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ABSTRACT 

The potential to extract vertical forest structural attributes such as maximum tree height and AGB from 
full waveform large footprint spaceborne ICESat GLAS LiDAR data has been analysed using neuro-
genetic approach of modelling the waveform signal over dry deciduous forests in central part of India. 
The results showed that the maximum tree height and AGB can be directly modelled from the GLAS 
waveform derived indices. The study used four parameters viz. wDistance, R75, H75 and R25 derived from 
LiDAR waveform for predicting AGB and maximum tree height. 
 
The modelling results predicted maximum tree height with a RMSE of 1.8 m compared to the RMSE of 
3.4 m and AGB with a RMSE of 29 t/ha compared to 30.45 t/ha as obtained by Sun et al., (2007). Besides 
waveform modeling constraints, the critical factors that may have affected the model`s performance were 
study area conditions like terrain slope, less number of field samples and location of tree with maximum 
height within the sampled footprint and short stand height.  
 
The main issues confronting the future studies lies in further improving the precision of the prediction 
model in areas of steep slope, varied forest types and extending the footprint measurements to global 
estimates.  
 
Keywords: [ICESat GLAS, LiDAR, footprint, AGB, maximum tree height, neuro-genetic approach, wDistance, R75, 
H75, R25] 
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1. INTRODUCTION 

1.1. Background 
 
Role of forest in climate change has incited the need of accurate carbon pool estimation for their scientific 
management (Kwak et al., 2005). Accurate estimates of forest carbon stock are necessary to understand the 
global carbon dynamics. There is a growing need for development of systematic and cost effective 
methodology for global forest inventory to estimate carbon stock and analyse land use changes 
(Rosenqvist et al., 2003). The precise quantification of forest carbon stock will result into efficient carbon 
accounting and trading system for effective implementation of international climatic conventions (Gibbs 
et al., 2007).  
 
The structural attributes of forest ecosystems like diameter of tree at breast height (DBH) has been widely 
used in estimation of above ground biomass (AGB) (Keller et al., 2001). Estimation of AGB from DBH in 
field is quite inefficient in terms of time and money (Houghton, 2005). On the other hand remote sensing 
with spatial and temporal coverage capability proves to be a promising technique in AGB estimation. 
Several studies have attempted to utilize passive optical and active microwave remote sensing tool to 
retrieve forest biophysical parameters for estimation of AGB and carbon stock (Dobson et al., 1995; 
Viergever et al., 2008; Wijaya & Gloaguen, 2009).  
 
Recent advances in remote sensing techniques like LASER altimetry, PolInSAR and very high resolution 
(VHR) imagery have been used for estimation of vegetation structural attributes with reasonable accuracy 
(Wang and Ouchi, 2010; Benson et al., 2011; Neumann et al., 2011). Moreover, direct retrieval of forest 
attributes like canopy height provides new avenues for enhanced forest degradation monitoring and 
management strategies.  

1.2. Research context 

1.2.1. A review of global forest biomass assessment methods 
 
The forest ecosystem acts as global carbon sink (Anaya et al., 2009). International Union of Forest 
Research Organizations (IUFRO) recognized forest biomass as one of the most significant areas of 
priority (Zhao & Zhou, 2005) which makes AGB as an important forest structural attribute to explore. 
AGB represents the major portion of total forest biomass. Hence, forest biomass change is treated as an 
important factor of climate change by Kyoto Protocol. 
 
 Traditional AGB inventory links ground measurements and tree parameters to their biomass using 
species-specific allometric relationship (Jenkins et al., 2003) and further extrapolates these measurements 
to entire forest stand (Hall et al., 2006). The field based method is useful for small areas but inefficient for 
regional or national scale biomass estimate because of high cost involved and uncertainty associated with 
geographically distributed biomass data and equations.  
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Remote sensing technology has been extensively used for vegetation and ecosystem studies. Typical 
remote sensing systems such as passive optical systems and active systems like radar provided a battery of 
ecological applications like estimation of leaf area index (LAI) and AGB (Lefsky et al., 2002). Passive 
optical remote sensing utilizes spectral reflectance properties of forested area to relate with structural 
attributes of forest ecosystem. The capability of optical sensors for estimation of AGB is limited by their 
inability to retrieve vertical structural information of forest. Synthetic Aperture Radar (SAR) and LiDAR 
have extended a vertical dimension to forest modeling and AGB estimation. Radar sensor operates in the 
microwave portion of the electromagnetic spectrum (~ 1 cm to 100 cm). Longer wavelength and weather- 
independent operability of radar sensors have been utilized for biomass estimation in various forest types 
like coniferous forests (Dobson et al., 1992) and mixed deciduous forests (Ranson & Sun, 1994). 
However, the problem of signal saturation limits the applicability of radar sensors in areas with high 
biomass content (Waring et al., 1995) and heterogeneous forest conditions (Imhoff, 1995). Moreover, the 
ability of SAR to estimate AGB is further limited by high canopy density as dense canopy doesn`t allow 
enough SAR radiations to penetrate through them (Dobson et al., 1992). 
 

1.2.2. Advent of LiDAR remote sensing for forest biomass and carbon stock studies 
 
Use of Light Detection and Ranging (LiDAR) remote sensing or laser altimetry has facilitated incredible 
advancement in understanding of vegetation structural parameters. LiDAR has unique capability to 
provide information on vertical structure of forest ecosystem (Drake et al., 2002). LiDAR uses light pulses 
generated in visible or near infrared range to measure the travel time from laser sensor to target and back 
(Patenaude et al., 2005). The analysis of echo of the scattered light pulse by the target is used to derive 
various forest vertical structural parameters (Wu & Xing, 2010). LiDAR is independent of the signal 
saturation and biomass density limitations (Lefsky et al., 1999a) as it measures the physical attributes of the 
forest rather than the spectral properties.  
 
There are basically two categories of LiDAR systems: Discrete Return Devices (DRD) which measures 
time elapsed between emission and return of laser pulse (Hudak et al., 2002; Evans et al., 2006) resulting in 
3D point cloud and Waveform Recording Devices (WRD) which captures continuous energy return from 
every emitted laser pulse (Patenaude et al., 2005) as shown in Figure 1-1. LiDAR systems are also classified 
on the basis of the width of the laser pulse: large-footprint system having diameter of the laser beam 
greater than 5 m on the ground and small-footprint system having diameter less than 50 cm (Bortolot & 
Wynne, 2005). LiDAR systems can also be classified based on the height of the platform as airborne 
having sensor height less than 2 km and spaceborne LiDAR with sensor height of 600 km (Figure 1-1).  
 
In context with forest AGB estimation studies, large footprint, waveform LiDAR is more efficient than 
small footprint, discrete return LiDAR (Drake et al., 2002) as they fully digitize the return laser pulse, thus 
providing enhanced vertical structural information of forests. However, these systems have high 
associated cost and relatively low spatial coverage, and consequently are inappropriate for AGB estimation 
studies at regional or global scale. Hence attention has been shifted to the satellite based platforms. 
National Aeronautics and Space Administration (NASA) `s ambitious Vegetation Canopy LiDAR (VCL) 
Mission which was scheduled for launch in January 2000 aimed at three-dimensional mapping of the land 
surface structure of the entire Earth including land cover canopy. VCL promised to provide 
unprecedented global data for modeling, monitoring, and predicting the state of Earth’s ecosystem and 
provide key inputs for climate modeling and predictions (Dubayah et al., 1997). The once proposed Earth 
Observation (EO) mission “Carbon 3D”  for global biomass mapping using VCL with a Bidirectional 
Reflectance Distribution Function (BRDF) imager (Hese et al., 2005) which was scheduled for launch in 
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2009 also failed to materialize. The ICESat Geospatial Laser Altimeter System (GLAS), launched in 
January 2003, is the only operational spaceborne LiDAR available till date. Hence, for the success of 
future spaceborne LiDAR missions, a thorough analysis of GLAS waveform is required.  

 

Figure 1-1: Overview of Discrete Return LiDAR and Waveform LiDAR Systems 
[Source: Figure adapted from Duong (2010)] 
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1.2.3. ICESat GLAS full waveform large footprint LiDAR in forestry 
 
NASA`s GLAS on board Ice, Cloud and Land Elevation Satellite (ICESat) is designed to measure ice-
sheet elevation changes, land surface topography profile and canopy heights (Zwally et al., 2002). GLAS 
consists of three Nd:YAG lasers each of which has a 1064 nm laser channel for surface altimetry (NSIDC, 
2012). The first laser failed shortly after the start of its operational period in 2003 and the ICESat`s science 
mission ended in February 2010 with the failure of its third laser instrument thereby completing 18 laser-
operation campaigns successfully during the whole lifespan.  
 
GLAS transmits laser pulses of 4 ns width which is equivalent to 60 cm (1 ns = 15 cm) in surface 
elevation at a rate of 40 shots per second (40 Hz). All the 40 shots are telemetered 544 bins over the land 
surface corresponding to a height of 81.6 m (544 bins x 15 cm/bin) over ground (Brenner et al., 2003) for 
laser L1 and 1000 bins corresponding to 150 m (1000 bins x 15 cm/bin) for laser L3 (Harding and 
Carabajal, 2005). Laser L2 operates in both the height ranges (Duong et al., 2009). The approximate 
diameter of GLAS footprint is 70 m spaced at 175 m along track on the ground surface. The footprints 
are normally elliptical in shape. However, the ellipticity of the footprints have varied throughout the laser 
operation campaigns (Pang et al., 2008) starting from moderately elliptical, very elliptical and very elliptical 
with side lobe for laser 3, laser 2 and laser 1, respectively (NSIDC, 2011a). The return waveform 
represents the vertical distribution of surface features within the footprint area.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many studies have demonstrated that the breadth of the GLAS waveform can be used for AGB 
estimation in relatively flat and homogeneous forest area (Harding and Carabajal, 2005; Lefsky et al., 2005; 
Rosette et al., 2008). However, in areas with moderate to high slope, the vertical extent of waveform 
(distance from the beginning to end of the signal) increases as the function of the slope and footprint size 
which results in pulse broadening (Lefsky et al., 2005). As a consequence, the ground return and canopy 
return can occur at the same elevation making interpretation of the waveform complex.  
 

Figure 1-2: ICESat GLAS Waveform 
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Several studies have attempted to model the forest vertical structural attributes from GLAS waveform 
metrics (Harding and Carabajal, 2005; Lefsky et al., 2007; Boudreau et al., 2008; Rosette et al., 2008; Sun et 
al., 2008). Lefsky et al. (2007), used the waveform extent, leading edge extent (distance from signal start to 
half of the waveform maximum power) and trailing edge extent (distance from signal end to half of the 
waveform maximum power) to retrieve canopy height with R2  value of (83 %). Sun et al. (2008), 
demonstrated that energy quartile of GLAS waveform can be used to estimate canopy height. The 
position of 25 %, 50 %, 75 % and 100 % energy quartiles are calculated on the basis of the percentage of 
total reflected energy starting from the signal end. These energy quartiles represent the ground surface, not 
the signal end, hence the ground peak needs to be located efficiently. Boudreau et al. (2008), used terrain 
index from SRTM data and slope between signal start and first Gaussian peak to predict AGB.  
 
Gaussian decomposition is widely used to retrieve information from GLAS waveform metrics. GLAS 
waveform is thought to be composed of sum of individual Gaussian return from each surface feature 
within the footprint (Blair and Hofton, 1999). ICESat science processing team have developed waveform 
fitting algorithm which fits up to six Gaussian curves to each waveform for land regions. The location of 
the last Gaussian peak is likely to represent the ground return. However, it has been found that the last 
Gaussian peak may not always represent the ground return, and in some cases the second lowest peak is a 
better representation of the ground elevation (Rosette et al., 2008). The number of the Gaussian curves in 
a waveform is a function of canopy and surface feature properties within the footprint. Hence waveforms 
having higher noise level could not be decomposed effectively using limited number of Gaussian modes 
and may result into missing the last mode (Duong et al., 2009). This limitation shadows the utility of 
Gaussian decomposition method for canopy and surface feature characterization. This problem calls for a 
detailed investigation of curve fitting methods which can account for such deficiencies.  
 

1.2.4. Neuro – Genetic Approach for extracting vegetation variables from LiDAR measurements 
 
Rapid advances in earth observation and remote sensing technologies have enabled data capture with 
enhanced spatial, temporal and spectral coverage (Asrar and Dozier, 1994). These advancements have to 
be supplemented with development of efficient and robust data analysis techniques and algorithms which 
can account for a wide variety of data in order to retrieve vegetation structural parameters. The vegetation 
structural attributes such as AGB, leaf area index, canopy height, forest age, etc. are continuous in nature 
which implies that a functional relationship can be developed between the remotely sensed data and the 
ancillary ground data (Kimes et al., 1998). Hence, a significant amount of research is being conducted to 
develop efficient method to extract continuous vegetation attributes accurately.  
 
Several approaches have been investigated for retrieving the continuous vegetation parameters which 
mainly falls under three categories viz. linear models, nonlinear models and physically based models 
(Kimes et al., 1998). Linear models represent simple linear relationship between independent variables 
(remotely sensed data) and dependent variables (AGB, canopy height, etc.) shown in equation (1.1): 
 

                                           (1.1) 

where Y is the predicted variable, Zi is a function of basic independent variable Xi and  is error factor 
(Kimes et al., 1998). The performance of the aforementioned model for predicting vegetation parameters 
is limited as the relationship between the remotely sensed signal and vegetation attributes are nonlinear 
(Jakubauskas, 1996). To overcome this limitation, transformation techniques such as vegetation indices are 
being used to correlate remote sensing data with vegetation variables. NDVI, ratio of simple combination 
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of NIR and red bands (Rouse et al., 1974), is widely used for vegetation monitoring studies (Goward et al., 
1991; Huete et al., 1994). Nonlinear and physically based modeling approaches have also been used to 
extract vegetation variables. Physically based models attempts to extract desired vegetation variables from 
measured vegetation parameters (Kimes et al., 1998). These models use inversion and numerical 
optimization technique for extraction of vegetation variables making these models numerically and 
computationally intensive (Pinty et al., 1990). For the effective implementation of all these models and to 
achieve accurate results, the researcher must have a clear understanding of the functional relationship 
between the input variables and output parameters. Hence there is a growing need for an innovative tool 
which is able to understand and learn the complex functional relationships underlying in the collected 
data, develop the functional basis of input and desired output, and should be able to adapt and evolve 
itself with variation occurring in the input data.  
 

1.2.4.1. Artificial neural networks 
 
Artificial Neural Network (ANN), a system inspired by functioning of biological neuron seems to be the 
one-stop solution having ability to learn relationships using the given data and to predict the desired 
output from the given input (Wasserman, 1989). This remarkable capability of ANN is attributed to its 
ability to mimic the unique information processing characteristics of biological neuron such as parallelism, 
fault tolerance and nonlinearity. Even if the ANNs are biologically inspired, they are essentially nonlinear 
statistical models (Tettamanzi and Tomassini, 2001).  
 
ANNs consist of neurons or nodes grouped into layers which receive some input, adds them up and 
produces output according to some simple threshold function (Grönroos, 1998). Layers are 
interconnected through connection channels or links. Links have weights whose values are determined 
during the training phase. Weights are multiplied to the node output to produce desired results (Figure 1-
3). The weights associated with connection channels are either inhibitory or excitatory in nature. The way 
how a network is joined using connection channels or links is referred to as network topology or network 
architecture. There are various kinds of neural network architecture such as Multi Layer Perceptron 
(MLP), Radial Basis Function (RBF), Hopfield network, Self-organizing map and recurrent network. 
 
              Input   Synaptic Weights 
        Activation Function   
                        
            
                
                                                  Output 
 
 
 
 
The feedforward MLP network topology (Figure 1-4) is used in this study because of its desirable 
computational and approximation capabilities (Cybenko, 1989; Hecht-Nielsen, 1989). The MLP 
architecture maps input to output through processing performed by series of interconnected nodes. The 
layers between input and output are termed as hidden layers and neurons contained within them as hidden 
nodes because of their indirect connection with external input and output layers (Azzini, 2005). Each node 
implements a transfer function expressed in equation (1.2):  
 

Figure 1-3: An elementary ANN structure 

 Y 
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                (1.2) 

 
where f is the activation function. In many studies sigmoid function is used as activation function 
represented by equation (1.3): 

     

                                                             (1.3) 

 
The applicability of the sigmoid activation function is limited due to its differentiability (Azzini, 2005). 
Moreover, it compresses all the outputs between the range (0 and 1) which further reduces its efficiency 
(Kimes et al., 1998).  
 
                       Input Layer     Hidden Layer 1     Hidden Layer 2       Output 
 
 
 
 
 
 
 
 
 

Figure 1-4: Feedforward MLP Network Topology 

[Source: Figure adapted from (Roebber et al., 2003)] 

 
Once an appropriate network topology has been identified, the ANN has to be trained in order to 
produce desired output. Essentially, training is an iterative process which modifies the weights of ANN 
thus producing best possible nonlinear approximation relationship based on network architecture. This 
modification minimizes the error between predicted and the actual output. Hence a thorough investigation 
is required to design robust training rule for finding optimum weight. There are mainly three categories of 
learning rules that have been adopted to train the neural network viz. supervised learning, unsupervised 
learning and reinforcement learning. In supervised learning method, the training data consist of a number 
of input/output (I/O) training patterns. This rule aims to determine the set of weights which minimizes 
the error by modifying and updating the weights at each training step. The first and most widely used 
supervised learning rule is backpropagation (Werbos, 1974, 1994; Rumelhart et al., 1986) which evolved as 
a standardized technique for training MLP network architecture. Backpropagation uses gradient descent 
method to extract network weights (Moller, 1993; Kimes et al., 1998) which is essentially a least square 
optimization technique. Unsupervised learning rule self-organizes the input data presented and extract 
their emergent relationships. No external feedback is provided pertaining to the accuracy of I/O mapping.  
 
The quality and integrity of data are some of the critical aspects of neural network research. The data 
should be a good representation of all the variation of the problem under investigation. The data should 
have enough diversity so as to produce training and validation data set. If a network has too many degrees 
of freedom, it can easily adapt itself to the training data and the process is termed as overfitting. This means 
that even if a network is able to predict the output with a greater accuracy, it fails to perform efficiently 
with previously unseen inputs. In other words, the generalization capability of the ANN model is reduced. 
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In order to overcome the problem of overfitting, a method called early stopping  (Moody, 1994; Bishop, 
1995; Sarle, 1995) is adopted. In this approach, the training pattern data is divided into three categories 
viz. training, test and validation data. The training data set is used for the learning process and then at 
certain intervals, the ANN model so developed is evaluated with the validation data and a model 
producing the best result is selected. Test data is used to verify the generalization capability of the ANN 
(Gupta et al., 2003).  
 
Therefore, a representative data population, robust training method and optimized network topology are 
essential for the efficient performance of ANN model. This research endeavours to address these issues 
by adopting a Neuro – Genetic approach or Evolutionary ANN for input data selection and optimization 
of network topology for extracting forest structural variables.  
 

1.2.4.2. Evolutionary algorithm and Evolutionary artificial neural network  
 
Evolutionary algorithms (EA) or genetic algorithms (GA) are system of evolutionary techniques inspired 
by the idea of the natural evolution and genetics (Tettamanzi and Tomassini, 2001; Eiben and Smith, 
2003). This field of investigation is quite nascent and attempts to bring together concepts that form the 
basis of Darwinian evolution. The idea of GA is first proposed by John Holland in 1960s. He envisioned 
genetic code as sequence of binary values or chromosomes. EA utilizes chromosomes for problem solving. 
First, desired outputs are encoded into the chromosomes. Then new populations are evolved using genetic 
operators. The common genetic operators used are reproduction, crossover and mutation (Afandizadeh 
and Kianfar, 2009). Reproduction involves direct transfer of chromosomes to next generation. Crossover 
selects two parent chromosomes and produces offspring chromosomes using combination of parents. 
Mutation is random operator which acts by introducing new genetic material in the chromosomes thereby 
maintain the variability of population. The so evolved chromosome population after transferring the 
positive characteristics of each generation is evaluated on the basis of their fitness which is computed 
using a fitness function. The whole process is summarized as shown in Figure 1-5.  
 
 
 
 
 
 
 
 
 
 
 
 
EA approach has been used to solve complex optimization problem and a number of applications have 
been found in enhancing the efficiency of ANN. EA can be used to find the relevant set of input data 
from a large number of input variables which significantly increases the performance of ANN. This 
combined framework of ANN and EA has been referred to as Evolutionary ANN (EANN). EANN is 
characterized by natural evolution as another fundamental form of adaptation in addition to learning (Yao, 
1991, 1999). EANN is distinguished by their ability to adapt itself with changing environment that is they 
can modify their network topology and learning rule without human intervention (Azzini, 2005). EANN 
can automatically evolve itself to an optimized ANN with appropriate topology and weights without 

Figure 1-5: Process flow of EA 

Initial 
Population Evaluation Selection Crossover & 

Recombination
Mutation 

Termination 
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manual trial and error process. A large number of input data increases the complexity and computation 
time of ANN. The dimensionality of the input data can be reduced using EANN without a loss in the 
performance (Brill et al., 1992). EA searches for a subset of input data that performs synergistically to 
produce the best result (Kimes et al., 1998). Network architecture optimization is yet another important 
issue where EANN have been applied with significant accuracy. There is a lack of systematic method to 
design a network with optimal architecture for performing a given task automatically. EANN uses 
constructive and destructive approach for automation of network topology optimization (Yao, 1999). 
Constructive approach starts with a small network and subsequently builds layers, links and nodes until a 
desired topology is achieved (Yao and Liu, 1997). Destructive method starts with a large network and 
subsequently discards layers, connections and nodes until the best possible architecture is achieved (Mozer 
and Smolensky, 1989).  
 
EANNs have several unique capabilities which facilitate the extraction of forest structural variables from 
remotely sensed signals. Some studies have utilized ANN for predicting vegetation variables. Pierce et al., 
(1994) used MLP network to predict trunk density, average trunk diameter, and average trunk height of 
Loblolly pine using AirSAR data. Kimes et al., (1996) developed a MLP network to extract forest age using 
TM and topographic data.  
 
The merits of ANN and EA are now discussed in details and advancements made in this area are briefly 
reviewed. However, there have not been any studies attempting to use EANN approach for AGB 
estimation using full waveform large footprint LIDAR. The only research that attempted to extract AGB 
and tree height from full waveform LiDAR using ANN was by Sun et al., (2007). The present research 
aimed to assess the capability of EANN for predicting tree height and AGB using large footprint full 
waveform spaceborne LiDAR. This study also endeavours to serve as benchmark for current and future 
AGB modeling studies using Neuro – Genetic approach. Moreover, the rapid estimation of AGB with 
enhanced accuracy using a combination of EANN and LiDAR will help to monitor the forest degradation 
by comparing temporal change in AGB content.  

1.3. Problem statement 
 
Forest degradation has resulted in qualitative and quantitative loss of vegetation cover and reduced 
productivity (FAO, 2006). Continuous anthropogenic pressure for exploitation of forest products has 
resulted in degradation of forests. This problem is acute as it is critically reducing the ability of the 
forest land to sequester carbon due to reduced forest cover. Furthermore, significant degree of 
uncertainty exists in carbon estimates in areas with low biomass carbon (Figure 1-6) which called for a 
more robust and accurate method to estimate AGB for effective monitoring of carbon pool in such 
regions. Hence, reasonably accurate, cost effective and rapid AGB estimation tools are needed to 
effectively monitor the changes in carbon stock due to degradation of forests.  
 
ICESat / GLAS data products with its unprecedented accuracy and global coverage have been used 
for land cover classification and biomass estimation (Lefsky et al., 2005; Boudreau et al., 2008). Most 
of the GLAS waveform derived AGB estimation studies were conducted in locations having flat 
terrain. In areas of greater slope or complex topography, deriving reasonable estimate of canopy 
height is affected by pulse broadening (Harding and Carabajal, 2005). In such conditions, there are 
robust possibilities to explore waveform processing methods in order to accurately retrieve canopy 
height information contained in the GLAS waveform which in turn will enhance the accuracy of 
AGB estimate.  
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Furthermore, as explained earlier, EANN have unique capabilities which can be used for extracting 
continuous forest variable such as tree height and AGB. Thus far, suitability of EANN for AGB estimate 
has not been documented, which emphasized their in-depth investigation.  
 

Figure 1-6: Total Biomass Carbon and Uncertainty in their Estimation 

                        [Source: Figure adopted from (Saatchi et al., 2011)] 

 

1.4. Research objectives 
 
The main objective of the research is to investigate the possibility of using EANN in combination of large 
footprint full waveform LiDAR to extract tree height and AGB with enhanced precision, thus extending 
the applicability of full waveform large footprint LiDAR and to facilitate the effective monitoring of forest 
degradation through analysis of temporal changes in AGB content.  
 
The specific objectives are as follows: 
 

 To develop a methodology to consistently model tree height and AGB from ICESat GLAS 
waveform derived metrics. 

 
Research questions: 
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 To what extent is the EANN approach is capable of predicting tree height and AGB 
using GLAS waveform derived metrics? 
 

 To identify and establish a reliable combination of ICESat GLAS waveform derived parameters 
for reasonable estimate of tree height.  

 
Research question: 

 
 Which GLAS waveform derived parameters are relevant for extracting tree height? 

 
 To analyse the change trend of AGB estimate for monitoring the impact of forest degradation. 

 
Research question: 

 
 What is the change in AGB as compared with past AGB estimate in the study area? 

 

1.5. Outline of the thesis 
 
The whole document has been organised into four chapters. Chapter 1 presents background, research 
context, problem statements and objectives of the research. The description of the study area, data and 
method used are described in chapter 2 and the results so obtained after the implementation of the method 
is discussed, analysed and presented in chapter 3. Chapter 4 constitutes a thesis conclusion, remaining 
research issues and recommendations for future efforts to further investigate the utility of EANN in the 
field of LiDAR remote sensing for extraction of forest vegetation structural parameters.  
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2. MATERIALS AND METHODS 

2.1. Study area 

2.1.1. Selection of the study area 
 
To fulfil the objectives of present study, a forest location is required that offers scope for sufficient 
biomass estimation and also with varying topography and forest composition. Another important criterion 
for the selection of the study site is ICESat GLAS waveform data, whose footprints can be accessed on 
the ground for the purpose of field data collection. The research is therefore planned to be conducted in 
forest regions around Shivpuri and Sheopur districts of Madhya Pradesh province, Central India (Figure 2-
1). Also, some studies on biomass estimation (Roy and Ravan, 1996; Kale et al., 2004) was previously 
conducted by Indian Institute of Remote Sensing (IIRS), Dehradun, India, hence some necessary ancillary 
data is already available. 

2.1.2. Description of the study area 
 
The study area is located in Madhya Pradesh state of India between (24°50` to 25°55`) N and (77°15` to 
78°30`) E at an altitude of 462 m MSL. The total geographic area of Sheopur and Shivpuri is 16,883 km2 
with 5,971 km2 of forest cover. The study area has semiarid to arid climate with annual mean daily 
temperature of 23 °C and average annual rainfall of 895 mm (Kale et al., 2004). The general physiography 
of the terrain in the study area is typical of Central Indian highlands, interspersed with woodlands and 
scrubby vegetation.  
 
The dominant forest type in the region is tropical dry deciduous with some patches of moist deciduous 
type. The forest composition of the study area is mostly of mixed type, including tropical dry deciduous 
tree species like Anogeissus pendula, Boswellia serrata, Acacia catechu, Ziziphus xylopyra, Elaeodendron glaucum, 
Bauhinia racemosa, B. monosperma, Lannea coromandelica, Anogeissus latifolia, Diospyros melanoxylon, Buchanania 
lanzan, Aegle marmelos, Madhuca indica and Terminalia bellerica (Kale et al., 2004).  
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Shivpuri Forest 

Sheopur Forest 

Figure 2-1: Location of the Study Area in India showing GLAS Footprints Track 
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2.2. Data available 
 
Necessary description of the data used in this study is in the following sections. 
 

2.2.1. ICESat GLAS data 
 
GLAS data used in this study is acquired for the period (11/04/2009 – 09/03/2009) from L2E laser 
campaign. GLAS has fifteen data products (GLA01 to GLA15) out of which two data products (GLA01 
and GLA14) of release 33 are used in this research. The data is procured from National Snow and Ice 
Data Center (NSIDC) through ICESat GLAS data subsetter (NSIDC, 2011b). 
 
GLA01 is Level 1A Global Altimetry data product which contains raw waveform. It also contains 
information about index number, eco intensity and shot number. GLA14 (Level 2 Global Land Surface 
Altimetry data) product is derived from GLA05 and GLA06 which contains information regarding region 
specific surface altimetry. It also gives precise geolocation of the footprint center along with the height 
elevation and centroid of the waveform. The record number, shot time and shot number is a common 
field across all GLAS product which is used to relate the different GLAS products. The relevant 
specifications of ICESat GLAS are listed in Table 2-1. 
 
                                         Table 2-1: ICESat GLAS Specifications (Zwally et al., 2002) 

ICESat GLAS Parameter Specification on Land Surface 
Wavelength 1064 nm 

Laser Pulse Rate 40 Hz 
Average Footprint Diameter ~ 70 m 

Laser Pulse Width 4 ns 
Vertical Sampling Resolution 0.15 m 

Surface Ranging Accuracy 5 cm 
Footprint Geolocation Accuracy 6 m 
Footprint Spacing Along Track ~ 170 m 

Laser Beam Divergence 110 rad 
 

2.2.2. Other reference dataset and materials 
 
Other reference data, software and field instruments used in this research are: 
 

 Survey of India Toposheet: Survey of India topographic sheets [Toposheet Number: 
54G(5,6,9,10,11,13,14,15,16] scaled 1:50,000 are used for the purpose of field work. 
 

 Software required: MATLAB, IDL, LabView, Python, Statistica, LabView SignalExpress,  
Emergent, JNEAT, Discipulus, DTREG 

 
 Field instruments: GPS, Haga Altimeter, Laser Hypsometer, Silva Ranger Compass, measuring 

tape, filed data collection form  
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2.3. Field data collection 
 

Field work was carried out in Shivpuri and Sheopur forest region from 07/01/2012 to 19/01/2012. 
Before commencing with the field work, the GLAS footprints to be sampled for tree height and AGB 
estimation were identified. Out of 130 footprints, 40 were randomly selected to obtain a representative 
sample for field data collection.   

 
Selected GLAS footprints were located on the ground using a handheld Garmin GPS with an accuracy 
level of ± 5 m. The footprints are elliptical in shape. For the convenience of laying sample plots in forest, 
the footprint shape was assumed to be circular with a diameter (73.5 m) equal to the average of semi-
major (95 m) and semi-minor (52 m) axis of the elliptical footprint. After the center of the GLAS 
footprint was located, four sampling plots with a radius of 7.5 m, one in center and three on the footprint 
margin (22.5 m to north, south-east and south-west to the center) (Figure 2-2) ((Sun et al., 2007) were laid.  

 
The present study is focused on prediction of tree height and AGB from GLAS waveform, so diameter at 
breast height (DBH) and tree height of all trees with DBH > 10 cm within the sample plot were measured 
and recorded. The tree species information was also collected for estimating the field AGB using species-
specific allometric equation developed by Singh and Misra, (1975) and Kale et al., (2004) for the study area. 
The detailed field data collection form can be found in Appendix.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2-2: Sampling Plots within GLAS 
Footprint 



A NEURO GENETIC APPROACH FOR RAPID ASSESSMENT OF ABOVE GROUND BIOMASS: AN IMPROVED TOOL FOR MONITORING THE IMPACT OF FOREST DEGRADATION 

17 

2.4. Research method 
 
The overall research method followed is shown in Figure 2-3: 
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Figure 2-3: Research Method Flow Diagram 
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2.4.1. GLAS waveform processing 
 

2.4.1.1. GLAS waveform pre-processing 
 
Pre-processing of raw GLAS data obtained from NSIDC GLAS Subsetter was essential for carrying out 
further analysis and parameter extraction. The method implemented to process GLAS waveform data is 
adopted from  Zhang et al., (2009) and Duong, (2010).   
 

2.4.1.2. Waveform conversion 
 
ICESat GLAS data (GLA01 and GLA14) is distributed in binary format which has to be converted into 
ASCII format for further processing. The conversion was carried out using IDL routines read_glas_file.pro 
developed by National Snow and Ice Data Center (NSIDC, 2012). The elevation and geolocation 
information was extracted from GLA14 data using NSIDC GLAS Altimetry Elevation Extraction Tool 
(NGAT). The resultant waveform data which was originally in counts (from 1 - 256) was converted into 
voltage units for subsequent analysis. The count to volt conversion was implemented using IDL routine 
read_gla01_wf.pro developed by NSIDC.  
 

2.4.1.3. Waveform normalization 
 
The resultant voltage waveform (Figure 2-4) is normalized to facilitate the comparison of waveforms 
captured in different time periods. The normalization is done by dividing each energy value Vi by the total 
received energy VT, at instant i represented as equation (2.1): 
 

                  (2.1) 

where N represents the number of waveform bins. In the present study N = 1000 bins. The area under 
any waveform becomes equal to 1 after normalization (Figure 2-5).  
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Figure 2-4: GLAS Waveform before Normalization

Figure 2-5: GLAS Waveform after Normalization 
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2.4.1.4. Detection of effective waveform signal 
 
The waveform detection system continuously measures the return signal. Hence it is necessary to extract 
actual waveform signal  from the continuous time series (Duong, 2010). This process is implemented by 
considering the position of the amplitude of the GLAS waveform signal firstly exceeds a certain noise 
threshold level.  
 
In the present study, it has been observed during the visualization of the data that the actual waveform 
signal (Figure 2-6) often starts after 850th bin (850 ns) within 1000 bins. Hence the first 850 bins have been 
used for the calculation of mean (MN) and standard deviation ( N) of the noise, as expressed in the 
equations (2.2) and (2.3): 
 

                               (2.2) 

 

                      (2.3) 

 
where (Vi) is the amplitude of the (ith) bin in the waveform. The threshold value (NThreshold) for 
differentiating between the noise and the actual waveform signal is determined as the mean (MN ) plus 
four times the standard deviation ( N ) (Lefsky et al., 2005) as represented by the equation (2.4): 
 

                                     (2.4) 
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2.4.1.5. Waveform smoothing  
 
The smoothing of the waveform is necessary for the elimination of noise (Figure 2-7) and estimation of 
initial parameters of the waveform such as location of waveform peaks. The smoothening is carried out 
using Gaussian filter (Duong, 2010) and implemented using LabView SignalExpress environment. The 
width of the Gaussian kernel is represented in terms of the standard deviation ( ) of the Gaussian 
function (Duong, 2010) and described as Full Width at Half Maximum (FWHM) which is linked to the 
standard deviation as given by equation (2.5): 
 

                    (2.5) 

 
which approximates to [2.35 * ]. Smoothing of waveform separates small amplitude signal from larger 
amplitude signal with similar frequencies (Figure 2-8).   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-7: Noisy GLAS Waveform 
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2.4.1.6. GLAS waveform initial parameter estimation 
 
For Gaussian curve fitting to GLAS waveform, it necessary to extract some initial parameters of the 
waveform like peak locations and their corresponding amplitudes. The peak detection strategy adopted is 
based on the fact that the peaks are the highest locations between the valleys. Hence there are lower value 
points around the peaks. A search window of 5 ns (5 bins) is applied to detect the peaks. The window 
moves from the beginning to the end of the signal and detected the waveform peak by calculating the 
difference between two succeeding amplitude values and marked a peak when the resultant difference 
value changes from positive to negative. All the peaks were identified in this manner (Figure 2-9). The 
method was implemented in LabView. A generic Virtual Instrument (VI) developed for waveform peak 
detection will be provided in the appendix.   
 
 
 
 
 
 
 

Figure 2-8: Smoothed GLAS Waveform 
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2.4.1.7. GLAS waveform Gaussian fitting 
 
The curve fitting step attempts to capture the trend of the signal by assigning a single homogeneous 
function across the entire range of the signal. The most general method for fitting any model to the signal 
is a kind of “trial and error” technique in which the parameters of the function are adjusted until it fits the 
signal with minimum possible error. Hence, the technique involved the selection of the best function 
model, initial guessing of function parameters and trial and error approach for fitting the model to the 
signal with desired accuracy. 
    
Therefore, for selecting the best function to fit the waveform, following assumptions and deductions were 
made. For a reasonable approximation of the complex characteristic of the ground footprint, it was 
assumed that all the reflecting surface features behave as Lambertian scatters. Since the transmitted GLAS 
pulse is assumed to be Gaussian and the surface feature is also Gaussian, hence the telemetered waveform 
is expected to be Gaussian (Brenner et al., 2003). Following this assumption, the normalized GLAS 
waveform was fitted with Gaussian curve. The fitting step involved modeling of smoothed waveform with 
Gaussian components using the algorithm developed by Duong, (2010).  
 
 
 

Figure 2-9: Identified Peaks (red circle) in the GLAS Waveform 
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The smoothed waveform is sum of series of Gaussian components expressed as equation (2.6): 
 

     (2.6) 

 
where W(t) is the waveform at time t,  is the noise level, Wm(t) is the contribution of mth  Gaussian 
component, N is the total number of Gaussian components in the waveform, Am is the amplitude of the 
mth Gaussian component, m  represents the location (mean) and m its width (standard deviation).  
 
For Gaussian modeling of GLAS waveform, a nonlinear least square estimation technique is applied for 
computing the function parameters in equation (2.6). This is done by fitting the theoretical model to the 
observed waveform in such a way that the difference between the theoretical model and observation is 
minimised in the least square sense. Figure (2-10) shows the results of the Gaussian modeling of GLAS 
waveform. 
 

 
 
Four significant modes were detected in the waveform. The telemetered waveform may have a longer 
trailing edge caused due to atmosphere and cloud conditions referred to as ringing effect (Fricker et al., 
2005; Duong, 2010). This may result in detection of false modes that do not represent actual surface 
feature.  
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Figure 2-10: Results of the Gaussian Decomposition of the GLAS Waveform 

Fit Error = 2.59 % 
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2.4.1.8. GLAS waveform parameters derivation 
 
After the smoothing and Gaussian fitting of GLAS waveform, some relevant waveform derived 
parameters were calculated for the purpose of extracting tree height and AGB. The parameters were 
identified and selected based on studies carried out by Duong, (2010) and other related works. The 
waveform derived metrics are listed in Table 2-2. 
 

Table 2-2: Description of GLAS waveform derived parameters [(Source: Duong, 2010)] 

Waveform Parameters Definition Physical Significance Visualization 
Waveform signal start 
(wStart) and waveform 

signal end (wEnd) 

Position where 
waveform first/last 

crosses above/below a 
certain threshold level 

wStart:  Highest 
interception point 

between surface and 
transmitted pulse. 

wEnd: Lowest 
elevation reflected from 

earth surface. 
Relevant for surface 

feature height extraction 
like tree height 

 
 

           wStart 
 
 
 
 
 
       wEnd 

 
Waveform centroid 

(wCentroid) 
Position where return 
pulse energy is divided 

in two equal parts. 

Represents mean 
elevation within the 

footprint. 

 
 
 
 
 
 

Waveform extent 
(wExtent) 

Distance between signal 
start and signal end. 

Represents maximum 
tree height and 

maximum canopy 
height. 

 
 
 

 
 
 
 
 
 

Waveform distance 
(wDistance) 

Distance from signal 
start to peak of the last 

Gaussian mode 

Represents top tree 
height and top canopy 

height. 
 
 
 
 
 

 

Peak Distance 
(wpDistance) 

Distance between first 
and last peak 

Represents average tree 
height 
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Waveform Parameters Definition Physical Significance Visualization 
Height of Median 
Energy (HOME) 

Distance from peak of 
the ground return to the 

waveform centroid 

Sensitive to change in 
vertical arrangements of 
tree canopy and degree 

of canopy openness  
 
 

 

Number of Gaussian 
Fits (wModes) 

Number of Gaussian 
components derived 
from nonlinear least 
squares estimation 

Signifies number of 
height levels 

corresponding to object 
and earth surface 

 

x % Quartile height 
(Hx) [H25, H50, 

H75,H100] 

Height at which x % of 
the return energy 

occurs.  

H50 equals the 
wCentroid. 

 
 
 
 

 

x %  Quartile height 
to Waveform Distance 
ratio (Rx) [R25, R50, 

R75] 

x % Quartile height 
divided by waveform 

distance 

Normalizes the effect of 
different canopy heights  

 

 
The parameters listed in Table 2-2 were extracted from the modelled GLAS waveform. The location of 
waveform signal beginning and signal end (Figure 2-111) were determined by locating the leftmost and 
rightmost position where the amplitude of the waveform firstly exceed the noise threshold level as 
calculated using equation (2.4). After delineating the signal start and end boundary, the waveform metrics 
related to tree height such as waveform extent, waveform distance and peak distance (Figure 2-11) were 
determined for extracting  ground return, tree top and tree height from GLAS waveform.  
 
To detect the proposed forest structural attributes the location of the highest peak of the Gaussian 
component in the right half of the waveform was considered as a reference and identified as ground 
return. The canopy return is defined here as the first peak above the noise threshold level after the signal 
start. Further, the tree height was calculated as the distance between the canopy return and canopy return 
(Figure 2-11). Similarly, tree heights were extracted from all the modelled GLAS waveform. Quartile based 
GLAS waveform parameters, H25, H50 and H75, which represents the height of 25%, 50% and 75% 
return energy from canopy (Figure 2-12) were extracted from the waveform. The height quartiles were 
used to calculate R25, R50 and R75 which is given by dividing H25, H50 and H75 from tree height 
obtained from GLAS waveform respectively.  
 
All the Gaussian modelled GLAS waveform derived parameters listed above are expected to be related to 
the forest structural attributes like tree height and AGB. As proposed earlier, one of the objectives of this 
study is to identify the best combination of waveform parameters for reasonable estimation of tree height 
and AGB. To achieve this aim, the powerful methodology of EANN (refer to section 1.2.4.2) is 
implemented to achieve the optimised combination of inputs for extracting reasonable outputs. 
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Figure 2-11: GLAS Waveform Parameters as Noise Threshold Level, Signal Start, Signal End, Ground 
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Figure 2-12: GLAS Waveform Quartile Based Parameters [H25, H50 and H75] 
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2.5. Data analysis 
 
In order to find out the relationship between the GLAS waveform derived parameters and forest 
structural attributes, namely tree height and AGB, a neuro-genetic approach was adopted to examine the 
best combination of waveform derived input parameters which have the best potentiality to estimate tree 
height and AGB.  
 

2.5.1. Neuro-Genetic Model Prediction 
 
In the present study, the Discipulus and DTREG are used for implementation of EANN to extract tree 
height and AGB from waveform derived parameters. The simulation environment has modules for data 
transformation, selection, training, testing, optimization and validation.  
 
GLAS waveform derived parameters selected for this study are [wDistance, R25, R50, R75, H25, H50, H75] 
which constituted the initial population of chromosomes. Each of the parameter is used as input to GA in 
Discipulus to find the best combination of input parameters for predicting tree height and AGB.  
 
After evolution of the best input combination, the parameters so selected were used to train EA neural 
network to predict tree height and AGB. For testing the efficiency of EANN over ANN, a MLP model 
was also developed for comparing the outputs of two models. As discussed earlier (section 1.2.4.1), the 
performance of the MLP is based on efficient training method. The aim of the training process is to find 
the optimum set of weight values that will result into the output to approximate with the desired values. 
Training involves selection of hidden layers, number of neurons in each hidden layer, finding a globally 
optimal solution and validation of the network to test for overfitting. The training method used in the 
study is the BP (Back-propagation) with logistic activation function in hidden layer. Several variations of the 
BP network architecture were tested in order to search for the appropriate architecture. After repeated 
tests, a network with one hidden layer with 10 neurons was selected for predicting tree height and one 
hidden layer with 7 neurons for predicting AGB.  
 

2.5.2. Validation 
 
Cross-validation method (Kohavi, 1995; Krogh and Vedelsby, 1995) is selected for validating the output 
of GA based input parameter optimization. Cross – validation was performed to minimize the problem of 
overfitting and selecting the most relevant input parameters for NN model in order to achieve a 
reasonable prediction of tree height and AGB. Cross-validation was carried out by dividing the validation 
data into a number of subsets and sequentially testing each subset with the GA output from remaining 
subsets. For this study the validation data was grouped into 10 subsets for the purpose of cross-validation. 
Further, the predictability of EANN is compared with the output derived from MLP model. 
 

2.5.3. AGB change trend analysis for monitoring forest degradation 
 
The GLAS predicted AGB is compared with the AGB estimates of the study area carried out by Roy and 
Ravan, (1996) for analysing the change in AGB. Based on the negative or positive change trend, AGB 
estimate of forest provided a preliminary indication of forest degradation or increase in forest cover. 
 



A NEURO GENETIC APPROACH FOR RAPID ASSESSMENT OF ABOVE GROUND BIOMASS: AN IMPROVED TOOL FOR MONITORING THE IMPACT OF FOREST DEGRADATION 

29 

 

3. RESULTS AND DISCUSSION 

3.1. Preliminary analysis of GLAS derived waveform parameters 
 
Some statistical analysis was carried out on GLAS waveform derived indices in order to get a preliminary 
overview of the relationship between indices and tree height. Figure 2-13 shows some results of the 
statistical analysis between waveform parameters and field tree height. It is clear that the variability of data 
is high or there may be some outliers. Further, none of the waveform parameter alone is capable of 
estimating tree height with reasonable accuracy. Therefore, various combinations of input metrics were 
tested to optimize the predictability of the model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1: Scatter Plot of the GLAS Waveform Derived Parameters 
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3.2. Neural Network input parameter optimization using EA 

3.2.1. Results 
 
As the project focused on estimation of forest structural attribute for rapid assessment of AGB, it 
becomes imperative that the variables required for model input should be easily extracted and produce 
results with reasonable accuracy. Hence, an evolutionary approach is implemented for selection and 
optimization of inputs. 
 
The GLAS derived waveform metrics as proposed earlier (Section 2.5.1) [H25, H50, H75, wDistance, R25, 
R50, R75] corresponding to [Input (0-6) respectively; Figure (3-2)] were subjected to EA as input 
population and field tree height as target parameter. The inputs were optimized after evolving through a 
number of generations and best performing individuals were selected based on fitness function (Figure 3-
3). The optimization, selection and validation results of EA are presented in this section. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-2: Input and Target Parameter for EA 

Figure 3-3: Best Team Selection Result 

Target Output 
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As inferred from the Figure (3-2), the wDistance curve (yellow line) resembles closely with the target output 
curve, hence have a greater chance of inheritance to the next generation followed by R75 (black line). This 
inference is confirmed by the impact factor (Table 3-1) of each input parameter.  
 
A total of 20000 generations were tested with a crossover rate of 67.76 and mutation rate of 76.62. The 
input impact or contribution of each waveform derived parameter to the next generation is presented in 
Table 3-1.  
 
  Table 3-1: Generation Impact Factor of GLAS Derived Waveform Parameter 

 
 
 
 
 
 
 
 
 
 
As evident from Table (3-1), waveform distance (wDistance) has maximum impact followed by R75 and 
R25. Several random combination of were generated and evaluated by a fitness function based on impact 
values. Some proposed combinations of input parameter obtained using EA are given in Table 3-2. 
 

Table 3-2: GLAS Derived Waveform Parameters Input Combinations 

 
The EA results show that the team number 5 having the highest fitness value evolved as the best 
combination and is selected as the input parameter for ANN model. It was followed by team 1, 4, 3 and 2. 

3.2.2. Validation 

 
The findings of the EA were validated using cross validation technique (Section 2.5.2). The results of the 
validation constitute this section. A 10 – fold cross validation is adopted with training and validation split 
of 80 % and 20 %. The data set is divided into 10 folds with each fold containing training and validation 
set. The results of the cross validation reconfirms the training output with team 1 having the highest 
fitness value. The wDistance curve (Figure 3-4) again shows similar variation pattern with target output 
(brown line) followed by R75. The fitness curve of best team and target output is shown in Figure 3-5. 
The variation (blue circle) in fitness may be due to presence of some outliers in validation data.  

Waveform Derived Parameters Impact  
R25 0.42454 
R50 0.28953 
R75 0.67839 
H25 0.13353 
H50 0.04475 
H75 0.38397 

wDistance 0.82681 

Team Number Fitness Waveform Parameter 
Combination 

Team Rank 

1 0.731903863042 wDistance, R25,R50,R75 2 
2 0.459517925978 wDistance, H25,H50,H75 5 
3 0.695538009167 wDistance, R25,H50,R75 4 
4 0.652529847622 R25,R75,H25, H75 3 
5 0.845910310742 wDistance, R25, R75,H75 1 
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Table 3-3: GLAS Derived Waveform Parameters Input Combinations (Validation) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3-3) shows the validation output of EA. The best combination of selected input matches with the 
evaluation and selection results. Hence the obtained combination can be used as input for ANN modeling 
for predicting tree height and AGB.  

Team Number Fitness Waveform Parameter 
Combination 

Team Rank 

1 2.875527410507 wDistance, R25,R50,R75 1 
2 2.234132289886 wDistance, H25,H50,H75 5 
3 2.264853715897 wDistance, R25,H50,R75 3 
4 2.236797809601 R25,R75,H25, H75 4 
5 2.268614768982 wDistance, R25, R50,R75 2 

Figure 3-4: Input and Target Parameters for Validation 

Figure 3-5: Best Team Selection Result 
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3.3. Neuro-Genetic Approach  
 

3.3.1. Multi-Layer Perceptron (MLP) Neural Network 
 

3.3.1.1. Results and validation 
 
The MLP neural network is used for predicting tree height and AGB from GLAS waveform metrics. The 
results produced by MLP are described in this section. Figure (3-6) shows the MLP network topology with 
one hidden layer containing 10 nodes for tree height prediction and one hidden layer with seven nodes for 
AGB prediction. Figure (3-7) shows the correlation between field maximum tree height measurements and 
height predicted by trained MLP model using GLAS waveform derived parameters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tree Height 
Predictor 

AGB 
Predictor 

Figure 3-6: MLP Network Topology for Tree Height and AGB Prediction 

Figure 3-7: GLAS Height vs Field Height Predicted by MPL 
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Vital statistics for assessing the performance of the model is given in Table 3-4. The coefficient of 
determination signifies that how much better we can do in predicting the tree height using MLP model. A 
R2 value of 0.79892 means that 79 % of variability observed in GLAS derived tree height can be explained 
by field measured tree height.  
 

        Table 3-4: MLP Tree Height Predictor Network Statistics 

MLP Model Statistics Training Data Validation Data 

 (R^2) 0.79892 (79.892%) 0.75139 (75.139%) 

RMSE  1.8145077 2.0696915 
 
The relative importance of GLAS waveform derived metrics in predicting tree height is shown in Figure 
3-8. It is clearly indicated that wDistance is closely related with tree height followed by H75 height quartile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
  
 
A MLP model with one hidden layer containing seven nodes was used for predicting AGB from GLAS 
waveform derived parameters. Figure (3-9) represents the correlation between field measured AGB and 
AGB predicted by trained MLP model from GLAS waveform derived indices. Table (3-5) gives the 
statistics for analysing the model performance. 
  

Table 3-5: MLP AGB Predictor Network Statistics 

 

MLP Model Statistics Training Data Validation Data 

 (R^2) 0.66073 (66.073%) 0.63139 (63.139%) 

RMSE  40.445836 43.811122 

Figure 3-8: Relative Importance of Waveform Derived Input Parameters 
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The relative order of importance of GLAS derived waveform indices are represented in Figure 3-10. The 
most important parameter is H75 height quartile followed by wDistance.  
 
 
 
 
 
 

Figure 3-9: GLAS Derived AGB vs Field AGB 

Figure 3-10: Relative Importance of GLAS Derived Indices for AGB Estimation 
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3.3.2. EANN based AGB & tree height prediction model 
 

3.3.2.1. Results and validation 
 
The results of the EANN model for predicting tree height and AGB constitutes this section. Figure (3-11) 
shows the correlation between tree height measured in field and height predicted by the waveform derived 
parameters using EANN model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3-6) shows the parameters for evaluating the performance of the model.  
 

Table 3-6: EANN Tree Height Prediction Model Statistics 

 
The model thus obtained after evolution and selection for predicting tree height from GLAS waveform 
variable is represented in equation (3.1).   
 

                              (3.1) 

The resulting equation explains 80.7 % variability in predicted tree height from waveform derived metrics.  
 
 
 

EANN Network Parameters Training Data Validation Data 

 (R^2) 0.80785 (80.785%) 0.78412 (78.412%) 

RMSE 1.8195845 1.9286752 

Figure 3-11: GLAS Height vs Field Height Predicted by EANN 
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Figure (3-12) shows the correlation between the predicted AGB using EANN from GLAS derived 
indices. The model performance evaluation parameters such as R2 as shown in Table (3-7) indicates that 
the predictability of EANN has improved as compared with the MLP predicted AGB. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3-7: EANN based AGB Predictor Model Statistics 

 
 
AGB estimation model thus obtained using EA for assessment of AGB is expressed in equation. This 
equation explains 69 % variability in AGB prediction based on GLAS derived parameters.  
 

                        (3.2) 

 

3.4. Comparative analysis of GLAS predicted AGB and AGB estimates from past inventory 
 
The GLAS predicted AGB estimate was compared with the AGB estimate of the study area based on the 
past study carried out by Roy and Ravan, (1996) in Madhav National Park (Figure 3-13) situated in 
Shivpuri. As the past data was available only for the Shivpuri region so GLAS footprints falling inside the 
Madhav National Park only was considered and analysed for AGB change. 

EANN Network Parameters Training Data Validation Data 

 (R^2) 0.69132 (67.132%) 0.64152 (64.152%) 

RMSE 29.032746 33.041511 

Figure 3-12: GLAS Derived AGB vs Field Measured AGB by EANN Model 
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As evident from the Figure (3-13), in most of the parts of the Madhav National Park there is a loss of 
AGB. This fact was also confirmed during field observation as there is a lot of illegal cutting of the trees 
(Figure 3-14). Hence, a degrading state of forest can be inferred from the negative change in AGB 
estimate. However a more appropriate comparison would consist of AGB estimates as predicted by 
GLAS data from two different time periods. This would provide an improved and quick method for 
monitoring the impact of forest degradation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GLAS 
Footprint ID

AGB Range (Past 
Inventory)(in t/ha)

AGB (GLAS 
Predicted)(in t/ha) AGB Change 

976745446:8 10 - 20 6.87  -
976745446:27 30 - 40 19.51 -
976745446:34 60 - 135 58.13 -
976745451:18 40 - 60 33.37 -
976745451:23 40 - 60 28.95 -
976745451:26 30 - 40 69.61 +
976745451:38 20 - 30 38.74 +

Figure 3-13: AGB Estimate Comparison (Past Estimate vs GLAS Predicted) 

Figure 3-14: Field photographs showing illegal cutting of tress 
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3.5. Discussion 
 
The present study focussed on further investigating the applicability of the full waveform large footprint 
spaceborne LiDAR for extraction of forest structural attributes like tree height and AGB. Owing to its 
unique capability to extract forest vertical structural information, this is an ideal tool for monitoring 
regional carbon stock with enhanced precision. There have been several studies on AGB estimation using 
spaceborne LiDAR (Lefsky et al., 2005, Lefsky et al., 2007) but the application of evolutionary techniques 
for AGB assessment are yet to be explored.  
 
The present research attempted to develop a new method to retrieve tree height and AGB from large 
footprint full waveform LiDAR and to serve as a benchmark study for development of EA models for 
AGB studies. To achieve this purpose, the raw waveform signal was decomposed into Gaussian 
components, and ground and canopy return from the waveform were delineated. Based on previous 
studies (Lefsky et al., 2007; Sun et al., 2007, 2008; Zhang et al., 2009; Duong, 2010), several waveform 
parameters assumed to be related with vertical structural attributes of the forest were extracted from 
processed waveforms. The proposed set of waveform derived indices is [H25, H50, H75, R25, R50, R75, 
wDistance]. In order to identify the most relevant set of indices, GA was applied to select the best set 
combination of parameters for extracting tree height and AGB. The identified set of metrics was 
[wDistance, R75, R25 and H75]. After the selection of the best input parameters, EANN approach was used 
to predict tree height and AGB. To test the superiority of the neuro-genetic approach, a conventional 
ANN model, MLP was also used for prediction of tree height and AGB. Based on the findings of EA 
model, it was observed that the model is able to explain 80.7 % of the variability in prediction of tree 
height and 69.13% variability in prediction of AGB which is a bit higher than the results of the MLP 
model having R2 values of 79.8% and 66 % for tree height and AGB estimation respectively.  
 
The result of tree height prediction model using EA found that the most useful waveform derived indices 
to predict average tree height were wDistance and R75. Of these, wDistance had the highest correlation. The 
wDistance increases with the canopy height. R75 decreases with the canopy height as more energy is 
reflected from upper canopy leaving less energy for reflection from ground.  
 
Sun et al., (2007) proposed an ANN model to predict maximum tree height and AGB using GLAS 
waveform derived metrics on flat terrains. The model used 5 input parameters derived from total length of 
waveform, quadratic mean canopy height, 25% and 50% waveform quartiles, with 3 nodes in hidden layer 
for predicting tree height (Sun et al., 2007). The model was able to explain 75% variability in prediction of 
tree height with a RMSE of 3.4 m. The AGB prediction model which was proposed by Sun et al., (2007) 
used six input parameters derived from total length of waveform, top canopy height, 25% and 75% 
waveform quartiles, with 10 nodes in hidden layer. The model was able to explain 73% of variability in 
AGB prediction with a RMSE of 30.43 Mt/ha. They recommended that similar results could be obtained 
in areas with steep slope. The results obtained from the present study showed a slight improvement over 
the results of Sun et al., (2007) as 6 GLAS footprint measurements were obtained from areas with 
moderate slope. As the aim of this study was to serve as a benchmark model for further studies using EA 
for tree height and AGB prediction, the results are promising in this context and further studies are 
required to validate the approach in areas with steep slope.  
 
The analysis of error statistics showed that the there is no significant improvement observed in tree height 
prediction using EA model as compared to MLP model. However the prediction has improved in case of 
AGB estimation using EA model having a reported R2 of 69 %. There is no observation that the input 
variable data in the training period have been over-fitted that is, the performance of the model does not 
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deteriorates much significantly during validation period as evident from the R2 values of training and 
validation phase. Further, there are no absolute deciding criteria for a good value of RMSE. It depends on 
the method of our measurements. The tree height values in our study area ranges from 3.7 m to 19 m. The 
RMSE as obtained from EA model is 1.8 m which is less than 50% of the minimum value of tree height 
and 25% of the mean and range of the field measured tree heights. Hence the RMSE value is reasonable 
as the possible error in the minimum tree height value is less than 50%. The R2 values are also reasonably 
high. This agreement can be explained with the fact that the majority of the trees within the sampled 
footprints are of uniform heights, hence there are no possible residual error compensation among short 
and the tall stands.  
 
However, the predictability of the AGB model is relatively poor. This underperformance of model in 
AGB estimate may be attributed to the density of the forest stand. The majority of the study area consists 
of open forest due to lot of trespassing and illegal felling of the forest stand by local inhabitants. In open 
forest conditions, the competition for sunlight and nutrient resources are less as compared to the closed 
forest. As a consequence, the trees show more gain in DBH as compared to height (Taiz and Zeiger, 
2011). AGB is a function of DBH and less related to height. It can be inferred that on relatively flat 
terrain, the wDistance is a function of tree height and not DBH. Hence a high value of RMSE is observed. 
The waveform derived metrics used in this work relies mainly on height attributes and, mainly on 
maximum tree height within the sampled footprint. This consideration may result in larger sampling error 
in the field condition as inferred by Lefsky et al., (2007). The future studies should investigate the average 
tree height given by peak distance of modelled waveform, which is considered to have stronger correlation 
with AGB (Means et al., 1999; Lefsky et al., 1999b; Anderson et al., 2006, Anderson et al., 2008).  
 
The performance of the GA depends on the stochastic operators such as selection, recombination, 
crossover and mutation. Our GA used only one crossover and mutation rate of 67% and 76% respectively 
to generate next generation. The selection of appropriate crossover and mutation rate is critical 
(Grefenstette, 1986; Schaffer and Morishima, 1987) and often it is difficult to determine the appropriate 
values and the choice is mainly carried out using a trial-and-error procedure. The same constraint inherits 
the evolutionary model for tree height and AGB prediction with a crossover rate of 47% and mutation 
rate of 58%. These factors may account for the possible error in AGB and tree height estimates. 
Furthermore, the choice of suitable crossover and mutation operator is also important. This study uses 
single point crossover operator and change mutation function to generate the optimized input subset. Future 
studies should test other robust mutation and crossover function such as multipoint crossover or swapping 
mutation function. In addition to this the robust fitness function is necessary for evaluating and selecting 
the best individual from the population. This study has used default fitness function of mean square error 
provided in the software both for input optimization and prediction model. The choice and formulation 
of fitness function is still an area under investigation providing a wide scope for further research.  
 
Besides all these constraints, the results of GA for input optimization seems to be reasonable as in the 
prediction models, approximately 50% of variance is explained within first few generations (Figure 3-14) 
showing that the input population have related trend. Also, it can be deduced that a higher crossover and 
mutation rate may result into more accurate outputs. However this inference needs to be tested with 
further studies.  
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All the aforementioned considerations and modeling efforts would be effective if our understanding of 
GLAS waveform modeling and extraction of proposed indices are accurate. One of the major 
obstructions in application of GLAS is multi-surface scattering within the footprint. A clear and thorough 
understanding of underlying properties of waveform signal propagation and their interaction with surface 
feature in necessary for accurate interpretation of GLAS waveform and derived indices (Jutzi and Stilla, 
2006; Wagner et al., 2006; Reitberger et al., 2008). The nature of the return laser pulse corresponds to the 
material composition and the geometric properties of the reflecting surface feature and the energy 
distribution of the emitted laser signal. All these factors are of prime importance and should be given a 
due consideration while modeling the return laser pulse. In context with the forest tree height and AGB 
modeling, these modifications and improvement in the modeling of the waveform may enhance the 
distinguishability between the canopy return and the return from other surface features.  
 
The return waveform pulse is a convolution function of transmitted waveform or system response and 
surface feature response (Jutzi and Stilla, 2006; Neuenschwander, 2008; Duong, 2010). Hence waveform 
deconvolution is required to remove the system response for extracting the surface feature response. 
Duong, (2010) proposed a novel technique for deconvolution of waveform using a Wiener filter and 
inverse fast-Fourier transformation. The author concluded that deconvolution method can accurately 
measure the difference between top and bottom of the object thereby making height estimations more 
accurate.  
 
The promises of reasonable prediction of AGB using large footprint full waveform spaceborne LiDAR, 
an important deduction of this work, opens up a new paradigm for monitoring forest degradation. An 
example is included in this study, by comparing AGB estimate from past studies and GLAS predicted 
AGB. The AGB change trend in the study area showed that there is a loss of forest cover. The 
observations made during field work corroborate the inference. As Madhav National Park is located close 
to the human settlement, the local inhabitants are dependent on the forest for fuel, fodder and other 
needs. Moreover, the presence of commercially important tree species such as Acacia catechu attracts traders 
resulting in rapid loss of forest cover. A rapid estimation technique for AGB assessment will provide more 
frequent AGB stock estimates, thus enabling the authorities effectively monitor the forest degradation. 
Furthermore, the multi-temporal nature of spaceborne LiDAR can provide data for periodic assessments 

AGB 
Model 

Tree Height 
Model 

Figure 3-15: R2 vs Number of Generation Plot for AGB and Tree Height Prediction Model 
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of AGB and subsequently carbon stock thus supporting the ongoing effort for implementation of uniform 
and transparent global carbon credit system. 
 
Pertaining to a short MSc research period, it was not feasible for the author of this work to incorporate all 
the improvements suggested in the discussion. The idea was to test the evolutionary approach for 
extracting vertical forest attributes using large footprint full waveform spaceborne LiDAR. Hence, a very 
basic model was implemented in all the modeling procedure and much consideration was given to 
simplicity of the approach rather than complex waveform parameter derivation and intricate neuro-genetic 
modeling. The outcomes of the study fulfilled the overall objective and gave a reasonable estimate of tree 
height and AGB and meanwhile opening up a gateway for future investigations with more accurate model, 
more resources and more time.  
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1. Conclusions 
 
In this work, a method for extracting tree height and AGB from ICESat GLAS waveform is developed. It 
has been demonstrated from this study that tree height and AGB can be directly retrieved from GLAS 
derived waveform metrics with reasonable accuracy. Hence, the aim of investigating the applicability of 
neuro-genetic approach for predicting tree height and AGB from ICESat GLAS thus extending the 
applicability of full waveform large footprint spaceborne LiDAR to facilitate the effective monitoring of 
forest degradation through analysis of temporal changes in AGB content. Hence the study was successful 
to achieve all the predefined objectives and answer all the associated research questions. 
 
Research Question 1: To what extent is the EANN approach is capable of predicting tree height and AGB using 
GLAS waveform derived metrics? 
 
Answer: From the outcomes of the study, it has been concluded that EANN model so developed is able 
to predict tree height with a RMSE of 1.8 m and AGB with RMSE of 29 t/ha. The study also revealed 
that the GLAS footprints can provide a reasonable estimate of AGB level. The model has been developed 
from the observations and measurements obtained from the GLAS footprint in areas with relatively gentle 
to moderate slope. Hence the model is expected to perform better in flat terrain and the performance in 
areas with steep slope is still a subject of further investigation. One primary observation made from the 
visual analysis of GLAS waveform obtained from footprints from moderate terrain areas is that the 
number of Gaussian peaks obtained after the waveform decomposition and modeling may prove useful in 
tree height estimation in areas of steep slope as the number of peaks increases with the complexity of the 
surface terrain.  
 
Research Question 2: Which GLAS waveform derived parameters are most relevant for extracting tree height? 
 
Answer: The indices identified after application of GA to GLAS waveform derived parameters are 
wDistance, R75, H75 and R25. These parameters were identified on the basis of the generation impact 
factor that is by assessing the relative contribution of each parameter to the final target value which is tree 
height. wDistance is found to have maximum impact hence more related to the tree height. 
 
Research Question 3: What is the change in AGB as compared with past AGB estimate in the study 
area? 
 
Answer: The comparison shows that the AGB estimate as predicted by GLAS data has decreased as 
compared to the AGB estimate form the past inventory. Though this comparison is only basic and 
indicative, but do signifies a degrading forest and more accurate change analysis can be done by utilizing 
the periodic data availability from spaceborne LiDAR and enhancing the accuracy of AGB prediction 
models based on these LiDAR systems.  
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The outcomes of this study demonstrates that with subsequent improvements and more representative 
studies, full waveform large footprint spaceborne LiDAR can be used for AGB and carbon stock 
inventories on global scale with enhanced precision. The analysis of the study framed up issues that 
needed critical considerations to improve the accuracy of model developed in this study. The product of 
this research was influenced by several factors such as period of GLAS data acquisition and the period of 
the present research work differed by approximately 2 years. This may be a possible source of error. 
Forest management practices and conditions of study area have a direct impact on the model 
performance. Hence a thorough consideration on all the aspects raised in the present work is required 
before developing a robust model for global biomass monitoring.    

4.2. Recommendations 
 
All the future investigations carried out should consider the following issues in order to improve the 
ongoing efforts of this research theme: 
 

 Use of Dynamic Genetic Algorithm (DGA) is recommended for AGB modeling as it has the 
capability to use more than one mutation and crossover operators for evolving next generation 
thus enhancing the efficiency of the GA approach.  
 

 More robust signal processing techniques can be implemented other than Gaussian modeling for 
extracting waveform derived metrics more accurately. Waveform deconvolution is suggested in 
subsequent modeling effort to achieve a clear differentiation among reflecting surface features.  
 

 So far estimation of AGB has been carried out on footprint level only. Future works should 
consider integration of different sensor products such as VHR imagery, PolInSAR, airborne 
LiDAR in combination with geostatistical techniques for extending the AGB estimate over the 
entire region.  
 

 More number of representative filed samples should be considered, especially samples with 
different slope classes for effective AGB modeling and validation.  
 

 The future work based on the themes of the present study should be tested under different 
scenarios and varied field conditions for ensuring their repeatability and transferability.  
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APPENDICES 
Appendix I: Field Data Collection Form 
 

 
 
Appendix II: Software 
 

A. Waveform Peak Detection [LabView Virtual Instrument Outline] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While Loop GLAS Waveform Peak Detector
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B. DTREG [EANN Application] 

 
Appendix III: Field Photographs 
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