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Abstract 
 
A novel hybrid model method was developed by applying partial least 
squares regression (PLSR) to spectral residuals which were created 
from by subtracting simulated spectra from measured spectra.  
Simulated spectra were generated by the soil-leaf-canopy (SLC) 
radiative transfer model. The hybrid model was applied to HyVista 
hyperspectral images of mangrove forests in Kalimantan, Indonesia, 
for the purpose of modeling and mapping the concentrations of six 
foliar nutrients; nitrogen (N), phosphorus (P), potassium (K), calcium 
(Ca), magnesium (Mg) and sodium (Na).   
 
The model was compared to PLSR models generated from raw 
spectra and minimum noise fraction (MNF) transformed spectra.  The 
models generated achieved poor to fair results. Models generated 
from residuals were significantly better (p<0.01) for N, Mg and Na.  
There was no significant difference between the models for P and Ca, 
while the raw spectrum model was significantly better for K.   
 
There was a danger of losing information on nutrient concentrations 
during the subtraction process due to the correlation between 
chlorophyll and both N and Mg.  Therefore two sets of residuals were 
created; one set from the complete SLC model, and one set from the 
SLC model where chlorophyll was kept constant.  This study found 
that keeping chlorophyll constant in the physical model improved the 
model results when modeling N using spectral residuals (from 
R2=0.462 to R2=0.575 and from nRMSE=18.3% to nRMSE=16.0%) 
but diminished model results when modeling Mg using spectral 
residuals (from R2=0.263 to R2=0.156 and from nRMSE=21.6% to 
nRMSE=23.2%). 
 
This study also created nutrient concentration maps using the models 
for N made with chlorophyll kept constant, to investigate a potential 
correlation with shrimp ponds and concentration levels. Two 
correlations with N concentration were found; proximity to coastline 
and size of forest stand, but not proximity to shrimp ponds. 
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1 Introduction 
 

1.1 Background 
Mangrove forests provide a wide variety of unique ecosystem 
functions in the coastal regions they occupy throughout the tropics.  
Beyond providing basic habitat for many animals, including prawns, 
insects, sponges, mammals and birds (Holguin et al., 2001; 
Nagelkerken et al., 2008), there are signs that mangroves benefit the 
flora and fauna of neighboring ecosystems as well (Hemminga et al., 
1994). Research also indicates that mangroves act as a nursery for 
young fish and prawns and possibly provide protection or other 
services in later stages of life (Nagelkerken, et al., 2008; J.H. 
Primavera, 1998).   
 
Furthermore, mangroves act globally as a carbon sink, and studies 
suggest that the magnitude of that sink may have been previously 
underestimated (Bouillon et al., 2008).  While the above ground 
biomass between mangrove species varies greatly, carbon stocks of 
mangroves forest include both the biomass as well as carbon 
sequestered in soils and detritus filled pools.  These pools account for 
approximately 70% of the carbon stocks in mangrove systems 
(Kauffman et al., 2011).  Per hectare, these combined carbon stocks 
are larger than most tropical, temperate and boreal forests (Donato 
et al., 2011; Kauffman, et al., 2011). 
 
Mangroves also provide direct benefits to humans.  Large mangrove 
forests are known to provide some level of protection to human 
settlements during natural disasters such as tsunamis and hurricanes 
(Alongi, 2008; Spalding et al., 2010) and mangroves have been used 
for decades to treat sewage and effluent.  In addition to the trees 
themselves, it has been found that mangrove root systems harbor 
microbes which can denitrify wastewater at high rates (Corredor & 
Morell, 1994).  As a source of fish production, healthy mangroves 
annually generate from $750 to $16750 USD per hectare for fishing 
industries (Patrik, 1999).  

1.1.1 Risks to mangroves 
Many mangrove forests are currently at risk from human activity; 
specifically pollution and intensive deforestation.  Mangroves are 
cleared mostly for agriculture but also aquaculture, urban 
development and logging (Giri et al., 2008; Parks & Bonifaz, 1994; 
Rubin et al., 1999).  In Southeast Asia, for example, over 12% of the 
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total mangrove forests were cleared between 1975 and 2005 (Giri, et 
al., 2008).  This trend can be seen throughout the globe; Philippine 
mangroves decreased by approximately 75% from 1918 to 1994 (J.H.  
Primavera, 2000), mainland Caribbean mangroves decreased by 
1.7% per year between 1980 and 1990 and island Caribbean 
mangroves decreased 0.2% per year during the same period (Ellison 
& Farnsworth, 1996).  Globally, the total coverage of mangrove 
forests in Earth decreased by about 2% per year between 1980 and 
1990 and about 1% per year between 1990 and 2000 (Wilkie & 
Fortuna, 2003). 
 
In addition to cutting mangrove forests down, untouched mangroves 
are susceptible to damage by nutrients leaking in from surrounding 
agriculture, aquaculture or other pollution sources, as well as poor 
water management.  While mangroves have been shown to 
effectively work in effluent treatment, increasing nutrients such as 
nitrogen and phosphorous in the ecosystem can cause mortality, root 
weakening and leaf loss in mangroves (Reef et al., 2010).  Leaf loss 
and mortality can be a result of damage to N2-fixing bacteria in the 
root systems (Holguin et al., 2006; Vovides et al., 2011).  These N2-
fixing bacteria are susceptible to increased water temperatures, 
increased pH, increased salinity and higher levels of ammonium in 
the water, all of which can be linked to mismanagement of the water 
table (Vovides, et al., 2011). 

1.1.2 Monitoring mangroves 
In order to protect mangrove forests it is important to monitor 
changes in health indicators.  Since high nutrient concentrations in 
soil lead to high foliar chemical content in mangroves (Oxmann et al., 
2010), monitoring the nutrient content of leaves can be used to 
assess the levels of nutrients present in an ecosystem (Townsend et 
al., 2007).  Furthermore, the concentrations of nutrients in leaves can 
give indications to the rates of biological processes such as 
photosynthesis, respiration, and evapotranspiration, which in turn 
give information about the health of an ecosystem (Majeke et al., 
2008).  For example, both nitrogen (N) and magnesium (Mg) are 
constituents of chlorophyll, and therefore measuring N or Mg will give 
an indication of the photosynthetic capacity of the plant (Ayala-Silva 
& Beyl, 2005; Evans, 1989; Field & Mooney, 1986). 
 
While N is one of the most important nutrients to plant health (M. E. 
Martin et al., 2008), there are several nutrients which are also known 
to be growth limiting nutrients. These include phosphorus (P) and 
potassium (K) (Mutanga et al., 2004; Pimstein et al., 2011) as well 
as, to a lesser extent calcium (Ca), sodium (Na) and Mg (Marschner, 
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1995).  In addition to being important for plant health, the 
concentrations of several of these foliar nutrients also have a 
significant impact on migratory animals and local herbivores 
(Ferwerda & Skidmore, 2007).  Unfortunately, monitoring these 
nutrients in mangroves in the field is a difficult and costly process, 
especially due to their particular inaccessibility (Green et al., 1998). 
 
Remote sensing is a cheaper alternative to field work which has 
recently been used for ecosystem monitoring (Kerr & Ostrovsky, 
2003).  Remote sensing can completely cover vast areas at rates 
many orders of magnitudes faster than field measurements and 
requires less direct human involvement (Coppin & Bauer, 1996).  
Remote sensing has already been used extensively in mapping the 
extent and change of mangrove forests, as well as to a lesser degree 
modeling certain forest characteristics such as leaf area index (LAI), 
canopy height, biomass and species (Heumann, 2011).   
 
Remote sensing can also be used to estimate nutrient concentrations; 
foliar biochemicals absorb light at certain wavelengths, boosting their 
valence electrons into higher energy states and creating absorption 
features in the spectra of light reflected off the leaf (Curran, 1989).  
However, most studies focus almost exclusively on grasses (Mutanga 
& Skidmore, 2004; Ramoelo et al., 2011) or agricultural crops 
(Delegido et al., 2010).  Those studies that do focus on forest 
environments have rarely successfully measured many nutrients 
beyond N (Ferwerda & Skidmore, 2007; Pimstein, et al., 2011).  In 
forests, the measurement of nutrients from absorption features has 
had limited success because the measured reflectance spectra also 
contain features from light reflected off the soil, branches/trunk and 
undergrowth in the forest (Asner & Martin, 2008).  Mangroves are 
especially difficult because they often feature tidal changes in soil 
reflectance, a mixture of species, and gaps in the canopy crown cover 
(Asner, 2008; Heumann, 2011; Minchinton, 2001).   
 
Non-homogenous forests pose a special problem for remotely sensing 
N.  Two or more different species in a forest may have different 
typical LAI or canopy architecture, which in turn can influence the 
impact of N on spectra.  This means that it may be difficult to 
determine if spectral variation across the canopy is due to the actual 
foliar N variations or simply to the different species (Asner, 2008).  

1.1.3 Modeling 
In order to effectively use remote sensing to map nutrients, it is 
important to develop a useful model.  There are three basic models 
for biochemical features; statistical models, physical models and 
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hybrid models (Liang, 2005).  Physical models are built on known 
physical relationships between spectra and biophysical parameters.  
Biochemical as well as physical parameters can be interpolated 
through a method called inversion (figure 1), where the measured 
reflectance spectrum is compared to simulated spectra generated by 
the physical model (Kimes et al., 2000).  The physical parameters of 
the most similar simulated spectrum are then assumed to be the 
same as the parameters of the measured spectrum.  These 
parameters are retrieved from a look up table (LUT), which was used 
to generate the simulated spectra.  The benefit of a physical method 
is that it can be applied universally.  Some physical models have 
recently been demonstrated to achieve a high correlation between 
observed and predicted nutrient levels (Zhang et al., 2008).  A 
danger of inversion is that two or more different sets of parameters 
can have similar or identical simulated spectra (Combal et al., 2003).  
When inverting, it would then be possible that an incorrect set of 
physical parameters could be matched to a measured spectrum (a 
problem called ill-posedness).   
 

 
Figure 1 - Conceptual model of physical inversion modeling. 
 
Alternatively, statistical models find the relationship between foliar 
biochemicals and reflectance spectra using one of a variety of 
regression methods. While these different methods use different 
statistical techniques, they all seek to correlate one or many 
explanatory variables with a response variable.  A “best fit” model is 
then calculated for the data points and interpolated over the test 
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surface.  Statistical models can be used to find previously unknown 
relationships between biochemicals and spectra.  Recent studies have 
demonstrated the ability of statistical regression analysis (Ge et al., 
2008) and narrow band vegetation indices (Gil-Perez et al., 2010) to 
predict nutrient concentrations with some success.  One common 
method of regression is partial least squares regression (PLSR).  PLSR 
functions by looking at the latent structures of both explanatory and 
response variables and then finding indicators in the explanatory 
variables that best explains the maximum variation in the response 
(Haenlein & Kaplan, 2004).  These indicators are derived from user 
defined weighted relationships.  The benefit of PLSR is that it doesn’t 
make any assumptions about the distribution of the input data, and it 
can effectively deal with multicollinearity.   
 
Noise reduction techniques are often used to transform data before 
the application of a statistical model (Harris et al., 2006).  While they 
often have different methods, all of these techniques aim to remove 
spectral features that are not directly related to the feature under 
study, thereby isolating the feature of interest (R. N. Clark & Roush, 
1984).   
 
Two similar and common noise reduction techniques are minimum 
noise fraction (MNF) and principle component analysis (PCA).  Both of 
these techniques operate by projecting measured data into new 
reference frames based of maximum variance within the data.  
“Dimensions” or “components” with minimal variance can be 
considered noise and removed from the data (Kambhatla & Leen, 
1997).  Another recently developed approach called water removed 
(WR) spectra eliminated a simulated water spectrum from foliar 
reflectance spectra before applying regression methods to predict 
nitrogen and phosphorus content (Ramoelo, et al., 2011).  Removing 
the physically modeled water spectrum improved results for both 
nutrients. 
 
Finally, hybrid models attempt to combine the benefits of the two 
previous methods.  A review of many comparative studies finds that 
hybrid models regularly outperform statistical models (Razi & 
Athappilly, 2005).  Some common hybrid approaches are artificial 
neural networks (ANNs) and regression trees.  ANNs, for example, 
work by connecting input parameters with respondent variables 
through a network of connections (or “synapses”) and nodes (or 
“neurons”).  This network can then contain user defined functions 
(like a physical model) and weights, which are empirically derived 
(like a statistical model) (Egmont-Petersen et al., 2002).      
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1.2 Research problem 
There are drawbacks to every model.  Statistical models, for 
example, can only be applied under conditions very similar to the 
ones in which they were created.  This makes their usefulness 
extremely limited.  While physical models can be applied universally, 
a drawback of physical models is that they can only be used when the 
effect of the specific biochemical or physical parameters on the 
reflectance spectrum is precisely known and they are incapable of 
discovering new relationships between parameters and outputs.   
 
Statistical and physical models have been used less often on forest 
environments because of the challenging nature of the canopy setting 
(Ferwerda & Skidmore, 2007).  While statistical models can be used 
to model foliar nutrients, they are hindered by the fact that other 
factors such as water, viewing angle and soil properties can have a 
much greater impact on the overall reflectance of the spectrum.  The 
signals from nutrients are weaker and may be obscured by the 
“noise” which in this case is the signal of the other factors (Blackburn, 
2007).  Weaker signals prove more challenging to model and result in 
poorer models.  Previous studies have demonstrated the ability of 
statistical models to detect nutrient concentrations at the leaf scale 
for some plants (Delegido, et al., 2010), however very little work has 
been done with mangroves.   
 
While there are currently several physical models which incorporate 
the effects of biochemicals such as chlorophyll, proteins, and water 
content (Ganapol et al., 1999; Jacquemoud et al., 1996; Verhoef & 
Bach, 2007), the specific relationship between foliar nutrients and 
reflectance spectra is unknown in sufficient detail to include in a 
physical model. In terms of modeling, the physical reflectance models 
in use today ignore nutrients altogether.   
 
When using the LUT/inversion method, a simulated spectrum is 
generated using only the physical parameters which make up the 
physical model.  The measured spectrum is then assumed to have the 
same physical parameters as the simulated spectrum.  However, 
there are always at least small differences between the simulated and 
measured spectra (called residuals, see figure 2).  These residuals 
are a result of noise, as well as the parameters in the environment 
which are not included in the physical model.  These parameters are 
usually ignored in order to maintain parsimonious models.  However, 
this information could still hold valuable insights about the system 
being studied (figure 3). 
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Figure 2 - Example of a residual spectrum from this study generated by 
subtracting a simulated mangrove reflectance spectrum from a measured 
mangrove reflectance spectrum.  

1.3 Research objectives 

1.3.1 General objective 
The objective of this research is to develop a novel hybrid model 
method which will apply a statistical model to the information 
(residuals) discarded when inverting a physical model and investigate 
if those residuals are linked to foliar nutrients.  That model will then 
be used to map nutrient concentrations in mangrove forests. 

1.3.2 Specific objectives 
 

 Assess the ability of this hybrid approach to predict nutrient 
concentrations using spectral residuals, in comparison to 
regression using an unmodified spectrum and a spectrum 
modified with the MNF transformation. 
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 Investigate if the correlations of chlorophyll with N and Mg 
impact the effectiveness of the hybrid model. 
 

 Create nutrient maps showing the spatial distribution of the 
nutrients N, P, K, Ca, Na and Mg. 
 

 Use the nutrient map to investigate a possible spatial 
correlation between shrimp ponds and mangrove nitrification. 
 

 
Figure 3 - Conceptual model of the system.  Red arrow highlights the main 
subject of this study.  This image demonstrates the idea that there should be 
a correlation between the information which generates simulated and 
reflectance spectra and the residuals between the two spectra. 

1.3 Research questions 
 Does regression of physical model residuals result in a better 

predictive model than regression of untransformed or MNF 
transformed spectra? 
  

 Considering the known correlation between chlorophyll and N, 
as well as chlorophyll and Mg, will the inclusion of chlorophyll 
as a variable in the physical model mean that information 
about N concentrations are lost when the physical model is 
inverted, or should chlorophyll be kept constant? 
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1.4 Hypotheses 
General Null Hypothesis 

 There will be no significant difference between the various 
methods and types of regression. 

Alternative Hypothesis 1 
 There will be a statistically significant improvement in the 

results of the model using physical model residuals instead of 
unmodified or MNF transformed spectra. 

Alternative Hypothesis 2 
 There will be a statistically significant improvement in the 

results of the model if chlorophyll is kept constant in the 
physical model. 
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2 Materials and methods 
 

2.1 Study area 
The study areas for this research were mangrove forests in two river 
deltas on the province of Kalimantan, Indonesia (figure 4); the 
Mahakam delta which has highly developed shrimp aquaculture and 
the Berau delta which is relatively untouched by human influence.   

2.1.1 Mahakam 
The Mahakam River is the largest in the province of Kalimantan, and 
ends in an 1800 km2 delta comprised of 46 islands.  The area for this 
study was conducted in the northeastern section of the delta between 
0°29’42”S – 0°35’45”S latitude and 117°27’59”E – 117°35’03”E 
longitude. While the Mahakam delta was once home to a large and 
diverse population of mangroves, 73% of the original forests have 
been converted into shrimp ponds (Zwieten et al., 2006).  The 
Mahakam delta also suffers from increased urbanization and is at 
threat from pollution from the second largest fossil fuel drilling 
operation in Indonesia (Powell & Osbeck, 2010). 
 
The delta is mostly comprised of two mangrove species; Nypa 
fruticans and Rhizofora mucronata.  These two species have fairly 
distinct distributions; with Rhizofora mucronata generally being found 
near the coasts and Nypa fruticans more inland (Wandera, 2011).  
Avicennia spp., Brugueira spp. and Sonneratia spp. are also present. 

2.1.2 Berau 
The Berau delta, unlike Mahakam, is relatively untouched by human 
interference.  The coastal waters around the Berau delta are known 
for high levels of marine biodiversity (Kreb & Budiono, 2005).  The 
delta is several hundred kilometers north of the Mahakam, and is 
substantially smaller.  The study area is located in the south end of 
the delta, between 1°57’02”N – 2°04’31”N and 117°44’45”E – 
117°54’17”E.  While there are a few settlements nearby, the delta 
itself is mostly undisturbed and shrimp farming, while present, is 
significantly less developed than Mahakam.  The delta is mostly 
comprised of Rhizofora spp., but also contains Nypa fruticans, 
Xylocarpus spp. and Brugueira spp. with some Avicennia spp. along 
the saltier, more inundated coastline (Axelsson, 2011).  
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2.2 Image data 
Aerial photographs were taken on October 16th (Mahakam) and 18th 
(Berau) of 2009 with a HyMap camera, which has proven capable of 
measuring foliar biochemicals (Mutanga & Skidmore, 2004).  The 
resulting composite hyperspectral images have 126 channels which 
range from 420 to 2490 nm and have a resolution of 3.1 m. 
 
Preliminary image processing was completed by the HyVista company 
of Sydney, Australia.  Raw images were transformed into reflectance 
using the Hycorr atmospheric correction software.  The images were 
geocoded using ground control points (GCP) at locations such as 
bridges and roads.  Positional accuracy of the GPS units taking GCPs 
was between 6 and 9 meters.  All of the images for each study area 
were collected along west-east flight lines and mosaics were created 
from the image strips (8 images for Mahakam and 9 for Berau).  
Clouds and cloud shadows were eliminated from the images by 
manually creating masks.  This image processing was completed by 
two previous studies using the same data (Axelsson, 2011; Wandera, 
2011). 
 
Previous work on the Berau image found there to be errors in the 
atmospheric correction.  Reflectance measurements in the visible 
wavelengths from mangrove forest pixels were considerably higher 
than the range of expected values.  Therefore, the raw data was re-
corrected using the FLAASH module within the ENVI software 
program.  This work was completed by Flor Alvarez of the Universidad 
de Leon.  Furthermore, 12 bands were removed from images of both 
study areas due to large amounts of noise and one band was 
removed because it was outside of the range of optical parameters 
contained in the soil leaf canopy (SLC) physical model.   
 
Since the error for the GPS units was more than twice that of the 
image resolution, spectra were extracted at field sample points from 
an average of the four closest pixels (Mary E. Martin & Aber, 1997).  
Care was taken to use homogenous pixels, and avoid pixels with 
water cover, roots or soil.  If four contiguous homogenous pixels were 
not available, then only two or three pixels were used depending on 
availability.  A MNF transformation was also applied to both mosaics.  
Spectra were extracted from both untransformed and MNF 
transformed images, for comparison.  The forward and inverse MNF 
transformations were both completed using the ENVI software.  The 
entire image was transformed based on components of maximum 
variance.  Components with the largest variance (the largest 
eigenvalues) were then inverted back into the original bands of the 
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image, and components with small eigenvalues were discarded.  For 
both images, the ten largest components were inverted, which 
contained over 99% of the variance in the data. 

2.3 Field data 
Ground truth data was collected in October 2009 (Mahakam) and 
Sept/Oct 2010 (Berau) by previous research groups (Axelsson, 2011; 
Wandera, 2011).  A total of 138 leaf samples were collected along 
forest transects, which were later analyzed for concentrations of N, P, 
K, Ca, Mg and Na.  Sample points were predefined through a random 
representative sampling method which ensured that the samples 
would include wide biochemical variation.  Hyperspectral images were 
used in advance to determine this variation.  Due to the high 
inaccessibility of mangrove forests (Green, et al., 1998), areas far 
inland were excluded from the random sample.  Samples were 
collected every 50 meters along transects, which were made at least 
400 meters from the coastline, and ranged from 250 to 350 meters 
long.   
 
When predetermined locations of sample sites were located in the 
field, effort was made to find areas with homogenous species cover, 
to avoid the risk of matching pixels with the wrong species.  Areas 
with canopy gaps were avoided.  Samples consisted of ten mature, 
non-senescent leaves, which were clipped from near the top of the 
canopy.  Leaves were then sealed and shipped to the laboratory at 
Mulawarman University in Samarinda, Indonesia for chemical 
analysis.  Leaves were dried and N, P, K, Ca, Mg and Na were 
measured as a percent of the dry matter (%dm).   N was processed 
via the Kjeldahl method, P via the BioMate UV-visible 
spectrophotometer and K, Ca, Mg and Na with a BioMate atomic 
absorption spectrophotometer.  Several sample points were removed 
after field work if they were covered by clouds during the imaging 
process or due to pixel mismatch, leaving 121 points total (47 in 
Mahakam and 74 in Berau).  See sample points summary in table 1. 

2.4 SLC model 

2.4.1 Generate simulated spectra 
The first step towards generating spectral residuals was to create 
simulated spectra for each sample point.  The soil-leaf-canopy (SLC) 
physical reflectance model which was originally developed by Verhoef 
& Bach (2007).  To be useful, a reflectance model must incorporate 
as much of the media through which the light passes as possible.  
Since this study is attempting to isolate the signal from foliar 
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nutrients, it is important to use a physical model which models as 
many parameters as possible.  The SLC model was chosen because it 
incorporates the parameters of three previous physical models; 
PROSPECT, Hapke soil BRDF (bidirectional reflectance distribution 
function), and 4SAIL2 which model the radiative transfer through 
vegetation, soil reflectance, and atmosphere/canopy, respectively.   
 
Table 1 - Measurement statistics for the nutrient concentration ground 
samples. 
Chemical Study 

Area 
Mean 

(%dm) 
Range 
(%dm) 

Standard 
Deviation (%dm) 

N Mahakam 1.02 0.60-1.45 20.3 
  Berau 1.09 0.66-2.30 26.6 
P Mahakam 0.10 0.07-0.16 20.7 
 Berau 0.09 0.02-0.29 64.0 
K Mahakam 0.50 0.36-0.61 12.3 
 Berau 0.67 0.24-1.45 35.5 
Ca Mahakam 0.75 0.28-1.48 50.2 
 Berau 2.07 0.03-6.47 66.2 
Mg Mahakam 0.29 0.03-0.39 31.1 
 Berau 0.29 0.10-0.38 23.8 
Na Mahakam 0.77 0.23-1.33 39.4 
 Berau 0.74 0.23-0.90 22.8 
 
While the SLC model is still subject to the danger of ill-posedness, 
this study should not suffer because an incorrect simulated spectrum 
will be virtually identical to the correct spectra.  This study is not 
investigating any of the parameters of the physical model, so the only 
danger if incorrect simulated spectra are selected is that a small part 
of the foliar nutrient signal could be lost.  To ameliorate this danger, 
the LUT in this study was developed to be as large as computationally 
possible.  Minimizing the gaps between simulated spectra will 
minimize the potential error from this problem.   
 
With the physical model chosen, input parameters where chosen to 
simulate spectra.  Sensitivity analysis was performed to determine 
the impact that each variable had on the simulated reflectance 
spectra.  Previous work had already determined that the reflectance 
was sensitive to chlorophyll concentrations, water and dry matter 
content, leaf structure, LAI and fraction of brown leaves.  This study 
then determined if these sensitivities were uniform or varied. 
 
The first step was to determine the possible range for each variable.  
When possible, these ranges were determined from the range of 
values measured in the field.  Otherwise, ranges were determined 
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from literature, or by manually testing with the SLC physical model 
software (SLCdemo).   
 
Two parameters (LAI and chlorophyll a and b concentration) were 
found to have a variable impact on spectra (see figure 5 for LAI 
example).  However, analysis of the sum of squares of the residuals 
between measured and simulated spectra found that the non-uniform 
impact on reflectance from chlorophyll concentrations had no 
significant impact on the accuracy of the model.  Therefore, LAI was 
the only parameter to be distributed non-uniformly in the LUT.   
 

 
Figure 5 - Simulated spectra with LAI ranging from 1.5 to 6.5, all other 
variables constant.  The figure shows that as LAI increases, is has a 
decreasing impact on reflectance spectra. 
 
With parameters and ranges chosen, the LUT could be generated.  
However, due to limitations of processing power and RAM available 
for Matlab functions, the upper limit of the size of the LUT was 
approximately 500,000 simulated spectra.  With nine variables 
included in the physical model, it was necessary to limit the number 
of possible values for each parameter.  The magnitude of the impact 
of each variable was then assessed by testing the sensitivity of each 
parameter when all others were constant.  Variables with low impact 
on the spectra over their range of possible values were then given 
fewer “steps” in the LUT.  Due to the possible combined influence of 
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variables on the spectra, this test was also verified manually in the 
SLCdemo program.   
 
Once parameters were chosen, the two LUTs were generated.  For 
complete list of parameters, see table 2.  The LUT with chlorophyll as 
a variable contained 364,880 simulated spectra.  For the second LUT, 
chlorophyll was kept constant at the average measured value for the 
two study areas combined (60 μg/cm2).  This LUT contained 60,480 
simulated spectra (figure 6).   
 
The simulated spectra were then compared to the measured spectra, 
and a “best fit” was calculated.  This process was completed for each 
LUT separately.    
 

 
Figure 6 – 60,480 simulated spectra generated from LUT with chlorophyll 
kept constant.   
 
 
 
 
 



Materials and methods 

 18 

Table 2 - Parameters used for the generation of the LUT when chlorophyll 
(CHL) was considered a variable.  The second LUT contained the same 
parameters, with chlorophyll kept constant at 60. 
Code Parameter Values 
LIDFa Average leaf slope -0.35 
LIDFb Leaf inclination distribution 

function bimodality 
-0.15 

LAI  Leaf Area Index 5.5   5.0   4.5   
3.5   2.5   1.5 

Cab_green  CHL content (green leaves) 80   70   60   50   
40   30   20 

Cw_green Water content (green leaves) 0.1   0.08   0.06  
0.04   0.02 

Cdm_green  Dry matter content (green leaves) 0.009   0.007   
0.005   0.003  
0.001 

Cs_green Senescence (green leaves) 0.4   0.3   0.2   
0.1 

N_green Structure (green leaves) 2.2   1.9   1.7 
Cab_brown CHL content (brown leaves) 10 
Cw_brown Water content (brown leaves) 0 
Cdm_brown Dry matter content (brown leaves) 0.5 
Cs_brown Senescence (brown leaves) 15 
N_brown Structure (brown leaves) 10 
hot hot spot parameter 0.05 
fB Fraction of brown leaves 0.07  0.05  0.03 
Diss Canopy dissociation factor 0.8 
Cv  Crown clumping 0.8 
zeta  Crown cover 1   0.7   0.5 
tts Solar zenith angle 42 
tto  Observation zenith angle 0 
psi Relative azimuth angle 157 

 

2.4.2 Subtract simulated spectra from measured spectra 
Each measured spectrum from the ground sample points were then 
matched to the simulated spectra with the lowest possible RMSE. This 
process was automated with a Matlab script.  Each simulated 
spectrum was then subtracted from the corresponding measured 
spectrum, leaving residuals that contain all of the information not 
encompassed by the physical model (see example in figure 2).   
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Figure 7 - Method flowchart.  Matching colored boxes show alternative 
hypotheses being tested. 
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2.5 Partial least squares regression model 
PLSR was then performed to find the relationship between the 
spectral residuals and the foliar nutrients collected in the field (N, P, 
K, Ca, Mg and Na).  PLSR was also applied to the raw spectra and to 
spectra to which an MNF transformation had been applied.  
 
Because of the limited number of observations compared to variables 
(in this case 113, as each spectral band is a variable), there is a 
danger of model instability.  An unstable model is one where a small 
change in an input parameter could cause a large, unpredictable 
change in the model output.  A common rule of thumb when using a 
regression model is to have 10 to 20 times more observations than 
variables (Skidmore et al., 1997).  In order to achieve this ratio, it 
would be necessary to reduce the hyperspectral images to 
approximately five components or bands, which defeats the purpose 
of having a hyperspectral image in the first place.  To avoid this 
problem, this study employed the use of PSLR, which does not 
require more observations than variables (Haenlein & Kaplan, 2004).  
This method also has the added benefit of reducing the impact of 
multicollinearity (Wold et al., 2001).  Furthermore, PLSR is one of the 
most common regression methods in ecosystem modeling (Keithley 
et al., 2009) which will enhance the relevance of the results.   
 
PLSR works very similar to the PCA/MNF methods discussed in section 
1.1.3.  However, instead of finding new reference frames based on 
maximum variance, PLSR reprojects both the input variables and the 
respondent variables and finds the maximum covariance between the 
two using linear regression.  The resulting model contains a PLS 
regression coefficient for each input variable, which describes the 
weight or importance that variable has on the output. 
 
Cross-validation was used to validate the model because of the 
limited amount of ground observations.  Permanently splitting the 
data into trial and validation data sets would reduce the sample size 
of the trial set, which is already relatively small compared to the 
number of variables, and could risk overfitting the model.  One 
common method of cross validation is “leave-one-out” cross 
validation, where a single sample point is set aside as the test set 
while the rest of the data is used to train the model.  This process is 
then repeated for the each sample point.  However, this method is 
not recommended because of fundamental statistical problems (Shao, 
1993).  Instead, this study employed 10-fold cross validation because 
it has been shown to provide the best balance of bias versus 
variability in small samples (Braga-Neto & Dougherty, 2004; Kohavi, 
1995).  Since the sets are randomly selected, each model could 
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theoretically be different from the next.  Therefore, the 10-fold cross 
validation was repeated with 100 iterations.  Results were then 
averaged.  Comparisons between the results were based on the 
coefficient of determination (R2) as a measure of variability, and 
normalized root mean squared error (nRMSE) as a measure of 
precision.   
 
Before running a PLSR, two parts of the model must be calibrated to 
the data.  Since PLSR can operate with multiple respondent (Y) 
variables at once (Wold, et al., 2001), one must determine whether 
the Y variables are correlated or not.  Second, it is essential to 
determine the number of PLS components to use in the regression. 

2.5.1 Model calibration: Y variables 
PLSR can analyze models with multiple Y variables separately or 
together.  When the Y variables are correlated with each other, it is 
important to analyze them together, otherwise information might be 
lost.  However, if the variables are independent of one another, 
analyzing them separately will make interpretation of each variable 
simpler (Wold, et al., 2001).   
 
Measurement of the correlation between the Y variables in this study 
was carried out by principle component analysis (PCA).  In this case, 
PCA was not used to reduce noise (as discussed above), but instead 
used for variable analysis.  For this purpose, PCA still transforms data 
into a new reference frame based on maximum variance of the 
measured data and determines the weights to be applied to each 
original value in order to transform it to the new dimensional space.  
These weights are called “loadings” or “eigenvalues”.  Now, instead of 
removing variables with small loadings, analysis was done to 
determine correlation between the variables.  Variables which are 
correlated will have similar loadings (Gil-Perez, et al., 2010).   
 
Figure 8 shows the loadings for each of the six nutrients in this study 
into the first three components of the PCA.  The only nutrients which 
could be correlated are Mg and Na, but then only in the Berau study 
area.  Because of the lack of any strong correlation between the 
nutrients in this study, PLSR was applied individually to each nutrient.   
 
However, as mentioned in section 1.1.2 of this study, many studies 
have noted the strong correlation between nutrients and genera.  For 
this reason, information on the genera for each field sample was 
included in the regression. 
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2.5.2 Model calibration: number of PLS components 
Choosing the correct number of components in the PLSR model is 
important to avoid the problem of overfitting, where the model fits 
the measured data well but fails to accurately predict anything 
outside the measured data (Wold, et al., 2001).  The ideal number of 
PLS components can be found by using cross validation (M. Clark & 
Cramer, 1993; Wakeling & Morris, 1993).  In this study, the data was 
split into 10 groups; nine groups were used to generate the model 
with the remaining group used as validation.  The groups were the 
rotated so that each group was used for validation and there was a 
predicted and measured value for each sample point.  This process 
was done first assuming the number of components was one, and 
then continued iteratively up to a sufficiently high number of 
components to cover the range of possibilities (this study used 40).  
The predictive residual sum of squares (PRESS) was calculated for 
each number of components using the following expression: 
 

 
 

Where is the ith observed value and  is the ith predicted value.  The 
ideal number of components (ncomp) was then calculated via the 
following expression: 
 

 
 
Where  is the number of observations and  is the number of PLS 
components used in that iteration.  After repeating this process 100 
times, PLSR was run again using the calculated ideal number of 
components to generate concentration predictions.  R2 and nRMSE 
were calculated for each iteration and averaged.   
 

2.6 Generating nutrient maps 
 
Nutrient maps were generated by applying the model to each pixel in 
the study area images.  To avoid SLC being applied to shrimp ponds, 
water or other non-mangrove areas, a forest mask was generated.  
Unsupervised classification was run on the images, and each category 
was manually determined to be either vegetation or non-vegetation 
(shrimp ponds, water, etc).  All non-vegetation categories were then 
masked out.  Classification was done by the previous research group 
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(Axelsson, 2011) and the mask was applied to the images by this 
study using ENVI. 
 
After the forest mask was completed, the SLC physical model was 
applied to the entire image, creating a simulated spectrum for each 
pixel.  The complete simulated image was then subtracted from the 
measured image to create a third image of residuals.   
 
Generating nutrient maps proved to be computationally very 
expensive.  A single map using all of the spectral bands would have 
taken on the range of one to two months to compute from start to 
finish.  For this reason, nutrient maps were only made for the best 
performing models and only using a limited set of bands.   
 
Images were reduced to a selection of the most important bands 
(which were determined by plotting the PLS regression coefficients for 
each band).  The importance of an input variable to the respondent 
variable is proportional to the magnitude of the PLS coefficient (Wold, 
et al., 2001).  Bands with the highest coefficient values have the 
greatest influence on the nutrient concentration prediction and the 
most important variables combined can therefore be used as an 
approximation of the entire spectrum.  Coefficient values above a 
user-defined threshold can be considered important (Gomez et al., 
2008).   
 
PLSR repeated 10-fold cross validation was then run again using only 
the selected wavelengths to get new PLS coefficient values.  The 
model whose R2 was closest to the mean R2 of the dataset was then 
selected to be applied to the image.  The PLS coefficients were then 
applied to the residuals image to generate an estimated nutrient 
concentration for each pixel.  These processes were carried out using 
Matlab scripts which were generated for this study.   
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3 Results 
 
Four sets of residuals (figure 9) were generated from the extracted 
spectra; for both of the study areas, one dataset was derived from 
spectra simulated with chlorophyll constant and another with 
chlorophyll varied.  The difference between the four datasets is not 
substantial, with each dataset following a similar pattern.  However, 
overall the variance of the residuals from Berau was consistently 
larger than the residuals from Mahakam.  In all sets, the visible, near 
infrared (NIR) and shortwave infrared (SWIR) segments of the 
spectrum are distinct with their own attributes. 
 
The residuals are all smallest in the visible spectrum (between 0.4 
and 0.7 μm). However, in the visible there is slightly greater variation 
in the residuals from chlorophyll constant than chlorophyll varied. The 
greatest variance is found in the NIR, and while this section of the 
spectrum follows a noticeable trend, it also harbors the most noise. 
Variance is relatively small in the SWIR. In Berau, the physical model 
systematically over-predicts the reflectance, leading to negative 
residuals.     
 
All four sets contain large bumps around 1.4 and 1.8 μm, which 
correspond to data gaps due to atmospheric water absorption 
features at those wavelengths (Cocks et al., 1998).  The HyMap 
camera does not have sensors covering these sections. 

3.1 Model results 

3.1.1 Nitrogen concentration 
Table 3 – Average of 100 nitrogen prediction results. 

Input dataset R2 RMSE nRMSE 
Mahakam CHL varied 0.462 0.155 18.2 
Mahakam CHL const 0.575 0.136 16.0 
Mahakam raw 0.446 0.156 18.4 
Mahakam MNF 0.482 0.151 17.8 
Berau CHL varied 0.257 0.266 16.2 
Berau CHL const 0.295 0.253 15.4 
Berau raw 0.368 0.242 14.8 
Berau MNF 0.115 0.284 17.3 
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Figure 9 - Residuals (from measured minus simulated spectra) for all of the 
Berau (top two) and Mahakam (bottom two) sample points.  
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While all of the datasets in this study performed poorly, N was the 
only nutrient with somewhat fair results from the model (see full 
results in table 3).  The best performing dataset for Mahakam was 
the chlorophyll constant residuals (R2=0.57, nRMSE=16%).  Raw 
spectra performed best in Berau (R2=0.37, nRMSE=15%).  All of the 
R2 values are presented as histograms in figure 10.  Several of the 
sets of R2 results showed non-normal distributions (see also appendix 
A, figures 19 through 23 histograms of other nutrients), so a Kruskal-
Wallis test was used to test the significance between means (Kruskal 
& Wallis, 1952).  The Kruskal-Wallis test is the non-parametric 
equivalent of an ANOVA test.   
 
Significance testing of the R2 values of Mahakam N shows that the 
chlorophyll constant dataset significantly outperforms the other three 
models (p<0.01).  At this significance level, the only datasets which 
were not statistically different in Mahakam were chlorophyll varied 
and raw spectra (see figure 11).  All of the datasets for Berau were 
statistically significantly different.  In both study areas, chlorophyll 
constant significantly outperforms chlorophyll varied.   
 

 Figure 10 - Histograms of R2 values for each N dataset. 
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Figure 11 – Results from the Kruskal-Wallis test for nitrogen model R2 values 
in Mahakam.  The box plot shows that the chlorophyll constant dataset has a 
significantly higher mean R2 than the other datasets.  There is no statistical 
difference between chlorophyll varied and raw spectra 

 
Figure 12 - Nitrogen predictions for Mahakam, chlorophyll constant dataset. 
R2=0.574 and nRMSE=15.9%. This scatter plot is based off of the results of 
a single PLSR model, not the average of all 100 iterations.  This model was 
selected because it had the closest R2 to the mean R2 of the dataset. 
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Scatter plots of predictive accuracy were generated for the models.  
Because averaging prediction results risked overfitting the model, the 
iteration with an R2 closest to the mean R2 of the dataset was used 
(see example figure 12).  Scatter plots showed that predictions were 
not clumped by genera.   

3.1.2 Non-nitrogen nutrient concentrations 
While there is some variation in quality, PLSR failed to produce 
accurate models for all of the remaining nutrients.  A complete set of 
the histograms for each dataset within each model can be found in 
appendix A.  Overall, using the residuals improved results in Mg and 
Na but not K, while it had little effect, if any, in Ca and P (table 4). 
 
The models for P were the least accurate, and cannot be considered 
better than simply using the average of the measured values as a 
prediction.  Ca proved only slightly better. In Mahakam here was no 
statistical difference between any of the models for Ca, while in Berau 
the difference was significant statistically, but not practically.  
 
Using residuals to model K was significantly worse than using raw or 
MNF transformed spectra. However, there was no significant 
difference between raw and MNF for either Berau or Mahakam.   
 
Table 4 - Results showing the best input dataset (based on lowest nRMSE 
scores) for each nutrient in each study area.  

Nutrient 
Study 
Area Spectra type R2 nRMSE (%) 

N Mahakam Residuals (CHL const.) 0.575* 16.0 
  Berau Raw Spectrum 0.368* 14.8 
P Mahakam Residuals  0.024 21.8 
  Berau Raw Spectrum 0.083 19.7 
K Mahakam Raw Spectrum 0.282* 20.7 
  Berau MNF Spectrum 0.181* 17.8 
Ca Mahakam MNF Spectrum 0.108 31.6 
  Berau Residuals  0.128* 19.9 
Mg Mahakam Residuals (CHL varied) 0.264* 21.6 
  Berau Residuals (CHL const.) 0.277 22.4 
Na Mahakam Residuals  0.154* 25.4 
  Berau Residuals  0.382* 20.6 

* denotes models where the R2 from using residuals was either 
significantly larger or significantly smaller than the alternative models 
(p<0.01). 
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Mg was, like N, tested for a correlation with chlorophyll.  While using 
residuals produced the most accurate models for both sites, the 
chlorophyll varied dataset was best in Mahakam while in Berau there 
was no significant difference between the two residual datasets.  In 
Mahakam, models for chlorophyll varied were significantly better than 
all other datasets.  Again, the model with the R2 closest to the mean 
R2 of the dataset was plotted with the genera included (figure 13).  It 
also shows predictions, with all of the genera distributed widely and 
no obvious clumping.   

 
Figure 13 – Magnesium predictions for Mahakam, chlorophyll varied dataset.  
R2=0.260 and nRMSE=21.6%. 

3.2 Nutrient maps 
Model performance was best for N, so N concentration maps were 
made using the chlorophyll constant models.  This study used 
thresholds of one and five for Mahakam and Berau, respectively to 
select significant wavelengths (see figure 14). 15 wavelengths were 
selected for Mahakam, while 22 were selected in Berau.  For 
Mahakam results, there was almost no change to the predictive 
power of the model (with 15 bands R2 changed from 0.575 to 0.582 
and nRMSE changed from 0.136 to 0.140) and the results were not 
statistically different (p>0.01).  With Berau, the R2 improved 
significantly (R2 from 0.295 to 0.380 (p<0.01) while the nRMSE 
stayed almost the same, changing only from .253 to .256).   
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Figure 14 - Plot of the PLS coefficients for both study areas for models with 
chlorophyll kept constant.  Peaks greater than the absolute value of one were 
used to select wavelengths for final regression model. 
 
Table 5 - Wavelengths (μm) with strong correlations to N concentration, 
selected from each study area 
Berau 0.469, 0.544, 0.676, 0.748, 0.819, 0.909, 0.941, 1.032, 

1.077, 1.136, 1.193, 1.447, 1.476, 1.597, 1.662, 1.699, 
1.796, 2.025, 2.100, 2.189, 2.260, 2.393 

Mahakam 0.469, 0.544, 0.705, 0.762, 0.819, 0.875, 0.909, 1.002, 
1.077, 1.319, 1.490, 1.662, 1.773, 2.025, 2.393 

 
Nearly all of the wavelengths in the visible and SWIR spectrum listed 
in table 5 can be linked to known absorption features involved with N 
(Card et al., 1988; Cho & Skidmore, 2006; Curran, 1989; Serrano et 
al., 2002).  In the NIR, there were several wavelengths with high 
coefficient values that do not correspond to any known N-related 
features.  There were 0.762, 0.819, 0.875 and 1.077 in Mahakam 
and only 0.819 and 1.077 in Berau (all units in μm). 
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The final nutrient maps can be seen in figures 15 and 16. Black 
patches in both maps are sections removed due to cloud cover and 
grayscale rectangular objects are shrimp ponds.  Ponds are scattered 
throughout Mahakam, but are most prominent the southeast corner.  
Areas of low N concentrations are most noticeable along the coastline 
(along the west).  Areas with N concentrations higher than average 
are located almost exclusively in large forest stands.   
 
The map for Berau has a clearly unnatural “patchwork quilt” look.  
Horizontal (east-west) striping from flightpaths are obvious 
throughout the image.  Furthermore, there are also some artifacts in 
the image creating north-south boundaries within each flightpath.  
Due to the very prominent patchwork features in the image, it is 
impossible to link concentration data to any physical features on the 
map.  
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Figure 15 - Map of nitrogen distribution in Mahakam 
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Figure 16 – Map of nitrogen distribution for Berau. 
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4 Discussion 
 
The patternistic nature of all four sets of residuals indicates that they 
indeed contain more than just noise. If the physical model was 
perfect, and simulated spectra were perfect reproductions of 
reflectance spectra, then the residuals would consist of only random 
noise.  However, residuals show systematic differences between 
simulated and measured spectra, both within a single dataset and 
between datasets.   
 
This demonstrates that the SLC model is consistently mis-predicting 
reflectance and is therefore not an exhaustive physical model.  There 
are other unknown parameters which could be used to create a more 
complete model.  However, the residuals do not necessarily indicate 
that foliar nutrients are those missing parameters, nor does it 
indicate that a correlation can be found between nutrients and 
residuals.   
 
The difference in the residuals between the chlorophyll constant 
dataset and the chlorophyll varied dataset also shows that 
chlorophyll’s main impact is on the visible spectrum.  While this 
comes as no surprise, it does demonstrate that excluding chlorophyll 
variation from the physical model successfully kept any information 
about N and Mg that is correlated with chlorophyll in the residuals. 
 
The difference in the residuals between the visible, NIR and SWIR 
also demonstrates that the SLC is poorest at predicting reflectance in 
the NIR. Interestingly, the majority of wavelengths in this study with 
high PLS coefficients that are not linked to known N-related 
absorption features are also found in the NIR.  This could indicate 
that the impact of N (or N related biochemicals) is not fully 
understood in the NIR.   

4.1 Criticisms of data quality 
Before properly analyzing the potential correlation between foliar 
nutrients and reflectance residuals, it is important to acknowledge 
that there were several intractable issues with the data in this study.  
The first and most obvious problem lies in the collection of data in 
Berau.  Although it has been noted that the Berau data was collected 
in the same season as the Mahakam data and image data, there was 
still a one year difference.  Seasonal trends have been found in N 
concentrations of Rhizophora spp., this does not mean that annual 
trends do not exist (Y. M. Lin et al., 2010).  The time lag between 
data collection casts serious doubts on any conclusion drawn from the 
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Berau data, and makes it impossible to make a clear comparison 
between Berau and Mahakam concentrations.   
 
There are also problems with the Berau image data.  As was 
discussed in section 2.3 of this paper, problems were discovered in 
the initial radiometric correction of the image data by HyVista and the 
reflectance in the visible was demonstrated to be unnaturally high.  
Radiometric corrections were implemented but they have clearly 
introduced an artifact into the data that raises serious question to any 
conclusions drawn from the data.  
 
A third issue arises when looking at the R2 results from Berau.  When 
the number of bands was reduced from 113 to 22, the R2 increased 
from 0.295 to 0.380.  When the accuracy of a model changes from 
band reduction, it means that something impacting the model was 
removed.  Usually, this means either noise or multicollinear bands.  
For PLSR, improving results via band reduction is contrary to 
expectation, as PLSR should not be impacted by multicollinearity.  
Removing bands with low PLS coefficients should only remove 
redundant information or information that has little to no impact on 
the spectra.  The model results from Mahakam, for example, did not 
change with band reduction.  Furthermore, PLSR should actually 
accommodate noisy bands by relegating them to insignificant 
eigenvectors (Wold, et al., 2001), so reducing these bands should 
have little or no impact on model accuracy.   
 
The improvement in the Berau model means that some of the bands 
in the data were actually having a significant negative impact on the 
model accuracy.  Whatever the cause, this clearly indicates a problem 
with the data.  Possibly, removing the bands was removing some of 
the artifacts caused by the radiometry correction mentioned above.   
 
All of this leads to the conclusion that the Berau data is too flawed to 
derive any useful conclusions.  At the very least results from Berau 
must be viewed with extreme skepticism.  However, these issues do 
not apply to the Mahakam data.   
 
Another problem with the data, not directly related to Berau, is the 
quality of the Ca measurements.  Analysis of the variance of nutrient 
measurements shows questionable results for Ca (see figure 17).  
The variance of the measurements in Berau is extremely high, and 
does not correspond to the Ca measurements in Mahakam.   All of 
the other nutrients have similar means between the two study areas 
and generally overlap in the interquartile ranges.  Unfortunately, 
there is not detailed documentation about the chemical analysis of 
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the ground sample leaves from the field work of this study.  Atomic 
absorption spectrophotometry is a commonly used method in many 
fields and there are no indications that calcium should pose any 
unique problems. The variance does not mean necessarily that the 
Berau measurements are incorrect and the Mahakam measurements 
are correct.  It does mean that the Ca results are suspect and should 
be used with caution.  A previous study of mangrove forests found Ca 
concentrations between 0.9% and 2% dry matter, which corresponds 
the mean of both study sites.  Measurements of other forests have 
found Ca concentrations up to 7% of dry matter (DeHayes et al., 
1999; Gil-Perez, et al., 2010).   
 

 
Figure 17 – Distribution of measured nutrient concentrations.  NB signifies 
“Nitrogen, Berau”, NM signifies “Nitrogen, Mahakam”, etc.  Nutrient 
concentrations between the two study sites are highly correlated, except Ca, 
which indicates there was potentially a problem with the measurement of Ca. 
 
The final problem present in the data regards the small number of 
field observations.  Certainly, there are often arguments for a greater 
number of observations in almost any study.  Furthermore, there are 
several examples of studies finding strong correlations between 
nutrients and reflectance spectra using a similar number of 
observations (Ferwerda & Skidmore, 2007; Mutanga, et al., 2004).  
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However, the results of this study could have benefitted dramatically 
with more samples for reasons regarding PLSR.   
 
Figure 18 demonstrates the relationship between the number of PLS 
components used in the PLS regression and the percentage of 
variance that is explained by the model.  In this particular example, 
the ideal number of components for the model (i.e. the number which 
resulted in the lowest PRESS/(N-A-1) was three.  Using three 
components, the PLSR model was only able to explain about 40% of 
the variance in the model.  This means that 60% of the information in 
the data was lost, because of the number of components parameter.  
As mentioned in the section 2.2 of this study, field samples were 
selected with the intention of maximizing the variance of nutrient 
concentrations in the ecosystem.  Therefore, gathering more samples 
should not dramatically increase the amount of variance that needs to 
be explained by the model.  However, increasing the sample size 
would increase the number of components that could be used in the 
model.  It is clear from the figure that increasing the number of 
components in the model by even a few components would mean the 
model could incorporate a substantially greater percentage of the 
variance in the data.   

 
Figure 18 - Effect of PLS components on the percentage of variance 
explained by PLSR models.  This example is from the K model of Mahakam 
raw data.  It demonstrates that a low percentage of the information available 
in the data was actually used in the regression.   
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4.2 Relationship between residuals and 
nutrients in Mahakam 
There is no definitive pattern among the nutrients regarding which 
dataset resulted in the best predictive model.  The models for P and 
Ca not only failed to differentiate between the datasets, but actually 
failed to generate useful predictive models at all.  The most likely 
reason for this is the extremely small concentrations of P in 
mangrove leaves.  P concentrations were several times smaller than 
the other nutrients and an order of magnitude smaller than N 
concentrations.  At these concentrations they may simply not impact 
the reflectance spectra in a detectable way. 
 
The remaining nutrients give a good indication that applying 
regression to spectral residuals can improve model predictive power.  
Models for N, Mg and Na all significantly improved with the use of 
spectral residuals.  The model for K, however, was significantly worse 
using spectral residuals.  It is not clear why K models performed 
worse with the residual dataset.  The best guess is that K is strongly 
correlated with one of the parameters in the physical model and K 
concentration information is lost in simulated spectrum subtraction.  
K is not a component of any organic matter, but plays a role in cell 
processes like regulating stomata (evapotranspiration) and cell turgor 
(Eakes et al., July 1991).  Possibly K concentration is linked to leaf 
moisture content in the physical model. 
 
When investigating the usefulness of keeping chlorophyll constant, 
only Mg and N were considered, as they are the only two nutrients in 
the study that are contained within the chlorophyll molecule.  This 
study demonstrated that keeping chlorophyll constant in the physical 
model significantly improved the regression model for N, but not for 
Mg. This indicates that the spectral correlation between N and 
chlorophyll is stronger than Mg with chlorophyll.  This supports a 
study performed on wheat plants which investigated the impact of N 
and Mg deficiencies on foliar reflectance (Ayala-Silva & Beyl, 2005).  
While a correlation was found between Mg deficiency and chlorophyll 
absorption (when deficient, reflectance in the visible increased by 25-
36%) the correlation was significantly greater for N (reflectance 
increased by 75-97%).  Perhaps smaller correlation between 
chlorophyll and Mg means that the tradeoff between reducing “noise” 
(physical spectrum removal) and maintaining signal (keeping 
chlorophyll constant) leans in the favor of reducing noise. 
 
Surprisingly, MNF transformed data rarely resulted in better models 
than raw spectra.  MNF was chosen under the assumption that it 
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would provide a consistently better model than raw data.  It is 
unclear why the MNF performed so poorly, but it is possible that 
because the nutrients have such small impact on the original 
reflectance spectra, some of this information was lost when the MNF 
transformation discarded most of the noisy bands.   

4.3 Nutrient maps 
The Mahakam nutrient map does not demonstrate any correlation 
between shrimp ponds and N concentrations. This is partially because 
shrimp ponds are scattered throughout the entire image, and there 
are therefore very few parts of the map that could be considered 
isolated from the ponds. However, there is also no apparent 
correlation between the local density of shrimp ponds and N 
concentrations. The area of highest shrimp pond density 
(encompassing much of the southwest quadrant of the map) is 
adjacent to both the areas of highest N concentration and lowest N 
concentration.   
 
The scatter plots of model predictions also demonstrate that the 
correlation between nutrients and genera has been successfully 
removed in the PLSR process.  This means that the N maps are 
mapping N concentration and not just genera distribution.   
 
The distribution of N concentrations does appear to be impacted by 
two factors; proximity to the coast and the size of the forest stand.  
The areas of lowest N concentrations are along the western coast 
facing the sea (or along the main river banks), while the area of 
highest N concentration is also the largest forest stand.  Low values 
on the coast are possibly due to the wave action of the ocean.  While 
mangroves thrive in tidal inundation, the higher energy of waves are 
more likely to disturb soil, remove nutrients and hinder mangrove 
growth (Kathiresan & Qasim, 2005). 
 
It should be noted that it is beyond the scope of this study to 
determine the healthy range of N concentrations for the Kalimantan 
mangroves, which, of course, depends on each genus as each has 
different biochemical needs (Siddiqi, 1995).  However, the ranges 
measured in this study do correspond with, on the low end, ranges 
measured in other studies (P. Lin & Wang, 2001; Wang et al., 2003).  
These studies observed many of the same mangrove genera as this 
study, in China and the USA.  Therefore, this map does not support 
the claim that nutrients from shrimp ponds are having an effect on 
the surrounding mangroves.  However, this map does demonstrate 
that higher forest fragmentation is correlated with lower N levels.  
Forest fragmentation can lead to species loss and genera loss in 
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tropical forests (Laurance et al., 2006) and may be a larger threat to 
the Mahakam mangroves than nutrient leaching.   
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5 Conclusions 
 
This study has demonstrated the viability of a novel hybrid model 
method for predicting nutrient concentrations from remote sensing.  
PLS regression on spectral residuals from the SLC physical model 
significantly improved model predictions in three (N, Mg and Na) out 
of the six nutrients tested for Mahakam.  The data from Berau was 
deemed too flawed to support conclusions. 
 
For N and Mg, physical model residuals were generated via two 
methods, with the intention of determining if correlations with 
chlorophyll would impact the modeling of nutrients.  This study found 
that removing chlorophyll from the physical model improved the 
model results when modeling N using spectral residuals (from 
R2=0.462 to R2=0.575 and from nRMSE=18.3% to nRMSE=16.0%) 
but diminished model results when modeling Mg using spectral 
residuals (from R2=0.263 to R2=0.156 and from nRMSE=21.6% to 
nRMSE=23.2%). 
 
This novel method could have broad uses for nutrient modeling.  It 
also could be applied generically in any remote sensing field where 
physical models have been developed but unknown parameters still 
exist.  The method has also demonstrated the ability to help highlight 
previously unknown relationships between predictor variables 
(reflectance) and respondent variables (nutrient concentrations). 
 
N concentration maps were also created using models derived from 
the residuals with chlorophyll kept as a constant.  Because genera 
were included as respondent variables in the PLS regression, these 
maps were not impacted by the correlation between genera and 
nutrient concentrations.  The maps were used to investigate a 
possible spatial correlation between shrimp ponds and N 
concentrations.  No correlation was found, but correlations between N 
concentrations and both stand size and proximity to coastline were 
noticed.   
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6 Recommendations 
 
There are several improvements which could be made to this study to 
achieve higher model accuracy and more relevant results.  The most 
obvious improvement would be the inclusion of different data.  Of 
course, having a dataset that would not manifest as many problems 
as Berau would help analysis.  However, it might be even more 
beneficial to also include a biochemical that has a well established 
record of being successfully modeled.  If, for example, this method 
was used to model chlorophyll concentrations (by keeping chlorophyll 
constant in the physical model) there would be some guarantee that 
a statistical model would be able to achieve some predictive success.  
This would avoid the problem encountered with P and Ca (and to a 
lesser extent Na, Mg and K) where all of the datasets resulted in poor 
models and no strong comparison could be made.  
 
There are also a few changes which could be made to the methods 
which might improve future studies in this area.  Wold (2001) states 
that PLSR can accommodate information in the input parameters 
which is unrelated to the respondent variable (whether it be random 
noise or systematic).  However, this has been contested (Cheng & 
Wu, 2006) and a modified PLSR has been developed which should 
improve on PLSR results under these circumstances.   
 
While subtracting out the simulated spectra should remove most of 
the information unrelated to nutrient concentrations in the measured 
spectra, it is still unknown how much of the residual spectra will 
directly correlate to nutrient concentrations.  Certainly some of the 
six nutrients used in this study will be less correlated to the spectra 
than others (P for example), and in these cases MPLSR might prove 
useful.   
 
Another improvement to the method should be the replacement of 
the MNF transformation with different techniques to improve data 
quality. It is acknowledged that MNF was a poor choice for a 
comparison with this method. The method developed in this study is 
specifically designed to model parameters that have not been 
included in existing physical models.  The types of parameters that 
are not included in physical models are inherently ones that have a 
small impact on the output variables (in this case, reflectance).  MNF 
operates by smoothing small features in data, which could easily have 
led to the loss of valuable information in this study.  Instead, it is 
recommended that future studies with this model use data 
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enhancement methods that do not eliminate small features, such as 
continuum removal or water removal. 
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Appendix A: R2 histograms 
 

 
Figure 19 - Histograms of R2 values from a 100 iteration repeated 10-fold 
cross validation of Mg content. 
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Figure 20 - Histograms of R2 values from a 100 iteration repeated 10-fold 
cross validation of Ca content. 

 
Figure 21 - Histograms of R2 values from a 100 iteration repeated 10-fold 
cross validation of P content. 
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Figure 22 - Histograms of R2 values from a 100 iteration repeated 10-fold 
cross validation of K content. 
  
 

 
Figure 23 - Histograms of R2 values from a 100 iteration repeated 10-fold 
cross validation of Na content.
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Appendix B: Maps of ground 
sample locations 
 

 
Figure 24 - False color map of the Mahakam study area.  Sample locations 
are designated with circles.  Color of circles indicates species.  Map was 
generated by Christoffer Axelsson (Axelsson, 2011). 
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Figure 25 - False color map of the Berau study area.  Sample locations are 
designated with circles.  Color of circles indicates species.  Map was 
generated by Christoffer Axelsson (Axelsson, 2011). 
 
 


