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Abstract 
 
Land cover change is an important environmental issue which 
impacts on ecosystem conditions. Thus, it is very crucial to monitor 
on-going changes and to predict future changes. In recent years, 
several time-series-based methods have been proposed in the 
context of multi-temporal imagery analysis. The prototype change 
detection method assessed in this study uses long term hyper-
temporal imagery and is able to generate continuous representations 
of on-going land cover changes. The prototype method calculates 
land cover changes based on two preliminary user-settings: 1) 
“period within the year” and 2) “threshold” (pooled standard 
deviation (SD) values). This study focused on the impacts that 
different choices of these user-settings have on the accuracy of 
generated land cover change maps through the prototype method. 
SPOT 10-day MVC NDVI images with 1 km2 resolution from 2000 to 
2004 as “reference period” and 2009 as “cover change assessment 
period” were used to generate land cover change maps using 
different user-settings of the prototype method. Orthophotos of 2004 
and 2008/2009 and field data collected of 2011 in Andalucía, Spain; 
where the study was conducted; were used to calculate observed 
changes between 2004 and 2008/2009. The analysis was carried out 
for 28 pixels of 1 km2 representing both natural and semi-natural land 
cover. This study successfully indicated the importance of the user-
settings for the prototype method and emphasized that different 
choice of the user-settings have influence on generated land cover 
change maps. The study showed that the choice of “1.5” for 
“threshold” and “whole year” for “period within the year” with 85% 
agreement between simulated changes and observed changes are the 
best choices of user-settings for the Andalucía region. The study 
showed an over-estimation of observed changes when “threshold” 
was equal to “1.0” whilst an under-estimation of observed changes 
was seen when the threshold was higher than “1.5”. The results 
verified that the prototype method using the chosen user-setting 
performed accurately in the area having natural and semi-natural 
land cover in Andalucía, but to find the best choice of user-settings 
for other areas the prototype method needs to be calibrated. 

 
Keywords: Land cover; Change detection; Hyper-temporal; User-
settings impact; Accuracy assessment 
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1. Introduction 
 

1.1 Background and significance 
 
Land cover is a discrete term which refers to the physical surface of 
the earth including natural and cultivated vegetation and man-made 
features (Gomarasca, 2009). Different factors such as environmental, 
social, economic and even political factors influence and change land 
cover regionally or even globally over time (Ellis, 2010). Changes in 
land cover can be related to “natural dynamics (vegetation 
succession, intra or inter annual variability)” or to “human activities” 
(Bontemps et al., 2008) for instance due to fire, deforestation, and 
agricultural or urban expansion. Land cover changes have a 
significant impact on ecosystem conditions (hydrology, climate 
changes and biogeochemical cycles) and create environmental issues 
(Bontemps, et al., 2008; Skole et al., 1997). Information about land 
cover change is very essential in natural resource management (Boles 
et al., 2004). 
 
Land cover changes are categorized in two categories, ‘land cover 
conversion’ and ‘land cover modification’ (Coppin et al., 2004b). The 
first category reflects a complete land cover change, i.e. from one 
major land cover class to another, the second category reflects subtle 
land cover changes within a given major land cover class (Coppin, et 
al., 2004b).  
 
Land cover change detection is  the process of identifying differences 
in the state of land cover by observing it at different time (Singh, 
1989). The use of satellite imagery to detect land cover changes has 
drastically grown since 1972 (Lunneta, 1999). In recent years the 
availability of satellite imagery makes it possible to detect land cover 
changes at global, regional and local scales through multi-temporal 
analysis concerning the fact that land cover varies over time. 
Monitoring land cover changes through time-series analysis of e.g. 
hyper-temporal imagery, provide more essential information 
especially in areas where land cover rapidly changes (de Bie et al., 
2008; Nguyen et al., 2012). Also, hyper-temporal images provide the 
potential for higher accuracy in mapping different land cover classes 
(Khan et al., 2010; Nguyen, et al., 2012). SPOT-VGT, MODIS-Terra 
and NOAA-AVHRR sensors capture required data for hyper-temporal 
analysis.  
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The term of vegetation indices describes the relation between satellite 
data and crop characteristics. It provides information about condition 
of vegetation. Since vegetation index reflects the phenological 
patterns of vegetation, they are widely used for monitoring and 
detecting land cover changes (Archer, 2004; Davenport et al., 1993; 
de Bie, et al., 2008; Khan, et al., 2010; Lunetta et al., 2006; Lyon et 
al., 1998). One of the advantages of vegetation index is that 
atmospheric effects such as effect of clouds are reduced (Doraiswamy 
et al., 2007). The Normalized Difference Vegetation Index (NDVI) is 
the most commonly used vegetation index to monitor land cover (de 
Bie, et al., 2008; Townshend et al., 1986; Ünsalan et al., 2011); it 
can be easily derived from remote sensing imagery such SPOT-VGT, 
MODIS and NOAA-AVHHR data by dividing the difference between 
near infra-red and red reflectance measurements by their sum 
(Goward et al., 1991; Tucker, 1979). NDVI can provide information 
about land vegetation type (Knight et al., 2006).  
 
Many methods have been proposed to detect land cover changes 
using satellite images. A variety of these methods have been 
reviewed by Singh (1989), Jensen (1996), Lunneta (1999), Coppin, 
et al. (2004b), Lu et al.(2004). Singh (1989) discusses various 
methods such as Principal Component Analysis (PCA), Univariate 
image differencing, Vegetation index differencing, Image rationing, 
Image regressions, Change Vector Analysis (CVA), Post classification 
comparison and direct multi date comparison. Lunneta (1999) and 
Coppin, et al.(2004b) classified the change detection methods to pre-
classification and post-classification. Also, Coppin, et al.(2004b) 
categorized change detection methods in two categories based on the 
temporal characteristics: “bi-temporal” and “temporal trajectory” 
analyses. “bi-temporal” methods assess change detection between 
two dates. ‘Time trajectories’ or ‘Time profiles’ methods assess the 
change detection on time-profile based data with multi-time scale. 
Also, the time-series analysis makes it possible to characterize 
vegetation dynamics on different temporal scales to differentiate 
between gradual or rapid changes (Lambin et al., 2006). 

The majority of the change detection methods discussed above are 
based on limited time imagery and they compare single-date or 
multiple dates with irregular frequency based on aspects of land 
surface (Allen et al., 2000; Cohen et al., 1998; Coppin, et al., 2004b; 
Feng et al., 2011; Lu, et al., 2004; Muchoney et al., 1994; Zhou et 
al., 2008). In the past few years, interest in the development of 
change detection technique through time-series analysis is growing 
and several time-series methods have been proposed in the context 
of multi-temporal analysis but with no high image frequency such as 
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Principal Component analysis (Young et al., 2001), Change vector 
analysis (CVA) (Bayarjargal et al., 2006; Lu, et al., 2004), Univariate 
image differencing (Ingram et al., 2005; Muchoney, et al., 1994), 
Image regressions (Fraser et al., 2005), trajectory-based change 
detection (Kennedy et al., 2007) and object oriented methods 
(Conchedda et al., 2008; Desclée et al., 2006) are based on multi-
temporal analysis. There are only a few methods which have solutions 
for monitoring and detecting change on a continuous basis (Beltran 
Abounza, 2009; Chen et al., 2010; He et al., 2011; Nielsen et al., 
2008; Ramoelo, 2007; Verbesselt et al., 2010). But, these methods 
only represent changes in discrete manner without representing the 
direction of changes. Nielsen et al. (2008) proposed the continuous 
method to detect land cover changes but he used multi-temporal 
imagery of irregular time period. A combination of two or more 
methods is used by several researchers to improve the precision of 
change detection (Li et al., 1998; Petit et al., 2001) but these 
methods are complex (Gong, 1993). Among all the researched 
methods, there is only one change detection technique available 
which uses long term, regular and high frequency imagery coupled 
with representation of changes in continuous units thorough hyper-
temporal imagery analysis (Srivastava, 2011). 

1.2 Prototype method 
 
Twente University, ITC department (Srivastava, 2011) proposed a 
new automated method to generate land cover change maps, through 
hyper-temporal satellite imagery analysis at pixel level. The method 
monitors behaviour of change through time at pixel level and detects 
rapid as well as gradual cover changes that reflect either cover 
conversion or modification. In this method the change is defined as 
variation in the NDVI values of land cover, concerning the changes in 
proportions of land cover attributes like trees, shrub, bare soil, stone 
and litter. Required input data for this method are two different time 
series of hyper-temporal images, one as “reference period” while the 
second one is used for change detection called “cover change 
assessment period”. Land cover changes are detected using pooled 
standard deviation out of standard deviation of reference period. 
 
The advantages of this method are: 
1. Use continuous long term hyper-temporal NDVI imagery.  
2. Quantify the changes in term of probabilities. 
3. Represent land cover changes in continuous values. 
4. Location of changes. 
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5. Commencement of changes (“when pixels start behaving as a 
change pixels within a specified time period”(Srivastava, 2011)). 

6. Provide user-friendly interface. 

This prototype method calculates land cover changes considering 
some preliminary user-settings (Figure 1). It includes using “period 
within the year” to track seasonal and inter-annual changes and 
pooled standard deviation (SD) values setting in term of “threshold” 
to show at which level changes are assessed. The “period within the 
year” varies from 1 to 12 months and the values of “threshold” 
ranges from 1.0 to 3.5 with the step of 0.5. 
 

 
Figure 1: User interface of the prototype method. 
 
This research was built on this prototype method. This study 
developed an approach to generate more accurate land cover change 
maps based on hyper-temporal images and the preliminary user-
settings. Also a field-based accuracy analysis with the help of high 
resolution imagery was performed to assess the impacts of these 
user-settings. Statistical indicators were used to provide accuracy 
estimates. 
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1.3 Research justification 
 
Upon reviewing the advantages of the prototype method, it has the 
potential to be employed and used for different areas, and provides 
essential information for scientists, planners and policy makers. In 
order to use this prototype method in an appropriate way, users need 
reliable output data (land cover change maps). Since the proposed 
method is a novel approach, there was not sufficient information 
about the importance of the preliminary user-settings of this method 
(Figure 1) and how this method was sensitive to these user-settings. 
Therefore, it was essential to evaluate the prototype method with 
different user-settings, assess the accuracy of the generated land 
cover change maps with respect to these settings, offer necessary 
choices in method settings and provide guidelines for users. 
 

1.4 Research objective 

To assess the impact of user-settings on generated land-cover 
change maps through the prototype method and to find the best 
choice of user-settings. 

1.5 Research questions 
 
1. Are the simulated land cover change maps sufficiently 

different when user-settings are changed? 
2. Do the estimations of change derived from field data 

(observed changes) show sufficient variability between 1 km2 

pixels? 
3. How do the simulated changes correlate with observed 

changes for different user-settings? 

1.6 Research hypotheses 
 
Related to research question 3: 

H0: There is a low correlation between simulated land cover 
changes and observed changes (R2 < 0.75). 
H1: There is a high correlation between simulated land cover 
changes and observed changes (R2 ≥ 0.75). 
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1.7 Research assumptions 
 

1. The default values for the user-settings are: 
“period within the year” = “whole year”  
“threshold” = 1 * SD 

2. According to the crop calendar for field crops in Andalucia, 
growing season starts in January and ends in June (Khan et 
al., 2011).  

3. The fractions of land cover components estimated in field work 
are sufficient for this study to use as interpretation of changes. 
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2. Materials and Methods 

2.1 Study area 
 
Andalusia with an extent of 87,268 km2 is located in the South of 
Spain (Figure 2). It is the second largest autonomous community in 
Spain with 8 provinces and 770 municipalities. It has a Mediterranean 
climate with hot, dry summers and mild, rainy winters. The average 
temperature in Andalusia throughout the year is over 16 °C. 
 
The typical vegetation of Andalusia is Mediterranean woodland and 
the dominant species are: Holly oak, Cork oak, pines and Spanish Fir. 
The major crops are wheat, rice, maize, sunflower, cotton, olive, 
almond, orange and grapes. Agriculture is very important in 
Andalusia and 67% of this region is utilized for agricultural purposes 
(Khan, et al., 2011). 
 

 
Figure 2: Study area: Andalucia, Spain. 
 
2.2 Data used 
 
Available hyper-temporal data for this study were SPOT4 and SPOT5 
vegetation sensors, 10-day MVC (Maximum Value Composite) NDVI 
images with 1 km2 resolution from 2000 to 2004 (180 images) as 
“reference period” dataset and 2009 (36 images) as “cover change 
assessment period” to detect changes. The dataset were obtained 
from the SPOT Vegetation website (www.vgt.vito.be).  
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Orthophotos of 2004 with a pixel resolution of 1 meter, orthophotos 
of 2008/2009 with pixel resolution of 0.5 meter and field data 
conducted in 2011 were available for up-scaling the observed land 
cover components to pixel resolution of 1 km2 of imagery. 
Orthophotos were downloaded from the website 
http://www.juntadeandalucia.es/index.html.  
 
 
2.3  Software and hardware used 
 
The following technical software applications and hardware were 
employed in this research:  
 
Table 1: Software and hardware used. 

Software Usage 

ERDAS IMAGINE 2011 To perform image processing 

ArcGIS 10 Data preparation, analysis, map 
composition 

Definiens eCognition 8.64 To implement image segmentation 

ENVI-IDL 4.8 To perform image processing 

Change detection tool To create simulated land cover 
change maps 

MATLAB 2011 To do statistical analysis 

SPSS To do statistical analysis 

Arcpad To record the surveyed points details 
during field work 

Tom Tom To navigate during field work 

 
2.4 Method 
 
The whole research process was divided into five phases: i) Data 
preparation, ii) Simulated change estimation, iii) Field data collection, 
iv) Observed change estimation and v) Regression analysis.  

2.4.1 Data preparation 
 
The 10-day MVC SPOT-Vegetation NDVI images were stacked and 
arranged into two time periods (Figure 3). The first time period 
(“reference period”) was from January 2000 to December 2004 (180 
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layers). The second time period was ranging from January 2009 to 
December 2009 and was called “cover change assessment period” to 
be compared with the “reference period” for change calculation. The 
NDVI datasets were geo-referenced, de-clouded and cleaned from 
noise using an “Adaptive Savitzky-Golay filter” (ASAVGOL).  
 

 
Figure 3: Data preparation flowchart. 
 
According to Skidmore et el. (2006) de-cloud means “using by image 
and pixel the supplied quality record, only pixels with a ‘good’ 
radiometric quality for bands 2 (red; 0.61-0.68 μm) and 3 (near IR; 
0.78-0.89 μm), and not having ‘shadow’, ‘cloud’ or ‘uncertain’, but 
‘clear’ as general quality, were kept (removed pixels were labelled as 
‘missing’)”. 
 
An “Adaptive Savitzky-Golay filter” (ASAVGOL) method used for 
removing the effect of noises was based on “Savitzky-Golay filter” 
(Beltran Abounza, 2009; Jönsson et al., 2004). The “Adaptive 
Savitzky-Golay filter” (ASAVGOL) is based on ordinary least square fit 
methods to fit the upper envelope of the vegetation index (Jönsson, 
et al., 2004)  
 
The methodology given in de Bie, et al. (2008) were followed to 
produce the best classified map from NDVI stacked layers of 
reference period (2000-2004). According to this methodology 
ISODATA (Iterative Self-Organizing Data Analysis Technique) 
unsupervised clustering procedures and divergence statistics were 
performed using ERDAS software. To select the best classified map, 
both minimum and average divergence values should be high and the 
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number of classes should remain limited (de Bie, et al., 2008). The 
minimum divergence shows the similarity between the two most 
similar classes and average divergence shows the similarity among all 
the classes (de Bie, et al., 2008). The best classified map was used 
as base map to calculate changes in cover change assessment time 
period through the prototype method. 

2.4.2 Simulated change estimation 
 

 
Figure 4: Simulated change estimation flowchart. 
 
The generated inputs, 1) NDVI data of 2000-2004 as “reference 
period”, 2) NDVI data of 2009 as “cover change assessment period” 
for change analysis and 3) best classified map were processed using 
the prototype method. A series of annual change maps were 
generated by repeating the method for each setting according to 
Table 2.  
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Table 2: The process of repeating prototype method. 
run threshold(SD) period within the  

year 
Number of 
iterations 

1 1-3.5 , Δ0.5 default value 6 

2 default value the whole year and 
growing season 

2 

3 1-3.5 , Δ0.5 the whole year and 
growing season 

12 

 
A series of generated maps produced the change values per pixel, to 
rescale these values to a 0 to 1 range and normalized changes, the 
change values for all pixels of each generated map that covered the 
surveyed field data were divided by their maximum change value.  
 
To study whether the generated maps are sufficiently different with 
respect to different choice of user-settings, the change value for all 
pixels of generated maps that cover survey field data were compared 
graphically through box plots.  

2.4.3 Field data collection 
 

  
Figure 5: Field data collection flowchart. 
 
Prior to field work a land cover change map of 2009 with default 
user-settings was generated through the prototype method (Figure 
6). The areas with high changes which were not covered by survey in 
previous field work periods were identified and selected as sample 
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areas. Random clustered sampling scheme was used to select pixels 
to visit in the field work. Orthophotos of the corresponding areas 
were used for site selection based on image objects. 
 
During the period from 18th of September to 2nd of October 2011 field 
data collection was carried out in the chosen areas and changed as 
well as non-changed pixels were visited (Figure 5). The sample unit 
was considered to be a 1 km2 so that it corresponds with the SPOT 
Vegetation pixel size. Land cover characteristics of each image object 
including percentages of trees, shrubs, grass / herb, stone, litter, soil 
and life form as well as non-vegetated aspect of image objects 
(water, built-up area) and coordinates were collected (See Appendix 
1). The reasons of change for changed pixels were studied. In total 
60 pixels were surveyed and 530 sample points were taken. 
 

 
Figure 6: Land cover change map (2009), two surveyed areas 
with field data points are also shown. 

2.4.4 Observed change estimation 
 
In this step the orthophotos of 2004 and 2008/2009 along with the 
surveyed points of 2011 were used to calculate the observed land 
cover change in surveyed pixels (Figure 7). To estimate observed 
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change from 2004 to 2008/9 a semi-automated procedure based on 
the following four steps were performed: i) Legend preparation, ii) 
Orthophotos segmentation, iii) Segmented image classification and 
iv) Observed change estimation. 
 

 
Figure 7: Observed change estimation flowchart. 
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i. Legend preparation 
 
First step in interpretation of the orthophotos was legend preparation. 
The legends were established from the visual interpretation of both 
2004 and 2008/2009 orthophotos with the help of field surveyed 
points in September 2011 (Figure 8, a). The 2004 legend was made 
using only non-change surveyed points which were presented outside 
the change pixels. Image legend of 2008/2009 was made using all 
surveyed points. 
 
Using photo interpretation, different image objects based on 2004 
and 2008/2009 orthophotos were identified and the objects were 
divided into different groups considering their colours, textures and 
patterns. Similar image objects were put into the same group. An 
identification code was assigned to each group (Figure 8, b).  
 
Using surveyed points, the average fraction of land cover components 
(fraction of trees, shrubs, grass/herb, stone, litter and bare soil) in a 
group was calculated and average fractions of land cover components 
were assigned to each group (Figure 8, c). These groups with their 
descriptive information were considered as final image legend. 
 
ii. Orthophotos segmentation 
 
Object oriented strategy was applied to implement orthophotos 
segmentation with eCognition software. Throughout the “Multi-
Resolution Segmentation”(MRS) method (segmentation procedure) at 
pixel level, orthophotos segments were generated for all orthophotos 
based on several adjustable criteria such as homogeneity and 
heterogeneity in shape, size and colour. To obtain the parameters 
that generate the best segmentation (meaningful objects), weights of 
shape, scale and compactness were changed.  
 
In order to get the best segmentation result, all parameters were 
tested through a trial-and-error and different values were applied to 
the parameters, according to the Table 3: 
 

       Table 3: eCognition parameter settings. 
Shape Compactness scale 

0.1 0.5 150 
0.9 0.5 250 
0.5 0.5 250 
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The segmentation results with their embedded attributes were 
exported as shape files through eCognition software (Figure 8, d). 
These attributes were: 
 
1: Layer value: Brightness and Mean value of three layers 
2: Texture: Homogeneity and Contrast 
 
These attributes were later on used in the classification step. 
 
iii. Segmented image classification 
 
“K-mean” classification using brightness, mean value of three layers, 
homogeneity and contrast attributes was performed through SPSS to 
classify generated image segments. The classification was iterated 50 
times to define 35 classes. The supervised grouping based on image 
legends was done and these 35 classes were further generalized 
using image object legend into less number of classes depending on 
heterogeneity of the image objects. Manual editing and some 
corrections were performed after the classification (Figure 8, e). 
Finally, average fraction of different land cover components was 
assigned to each segmented class. 
 
iv. Observed change estimation 
 
To estimate the observed changes, up-scaling the surveyed points to 
the pixels resolution of 1 km2 (SPOT pixel) were performed through 
the following steps (Figure 8, f)): 
 

 To calculate total fractions of land cover components per pixel, 
the classified image segments were intersected with all pixels that 
covered the 2011 surveyed points. Area fractions of each image 
segment within each pixel were calculated (Equation 1). 

 
Area fraction = (Image Segment Area / Area of SPOT pixel) * 100    

(Equation 1) 
 

Where:  
 “Area fraction” is the fraction of an area covered by each 

image segments of orthophotos within an SPOT pixel. 
 “Area of SPOT pixel” is total area of all image segments within 

a SPOT pixel (1 km2). 
 

 The total fraction of each land cover components were calculated 
using the Equation 2. 
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Pixel-based land cover component fraction= 
   

(Equation 2) 
 
    Where  

 “Pixel-based land cover component fraction” is total fractions 
of each land cover components per pixel. 

 “i” is the index of image segments within a SPOT pixel. 
 “n” is the number of segments. 

 

 To estimate observed change of each pixel from 2004 to 
2008/2009 the Bray-Curtis dissimilarity method (Bray et al., 
1957) was used (Equation 3) between 2004 and 2008/2009 
“pixel-based land cover component fractions” . In the Equation 3, 
the sum of absolute difference between total component fraction 
of all land cover components were divided by the sum of total 
component fraction of all land cover components per pixel. 

BCD (i,j) =   (Equation 3) 

 
    Where  

 BCD is the dissimilarity between all land cover components in 
each pixel from 2004 and 2008/2009  

 ‘Y’: land cover component fraction (fraction of trees, shrubs, 
grass/herb, stone, litter and bare soil) 

 ‘k’: index of a land cover component 
 ‘i’: index of pixels from 2004 
 ‘j’: index of pixels from 2008/2009. 
 ‘n’: number of pixels.  

 
The Bray-Curtis Dissimilarity (BCD) is a non-parametric method    
which calculates robust and reliable dissimilarity results for a wide 
range of applications and is widely used in ecology and 
environmental sciences (Schulz, 2007). This BCD value is bound 
between 0 and 1. A value of 0 shows a complete similarity 
between two data records and a value of 1 means two data 
records are completely different. Also, from the dissimilarity 
value, Bray-Curtis Similarity (BCS) can be easily calculated (Bray, 
et al., 1957): 
 

BCS=1 – BCD (Equation 4) 
 
The statistical analysis was done to determine there is sufficient 
variance between observed changes within 1 km2 pixels. 
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2.4.5 Regression analysis  
 

  
Figure 9: Regression analysis flowchart. 
 
 
To investigate the impact of different choices of user-settings on the 
accuracy of generated land cover change maps through the prototype 
method, field-based analysis and statistical approach was performed 
on all pixels of the generated maps that cover the surveyed points 
(Figure 9). 
 
Observed changes and simulated changes were used to apply a 
simple linear regression analysis. Scatter plots showing by pixels 
(simulated changes versus observed changes) were drawn per user-
setting to show the relation between simulated changes and observed 
changes.  Using regression model and scatter plot showing by pixels 
(simulated changes versus observed changes); coefficient of 
determination (R2), regression equations and 1:1 lines along with 
regression line was considered in order to assess the accuracy of the 
models.  
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To find the best user-setting which generates the most reliable maps, 
R2 and regression equations were compared. The criteria for selecting 
the best user-setting were:  
 

1. High R2 value. 
2. Linear regression model which crosses the origin (in 

regression equation, absolute value of intercept should be 
close to 0). 

3. Good fitness between regression line and 1:1 line.  
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3. Results 
 
This chapter presents the obtained results arising from the assigned 
methodology approach. 
 

3.1. Simulated change estimation 
 
The simulated land cover changes of 60 pixels of 1 km2 which were 
covered by surveyed points were compared. Table 4 shows the 
maximum values of each simulated change map for these 60 pixels 
according to different choice of user-settings also in combination 
with the number of pixels with a normalized simulated change value 
of greater than defined threshold of 0.5. The maximum change 
values show various ranges of simulated changes according to each 
user-setting and indicate significant differences among them. The 
number of pixels with normalized change value of greater than 0.5 
present the distribution of pixels above this threshold and show how 
the distribution of pixels differ for each user-settings. The results 
(Figure 10, Figure 11, and Table 4) show that by increasing the 
threshold (SD) the range of change values decreases. The ranges of 
simulated changes are higher in case of “whole year” in comparison 
with “growing season”. The results clearly verified the sensitivity of 
the prototype method to different choice of user-setting and 
represent how the simulated changes sufficiently vary by changing 
different choice of user-settings.  
 
Table 4: Maximum change values according to the different 
choice of each user-setting and number of pixels with 
normalized change value of greater than 0.5. 
User-settings Maximum value No. of pixels with 

normalized simulated 
change value > 0.5 

“period within 
 the year” 

whole year Growing-
season 

whole year Growing-
season 

“threshold 
(SD) 

1.0 1485 1024 20 17 
1.5 1247 899 19 17 
2.0 1018 780 17 14 
2.5 801 662 14 13 
3.0 612 612 14 11 
3.5 470 456 11 9 
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Figure 10: Simulated changes boxplot (2009 - whole year). 
Number of pixels: 60 pixels which were covered by surveyed 
points. 
 
 

 
Figure 11: Simulated changes boxplot (2009 - growing 
season). Number of pixels: 60 pixels which were covered by 
surveyed points. 
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3.2. Observed change estimation 
 
Observed land cover changes were estimated using the following four 
steps: 
 
i. Legend preparation 
 
Due to the different characteristics of 2004 and 2008/2009 
orthophotos, two image legends were independently generated. The 
legend of 2004 was composed of 14 different image object groups 
and image objects in the 2008/2009 legend were divided into 20 
groups. The results can be reviewed respectively in Appendix 2 and 
Appendix 3. Regarding the image legends, average fractions of land 
cover components (fraction of trees, shrubs, grass/herb, stone, litter 
and bare soil) were assigned to each group.  
 
ii. Orthophotos segmentation 
 
All possible combinations of weights for segmentation parameters 
were tested. By applying a weight of 0.1 to shape, 0.5 to 
compactness and 150 to scale, the images were over-segmented and 
too many small image objects were created (Figure 12, a). By setting 
a weight of 0.9 to shape, 0.5 to compactness and 250 to scale, the 
images were under segmented and some large image objects (mix of 
two or three image objects) were generated (Figure 12, c). The best 
result was obtained when equal weight of 0.5 was set to shape and 
compactness and 250 was applied to scale (Figure 12, b). 
 

 
Figure 12: Segmentation result using different parameters. 
iii. Segmented image classification  
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Classification results of pixels of 2004 and 2008/2009 orthophotos 
having natural and semi-natural land cover are illustrated in Figure 
13 to visualise the land cover changes that happened between 2004 
and 2008/2009. 

 

 
Figure 13: Segmented image classification result. 
2004 (top) and 2008/2009 (bottom). 
iv. Observed change estimation 
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The result of observed changes of 60 pixels of 1 km2 between two 
time periods (2004 and 2008/2009) shows that the maximum 
observed change value was 0.4 and the least value was 0.015. The 
histogram (Figure 14) shows variability between observed changes of 
all assessed pixels and indicates the normal distribution between 
limited range of 0.015 and 0.25. Although the range of observed 
changes was limited and the standard deviation was rather low (0.07) 
variation between observed changes was sufficient for this study. 
 

 
                Figure 14: Histogram of observed changes. 
 

3.3. Regression analysis  
 
The results of regression analysis between simulated changes versus 
observed changes for each user-setting per pixel show a very weak 
agreement (See Figure 18 and Figure 19 in Appendix 4). The results 
show that observed change values of some pixels with agricultural 
land cover were very low while simulated change values of their 
corresponding pixels showed very high changes. Studying the ETM 
images of these areas emphasized that drastic changes happened in 
these areas through the years (Figure 15). The ETM images illustrate 
that these high changed pixels cover areas with agricultural land 
cover and are formed mainly by rice fields in 2004 (de Bie, 2011; 
personal communication).  

Min: 0.015 
Max: 0.40 
SD: 0.07 
Mean: 0.09 
Median: 0.07 
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Figure 15: Rice areas in Sevilla, Andalucia (2004 and 2008 
ETM images) (de Bie, unpublished work). 
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Regarding the above problem, pixels were split in two different 
groups, pixels with agricultural land cover patterns and pixels having 
natural or semi-natural land cover. The linear regression analysis was 
repeated and limited to 28 pixels related to natural and semi-natural 
land cover. The generated models through “growing season” choice of 
“period within the year” user-setting were not considered as well, 
considering the mismatch problems between the aerial photograph 
dates and the field data collection dates (de Bie, 2011; personal 
communication). 
 
Figure 16 illustrates relations between simulated changes versus 
observed changes considering different options of “threshold” user-
setting. Comparison between R2 values of each regression model 
(Figure 16) show that the highest values of R2 are related to the 
models generated through “threshold” of “2.5”, “2.0”, “3.0” and “1.5” 
with 92%, 89%, 88% and 85% goodness of fit, respectively. 
Comparison between regression equations show that the equation of 
the model generated through threshold of “1.5” has the nearest 
intercept value to zero with absolute intercept value of 21. The 
comparison between regression lines with 1:1 lines (Figure 16) 
represents the goodness of fit between simulated changes and 
observed changes. The graphs (Figure 16) show an over-estimation 
in simulated changes when “threshold” was equal “1.0”. The 
“threshold” of “1.5” indicates the high agreement with observed 
changes while regression line is close to 1:1 line and highly fitted. 
The result represents minor under-estimation of simulated changes 
when “threshold” of “2.0” was chosen. Under-estimation of  simulated 
changes gradually increase by increasing “threshold” from “2.0” to 
“3.5” and it shows that the prototype method does not consider the 
minor changes. According to the above mentioned comparisons, the 
generated model through the user-setting with “threshold” equals 
“1.5” shows the strongest agreement between simulated changes and 
observed changes and these user-settings (Table 5) produce the 
most accurate land cover change map. 
 
            Table 5: Best choice of user-settings. 

User-setting choice 

“threshold” (SD) 1.5  

“period within the year” Whole year  
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Figure 16: Simulated changes versus observed change (2009- 
whole year), 28 Pixels with natural and semi-natural land 
cover. 
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4. Discussions 
 
In this chapter, the achieved results are discussed.  
 

4.1. Simulated change estimation 
 
The importance of the user-settings was successfully checked and it 
was found that this method is highly sensitive to these user-settings 
which make it effective to use in different scenarios of land cover 
change. Regarding different choice of user-settings, the prototype 
method generated different change values beyond certain ranges 
(from zero to maximum value) (Table 4) and, these ranges decreased 
by increasing the threshold (SD). The result showed that (Table 4, 
Figure 10, Figure 11) by increasing the threshold (SD) distribution of 
pixels increased beyond the defined threshold of 0.5. Minor changes 
were ignored by the prototype method and only pixels with high 
changes were considered and the change values under-estimated for 
user-settings with threshold of “2.5”, “3.0” and “3.5”. Under-
estimation of changes is higher in case of “growing season”. Obtained 
results showed that the generated land cover change maps through 
the prototype method concerning different user-settings are 
sufficiently different. This study confirmed the importance of these 
user-settings for the prototype method and emphasized that different 
choice of the user-settings do influence on generated land cover 
change maps. 
 

4.2. Observed change estimation 
 

i. Orthophotos segmentation 
 
Aerial photographs provide essential information about past and 
present ground features on large areas (Gennaretti et al., 2011). 
Also, the comparison between land cover maps generate through 
aerial photograph represents that they are reliable sources for 
understanding land cover (Gennaretti, et al., 2011). There are 
different approaches to extract land cover information from aerial 
photographs. The common procedure is based on photo interpretation 
to make an image legend and then manual digitizing. Manual 
digitizing of photos is a time consuming method for the study of large 
areas. Also, the result may not be precise enough due to user 
interventions. The new approach is object-oriented, and several 
studies prove the advantages of this method (Burnett et al., 2003; 
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Gennaretti, et al., 2011; Tansey et al., 2009; Zhou, et al., 2008). 
This method focuses on segmentation of aerial photographs.  
Although segmentation of aerial photos was not one of the objectives 
of this study, it was one of the most critical tasks in this study 
because it provides the basis to estimate observed change. The more 
accurate the segmentation result the more accurate the observed 
change estimations. In this study, the segmentation process was 
carried out using the eCognition. eCognition manages the 
segmentation procedure by assigning weights to different 
parameters; the most important parameters are “scale”, 
“compactness” and “shape” and results of segmentation highly 
depends on defined weights for these parameters (Aminipouri et al., 
2009). There is no standard solution to reach the optimal 
segmentation, and to achieve a satisfactory segmentation result, 
different segmentations must be performed according to different 
selections of weights for “scale”, “compactness” and “shape” through 
trial and error process (Zhang et al., 2006). The qualitative 
assessment of the best segmentation result presented in this study 
was done visually. 
 
ii. Observed change estimation 

 
The result of observed changes showed that the maximum value of 
observed changes between all assessed pixels was 0.4. It showed 
that in this study the pixels with highest changes in Andalucia region 
never counted and all assessed pixels did not change completely 
(100% actual changes). Complete land cover change or “land cover 
conversion” reflects a complete land cover change from one major 
land cover class to another (Coppin et al., 2004a) which occurred  in 
an area due to fire, urban development and etc. Pixels of 1 km2 areas 
are vast areas and consist of different land cover patterns such as 
farms, fields, forest and so on, and changes in some land covers of a 
pixel do not lead to high change in the whole pixel area. The range of 
0.015 to 0.4 showed that changes happened in the assessed areas 
but not extreme changes and it was verified from field work.  
 
With accepting this fact that this study has limited data and also the 
range for observed changes were limited but it provided enough data 
for this study and the normal distribution of observed changes 
between 0.015 and 0.25 was quite acceptable and it was supported 
that observed changes were sufficiently different between 1 km2 

pixels. 
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4.3. Regression analysis  
 
The dynamic nature of agriculture, like seasonality and its occurrence 
almost everywhere are the strongest incentives for scientists to 
monitor agriculture from space (de Bie et al., 2000). The seasonal 
variations of the agricultural land covers affect the ease of 
interpretation. Aerial photographs are statistics and do not have the 
potential to show dynamic nature of the agricultural land covers, thus 
it needs multi-temporal images for accurate interpretation.  
 
In this study for all assessed pixels representing natural, semi-natural 
or agricultural land covers, very weak agreement between simulated 
changes versus observed changes considering different choice of 
user-settings was seen. The estimated observed changes in some 
areas having agricultural land cover showed minor changes, while the 
method showed drastic changes in the same areas. The reasons for 
such a big difference might rise from the problem of mismatch 
between the date orthophotos were taken and the field data collection 
date. Field data collection was done at the end of September 2011 
with the help of orthophotos of 2004 and 2008/2009. According to 
the growing season calendar in Andalucia, normally crops are in the 
fields from January to June (Khan, et al., 2011). To solve this 
problem, substantial information in terms of images was essential to 
interpret changes. The study of the ETM images of these areas 
(Figure 15) showed that rice crop was dominant in these areas but 
over years distinct changes happened in these areas and rice was 
grown in abundance (de Bie, 2011; personal communication). This 
fact makes it unreliable to interpret areas having agricultural land 
cover without reliable field information or fields surveyed in growing 
seasons. Therefore, all the pixels which covered the areas with 
agricultural land cover were omitted from this study and the study 
only focused on areas having natural or semi-natural land cover. 
However, the approach for estimating the observed changes was not 
a proper method for the areas having the dynamic characteristics 
such as areas with agricultural land cover, but it worked properly for 
the natural and semi-natural areas.  
 
Considering the result of regression analysis, for lower thresholds 
(SD) of “1.0” simulated changes were over-estimated, whereas for 
higher thresholds of “2.0”, “2.5”, “3.0” and “3.5”, under-estimation in 
the results of simulated changes happened. The model related to the 
threshold of “1.5” showed strongest agreement between simulated 
cover changes and observed cover changes with R2 of 85%. Therefore 
the null hypothesis was rejected and the user-setting with threshold 
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of “1.5” and the period of “whole year” was chosen as the best user-
setting.  
 
There might be several errors occurring in each step that affect the 
accuracy of the generated maps. Errors can be introduced at any 
steps: 
 

1. Quality and suitability of the satellite imagery. 
2. Errors in geometric and radiometric rectification process. 
3. Error in field data. The main sources of error arise from error 

in field data collection. Field data accuracy was a major source 
of error in the estimation of observed land cover changes. In 
this study, to estimate observed changes point extrapolation 
process was performed using the surveyed points. In this 
process information from surveyed points expanded to nearby 
areas. Thus, an error in field points easily has influence on 
estimated observed changes.  Error might arise from i) Field 
data collection in 2011 was done with the help of orthophotos 
of 2004 and 2008/2009. It shows mismatch between the date 
the orthophotos were taken and the field data collection date, 
ii) Data collection was not done in proper time, it was 
conducted at the end of September 2011 and it was not the 
proper time to collect data about the actual land cover 
components, iii) Human error in field data collection to 
estimate fraction of land cover components can be faulty and 
biased.  

4. Error in legend preparation. Visual interpretation of 
orthophotos regarding image legends might lead to errors, 
although it was done very carefully.  

5. Error in segmentation and classification procedures.  
 

All these errors were accumulated and propagated to the regression 
analysis step and finally propagated to the final maps.  
 

Given the limitations imposed by the data, this study proved that the 
prototype method performing effectively in detecting the land cover 
changes at pixel level and monitoring the on-going behaviour of 
pixels in Andalucia region. The result clearly verified that land cover 
change maps which were produced through the prototype method 
considering the best choice of user-settings have a high accuracy in 
areas having natural or semi-natural land covers. Thus, these choices 
of user-settings can be recommended as a guide-line for users in 
Andalucia region. This supports policy makers and researches to 
identify accurate annual natural or semi-natural land cover changes 
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in Andalucia area and it makes it easier for them to set the policies 
and strategies. 
 
Unlike available change detection methods (Conchedda, et al., 2008; 
He, et al., 2011; Nielsen, et al., 2008; Verbesselt, et al., 2010), the 
prototype method provides the opportunity for users to generate 
continuous representation of on-going land cover changes by 
choosing different user-settings through user-friendly interface. It 
improves its usability in different areas of research with different user 
defined settings. The prototype method allows users to generate 
accurate change maps at annual basis using new imagery and any 
reference period, the accuracy of change maps at seasonal basis have 
not yet confirmed and need more study in this issue in the future. 
The generated land cover change maps show where the changes 
occurred but it still needs interpretation about what land cover 
changes into what. This prototype method improved the utility in the 
term of user-friendly interface.  
 
Considering the advantages of this prototype method, the successful 
achieved result in this study and take in to account that till this date 
no alternative method could be found for this prototype method, this 
prototype method has potential to be employed in the other areas. 
This study was the first significant result of this prototype method. 
There are still many challenges on this prototype method and further 
studies should be conducted. The best choice of user-settings might 
be different from an area to area, but it has not been assessed for 
other areas yet. Impact of the user-settings on different areas 
needed to be studied and the prototype method should be calibrated 
when it is used for the other areas.  
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5. Limitations, Conclusions and 
Recommendations 

 
5.1. Limitations 

 
- The percentages of land cover components were visually 

estimated at only one point in time which might influence the 
results in terms of data precision.  

 
- Field data collection dates were not corresponding with the 

dates of 2004 and 2008/2009 orthophotos. 
 

- Few numbers of surveyed points in areas having natural and 
semi-natural land covers. 

 
 

5.2. Conclusions 
 

- The present study showed the importance of preliminary user-
settings to generate land cover change maps through the 
prototype method. 

 
-  The study showed how the generated maps are sufficiently 

different concerning different choices of user-settings.  
 

- The study successfully found the best choice of user-settings 
in order to produce more accurate land cover change maps 
which correctly represent the actual changes. The study 
emphasizes that when “threshold” was set as 1.5” and “period 
within the year” was chosen as “the whole year”. The study 
emphasizes that the “threshold” of “1.5” and “whole year” as 
“period within the year” with high agreement (85%) between 
simulated changes and observed changes are the best choice 
of preliminary user-settings in order to generate the most 
accurate land cover change map for the areas having natural 
and semi-natural land cover in Andalucia region.  

 
5.3. Recommendations 

 
- Use of newer orthophotos for field data collection and up-

scaling process.  
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- Collect data in agricultural area in correct seasons, in order to 

learn more about inter-seasonal changes of different land 
cover types. 

 
- Collect more data in the areas with the natural and semi- 

natural land cover.  
 
- Explore other classification approaches for aerial photos which 

might lead to better results taking into consideration the 
complexity of different image objects. 

 
- Redo the observed change estimation method for the areas 

with agricultural land covers as it was not possible with 
available data to validate this method for agricultural areas 
and study different user-settings. 

 
- Do a follow up study in other areas, in order to find out the 

impact of user-settings on different areas.     
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Appendices   
 
Appendix 1: Data sheet used for data collection 
 
 
Date:                                                 Sample ID: 
 
 

Photo No. X Y 
   

Trees (%) Shrubs (%) Grass/Herbs (%) 
   

Stones (%) Litter (%) Bare Soil (%) 
   

Life form Change state 
  

Description 
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Appendix 2: Image object legend (2004) 
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Appendix 3: Image object legend (2008/2009) 
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Appendix 4: Regression analysis (60 Pixels with 
mixed land-cover) 
 

 
Figure 17: Simulated changes versus observed changes (2009 
– whole year), Number of pixels: 60. 
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Figure 18: Simulated changes versus observed changes (2009 
– growing season), Number of pixels: 60. 


