
Estimating Chlorophyll Content in a Mangrove 
Forest Using a Neighbourhood Based 

Inversion Approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Giles Jay Williams 
February 2012 

 
 
 
 



 ii 

Course Title:   Geo-Information Science and Earth Observation for 
Environmental Modelling and Management 

 
Level:  Master of Science (MSc) 
 
Course Duration: August 2010 – March 2012 
 
Consortium Partners: Lund University (Sweden) 
 University of Twente, Faculty ITC (The Netherlands) 



 

Estimating Chlorophyll Content In A Mangrove Forest Using 
A Neighbourhood Based Inversion Approach 
 

 
by 
 

Giles Jay Williams 
 
 
 
Thesis submitted to the Faculty of Geo-Information Science and Earth 
Observation, University of Twente in partial fulfilment of the requirements for 
the degree of Master of Science in Geo-information Science and Earth 
Observation for Environmental Modelling and Management 
 
 
 
 
Thesis Assessment Board 
 
Dr. Ir. C.A.M.J. de Bie (Chair) 
Dr. M.F. Noomen (External Examiner) 
Prof. Dr. Ing. W. Verhoef (First Supervisor) 
Prof. Dr. A.K. Skidmore (Second Supervisor) 
 
 
 
 
 
 
 
 
 
 
 

 



 iv

Disclaimer 

This document describes work undertaken as part of a programme of 
study at the Faculty of Geo-Information Science and Earth Observation, 
University of Twente. All views and opinions expressed therein remain the 
sole responsibility of the author, and do not necessarily represent those of 
the institute. 

 



 

Abstract
 
Mangroves are coastal vegetation that inhabit tropical and sub-tropical regions. 
High rates of deforestation in mangrove forests are a result of conversion to 
aquaculture, agriculture and logging. Aquaculture and agriculture result in the 
release of nutrient rich effluent into the mangrove ecosystem. Effluent is known 
to contain increased levels of nitrogen and the impact on the mangrove 
ecosystem is not fully understood. Chlorophyll can be used as an indicator of 
vegetation health through a high correlation with nitrogen. Inversion of a 
canopy reflectance model has been previously applied to estimate chlorophyll in 
mangroves of the Mahakam Delta, East Kalimantan; achieving low accuracy 
results. The approach is inherently hampered by the ill-posed nature of the 
solution which results from counterbalancing effects between parameters. In 
this study, a neighbourhood based inversion developed by Atzberger (2004) was 
applied to improve the accuracy of chlorophyll estimation. This approach has 
not been applied previously to tropical or mangrove forests. Inversion was 
performed using a look up table approach with the Soil Leaf Canopy (SLC) 
reflectance model. 

The neighbourhood inversion approach was not able to significantly improve 
the accuracy of chlorophyll estimation. Due to the low accuracy, no correlation 
could be identified between neighbourhood size and accuracy. Compared to the 
pixel based approach (Rel. RMSE = 31.5% and R2 = 28.9%), the best results 
achieved by the neighbourhood inversion were from 3x3 sliding windows (Rel. 
RMSE = 30.99% and R2 = 30.38%) and objects with scale factor 5 (Rel. RMSE 
= 30.61% and R2 = 30.19%). 
 
A number of errors were identified throughout the data analysis, with the field 
samples determined to be the most significant source of uncertainty. These 
uncertainties indicate that the field samples are not sufficiently representative of 
the image pixels. Although accuracy estimates are low, the output maps from 
the different methods show a consistent spatial structure. Maps should not be 
used to estimate chlorophyll at specific locations but can be used to examine 
spatial variations throughout the study area. Chlorophyll concentration appears 
to be correlated with proximity to ponds and position relative to the coast.  
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1. Introduction 

1.1 Mangroves and Shrimp Ponds 
Mangroves are salt-tolerant, evergreen, coastal vegetation that inhabit tropical 
and sub-tropical regions. They are abundant in brackish, inter-tidal areas with 
low wave and tidal action (Hogarth, 2007). The coastal environment is nutrient 
deficient and mangroves are highly adapted to these conditions. Mangroves 
favour areas such as river deltas, where fresh river water mixes with the tidal 
inundation of sea water to promote nutrient availability and recycling. 
Mangroves act as a filter, trapping and absorbing nutrients and heavy metals 
available in the soil (FAO, 2007). They also support a number of ecological 
functions; providing habitats and spawning grounds for reptiles, amphibians, 
mammals, birds and fish (Nagelkerken et al., 2008). Local communities exploit 
mangroves for economic purposes such as fuel wood, construction material and 
food (FAO, 2007). 
 
High pressure by humans on coastal ecosystems has resulted in high rates of 
mangrove deforestation globally. The Asian region has been one of the most 
severely affected. Mangroves in Asia account for 38% of the global total, 
covering over 5.8 million hectares and approximately 25% of this area was 
removed during the period 1980-2005. The leading causes for mangrove 
removal in this region are: conversion to aquaculture for shrimp farming, 
excessive logging and conversion to agriculture (FAO, 2007). 
 
Shrimp farming results in the release of nutrient rich water into the surrounding 
areas. Effluents consist of uneaten feed and waste matter which contains 
increased levels of ammonia, nitrates and phosphates (Ruenglertpanyakul et al., 
2004). The effect of shrimp pond effluents on the mangrove ecosystem is not 
fully understood (Sidik, 2009). However, prolonged high nutrient availability 
can result in negative changes to mangrove growth (Reef et al., 2010). 
Consequently, studies are required to examine the impact of aquaculture 
practices on mangroves. These are essential to the monitoring and protection of 
mangroves and the sustainable management of the shrimp farming industry. 
Figure 1 shows a conceptual diagram of the mangrove ecosystem and illustrates 
components which may be affected by environmental changes. 
 
Foliar biochemicals can be used as indicators of nutrient availability, ecosystem 
functioning and plant stress (Siciliano et al., 2008; Zarco-Tejada & Sepulcre-
Canto, 2007). Nitrogen is one nutrient which limits growth in mangroves 
(Tomlinson, 1994) and is an effluent from shrimp ponds (J.-L. Martin, 2011; 
Ruenglertpanyakul et al., 2004). Detection of nitrogen by remote sensing 
techniques is possible through correlation of field measured concentrations with 
specific wavelengths and known spectral absorption features. Extensive field 
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sampling is required to build a site specific model. A generalised approach can 
be applied using data from other sites, but this produces results with lower 
accuracy (M. E. Martin et al., 2008; Peterson et al., 1988). Foliar nitrogen 
content can also be estimated through a relationship with chlorophyll 
(Haboudane et al., 2002; Tilling et al., 2007). Variations in concentration can be 
used to show differences between healthy and stressed vegetation; chlorophyll 
concentration decreases when vegetation is stressed (Zarco-Tejada & Sepulcre-
Canto, 2007). Estimating variations in mangrove health will be a significant 
step towards assessing the impact of increased nutrient levels on mangrove 
vegetation. 
 

1.2 Modelling and Inversion 
Hyperspectral imagery is an evolving resource which has been used to improve 
the efficiency of vegetation monitoring. In other words, the detection of 
reflected radiation at a finer scale allows a greater amount of information to be 
extracted from a single dataset (Held et al., 2003) and quantitative estimates of 
biophysical properties to be retrieved (Ustin et al., 2004). Leaf chlorophyll is 
most active near the 550nm and 700nm parts of the spectrum (Carter & 
Spiering, 2002) and the use of hyperspectral data allows these specific parts of 
the spectrum to be used in analysis. Hyperspectral imagery has been 
successfully applied to examine vegetation health and ecosystem properties in 
mixed temperate forests (Huber et al., 2008), needle-leaved evergreen forests 
(Schlerf et al., 2010) and grasslands (Darvishzadeh et al., 2008).  
 
To obtain quantitative estimates of canopy biochemicals from hyperspectral 
imagery, two approaches have been developed. Empirical approaches use ratios 
between narrow spectral bands to create vegetation indices which are correlated 
to measured vegetation characteristics. The resulting models are site, species 
and sensor specific and therefore require calibration before use (Zhang et al., 
2008). Physically-based approaches use radiative transfer models. Radiative 
transfer models simulate the interactions of incoming solar radiation with the 
atmosphere and earth’s surface. Vegetation models can simulate the top-of-
canopy reflectance using formal knowledge of the biophysical and biochemical 
characteristics of the canopy and leaves. Using hyperspectral imagery of the 
canopy, the model can be inverted to provide a quantitative estimate of the 
vegetation parameters.  Model parameterisation is also required, to define 
parameter ranges applicable to the study area (Goel & Thompson, 2000). 
 
A number of physical models exist for modelling canopy reflectance. Model 
type and complexity are varied and the model chosen is dependent on the study 
area, especially the canopy architecture (Goel & Thompson, 2000). Turbid-
medium models assume that the canopy is a horizontal, uniform entity with 
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distinct parallel layers. Each layer consists of randomly distributed vegetation 
elements with absorbing and scattering properties. Turbid-medium models are 
suitable for dense, horizontally uniform canopies (Goodenough et al., 2006). 
Geometric models consider a flat ground surface containing geometrical objects 
to represent tree crowns, in a regular or random distribution. Reflectance is then 
modelled as a combination of sunlit and shadowed crowns and sunlit and 
shadowed ground surface. These models are suitable for sparse canopies (Li & 
Strahler, 1986). Hybrid models combine modelling approaches. In the case of 
geometric and turbid-medium models, the canopy is modelled as a distribution 
of geometrical objects containing turbid media with randomly distributed 
vegetation elements. Additional components such as a soil model may also be 
included. Hybrid models can be used to represent a wider variety of canopy 
types (Goel & Thompson, 2000). 
 
Inversion to retrieve vegetation parameters is typically carried out by pixel-
based application of the inversion process. Parameter estimates are obtained 
independently for each pixel in the image by comparing the measured spectrum 
with a predicted spectrum generated by a canopy reflectance model. Several 
inversion approaches are available; of which the most commonly applied are 
numerical optimisation techniques, look-up tables (LUT) and artificial neural 
networks (ANN). While the 3 approaches can produce highly correlated results 
(Vohland et al., 2010), advantages and limitations exist for each method. LUT 
and ANN are considered more computationally efficient than numerical 
optimisation. However, to ensure suitable representation of the study area in the 
LUT and ANN training set, a large database of simulated spectra is required. 
The size of the database required also increases with model complexity. The 
computation time required for a LUT search increases with increasing database 
size (Goel & Thompson, 2000; Liang, 2005). 
 
There exists, however, an inherent problem with the inversion method. The 
inversion solution is considered ill-posed if either no unique solution exists or if 
the model or measurements contain errors that may result in variation of the 
solution (Combal et al., 2003). Counterbalancing effects between parameters, 
results in multiple combinations that can produce almost identical reflectance 
spectra. Also, radiative transfer models contain simplifications of reality which 
do not fully represent the actual interaction between the vegetation and 
incoming radiation (Atzberger, 2004). To counteract the ill-posed nature of 
model inversion, two different approaches exist. Combal et al. (2003) proposed 
the use of prior information to reduce uncertainty in parameter estimation. Prior 
information is used to impose constraints on the parameter space and reduce the 
number of possible solutions. The prior information can be either: 
supplementary data from another sensor, knowledge of the canopy architecture 
or knowledge of the distribution of canopy variables. The approach proposed by 
Atzberger (2004), is to use a spatially constraint model inversion. This method 
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takes into account the principle of spatial autocorrelation and assumes that 
canopy variables are similar within neighbouring pixels. Radiometric 
information from neighbouring pixels is used to create a neighbourhood 
signature containing spectral covariance information. This is combined with the 
reflectance data from the pixel of interest to perform the inversion.  
 
Both methods have been evaluated and proved to provide an adequate solution 
to the ill-posed problem. Advantages and disadvantages exist for both 
approaches. Application of prior information (Combal et al., 2003) incurs 
additional costs to carry out fieldwork or obtain supplementary data from other 
sensors. The neighbourhood based method (Atzberger, 2004; Atzberger & 
Richter, 2009) utilises a single dataset but requires more complex and rigorous 
computations. Few previous studies have implemented the neighbourhood 
approach. These studies focused on structural parameters such as leaf area index 
(LAI) and only one attempted to estimate foliar chlorophyll. Study areas used in 
each of the previous works were varied and included simulated data sets and 
agricultural areas (Atzberger, 2004; Atzberger & Richter, 2009). As these 
approaches use a physical model for vegetation reflectance, it is expected that 
estimation of any of the model’s parameters can be made. The main limitation 
being the collection of field samples required for validation of the results. 
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1.3 Research Problem 
A physically based approach has been applied previously to study chlorophyll 
in mangrove forests. The Soil-Leaf-Canopy (SLC) radiative transfer model was 
applied to HyMap hyperspectral imagery and inverted in a pixel based approach 
to retrieve estimates for chlorophyll concentrations in mangrove forests of the 
Mahakam Delta, Indonesia (Wandera, 2011). The study achieved results of: 
R2=0.30 and relative RMSE = 27.5%, when comparing estimated and  field 
measured chlorophyll content. 
 
The study has shown that the traditional inversion approach can provide only 
fair results when applied to a mangrove canopy. However, as research has 
shown, this approach is inherently hampered by the ill-posed nature of the 
inverse problem; which can lead to inaccurate and unstable inversion results 
(Atzberger, 2004). Further studies are therefore required to apply and test the 
methods which have been proposed to improve the reliability and accuracy of 
these results.  The neighbourhood based inversion has not been previously 
applied to a forest or mangrove environment. 
 
 

Figure 1: Conceptual diagram of the mangrove ecosystem. The outlined box
highlights the component that was targeted in this study. 
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1.4 Objectives 

1.4.1 General Objective 
The objective of this study is to apply a neighbourhood based inversion 
approach to hyperspectral imagery for estimating chlorophyll content in a 
mangrove canopy. 

1.4.2 Specific Objectives 
To apply the sliding window and image segmentation approaches for 
neighbourhood based model inversion. 
Evaluate the results against field samples of leaf chlorophyll content 
To compare the accuracy that can be achieved using a neighbourhood 
based approach with the results of a traditional, pixel based inversion. 

1.4.3 Research Questions 
How do mangrove vegetation parameters vary within image 
neighbourhoods? 
How does the accuracy of parameter retrieval change in relation to 
neighbourhood size? 
Are the results sufficiently reliable to be used for an assessment of the 
spatial variations of chlorophyll in mangroves? 
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2. Materials and Methods 

2.1 Study Area 
The Mahakam delta is located in the province of East Kalimantan, Indonesia 
(Figure 2). The fan-shaped delta is made up of 46 islands which are 
characterised by high biodiversity with at least 7 families and 20 species of 
mangrove. The central part of the delta once formed one of the largest expanses 
of Nypa mangrove in the world (Sidik, 2009). Ecological functioning of the 
delta is physically driven by 2 main influences. The 770 km. long Mahakam 
River discharges fresh water which contains a large volume of nutrient rich 
sediments. River discharge interacts with the tidal influx of seawater to provide 
the physical and chemical conditions for mangrove and marine life (Dutrieux, 
1991). 
 
The Mahakam delta, Indonesia, is characterised by extensive pond construction 
for aquaculture. By 2007, 55% of the mangrove area in 1980 was removed. In 
2007, the size of the Mahakam delta was estimated at 107,222 ha using 
Quickbird imagery. 10,645 ponds were recorded, covering 54% (57,912 ha) of 
the total area. Approximately 80% of the removed mangroves were Nypa 
stands. The most significant impact of the mangrove removal is the gradual 
increase in saltwater intrusion upstream. This results in changes to the 
environmental conditions within the delta, mainly increased exposure to higher 
salinity levels  (Sidik, 2009).  
 
The study area was appropriate because it represents common issues associated 
with mangrove ecosystems globally. The highly biodiverse area is threatened by 
rapid ecosystem change. Areas like the Mahakam delta can provide insight to 
how the mangroves are able to adapt to these changes. 
 

2.2 Image Data 
Airborne hyperspectal imagery was collected on 16 October 2009 with a 
HyMap sensor. The data contained 126 spectral bands, covering the range 
450nm – 2490nm. 8 flight lines were flown over an area in the north-east of the 
delta, covering approximately 13.3 km (E-W) by 11.4 km (N-S), with a spatial 
resolution of 3.1 meters. Imagery was processed by HyVista Corporation, 
Sydney, Australia. Radiometric corrections were performed using Hycorr 
software to convert the data to top-of-canopy reflectance. Image geocorrection 
was also applied HyVista Corporation. Checks were performed on the imagery 
to assess the data quality after radiometric and geometric corrections had been 
applied. Ground control points were measured at discernible features in the 
image using handheld GPS. Coordinates were then compared to those provided 
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by the corrected image. The RMSE accuracy of the georeferenced image was 
calculated as approximately 6 – 9 meters (2-3 pixels) (Wandera, 2011). 
 
 

 
Figure 2: Map showing the location of the Mahakam delta, East Kalimantan, Indonesia. 
Inset shows an ASAR image of the delta, 2009. (Source: www.eosnap.com, retrieved 1-
2-2012) 
 
 
Co-located pixels from adjacent flight strips were compared to examine the 
radiometric consistency between different observations of the same ground 
location. For a single pixel, the maximum difference in a single band was 
approximately 4% of mean reflectance. A mosaicked image was therefore used 
instead of individual flight strips. The image was masked to remove areas 
obscured by clouds and cloud shadows. Forested areas were also masked to 
remove water bodies, shrimp ponds and other non-mangrove features. The 
forest mask was created using an unsupervised (ISODATA) classification. 
Multiple classes were generated and then grouped in two larger classes: 
mangrove and non-mangrove areas. Figure 3 shows a false colour map of the 
study area after clouds and non-mangrove features were masked out. For 
comparison, a false colour image of the entire study area can be seen in Figure 
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20 (Appendix).  Finally, bands were removed from the 126 band image using 3 
criteria: high noise (especially in water absorption areas of the spectrum), 
radiometric errors such as negative reflectance values and differences in 
wavelength range between the SLC model and the HyMap sensor. A total of 13 
bands were removed in the data preparation to leave 113 bands for data 
analysis. 
 

2.3 Field Data and Processing 
Field data was collected in August 2009 and August 2010 (Wandera, 2011). 
Chlorophyll measurements were made along 19 transects, from the coastline in 
an inland direction. Transects were positioned randomly throughout accessible 
areas of the delta due to inherent difficulties in navigating the mangrove 
environment. Transects were roughly 400 m. long with sample locations spaced 
at approximately 50 m. Positions were recorded using a handheld GPS receiver 
with positional accuracy (horizontal) of ±5-10 m. (Axelsson, 2011).   
 
Chlorophyll was measured using a Minolta Inc. SPAD-502 Leaf Chlorophyll 
meter. Branches were collected from the upper part of a tree crown, from which 
10 separate leaf measurements were made. The average value was calculated 
and  assigned to the sample location (Wandera, 2011). A total of 66 sample 
points were used after some points were discarded due to masking of clouds and 
non-mangrove areas.  
 
SPAD measurements are unitless values which are correlated with leaf 
chlorophyll and require an empirical formula for calibration to chlorophyll units 
(μg cm-2). Calibration of field samples was carried out following field data 
collection. Empirical calibration equations are derived by regression analysis 
using the SPAD readings and laboratory derived chlorophyll measurements. 
Leaf samples are dissolved in a chemical solution to extract the chlorophyll and 
absorbance is measured using a spectrophotometer (Markwell et al., 1995; 
Richardson et al., 2002). Correlations are species specific and have been shown 
to also be dependent on leaf characteristics such as leaf thickness and leaf water 
content (Marenco et al., 2009). As the SPAD readings were the only vegetation 
data collected during the field sampling, an existing equation was chosen 
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Figure 3: False colour infra-red image showing the areas covered by mangrove 
vegetation after clouds, water, shrimp ponds and other non-vegetation features were 
masked out. Chlorophyll field samples are highlighted in green. 
 
 
for conversion to chlorophyll units. 3 available formulae were determined to be 
suitable for application to the mangrove field measurements. A formula by 
Coste et al. (2010), Equation 1, was developed using 13 tree species in tropical 
rainforest to reduce the species specific variations and have a wider range of 
applicability.  
 

 
where X is the SPAD measurement and chlorophyll is in μg cm-2.  
Only one existing equation which was developed on a mangrove species could 
be found. The formula by Connelly (1997), Equation 2, was generated on 
Rhizophora mangle in the Caribbean.  
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The formula developed by Richardson et al. (2002), Equation 3, was generated 
using measurements on Betula papyrifera (paper birch). This formula was 
found to provide reasonable calibration accuracy when applied to other species 
(Coste et al., 2010).  
 

A comparison was done to determine the differences between the three 
formulae. This was done by comparing the calibrated chlorophyll values, for 
each of the 66 field samples, using each of the 3 formulae. 
 

2.4 Chlorophyll Estimation 

2.4.1 Modelling
The Soil Leaf Canopy (SLC) model (Verhoef & Bach, 2007) was chosen in 
combination with the look up table inversion approach. SLC is a coupled model 
which includes a modified Hapke soil BRDF model, a robust PROSPECT leaf 
model and 4SAIL2, a modernised, hybrid canopy model. The model covers the 
spectral region between 400nm – 2400nm. Models of this type are suitable for 
representing a wider variety of canopies (Goel & Thompson, 2000), which was 
deemed important for modelling of the mangrove forest. The SLC model also 
includes simulation of soil moisture effects. The soil moisture conditions can be 
highly variable throughout the mangrove ecosystem depending on topography, 
tidal influx and river discharge. Reducing the uncertainty about the background 
reduces variation in the estimation of canopy parameters (Verhoef & Bach, 
2007). Figure 5 shows the soil reflectance spectrum that was applied. The SLC 
model has generated good agreement between modelled and measured spectra 
when applied to other forest types such as beech and spruce. General agreement 
was also found with other models of similar type (Schlerf et al., 2007). 
 
Simulated spectra for the LUT were generated by running the SLC model in 
forward mode with a pre-determined range of input parameters. The model has 
22 input parameters of which 9 are known to have a significant effect on the 
reflectance of mangroves (Wandera, 2011). The range of input parameters was 
determined using sample spectra extracted from throughout the study area. 
SLCdemo, an implementation of the SLC model which allows manual 
adjustment of parameters, was used to invert these spectra manually. The results 
were used to define the range of values to be used for each of the 9 parameters. 
Table 1 lists the complete set of parameters used as input to the SLC model. 
The soil was assumed to be a Lambertian reflector. A simulated spectrum was 
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then generated for each combination of parameters and stored together as the 
LUT (Mobley et al., 2005). Figure 4 shows an example of the resulting spectra. 
 
 

 
Figure 4: Visual representation of 50,000 simulated spectra stored in the LUT. 
 
 

 
Figure 5: Reflectance spectrum applied for the soil background 

 



Materials and Methods 

 13

Table 1: Table summarising the input parameters used for generation of the LUT 
 
Parameter Symbol Min Max Steps Constant 
Leaf Parameters 
Chlorophyll a+b (green) Cab 30 80 6 
Leaf Water Thickness 
(green) Cw 0.02 0.08 7  
Leaf Dry Matter (green) Cdm 0.001 0.009 5 
Leaf Senescence (green) Cs 0.1 0.4 4 
Leaf Structure (green) N 1.7 2.2 3 
Chlorophyll a+b (brown) Cab_brown 10 
Leaf Water Thickness 
(brown) Cw_brown    0 

Leaf Dry Matter (brown) Cdm_brown 0.5 
Leaf Senescence (brown) Cs_brown 15 
Leaf Structure (brown) N_brown 10 
Canopy Parameters 
Leaf Area Index LAI 1.5 5 8 
Leaf Inclination Distribution LIDFa -0.35 
Function LIDFb -0.15 
Hot Spot hot 0.05 
Fraction of Brown Leaves fB 0.03 0.05 2 
Layer Dissociation Factor Diss 0.8 
Vertical Crown Cover 
Percentage Cv 0.75 0.85 3  
Tree Shape Factor zeta 0.3 0.7 3 
Soil Parameters 
Soil Moisture SM 0.25 
External Parameters 
Solar Zenith Angle tts 42 
Observation Zenith Angle tto 0 
Relative Azimuth Angle psi 157 
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2.4.2 Pixel-based Inversion 
The reflectance spectrum was extracted for a pixel in which a field sample of 
chlorophyll was located. The spectrum was constructed by extracting the 
reflectance at that pixel from each band of the image data; subsequently referred 
to as the measured spectrum. The measured spectrum was then compared to the 
LUT entries (simulated spectra) by calculating the difference between measured 
and simulated spectra at every band. The difference between measured and 
simulated spectra was quantified using (Equation . 
 

where R is the reflectance, i is the image band number, n is the total number of 
bands,  j is the specific LUT entry and w is a weight matrix. 
 
The LUT entry with the best matching spectrum was identified by the minimum 
reflectance difference value. The parameters used to generate that entry were 
then retrieved to obtain the predicted concentration of chlorophyll. Due to 
chlorophyll having its spectral response in the visible part of the spectrum, the 
weight matrix was used to increase the importance of bands in the visible to 
NIR region. This region was given a weight of 2, compared with the remaining 
bands weighted at 1. A higher value was not used as it would effectively 
disregard the remaining parts of the spectrum. Due to the heavy computing 
requirements of using a large LUT, both the modelled and measured data were 
reduced to fewer bands. Data in adjacent bands of hyperspectral data are highly 
correlated, meaning it was possible to discard several bands and retain most of 
the contained information. To keep data from across the spectrum, every fourth 
band was chosen; leaving 29 bands for data analysis. A comparison of the 
results showed that the same amount of variation could be explained by the 29 
bands selected as with the total 113 bands. Validation was performed by 
comparing the estimated chlorophyll to the field measurements. RMSE, R2 and 
a plot of measured vs. predicted chlorophyll were generated and used to assess 
the results. 

2.4.3 Parameter Variation 
Knowledge of the spatial variation of parameters was required to determine 
whether any of the 9 parameters could be assumed to have a constant value 
within neighbouring pixels in the image. To determine how the mangrove 
vegetation parameters varied within neighbourhoods, a combination of methods 
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was used. Previous studies were reviewed to examine typical assumptions made 
with parameters and determine if any of these could be applicable to this study. 
Variations were also measured from the image data. Using the pixel-based 
inversion method, spectra from within a sample neighbourhood were extracted 
and inverted individually. The resulting parameter estimations were then 
compared across the neighbourhood and quantified by calculation of the 
coefficient of variation. This was repeated with varying window neighbourhood 
sizes. Several potential combinations of constant and variable parameters were 
tested by usage in the neighbourhood inversion method described in section 
2.1.5, below. The combination that resulted in the highest accuracy was chosen. 

2.4.4 Object Creation
To create image objects, a minimum noise fraction (MNF) image was created 
from the mosaic with non-mangrove areas masked out. The resulting 
eigenvalues were used to remove bands containing noise (Addink et al., 2007). 
The first 18 bands contained most of the information and the remaining MNF 
bands were discarded. This result was then used as the input for object creation. 
Objects were made using the segmentation algorithm in Trimble eCognition. 
Erdas Imagine Objective was also used to segment the image as a check of 
object quality. Using a spatial subset of the study area, the two results were 
compared visually on the basis of object shape and overlap to check for 
consistency.  Only the result from eCognition was used in the object based 
estimation of chlorophyll. This was chosen due to its direct control of the 
object-scale parameter; which was of particular interest in this study and was 
successfully implemented in a previous, similar study (Addink et al., 2007). 
 
The scale factor parameter was changed to examine its influence on the 
accuracy of the inversion results (Addink et al., 2007). The scale factor 
influences the size of the objects created and the number of pixels from which 
spectral information will be extracted for the inversion process. For the window 
based inversion, neighbourhood scale is controlled by the window size. In both 
software packages, low priority was given to any additional parameters such as 
object shape. This was done to allow objects to be created based on the spectral 
information. 

2.4.5 Neighbourhood Inversion 
Inversion to include spectral information from neighbouring pixels took place in 
two stages. A spatial neighbourhood was first identified, which included the 
location of a chlorophyll field sample. The spectrum for each pixel within the 
window was extracted and the average spectrum was calculated. The average 
neighbourhood spectrum was inverted as with the pixel-based method, to 
identify a parameter combination that minimises RMSE in all the 
neighbourhood pixels. For the parameters which have been identified as having 
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negligible variation within the neighbourhood, this solution is kept for all pixels 
in the neighbourhood. The remaining parameters are allowed to vary from pixel 
to pixel. 
 
 
 

 
Figure 6: Flowchart of the neighbourhood inversion method 
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For the second stage, the LUT was reduced to contain only entries that were 
generated using the combination of constant parameters previously determined.
The spectrum of only the pixel of interest (pixel where the field sample was 
located) was then extracted and inverted using the reduced LUT to obtain 
estimated values for the remaining parameters. This procedure was repeated 
using two neighbourhood identification methods. Sliding window 
neighbourhoods were created using a square overlay, with the pixel of interest 
always at the center. Object neighbourhoods were identified by areas created 
through the image segmentation process described previously (2.1.4). The pixel 
of interest in this neighbourhood was not fixed relative to the object and varied 
for each object. A flowchart of the neighbourhood inversion method is shown in 
Figure 6. 

2.4.6 Validation and Map Generation 
Validation of results was performed using a number of statistical measures. A 
total of 66 field samples of chlorophyll were used to calculate RMSE and R2 
values when compared with estimated chlorophyll. A Wilcoxon rank sum test 
was also used to test whether there was a significant difference between 
chlorophyll estimates retrieved using the pixel based method and each of the 
neighbourhood based methods. Tests were performed at significance level  = 
0.10. 
 
Maps of chlorophyll predictions were created by applying both prediction 
methods across the study area. The large LUT size and high spatial resolution of 
the image resulted in very slow map generation times. Therefore only a spatial 
subset of the study area was generated. The north-east quadrant was selected 
because it was considered representative of the study area; containing a mixture 
of large mangrove stands, smaller fragmented mangrove areas, man-made 
ponds, natural drainage features and it also contained most of the field samples. 
Although the accuracy estimates obtained apply directly to the generated maps, 
a test of spatial autocorrelation of the chlorophyll field samples was also 
performed. This served as a tool for assessing any observed spatial variations.   
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3. Results 

3.1 Field Data Calibration  
 

 
Figure 7: Graph showing the comparisons between different SPAD to chlorophyll 
calibration formulae at the 66 sample locations. 
 
The results of the comparison between different SPAD calibration formulae can 
be seen in Figure 7. The Coste and Richardson formulae consistently produce 
very similar chlorophyll values. The average difference was 1.2 μg cm-2 and 
maximum difference was 2.0 μg cm-2. The Coste and Connelly comparison 
shows a small systematic difference at all sample points; with the Coste formula 
always giving a higher calibration value. The average difference was 3.3 μg cm-

2 and maximum difference of 10.0 μg cm-2. 
 

3.2 Pixel Based Estimation 
Application of the pixel based inversion approach resulted in relative RMSE of 
31.5% and R2 of 28.9%. This result is similar to that of the previous study in 
this area, which achieved relative RMSE of 27.5% and R2 of 30% (Wandera, 
2011). Figure 8 shows the comparison plot of measured and predicted 
chlorophyll. Points appeared in a wide cluster with a fairly even distribution 
above and below the 1:1 line. Figure 9 shows the resulting spectra matches for 
two of the sample points. M0303 (top) was a point that was predicted well with 
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measured and predicted chlorophyll at 53 and 50 μg cm-2 respectively. M2505 
(bottom) achieved a less accurate prediction with measured chlorophyll of 56 
μg cm-2 and predicted chlorophyll of 30 μg cm-2. Both points achieved a 
relatively good match between measured and simulated spectra.
 

 
Figure 8: Graph showing the comparison between measured and predicted values for 
the 66 sample locations using the pixel-based inversion method. 
 

3.3 Parameter Variation and Object Comparison 
From previous studies, a number of parameters were identified which are 
typically assumed to have negligible intra-neighbourhood variation. These 
include Cab, Cdm, N and hot spot. The main variation within neighbourhoods is 
attributed to LAI (Atzberger, 2004; Atzberger & Richter, 2009). 
Figure 10 shows the results of measuring the variation of parameters from the 
image data. Some disagreement can be seen, with Cdm showing the highest 
variations and LAI having relatively low variation within the neighbourhood. A 
combination of 4 parameters was found to produce the highest accuracy 
chlorophyll estimation when kept constant. Crown cover percentage (Cv), leaf 
water thickness (Cw), leaf senescence (Cs) and leaf structure (N). All other 
parameters were allowed to vary within the spatial neighbourhood. 
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Figure 9: Comparison between simulated and measured spectra at sample points M0303 
and M2505. The simulated spectrum was selected as the best match for the sample 
locations using the pixel based method. 
 
 
 
Figure 11 shows the results of image segmentation to create objects. The 
different software produced comparable results to some extent. Objects were 
generally created at the same location in each image and also approximately the 
same size. eCognition produced objects with straight, square boundaries 
whereas Imagine Objective produced more irregular shaped objects. Differences 
can be seen most in the south-east area of the image, where eCognition creates 
large objects over a fairly homogeneous background and Imagine Objective 
creates a mixture of both large and very small objects. 
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Figure 10: Plot showing the coefficient of variation measured from image data, within 
different window sizes for each of the 9 input parameters. 
 
 
 

 
Figure 11: Images showing the comparison between objects created by eCognition (left) 
and Imagine Objective (right). eCognition objects shown were created with a scale 
factor of 3. 
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3.4 Neighbourhood Based Estimation 
The neighbourhood inversion results using a 3x3 window showed a small 
iincrease in the accuracy of chlorophyll prediction. RMSE was approximately 
the same and R2 showed a little more explained variation. Changing the 
neighbourhood size for the window-based method resulted in small changes in 
R2, while the RMSE values remained fairly constant. A comparison of the 
different window sizes is shown in Table 2. 
 
Objects with scale factor 2 produced objects of similar size to the 3x3 window, 
however the resulting chlorophyll predictions do not show a similar 
improvement. Change of object scale shows variations in both RMSE and R2 
values, with R2 values increasing up to scale factor 5. Table 3 contains a 
comparison of the results obtained from different sized objects. Objects with 
scale factor 5 produced approximately the same results as the window based 
application with 3x3 window size. Plots of measured and predicted chlorophyll 
are shown in Figure 12 and Figure 13 for a 3x3 window and scale factor 2 
objects respectively. Window and object neighbourhoods resulted in similar 
plots when comparing measured and predicted chlorophyll. Only small 
differences could be observed between the plots, with both neighbourhood 
inversion methods showing a similar trend and distribution of points to the 
pixel-based method. The results of the Wilcoxon rank sum tests showed that the 
differences observed between the pixel based results and the neighbourhood 
based methods were not significant for any of the neighbourhood sizes. For this 
significance test, p-values would have had to be less than 0.1 to indicate a 
significant difference between the two sets of estimated values. 
 
 

 
Figure 12: Graph showing the comparison between measured and predicted chlorophyll 
using a 3x3 window-based inversion method. 
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Table 2: Table summarising the results of changing window size with a window-based 
inversion.

Window Size 3x3 5x5 7x7 11x11 15x15 
RMSE (μg cm-2) 17.07 17.18 17.04 16.92 17.04 
Rel. RMSE (%) 30.99 31.19 30.94 30.72 30.93 

R2 (%) 30.38 28.33 28.50 28.04 28.85 
p-value 0.5262 0.5838 0.5509 0.5010 0.5900 

 
 
 

 
Figure 13: Graph showing the comparison between measured and predicted chlorophyll 
using and object-based inversion method. Objects were created at scale factor 2. 
 
 
Table 3: Table summarising the results of different scale factors using an object-based 
inversion. 

Object Scale 2 3 4 5 7 
RMSE (μg cm-2) 15.85 19.38 15.49 17.89 15.50 
Rel. RMSE (%) 26.35 33.14 25.75 30.61 25.77 

R2 (%) 24.87 24.70 27.23 30.19 27.80 
p-value 0.8254 0.7129 0.7327 0.9204 0.8837 
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Figure 14: Comparison between simulated and measured spectra for two field sample 
locations. The simulated spectrum shown is the closest match selected from the LUT 
using the window based approach. M0303 (top) achieved a good prediction while 
M2505 (bottom) had a poor prediction. 
 
 
Examples of the best fit spectra selected by the neighbourhood inversion 
approach are shown for two sample locations, in Figure 14. The LUT entries 
chosen for both samples were different to the spectra chosen in the pixel based 
approach; however the estimated chlorophyll values were the same. The spectra 
within the spatial neighbourhoods at these two samples were also extracted. 
Figure 18 (Appendix) shows a comparison between spectra extracted for each 
pixel within 3x3 window neighbourhoods and Figure 19 (Appendix) shows the 
spectra extracted from each pixel within the objects generated at scale factor 2, 
at the same sample locations. In both the window and object neighbourhoods, 
the spectra at M0303 were closely grouped and the spectra at M2505 show a 
wide range of variation. At M0303, with the pixel of interest was located 
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centrally within the range of variation, whereas at M2505, the pixel of interest is 
close to the edge of the range. 
 

3.5 Chlorophyll Maps 
Figure 16 and Figure 17 show the output maps after the pixel based and object 
based inversion approaches were applied to the study area. The two maps 
appeared almost identical with no clear differences in the spatial variation of 
chlorophyll. Small areas of mangrove, such as fringe bands that occur along 
ponds, display low to average concentrations of chlorophyll. In larger mangrove 
stands, low concentrations were generally observed in close proximity to ponds. 
The two largest areas of continuous mangrove forest occur at the center of the 
map and the island to the north; both areas exhibit high concentrations. 
Exceptions to these trends occur south of the island. Two small patches of 
mangrove exhibit high concentrations of chlorophyll, compared to other patches 
of similar size which generally showed low to average concentrations. A clear 
line or break was observed through the large forest area at the center. This 
appeared to be an artifact occurring at the boundary between two image strips. 
The semi-variogram of chlorophyll (Figure 15) shows evidence of weak spatial 
autocorrelation. A low sill can be observed occurring at a range of 
approximately 100 m.  
 

 
Figure 15: Semi-variogram constructed using field measurements of chlorophyll 
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Figure 16: Map of chlorophyll in the Mahakam delta, estimated using the pixel based 
inversion approach. Predictions are overlaid on a false colour composite of the study 
area to show the presence of shrimp ponds and other features. 
 



  

 28 

Figure 17: Map showing the estimated chlorophyll in the Mahakam delta. Chlorophyll 
was estimated using the object based inversion approach and is overlaid on a false 
colour composite of the study area. 
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4. Discussion 
 
The results have shown that the neighbourhood based inversion approach has 
not been able to significantly improve the accuracy of the pixel based inversion. 
The neighbourhood approach, which includes spectral information from 
surrounding pixels, produced approximately the same results achieved by 
inversion of individual pixels. The lack of improvement highlights the 
occurrence of underlying issues which may have contributed to the poor results. 
The pixel based and neighbourhood based approaches produced very similar 
plots of measured chlorophyll against predicted chlorophyll. The clustering of 
points around the 1:1 line shows that predicted chlorophyll have the correct 
order of magnitude and there are no large systematic errors affecting the results. 
However, the even distribution of points above and below the line indicates the 
possible influence of a random error within the data analysis. 
 
The smallest window size (3x3) used in the window based inversion resulted in 
the highest accuracy. When window size was increased, the resulting R2 was 
lower but approximately the same for all the subsequent sizes, 5x5 to 15x15. As 
a result, the window approach showed no correlation between accuracy and 
window size. With objects, a small trend was observed with R2 values 
increasing with increase in scale, up to scale factor 5. The two neighbourhood 
inversion methods show contrasting results. The two neighbourhood 
identification methods achieved approximately the same maximum accuracy, 
but with neighbourhood sizes that were considerably different. Both sets of 
results present plausible scenarios. If noise exists in the image data, the best 
results could be achieved using small neighbourhoods as seen in the window 
based approach. However, increasing neighbourhood size means there is 
contribution of more spectral information from surrounding pixels, as seen with 
the object based approach. Given that the accuracies of both methods are 
relatively low, it is difficult to make specific conclusions on the relationship 
between neighbourhood scale and accuracy. 
 
The comparison between software for object creation showed general 
agreement in the resulting objects. Objects were created at the same locations 
and with a similar number of pixels. The main difference observed was the 
object shape and consistency of object size in some parts of the image. The aim 
of this comparison was to ensure that objects were created in a robust manner. 
Some variation was expected due to differences in software implementation and 
segmentation algorithms (Meinel & Neubert, 2004). The agreement found was 
therefore considered sufficient to apply the objects to the inversion method. 
Differences between software and the segmentation results were not compared 
further.    
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Upon inspection of the results, a number of errors were identified which may 
have contributed to the low accuracies obtained by the pixel based and 
neighbourhood based approaches. Table 4 shows a summary of the errors 
affecting the inversion methods. Examination of the reflectance of pixels within 
a neighbourhood shows that it is possible to have large variations in reflectance 
between adjacent pixels over a small area (Figure 18 and Figure 19 in 
Appendix). This can be explained by the heterogeneous nature of mangrove 
forests, which would result in mixed pixels. A scene containing mangrove 
vegetation may contain different tree ages, soil background and differences in 
canopy density (Hogarth, 2007). In areas where spectral variations are high, 
including information from these pixels would not be contributing to the 
prediction but instead increasing uncertainty. These factors may be amplified by 
the radiometric variations that were observed. The small variations in 
reflectance could only be observed in areas of image overlap. These variations 
were considered negligible and can be a result of differences in viewing angle. 
Areas of image overlap are at the edge of the sensor swath and therefore these 
areas have been viewed at an extreme angle from each of the adjacent flight 
lines. Both sources of uncertainty, the mangrove environment and image noise, 
would vary across the study area. They could therefore contribute to the random 
error observed in the results.  
 
Table 4: Summary of errors in the data analysis that may influence the accuracy of the 
pixel and neighbourhood inversions. 

 
 
 

Uncertainty in Pixel and 
Neighbourhood Methods 

Uncertainty in Neighbourhood 
Method Only 

Radiometric variations Large variation in reflectance within 
neighbourhoods -  heterogeneity of 
mangrove environment Positional uncertainty of field samples 

Calibration of field measurements Uncertainty of parameter assumptions 
and applicability over study area. 

Simplifications of modelling and 
inversion 
Time difference between image and 
field samples 

 

Field sample representation of image 
pixels 
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For the first stage of the neighbourhood inversion, it was necessary to identify 
parameters that can be assumed to have negligible variation over a small area. 
No measurements of canopy or foliar parameters were made, apart from the 
chlorophyll field measurements. Identifying the behaviour of the parameters 
within neighbourhoods therefore had to be carried out in an experimental 
manner with reliance on image data and chlorophyll measurements for these 
results. Assumptions from other studies were also used, however these were 
based on studies in agricultural areas, representing more ideal and uniform 
growing conditions than the mangrove environment (Atzberger, 2004; 
Atzberger & Richter, 2009). Some agreement and disagreement was seen 
between the two approaches. The leaf structure parameter (N) and leaf dry 
matter (Cdm) were identified in previous studies to have negligible variation 
within neighbourhoods. Measuring from the image, N also showed very little 
variation but Cdm had high variation. Cdm may be explained by the evergreen 
nature of most mangrove species. The process of leaf fall, nutrient resorption 
and new leaf growth are continuous processes which may lead to higher 
variations in leaf parameters (Hogarth, 2007; Tomlinson, 1994). The best 
combination of parameters determined from the image means that the final 
combination chosen is not necessarily the true behaviour of parameters in the 
mangrove forest. Any noise or artifacts that exist in the data would influence the 
results. The ill-posed problem also exists as the pixel based inversion method 
was used for obtaining parameter estimates within the neighbourhood. The 
combination that was used is therefore the parameter combination that provided 
the best results with the available data. The study area and mangrove 
environments in general, are known to consist of multiple species and variations 
of physical conditions. This means that the combination most accurately 
representing the spatial variation of parameters within neighbourhoods may also 
vary across the study area. 
 
The estimated geometric accuracy of the image data agreed with the known 
accuracy estimate for the handheld GPS receiver that was used. Geometric 
correction of the image was estimated at 6-9 m. while the GPS receiver had an 
accuracy of 5-10 m. Assessing the accuracy of the image correction was carried 
out in open areas with little or no overhead cover. It was therefore expected that 
when sample locations were observed within the mangrove forests, positional 
accuracy may be lower. As the image had a high spatial resolution, positional 
uncertainty increases the likelihood of a measured sample occurring in a 
different pixel or neighbourhood to the one being inverted. With the positional 
error being dependent on the site specific canopy cover, the magnitude of this 
error would vary at every sample point. 
 
The calibration of chlorophyll field measurements may also introduce some 
uncertainty to the results. The lack of concurrent laboratory testing or mangrove 
based calibration formulae means that it was not possible to verify the accuracy 
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of the calibrated chlorophyll values. The Connelly formula was the only 
dedicated calibration formula for a mangrove species. Previous studies on other 
plant species have shown, however, that the relationship between SPAD 
readings and leaf chlorophyll is non-linear (Markwell et al., 1995). This 
suggests that the Connelly model approximated the true relationship to a linear 
model. The Coste model was deemed appropriate because it was based on 
multiple tropical forest species, therefore having a generalised applicability. 
This was important due to the nature of the study area, consisting of multiple 
mangrove species. Although the 3 available formulae were developed on 
different species, differences between them were found to be relatively small 
(Figure 7). The similarity between them shows that choosing an incorrect 
formula will contribute a small error to the final accuracy estimation. 
 
The final results also contain inherent errors from the physical model and 
inversion approach. The SLC model is complex and was formed through a 
combination of several sub-models. As all models contain some error, SLC 
could not perfectly simulate the mangrove spectra. However, comparison of 
spectra showed that the model performed well, producing simulations that 
closely matched the measured spectra. The LUT method implemented also 
introduces some error as it only allowed chlorophyll values to be chosen at the 
interval specified in the LUT generation (Goel & Thompson, 2000). In the LUT 
used, chlorophyll was input at an interval of 10 μg cm-2 and could not be 
reduced due to the limitations imposed by LUT size and the resulting 
processing time. To be applicable for the entire study area, the LUT had to 
contain simulated spectra representative of the environmental conditions 
occurring in nature (Mobley et al., 2005). Since these conditions were found to 
be varied, several of the model parameters required multiple steps over a large 
range.   
 
An error that may contribute to the low accuracy obtained is the use of field 
data collected in August 2010. Given that the study area is known to have a 
high rate of environmental change, leaf chlorophyll concentrations measured 
after 1 year may be different to the actual chlorophyll at the image date. It was 
noted that points with a large error occurred in both the 2009 and 2010 datasets. 
To examine the effect of using points from 2010, validation of pixel based, 
sliding window (3x3) and object (scale factor 2) inversions were repeated using 
only sample points from 2009. In each case, a substantial change in RMSE and 
R2 was not observed. The R2 value decreased for the window method and 
increased for objects but in both cases the change was approximately 1%. It is 
expected that the time lag in the collection of field data contributes some 
uncertainty; however the available evidence suggests that it is not the sole 
contributing error. 
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An additional consideration of the field samples is whether they are 
representative of the image pixels. Multiple measurements were made on leaves 
from a branch at the top of the canopy. These were then averaged to a single 
value. The distribution of field samples shows that samples were generally 
taken in areas of dense, continuous forest where tree crowns may overlap. In 
these areas the chance of mixed pixels is high. Field samples therefore lacked 
redundant observations spread over the area of one image pixel. Given that 
radiation can be reflected from the top of canopy as well as lower layers, 
observations at lower canopy levels are also absent. 
 
The errors identified are spread throughout the data analysis.  As a result, 
propagation of error may also occur. The quantification of some of the errors 
was therefore useful. This highlights the relative contribution of errors and 
indicates where improvement may be required to improve the quality of the 
result (Heuvelink, 1998). The number of uncertainties relating to the field 
samples indicates that they may be the most significant source of error. 
 
The poor inversion results achieved and the errors identified mean that the 
accuracies of the associated chlorophyll maps are also low. The maps therefore 
cannot be used for the estimation of chlorophyll content at specific locations. It 
may still be possible however, to extract relevant information from them. 
Agreement between the maps generated through 2 different approaches 
indicates that the methods have been able to identify the spatial variations that 
occur. This is supported by the range of spatial autocorrelation observed in the 
field samples. Rapid changes in chlorophyll within a short space occur only at 
the flight line artifacts previously identified. The maps can therefore be used to 
examine general trends of how chlorophyll varies throughout the study area. A 
preliminary observation can be made that mangrove areas that exist near to 
shrimp ponds have low chlorophyll content. However, these areas occur close to 
the coast, where the environment is more exposed to tidal cycles. Greater 
exposure to tidal variations would result in the flushing of available nutrients. 
Also, in large, undisturbed forest areas, chlorophyll content appears much 
higher. Maps based on more accurate results would allow the observation of 
spatial variations to be made with greater certainty as quantitative variations 
could also be examined.   
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5. Conclusion  
 
Application of the neighbourhood based inversion to predict chlorophyll was 
not able to significantly improve the results achieved by the pixel based 
approach. Neighbourhoods were defined in two ways, sliding windows and 
objects, from which contrasting results were obtained. Varying the 
neighbourhood size revealed that sliding windows achieved highest accuracy 
with 3x3 windows (Rel. RMSE=30.99% and R2=30.38). The object based 
approach achieved highest accuracy with scale factor 5 (Rel. RMSE=30.61% 
and R2=30.19%). Due to differing trends between neighbourhood size and 
accuracy and the relatively low accuracy, no conclusive relationship could be 
identified.  
 
To implement the neighbourhood based inversion, vegetation parameters with 
negligible variation within neighbourhoods had to be identified. 4 parameters 
were found to exhibit little variation over a small area: Cv, Cw, Cs and N. 
Given that no field samples of additional parameters were made, these 
parameter variations could only be measured from the image directly. The 
selected combination may therefore be influenced by variations in the image 
rather than true parameter variations. 
 
Comparisons between measured and predicted chlorophyll revealed similarities 
between the pixel based and neighbourhood based approaches. Assessment of 
the data analysis highlighted several sources of error in the input data. Some of 
the errors could be quantified to provide an estimate of their relative 
contribution in the case of error propagation. However, multiple errors were 
associated with the chlorophyll field samples that were collected. Consequently, 
these uncertainties indicated that the field samples may not be representative of 
the image pixels both in terms of position and chlorophyll content. 
 
The low accuracy achieved by the pixel based and neighbourhood based 
inversions mean that the resulting chlorophyll maps also have a low accuracy. 
The maps therefore should not be used to estimate chlorophyll concentrations at 
specific locations. The consistent spatial structure within the images shows that 
they can be used to examine general trends of chlorophyll variation throughout 
the study area. 
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5.1 Recommendations 
 
For future studies, it is recommended that more rigorous field procedures are 
implemented. The nature of the mangrove environment makes field sampling 
inherently difficult. However, sampling methods should be specifically suited to 
the environment to ensure accurate, representative samples are obtained. 
 
Approaches outlined by Combal et al. (2003) and Atzberger (2004) may be 
combined, using a combination of a priori information of canopy characteristics 
and a spatially constraint inversion. Uncertainties still exist regarding how 
vegetation parameters vary within the mangrove canopy. Future studies should 
aim to collect samples of multiple parameters to obtain more substantial 
evidence for the spatial variation of parameters. 
 



37 

References 
 
Addink, E. A., De Jong, S. M., & Pebesma, E. J. (2007). The importance of 

scale in object-based mapping of vegetation parameters with 
hyperspectral imagery. Photogrammetric Engineering and Remote 
Sensing, 73(8), 905-912. 

Atzberger, C. (2004). Object-based retrieval of biophysical canopy variables 
using artificial neural nets and radiative transfer models. Remote
Sensing of Environment, 93(1-2), 53-67. 

Atzberger, C., & Richter, K. (2009). Geostatistical regularization of inverse 
models for the retrieval of vegetation biophysical variables. Paper 
presented at the Remote Sensing for Environmental Monitoring, GIS 
Applications and Geology IX, Proceedings of SPIE Vol. 7478. 

Axelsson, C. R. (2011). Predicting mangrove leaf chemical content from 
hyperspectral remote sensing using advanced regression techniques. 
Unpublished MSc Thesis, University of Twente Faculty of Geo-
Information and Earth Observation ITC, Enschede. 

Carter, G. A., & Spiering, B. A. (2002). Optical Properties of Intact Leaves for 
Estimating Chlorophyll Concentration. Journal of Environmental 
Quality, 31(5), 1424-1432. 

Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnère, A., et al. 
(2003). Retrieval of canopy biophysical variables from bidirectional 
reflectance: Using prior information to solve the ill-posed inverse 
problem. Remote Sensing of Environment, 84(1), 1-15. 

Connelly, X. M. (1997). The use of a chlorophyll meter (SPAD-502) for field 
determinations of red mangrove (Rhizophora mangle L.) leaf 
chlorophyll amount. NASA University Research Centers Technical 
Advances in Education, Aeronautics, Space, Autonomy, Earth and 
Environment, 1, 198-190. 

Coste, S., Baraloto, C., Leroy, C., Marcon, E., Renaud, A., Richardson, A. D., 
et al. (2010). Assessing foliar chlorophyll contents with the SPAD-502 
chlorophyll meter: a calibration test with thirteen tree species of tropical 
rainforest in French Guiana. Annals of Forest Science, 67(6). 

Darvishzadeh, R., Skidmore, A., Schlerf, M., & Atzberger, C. (2008). Inversion 
of a radiative transfer model for estimating vegetation LAI and 
chlorophyll in a heterogeneous grassland. Remote Sensing of 
Environment, 112(5), 2592-2604. 

Dutrieux, E. (1991). Study of the ecological functioning of the Mahakam delta 
(East Kalimantan, Indonesia). Estuarine, Coastal and Shelf Science, 
32(4), 415-420. 

FAO. (2007). The World's Mangroves 1980-2005. Rome (Italy): Food and 
Agriculture Organisation of the United Nations. 



  

 38 

Goel, N. S., & Thompson, R. L. (2000). A snapshot of canopy reflectance 
models and a universal model for the radiation regime. Remote Sensing 
Reviews, 18(2-4), 197-225. 

Goodenough, D. G., Li, J. Y., Asner, G. P., Schaepman, M. E., Ustin, S. L., 
Dyk, A., et al. (2006). Combining hyperspectral remote sensing and 
physical modeling for applications in land ecosystems. 2006 IEEE 
International Geoscience and Remote Sensing Symposium, Vols 1-8 
(pp. 2000-2004). New York: IEEE. 

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. 
(2002). Integrated narrow-band vegetation indices for prediction of crop 
chlorophyll content for application to precision agriculture. Remote
Sensing of Environment, 81(2-3), 416-426. 

Held, A., Ticehurst, C., Lymburner, L., & Williams, N. (2003). High resolution 
mapping of tropical mangrove ecosystems using hyperspectral and 
radar remote sensing. International Journal of Remote Sensing, 24(13), 
2739-2759. 

Heuvelink, G. B. M. (1998). Error Propagation in Environmental Modelling 
with GIS. London: Taylor & Francis. 

Hogarth, P. J. (2007). The biology of mangroves and seagrasses (Second ed.). 
New York: Oxford University Press. 

Huber, S., Kneubuhler, M., Psomas, A., Itten, K., & Zimmermann, N. E. 
(2008). Estimating foliar biochemistry from hyperspectral data in mixed 
forest canopy. Forest Ecology and Management, 256(3), 491-501. 

Li, X., & Strahler, A. H. (1986). Geometric-Optical Bidirectional Reflectance 
Modeling of a Conifer Forest Canopy. IEEE Transactions on 
Geoscience and Remote Sensing, GE-24(6), 906-919. 

Liang, S. (2005). Quantitative remote sensing of land surfaces (1st ed.). New 
Jersey: Interscience. 

Marenco, R. A., Antezana-Vera, S. A., & Nascimento, H. C. S. (2009). 
Relationship between specific leaf area, leaf thickness, leaf water 
content and SPAD-502 readings in six Amazonian tree species. 
Photosynthetica, 47(2), 184-190. 

Markwell, J., Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the 
Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 
46(3), 467-472. 

Martin, J.-L. (2011). Shrimp Aquaculture: From Extensive to Intensive Rearing, 
the Relationship with the Environment and The Key to Sustainability. 
In H.-J. Ceccaldi, I. Dekeyser, M. Girault & G. Stora (Eds.), Global 
Change: Mankind-Marine Environment Interactions (pp. 25-30). 
Dordrecht: Springer. 

Martin, M. E., Plourde, L. C., Ollinger, S. V., Smith, M. L., & McNeil, B. E. 
(2008). A generalizable method for remote sensing of canopy nitrogen 
across a wide range of forest ecosystems. Remote Sensing of 
Environment, 112(9), 3511-3519. 



References 

 39

Meinel, G., & Neubert, M. (2004). A comparison of segmentation programs for 
high resolution remote sensing data. Paper presented at the Geo-
Imagery Bridging Continents. XXth ISPRS Congress, Istanbul, Turkey, 
12-23 July, 2004. 

Mobley, C. D., Sundman, L. K., Davis, C. O., Bowles, J. H., Downes, T. V., 
Leathers, R. A., et al. (2005). Interpretation of hyperspectral remote-
sensing imagery by spectrum matching and look-up tables. Applied
Optics, 44(17), 3576-3592. 

Nagelkerken, I., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, 
L. G., et al. (2008). The habitat function of mangroves for terrestrial 
and marine fauna: A review. Aquatic Botany, 89(2), 155-185. 

Peterson, D. L., Aber, J. D., Matson, P. A., Card, D. H., Swanberg, N., 
Wessman, C., et al. (1988). Remote sensing of forest canopy and leaf 
biochemical contents. Remote Sensing of Environment, 24(1), 85-108. 

Reef, R., Feller, I. C., & Lovelock, C. E. (2010). Nutrition of mangroves. Tree 
Physiology, 30(9), 1148-1160. 

Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of 
noninvasive methods to estimate foliar chlorophyll content. New 
Phytologist, 153(1), 185-194. 

Ruenglertpanyakul, W., Attasat, S., & Wanichpongpan, P. (2004). Nutrient 
removal from shrimp farm effluent by aquatic plants. Water Science 
and Technology, 50(6), 321-330. 

Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W., & Schüler, G. 
(2010). Retrieval of chlorophyll and nitrogen in Norway spruce (Picea 
abies L. Karst.) using imaging spectroscopy. International Journal of 
Applied Earth Observation and Geoinformation, 12(1), 17-26. 

Schlerf, M., Verhoef, W., Buddenbaum, H., Hill, J., Atzberger, C., & Skidmore, 
A. K. (2007). Comparing three canopy reflectance models with 
hyperspectral multi-angular satellite data. Paper presented at the 
Proceedings of the 10th International Symposium on Physical 
Measurements and Spectral Signatures in Remote Sensing 
(ISPMSRS'07), Davos, Switzerland, 12 - 14 March, 2007. 

Siciliano, D., Wasson, K., Potts, D. C., & Olsen, R. C. (2008). Evaluating 
hyperspectral imaging of wetland vegetation as a tool for detecting 
estuarine nutrient enrichment. Remote Sensing of Environment, 
112(11), 4020-4033. 

Sidik, A. S. (2009). The changes of mangrove ecosystem in Mahakam delta, 
Indonesia: A complex social-environmental pattern of linkages in 
resource utilization. Paper presented at the The South China Sea 
Conference 2008. The South China Sea: sustaining ocean 
productivities, maritime communities and the climate., Kuantan, 
Malaysia, 25-29 November 2008. 



  

 40 

Tilling, A. K., O'Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., 
Rodriguez, D., et al. (2007). Remote sensing of nitrogen and water 
stress in wheat. Field Crops Research, 104(1-3), 77-85. 

Tomlinson, P. B. (1994). The Botany of Mangroves. Cambridge: Cambridge 
University Press. 

Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P., & Green, R. O. (2004). 
Using imaging spectroscopy to study ecosystem processes and 
properties. Bioscience, 54(6), 523-534. 

Verhoef, W., & Bach, H. (2007). Coupled soil-leaf-canopy and atmosphere 
radiative transfer modeling to simulate hyperspectral multi-angular 
surface reflectance and TOA radiance data. Remote Sensing of 
Environment, 109(2), 166-182. 

Vohland, M., Mader, S., & Dorigo, W. (2010). Applying different inversion 
techniques to retrieve stand variables of summer barley with 
PROSPECT+SAIL. International Journal of Applied Earth 
Observation and Geoinformation, 12(2), 71-80. 

Wandera, L. N. N. (2011). Mapping chlorophyll concentration in a mangrove 
forest by model inversion approach applied to hyperspectral imagery. 
Unpublished MSc. Thesis, University of Twente, Faculty of Geo-
Information Science and Earth Observation (ITC). 

Zarco-Tejada, P. J., & Sepulcre-Canto, G. (2007). Remote sensing of vegetation 
biophysical parameters for detecting stress condition and land cover 
changes. Estudious de la Zona No Saturada del Sueno, 8, 37-44. 

Zhang, Y., Chen, J. M., Miller, J. R., & Noland, T. L. (2008). Leaf chlorophyll 
content retrieval from airborne hyperspectral remote sensing imagery. 
Remote Sensing of Environment, 112(7), 3234-3247. 

 



41 

Appendix
 
 

 
Figure 18: Graphs showing the reflectance per pixel within the window neighbourhood 
for two sample points: M0303 and M2505. The black dots indicate the pixel in which 
the field sample was collected. M0303 was accurately predicted and M2505 was poorly 
predicted. 
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Figure 19: Graph showing the pixel reflectance within object neighbourhoods (scale 
factor = 2) for two sample points: M0303 and M2505. M0303 was predicted accurately 
and M2505 was poorly predicted. The pixel which contained the field measurement is 
shown by black dots. 
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Figure 20: False colour mosaic of the Mahakam delta with only radiometric corrections 
and georeferencing applied. 
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