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Abstract

Expansion in area under oil palm production has been reported to cause
widespread environmental impacts. The Round Table on Sustainable Palm
0il (RSPO) was then formed with a mandate to promote sustainable palm
oil production and consumption. Criterion 7.3 for RSPO -certification
requires that all oil palm planted after 2005 must not have replaced
primary forests or other high conservation value forests. The objective of
this study was to therefore develop an objective and accurate remote
sensing-based method that can indicate time of planting by determining
age of the oil palm for application in RSPO certification. Field data on crown
area and age were collected from the study site in Ghana and used to
develop an empirical function predicting age from crown area. Object-
based image analysis techniques were also used on a WorldView-2 image
to obtain the crown area of oil palm. The crown area obtained from the
object based method was then combined with the empirical function to
predict age of the oil palm per field. There was a strong linear relationship
between age and crown area of oil palm up to 13 years (p<0.001, R2=0.88)
beyond which no relationship was observed. The RMSE and MAE for age
prediction based on crown area were around 1 year while the percentage
error was 8.2%. Although the delineation accuracy depended more on
stand characteristics than on age, delineation for the older oil palms (13
years) had the least accuracy (D=0.59). An overall oil palm crown
delineation accuracy of 0.69 (D=0.31) was obtained. The developed
approach accurately estimated oil palm ages for 27.9% of the fields, with
+1 year accuracy for 74.6% of the fields and with *2 year accuracy for
92.4% of the fields. The prediction showed that 6 and 11 year old oil palm
dominate age categories in the study area. Field characteristics such as
existence of weeds and intercrops determined delineation parameters and
strongly affected delineation accuracy. As these varied between stands, a
field-level method was found appropriate although it is not fully-
automated. Major improvement required is in the delineation of crown
area. The study developed and demonstrated an approach that is useful not
only for RSPO certification for Criterion 7.3 but also for spatial planning,
impact assessment and precision farming in the oil palm sector.
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Chapter 1: INTRODUCTION

1. 1Background

Palm oil is obtained from the African oil palms [Elaeis guineensis Jacq.];
monocotyledonous perennial plants indigenous to West Africa. Oil palms
are widely grown in more than 43 countries mainly between 10°N and 100°S
of the equator (Hardter, et al., 1997). There are two kinds of palm oil, palm
kernel oil and crude palm fruit oil, and their uses as a food resource, in
oleochemical industry and biofuel sectors depend on this categorization.
The palm kernel oil is obtained from the seed or the kernel inside the hard-
shell mesocarp yielding around 80% saturated fatty acid (oleic) and is
mainly used in the manufacture of soaps, detergents and other toiletries in
oleochemical industries (Basiron, 2007; Hardter, et al.,, 1997). Crude palm
fruit oil is obtained from the soft flesh or mesocarp of the fruit. It is rich in
both saturated and unsaturated (palmic) fatty acid and is used as
ingredient in many foods, in leather, metal and chemical industries as well
as feedstock for biofuel.

Annual global production of palm oil is over thirty-five million metric tons
with Malaysia and Indonesia contributing around 80% of global production
(Fitzherbert, et al, 2008; Germer & Sauerborn, 2008). The total area
currently under production is over thirteen and half million hectares, the
majority being under large scale plantation system operating as a nucleus
of many smallholder producers (Butler, et al., 2009). Consequently, palm oil
is the second most important source of vegetable oil after soybean
(Fitzherbert, et al., 2008; Tan, et al.,, 2009). The large areas, high levels of
production and wide use of palm oil have been realized in the past three
decades (Figure. 1.1) due to increased demand for food, industrial and fuel
products vis-a-vis the great production potential of oil palms to meet this
demand.

Oil palm has the highest potential yield per hectare of all sources of
vegetable oil (Corley, 2009). It can produce twice more oil than rape seed
and almost four times more than soy beans, groundnut and sunflower per
hectare per year (Tan, et al., 2009). Due to increasing demands for palm oil
as a food resource in China, India and South America and as a biodiesel in
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the European Union global production is increasing at a rate of 9%
annually (Koh & Wilcove, 2008; Tan, et al.,, 2009).

Realising this great potential, Ghana has set to increase area under oil palm
by 2000ha annually under the President’s Special Initiative (PSI) on oil
palm plantation and exports mainly through expanding large scale
plantations (Duku, 2007; Holbech, 2009). At this target, 300 thousand
hectares of land are to be converted to palm oil production in the main
palm oil production zone that covers the Western, Central, Brong Ahafo,
Ashanti, Eastern and Volta regions(Carrere, 2010; Duku, 2007).

Cultivated area

14
4 :|2 m Others
& 'g B Thailand
-E 5 B Malaysia
g 4 O Indonesia
E 5 O Colombia
0 W Nigeria
1980 1990 2000 2009 | @ hory Coast

Year

Figure 1.1:Growth in area under palm oil production:1980-2009 (Tan, et al., 2009)

Area under production in Ghana was 304 000ha by 2004 with smallholders
having 88% of this land under oil palm but producing 72% of the output
(Carrere, 2010; Duku, 2007). In addition, wild palm grooves covering
nearly 2 million ha are an important source of palm oil and palm wine. The
fact that the smallholder plantations dominate the palm oil scene in Ghana
dates back to the colonial era where policies for making locals own land
were promoted. However, due to the multiple failures of the government-
run oil palm plantations; private companies bought them and entered the
palm oil production sector in Ghana from the 1980s (Gyasi, 2003).
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1.2 Problems of oil palm expansion

As market demand for palm oil products increases and societies seek
profitable options for economic survival, the area under palm oil has
tremendously increased in almost all major producing countries. There are
concerns about the growth of palm oil production in West Africa at the
expense of primary forests that provide provisioning and regulating
ecosystem services at different scales (Gyasi, 2003; Norris, et al,, 2010). In
addition, in South-east Asia, where over 80% of global palm oil is produced
(Corley, 2009) there have been widespread reports on the ecological
impacts of oil palm expansion (Fitzherbert, et al, 2008; Friends of the
Earth, 2007; Stone, 2007). Deforestation is among the greatest concerns
about global oil palm expansion (Tan, et al., 2009; Wicke, et al., 2011).

As the oil palm plantations expand, they have resulted in significant land
cover change on previously forested areas that are habitats for many
endemic species (Laurance, et al, 2010; Ravindranath, et al., 2009; Tan, et
al,, 2009). For example, palm oil expansion has been blamed for direct and
indirect contribution to species extinction (Corley, 2009; Koh & Wilcove,
2008; Norris, et al., 2010; Stone, 2007). This is worrisome because there is
an overlap between palm oil production zones and biodiversity
hotspots(Fischer, et al., 2009; WWF, 2007). In addition, conversion of
forests, particularly in peatland ecosystems, contributes significantly to
greenhouse gas emissions (Fitzherbert, et al., 2008; Laurance, et al.,, 2010).
Furthermore, these tropical forests are important in water retention and
other hydrological processes as well as for evapotranspiration that keeps
the tropical areas moist (Tan, et al., 2009).

In addition to being habitats and sinks of carbon, forests provide important
ecosystem services to populations living around them. The conversion of
land to oil palm results in lost access to forest services that are part of
livelihoods of communities living around forests (Friends of the Earth,
2007; WWF, 2007). Further, social issues related to land transfers and
tenure systems that come with acquisition and/or sale of large pieces of
indigenous land to oil palm companies are of concern (Achten, et al., 2010;
Friends of the Earth, 2007).

Although palm oil is mainly used as a food resource and is reported to
significantly improve socio-economic status of producers (Hardter, et al,

3
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1997), when it is produced for biofuel it competes for land with food crops
and this undermines food security and nutrition especially at local levels
(Fischer, et al,, 2009; van Dam, et al., 2008). Although the majority of these
problems have been reported in Malaysia and Indonesia, where the
greatest proportion of palm oil is produced, the types and scale of impacts
reflect the problems faced by the global palm oil industry.

Certification of palm oil may be an option in addressing the sustainability
issues facing the global palm oil sector. According to Dankers (2003) and
Dries & Mancini (2006), certification is a market-driven mechanism where
an independent assessment by an accredited third party provides
assurance to end-users that products or services meet set standards.
Standards (also referred to as code of practice) are a list of technical
conditions used to define, guide and determine if products, services or
processes comply with the quality, environmental, organic, labour, social or
other requirements (Barjolle, et al., 2010; Dankers, 2003). Certification can
therefore be viewed as a way of communicating to consumers that
products have been produced in a way they approve. This communication
is usually accomplished by certificates when between sellers (producers)
and buyers (retailers), and through labels when between the retailers and
final consumers (Dankers, 2003). A certification body was therefore
formed to foster certification of palm oil.

1.3 The Roundtable for Sustainable Oil Palm Production (RSPO)

Certification may guarantee sustainability in palm oil production through
ensuring social and environmental accountability. In this regard, the
Roundtable on Sustainable Palm Oil was set up to develop and implement
principles and criteria that promote and reward sustainable palm oil
production in all producing countries through certification (Laurance, et
al,, 2010; Tan, et al, 2009). RSPO is a non-profit, industry led organization
whose mandate is to support production and marketing of certified palm
oil for the global market in a clear and transparent manner through a multi-
stakeholder approach (RSPO, 2007). Its stakeholders include palm oil
producers, buyers, environmental advocacy groups, governments and
others involved in the palm oil production chain.

In 2005, the RSPO produced thirty-nine criteria organized into eight
principles for certification of sustainable palm oil and by 2010, about ten

4
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per cent of all palm oil produced had RSPO certification (Laurance, et al.,
2010; Scarlat & Dallemand, 2011). RSPO pays great attention to
environmental issues as demonstrated in its criteria and twenty-five per
cent of its executive board members are from environmental advocacy
groups (Laurance, et al., 2010). RSPO dedicated criteria 5 and 7 to directly
address environmental issues. Principle 7 deals with responsible
development of new plantings, under which criterion 7.3 specifies that all
new plantings must not have replaced primary forests or other important
habitats (RSPO, 2007).

Although, RSPO has achieved notable success in the short time since its
establishment, it faces a number of challenges. Among these challenges is
the lack of efficient monitoring and enforcement of principles for RSPO
certification (Laurance, et al,, 2010). In addition, since palm oil is produced
in 4 continents and over large areas, ensuring that members are adhering
to set principles and that certified palm oil is produced in a sustainable
way, is a daunting task for RSPO. Despite these challenges, RSPO has great
potential to ensure that the palm oil sector is meeting increased demand
for palm oil without aggravating the ecological and socio-economic
conditions. Furthermore, with growing awareness and lobbying for
sustainability as production and demand increases, certification will soon
be a requirement for market access (van Dam, et al., 2008).

For certification of sustainable palm oil production, several criteria are
defined by the RSPO. Assessment of a number of these criteria requires
reliable spatio-temporal information that is expensive, time-consuming and
arduous to collect using field-based methods. Therefore, a remote sensing
enhanced certification approach has potential to provide sustainability
assessment for palm oil production at reduced cost and subjectivity.
Laurence, et al. (2010) recommended that RSPO applies remote sensing
and other geospatial tools to enhance the certification process. Geospatial
technologies can be used for all criteria with a spatial component, applied
in real time and over vast plantations in many parts of the world (Laurance,
etal,, 2010; Scarlat & Dallemand, 2011).

1.4 Remote sensing for land cover change assessment

Remote sensing has provided a tool for efficient assessment of land cover
and resources at local, regional and global levels (Turner, et al., 2003).

5
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Identifying and quantifying land cover change is among the principal
applications of remote sensing. Comparing images taken at two different
time periods for change detection is the classical but still useful way of
determining land cover/use change (Lillesand & Kiefer, 2008). Overall
classification accuracies of above ninety percent have been reported with
this approach (Foody, 2002; Rogan & Chen, 2004). However, this approach
cannot show when exactly the change occurred because the chances of
error in dealing with a series of medium resolution images increases and
using high resolution images for this purpose is very expensive and also
that they may not be available (Wu, 2009). The exact time of change that is
missing in this multitemporal approach may be important for some
applications of change detection such as those required for RSPO
certification.

To obtain the information about when exactly the land cover changed,
hypertemporal methods that analyse temporal NDVI profiles on low
resolution imagery have been used (Rosenqvist, et al., 2003). For example,
Lunetta (2006) demonstrated how hypertemporal MODIS NDVI data could
be useful for identifying exactly when land cover change occurred for forest
certification decisions. While this approach indicates when exactly the land
cover change occurred, the spatial resolution of hypertemporal images
such as MODIS and SPOT is often too course for studying localized changes
(Lillesand & Kiefer, 2008). Mapping localized changes is important because
ecosystem modifications due to palm oil expansion can occur at scales
ranging from a few meters to many kilometers. In addition, the classical
approach depends on repeat images which in tropical areas such as Ghana
are not reliable because of cloud cover. Since the classical approach and
the temporal analysis are not very appropriate for the intended purpose of
supporting RSPO certification, an object-based image analysis (OBIA)
approach could be a promising option.

1.5 Object-based image analysis

Object-based image analysis is defined by Hay & Castella (2006) as a
discipline in spatial science that focuses on partitioning remote sensing
imagery into meaningful objects through utilization of spatial and spectral
properties. The concept of analyzing an image in object space rather than in
pixel space is developed due to the inadequacies of pixel-based methods
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especially on high resolution images and also supported by advances in
computational capacities and availability of high resolution satellite images
such as IKONOS, GeoEye and WorldView (Blaschke, 2010; Navulur, 2007).
OBIA is intended to mimic the human interpretation of remote sensing
imagery and provide accurate and detailed spatial information that would
normally take experienced people long time to process. Although the roots
of OBIA are linked to medical and industrial image analysis (Blaschke,
2010), it has shown a lot of potential for applications within the remote
sensing community.

Automated feature extraction and classification is the main use of OBIA in
remote sensing across environmental, urban, surveying, planning, forestry
and other sectors (Blaschke, 2010; Lang, 2008). Studies that compared
object-based image analysis and pixel-based image processing have
consistently concluded that object-based image analysis results in better
classification accuracy and feature extraction compared to pixel based
approaches. These studies ranged from forest inventory, urban
applications , habitat identification and change detection as reviewed in
detail by Gamanya (2007), Hay & Castella (2006) and Blanschke (2010).
OBIA is therefore considered as the future of remote sensing because of its
potential applications and widespread adoption in the remote sensing
community (Hay & Castella, 2006; Navulur, 2007).

The advantages of OBIA were summarized by Nuvulur (2007) and
Blanschke (2010) and were mainly centered on its ability to incorporate
spatial and contextual properties. The dimensions that OBIA can utilize to
improve classifications in addition to spectral characteristics are shape,
morphology, shape, temporal aspects and metadata. OBIA also integrates
the best of current image processing approaches such as fuzzy logic,
knowledge classification and kernel-based methods giving the user many
options in solving complex classification and feature extraction problems
(Navulur, 2007). Therefore, identification of individual objects on high
resolution such as tree crowns opens new opportunities in mapping and
monitoring forests and other resources.

1.6 Research conceptual framework

Palm oil is relatively cheaper to produce and has higher productivity than
other vegetable oils. When increased demand for palm oil as a food

7
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resource is coupled with increases in fossil fuel prices and instability in
many of the oil producing countries (Tan, et al, 2009), there is growing
potential demand for palm oil in the global market. For instance, the EU has
set a target for a minimum of twenty-per cent replacement of fossil fuel by
biodiesel by 2020 in all its member countries, creating additional demand
for palm oil in the energy sector. Increased palm oil production provides
socio-economic opportunities at household and country scales that help
reduce poverty and underdevelopment. However, land clearance to expand
production comes with ecological costs that contribute to climate change
and habitat loss. It is conceptualized therefore that RSPO certification is
important for dealing with a multiplicity of issues at different scales while a
remote sensing approach is useful for providing information about the
spatial features at different levels of the oil palm system important for
RSPO certification (Figure 1.2).

Remote Sensing
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Figure 1.2: Sustainability components of an oil palm production system

The RSPO aims to harmonize increases in plantation productivity for
economic development with ecological integrity, based on the concept that
more can be produced at less impact to the environment (Figure 1.2). In
order to achieve this goal, the RSPO needs effective monitoring
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mechanisms and remote sensing provides many opportunities to fill this
gap.

1.7 Research problem

There is need for a novel approach that is able to accurately detect both the
magnitude and time of land cover change for applications such as assessing
RSPO certification Criterion 7.3 for Ghana. With Ghana planning to expand
its palm oil sector, it is important that this growth is achieved in a
sustainable way through following RSPO standards. In addition,
information about the acreage, age and expansion of oil palm is important
in precision agriculture, spatial planning and strategic impact assessments.
Knowing the ages and areas can be useful in precision farming as yields and
other management aspects can be easily related to the area and age of the
oil palms. For expansion of oil palm with minimal environmental impact on
biodiversity, spatial planners need a reliable way of assessing the current
production sites in terms of age and area and use this in decision support
and policy implementation. Combining OBIA and an empirical model that
relate crown area to age provides the best promise to get the area under
different ages of oil palm.

This research therefore sought to develop a method to map individual
crowns of oil palms and when combined with empirical model; can be
useful in determining the age of the oil palms. The specific characteristics
for mapping oil palm in OBIA were not yet established, and while research
is continuing on improving OBIA methods, this research goes further to
apply it in solving environmental problems. In addition, the method was
meant to enhance the RSPO certification process as it gives beforehand
which areas were planted after the 2005 benchmark for certification. The
ages could also be useful for determining amount of carbon stored in oil
palm. The nature of oil palm crown also presents further challenges
compared to the natural and other plantations for which research has been
done. This approach is novel because it has never been applied before in
sustainability assessments of palm oil production.
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1.8 Objectives

Broad objective

The broad objective is to determine age of oil palm plantations from high
resolution imagery for use as indicators of time of conversion to palm oil
production required for RSPO criterion 7.3 that states that all oil palms
planted after 2005 should not have resulted in deforestation of primary
forests and other high value conservation areas.

Specific objectives
The specific objectives were to:
1. Determine oil palm canopy area by object-oriented analysis from
high resolution satellite imagery
2. Establish the relationship between canopy area and age of the oil
palm from field and satellite image collected data
3. Determine the time of land conversion to oil palm plantations using
the satellite-image derived oil palm age
4. ldentify where and how much land has been converted to palm oil
production before and after 2005 for application of RSPO criterion
7.3

1.9 Research questions

1. To what extent can oil palm canopy area be accurately determined by
object-oriented image analysis from high resolution satellite imagery?

2. What is the relationship between canopy area and age of the oil palm
trees

3. How accurate is canopy area in predicting oil palm age?

4. Where and when was land converted to oil palm plantations before and
after 20057

1.10 Hypothesis

Ho: There is a positive relationship between crown area and age of oil palm

Hi: There is no significant relationship between crown area and age of oil
palm

10



CHAPTER 2: STUDY AREA

2.1 Palm oil production in Ghana

0il palm is indigenous to the West African rainforest belt that covers
countries such as Ghana, Cameroun, Nigeria, Togo, Nigeria and Cote de
Ivoire (FAO, 2003; Gyasi, 1992). Ghana, like other West African countries
has therefore a long history of palm oil production, processing and use. Due
to their tropical nature, oil palms require well distributed high rainfalls (at
least 1600mm/year), many sunshine hours (around 2000/year) and high
temperatures of between 20 and 300C (FAO, 2003; Gyasi, 1992; OPR],
2003). These requirements have defined a palm oil production belt in the
western, southern and eastern parts of Ghana where the conditions are
favorable.

Gyasi (1992) categorized the oil palm belt in Ghana into 3 categories;
traditional, core and active areas (Figure 2.1). The traditional zones are
areas where indigenous people have been producing and harnessing oil
palm (including from native grooves) before commercial production. The
core areas have a lot of palm oil production in terms of percentage area
under oil palm compared to other crops. The zone categorized as other
active areas refer to where palm oil is produced but not very dominant on
the landscapes as compared to other crops or systems. Of these zones, the
core areas and the other active areas are considered as emerging zones
meaning that oil palm production has expanded to replace forests and
other arable land (Gyasi, 1992).

Ghana is currently the fifth largest producer of palm oil in Africa after
Nigeria, Ivory Coast, Benin and Congo (FAO, 2003). The main players in the
Ghana palm oil sector are large scale companies such as Benso Oil Palm
Plantation Limited (Western region), Twifo Oil Palm Plantations (Central
region), Ghana Oil Palm Development Corporation (Eastern region) and
National Oil Palm Plantation (Ashanti region) and their shareholding spans
from government, private and foreign investments (Duku, 2007). These
operate large scale plantations of over 100 ha each and apply highly
mechanized methods for management of the oil palms. They also operate in
close unison with smallholder farmers who supply them with matter for
processing in their mills (Gyasi, 2003).
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Figure 2.1:0il palm production areas in Ghana (adapted from Gyasi 1992).
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Figure 2.2: Location of Ejisu Juaben District and landcover in Ashanti region of
Ghana.

Although natives have been using palm oil (mainly from wild grooves),
palm oil production intensified through development of large scale and
smallholder plantations for export purposes from as early as the
eighteenth century (Gyasi, 1996; OPRI, 2003; WRM, 2010). A nucleus
farming system where large scale producers support many smallholder
farmers around them through input and technical backstopping is the most
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common form of oil palm production in Ghana (Carrere, 2010; Gyasi,
1996). The smallholders will in turn payback by providing throughput to
the large-scale producers’ mills. In terms of both area and total yield, the
smallholder farmers dominate the oil palm sector in Ghana (Carrere, 2010).
However, they face a number of challenges that reduce production
efficiency and output per unit area (OPRI, 2003).

Interestingly, because the production system was skewed towards
smallholder family farms, the impacts of Ghanaian oil palm sector on the
environment has largely been viewed as minimal (Gyasi, 1996). However,
the advent of the three dominant plantations (GOPDC, TOPP, and BOPP)
from the late 1970s has raised serious concerns on the sustainability of the
plantation system in palm oil production (Carrere, 2010; Gyasi, 1996).
Combined, these three plantations account for about 20% of the total area
under oil palm in Ghana and contribute around 40% of national palm oil
exports (Gyasi, 1996). Increasingly, palm oil production has become
important for national economic development particularly for horizontal
diversification from cocoa production that dominated GDP for the country.

Several government and donor-initiatives have been implemented to
promote the development of both plantation and smallholder oil palm
production in Ghana. The most significant of these includes the
privatization of government owned plantations in the 1980s that ushered
the private sector into palm oil production (Gyasi, 2003; WRM, 2010).
Multi-lateral organizations such as the World Bank have also been active
promoting the growth and promotion of the oil palm sector in Ghana
through funding various aspects of the supply chain starting from 1998
(Carrere, 2010; WRM, 2010). The most recent development has been the
President Special Initiative on oil palm export promotion that sought to
increase area under oil palm production through provision of healthy high
yielding seedlings to both plantation and smallholder farmers (Carrere,
2010; Duku, 2007; WRM, 2010).
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2.2 Ejisu -Juaben district

The study was carried out in Ejisu-Juaben district in Ashanti region of
Ghana (Figure 2.2).The district is located within longitude 6.42 to 6.83°N
and latitude 1.25 to 1. 58°W, covering an area of about 64 000ha (Anornu,
et al.,, 2009). The economy of the district is based on agriculture with cocoa
and palm oil production being main cash crops while other crops such as
cassava, maize and cocoyam are grown for subsistence (Anornu, et al,
2009). The topography is flat to undulating, with altitude ranging between
230m and 300m and has no major landform features. Dominant soil types
are derived from pre-Cambrian rock formations such as granite, Birrimian,
Tarkwaian and superficial deposits. Soil fertility, agricultural productivity
and cropping patterns are resultantly influenced by the distribution of
these soil types (Anornu, et al.,, 2009).

The climate characteristics are typically equatorial with high mean total
annual rainfalls of above 1000mm and high annual mean temperatures.
The rainfall pattern is bimodal, the main wet season being from March to
July and the minor season from September to November. Mean monthly
temperatures vary between 20°C in December/January and 32°C in
February/March and when this is combined with frequent rainfalls, results
in high humidity (Anornu, et al., 2009). The agricultural calendar follows
the rainfall pattern with the main cropping season being from March to July
while the minor season is from September to November. There are many
perennial and long-season crops produced in the area such as cocoa,
plantain and oil palm, and these influence the land cover patterns for most
of the year in cultivated areas while considerable area remains forested
(Figure 2.2).

The study was carried out in Ghana because Ghana’s interpretation of RSPO
principles and criteria for certification has been approved (RSPO, 2011)
and therefore the methods from this research will be timely in enhancing
the certification process for Ghana. In addition, issues around oil palm
expansion and land tenure, biodiversity and socioeconomic development
have been reported in Ghana (Carrere, 2010; Gyasi, 2003). The specific
area of the study has been identified as having a number of land cover
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change hotspots within the vicinity of forest reserves that are home to a
wide range of floral and faunal species (Asubonteng, 2007). A high
resolution image that covers large scale plantations and smallholder oil
palm farms is available for the study area. In addition, permission has been
granted to contact research in the large scale plantations. Studies on oil
palm production and its relationship to sustainability are concentrated in
South-east Asia and thus this research will provide useful research insight
for the African palm oil sector and specifically for Ghana. In addition,
developing empirical relationships between oil palm parameters and age
may also be useful in the assessment of carbon for the REDD+ for which
countries like Ghana are taking part.
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CHAPTER 3: MATERIALS AND METHODS

3.1 The Research approach

The research approach for this study can be divided into three
interconnected phases. The first phase is the remote sensing and image
analysis part that aimed at delineating individual tree crowns through
feature extraction using object-oriented image analysis of the WorldView-2
satellite image. The second phase established the relationship between
crown area and age from field based measurements. It built on data
collected from fieldwork and regression analysis. The third phase
combined the regression models developed from field data with the
individual crowns delineated from the image processing part to determine
the age of the oil palms from the satellite data. This also fed into the last
phase of the research where the determined ages were used for building a
spatial decision support system for certification (Figure 3.1).

Worldview-2 Image Fieldwork

A J h

Object-based image analysis Regression

| |

h J

Predicted oil palm age

|

Time of conversion for RSPO
certification

Figure 3.1: Research approach used in the study

3.2 Spatial data

Spatial data was needed in this study for planning fieldwork, data
processing and for analysis of the results. The spatial data used can be
categorized into three groups; WorldView-2 image, other satellite data and
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auxiliary spatial datasets obtained from different sources. A WorldView-2
image (Digital Globe) taken on the 4th of January 2011 was used in the
study. It has 9 high resolution bands in the visible to the near-infrared
range; 8 at 2m spatial resolution and 1 in the panchromatic band at 0.5m.
The image has 0% cloud cover and covered an area of 52kmz2. This image
was chosen because it has diversity of spectral bands providing
opportunities for detailed analysis. In addition, with high spatial and
spectral resolution it is possible to implement individual tree extraction
using object-oriented methods as intended for the study. The metadata of
the WorldView 2 image is shown in Appendix 2.

An ASTER image (VNIR, 15m spatial resolution) taken in February 2010,
was used to assess the landcover and locations of features in the study area
in preparation of field work. Together with the Google Earth (Google®,
2011), the ASTER image was used for navigation to sampling sites as well
as for stratifying the age classes in the plantation. Topographic and
historical digital maps, digital elevation models and satellite images were
used in the study. These were obtained from the ITC database and from
Ghana at a Glance database developed by World Bank (2004). These
datasets were used for planning fieldwork, navigation and for preliminary
studies of the area. These included a 1:250000 topomap, 1:50000 topomap,
SRTM DEM, thematic layers (landcover, hydrology, soil type, geology,
population, conservation areas and transport network) Landsat Thematic
Mapper images (2002-2003).

3.3 Pre-fieldwork

A sampling strategy was developed before going for fieldwork. This
involved analysis of landcover in the study area by using the ASTER image
and available spatial data and assessment of identification of oil palm
plantations from the Google Earth that formed the sampling frame. Field
maps were developed for sampling and loaded into the IPAQ for navigation
and sample location as well as printed.

3.4 Data collection

Data was collected from fieldwork carried out between 12 September and
14 October 2011 in Ashanti region of Ghana (Chapter 2).
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3.4.1. Sampling design

Data was collected from a large scale corporate plantation and smallholder
farmers in Ejisu-Juaben district. The objective was to obtain measurements
from different age-classes. The exact age classes on the ground could not be
established before visiting the study area, but on the 2003 Google Earth
image and the 2010 ASTER image, age categories in the corporate
plantation were discernable based on canopy cover and the oil palm fields
were therefore stratified into young, medium and old stands on the ASTER
image. Stratified sampling was used for selecting samples for data
collection from stands inside the large corporate plantation. For
determining the specific trees to be measured in the plantation and on the
smallholder farms, random numbers were generated between 1 and 30 (30
was the minimum number of trees in a smallholder farm for it to be
considered for sampling).

3.4.2. 0il palm measurements

Using a field map and IPAQ ArcPad GPS, the location of selected sample
sites was determined and this formed a starting point for selecting the
stands for sampling. Not all age classes were present in corporate
plantation and therefore other samples were collected from smallholder
farms, taking into cognisance the different management system between
smallholder and corporate plantations. Information obtained from Juaben
0il Palm Outgrowers Society (JOPOCOS) showed that the farm sizes for
smallholders ranged between 0.3ha and 17ha and distributed in 25
communities. Communities that fell within the WorldView image
boundaries were selected for sampling (Figure 3.2).

Stands sampled were even-aged and measurements were made from north
to south orientation of planting rows (Figure 3.3). From the north-eastern
corner of the field, the individual trees were counted in rows to the west
until the tree with the random number was identified. Once this tree was
identified, measurements were taken from the northern and southern tree
from the randomly identified tree which formed the centre of the stand
(Figure 3.3) 3 trees were measured per stand. This was done so that the
exact field measured trees will be identified on the image for comparison
between field measurements and remotely sensed crown area.
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Figure 3.2: Data points on WorldView-2 and ASTER images showing sampling sites
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Figure 3.3: Selection of trees to be measured and measured parameters

Crown diameter was measured by recording the ground distance between
the drip points of the tree in perpendicular directions for each of the 3
trees using a tape measure. This was done to capture the variation in shape
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of the tree in different directions and the two measurements were done to
intersect at a right angle. Plant spacing was measured at each stand using a
tape measure and remarks on the general condition of the field were also
recorded. Plant spacing was measured because plant density was shown to
have effect on leaf area in oil palms as crowns quickly interlock when
spacing is small.

3.4.3. Determining age of oil palm stands

The information on ages of each oil palm stand was obtained through on-
site interviews with farmers and extension workers. They were asked to
provide the year of planting for that field and all stands where the farmers
were not available or the extension worker did not precisely know the year
of planting were not sampled. For the corporate plantation, the
management that assisted in locating sampling plots were asked to state
the year of planting. In addition, confirmation of the provided ages was
obtained from records of planting, area and location each section of the
plantation. The precision of the obtained ages was therefore in years. It was
assumed that field planting of oil palm was done in the main rain season
and therefore no significant in-year differences were expected in the years.
The year of planting was converted directly to years. The details of each of
the data collected and the instrument used are shown in Table 3.1.

Table 3.1: Summary of parameter recorded and reasons for including them

Parameter Units Instrument Purpose for recording

Age Years Counts Building model of age and CPA
Crown Metres Tape Explanatory variable for the
Diameter model

Management Scale(1-2) Score Assessing model sensitivity

3.5 Relationship between oil palm crown area and age

To convert the crown diameter to crown area, analysis of the relationship
between measured diagonals showed that the basic shape that best
represents crown shape is a circle and this was used for calculation of
crown area. Data was collected from 88 stands (Research Question 2). A
scatter plot of age and crown area (CPA) was made to find the general
relationship between the two parameters. After finding the relationship,
the best function that described the relationship was fitted to the data to
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come up with a function that can predict age from CPA. The field data was
randomly portioned into 60:40 for model building and validation
respectively (Appendix 3). Residuals of the model were checked for
normality using Lillilifor’s test.

To determine the performance of the regression model in predicting age,
statistical analysis was done on the validation dataset (n=29). The
coefficient of determination (R2), significance of the regression (a=0.05) ,
root mean square error (RMSE, Equation 3.1), mean relative error (MRE,
Equation 3.2) and mean absolute error (MAE, Equation 3.3) were used to
determine the strength of the model in predicting age from crown area.

ruse= 15,5 [3.1]

MRE =(1Z|yffy"|}<1oo [3.2]

i

MAE = (%Z Ly, — 9, |j [3.3]

where for both cases n is the number of data points, y; is the actual age
from field data at that data point and ¥i is the model predicted age at that
data point (Ozdemir, 2008; Suratman, et al., 2004).

3.6 Object-based tree crown delineation

In order to obtain individual crown area from the WorldView image a
number of steps were followed (Figure 3.4). After obtaining the individual
tree crown area, the results were processed in a GIS environment and
combined with the field developed models for prediction of oil palm age
from the OBIA-obtained crown area.
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Figure 3.4:Steps in image processing and modelling for age of oil palm from OBIA

Georeferencing and spectral enhancement

Positional accuracy is important for feature extraction from high resolution
images. To achieve this, six ground control points collected at road
intersections were used for geometric correction. The RMSE for the
georeferencing was 0.21m. The WorldView-2 image had 8 multispectral
bands (2m spatial resolution) and 1 panchromatic band (0.5m spatial
resolution). For determining the individual tree crowns the multispectral
bands need to have a higher resolution. To achieve this, pan-sharpening
using image fusion was done. Image fusion is merging multispectral images
with panchromatic images to achieve high radiometric and geometric
resolution. Pan-sharpening is an image fusion approach where lower
resolution multispectral pixels are combined with the high resolution
panchromatic band pixels to get a high resolution multispectral image
(Padwick, et al.,, 2010).

The hyper spherical colour space (HCS) resolution merge pan sharpening
method was used to fuse the panchromatic and the MS bands in Erdas
Imagine 2011. HCS is a component substitution sharpening method that
was recommended for pan-sharpening WorldView-2 images. This is
because it improves contrasts in the image and facilitates recognition of
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edges and shapes. It is also able to handle a large number of multispectral
bands without much distortion (Padwick, et al.,, 2010). The final result was
a 0.5m resolution 8 band MSS image. In order to improve discerning
features on the image, a histogram equalisation was done after pan-
sharpening.

A 3x3 low pass filter was then used to smooth the image after pan-
sharpening. Smoothening through filtering was required to normalise the
reflectance between high (bright) and low (dark) frequency features in the
images (Lillesand & Kiefer, 2008). This is very important for removing
noise and other spatial variations in the image while exposing feature
edges and this is known to facilitate the extraction process (Darwish, et al.,
2003). This resulted in clear features on the image and after this the image
was ready for segmentation.

Since three trees were measured on each stand, the location of each stand
was recorded by taking geographic coordinates (xy data) of the centre
trees using a GPS (Figure 3.5). In order make sure that the three field
measured trees are compared with the segmented crowns, a 17.5m buffer
was created around the stand centres and the trees extracted by masking
with the buffer. 17.5m was determined to be ideal because the plant
spacing was 9m with measurements taken from 3 trees giving a length of
27m and a 17.5m buffer will give circular stand diameter of 35m covering
the 3 oil palms actually measured in the field (Figure 3.5). The procedure
was repeated on fields where no field measurements were taken in order
to harmonize and combine the data. On these fields, the centre of the stand
was selected as where there are uniform-looking trees.
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Figure 3.5:Measured trees on each stand in relation to buffers for extraction

Individual crown area delineation

Individual oil palm crowns were obtained through image segmentation in
eCognition software. The basis of OBIA is image segmentation which is the
grouping of pixels based on their characteristics (Xiaoxia, et al, 2005).
Image segmentation algorithms divide the image into semantically
significant objects based on their spectral, morphological and other
characteristics(Arbiol, et al, 2006). These can be further processed and
improved until meaningful objects are derived from the image. Several
segmentation approaches have therefore been developed and they vary in
terms of both application and simplicity (or complexity).

Image segmentation approaches can be categorized into bottom-up or top-
down algorithms. In the bottom-up approach, adjacent pixels are merged to
form bigger objects while in the top-down approach bigger objects are cut
into smaller objects (Trimble, 2010). These processes are based on
homogeneity in spectral, geometric and other statistical relationships
(Navulur, 2007; Xiaoxia, et al., 2005). In this study, the bottom up approach
(multiresolution segmentation) was used. This was then combined with the
ability of OBIA to incorporate other features particularly in the spatial
domain, such as relationships, topologies and processes to delineate
individual crowns. (Blaschke, 2010; Gamanya, et al., 2007)

Definiens eCognition (Trimble Gmbh®) was used as it has emerged as a
leading platform for implementation of OBIA and is closely linked to the
development and adoption of cognition network language for remote
sensing applications (Blaschke, 2010; Blaschke, et al., 2011). It has a user-
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friendly interface that hides many libraries and databases for segmentation
and classification enabling users to go through the process without much
programming requirements. Figure 3.6 shows the stages that were
followed in order to delineate the individual oil palm crowns from the
satellite image in eCognition Developer.

Multiresolution segmentation

!

| Background masking |

|

| Watershed and morphological operations

!

| Clean-up and export |

Figure 3.6: Steps used for individual tree crown delineation in eCognition

The Near-Infrared -1 (770-895nm), Red Edge (705-745nm), Red (630-
690nm), Green (510-580nm), and Blue (450-510nm) bands were used for
tree crown delineation. Of the 8 WorldView-2 bands, these were found
most relevant for vegetation and background analysis based on the
descriptions by Marshall (2011) and Digital Globe (2009) on the potential
uses of the WorldView-2 bands. These were stacked and saved in Erdas
Imagine format for processing in eCognition Developer.

Multiresolution segmentation

Multiresolution segmentation was used to cut the image into smaller
objects based on band reflectance, shape and colour characteristics.
Multiresolution segmentation in eCognition is a region-based algorithm
that applies bottom-up approach to segmentation where each pixel is
considered an individual object first and then merged to form pairs of
similar objects and onwards (Darwish, et al, 2003). Four main settings
were used to influence the segmentation. These were the scale parameter,
band weights, shape influence and compactness values. In OBIA ‘object
candidates’ depends very much on scale as different scales produce
different objects. It is therefore very important to set a scale parameter that
suits the size and characteristics of the objects of interest. The ESP tool for
estimation of scale parameter developed by Dragut et al (2010) was used
to estimate the most appropriate scale parameter. The ESP tool estimates
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the most appropriate scale parameter by generating sample objects at
different scales and then calculating the local variance at each scale. The
basis of this approach is that local variance increases with increase in scale
parameter (red line in the Figure 3.7). Therefore, the most appropriate
scale parameter at which segmentation of the image is best is at the
smallest scale with the highest rate of change in variance (first pick in the
blue line in Figure 3.7).

ESP - Estimation of Scale Parameter
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Figure 3.7: Determining the scale parameter using ESP Tool

The NIR band was given a weight of 3 while the other bands were given a
weight of 1. The NIR received higher weight in oil palm tree identification
done by Shafri et al (2011) because tree crowns reflect more in the NIR
band than in the other bands (Glenn, et al., 2008; Ray, 1994; Sims & Gamon,
2002). The shape influence was set at 0.5 in order to balance the shape
with the influence of colour, both of which are important for segmentation
of tree crowns. A compactness value of 0.9 (the highest) was used for
segmentation based on the understanding that tree crowns are not smooth
as they have within-crown variations and not so abrupt edges as compared
with building roofs for example. Thus, setting a compactness value at 0.9
ensured that the smoothness influence was minimal in the segmentation
(Trimble, 2010).

The oil palm crowns were star-shaped on the image with the centres
having the highest reflectance in the NIR compared to the edge of the rachis
and to the background (Figure 3.8). Based on the visual and statistical
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properties (such as mean band reflectance) of the segments, three
categories of objects were distinguished at each stand. These were the
crown cores (local maximas) where reflectance in the Near Infra-Red, RE,
and Green, vegetation indices such as NDVI were high (shown in red in
Figure 3.8b). The second was the edges of the rachis where leaf density is
lower (shown in light blue colour in Figure 3.8b). Unlike in the crown cores
and the rachis edges, some segments showed strong absorption of the
vegetation bands (dark blue to black objects in Figure 3.8b) and these were
considered background features.
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Figure 3.8:False colour composite of the image before and after segmentation

Background masking

The objects obtained from segmentation were then assigned into different
classes based on their mean NIR reflectance and NDVI values. Based on the
probable existence (or non-existence) of weeds/intercrops, the soil
moisture in the background and the thick leathery structure of the leaves of
the oil palms as seen in the false colour composite (NIR, Red and Blue), the
mean NIR value and NDVI of each segment was used to classify it as
potential crown or as background (background included such features as
roads, bare ground, shadows, weeds, other vegetation, constructions and
water). The NIR thresholds used for this classification depended on the
factors above and were as such varied per field scene (Figure 3.9). The
most common were 50 (for old trees and stands with relatively moist soil
background), 100 for mature trees and 150 (for young stands and or
intercropped/weeds). In a few circumstances where the NIR and NDVI was
not able to distinguish oil palm crowns, the Blue band was used to identify
the background based on the influence of soil reflectance and then
subsequently used for assigning the objects into the different classes.
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Figure 3.9:Selecting thresholds and bands for background masking for one stand

After assigning the objects to classes, the objects were combined based on
the number of pixels allowable for each potential crown. It was determined
from field work that the minimum possible size of an oil palm crown was
about 8m? (equivalent to 32 pixels). In order to restrict the potential
crowns above the minimum, a threshold of 40 was used to combine
potential crown objects into candidate crowns. Only candidate crowns
with an elliptic fit (given the standard spacing and uniformity of plants the
crowns were assumed to be elliptic to circular) above 0.8 were retained.
This was done to remove irregular segments created within canopies
(Figure 3.10b).
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Watershed transformation and morphological operations

Assigning class based on mean band reflectance, NDVI and elliptic fit
resulted in joined objects some of which had a size far beyond what is
possible for an oil palm crown and these were probably groups of
intermingled crowns or overgrown weeds. In order to bring these to
possible crown sizes, watershed transformations and morphological
operations were used. The watershed transformation algorithm considers
the image objects as a topographic surface. According to Trimble (2010), it
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calculates “an inverted distance map based on the inverted distances for
each pixel to the image object border”. It uses the local maxima (hills in a
catchment) and local minima (valleys in an actual catchment). However
these will be inverted as the hills will be inverted (Figure 3.11) to form
valleys and the valleys to form hills (Wolf & Heipke, 2007).

A

New watershed (maxima)
A | Original distance map
B .

Intensity

Inverted distance map

New valleys (minima)

Figure 3.11:The watershed implementation sued for shaping the tree crowns

The individual oil palm crowns (brightness peaks) will form valleys and the
background and shadows will form hills. The valleys are gradually
“flooded’ and where the waters meet a boundary is created, the image
objects are split, thus separating intermingled tree crowns (at marked
points in Figure 3.7) and this is applied to already segmented objects
(Trimble, 2010; Wolf & Heipke, 2007). The watershed transformation was
used to separate joined objects using the minimum possible crown
diameter obtained from field work (5m giving 10 pixels) as the length
factor (Figure 3.12a).

After watershed transformation, the morphology algorithm was then
applied on the result to create closed circular objects that represent
individual oil palm crowns. The procedure is based on image-processing
mathematical morphological operations that compare each pixel in the
image with neighbouring pixels and based on desired shapes (circular for
oil palm crowns), size and general structure add to or remove it from a
class (Trimble, 2010). This therefore made the segments assume a circular
to elliptic shape that approximates the actual shape of the oil palm crown
(Figure 3.12b). The resulting objects were cleaned up to remove non-
representative objects (too small to be an oil palm crown) and exported as
vector layer to a GIS environment with number of pixels as attributes. This
was considered the final oil palm crown and exported in shapefile (Figure
3.12b).
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Figure 3.12:(a)Original image (b)crowns after watershed and morphological
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3.7 Accuracy assessment of tree crown delineation

After completing the object based analysis, the segments were evaluated
for accuracy. Accuracy assessment is an important part of OBIA as it gives
an indication of the quality of the segmentation. Accuracy assessment in
remote sensing is a statistical measure of how much the derived feature
classes agree with reality (Foody, 2002). The error matrix is a typical
measure of the accuracy of pixel based classifiers but this method was
considered not to be appropriate for the OBIA approach used in this study
(Clinton, et al., 2010).

Accuracy assessment of OBIA segmentation compares the segmented
objects with reference objects and these were crown areas measured from
the field and on-screen digitized crowns (Blaschke, et al,, 2011; Clinton, et
al,, 2010). The accuracy assessment was done by comparing the segments
with on-screen digitized crowns and field measured crown areas. The
stands that were randomly subset for accuracy assessment of the field
model were also used for accuracy assessment of the segmentation (2 of
the stands in this dataset were outside the image and thus n=27).

Two methods of accuracy assessment were applied. In the first method, the
degree of over and under segmentation of OBIA segments relative to
manually digitized reference crowns was determined (Clinton, et al., 2010;
Erikson, 2004). Clinton (2010) explained that the values for over and under
segmentation are 0 when the OBIA objects match the reference objects
perfectly and will be near 1 if there is a great geometrical mismatch. In
addition, a combined measure that utilizes the weighted values of over and
under segmentation to produce a comparison statistic for segmentation
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accuracy suggested by Clinton (2010) was also used. This combined
measure is referred to as segmentation goodness of fit (D) and is calculated
as below (Equation 3.4). As with over and under segmentation, the best
segmentation gives D-values close to zero and poor segmentation give
values close to 1. The quality of segmentation was evaluated per age class
of the validation data.

D. =

1

[3.4]

\/ Oversegmentationi2 + Undersegmentation i2
2

In the second accuracy assessment method, the correlation between
segmented and field measured crown area was calculated (Wang, 2010).
This approach was adopted in addition to the D-statistics because some
factors such as the spatial and spectral resolution may affect the reliability
of manual digitizing for accuracy assessment. Furthermore, different
analysts can come up with different segment shapes and sizes as the
boundary depends on the analysts’ judgement and quality of sight.
Therefore, using both the on-screen digitized and field measurements for
accuracy assessment was found necessary. The r and the significance of the
correlation were used as a measure of the strength of the correlation
between the segmented and field measured crown area, indicating the
quality of the segmentation.

3.8 Determining oil palm age from OBIA delineated crown area

The OBIA delineated crowns were used to determine the age of oil palm at
each stand through application of the field developed regression model. In
each stand, three delineated full crowns were selected and averaged to give
the mean crown area for that stand (the plot represented by the 17.5m
radius buffer). Three trees were selected to correspond with the method
used in field work where only 3 trees were measured. In addition the
buffer size developed based on spacing also ensured that for each stand, a
minimum of three (and a maximum of 6) full oil palms were incorporated
for delineation (Figure 3.13). The stand represented the oil palm field (the
rest of the oil palms per site beyond the stand) that was mapped according
to visual variations or boundaries such as forests and roads.
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To get the location and the site for each prediction, the spreadsheet used to
compute the mean delineated crown area and for implementation of the
regression model was coded with point IDs similar to those used for
recording the XY coordinates for each site. For each stand, the field was
demarcated based on uniformity and existence of other noticeable
boundaries such as roads, forests edges and other land uses. The same
process was done for both field measured and non-measured stands. The
crown area for each of the delineated crown was entered into a
spreadsheet and the mean crown area calculated and used for age
prediction. The spreadsheet with the predicted ages was opened in ArcGIS
and joined using the IDs to the field maps, giving the prediction per stand
and the error in the prediction. Comparing the model predicted and the
actual age at that stand gave the error of the prediction per field. The area
for each age category was also determined in the same way.

Compute mean CPA
from the 3 segmented
crowns

l Comparison
Apply the model with actual age

l

Predicted age per o
stand Prediction error
) Estimated year of
Convert to conversion years ; .
oil palm planting

-

Relate to 2005
benchmark year

3 segmented crowns
per stand

-~

Overlay with HCV map

v

RSPO Criterion 7.3
decision

3.13: Age prediction from delineated crowns and prediction accuracy assessment

Using other auxiliary spatial datasets on land use in Ghana, the different
age categories were overlaid over the protected areas map and the
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potential high conservation value map. This was done to develop the map
as a decision support tool for certification assessment for RSPO criterion
7.2. The locations and area planted with each age category were therefore
determined and converted to percentages.
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CHAPTER 4: RESULTS
4.1 Oil palm crown area delineation

4.1.1 Comparison of digitized and segmented crown area

A high segmentation accuracy of 0.89 and 0.86 were obtained for 6 and 7
year old palm oil stands respectively (Figure 4.1, Table 4.1). In both cases
the over segmentation error was small as the segmented crowns were
bigger than the digitized crowns.

Figure 4.1:The segmented crowns compared to a false colour of oil palms

The highest delineation error was obtained for the 13 year old stands
(0.59) followed by the 4 year old stands (Table 4.1). For the 13 year old
stand the errors were mostly due to over segmentation error while for the
4 year old stands it was from both over-segmentation and under-
segmentation errors (Table 4.1, Figure 4.2).

Table 4.1: Segmentation goodness of fit for validation data (n=27)

Age D Accuracy
2 0.25 0.75
3 0.34 0.66
4 0.40 0.60
5 0.38 0.62
6 0.11 0.89
7 0.14 0.86
8 0.25 0.75
12 0.36 0.64
13 0.59 0.41
All 0.31 0.69

In some age classes such as 5 and 8 years both the over and under
segmentation errors contributed to the final error while in some age
classes either over or under segmentation were important source of error
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(such as 2, 7 and 13 years ) in contributing to the error. Nonetheless, there
was no relationship between age and over segmentation error (Figure
4.2a), under-segmentation error (Figure 4.2b) and overall accuracy (Figure
4.2c) suggesting that other factors apart from age explain the delineation
accuracy. Despite the lack of relationship between age and segmentation
error, the over-segmentation error was notably high for the 13 year old
stands which therefore contributed to this age class having the least overall
accuracy (Figure 4.2a and Figure 4.2c). There was also no relationship
between the number of stands in the validation data set per age class and
the accuracy achieved (Figure 4.2d).
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Figure 4.2: Relationship between age and over-segmentation, under-segmentation,
and over-segmentation, and number of stands and delineation accuracy.

4.1.2 Comparison of OBIA and field measured crown area

Comparing the delineated and field measured crown areas showed that
There was a strong relationship between field measured crown area and
OBIA segmented crown area indicating that the segmentation crown area
closely approximated the field measured crown area (R?=0.81, r=0.9,
p<0.0001). There was least variability in the prediction for younger oil
palms (up to 6 years) while large variability in OBIA crown area was
observed in the 13 and 7 year old age class (Figure 4.3a). For the 13 year
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old stands, the spread between the actual and predicted crown area is
apparent where the actual crown area was over 80m2 (Figure 4.3b).

1001 R?=0.81 g "

_ — s

% L
g 12 |_ T B - -

= T 'i. I e WA .
T 104 T = PR L™
= = L& - T
- ._, L ‘J - -
L B E <

- - g -

3 1 =

: : : : : . T T v .
2 3 H 5 5 7 8 w12 13 0 20 40 &0 ] 100 120
Actual CPA [m) Actual CPA (m?)

Figure 4.3: Relationship between OBIA and field measured CPA (n=80)

4.2 Relationship between oil palm crown area and age

4.2.1 Field data

Data on age and crown diameter were collected from a total of 88 stands of
3 trees (a total of 264 oil palm trees) during field work (Table 4.2). Of
these, 36 were in the large scale corporate plantation and 52 from
smallholder farmers. The dominant planting system was triangular plots
with a spacing of 9m (143 plants per ha) except for exceptional cases
where spacing was reduced up to 6m (214 plants per ha) and in one case
the spacing was 11m (117 trees per ha). Measurements were recorded for
14 age classes between 2 and 21 years. The dominant ages were 7, 8 and 12
years which together contribute 41 stands. Crown projection area (CPA)
calculated from crown diameter ranged between 8.2m2 to 104.6 m2.

Table 4.2: Descriptive statistics of the field data collected on age and CPA

Variable N Mean Star.lda.lrd Min Max
deviation

Age 88 9.5 49 2 21

CPA 88 58.0 26.5 8.2 104.6

4.2.2 Fitting models to the data

A positive linear relationship was observed between age and crown area
up to an age of 13 years (Figure 4.3). No apparent relationship was evident
between age and crown area from 13 years onwards as crown did not
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respond to age anymore. The crown area saturated around 100m? and this
was reached at around 13 years (Figure 4.4). Since the older oil palms have
overlapping rachis and shadows, they are difficult to differentiate using
remote sensing. However, the older oil palms are also not necessary for the
certification requirements as they were definitely established before 2005.
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Figure 4.4:Relationship between age and CPA on corporate and smallholder (n=88)

It was therefore decided to fit a linear model between age and crown area
up to 13 years and all the age classes above that were discarded. A
significant relationship was obtained between age and area (R2=0.88,
p<0.001). The estimated standard error of the model was 1.2 years. The
slope of the model was highly significant while the intercept was not
significantly different from the origin (Figure 4.5).
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Figure 4.5:Fitting model to the training data with the residual and QQ plot(n=43)
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Therefore, the following function was obtained for predicting oil palm age
from CPA (Equation 4.1);

Age (years) = 0.59 + 0.15 * CPA (m?) [4.1]
4.2.3 Accuracy assessment of the model

The ability of the field developed function to predict the age of oil palm was
tested on the training and the on an independent data set. Model errors
were lower for calibration data as compared to independent data (Table
4.3). RMSE was 1.2 years for the calibration data but increased to 1.3 for
the validation data. MAE was less than 1 year for both the calibration and
validation data. Although the percentage error was less than 10% for both
datasets, it was much higher in the validation data (8.2%) that in the model
calibration data. Basing on the performance of the model on the
independent data, it can was considered within acceptable predictive
performance.

Table 4.3: Model performance on calibration and validation data

Measure Calibration (n=44) Validation (n=29)
RMSE (years) 1.2 1.3
MRE (%) 3.2 8.2
MAE (years) 0.8 0.9

Residuals were highest between 60m? and 70m? when the model was
applied to an independent data set (the remaining 40% of the field data not
used in model building) where actual ages varied between 7 years and 12
years. The correlation between predicted and actual ages was very strong
(Rz2=0.91) although the model overestimated oil palm age in most cases
(Figure 4.6).
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Figure 4.6: Relationship between model predicted and actual ages (n=29)

4.3 Predicting oil palm age from OBIA delineated crown area

The OBIA delineated crown areas were used as explanatory variables in the
field developed model to predict the ages of oil palm per stand.

4.3.1 Predicted oil palm age

The prediction showed that 6 and 11 year old oil palm plantations
dominate the area under oil palm with 16.7%(116.7ha) and 14.6%
(101.5ha) respectively (Figure 4.7). The results therefore indicate that
there were more new oil palm plantings in 2000 and in 2005. Based on the
age distribution map (Figure 4.8), the least common age classes were 2 and
3 years with 4.8ha (0.7%) and 24.2ha (3.5%) of area which were estimated
to have been planted in 2009 and 2008 respectively. For the study area,
48% of the area (334.6ha) was estimated to be between 6 and 9 years old
while 66% of the total area under palm oil is under 10 years old (Figure
4.7). From these predicted ages, it was also obtained that there was over
1000% growth in area under oil palm in the study area between 1998 and
2009. The greatest annual growth rate in area under oil palm was between
1999 and 2000 where area under oil palm doubled. Significant annual
growth rates in area under oil palm of between 20 and 25% were also
observed between 2002 and 2005.
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Figure 4.7: Area under each predicted age class
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Figure 4.8: The estimated distribution of oil palm ages

4.3.2 Age estimation errors

Comparing the actual ages and the estimated oil palm ages showed that
that the error ranged between an under estimation of 4 years to an over

estimation of 3 years in oil palm age (Figure 4.9). Although the majority of

the predictions were accurate, it is observable that in two cases with large
errors (an underestimation of 4 years and an overestimation of 3 years),
the areas covered are large.
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Although the prediction gave a large error range (7 years), the prediction
was accurate for 27.9% of the stands, within #1 year error for 74.6% of the
stands and within #2 year error for 92.4% of the stands. The largest errors
of more than 2 years were either for the youngest (less than 4 years) and

oldest (more than 12 years) oil palms (Figure 4.10).
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Figure 4.10: Prediction errors in field measure stands (n=80)

4.3.3 Planting time and time of conversion

The predicted ages were put into 3 categories in order to determine the
approximate time of conversion which is required for assessment of RSPO
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criterion 7.3. The categories were oil palm fields definitely planted after
2005 (less than 4 years old at the time of image acquisition), planted
around 2005 (5 to 7 years old) and planted before 2005 (more than 7
years). This categorization was based on the required benchmark for
implementation of the RSPO criterion 7.3. In addition, there was also an
added uncertainty of the time of land preparation before actual planting as
this could not be confirmed and was estimated to also be around 1 year
maximum. The distribution of the oil palm according to the estimated time
of conversion is as shown in Figure 4.11.

8
Legend
Estimated age(years)

[ 2003 & Before
2004 - 2006

I 2007-2000 [

——— Road

T
231000 232000 233000 234000

Ret. System: Ghana Meter Grid
% Projection: T. Mercator
B Datum: Leigon
% Units: Meters

T T
224000 226000 228000 230000 232000

Figure 4.11: Estimated time of conversion to oil palms farming

The largest area under oil palm in the study area was estimated to have
been planted before 2005 accounting for 52.8% (368.2ha) of the total area
under oil palm farming (Table 4.4). Of this area, the largest proportion was
under the smallholder farmers (59.3%). Considerable land was estimated
to have been planted with oil palm between 2004 and 2006 accounting for
34% of the area under oil palm (237.2ha). The majority of this conversion
occurred in the smallholder farmers where an estimated 139.9ha (58.9%)
of area planted between 2004 and 2006 was in the smallholder sector
compared to about 97.3ha (41.1%) in the corporate sector. According to
the estimated ages, there has been less new planting between 2007 and
2009 in the corporate plantation (4.6ha) as compared to the smallholder
sector where 94.9% of the estimated planting in this period (86.8ha) were
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planted (Table 4.4). These areas have therefore been planted after the
RSPO benchmark year of 2005 and criterion 7.3 is applicable.

Table 4.4: Estimated period and area converted to oil palm farms

Planting time Corporate % Smallholder % Total Total %
2007 - 2009 4.6 5.1 86.8 949 914 100
2004 - 2006 97.3 41.1 139.9 589 2372 100
2003 & Before 149.9 40.7 2184 59.3 3682 100
Total 251.7 36.1 4451 639 6968 100

4.3.4 Protected areas and high conservation value areas

Criterion 7.3 states that none of the plantings after 2005 should have been
planted on protected areas, replaced primary forests or any area required
to maintain or enhance one or more high conservation value areas.
According to RSPO(2011), this requirement applies to both smallholder
and corporate producers.

Protected areas

None of the fields were planted on protected areas as nearest forest
reserve (Bobiri forest) is over 6km from the image boundary while the
nearest wildlife reserve (Bomfobiri Wildlife Sanctuary) is 26.5km away
(Figure 4.11). The study area is also considerably surrounded by protected
areas forests and wildlife sanctuaries especially in the eastern part where
there is Asonari, Anum Su North , and Kumawu forest reserves (Figure
4.12).
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Figure 4.12: Location of the study area in relation to conservation areas

Potential high conservation value areas

RSPO (2011)defines a high conservation value (HCV) area as “forest areas
containing globally, regionally or nationally significant large landscape
level forests, contained within, or containing the management unit, where
viable populations of most if not all naturally occurring species exists in
natural patterns of distribution and abundance”. This also includes forest
areas providing essential services to communities. Based on this definition,
the land cover map obtained from Ghana-at-a-Glance Project (2004)
identified part of the study area as a riverine ecosystem (Figure 4.13)
which could be considered part of a HCV (although this is not a confirmed
HCV).
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Figure 4.14: Determining sites for RSPO Criterion 7.3 using predicted age

Overlaying the HCV map on the age-map clearly showed the area that was
planted inside the HCV for making a decision on certification. However,
since the prediction was done at field level, the overlay did not consider the
field but the exact in-field boundaries. This resulted in some parts of the
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field having been planted after the required time while the other part was
outside (Figure 4.14). About 31ha of new oil palm plantings in the study
area between 2004 and 2009 were planted on the riverine ecosystem. Of
this, only 32% were in the corporate plantation while the majority
(20.76ha) were in the smallholder sector (Table 4.5). Slightly over half
(56%) of the total area planted in the potentially RSPO criterion 7.3
applicable time period was found to have been planted recently (2007 to
2009). The estimation showed that was three times as much new planting
in the smallholder sector compared to the corporate sector between 2007
and 2009.

Table 4.5: Land conversion on riverine ecosystem between 2004 and 2009
Conversion time  Smallholder(ha) Corporate(ha)  Total(ha)

2004 - 2006 7.93 5.7 13.63
2007 - 2009 12.83 4.15 16.98
Total 20.76 9.85 30.61
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CHAPTER 5: DISCUSSION

This study demonstrated the feasibility of applying a remote sensing-
based approach for estimation of oil palm age to support RSPO
certification. In this process, some insight was obtained about the
applicability of such an approach in terms of the value of the outcomes and
the strength and weaknesses of the methodological framework developed.
The most significant issues are discussed here in detail.

5.1 Applicability of the approach for RSPO certification

It was shown that using crown area delineated by OBIA from high
resolution satellite imagery and an empirical regression model can give an
age map that, when overlaid with a HCV map, is useful as a decision
support tool for RSPO certification for criterion 7.3. Nonetheless, the true
value of such an approach depends on the tolerable error, as there are
many sources of uncertainty. It was established that oil palm age can be
predicted in discrete years using this approach. The discrete years can be
directly used for determining the time conversion required for RSPO
certification. The applicability of this approach was demonstrated as it can
be recommended that palm oil produced from both the corporate and the
smallholder farmers in the study area do not qualify for RSPO certification
as they would breach criterion 7.3 basing only on the plantings from 2007
to 2009 which were definitely planted after the benchmark period of 2005
(that is if the riverine was a confirmed HCV).

An age prediction error of around one year realised in this approach may
be acceptable for supporting RSPO certification. This is because the
predicted ages can be categorized based on this error as planted after
2005, around 2005 and before 2005 as was demonstrated. Those classified
as planted after 2005 will need to be checked if they have not been planted
on protected areas or other high conservation areas. Those planted around
2005 (2004 -2006) will require field verification to determine the correct
time of planting. This reduces the time, effort and cost of palm oil
sustainability certification while making the decision more objective and
scientific.
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In addition to the methodologically inherent 1 year error in the approach, it
may also be necessary to factor in the time between land clearance and
actual planting. In some cases, farmers may clear the land a year (or
season) before planting. This approach could also be very important for
determining the planting time in smallholder plantations where records on
plantings may not be properly kept and therefore planting time difficult or
uncertain when obtained even from field-based on-site verification.
Although an independent determination of the time of planting may be
better than collecting information from producers, most large scale
plantations apply efficient management systems including proper record
keeping from which information on size, sites and time planted can be
obtained. The risk of error from applying this approach may also be higher
in smallholdings as they apply different management systems and are most
likely to have intercrops.

The fact that the delineation and hence prediction accuracy was more
accurate for the younger age classes may indicate the possibility of
introducing a repeat cycle for the application of the method for age
determination. The method gave more accurate age predictions up to 5
years and near-accurate prediction up to 10 years and did not work well
for ages above 10 years. This may mean that a 5 year repeat cycle will
always give more accurate oil palm age estimations and depending on the
accuracy required even a 10 year repeat cycle will be reliable. This is
especially important when considering the costs of acquiring high
resolution imagery required for accurate delineation. Thus, if the high
resolution image has to be acquired once every 5 or 10 years, the relative
cost-saving of this approach is attractive.

Although this approach is promising in determining age of palm oil for
RSPO certification, it is dependent on high spatial resolution imagery that is
expensive to obtain compared to other methods that were based on free
Landsat and other imagery (Ibrahim, et al, 2000; McMorrow, 2001). An
upscaling mechanism to medium resolution may thus be required to
reduce the costs. The cost-benefit ratio of adopting this approach could be
positive comparing the costs of flights and personnel for field verification
with those of acquiring a high resolution image. It may also be useful as an
initial assessment for RSPO certification of oil palm oil producers that will
give important baseline information about the area to be certified.
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Although this research focused on assessing applicability of the approach
on criterion 7.3, it can also be speculated that the results could be useful for
assessing other RSPO certification criteria such as 5.1, 5.2, 6.1 and 7.1 on
social and environmental impact assessment of management and
replanting.

The results obtained from applying this approach are potentially very
useful beyond RSPO certification. For example, the estimation of the area
with each age class could be useful for precision farming especially by
multinationals in terms of planning inputs and projecting harvests (and
related factors such as labour, machine hours and revenues). Therefore, the
method developed in this study could be combined with other remote
sensing methods for oil palm plantation management such as automatic
tree counting (H. Z. M. Shafri, et al.,, 2011) and disease detection (Shafri &
Anuar, 2008; H. Z. M. Shafri, et al,, 2011) into a plantation management
system serving different purposes.

In addition, age of oil palm may be useful for carbon modelling and
mapping required for understanding the carbon footprint of the oil palm
sector as was shown in other studies (Dewi, et al., 2009; Thenkabail, et al.,
2004). Also and maybe importantly, a method that gives a reliable estimate
of progression in area under oil palm could be useful for assessing the
relationship between oil palm oil expansion and deforestation, biodiversity
and landscape quality which have been widely discussed in the context of
questioning the sustainability of the oil palm sector (Nellemann, et al,
2007; Partzsch, 2011; Phalan, et al., 2009; Stone, 2007; Struebig, 2010; Tan,
et al, 2009). For example, relationships between the growth in area under
oil palm and faunal biodiversity (populations, health and behaviour) over
time could provide key insights on the cause-and-effect relationships that
are useful for conservation planning.

Having seen the potential of this approach, it is worth noting that it would
be more convenient to have a method that can automatically determine
ages of all oil palm plantations over a large area at once and also not
limited to 13 years. Such an approach may be more useful for studies on
policy impacts, impacts of oil palm expansion on biodiversity over longer
time periods and for land cover change studies. Given this reality, the
approach demonstrated in this study may be very applicable for
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certification of individual plantations but still has an uncertainty that is
relatively large for a precise assessment of land conversion. This approach
does not replace on-site assessments for compliance with other non-spatial
criteria and therefore field assessment may be inevitable, which can be
used for a more accurate age determination too. Even so, to create an
overview of where potentially sustainable oil palm can be found and for
cumulative impact assessments and spatial planning purposes it seems a
very useful approach. Over and above that, it may reduce the time and
effort by focusing on areas with age uncertainties in the on-site checking
process thereby making the certification process more efficient in terms of
outputs, areas covered, costs and time.

5.2 0il palm crown area delineation

The segmentation good of fit (0.69) and the correlation between
segmented and field measured crown area (0.81) on a scale of [0,1]
indicates the successful delineation of individual tree crowns using OBIA.
These results may give an impression that the performance of the
delineation was good, but as Wolf & Heipke, (2007) rightly observed, the
results on individual tree crown delineation are difficult to standardize and
compare between researchers. This is because of different study sites with
different scene characteristics, different data sets (spatial and spectral
resolutions) and different tree types. Different evaluation criteria have also
been used and the D-statistics used in this study is relatively new to the
field, having been developed by Clinton, et al (2010) and still to be widely
applied for comparison. Although different algorithms and platforms are
used, the general process of individual tree delineation is relatively the
same as that adopted in this study starting with segmentation, followed by
membership functions and then refinement(Larsen, et al., 2011; Niccolai, et
al,, 2010; Wolf & Heipke, 2007).

The results have shown no direct relationship between the age of the oil
palm and the accuracy of the delineation. This result was somewhat
unexpected as it was considered that younger oil palms could be easily
delineated as there are no problems of overlapping branches and shadows
cast upon other palms. The lack of a direct relationship may suggest that
the accuracy of the delineation is more site-characteristic dependent than
age dependent. The site characteristics such as intercropping and weeds
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introduce radiometric and geometric confusion to the segmentation and
classification algorithms (Figure 5.1) especially where vegetation-based
bands (NIR, Green and Red) and indices (such as NDVI) are primarily used
for delineation (Pouliot, et al., 2002). Other research on determining age of
oil palm using remote sensing approaches reported accuracy for younger
age classes (Ibrahim, et al, 2000; McMorrow, 2001; Thenkabail, et al,,
2004). The spectral and spatial characteristics of the oil palms differ with
age but the changes in spectral response with age may not be enough for
discrete age modelling (Thenkabail, et al, 2004) while the changes in
spatial characteristics may be significant enough between years for
discrete modelling.
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Figure 5.1:NIR profile of same age stands (a) without weeds/intercrop (b) with

weeds/intercrop

The NIR was most consistently able to be useful for separating oil palm
crowns with background. The red edge band which was considered
potentially very useful could not perform better that the NIR. This was not
surprising given that the Landsat MIR bands were the most significant in
classification and age class determination of oil palm (Ibrahim, et al., 2000;
McMorrow, 1995, 2001). Therefore, of the WorldView-2 bands, the NIR2
(860-1040nm) might have been more useful for age discrimination but as
Thenkabail, et al (2004) observed with IKONOS data, spectral richness may
be more important that spatial resolution in oil palm land cover
classification, biomass estimation and discrete age determination. Although
the WorldView-2 provides more opportunities both spatially and
spectrally, the spectral diversity in hyperspectral data could therefore
provide added abilities for oil palm crown delineation. Due to the fuzziness
of leaf density gradient from the crown centre, on many occasions it was
difficult to figure out exactly where the crown ends. This is made even
more complicated where there is undergrowth (Appendix 1f-h). Although
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this may be the general spatial reflectance profile for trees (Hirschmugl, et
al, 2007; Pouliot, et al, 2002; Wolf & Heipke, 2007), it could be more
problematic in delineation of oil palms given its star-shaped form
compared to conoid and hemispherical forms common in other trees.

The problems of weeds and intercrops can be linked to the date of image
acquisition as the photosynthesising annual crops and weeds are more
prominent in the wet seasons compared to the dry season. It is therefore
recommended that imagery be acquired in the dry season for tree crown
delineation for perennials like oil palms in order to improve the accuracy.
Despite the lack of a direct relationship between age and accuracy, the
results show that it is more difficult to obtain accurate delineation for older
oil palms. This indicates that the problems of shadows and overlapping
branches may be particular for this age class while site characteristics are
more important for young age categories less than 13 years. The shadows
in young oil palm plantations were correctly masked out while in older oil
palms the shadows were cast upon other oil palm crowns and were
therefore erroneously masked out (Figure 5.2). This partly explains the
segmentation error reported for older oil palms. The effect of shadow has
been found to be dependent on the sun azimuth angle in relation to the
satellite position at the time of imaging (Leckie, et al., 2005). When shadow
is cast upon vegetation, the reflectance in the vegetation bands is grossly
distorted.

Shadows correctly masked in
young oil palms

Crown parts with cast shadows
from neighbouring trees wrongly
masked outin older oil palms

Figure 5.2:Effect of shadows on the delineation accuracy for young and older oil
palms

It may be expected that automatic crown delineation would be feasible
given the relative uniform characteristics of oil palm plantations as
compared to natural forests for example. However, it was realized that
there are many factors that are different at each stand, and thus a method
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for delineation that considers each field’s characteristics could be better
than a blanket approach. A stand-based method, may not be very easy for
delineation of large oil palm plantations (with many age stands) and for
delineation of numerous smallholder farms because of the human and
computational requirements. To solve this problem, other researchers
applied preliminary stratification (such as based on tree density by
Whiteside, et al. (2011)) before delineation in order to adjust segmentation
and delineation parameters accordingly. Advanced image pre-processing
such as implemented by Shafri (2011) may also be useful in improving the
performance of the delineation of individual crowns. Different levels of
automation in individual tree crown delineation have been developed and
applied for pine plantations (Hirschmugl, et al., 2007; Larsen, et al., 2011;
Pouliot, et al,, 2002), eucalyptus (Whiteside, et al.,, 2011) and other forest
types (Niccolai, et al, 2010). While the method adopted in this study
requires considerable work adjusting parameters per stand, it could be
useful for a sampling-based delineation where mean crown sizes are
representative such as in plantations.

5.3 Relationship between CPA and age

It is a common biological phenomenon that at a certain age, growth of some
parameters ceases as was shown by oil palm tree crowns in this study.
Therefore the application of a method that depends on a saturating
parameter is only applicable to the point of saturation which in this study
limits the applicability of the function up to 13 years. Applications of
methods that can provide an opportunity for estimating additional
characteristics such as height and thickness such as Lidar and radar may be
more useful for age prediction especially for older oil palms (assuming that
there is a stronger non-saturating relationship between age and height).
However, the prediction problems of the function are apparent for older oil
palms which were not of primary interest for this study. The form of the
relationship match almost exactly the form presented by McMorrow
(2001) with field measurements done in Malaysia (Figure 5.3). From this, it
can be speculated that the function developed in this study may be useful
for other countries and regions as it is dependent more on the physiology
of the oil palms than on geographical characteristics.
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Figure 5.3: Relationship between oil palm age and (a)leaf area(McMorrow, 2001) &
(b) crown area in this study

The ability of a crown area based function to estimate ages in the precision
of years makes it more attractive than reflectance based methods although
it can only be applicable up to saturation age. It is however difficult to
compare the accuracies with reflectance regression classification
approaches which give results in binned age classes. In addition, oil palm
crowns have different shapes and spectral characteristics than the trees
evaluated in other studies. Even in cases where the studies were on oil
palm (Ibrahim, et al.,, 2000; McMorrow, 1995, 2001), the approaches and
sites were completely different from the one applied in this study and
therefore very difficult to compare. Kalliovirta & Tokola (2005) concluded
that in predicting the age of birch forests, crown diameter had the least
errors and recommended that only crown diameter should be used for age
prediction of birch stands. Contrary, the unreliability of crown area as the
only independent variable has been cited in other studies (Pouliot, et al.,
2002).

The function developed for estimating oil palm age from crown area
proved to be robust in estimating oil palm age in the study area and
perhaps could also be useful for estimating oil palm ages in the study
region, in Ghana and in other regions with similar management and
climatic conditions. Since there were no significant differences (p>0.05) in
the slopes of the model between smallholder and corporate plantations
(Figure 5.4), the developed model (Equation 4.1 ) can be used for modelling
oil palm age in the study area. There is therefore no need for separate
models for smallholder and corporate oil palm sectors. It may therefore be
inferred that the aspects of management such as weeding circles, density
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fertilization and use of agrochemicals that differ between smallholder and
corporate plantations have no significant effect on the relationship
between crown area and age. The observation that there were no
difference in the slopes of the model is contrary to the fact that field
experiments relating fertilization, density and genotype have reported
significant impact on crown expansion (Breure, 1985). Nonetheless, the
functionality and applicability of the developed model may be affected by
factors such as differences in soil types and fertility, diseases and pest
damage, plant spacing, irrigation, oil palm varieties and other management
practices such and pruning especially when applied over larger areas
(Breure, 1985). The error slightly less than 1 year of the model in
predicting oil palm age could therefore be explained by the variability in
these factors at each measured stand.
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Figure 5.4: Sensitivity of the model to management system

A second order polynomial that follows the saturation could have produced
a model able to predict oil palm age beyond 13 years. However, this could
have produced more errors in the prediction through error propagation as
a linear function is more parsimonious. In addition, it is not useful to have a
model able to predict beyond 13 years when the delineation is only reliably
accurate up to that age. Linear functions have been widely and reliably
used as functions for predicting other plant parameter from crown area or
crown diameter (Table 5.1).
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Table 5.1: Application of linear functions in predicting stand parameters

Parameters Study Country Species
Crown area Kalliovirta & Tokola (2005) Finland, Pine, Spruce
and age birch
Crown Avsar (2004), Hemery, et al. Britain, Pine, many,
diameter and (2005), Peper, etal. (2001), California, many, many
DBH Mugo, et al. (2011) Kenya
Leaf area and  Gerritsma & Soebagyo, (1999) 0il palm
age
Crown area Avsar, (2004), Peper, et al. Turkey, Pine, many,
and height (2001), Kalliovirta & Tokola California, pine
(2005) Finland

Other studies have applied other functional forms such as ‘flexible’ models,
second-degree polynomials, power functions and others (Avsar, 2004;
Chase & Henson, 2010; Peper, et al.,, 2001; Suratman, et al., 2004). These
functions are reported to have good modelling performance but are
difficult to generalize beyond the conditions, species and study sites in
which they have been developed. A linear model therefore remains the
most applicable model for relating the oil palm age and crown area.

5.4 Predicted conversion time

The estimations showed that the dominant age classes in the study area
were 6 and 11 years old (planted in 2005 and 2000). As a result of the
President Special Initiative, many new oil palm plantations were
established in the period shortly after 2003 and are thus dominating the
age classes (Duku, 2007). The 11 years old plantations correspond with
the World Bank funding of oil palm development in Ghana (Carrere, 2010;
Gyasi, 2003). These initiatives brought cheap to free seedlings, heightened
extension technical support and provided policy framework for oil palm
expansion and thus could have contributed large areas being converted to
oil palm production. This indicates that the conversion and expansion of
oil palm production areas in the study area due to national or international
development programs has been correctly shown by this approach.

Mapping the age of oil palm showed the spatial and temporal oil palm
developments. The knowledge of how oil palm expanded over space and
time can therefore be useful for analyzing the effect of policies such as the
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PSI (from 2003) or the multilateral development funding by the World
Bank (from 1998) on the sector. Therefore, in addition to advocating for
inclusion of RSPO criterion (such as Criterion 7.3) in the design and
implementation of such oil palm development agendas, this approach could
also be useful for analyzing the impacts of these initiatives on the
environment across space and time. For example, the results of this
approach may form part of a strategic impact assessment on impact of oil
palm development on biodiversity or on food crop production.

5.5 Protected areas and high conservation values areas

For a country such as Ghana, it is may be highly unlikely for large scale
expansion of oil palm plantation into protected areas such as forest
reserves and wildlife sanctuaries to occur. However, islands of inversion
could be possible especially by smallholder farmers and therefore a remote
sensing based method will not only be useful for determining the ages but
for identifying such activities. Nonetheless, as was observed from Figure
4.11, a nature friendly system of oil palm production is very important as
the plantation could be established in wildlife corridors. For example, the
plantations in the study area are between Bobiri, Anum Su North, Asonari
and other reserves and it could be that these form habitats for wildlife that
migrate between them for prey or herbivory. Certification in this area
therefore provides opportunities for biodiversity conservation.

It was also clearly demonstrated that areas planted in HCVs after the
benchmark year can be easily and objectively determined by overlaying the
age maps with the HCV map. This is a more localized application of the
approach that was shown by Fitzherbert et al (2008) on the relationship
between oil palm areas and biodiversity hotspots at global level. This
showed the sites, area and when the land was potentially converted to oil
palm production. It will be easy then to know which areas automatically
are not eligible for RSPO certification based on Criterion 7.3 and therefore
no need for field visits or verification of other criteria. This may be
important for saving costs of travelling to sites that are obviously not going
to receive certification and therefore even on-site assessments are not
necessary. However, caution should be taken that not all new plantings
after 2005 maybe on HCVs or protected areas as land could be converted
from another agricultural use or a replanting of oil palm. This verification
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can be again done by a remote sensing approach, but this does not require
delineation approaches and very high resolution imagery as needed in
determining the age.

5.6 Sensitivity and error analysis

Comparing the estimated and the actual ages showed that age prediction
errors ranged from an underestimation of 4 years to an over estimation of
3 years. These errors could originate from the delineation, the prediction
function or both. Although the results have shown that the most significant
error sources were in predictions of older oil palm (13+ years), in terms of
numbers this age was not dominating. Therefore, in addition to the
problems with the older palms, there were also numerous errors in the
younger age classes. As was explained in other remote sensing-based age
estimations, canopy closure and associated leaf area index affect the
spectral response and saturates at certain ages (McMorrow, 1995, 2001).
As this may affect the accuracy in older age classes, it shows that the cause
of errors could be different between different age classes and therefore the
sensitivity varies depending on ages.

In addition, the problem of error propagation may be severe when
combining 2 models; in this case remote sensing and a regression function
both of which have their individual inaccuracies and the problem may be
severe when they are combined. To demonstrate the effect of the combined
errors, Figure 5.5a shows the effect of changing the model slope from the
lower confidence limit to the upper confidence limit on the RMSE. The
RMSE increases when the slope changes within limits to a maximum of
about 1.6 years for the upper and the lower limit. On the other hand,
changing the obtained OBIA CPA by +10% demonstrates that increasing the
values of the obtained OBIA by a range from 1 to 10 % increases the RMSE
(Figure 5.5). However, when the values are decreased by the same range,
the accuracy actually improves (lower RMSE) until up to a decrease of 6%
of the obtained values. This shows that the crown area values obtained for
the dominating younger age classes (2-10 years) were an over estimation
of the crowns area and adjusting parameters to lessen the crown area may
improve the accuracy but only up to a limited level. Therefore, while the
applied model slope coefficient had optimized in terms of error (giving
least RMSE), there is need for improving the delineation. This suggests that
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greater attention in application of this approach is required for crown area
delineation in order to achieve reliable age estimates.
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Figure 5.5: Analysis of error from (a)model and (b) OBIA delineation

The error propagation in the proposed approach could also explain the
relative accuracies reported. For example the effect of the under
segmentation in crown delineation could be reduced by over estimation of
the model when these are combined for age prediction. As the most
significant errors were actually for the older oil palms (over 10 years),
which are not of direct interest for certification, the method can be
considered scalable for assessing compliance with Criterion 7.3 for the oil
palm sector. This is despite the fact that error at individual stand levels
could be discouraging while the overall accuracy is very impressive.
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6.1 Conclusion

Individual crown area of oil palms can be determined using object based
image analysis and the obtained crown can be used for predicting age of oil
palms at field level. Many factors however affect the delineation accuracy
and the most significant found in this study are stand characteristic
particularly undergrowth (weeds and intercrops). The density of
undergrowth differs in each field and a stand-level approach was found
more suitable than delineation of the whole image. A significant positive
linear relationship was observed between crown area and age of oil palm
up to 13 years, beyond which no relationship is apparent. It was therefore c
that a linear model would best for predicting the age of oil palm from
crown area. It was concluded that the linear function was useful to predict
the age of oil palm per field with accuracy of +1 year up to 13 years. This
happens to coincide with the age where delineation accuracy is also
possible. It was demonstrated that no land was converted from protected
areas to oil palm after 2005 and that it is possible to overlay a HCV map on
the developed age map for RSPO criterion 7.3 certification.

6.2 Recommendations

Based on the methodology and findings of this study, the following
recommendations are made:

e The approach demonstrated here depends on delineation of oil palm
crowns on representative areas of a field and therefore needs to be
more automated to make it more efficient for wider coverage such as
national or regional oil palm age mapping. This will make the adoption
of the approach more efficient for application in oil palm certification.
Possible areas of improvement include investigation of hyper-spectral
datasets for crown delineation. Upscaling to medium resolution
imagery is also recommended given that high resolution images are
expensive and not always available.

e Predicting oil palm age from remote sensed crown area was shown to

only be possible up to 13 years and an approach that can expend the
applicability of the model beyond the 13 years may be required. Other
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functional forms between age and CPA should therefore be tried. This is
necessary for improving the accuracy in determining ages of older trees
and for making the methods more applicable outside certification. It
may be necessary to develop oil palm specific growth models or to
borrow potentially applicable age-crown functions from other studies
for achieving this.

RSPO should adopt this approach as a certification decision support
tool not specifically for Criterion 7.3 but for other criteria that require
spatial data. In addition, other conservations agencies and support
group could also use the same or an adapted approach for assessing
age-based oil palm attributes and other characteristics. This is because
of the cost effectiveness, time upturn and objectivity obtained from
using it.

There is need for an up-to-date HCV map for Ghana. This HCV map will
be useful not only for assisting sustainability certification of palm oil
production but for as part of biodiversity inventory. In addition, all
palm oil producing countries should develop their HCV maps for
application of remote sensing and other methods for RSPO certification.
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a)Crown diameter measurement b)Locating sample points with IPAQ c) Identifying
sample plots on map d) Weed free young oil palm field e) Measuring oil palm diameter
f)Measuring oil palm height g)Undergrowth in a oil palm field h) Weeds in oil palm field
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Appendix 2: WorldView-2 image and metadata

GENERATIONTIME>2011-09-217T08:28:18.000000Z</GENERATIONTIME>
PRODUCTORDERID>052583754010_01_P001</PRODUCTORDERID>
PRODUCTCATALOGID>2030010089D26B00</PRODUCTCATALOGID>
IMAGEDESCRIPTOR>ORStandard2A</IMAGEDESCRIPTOR>
BANDID>P</BANDID>
PANSHARPENALGORITHM>None</PANSHARPENALGORITHM>
NUMROWS>12336</NUMROWS>
NUMCOLUMNS>14716</NUMCOLUMNS>
PRODUCTLEVEL>LV2A</PRODUCTLEVEL>
PRODUCTTYPE>Standard</PRODUCTTYPE>
NUMBEROFLOOKS>1</NUMBEROFLOOKS>
RADIOMETRICLEVEL>Corrected</RADIOMETRICLEVEL>
RADIOMETRICENHANCEMENT>Off</RADIOMETRICENHANCEMENT>
BITSPERPIXEL>16</BITSPERPIXEL>
COMPRESSIONTYPE>None</COMPRESSIONTYPE>
OUTPUTFORMAT>GeOTIFF</OUTPUTFORMAT>
<ULLON>-1.467776570000000e+00</ULLON>
<ULLAT>6.789094040000000e+00</ULLAT>
<ULHAE>3.127400000000000e+02</ULHAE>
<URLON>-1.401217810000000e+00</URLON>
<URLAT>6.788879090000000e+00</URLAT>
<URHAE>3.127400000000000e+02</URHAE>
<LRLON>-1.401401120000000e+00</LRLON>
<LRLAT>6.733109410000000e+00</LRLAT>
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<LRHAE>3.127400000000000e+02</LRHAE>
<LLLON>-1.467952250000000e+00</LLLON>
<LLLAT>6.733322570000000e+00</LLLAT>
<LLHAE>3.127400000000000e+02</LLHAE>
<ABSCALFACTOR>5.678345000000000e-02</ABSCALFACTOR>
EFFECTIVEBANDWIDTH>2.846000000000000e-01</EFFECTIVEBANDWIDTH>
SATID>WV02</SATID>
MODE>Ful1swath</MODE>
SCANDIRECTION>Forward</SCANDIRECTION>
CATID>1030010008862F00</CATID>
FIRSTLINETIME>2011-01-047T10:47:12.385874Z</FIRSTLINETIME>
AVGLINERATE>2.000003000000000e+04</AVGLINERATE>
EXPOSUREDURATION>1.600000000000000e-03</EXPOSUREDURATION>
MINCOLLECTEDROWGSD>4.820000000000000e-01</MINCOLLECTEDROWGSD>
MAXCOLLECTEDROWGSD>4.830000000000000e-01</MAXCOLLECTEDROWGSD>
MEANCOLLECTEDROWGSD>4.820000000000000e-01</MEANCOLLECTEDROWGSD>
MINCOLLECTEDCOLGSD>4.880000000000000e-01</MINCOLLECTEDCOLGSD>
MAXCOLLECTEDCOLGSD>4.880000000000000e-01</MAXCOLLECTEDCOLGSD>
MEANCOLLECTEDCOLGSD>4.880000000000000e-01</MEANCOLLECTEDCOLGSD>
MEANCOLLECTEDGSD>4.850000000000000e-01</MEANCOLLECTEDGSD>
ROWUNCERTAINTY>2.881000000000000e+01</ROWUNCERTAINTY>
COLUNCERTAINTY>4.186000000000000e+01</COLUNCERTAINTY>
MINSUNAZ>1.460000000000000e+02</MINSUNAZ>
MAXSUNAZ>1.460000000000000e+02</MAXSUNAZ>
MEANSUNAZ>1.460000000000000e+02</MEANSUNAZ>
MINSUNEL>5.420000000000000e+01</MINSUNEL>
MAXSUNEL>5.420000000000000e+01</MAXSUNEL>
MEANSUNEL>5.420000000000000e+01</MEANSUNEL>
MINSATAZ>1.252000000000000e+02</MINSATAZ>
MAXSATAZ>1.265000000000000e+02</MAXSATAZ>
MEANSATAZ>1.260000000000000e+02</MEANSATAZ>
MINSATEL>7.520000000000000e+01</MINSATEL>
MAXSATEL>7.530000000000000e+01</MAXSATEL>
MEANSATEL>7.530000000000000e+01</MEANSATEL>
MININTRACKVIEWANGLE>-6.000000000000000e+00</MININTRACKVIEWANGLE>
MAXINTRACKVIEWANGLE>-5.900000000000000e+00</MAXINTRACKVIEWANGL E>
MEANINTRACKVIEWANGLE>-
5.900000000000000e+00</MEANINTRACKVIEWANGLE>
MINCROSSTRACKVIEWANGLE>1.160000000000000e+01</MINCROSSTRACKVIEWAN
GLE>
MAXCROSSTRACKVIEWANGLE>1.170000000000000e+01</MAXCROSSTRACKVIEWAN
GLE>
MEANCROSSTRACKVIEWANGLE>1.170000000000000e+01</MEANCROSSTRACKVIEW
ANGLE
MINOFFNADIRVIEWANGLE>1.310000000000000e+01</MINOFFNADIRVIEWANGLE>
MAXOFFNADIRVIEWANGLE>1.310000000000000e+01</MAXOFFNADIRVIEWANGLE>
MEANOFFNADIRVIEWANGLE>1.310000000000000e+01</MEANOFFNADIRVIEWANGL
E>
PNIIRS>5.000000000000000e+00</PNIIRS>
CLOUDCOVER>0.000000000000000e+00</CLOUDCOVER>
RESAMPLINGKERNEL>CC</RESAMPLINGKERNEL>
POSITIONKNOWLEDGESRC>R</POSITIONKNOWLEDGESRC>
ATTITUDEKNOWLEDGESRC>R</ATTITUDEKNOWLEDGESRC>
REVNUMBER>6501</REVNUMBER></IMAGE>
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Appendix

Appendix 3: Field data processing in Matlab

Random partitioning data into 60:40
x=randsample(72,72); %random number
generation

t=x(1:43); % 60% of the data
v=x(44:72); %40% of the data

%% writing output to csv

% training data

train=all_data(t,:); %model training data
csvwrite('train2.csv',train);
header=['age,cpaheight,mgt,ID'];

outid = fopen('train2.csv', 'w+");
fprintf(outid, '%s’, header);

fclose(outid);

dlmwrite ('train.csv'train,'roffset’,1,"-append")
% Validation data

valid=all_data(v,:); %model validation data
csvwrite('valid2.csv',valid);
header=["age,cpaheight,mgt,ID'];

outid = fopen('valid2.csv', 'w+");
fprintf(outid, '%s’, header);

fclose(outid);

dlmwrite ('valid2.csv',valid, roffset’,1,"-append")
% aa=45;

Fitting a models to the training data
%% Building a regression model
p=polyfit(cpa,age,1) % model
R=corrcoef(age,cpa); %R
R(1,2)

yresid = age - yfit;

%r-squared

SSresid = sum(yresid.*2);

SStotal = (length(age)-1) * var(age);
rsq =1 - SSresid/SStotal

%adjusted rsquare

R2adjusted = 1 - (SSresid / SStotal)*((43-1)/(43-
1-1))

%% plotting residuals for checking normality
figure
histfit( yresid)
% title('Histogram of residuals:
h = get(gca,'Children');
set(h(2),'FaceColor',[1 1 1])
ylim([0 25]);
xlabel('Residuals’, 'fontsize',11, fontweight','b")
ylabel('Frequency’,'fontsize’,11,'fontweight','b")

% lillilifor test for normality
fprintf('Testing normality: ');
if lillietest( yresid) == 1
fprintf(’ likely to be non-normal\n");
else

fprintf('There is no evidence of non-
normality\n');
end;

figure
qqplot(yresid);

%% Error statistics of calibration data
ageModAct1=0.59+cpa.*0.15;
ageModAct=round(ageModAct1);

R12 = corrcoef([ageModAct age]);
r12 = R12(1,2); % Correlation coefficient
r12sq=r12"2; % Coefficient of determination

RMSE=sqrt(sum((ageModAct-
age).”2)/length(age));
MRE=sqrt(((sum((ageModAct-
age)./age)./length(age))*100).%2);
MAE=mean(sqrt((ageModAct-age).*2));
% aa=45;

Testing model on independent data set and
error statistics

%% implementing the model to get modeled age
ageModAct1=0.59+cpa.*0.15;
ageModAct=round(ageModAct1);

%% error statistics

R12 = corrcoef([ageModAct ageObs]);

r12 = R12(1,2); % Correlation coefficient
r12sq =r12"2; % Coefficient of determination
RMSE=sqrt(sum((ageModAct-

ageObs).”2) /length(ageObs));
MRE=sqrt(((sum((ageModAct-
ageObs)./ageObs)./length(ageObs))*100).72);
MAE=mean(sqrt((ageModAct-ageObs)."2));

%% 1:1 plot of actual and predicted
plot(ageObs,ageModAct,'ok’,'LineWidth',2);
ylim([0 14])

xlim([0 14])

xlabel("Actual Age(years)’, 'fontsize’,12)
ylabel('Predicted Age(years)’, 'fontsize’,13)

%% Correlation between modeled and actual age
R12 = corrcoef([ageModAct ageObs]);

r12 = R12(1,2); % Correlation coefficient

r12sq =r12"2; % Coefficient of determination
aa=45;
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