP)[8] and the Average Framerate. MOTA is calculated
using the following formula:

𝑀𝑂𝑇𝐴 = 1 −
∑፭ (𝑚፭ + 𝑓𝑝፭ +𝑚𝑚𝑒፭)

∑፭ 𝑔፭
(4.9)

Where 𝑚፭ , 𝑓𝑝፭ and 𝑚𝑚𝑒፭ are the number of initialization misses, false positives and mis-
matches respectively of time 𝑡, while 𝑔፭ is the number of ground truth instances at time 𝑡.
The MOTP is calculated the following way:

𝑀𝑂𝑇𝑃 =
∑።,፭ 𝑑።,፭
∑፭ 𝑐፭

(4.10)

Which is essentially the ratio of the cumulative sum of position errors to the total number of
detections.
Table.4.1 shows the comparison of MOSSE with other commonly used trackers.It can be

seen that old algorithms like BOOSTING[43], MIL[3] and TLD[53] perform poorly on the cus-
tom dataset with very low framerate. This is most likely due to difficulty of these algorithms
to maintain tracker identity when implemented as a Multi-Object Tracker as these were de-
signed to be single object tracker. Only GOTURN[48], DeepSORT[124] and MOSSE[13] have
tracking speed that is faster than the speed of object detection. The GOTURN and Deep-
SORT are deep learning based algorithms that credit their accuracies and speed to GPU

52 4. Vehicle Tracking and Speed Estimation

based computing and do not maintain its performance when limited to CPU. It can be seen
that MOSSE’s execution speed is far higher than its counter-parts despite running on CPU
while performing fairly well in the tracking aspect.
Further, as there is large numbers of tracking target that enter and leave the frame in a
short amount of time during a typical surveillance mission, it is essential that the trackers
are initialized frequently to purge the trackers of objects that have already left the frame and
introduce trackers of objects that have newly entered the frame. This update frequency was
estimated to be once in every 10 frames by brute-force trial and error method. With this
tracker update rate, it was found that GOTURN, DeepSORT and MOSSE performed almost
identically with respect to the tracking accuracy. Therefore, the lightweight MOSSE was the
obvious choice of tracker that was tasked with tracking vehicles in this research.

(a) Frame-0 (b) Frame-2 (c) Frame-4

Figure 4.3: Tracking of manually initialized vehicles through 5 frames of the test dataset

4.3. Speed Estimation
Tracking is important in the context of vehicle speed estimation as the tracker preserves the
identity of the object through two or more frames.The relative displacement of the object in
two consecutive frames can be estimated easily. However, converting that displacement to
the world coordinate system or the inertial coordinate system requires the knowledge of two
more parameters. The two major parameters are the Ground Sampling Distance(GSD) and
the UAV’s velocity vector. GSD is the distance in inertial coordinates that corresponds to
the length of 1 pixel in the image coordinates. There are two methods of acquiring these
parameters, a) Estimation of the parameters using context priors and optical flow and b)
Parameter calculation using real-time flight data.

4.3.1. Parameter Estimation using known context Priors and Optical Flow (Non-
Parametric Method)

This type of vehicle speed estimation is chosen in cases where the platform running the de-
tection and tracking has no way to acquire parameters such as flight altitude, global position
and camera angle. These parameters are necessary for a fairly accurate estimate of the speed,
hence they are estimated using visual approximation and using expected parameter values
of known objects which are called context priors.
The first of the parameter that is estimated is the flight velocity vector in pixels per sec-
ond.This is estimated by first assuming that majority of the pixels in the frames belong to
inertially static objects like road markings,trees,buildings etc. The Farneback optical flow[31]
is computed for two consecutive frames. When the view is nadir(Fig.4.4), the statistical mode
of the flow magnitudes in the frame would correspond to the displacement of the frame with
respect to the static objects in the images or flight displacement in pixels. This can be vi-
sualized by plotting the probability density function of the magnitudes using the following
formulation.

𝑓(𝑥) = exp (−(𝑥 − �̄�)ኼ/(2 × 𝜎ኼ))
√2𝜋 × 𝜎

(4.11)

4.3. Speed Estimation 53

Where 𝑥 is set of flow magnitudes in the whole frame, �̄� represents it’s mean and 𝜎 represents
the standard deviation of the distribution.

Figure 4.4: Visualization of optical flow when the camera frame is static with respect to the inertial frame. It can be observed
that the majority of the flow magnitude is 0 which corresponds to the flight velocity.

Figure 4.5: Visualization of optical flow when the camera frame is moving with respect to the inertial frame. It can be observed
that the flow magnitudes vary linearly in the vertical direction but the flow immediately surrounding the car has similar values.

It can be observed in Fig.4.6a that the most of the flow, in the image sequence captured
by a UAV in hover mode, is concentrated around the value 0. This is also valid across differ-
ent frames in the sequence although the value of density changes, the mode remains at 0.
Similarly for a sequence captured by a UAV in forward flight, it can be seen in Fig.4.6b that
the peak of the probability density function is shifted by the value of the approximate flight
displacement.

The error of the approximation will be higher when the view is in non-nadir due to variable
Ground Sampling Distance (GSD) across the frame (Fig.4.5). This error can be mitigated to an
extent by finding the statistical mode of the optical flow just around the object of interest. This
method makes sure that the GSD variation has minimal impact on the velocity calculation.
However, this would result in separate fight displacement estimates for each tracked object.
Once the flight displacement is estimated, the speed of the car in pixels/s can be estimated
the following way.

𝑉፩።፱፞፥ =
|�⃗�ፔፀፕ − �⃗�፨፱|

𝑓 (4.12)

Where 𝑉፩።፱፞፥ is the speed of the vehicle in pixels/s, �⃗�ፔፀፕ and �⃗�፨፱ are the estimated displace-
ment of the UAV and the displacement of the tracked object across the corresponding frames.
The time between each frame is denoted as 𝑓.

The GSD is a parameter that is essential to be able to convert from the image coordinate
system to the inertial coordinate system. The GSD can be estimated by calculating the ratio
of known measures to the same measures in the image coordinate system. This issue is
generally solved in aerial photogrammetry by the use of Ground Control Points(GCPs) which

54 4. Vehicle Tracking and Speed Estimation

(a) Flight velocity = 0 (b) Flight Velocity ≠0

Figure 4.6: Probability Density Function of flow magnitude of the frame with hover and forward flight conditions

are strategically placed markers of known dimensions. However, in majority of the cases,
GCPs are not widely available which leads us to use car width as method of estimating scale.
Car width is chosen mainly due to the fact that the it does not vary across cars as much as
the car length does. According to [10], the width of common European cars ranges from 1.68
m for small hatchbacks to 1.8 m for SUVs with average width of 1.71 m. Once this is known,
the GSD is calculated the following way.

𝐺𝑆𝐷 = 1.71
𝑤 (4.13)

Where the numerator is the average width of European cars in meters and 𝑤 is width of
the bounding box enclosing the car in pixels. The speed of the vehicle in meters per second
is then calculated using the following formula.

𝑉 = 𝑉፩።፱፞፥ × 𝐺𝑆𝐷 (4.14)

4.3.2. Parameter estimation using Real-time Flight Data (Parametric Method)
The companion computer that runs the detection and tracking on the UAV is normally con-
nected to its autopilot generally. In this case, the UAVs altitude and angle of the camera
can be streamed from the autopilot. Further, the intrinsic parameters of the camera is re-
quired for the calculation of the GSD which entails that the camera should be calibrated
pre-flight. Figure.4.7 helps in the visualization of the parameters required for the calculation
of the GSD and subsequently estimate the speed. With these parameters available, we can
calculate GSD in meters/pixel using the following formula.

𝐺𝑆𝐷 = 𝐻 × 𝑆፰
𝐹 × 𝑖𝑚፰

(4.15)

Where, H is the flight altitude in meters, 𝑆፰ is width of the camera sensor in millimeters, 𝐹 is
the distance between the camera lens and the sensor in millimeters, 𝑖𝑚፰ is the width of the
frame captured. This formula is valid only for nadir views and the GSD can be approximated
to be constant throughout the frame.
For oblique angle of camera, the nadir GSD can be used to calculate the oblique GSD at the
angle of the camera by multiplying the nadir GSD with the GSD Rate.

𝐺𝑆𝐷𝑅𝑎𝑡𝑒 = 𝐻 × (𝑡𝑎𝑛(𝜃 + 𝜙) − 𝑡𝑎𝑛(𝜃))
𝐺𝑆𝐷 × 𝑖𝑚ፇ

(4.16)

4.3. Speed Estimation 55

Figure 4.7: Visualization of the difference between nadir and off-nadir angle of view.

Where, 𝜃 is the camera angle, 𝑖𝑚ፇ is the frame height in pixels and 𝜙 is the total field of view
which is calculated using the following formula.

𝜙 = 𝑡𝑎𝑛ዅኻ𝐺𝑆𝐷 × 𝑖𝑚፡𝐻 (4.17)

The GSD Rate is essentially a function of camera angle and altitude during flight as all
the other parameters can be determined from the camera’s intrinsic parameters during cali-
bration and kept constant. Therefore, the speed of the detected vehicle can be formulated in
the following way.

𝑉 = |�⃗�ፔፀፕ − (�⃗�፨፱ × 𝐺𝑆𝐷(𝐻) × 𝐺𝑆𝐷𝑅𝑎𝑡𝑒(𝜃))|
𝑓 (4.18)

Where, �⃗�ፔፀፕ can be estimated using the UAV positioning difference obtained from the onboard
GPS.

4.3.3. Method Comparison
The effectiveness of the methods was compared using a custom dataset comprised of data
gathered at 2 locations (Fig.4.8) in the University of Twente campus using a DJI Phantom 3
UAV. 1 The detection and tracking of bicycles were used instead of cars for the ease of ground
truth data gathering and organization of experiments. Collecting the speed ground truth for
bicycles proved easier than that of cars. Further, organizing and coordination of a data col-
lection experiment for 10 cars in the university campus presented complexities like having
to increase the area covered by the flight plan and the requirement to cordon-off roads used
for these experiments made it not feasible to use cars. Bicycles provided an easy alternative
to cars to prove the speed methodology without any changes to the model architecture and
hence throughput speed.
The bicycle detector was trained using the same steps described in chapter.3, except dataset
was prepared with Aeroscapes where the automatic annotations were done on bicycle pixels
instead of cars. This resulted in MultEYE model for bicycles. For the data gathering exper-
iments, 10 participants were asked to ride their bicycles on a pre-defined stretch of road at
a constant speed of their choice while using an app-based speed tracker to help themselves
maintain this chosen speed. While the participants performed the circuit, the UAV was flown
parallel to the predefined route at different altitudes. The essential flight data like GPS loca-
tion, altitude and camera angle was logged for each frame of the captured video. Six videos
1Data collection experiments were conducted on ኻኼᑥᑙ June, 2020 following the social distancing guidelines set by the Rijksin-
stituut voor Volksgezondheid en Milieu (RIVM) and the University of Twente

56 4. Vehicle Tracking and Speed Estimation

(a) Drienerlolaan (b) Boederijweg

Figure 4.8: Locations of the data gathering experiments and the planned flight path at the University of Twente campus

were identified and each of the videos were sampled at 5 frames per second to generate 6
corresponding image sequences. These sequences were further divided into subsequences
that contained 8 images each. Ideally, 2 tracked image frames are enough to make an es-
timation of the vehicle speed, however having 8 tracked frames can be used to average out
the errors induced by outliers. Longer subsequences do not make sense from an application
point of view where vehicles tend to have variable speeds through the sequence. These se-
quences were used to estimate the speed of the bicycles using the parametric as well as the
non-parametric method.

Figure.4.10 shows the comparison of speeds for an example 8-image sub-sequence from
Sequence-1. Here, estimates the speed of a static object is depicted when the UAV is at hover
condition (|�̄�ፔፀፕ| ≈ 0𝑘𝑚/ℎ). It is interesting to observe that the parametric method estimates
have minimal variance but have a negligible but constant offset from the ground truth which
can be attributed to errors in the measurement of the parameters. The non-parametric mea-
surements are much more erratic in comparison but apart from 2 outlier data-points, the
other values tend to be comparable with the parametric estimates. This sequence, where
both the camera and the target are stationary, helps set the baseline errors in both the esti-
mation methods.
Figure.4.11 shows the estimated speed profile of both the methods where both the target

and the camera (UAV) are in motion(8፭፡ sub-sequence of Sequence1). In this sample sub-
sequence, the target is moving at 15 km/h (recorded by a mobile app-based speedometer)
and the UAV is moving at 27 km/h (calculated using IMU and GPS based measurements)
in the opposite direction. The parametric method predicts an average speed of 16.25 km/h
while the non-parametric method predicts it to be 16.75 km/h. Intuitively, it is expected
that the error in the non-parametric estimation to be higher than that of its counterpart.
However, the difference between the errors in the sequence under observation is less than
0.5 km/h.

Across the all of the 6 sequences(Table.4.2), the mean base-line compensated average
error for the non-parametric method was calculated to be 1.56 km/h and for the parametric
method, it was calculated to be 1.13 km/h. This shows that overall, the accuracy of both
the methods are comparable and the non-parametric method is a good alternative when the
computation speed is not of the essence.

4.3. Speed Estimation 57

Number of
Subsequences

Avg. Error
Parametric

Avg. Error
Non-Parametric

Sequence1 8 0.85 1.32
Sequence2 9 1.03 1.41
Sequence3 15 1.43 1.96
Sequence4 14 0.71 1.3
Sequence5 9 1.25 1.52
Sequence6 15 1.52 1.86

Mean
Avg. Error 1.13 1.56

Table 4.2: Average errors in the speed estimation on the collected image sequences

(a) Sequence1:Drienerlolaan, Altitude: 5m

(b) Sequence2:Drienerlolaan, Altitude: 10m

(c) Sequence3:Drienerlolaan, Altitude: 30m

(d) Sequence4: Boerderijweg, Altitude: 5m

(e) Sequence5: Boerderijweg, Altitude: 10m

(f) Sequence6: Boerderijweg, Altitude: 30m

Figure 4.9: Sample frames from 6 image sequences captured at Drienerlolaan and Boerderijweg with different flight altitudes

58 4. Vehicle Tracking and Speed Estimation

Figure 4.10: Comparison of speeds of static targets estimated using parametric and non-parametric methods while the UAV is
in hover mode

Figure 4.11: Comparison of speeds of moving targets estimated using parametric and non-parametric methods while the UAV
is flying at 27 km/hr

(a) Flight velocity ≈0 (Static targets) (b) Flight Velocity ≠0

Figure 4.12: Examples of detections when the flight velocity is 0 and non-zero

5
Inference on Embedded Platform

Now that all the sections of the pipeline are ready, the pipeline should be implemented on
an embedded platform. Running the pipeline on a high-performance GPU device may be an
attractive option as the model can be run unbridled without limitation and at its maximum
potential. However, the sheer size and the energy consumption of such devices make it
non-viable to be mounted on mobile platforms like UAVs. The whole pipeline starting from
detection inference, vehicle tracking and speed estimation should be able to run at a fairly
high frame-rate on commonly used embedded computers. While the vehicle detector requires
GPU to run at its maximum potential, the tracking and speed estimation algorithms require
only CPU to run at maximum performance. In the current research, the embedded device
used to benchmark the performance of MultEYE is the Jetson Xavier NX development kit
released by NVIDIA. The specifications of the system is described below:

• Size : 103 mm ×90.5 mm ×34 mm

• GPU : NVIDIA Volta architecture with 384 NVIDIA CUDA cores and 48 Tensor cores

• CPU : 6-core NVIDIA Carmel ARM v8.2 64-bit CPU 6 MB L2 + 4 MB L3

• Memory : 8 GB 128-bit LPDDR4x 51.2GB/s

• Storage : 128GB MicroSD

Figure 5.1: NVIDIA Jetson Xavier NX (left) and its user interface with all attached peripherals

In this chapter, Section.5.1 explains the steps taken to improve inference throughput and
the subsequent improvement is compared. Section.5.2 discusses and compares the inference

59

60 5. Inference on Embedded Platform

speeds of the MultEYE model on the Jetson Xavier NX board with different image sizes and
different power modes. The chapter ends with section.5.3 discussing the result of combining
all the elements of the pipeline i.e vehicle tracking and speed estimation (parametric and
non-parametric) along with the MultEYE detection.

5.1. Graph Optimization
There are a lot of modules and settings that are present in the model graph used for train-
ing which are not required for inference. Graph Optimization is the method of stripping the
graph of these additional modules and settings in order to improve its inference speed and
reduce model size [105]. Before going into the steps involved in the graph optimization, the
issue regarding the Keras [22] model saving function should be discussed.
As of September 2020, the Keras framework has a known issue when saving trained models
with multiple outputs which results in incorrect outputs. Further, Keras platform is meant
for fast-prototyping and does not have libraries optimized for inference. Due to these rea-
sons, the Keras .h5 model was converted to a PyTorch[91] model.
Once the PyTorch version of the MultEYE is generated, the model can be optimized for infer-
ence using the following steps:

1. The model should be set to eval mode. This makes sure that the modules used only
for training, such as dropout and batch normalization layers, can be removed.

2. The model in eval mode is run though a detach function that cuts variables from the
computation graph.

3. After running through the detach method, the optimizer is stripped from the model
graph.

4. Finally, the float precision of the model is halved from 32 to 16.

The steps can be visualized in Fig.5.2. The optimized model was found to contain 7.8 million

Figure 5.2: Steps involved in improving the computation throughput of the model graph

parameters which is a 71.5% decrease in model size with only 0.03% decrease in test mAP
score. However, the optimization resulted in a boost of framerate by 25.3% on the Titan Xp
GPU. Once this optimized model is obtained, the inference speed on the Jetson Xavier NX
can be benchmarked.

5.2. MultEYE Model Inference on Jetson Xavier NX
The Jetson Xavier NX board has 6 CPU cores and a GPU with 384 CUDA cores. Only 2 of
the CPU cores are used in this research to enable parallel processing of other applications
on the other 4 cores. However, all of the GPU’s resources are used to run the pipeline as
a neural network uses all of the available GPU to perform at its best. The board runs in 2
power modes : the 10 Watt mode and the 15 Watt mode. Figure.5.3 show the frame rate
achieved for different input image resolutions run at 10 and 15 Watt modes respectively.

It can be observed that the model achieves an almost real-time performance of 29.41 FPS
for input resolution 512×320 running with 15 W power mode. However, as the input resolu-
tion is increased, the difference of runtime between the two power modes decrease. Therefore,
if there is a requirement to process image sizes of 2048×1152 and above, power consumption
can be reduced by choosing to run at 10 W without loosing much on the performance speed.
Now that the model inference speed on the board have been tested, the throughput per-
formance of the whole pipeline of vehicle detection and tracking with speed estimation is
required to be benchmarked on the platform.

5.3. Pipeline Inference 61

Figure 5.3: MultEYE inference speeds for different input resolutions for 10W and 15W power modes

5.3. Pipeline Inference
Algorithms run on CPU rarely show any difference in performance speed across devices. How-
ever, it is very insightful when the performance of CPU based algorithms for vehicle tracking
and speed estimation is combined with the detection on the embedded platform.Figure.5.4
shows the contribution of each algorithm of the pipeline to the runtime for each of the resolu-
tions , tested in Fig.5.3, run at 15 W. The speed estimation used here is the non-parametric
estimation using optical flow and context priors. It can be seen that the non-parametric

Figure 5.4: Contribution of algorithms in the pipeline running at 15 W power mode (Non-parametric speed estimation)

speed estimation contributes a significant percentage to the overall runtime of the pipeline.
Especially for the resolution 512×320, the speed estimation accounts for 52.65% of the total
runtime which means that the speed estimation takes longer to process than the MultEYE

62 5. Inference on Embedded Platform

Resolution % contribution
of Detection

% contribution
of Tracking

% contribution
of Speed Estimation

Total Runtime
(seconds)

512x320 41.9 5.42 52.65 0.0811
1024x576 58.35 3.89 37.7 0.1131
2048x1152 73.7 2.45 23.8 0.1791
3072x1728 84.8 1.41 13.76 0.3101

Table 5.1: Percentage contribution of each algorithm in the pipeline towards the total runtime for 4 different
resolutions(Non-Parametric method)

Resolution % contribution
of Detection

% contribution
of Tracking

Total Runtime
(seconds)

512x320 88.54 11.45 0.0384
1024x576 93.74 6.25 0.0704
2048x1152 96.8 3.2 0.1364
3072x1728 98.36 1.64 0.2674

Table 5.2: Percentage contribution of each algorithm in the pipeline towards the total runtime for 4 different
resolutions(Parametric method)

detection. The contributions of each algorithm in the non-parametric pipeline is tabulated
in Table.5.1. The main speed bottleneck for the pipeline in the speed estimation arises in the
calculation of dense optical flow in the frame.

This issue can be averted by using the non-parametric method of speed estimation given
that a steady stream of time synchronized fight data is available to the Jetson board. The
images and the flight data should be time synchronous so that the state of the UAV can be
assigned to the image captured at that particular instant which helps in accurate measure-
ment of the parameter.
Fig.5.5 shows the total runtime for each of the resolutions chosen with individual con-

Figure 5.5: Contribution of algorithms in the pipeline running at 15 W power mode (Parametric speed estimation). The
contribution of the parametric speed estimation cannot be plotted due to it being in the order of ኻኺᎽᎷ seconds.

tributions of detection and tracking highlighted. The contribution of the parametric speed
estimation is not plotted on the graph due to the scale being of the order 10ዅ seconds. The
reason for such a high-speed calculation is mainly attributed to the presence of only algebraic

5.4. Streaming Optimization 63

and trigonometric calculations which are highly optimized in the python language libraries.
Meanwhile, the contributions of the other two algorithms have been tabulated in Table.5.2.
In a nutshell, the pipeline is able to run at 12.33, 8.84, 5.58, 3.22 frames per second while
using non-parametric method of speed estimation and 26.04, 14.2, 7.33, 3.74 frames per sec-
ond while using parametric method of speed estimation for resolutions 512×320, 1024×576,
2048×1152 and 3072×1728 respectively.
Observing this trend, it can be said that using the parametric method over the non-parametric
one provides a significant boost in processing speed in lower resolutions. Therefore, non-
parametric method should be avoided when the speed of detection is of utmost importance
and flight data is readily available for streaming.

5.4. Streaming Optimization
The frame rates presented in the previous section are achieved under the assumption that
one image goes through the pipeline during every iteration. This is not the case when stream-
ing camera images in real-time (Fig.5.6). A stack of images are fed into the pipeline from the
stream buffer. Only the first image of the stack is processed by the MultEYE detector which
initializes the MOSSE tracker for each of the vehicles while the rest of the images in the buffer
are directly fed sequentially to the tracker algorithm which then estimates the speed. This
results in a higher average frame-rate as the detector algorithm is not invoked for each image
being streamed.
This can be demonstrated by an example streaming case. A buffer of 10 images of resolu-
tion 3072×1728 are fed into the pipeline that runs the non-parametric version of the speed
estimation. The detector takes 0.263 seconds to process the first frame while the rest of the
9 frames are processed by the tracking and speed estimation algorithms at a rate of

0.0044 + 0.0427 = 0.0471[𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑓𝑟𝑎𝑚𝑒]

In total, it takes
0.263 + (0.0471 × 9) = 0.6869[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]

to process the entire buffer, which puts the average runtime per image to be 0.06869 seconds
per image or 14.55 FPS.
Average frame rate for other resolutions for the same sample buffer size of 10 images (para-
metric and non-parametric methods) is tabulated in Table.5.3. It can be seen that the aver-
age frame rate sees a significant boost when the pipeline is processed in this way. The full
resolution stream achieves real-time processing speeds while speed estimation is performed
parametrically and the non-parametric pipeline also achieves a good processing rate of 14.55
FPS.

Figure 5.6: The flow of information through the pipeline when streaming from a camera in real-time

64 5. Inference on Embedded Platform

Resolution Average FPS
(Non-Parametric)

Average FPS
(Parametric)

512x320 21.83 142.85
1024x576 20.41 98.03
2048x1152 17.98 59.52
3072x1728 14.55 33.44

Table 5.3: Average frame rates for the pipeline for a sample stream buffer size of 10 images for 4 different resolutions.

5.5. Summary
This chapter describes the pruning of the MultEYE model and generating a model optimized
for inference on the Jetson Xavier NX platform. The inference throughput of the model is
studied at different power modes of the NX platform for resolutions 512×320, 1024×576,
2048×1152 and 3072×1728. It was found that running the model at 15 Watt power mode
for the image resolution 512×320 provided the maximum framerate of 29.41 FPS.
The contribution of the detection, tracking and speed estimation algorithms to the through-
put of the pipeline was studied for both parametric method as well as non-parametric method
of speed estimation. Further, the pipeline was optimized for streaming applications by using
a stack of images which are processed sequentially by the pipeline. The first image of the
stack runs through the detector which serves as the initialization for the tracker which then
processes the rest of the images in the stack. This method of processing boosts the average
framerate of the stack. A 10-image stack provided an average FPS of 33.44 when run through
a parametric pipeline of image resolution 3072×1728.

6
Conclusion and Future Work

The goal of this research was to design a system that could detect, track and estimate the
velocity of vehicles in a sequence of aerial images. The research also aimed to optimize the
execution of the system so that it could process the images in real-time on an embedded
computer mounted on a UAV.
The use of commonly used object detectors for the detection of vehicles came with several
limitations. Accuracy of the detectors were directly proportional to the size of the network
which entailed fast processing networks like one-shot detectors lacked the accuracy required
to build a reliable system. Further, the lack of region-proposal networks in these one-shot
detectors resulted in difficulty in identifying vehicles when the UAV is flying at high altitudes.
In order to overcome these limitations, a multi-task learning methodology was employed
by adding a segmentation head to the object detector backbone. Learning the contextual
features along with the detections helped the backbone of the network to better encode the
features, especially the lower scale features. The backbone and the segmentation head were
customized for vehicle detection. The number of bottlenecks in the backbone was reduced
as it was able to generate a good latent-space representation with fewer parameters, while
additional bottlenecks and skip connections were introduced in the segmentation head to
be able to resolve smaller-scale features in the images. The detection speed was preserved
by detaching the segmentation head after training. This resulted in a detector model that
performed 4.8% better than the state-of-the-art for vehicle detection in aerial images, in terms
of accuracy while preserving the processing speed.
Once the detector was finalized, the detections are used to initialize MOSSE trackers to track
vehicles through the image sequences. The MOSSE algorithm was proved to be extremely
fast and fairly accurate in the context of vehicle tracking in aerial images as there is minimum
chances of occlusions.
Speed of the tracked vehicles were estimated using two methods. The first method is used
when the geographic location and pose of the camera is not available. This method estimates
the ground sampling distance(GSD) based on an approximation of the detected vehicles size
and the camera velocity using optical flow. The second method is used when the location and
pose of the camera are available and the GSD and camera velocity can be directly calculated.
As intuitively expected, the direct calculation method is significantly faster than the former.
Finally, the detector is stripped of its non-essential layers and the float-precision is halved
to generate an optimized inference model. The detector-tracker-speed estimator pipeline is
then designed such that it accepts a batch of images that are streamed from the camera
and processes it sequentially to improve the average throughput. This results in the whole
pipeline running at around 33 FPS while processing a full-resolution 10-image sequence, on
a Jetson Xavier NX platform.
In summary, the goal of designing a vehicle detection, tracking and speed estimation system
that can run in real-time on an embedded computer was successfully realised.

65

66 6. Conclusion and Future Work

Future Work
The system in its current state is able to track vehicles real-time and estimate their speeds
while running on a mobile platform. Several possible improvements and extensions can be
considered while developing the system further.

Improved training dataset
Aeroscapes[82] was the only existing publicly available dataset that conformed to the re-
quirements to train a multi-task vehicle detector during the period of research. However,
the dataset is not very balanced and has only 625(≈20%) images that have vehicles in them.
Further, the images are taken at altitudes ranging from 5 to 50m, while the DeltaQuad exper-
iments are conducted at altitudes of up to 120m. Thus the detector accuracy can be signifi-
cantly increased if a custom dataset can be created with images taken from the DeltaQuad.

Multi-task Inference
Due to issues with the Keras framework, infering the complete multi-task model could not be
realized. Future work could consider re-constructing themodel in the Pytorch[91] framework.
Having a segmentation map alongside the detection would help in providing a contextual
awareness to the UAV autonomy system especially in cases where emergency landing could
be made safer by navigating the UAV to ’safe’ spots like fields or buildings rather that busy
roads.

Parallel-processing
In the case of streaming, the frames are processed sequentially in the pipeline. Each part
of the pipeline have different execution times. The batch processing time can be further
optimized by splitting the detection and tracking between two cores of the CPU. This will
result in fewer kernel calls per core and a more optimized processing.

Tracking as a part of the Multi-task training
Deep-learning based trackers like GOTURN and DeepSORT have been shown to work best
when trained along with the detector. This could be extrapolated to training the detector
with a tracking head that can possibly perform tracking and detection faster and with more
accuracy than when implemented sequentially.

Anomaly Identification
A true autonomous system is able to distinguish between an expected event and an anomaly
in the context of aerial surveillance. Further information like vehicle orientations, traffic den-
sity and track variances can be used to identify anomalous behavior and send the report to
the ground station for review.
Such a system will employ self-supervised learning that can be trained online and the detec-
tion system gets better, the longer it is used.

Bibliography
[1] Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Måns

Larsson, Alexander Kirillov, Bogdan Savchynskyy, Carsten Rother, Fredrik Kahl, and
Philip HS Torr. Conditional random fields meet deep neural networks for semantic seg-
mentation: Combining probabilistic graphical models with deep learning for structured
prediction. IEEE Signal Processing Magazine, 35(1):37–52, 2018.

[2] Seyed Majid Azimi, Corentin Henry, Lars Sommer, Arne Schumann, and Eleonora Vig.
Skyscapes fine-grained semantic understanding of aerial scenes. In Proceedings of the
IEEE International Conference on Computer Vision, pages 7393–7403, 2019.

[3] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual tracking with online
multiple instance learning. In 2009 IEEE Conference on computer vision and Pattern
Recognition, pages 983–990. IEEE, 2009.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pattern
analysis and machine intelligence, 39(12):2481–2495, 2017.

[5] Navaneeth Balamuralidhar, Pranjal Biswas, Saumya Kumaar Saksena, Gautham
Anand, and Omkar. State-space identification of unmanned helicopter dynamics us-
ing invasive weed optimization algorithm on flight data. Journal of American Helicopter
Society, 2018.

[6] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via mul-
tiple task sampling. Machine learning, 28(1):7–39, 1997.

[7] Anthony J Bell and Terrence J Sejnowski. The “independent components” of natural
scenes are edge filters. Vision research, 37(23):3327–3338, 1997.

[8] Keni Bernardin, Alexander Elbs, and Rainer Stiefelhagen. Multiple object tracking per-
formance metrics and evaluation in a smart room environment. In Sixth IEEE Interna-
tional Workshop on Visual Surveillance, in conjunction with ECCV, volume 90, page 91.
Citeseer, 2006.

[9] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online
and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP),
pages 3464–3468. IEEE, 2016.

[10] Blog. Dimensions of European Cars, 2019 (accessed September 10, 2020). URL https:
//www.automobiledimension.com/.

[11] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-speed tracking-by-detection
without using image information. In 2017 14th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), pages 1–6. IEEE, 2017.

[12] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[13] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual object
tracking using adaptive correlation filters. In 2010 IEEE computer society conference
on computer vision and pattern recognition, pages 2544–2550. IEEE, 2010.

[14] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization
via graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11):
1222–1239, 2001.

67

https://www.automobiledimension.com/
https://www.automobiledimension.com/

68 Bibliography

[15] Samarth Brahmbhatt, Henrik I Christensen, and James Hays. Stuffnet: Using ‘stuff’to
improve object detection. In 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 934–943. IEEE, 2017.

[16] John Canny. A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, (6):679–698, 1986.

[17] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[18] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4):834–848, 2017.

[19] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-
thinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[20] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014.

[21] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[22] Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras.

[23] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: learning dense volumetric segmentation from sparse annotation.
In International conference on medical image computing and computer-assisted interven-
tion, pages 424–432. Springer, 2016.

[24] Erik V Cuevas, Daniel Zaldivar, and Raul Rojas. Kalman filter for vision tracking. 2005.

[25] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-
ics of control, signals and systems, 2(4):303–314, 1989.

[26] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. In Advances in neural information processing systems,
pages 379–387, 2016.

[27] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[28] Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chanu. Im-
age segmentation using k-means clustering algorithm and subtractive clustering algo-
rithm. Procedia Computer Science, 54:764–771, 2015.

[29] Rongyi Du, Zhongren Peng, and Qingchang Lu. Comparison of sms calculation meth-
ods based on ngsim data for uav detection. In 2012 4th International Conference on
Intelligent Human-Machine Systems and Cybernetics, volume 2, pages 112–115. IEEE,
2012.

[30] M. Elloumi, R. Dhaou, B. Escrig, H. Idoudi, and L. A. Saidane. Monitoring road traf-
fic with a uav-based system. In 2018 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6, 2018.

[31] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In
Josef Bigun and Tomas Gustavsson, editors, Image Analysis, pages 363–370, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-45103-7.

https://github.com/fchollet/keras

Bibliography 69

[32] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively trained,
multiscale, deformable part model. In 2008 IEEE conference on computer vision and
pattern recognition, pages 1–8. IEEE, 2008.

[33] Pedro F Felzenszwalb, Ross B Girshick, and David McAllester. Cascade object detection
with deformable part models. In 2010 IEEE Computer society conference on computer
vision and pattern recognition, pages 2241–2248. IEEE, 2010.

[34] Xiaoxue Feng and Peijun Li. A tree species mapping method from uav images over
urban area using similarity in tree-crown object histograms. Remote Sensing, 11(17):
1982, 2019.

[35] David A Forsyth and Jean Ponce. Computer vision: a modern approach. Prentice Hall
Professional Technical Reference, 2002.

[36] Howard Frank. Expanded traffic-cam system in Monroe County will cost PennDOT 4.3M,
2013 (accessed July 27, 2020). URL http://www.poconorecord.com/apps/pbcs.
dll/articlAID=/20130401/NEWS/1010402/-1/NEWS.

[37] Spyros Gidaris and Nikos Komodakis. Object detection via a multi-region and semantic
segmentation-aware cnn model. In Proceedings of the IEEE international conference on
computer vision, pages 1134–1142, 2015.

[38] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on com-
puter vision, pages 1440–1448, 2015.

[39] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[40] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-based con-
volutional networks for accurate object detection and segmentation. IEEE transactions
on pattern analysis and machine intelligence, 38(1):142–158, 2015.

[41] Ross B Girshick, Pedro F Felzenszwalb, and David McAllester. Discriminatively trained
deformable part models, release 5. 2012.

[42] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 315–323, 2011.

[43] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking via on-line
boosting. In Bmvc, volume 1, page 6, 2006.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEE transactions on pattern
analysis and machine intelligence, 37(9):1904–1916, 2015.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[47] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Pro-
ceedings of the IEEE international conference on computer vision, pages 2961–2969,
2017.

[48] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 fps with
deep regression networks. In European Conference on Computer Vision, pages 749–765.
Springer, 2016.

http://www.poconorecord.com/apps/pbcs.dll/articlAID=/20130401/NEWS/1010402/-1/NEWS
http://www.poconorecord.com/apps/pbcs.dll/articlAID=/20130401/NEWS/1010402/-1/NEWS

70 Bibliography

[49] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed tracking
with kernelized correlation filters. IEEE transactions on pattern analysis and machine
intelligence, 37(3):583–596, 2014.

[50] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1314–1324, 2019.

[51] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[52] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward error: Auto-
matic detection of tracking failures. In 2010 20th International Conference on Pattern
Recognition, pages 2756–2759. IEEE, 2010.

[53] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection. IEEE
transactions on pattern analysis and machine intelligence, 34(7):1409–1422, 2011.

[54] Ugur Kart, Alan Lukezic, Matej Kristan, Joni-Kristian Kamarainen, and Jiri Matas. Ob-
ject tracking by reconstruction with view-specific discriminative correlation filters. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1339–1348, 2019.

[55] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour mod-
els. International journal of computer vision, 1(4):321–331, 1988.

[56] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model un-
certainty in deep convolutional encoder-decoder architectures for scene understand-
ing. arXiv preprint arXiv:1511.02680, 2015.

[57] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 -
International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4, 1995.

[58] Muhammad Arsalan Khan, Wim Ectors, Tom Bellemans, Davy Janssens, and Geert
Wets. Uav-based traffic analysis: A universal guiding framework based on literature
survey. Transportation research procedia, 22:541–550, 2017.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[60] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[61] Jing Li, Shuo Chen, Fangbing Zhang, Erkang Li, Tao Yang, and Zhaoyang Lu. An adap-
tive framework for multi-vehicle ground speed estimation in airborne videos. Remote
Sensing, 11(10):1241, 2019.

[62] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng, and Jian Sun. Light-
head r-cnn: In defense of two-stage object detector. arXiv preprint arXiv:1711.07264,
2017.

[63] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-path
refinement networks for high-resolution semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1925–1934, 2017.

[64] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

Bibliography 71

[65] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[66] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network
for instance segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8759–8768, 2018.

[67] Wei Liu, Andrew Rabinovich, and Alexander C Berg. Parsenet: Looking wider to see
better. arXiv preprint arXiv:1506.04579, 2015.

[68] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

[69] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[70] Alan Lukezic, Tomas Vojir, Luka ˇCehovin Zajc, Jiri Matas, and Matej Kristan. Dis-
criminative correlation filter with channel and spatial reliability. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6309–6318, 2017.

[71] Ye Lyu, George Vosselman, Gui-Song Xia, Alper Yilmaz, and Michael Ying Yang. Uavid:
A semantic segmentation dataset for uav imagery. ISPRS Journal of Photogrammetry
and Remote Sensing, 165:108 – 119, 2020. ISSN 0924-2716. doi: https://doi.org/
10.1016/j.isprsjprs.2020.05.009. URL http://www.sciencedirect.com/science/
article/pii/S0924271620301295.

[72] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez. Can se-
mantic labeling methods generalize to any city? the inria aerial image labeling bench-
mark. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
IEEE, 2017.

[73] Maitiniyazi Maimaitijiang, Vasit Sagan, Paheding Sidike, Ahmad M Daloye, Hasanjan
Erkbol, and Felix B Fritschi. Crop monitoring using satellite/uav data fusion and
machine learning. Remote Sensing, 12(9):1357, 2020.

[74] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of exemplar-svms
for object detection and beyond. In 2011 International conference on computer vision,
pages 89–96. IEEE, 2011.

[75] K. F. Man, K. S. Tang, and S. Kwong. Genetic algorithms: concepts and applications [in
engineering design]. IEEE Transactions on Industrial Electronics, 43(5):519–534, 1996.

[76] Gellért Máttyus, Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Hd maps: Fine-
grained road segmentation by parsing ground and aerial images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3611–3619, 2016.

[77] Ali Reza Mehrabian and Caro Lucas. A novel numerical optimization algorithm inspired
from weed colonization. Ecological informatics, 1(4):355–366, 2006.

[78] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. In 2016 fourth interna-
tional conference on 3D vision (3DV), pages 565–571. IEEE, 2016.

[79] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, 2010.

[80] Laurent Najman and Michel Schmitt. Watershed of a continuous function. Signal
Processing, 38(1):99–112, 1994.

http://www.sciencedirect.com/science/article/pii/S0924271620301295
http://www.sciencedirect.com/science/article/pii/S0924271620301295

72 Bibliography

[81] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural net-
works for visual tracking. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[82] Ishan Nigam, Chen Huang, and Deva Ramanan. Ensemble knowledge transfer for
semantic segmentation. In 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1499–1508. IEEE, 2018.

[83] Haoran Niu, Nuria Gonzalez-Prelcic, and Robert W Heath. A uav-based traffic moni-
toring system-invited paper. In 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring), pages 1–5. IEEE, 2018.

[84] Richard Nock and Frank Nielsen. Statistical region merging. IEEE Transactions on
pattern analysis and machine intelligence, 26(11):1452–1458, 2004.

[85] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE international conference on
computer vision, pages 1520–1528, 2015.

[86] Norzailawati Mohd Noor, Alias Abdullah, and Mazlan Hashim. Remote sensing
UAV/drones and its applications for urban areas: a review. IOP Conference Se-
ries: Earth and Environmental Science, 169:012003, jul 2018. doi: 10.1088/
1755-1315/169/1/012003. URL https://doi.org/10.1088%2F1755-1315%2F169%
2F1%2F012003.

[87] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and David G Lowe. A
boosted particle filter: Multitarget detection and tracking. In European conference on
computer vision, pages 28–39. Springer, 2004.

[88] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[89] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE trans-
actions on systems, man, and cybernetics, 9(1):62–66, 1979.

[90] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A
deep neural network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016.

[91] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[92] Press. Dutch Government successfully uses Aerialtronics drones to control traf-
fic, 2015 (accessed July 27, 2020). URL https://www.suasnews.com/2015/07/
dutch-government-successfully-uses-aerialtronics-drones-to-control-traffic/.

[93] Paulina Lyubenova Raeva, Jaroslav Šedina, and Adam Dlesk. Monitoring of crop fields
using multispectral and thermal imagery from uav. European Journal of Remote Sens-
ing, 52(sup1):192–201, 2019.

[94] Rajeev Ranjan, Swami Sankar, Carlos Castillo, and Rama Chellappa. An all-in-one
convolutional neural network for face analysis. 11 2016.

https://doi.org/10.1088%2F1755-1315%2F169%2F1%2F012003
https://doi.org/10.1088%2F1755-1315%2F169%2F1%2F012003
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.suasnews.com/2015/07/dutch-government-successfully-uses-aerialtronics-drones-to-control-traffic/
https://www.suasnews.com/2015/07/dutch-government-successfully-uses-aerialtronics-drones-to-control-traffic/

Bibliography 73

[95] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[96] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[97] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[98] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union. June 2019.

[99] Tal Ridnik, Hussam Lawen, Asaf Noy, and Itamar Friedman. Tresnet: High perfor-
mance gpu-dedicated architecture. arXiv preprint arXiv:2003.13630, 2020.

[100] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241. Springer, 2015.

[101] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[102] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Tracking the untrackable:
Learning to track multiple cues with long-term dependencies. In Proceedings of the
IEEE International Conference on Computer Vision, pages 300–311, 2017.

[103] Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour. Tversky loss func-
tion for image segmentation using 3d fully convolutional deep networks. In Interna-
tional Workshop on Machine Learning in Medical Imaging, pages 379–387. Springer,
2017.

[104] Todd N Schoepflin and Daniel J Dailey. Dynamic camera calibration of roadside traffic
management cameras for vehicle speed estimation. IEEE Transactions on Intelligent
Transportation Systems, 4(2):90–98, 2003.

[105] Sean O Settle, Manasa Bollavaram, Paolo D’Alberto, Elliott Delaye, Oscar Fernandez,
Nicholas Fraser, Aaron Ng, Ashish Sirasao, and Michael Wu. Quantizing convolu-
tional neural networks for low-power high-throughput inference engines. arXiv preprint
arXiv:1805.07941, 2018.

[106] Abhinav Shrivastava and Abhinav Gupta. Contextual priming and feedback for faster
r-cnn. In European conference on computer vision, pages 330–348. Springer, 2016.

[107] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[108] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[109] J-L Starck, Michael Elad, and David L Donoho. Image decomposition via the combina-
tion of sparse representations and a variational approach. IEEE transactions on image
processing, 14(10):1570–1582, 2005.

[110] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

74 Bibliography

[111] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[112] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv preprint arXiv:1905.11946, 2019.

[113] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and R. Urtasun. Multinet: Real-time
joint semantic reasoning for autonomous driving. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1013–1020, 2018.

[114] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.
Efficient object localization using convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 648–656, 2015.

[115] Amos Tversky. Features of similarity. Psychological review, 84(4):327, 1977.

[116] Darrenl Tzutalin et al. Labelimg, 2018. URL https://github.com/tzutalin/
labelImg.

[117] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gevers, and Arnold WM Smeulders.
Segmentation as selective search for object recognition. In 2011 International Confer-
ence on Computer Vision, pages 1879–1886. IEEE, 2011.

[118] MH Schultz van Haegen. Model Flying Scheme, 2019 (accessed July 22, 2020). URL
https://wetten.overheid.nl/BWBR0019147/2019-04-01.

[119] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001, volume 1, pages I–I. IEEE, 2001.

[120] Paul Viola and Michael J Jones. Robust real-time face detection. International journal
of computer vision, 57(2):137–154, 2004.

[121] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei
Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability
of cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 390–391, 2020.

[122] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Gar-
rison Cottrell. Understanding convolution for semantic segmentation. In 2018 IEEE
winter conference on applications of computer vision (WACV), pages 1451–1460. IEEE,
2018.

[123] Werner (IPF) Weisbrich. Startseite. URL http://www.ipf.kit.edu/downloads_
data_set_AIS_vehicle_tracking.php.

[124] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime track-
ing with a deep association metric. In 2017 IEEE international conference on image
processing (ICIP), pages 3645–3649. IEEE, 2017.

[125] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyper-
parameter optimization for machine learning models based on bayesian optimization.
Journal of Electronic Science and Technology, 17(1):26–40, 2019.

[126] Xiangqian Wu, Xin Shen, Lin Cao, Guibin Wang, and Fuliang Cao. Assessment of
individual tree detection and canopy cover estimation using unmanned aerial vehicle
based light detection and ranging (uav-lidar) data in planted forests. Remote Sensing,
11(8):908, 2019.

[127] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan Yang. Denseaspp for seman-
tic segmentation in street scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3684–3692, 2018.

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://wetten.overheid.nl/BWBR0019147/2019-04-01
http://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_tracking.php
http://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_tracking.php

Bibliography 75

[128] Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi, and Junjie Yan. Poi: Mul-
tiple object tracking with high performance detection and appearance feature. In Eu-
ropean Conference on Computer Vision, pages 36–42. Springer, 2016.

[129] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

[130] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer, 2014.

[131] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual
u-net. IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, 2018.

[132] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017.

[133] He Zhiwei, Liu Yuanyuan, and Ye Xueyi. Models of vehicle speeds measurement with
a single camera. In 2007 International Conference on Computational Intelligence and
Security Workshops (CISW 2007), pages 283–286. IEEE, 2007.

[134] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming
Liang. Unet++: A nested u-net architecture for medical image segmentation. In Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Sup-
port, pages 3–11. Springer, 2018.

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Objective and Questions
	Outline

	Background and Related Work
	Artificial Neural Networks
	Neuron Model
	Network of Neurons

	Convolutional Neural Network
	Convolutional Layer
	Pooling Layer
	Dropout Layer
	Backpropagation
	Loss Function
	Learning Rate Scheduling
	Hyperparameter Tuning
	Applications of CNNs : A brief timeline

	Fully Convolutional Networks
	Introduction
	Transposed Convolutional Layer
	Types of FCNs
	Semantic Segmentation

	Object Detection
	Multi-Task Learning
	Multi-Object Tracking
	Vehicle Speed Estimation

	Vehicle Detection
	Semantic Segmentation Head
	Model Architecture
	Dataset preparation for Multi-class Semantic Segmentation
	Training
	Results and Discussion

	Object Detection Head
	Model Architecture
	Dataset preparation for Object Detection
	Training
	Results and Inference

	Multi-task Learning
	MultEYE Model Architecture
	Training
	Results and Discussion

	Hyperparameter Optimization
	Results

	Summary

	Vehicle Tracking and Speed Estimation
	Minimum Output Sum of Squared Error based Tracking
	Experiment and Results
	Speed Estimation
	Parameter Estimation using known context Priors and Optical Flow (Non-Parametric Method)
	Parameter estimation using Real-time Flight Data (Parametric Method)
	Method Comparison

	Inference on Embedded Platform
	Graph Optimization
	MultEYE Model Inference on Jetson Xavier NX
	Pipeline Inference
	Streaming Optimization
	Summary

	Conclusion and Future Work
	Bibliography

