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ABSTRACT 

Rail track irregularities have a large effect on railway safety and operation. To ensure a good maintenance 
of the rails, frequent measurements are needed, which are costly and require specific tools for different 
aspects of the rails geometry. Laser scanning offers the advantage of acquiring accurate 3D measurements 
of all the objects present in the railway environment in a short operational time. While some work has 
been done to detect the presence of rails and other objects in the point cloud, the modelling of those 
objects has received little attention. Such models not only enable all sorts of measurements about the rail 
geometry, but also facilitate simulations in train research. The purpose of this thesis is to develop a 
method to automatically build a 3D model of train rails from a point cloud where the rails have been 
already detected. First of all, the rail point cloud is sectioned into pieces of equal length. The points laying 
in each of the planes of the head of the rail are then identified. A non-linear least squares adjustment is 
used to find the parameters of the model pieces that best fit into the point cloud by minimizing the 
distance from the points to their corresponding planes. Finally, the model pieces are adjusted globally 
using a 6 dimensional non-rational Bezier curve, which yields a set of rail profiles that can be connected to 
build the final model representing the curved shape of the rail. The final model is validated by computing 
the distance from each point in the point cloud to the end model. The results showed that 90% of the 
points were at less than 1 cm distance to the reconstructed model, while the mean distance is 0.5 cm and 
95% of the points were at less than 1.4 cm. Although the results are dependent on the accuracy of 
acquisition and detection methods, the overall performance of the method demonstrates that it is possible 
to model the train rails accurately by surface fitting and curvature adjustment. 
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1. INTRODUCTION 

1.1. Motivation 

With the spread of high-speed trains and the increasing costs of road transport, railway research for 
technical improvements and cost reduction has increased notably during the last decade. One of the main 
focuses has been on the rail track. Rail track irregularities have a large effect on different aspects of railway 
operation, mainly system safety, train speed optimization, movement behaviour and passenger comfort. 
Indeed, according to the Federal Railroad Administration Office of Safety Analysis (2011), 16% of the 
railway accidents in the US from 1975 to 2011 have been caused by an incorrect geometry of the tracks 
due to deformations. 

Consequently, railway infrastructure companies invest yearly large amounts of money in rail track 
maintenance. A key point in this activity is regular inspection of the rail status in order to avoid 
performance problems or unsafe situations. The critical factors of this inspection are speed and accuracy 
of the rails geometry measurement system. 

Actual developments in rail track inspection methods have been reviewed by Papaelias et al. (2008). These 
methods are divided into contact and non-contact measurements. The major problems with contact 
techniques are that they produce rail wear and due to speed requirements, they limit the operability of the 
train corridor. On the other hand, the non-contact methods include accelerometer and gyroscope devices 
which are affected by the train vibrations and cannot assess the wear of the rail surface (Grassie, 1996; 
Weston et al., 2007). Therefore optical methods seem to have advantages and have been used for accurate 
measurements of the rails profile (Alippi et al., 2002). 

But the importance of acquiring accurate geometry of the rails is not limited to railway inspection, and also 
involves providing information for further research on deterioration modelling. Sadeghi & Askarinejad 
(2010) and Guler et al. (2011) show the opportunities for maintenance and economical planning in rail 
deterioration modelling, and systematical acquisition of the rails geometry can improve the development 
of those models. Additionally, accurate track reconstruction data is a basic requisite on simulation research 
to improve vehicle design testing and performance optimization (Evans & Berg, 2009; Li, Meddah, Hass, 
& Kalay, 2006). 

In order to obtain this data, railway companies often use manual inventories, hand devices or the 
aforementioned contact tools. The manual techniques are dependant of the operator criteria, and the 
required long interruptions of the track operation results costly. Whereas for the contact tools, it requires 
different and specific machines for every parameter to be measured, increasing the maintenance costs.  

In contrast, mobile laser scanning seems to be suitable in order to gather all the required data at a time, 
independent of lighting limitations, and providing better measurement accuracy. The problem is that a 
methodology to classify and model the rail track from laser data did not exist up to now. 

1.2. Literature review 

Although computer vision techniques have been applied to extract some objects of the railway scene 
(Marino, Distante, Mazzeo, & Stella, 2007; Mazzeo, 2004), those researches have focused on recognizing 
the bolts in the rails, and they face clear limitations to generate accurate measurements of rails and other 
objects. 
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On the other hand, recent work by Neubert et al. (2008) has explored the possibility of extracting the rail 
track from helicopter-borne lidar point clouds using RANSAC and profile knowledge classification. In 
combination with high resolution aerial imagery, Beger, Gedrange, Hecht and Neubert (2011), have used 
also laser scanning data to retrieve the main axis of railway tracks. 

Nevertheless, those techniques focus in detecting the points of the object, but the relationship between 
the points have been not reconstructed, thus limiting the type of measurements that can be done and 
being not suitable as visualization for some applications. On the other hand, modelling of certain objects 
using laser scanning point clouds has been addressed for surfaces as roads (Jaakkola, Hyyppa, Hyyppa, & 
Kukko, 2008), linear objects as power lines (Jwa & Sohn, 2010) and complex objects as industrial 
installations (Rabbani, 2006), but not for complex linear objects as rails. 

1.3. Objectives and research questions 

1.3.1. Research objectives 

The general goal of the research is to develop a method to automatically generate a 3D vector 
representation of the rails from a point cloud of the railway environment. As classification of this type of 
point cloud has been the topic of another research at ITC (Arastounia, 2012), this project focuses on 
geometric modelling of the rails and their tracks. Therefore, the methodology developed here directly 
applies to an already classified laser scanning point cloud, where some points have been already detected 
as feasible candidates to be part of the rail. 

The produced model is intended to be valid for geometrical measurements. Although the final use of the 
model is stressed over maintenance and inventory issues, it is open enough to act as relevant input data for 
vehicle designers or train driving simulators.  

1.3.2. Research questions 

 Can laser range data be effectively used to extract 3D vector models of train rails? 

 What are the requirements of the data in order to make possible the modelling?  

 What is the internal accuracy of the gauge measurement from the reconstructed rail model? 

 Is it possible to detect misclassified points during the modelling process? 

 How the different faces of the rail geometry can be identified in the point cloud? 

 What algorithm can be used to model the curvature of rail objects? 

 What are the parameters that allow fitting the primitives that compose a rail model? 

1.4. Outline of thesis 

The rest of the thesis is organised as follows: In Chapter 2, background information about the rail object, 
the different types present in nowadays railways, the dataset used as input for the study and the 
characteristics of the acquisition method are presented. 

Next, in Chapter 3, the methods to accomplish the task are described, from the model characteristics to 
the final output format, including the fitting methods and statistical analysis used in the final validation of 
the resulting model. 

The results of the study as applied to the available dataset are presented in Chapter 4, including a 
discussion about their traits, characteristics of the specific problem that arose with the analysis, as well as 
consequences of certain variables decisions and limitations of the method. 



AUTOMATIC 3D MODELLING OF TRAIN RAILS IN A LIDAR POINT CLOUD 

3 

A final summary is outlined in Chapter 5, including a list of strengths and weaknesses of the methodology, 
in addition to possible follow-ups than can improve it, and different approaches that can face new 
challenges and opportunities regarding this modelling problem. 
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2. BACKGROUND 

2.1. Existing rail designs in the Netherlands 

There are three main rail types in use in the Netherlands: 

 NP 46: an old rail design used in wooden sleepers tracks. 

 UIC 54: the standard rail design used in all the new projects. 

 UIC 60 (E1): used for freight and high-speed tracks. 

Detailed information about the measurements of these rails has been provided by Movares. Although UIC 
60 is of common use throughout Europe, the model used in this research has been based on the UIC 54 
as it is the only rail model present in the available dataset. 

The basic traits of this steel rail are 70 mm width in the top, 159 mm of total height, 140 mm width in the 
base and 16 mm width in the body. 

  
Figure 1: Design parameters of an UIC 54 rail profile. Source: Movares. 

Throughout this document the rail will be divided in 3 parts with the name of head, web and foot, 
describing the top part, the linking central part and the base of the rail respectively. 

2.2. Actual measurements techniques 

Besides the visual inspections run by the railway maintenance crew, there are two main types of rail 
measurements: internal rail inspections and track geometry measurements. Internal rail inspection 
provides information about the rail or track structure and is traditionally assessed using ultrasonic 
techniques, or ground penetrating radar in the case of the track bed. 
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Whereas for the geometry measurements are obtained manually using hand tools or electronic devices, but 
in the past decades the uses of track geometry cars that can do the measurements automatically have 
widespread. In addition to the higher rate of measurement, they have also the advantage of measuring the 
rail ‘in load’ as they represent a considerable weight over the track. They are based typically on contact or 
optical techniques able to measure the vertical and lateral deviations, but also systems based in 
accelerometers have been tested to check these deviations.  

Finally, high resolution images have been applied also to crack detection in the rail or other elements of 
the track, although these techniques still require human visual review. 

2.3. Overview of data acquisition and preprocessing of point clouds 

Although point clouds can be obtained by processing a series of registered images, they are more 
commonly obtained from laser scanning. These systems can be divided in three main categories depending 
on the way the laser device moves along the observed surface: terrestrial, airborne and mobile. 

In terrestrial laser scanning, the laser device is placed at one location and the environment is scanned from 
that spot obtaining a point cloud of the scene. These systems have often higher accuracy but are time 
consuming because of the registration process of the different point clouds and the relocation of the 
device to record large objects. 

In contrast, airborne laser scanner sends the laser device to the sky to scan the surface of the Earth along 
planned strips. It requires complex navigation systems able to register the point cloud taking into account 
the movements of the aircraft, but it can efficiently register large surfaces and is thus often used to obtain 
topographic features. Still, the improvements in these systems have allowed going down and analyze 
smaller objects, as houses, trees or street objects. Nevertheless, shipping a full equipped aircraft can be a 
costly mission that requires reusing the data to make it economically viable, and after all, the level of detail 
and the vertical point of view can be not suitable for some applications. 

Finally, in mobile laser scanning a car is used to move the device while acquiring the surrounding scene. In 
the case of railways, this is often done by modifying the car so it can run over the track. The system 
requires navigation equipment similarly as for the airborne case, although the point density is higher due 
to the proximity to the observed object. This scanning typology frequently is limited by the lateral 
occlusion of objects in the surrounding, although the use of multiple strips can alleviate this. Even so, 
because of the more affordable costs in comparison with airborne laser scanning, and the safety position 
while acquiring data in highways, streets and railways, it has been used in the last years for an increasing 
number of applications. 

Processing of point clouds often involves different phases where different strips are registered and 
combined, often after a noise reduction level step. Depending on the application, some objects may be 
detected and reconstructed using model or data driven approaches. While the first one try to fit some kind 
of geometry to the point cloud, data driven fits planes to the data and tries to reconstruct the object from 
them. 

Another common operation when handling point clouds is segmentation. This step tries to group the 
points following a set of properties, as distribution or proximity, labelling them to further process the 
points. 

A detailed overview of these acquisition methods can be found at Vosselman & Maas (2010). 
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2.4. Description of data used in this research 

2.4.1. Original data 

The original dataset used for the whole project was kindly provided by the Movares company. It consisted 
in a 700 m long point cloud located near the city of Elst in The Netherlands. It includes one station 
platform, one crossroad junction, towers, wires, trees and two tracks separated by a linear mound, and 
consisting in a total of four straight rails (see Figure 2). 

 
Figure 2: Fragment of the original point cloud dataset. Source: Movares. 

The dataset was acquired by a mobile laser scanning device mounted over a modified van running over the 
rail track. The point cloud was produced by registering more than one strip, although the exact details 
about the procedure and the laser device are unknown. The dataset as provided seems also to have passed 
through an atmospheric noise cleaning. 

2.4.2. Input data 

The input data for this research was the detected rail points as produced by Arastounia (2012). This 
dataset is a 90 m long subset of the original, and it was chosen in the other study to reduce the processing 
time of the experiments, while being still representative of the entire dataset, having crossroad junctions, 
towers, wires and straight rails. 

Two different datasets were provided by that study, one using region growing and another using template 
matching, both obtained from the same original dataset. Unless expressed otherwise, it must be assumed 
the results presented in this document correspond to those obtained using the region growing dataset as 
input. 

Throughout this document the four rails contained in the dataset have been numbered following a West-
East criterion, so the western rail is identified as rail 1 and the eastern one as rail 4. The input dataset 
already includes a label for each point telling to what rail, and even what track pair, they belong, so the 
points of the individual rails are automatically identifiable as can be appreciated in Figure 3. 
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Figure 3: Input dataset. Rails are identified in the bottom by colour from 1 (left of the image) to 4 (right). 

The input dataset preserved the mm precision of the original data. 
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3. PARAMETRIC MODELLING OF RAILS IN POINT 
CLOUD DATA 

3.1. Overview of the methodology 

This thesis proposes a methodology composed by three different phases and a total of eight steps as 
outlined in Figure 4. In the first phase, the point cloud is prepared to fit the model, starting by sectioning 
it in thin rail pieces so it can be assumed that the rail is approximately straight in the given section. Then 
points with extreme values are detected and removed from the next steps to decrease the number of 
wrong results. As the fitting phase requires values for the starting parameters, an initial estimation is done 
for them using basic stats of the point cloud. In addition, the fitting algorithm requires the implicit 
function of the plane where each point lies, and so, this relationship has to be identified labelling each 
point with the id of its correspondent plane. 

 
Figure 4: Diagram of the thesis methodology processing phases. 

In the case of the fitting phase two different approaches have been tested using 2D and 3D models. The 
2D method was designed to model not only the location of the rail but also the wear suffered by train 
usage and to estimate the shape of the rail when it is not known. Because of some limitations on 
projecting the point cloud to a 2D rail profile the 3D approach was developed. However, in that 3D 
approach only the translation and rotation of the rail are reconstructed, assuming the rail type is known 
and the wear is not relevant in comparison with the point cloud accuracy. These two assumptions are 
necessary to make the process automatic, avoiding the manual steps used in the 2D approach. 

During the fitting phase a least squares adjustment is used to minimize the algebraic distance of each 
observation to its corresponding plane, understanding as observation every point in the dataset. This is 
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done by adjusting the unknown parameters of the model, which are the translation and rotation in the 3D 
approach and also the wear and the shape in the 2D one. 

Finally, the resulting models of rail pieces are put together, and they are adjusted to a smooth curve 
representing the rail axis. The final model is then outputted to a usable format and a validation process is 
performed to test how the result fits the original point cloud. 

3.2. A parametric rail model 

In order to impose the required constraints a parametric rail model has been designed to reconstruct the 
rails. The advantage of this model is that it represents the geometry of the real rail preserving 
representative geometrical properties of the object, such as the angles between the different elements of 
the object, or the distance between opposite faces. 

If compared to real rails, the models developed during the research are much simpler, using rectangular 
angles between their faces, and only planes instead of curved surfaces. This approximation simplifies the 
task of adjusting the model, while the resulting model is still suitable for making measurements and 
analysing the geometric shape and deformations of the rails. 

A note about the coordinate system of the dataset and the model must be risen at this point. Along the 
document, it is assumed the Z axis is the upward axis of the point cloud. While same assumption is done 
for the 3D parametric model, in the 2D case, the Y axis has been used as upwards. As for the Y and X 
axis of the 3D model, they represent the axis of the rail piece and the perpendicular to that axis 
respectively. The origin of coordinates of the model have been set in the centre of the top edge of the 
model as can be seen in Figure 5 for the 2D model and in Figure 6 for the 3D case. 

Along the document the following convention is followed about the name of the different rotations: 

 Orientation: The rotation angle around the model Z axis. 

 Slope: The rotation angle around the model X axis. 

 Rotation: The rotation angle around the model Y axis. 

3.2.1. Parametric model in 2D 

The idea of using a 2D model to reconstruct the rail is that by sweeping such a profile along the rail axis 
represented by a parametric curve one can obtain a 3D model. Thus, the profile model can be 
characterized by a set of extrinsic parameters referring to its location and rotation, and a set of intrinsic 
parameters dependant only on the rail shape that is constant along the object. Additionally, a set of two 
wear parameters are defined, as they are part of the rail profile description, but they cannot be considered 
constant along the whole rail. 

The extrinsic parameters can be identified as the elements of the transformation matrix required to 
transfer the ideal model to a real profile in a certain section in the rail. In this case three parameters are 
identified: the translation along X and Z of the point cloud coordinate system, and rotation around the rail 
axis. The position of the profile in the rail axis is treated as a known value, whereas the orientation and 
slope of the rail are unknowns of the parametric curve along which the model should be swept. 

As for the intrinsic parameters, Figure 5 describes the following ones: 

 Wh: Width of the head, 

 Hh: Height of the head, 

 Ww: Width of the web, 
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 Hw: Height of the web, 

 Wf: Width of the foot, 

 Hf: Height of the foot, 

 Hr: Heigth of the wear, the difference between the current head height and its design height, 

 Wr: Width of the wear, the difference between the current head width and its design width. 

 
Figure 5: Parametric 2D rail model. 

Thus, all the vertices of the model can be defined from the origin of the model coordinate system, set in 
the middle of the top edge, and using the intrinsic parameters. 

Not all these parameters can be estimated at the same time during the fitting step. For example, the height 
of the web, Hw, cannot be computed due to limitations of the acquisition method, which cannot record 
any laser point in the bottom plane of the head. Therefore, only the total distance between the top of the 
head and the top of the foot planes can be adjusted, meaning only one of the components can be treated 
as an unknown. Similar thing happens with the width of the foot, as its lateral planes can hardly by 
recovered from the input data; and the same for the width of the web or the head when only one side of 
the rail has been acquired. 

On the other hand, if the design parameters are known, as it is the case (see section 2.1 in page 4), it is 
only required to solve the model location and orientation by finding the corresponding translation vector 
and rotation matrix of the model coordinate system with respect to the point cloud one.  
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In addition to the model and the transformation parameters, two wear parameters have been defined in an 
attempt to model the erosive effect of the train wheels in the rail over the time. These two parameters are 
the width wear, Wr, and the height wear, Hr, both relative to the head of the rail. It should be clear that 
the design height of the head equals the sum of Hh and Hr, as its design width equals the sum of Wh and 
Wr. 

Regarding the orientation of the model, only the angle around the rail axis has been considered. The 
reason is the other rotation angles are required before slicing the point cloud, in order to perform a correct 
projection of the points to a 2D plane representing a section perpendicular to the rail axis. Indeed, the 
difficulty to obtain the orientation by other means is the reason why the 2D method has been dropped in 
the final methodology in favour of a 3D adjustment. In contrast with the 2D case, a 3D adjustment allows 
finding the complete rotation matrix at the same time of the other parameters. 

3.2.2. Parametric model in 3D 

The advantage of a 3D adjustment is the rail piece can be not only located but also completely orientated 
in the 3 directions of the space. This requires computing the distance between the points in the dataset 
and the planes of the rail model instead of just lines. Consequently, the requirement for a 3D parametric 
model arises. 

The idea is that in small lengths a rail section can be successfully represented by a straight piece of rail. 
This assumption seems acceptable as train rails have a radius of curvature which may not be smaller than a 
design minimum, for safety reasons and dependant on the maximum speed. Thus, the curves on them are 
smooth with no sharp turns at all. Even for an urban tram, the minimum radius of curvature is as large as 
40 m, and thus the error introduced by such an assumption can be as small as 3 mm in a half meter 
straight piece. 

In a 3D parametric modelling approach, all the extrinsic parameters are adjusted altogether, and thus, 
translations in X, Y and Z axis, as well as their corresponding rotation angles can be calculated. 

With respect to the intrinsic parameters, in Figure 6 the following ones are presented: 

 Wh: Width of the head, 

 Hh: Height of the head, 

 Ww: Width of the web, 

 Hw: Height of the web, 

 Wf: Width of the foot, 

 Hf: Height of the foot, 

 L: Length of the rail piece. 

These intrinsic parameters are known for every type of rail, and therefore they can be treated as constants 
once the rail type has been set, because of previous knowledge, or by previously trying to fit different 
types and choosing the one with the best results. Only L is not a design parameter, but it can be treated 
also as a constant as it is the input length used for sectioning. 

All the vertices in the model can then be defined from the origin of the model coordinate system, set in 
the middle of the top front edge, using the intrinsic parameters defined in the figure. 
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Figure 6: Parametric 3D rail model. 

Comparing to the 2D model, only the L parameter has been introduced, to represent the length of the rail 
piece. This length is not relative to any predesign dimension but instead it depends on the sectioning 
process of the point cloud (see Section 3.3, Point cloud sectioning, page 12). 

In the 3D space, the transformation matrix of the model coordinate system with respect to the point 
cloud coordinate system, is defined by a txyz translation vector and the rx, ry and rz rotation angles, 
representing the rotation around X, Y and Z respectively, which can be used to construct a rotation 
matrix. Therefore, the transformation matrix, which indeed represents the extrinsic parameters, will be: 
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It should be noted these rotation parameters are relative to the model coordinate system and not to that 
one of the dataset. 

3.3. Point cloud sectioning 

The input point cloud data, whether it is obtained manually or automatically, is processed to crop the 
points of the individual rail that is going to be reconstructed. 
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As the parametric model is polyhedral, in the sense it has flat faces and straight edges, a technique to 
progressively adapt to track curvature and slope changes is required. For this initial approach to the 
problem, a solution involving the adjustment of small pieces of rail to the point cloud has been 
implemented, which avoids having to deal with more complex curved models.  

For further processing, the rail pieces are required to be approximately rectangular. Therefore, to generate 
the sections an idea of the orientation of the rail with respect the X and Y plane is required. In areas with 
strong curvatures a progressive orientation dependant on the section would be required.  

The sectioning or slicing process is done in pieces of equal length. This length is dependent on the point 
cloud density and the curvature and slope of the rails. It should be noted that lower point densities require 
larger pieces in order to provide enough points for a robust fitting, whereas, the higher the curvature in 
the track, the smaller the pieces should be to adequately represent the rail. 

The maximum introduced error in the distance between the rail and the model because of a straight piece 
not fitting to a curved rail can be found by the following formula: 

22 lrre   (2) 

where e represents the maximum introduced error, r is the minimum radius of curvature of the rail track, 
and l is the length of the rail pieces as expressed in Figure 7. 

 
Figure 7: Error e introduced for a radius r rail because of straight rail assumption. 

In the following chapters the effect of the length in the least squares convergence rate would be discussed, 
because a larger length implies a larger number of observations. 

3.4. Approximation of initial values 

The least squares adjustment method used to fit the model require a set of initial values for the parameters 
of the model, as the system is non-linear and should be solved iteratively. This is a critical step as it can 
largely influence the result of the next phases. Different operations have been used for each parameter as 
explained in the next paragraphs. 

3.4.1. Translation parameters 

The minimum Y coordinate and the maximum Z coordinate among all the points in the rail piece have 
been selected respectively as initial Y and Z translation values. 

To calculate the initial X value, the points in the head of the rail are selected and then the mean X has 
been accepted as an initial value for the translation along the X axis. For the purpose of selecting all the 
points of the head, the points contained within a 5 cm buffer around the plane located in the Z initial 
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value have been considered as part of the head. This buffer threshold can be adjusted depending on the 
head height design and the point cloud noise factor. This initial X value would be more accurate when the 
distribution of the points in the head along the X axis fits better to a symmetrical distribution. 

3.4.2. Rotation parameters 

The rotation around the X and Y axis is initialized at 0 radians. With respect to the rotation around the Z 
axis, the orientation of the railway track is taken as input when it is known, as it is the case in straight rails 
where a Hough Transform has been used to detect the rail points (Arastounia, 2012). In cases where the 
orientation is not known, the parameter can be approximated using the rail piece point cloud extend. The 
angle is thus obtained by using the arctangent of the X extent divided by the Y extent, which is the angle 
formed by the diagonal of the rail piece. 

3.4.3. Wear parameters 

The initial value for the wear parameters, the difference between the real rail measures and the design 
dimensions, are simply set at 0, as the initial hypothesis is no representative erosion has happened. 

3.5. Detection and handling of outliers 

Due to the uncertainty in the laser observations the points’ location has an inherent error dependant on 
the acquisition method. As the results of the fitting method introduced by this research is dependent on 
the accuracy of the input observations, some pre-processing of the data is required in order to limit the 
cases where filtering and convergence of the model to the point cloud can fail. 

To detect the outliers, first of all the points are projected into the XZ plane using the principal component 
analysis and ignoring the resulting value of the main axis coordinates, this is the Y axis of the model. 
Then, the observations out of a reasonable range are erased from the set of points being considered to 
reconstruct the rail. 

3.5.1. Principal components analysis 

The principal component analysis (PCA) method simplifies the information of the point cloud by 
correlating the coordinates of all the observations analysed within it (Smith, 2002). As a result three 
vectors are found indicating the main directions of the point cloud. Corresponding to each direction is a 
value that expresses the variation of the points in that direction. These are indeed the three eigenvectors 
and the three eigenvalues of the covariance matrix of all mean-centred point coordinates. 

A new coordinate system is then defined that constitutes indeed a vector space for which the 3 calculated 
eigenvectors are a basis. The new coordinate system has the property of differing from the model 
coordinate system only by a translation transformation. In this case the axis defined by the eigenvector 
corresponding to the largest eigenvalue corresponds with the Y axis of the model, whereas the second and 
third eigenvectors will correspond to the X and Z axis in the model coordinate system. This can change 
depending on the length of the rail pieces and their height. For example, if not only the head points are 
used as input, the smallest eigenvalue will correspond to the X axis. 

3.5.2. Interquartile range criterion 

In order to improve the results of the filtering method, all the points not close to the surface of the rail 
head are outliers and should be ideally removed to avoid failure during the filtering operation. Thus, 
points with an X value, in the new coordinate system, outside 1.5 times the interquartile range, are 
considered outliers with respect the lateral planes of the head, and are consequently removed from the 
observations matrix. This procedure is repeated for the new Z axis, but only after the correspondence 
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step, and only for the points identified as part of the top plane, so vertical outliers can be also removed 
before the fitting phase. 

The interquartile range criterion is preferred to other statistical methods based on the mean and the 
standard deviation. The reason is those stats can be biased by the outliers while the interquartile range is 
not, because it is based on frequency of appearance of the observed values. Thus being centred on the 
median, it is more suitable to know what observations are extreme in contrast with the great majority 
laying on the rail. 

3.6. Establishing point to plane correspondences 

One of the biggest challenges when running a least squares adjustment is to decide in which plane lays 
every point, as the equation required for every point varies depending on the plane. Therefore three 
different methods have been considered for this pre-fitting step. 

3.6.1. Manual assignment 

The simplest way is to manually decide to which plane corresponds each point. Although this is a 
straightforward method, it is not oblivious to mismatching due to a poor visual interpretation of the 
location of the rail piece by the operator. Additionally, it involves a considerably large amount of work 
specially when dealing with large datasets. Therefore, this method has been used only during the first 
stages of the research, and has been involved only in obtaining the 2D fitting results. 

3.6.2. Orthogonal distance 

The second method attempted is by computing the orthogonal distance of each point to each plane of the 
model. Then, the nearest plane to the point is considered to be the corresponding one. The main problem 
in this case is that the approach depends on the initial values used to position and orientate the model. 

An improved version of this method considers, in addition to the orthogonal distance, the projection of 
the points inside the boundaries of the planes. However, this method is also largely dependent on the 
initial approximation of unknown parameters. 

3.6.3. Point filtering 

Finally, a method has been developed consisting into determining the correspondence for the points of 
the head depending on their relative position with respect the rest of the points in the point cloud. 

In a first step a structuring element is defined similar to that used in DTM ground filtering operations. 
This structuring element is placed over each point in the dataset section, and it is checked if any other 
point in its range lies above it. If no other point is found, then the point is selected as part of the top plane 
of the head. This process is illustrated in the left image of Figure 8, where three points are found above 
the structuring element. 

               
Figure 8: The point in the left image is not detected as part of top plane as it has points above its structuring element. 

In right image the point is detected in the right plane as no other points are to the right of its structuring element. 
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For the lateral points the same operation is repeated, but this time the structuring element is placed over 
the point in vertical position and the points to the left are checked when finding the left plane, whereas 
the right ones are checked when finding the right plane. Only the points located within a buffer equal to 
the height of the head from the top plane are considered as candidates to be part of the lateral planes. 

The structuring element is placed within a distance of the point to be checked equivalent to the laser 
measurement uncertainty, and a factor relative to the structuring element dimensions and the rail 
orientation. In this case a structuring element of 20 cm by 20 cm and a distance threshold of 1.5 cm have 
been used. These factors have been successfully tested with orientation angles of the rail axis around the Z 
axis smaller than 20º. 

It should be noted the fact that after labelling the points as part of one plane, they are no longer 
considered as candidates when searching for subsequent planes. 

3.7. Rail piece model fitting 

Three different methods have been considered in order to fit the rail model to the dataset. First of all, a 
2D adjustment where the model is defined by the bounding lines of the rail piece. Next, two methods 
have been explored in order to adjust the model in 3D, facing different problems and opening new 
opportunities. 

3.7.1. 2D non-linear least squares adjustment 

This method exploits the idea of having a set of thin slices of rail point cloud that are used to orient a 2D 
profile. Thus, in addition to the model parameters, a rotation factor around the rail axis is defined, and the 
resulting set of profiles progressively can adapt to the rail curvature. 

A 2D model is defined as expressed in section 3.2.1 (page 9). Then a least squares adjustment is used to 
minimize the algebraic distance of each point to its corresponding edge. The input equations are therefore 
the implicit formula of a line using as X and Y the coordinates of the correspondent point. A first grade 
Taylor expansion is used to linearize the equations at the point defined by the parameters of the model. 
After the observation matrix is built, the equation is solved, obtaining as a result and approximation of the 
gradient for each parameter that should be added to the actual values in order to converge to a better 
solution. The initial parameters calculated in a previous step are used firstly, while the updated parameters 
after the iteration are used for the next one.  

The iteration is stopped when the parameters converge into one solution, that is, the gradient is smaller 
than a certain threshold, in this case 0.001 m or radians. Otherwise, after 20 iterations the process is 
considered not converging and the iteration is stopped. 

This method requires high density input data, in order to have enough observations in the thin slices. As 
the slices are thin, it is assumed that they can progressively adapt to the changes in orientation of the rail. 

3.7.2. 3D non-linear least squares adjustment 

This method is equivalent to the previous one, but plane instead of line implicit formulas are used. As a 
result more points can be used, as the pieces are larger in this case, ranging from 0.5 m to 10 m length. 
This makes the estimation more robust. A detailed explanation about least squares adjustment of plane 
surfaces with respect to laser point clouds can be found at Rabbani (2006). 

3.7.3. 3D linear model using singular value decomposition 

The estimation model can be made linear by considering the rotation matrix elements as independent 
factors, thus not forcing the rotation matrix to be orthogonal. Then, the distance between the points and 
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their corresponding planes can be minimized in order to estimate the transformation parameters (Sande, 
Soudarissanane, & Khoshelham, 2010). This is done by solving the following equation: 

0 PHN  (3) 

where  stands for matrix multiplication, N contains the plane parameters, consisting of unit normal 
vectors and distance to the origin d, H is the transformation matrix, and P contains the coordinates of the 
points. The equation can be developed as follows for a point j laying in plane i, being j = 1, 2, …, n the set 
of points in the point cloud, and i = 1, 2, …, m the planes of the model: 
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where the normal of a plane is (nx, ny, nz) and d is the orthogonal distance from the origin to the plane, the 
coordinates of a point are (px, py, pz, 1), r are the elements of the rotation matrix and t those of the 
translation vector. 

After the transformation matrix H is found, the rotation matrix is made orthogonal. For this purpose, the 
rotation matrix is decomposed using the singular value decomposition method, and the matrix of singular 
values is forced to be an identity matrix. Finally, it is checked whether the resulting matrix is a true 
rotation or a reflexion, and in the latter case it is converted to a rotation matrix. 

3.8. Curve fitting to reconstructed rail pieces 

After the model pieces are reconstructed for several sections of the data, they must be connected 
smoothly and adjusted to the track axis using a curve model. 

3.8.1. Bezier curves fitting 

Non-rational Bezier curves were chosen to fit the edges of the rail as they are invariant to transformation 
(Campbell, 2012). These curves require a set of control points that define the constraints to smooth the 
curve. The midpoint of each of the 4 edges that comprise the head of the rail pieces have been used as 
control points. 

As the curves are described in 3D, a 3rd degree non-rational Bezier curve has been used. Between every 
pair of control points, a set of f points has been calculated to represent the curve. The resulting number of 
points is equivalent to multiply the number of control points by f. This factor depends on the expected 
resulting smoothness, and it must be bigger when using large rail pieces than with small ones. 

The following formula describes a Bezier curve: 
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where n is the number of control points, C(u) is the curve point at u, and u is the curve parameter 
incremented from 0 to 1 by steps of 1/(fn), Bi a blending function and Pi the corresponding control point. 
The blending function is defined by the Bernstein polynomials, where i corresponds to the iteration 
number: 
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Although the initial approach was to take the vertex of the rail pieces edges as control points in order to 
reconstruct these edges with curves, the distance constraint between those edges showed to be not 
preserved in the initial tests. 

In order to model the rail curvature while preserving the rail profile constraints, a different method 
consisting of a 6th degree non-rational Bezier curve to adjust the rail pieces extrinsic parameters was 
developed. In this case, every control point has six dimensions corresponding to the translation along the 
three axis and the three rotation angles around them. Consequently the result of C(u) is a 6x(fn) matrix 
where every column can be understood as the parameters of a rail profile that can be reconstructed using 
the 3D rail piece parametric model. The result is a set of profiles that not only are located and orientated 
smoothly with respect to their neighbours, but also preserve the rail constraints implicit in the rail model. 
Careful attention must be paid in the angular parameters, as 360º and 0º are equivalent angles but do not 
generate equivalent results. 

One interesting property of the Bezier curves approach is the sections of the rail with gaps, due to rail 
pieces unachieved fitting or ignored extreme results, are automatically filled with intermediate profiles 
dependant on the surrounding rail pieces. 

3.8.2. Surface reconstruction 

Finally, the rail surface can be modelled by closing the boundary of the rail connecting the equivalent 
vertices of each profile and its direct neighbours. Every surface is delimited then by two profiles and two 
edges and can be defined by their four corresponding vertices. The problem is those four vertices are no 
longer coplanar because the profiles have different rotations due to the rail deformations. This results in a 
curved surface that can be approximated using triangular planes, if it is assumed that the distance between 
the rail profiles is small in comparison with the deformations in the rail surface. 

Therefore, each of the nine faces delimited by every pair of profiles is approximated by two triangular 
planes. The smaller the separation between profiles, the smaller is the difference between the triangle 
planes and the curved surface, and the more accurately the model represents the real rail. Therefore, the 
quality of the resulting model depends on the length of the rail pieces used for fitting and the parameter f 
that controls the number of profiles per piece in the Bezier adjustment, because given a rail section the 
more profiles used to approximate the curvature, the short the distance between them. 

3.9. Validation procedure 

In order to validate the piece fitting methodology it is possible to use the residuals of the least square 
adjustment for each of the pieces. Nevertheless, a different method is required to validate the final Bezier 
rail model so the effect of the curvature adjustment is included in the assessment. Hence, a method to 
compute the distance from all the points of the rail to the nearest plane of the Bezier rail model has been 
developed. Even if the point cloud is limited by its own accuracy it is still the best reference available from 
the real rail. The distance computation proposed represents not only the differences between the rail and 
the model, but also the noise in the dataset and the misclassifications in the rail detection process, and can 
be consequently seen as an assessment of the complete method. 

3.9.1. Distance from a point to a finite 3D triangle 

The distance from a point to a plane can be computed as its orthogonal distance. Nevertheless, in this case 
the planes are finite triangles, and the orthogonal distance is not always a representative characteristic of 
the separation between a point and a triangle. Therefore for validation purposes, the orthogonal distance 
has been accepted as the distance only when the orthogonal projection of the point to the plane lay inside 
the finite triangle. In the rest of the cases, the distance to the nearest edge is accepted as the distance 
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between the point and the triangle. Thus, in order to know if the point projection is inside the triangle a 
test has to be executed before deciding which distance should be computed. 

Considering the tetrahedron formed by connecting the vertices of the triangle to the point, the projection 
of the point to the plane of the triangle would be inside the triangle, if, and only if, the angle formed by 
the plane of the triangle and the faces that have the point as a vertex are acute. This is illustrated in Figure 
9, where left tetrahedron P faces have and acute angle respect the ABC triangle, while in the right one, this 
is not true for the face PBC, and the point P is consequently outside the base triangle. 

 
Figure 9: Tetrahedron formed by a triangle plane and one point. In left image the point P projection in the plane is 

inside the triangle, while in the right, it is outside. 

The angle between two planes, the faces of the tetrahedron in this case, can be found from the angle 
formed by their normal vectors. Thus, in a right handed system the two faces will form and acute angle 
when their normal vectors are obtuse, as shown in Figure 10. 

     

       
Figure 10: Relationship between faces angles and their normal vector angles. 

There is a relevant property of the dot product that allows to test if the angle u formed by two vectors u 
and v is acute or obtuse (Anton, 1994): 

obtuse 

obtuse 

acute 

acute 
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 u is acute if and only if 0vu  

 u  is obtuse if and only if 0vu  

 u  is rectangular if and only if 0vu  

In order to be comparable for this application, these normals should be computed consistently, using 
vectors pointing to the same plane sides respect the segment they share in common. This can be done by 
computing the cross product of each face, but using in different order the vectors with a common vertex, 
so the normal of the two planes would be computed as follows (see Figure 11): 

)( ABACN ABC   

)( PCPBNPCB   

 
Figure 11: A triangle and the plane formed between a point P and one of the triangle edges, BC. 

Then, depending on what faces form obtuse angles with the triangle plane it is possible to distinguish 
which is the nearest vertex or edge to the point. These conditions are summarized in Figure 12. 
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Figure 12: Areas where the point projection can be contained and angular test, labelled by common edge of the 

triangle and the point face, as well as distance algorithm to be computed in each case. 
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4. RESULTS AND ANALYSIS 

All the methods have been implemented into a Python program bundled by a common user interface 
designed with Tkinter. For the statistical and algebraic analysis, numpy module has been used, as well as 
for reading and writing XYZ plane text files containing the point cloud coordinates. With respect to the 
visualization of the data and the results, the matplotlib module, and specifically pylab for 2D and pyplot 
for 3D plots have been used. As for the output format, pycollada bindings to OpenCOLLADA have been 
selected, corresponding to the .dae file extension. 

Whenever manual handling of the data has been done, the PCM software provided by ITC has been used. 
Finally, SketchUp has been used to visualize and validate the consistency of the .dae output format files. 

4.1. Correctness of correspondences 

4.1.1. Orthogonal distance 

The correspondence by orthogonal distance showed relevant limitations. First of all, if the planes are not 
considered finite, the orthogonal distance to a plane can be small even if the nearest edge is far away from 
the point. In figure 13, if the web lateral planes are prolonged to the infinite, some points of the top plane 
are nearer to them than to their actual plane, but as can be seen for the points assigned to ‘h’ it is an 
incorrect correspondence as they are more feasibly part of the top plane. 

   
Figure 13: Pure orthogonal distance correspondence. 

Even if the planes are considered finite, and the distance to the nearest edge is computed when their 
orthogonal projection to the plane do not lay into the plane, requiring accurate initial values still remains a 
limitation. Figure 14 proves the distance from a point to a plane depends on the position and orientation 
of the model, and thus, of its initial parameter values. 
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Figure 14: Correspondence by distance with acceptable initial values (left), and not accurate enough initial axis 

orientation (centre and right). Result with incorrect initial X translation value (bottom). 

4.1.2. Point correspondence filtering 

Point filtering method was tested against the rails 1 and 2 of the input dataset, using 2 m long rail pieces. 
Results are presented in Table 1, showing the number of points in the three planes of the head, classified 
as correct or incorrect depending on whether the automatic correspondence for that point was successful 
or it was assigned to a wrong plane. In case where a point laying in one plane of the head was not 
classified, it was counted as non-classified. 

The percentage of pieces without incorrect correspondences is over 70% in both side scanned rails, but it 
fails to just 37% in only one side scanned rails. Whereas the left incorrect values happen just because there 
are no points in the left and therefore some other points are misclassified, the high rate of right 
correspondences incorrectness is due to non properly detected outliers. These outliers are maybe 
produced by reflections, unexpected model shape due to the presence of a joint bar, or registration 
problems between different scan strips. Whatever the reason, failure to orient the point cloud, as it will be 
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discussed in this section, makes the implemented statistical outlier detection algorithm not applicable to 
one side scanned rails, increasing the rate of incorrect correspondences. 

One improvement would be not searching for points in one lateral if it is known they have not been 
acquired. This information can be easily set beforehand, but also automation should be possible by 
considering the point distribution. For example, once detected the top plane, the mean X value of the top 
plane when compared to the mean of the whole rail piece, would be deviated towards the side missing the 
head lateral. 

Top Left Right Top Left Right Top Left Right Others Total
Excluding 

non-
scaned 

1 Only right 2 m Yes 2280 0 1094 13 47 38 23 0 96 1981 97.2% 96.6% 45 37.0% 58.7%

2 Mainly left 2 m Yes 5267 1402 61 0 5 10 30 35 2 2136 99.8% 99.0% 45 76.1% -

2 Mainly left 2 m No 5665 987 40 1 10 14 28 43 6 2136 99.6% 98.9% 45 73.9% -

NOTE: Points in the corners can be often classified as part of a lateral or top plane, thus the total quantity of top, left and right points can vary between PCA and non-PCA results.

PCA
Piece 
length

Scan
Rail 
ID

Correct points Incorrect points Non-classified points Piece correctness
Correct_ 

ness
Com_ 

pleteness
No. of 
pieces

 
Table 1: Point filtering for plane correspondence results. 

Rails number 3 and 4 showed a large amount of correspondence errors due to an unexpected shape; see 
Figure 15 where points consistently appear in over the top left edge of the rail. Even if from rail 3 it is 
possible to think that the rail has a different type in this section, from rail 4 it is clear that the problem is in 
the acquisition method as no train would be able to move in such a rail profile. Because of this reason, the 
analysis of the results has focused in the track formed by rails 1 and 2.  

     
Figure 15: Point cloud shape of rails 3 (left) and 4 (right). 

With respect to the outlier detection method implemented, the principal components analysis (PCA), fails 
when processing only one side scanned rails. In Figure 16, the right lateral of the head was detected as the 
top plane, ‘a’, and consequently some points of the right plane, ‘e’, were detected in what actually was the 
foot of the rail. The method can establish a relation between the XY coordinates representative of the rail 
axis, only when the rail axis balance the point cloud, this is, when the correlation of XY is representative 
of it. Therefore, principal component analysis is not a reliable candidate to retrieve the points coordinates 
in the model coordinate system when using mobile laser scanning mounted in the same track desired to be 
scanned, because there are always two laterals of the rail track that are not acquired. Besides this limitation, 
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the method proved to be useful to improve the filtering of rails scanned in both sides, and thus it has been 
used to filter rails 2 and 3. 

 
Figure 16: Point cloud in global coordinate system (left) and in PCA coordinate system (right) for an only one side 

scanned rail piece. The top plane ‘a’ is detected in the right lateral of the rail. 

The incorrect correspondences tend to happen when evaluating the planes with smaller point density. This 
is, when a point in the top plane fails to be classified, when looking for lateral correspondence is more 
likely not to find any other point to its side if the point density in that direction is sparse. 

Additionally, the incorrect correspondences more often happen in the extremes of the rail pieces. The 
reason is that in these extremes, the structuring element is projected to a void space where there are no 
points (indeed they are, but in the next rail piece), thus, halving the filtering success probability. 

To avoid this, one possibility would be to execute the filtering before the sectioning in pieces process. The 
disadvantage would be a higher sensibility to outliers, a larger processing time (unless the point cloud is 
structured beforehand), and a smaller success rate due to the orientation of the rail. The main point is if 
the whole rail is not completely straight, principal component analysis will not give a satisfactory result, 
disallowing lateral outlier detection, and making the filtering susceptible to the orientation because of not 
using the model coordinate system. 

It seems more feasible to additionally consider the previous and the next rail pieces when looking for 
points beyond the structuring element. Regretfully, this will require the process to work in the same 
coordinate system, thus, the principal component analysis necessarily will have to succeed in orienting 3 
pieces at a time. 

With respect to the correspondence problems caused by non-detected outliers, further discussion will 
follow in section 4.3.3 in page 31, Effect of outliers. 

4.2. Rail piece model fitting results 

4.2.1. 2D simulated data 

In order to validate the least squares algorithm implemented, a first set of simulated points was created. A 
pre-set profile was used for this purpose, picking random points situated along the edges of the profile. To 
avoid this points laying in the edges, a shift factor of maximum 1 cm was randomly introduced in the X 
coordinate of the generated point. 
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After setting different initial values for a new profile, the least squares adjustment was performed showing 
the process was converging into a solution in around 5 iterations (see Figure 17). In this example the 
model parameters were not constrained and thus, it can be appreciated how the different width and height 
of the head, web and foot of the rail, were adjusted after each iteration. 

 
Figure 17: Convergence of 2D model fitting process. Initial profile in red, final one in green. 

4.2.2. 2D real data 

In order to test the algorithm against real data, the points of one of the rails were manually cropped from 
the original dataset. The points were manually labelled depending on what planes of the rail they laid. In 
case it was not feasible to visually identify on what plane they laid, they were assigned the label 0. 

Finally, the algorithm was run using different sets of points of the cropped rail. The number of 
observations in each edge varied from set to set. Should be noted that because an incorrect processing of 
the input dataset, the results of this 2D adjustment were capped to the cm precision. Nevertheless, the 
results are still valid to illustrate the advantages, disadvantages and findings of this method. 

It was possible to find the 3 extrinsic and 2 wear parameters, see section 3.2.1 in page 9, when at least 
observations in the following edges were found: 

 On top edge (BC), plus on left edge of the head (AB), plus on right edge of the foot (FG). 

 On top edge (BC), plus on right edge of the head (CD), plus on left edge of the foot (HI). 

 In both of the previous cases, the lateral head edges can be substituted by the web edges. 

The name of the edges and the corresponding colour assigned to the points can be seen in Figure 18. 
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Figure 18: Profile fitting in manually labelled point clouds of 50 m, left, and 0.5 m length, right. 

The reason of this requirements is, in first place, to fix the translation in X axis, one lateral edge is 
required, and a horizontal one for the Y translation. Secondly, at least two points in the same or different 
edges are necessary to solve the rotation parameter. Finally, the wear parameters require an additional 
point, after fixing the translation, to be solved. Thus, two points in different horizontal edges are required 
for the height wear (Hr), and two in different vertical edges are needed for the width wear (Wr).  

Because the points in the edges of the foot both constraint the profile in the X and Y axis of the model 
coordinate system, they can be used as both horizontal and vertical edges, reducing the amount of 
observations required to solve the system. 

Finally, this approach required to project the points to the XY plane. In Figure 18 the hypothesis that the 
rail was perpendicular to the XY plane was assumed, which resulted in a wrong assumption as can be seen 
from the points in vertical edges where they clearly line up instead of overlapping. The fact that this line 
up did not happened vertically in the horizontal edges was an indication that the angle of the slope was 
near to 0. This makes sense as we know that generally rail orientation variations are more frequent than 
slope ones. 

Thus, this method has the advantage of being able to model the rail wear, and even the rail intrinsic 
parameters in the case they are not known. The main limitation of the method is the orientation of the 
rail, and the slope it is high, has to be found beforehand, either if it is manually inputted or it is found by 
automatic means. To find it automatically, principal component analysis was attempted, reaching new 
limitations because of the non-symmetry of the observations. 

4.2.3. 3D real data and least squares adjustment 

The real data was tested using a 3D non-linear least squares adjustment achieving successful convergence 
in most of the cases. The results are presented in Table 2, where convergence success was considered for 
any piece that achieved convergence before reaching the maximum number of iterations. On the other 
hand, adjustment was considered correct when the resulting parameters balanced the model, around the 
mean, see Figure 19, and the visualization of the model among the rest of the pieces did not show 
appreciable differences respect the rest of the rail to the naked eye, see Figure 21 in page 29. Finally, the 
distance in the table refers to the mean distance from all the points in the input point cloud to the final 
reconstructed model as obtained from the validation of the model, and it will be further discussed in 
section 4.4 in page 32. 

 



AUTOMATIC 3D MODELLING OF TRAIN RAILS IN A LIDAR POINT CLOUD 

28 

Rail 
Piece 
length 

(m) 
PCA Nr. of 

pieces 

Convergence 
success Correct fitting Distance (m) 

Nr. % Nr. % Mean Std. dev.

2 0.5 Yes 180 156 87% 124 69% 0.014 0.023

2 1 Yes 90 90 100% 87 97% 0.005 0.005

2 2 Yes 45 45 100% 45 100% 0.005 0.005

2 5 Yes 18 18 100% 18 100% 0.005 0.005

2 10 Yes 9 9 100% 9 100% 0.005 0.005

Table 2: Fitting success and point to model distance. 

  
Figure 19: Rail pieces fitting success using filtering and least squares adjustment. 

A total of 5 different piece lengths were tested obtaining successful fitting when using pieces of more than 
1 m. It should be reminded that the available dataset only contains straight lines, and thus the good results 
achieved by the 5 and 10 m length pieces more probably will not be successful when trying to fit curved 
rails. The relation between the proper piece length, the point cloud density and the rail curvature is further 
discussed in section 4.3.4 in page 31. 

Three correspondence methods were tested although only the results for point filtering are presented here. 
This decision was taken because the initial tests showed the correspondence by distance method was 
clearly inferior and the manual one was not applicable to the whole dataset because of time constraints. As 
the only method robust to find correspondences between the foot outliers at this state of the art was the 
manual one, see Figure 20, only the planes of the head were fitted during the least squares adjustment. 
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Figure 20: Fitting success, including the initial position of the rail model. 

It should be noted that the non-linear least squares adjustment was selected in favour of the one based in 
singular value decomposition, because it is possible to always find good initial estimates. 

4.2.4. Reconstructed pieces visualization 

The rail pieces as fitted after the least square adjustment were exported to collada format for visualization. 
It is clear from Figure 21 that the result using 2 m rail pieces is much more robust than the 0.5 m. The 
visualization of the other rail lengths analyzed gave similar results to the 2 m one, where the pieces 
connect one to each other with small variations between them that can hardly be appreciated without 
zooming in. 

 
Figure 21: Rail pieces reconstruction with 0.5 m (left) and 2 m (right) length. 

4.3. Analysis of the rail pieces fitting process 

This section analyses the effect of certain factors in the result of the 3D least squares adjustment. These 
factors are here presented from more to less impact in the final result of the adjustment. 

4.3.1. Effect of correspondences correctness 

Failure to properly label the points during the correspondence search process will lead most of the times 
to a wrong least squares solution. There is a clear difference between failures to classify one point, leading 
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to a number of observations problem, and wrong classifications. In this last case the least squares usually 
converges into a wrong solution, Figure 22, or can even fail to find a solution where all the model 
constraints are preserved. 

Depending on the type of correspondence failure, the effect on the final parameters will vary. Orientation 
incorrectness is related with problems derived from only one side of the rail scanned, whereas outliers 
shift the piece in one direction. 

  

  
Figure 22: Fitting failure under wrong correspondence (top left), not enough observations (top right), outliers 

(bottom left), and successful fitting (bottom right). 

4.3.2. Number of observations 

The lack of enough observations derives into orientation incorrectness and can even make the equation 
system unsolvable. In the first case, Figure 22 top right, the filtering process gave a correct result, but 
there were not enough points to have a good distribution along the piece to ensure the right orientation of 
the piece faces. The second case, usually occurs when the piece only have points in the top face, or those 
were the only points that could achieve correspondence. 

The number of observations problem is dependant in the piece length and the acquisition method. The 
shorter the sectioning length, the more probable one of the pieces lacks enough observations to solve the 
transformation matrix. As about the acquisition method, it influences the distribution of the points along 
the point cloud, and thus, the density of the points in one of the faces of a rail piece can have not enough 
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observations. In the analysed dataset the amount of observations in the top face of the pieces is bigger in 
comparison with the lateral ones; for example, in rail number 2 were found 3.5 times more points in the 
top face than in both right and left faces of the head summed together, whereas this proportion was 
reduced to 1.9 in rail 1. 

4.3.3. Effect of outliers 

Depending on the case, the outliers can affect the fitting process causing incorrect results during the 
filtering step, or they can cause a shift or wrong orientation during the least squares adjustment, see Figure 
23. The effect of outliers in the filtering process produce undesirable point detections beyond the 
structuring element, consequently removing the point candidate from the set of points laying on the face 
under check, Figure 23 left. 

On the other hand, when an extreme value is still considerably close to the rest of the points in the face 
and does not lead to a completely wrong correspondence result, there is still the possibility that the fitting 
result is successful as in Figure 23 right. This happens when the number of observations is big enough to 
compensate the weight of the outlier in the least squares adjustment. It can seem that higher density point 
clouds, and larger length pieces can therefore improve the robustness of the fitting process against 
outliers, but those strategies may introduce a comparable number of outliers with respect to the number 
of new observations, not improving the results in most of the cases. 

 
Figure 23: Outliers effect in the filtering (left) and fitting processes (centre), leading to wrong correspondence and 

orientation respectively. In right image the fitting was successful even with outliers in the left face. 

The effect of outliers is considerably reduced when an outlier detection step is introduced before the 
filtering process. The method used here relies in principal component analysis, which not applicability in 
only one side scanned rails has been already discussed in section 4.1.2 in page 23. 

4.3.4. Effect of piece length 

The piece length affects to the number of observations in each piece, thus directly modifying the 
robustness of the least squares adjustment. The larger the selected length, the more points per slice and 
consequently the higher the probability the resulting extrinsic parameters of the piece would be 
representative of the real piece. Additionally, larger pieces have the effect of reducing the number of piece 
edge incorrect correspondences in the filtering step, as less pieces means less border checks. 

On the other side, large pieces may not adjust properly to curvature, slope and torsion of the rail, leading 
to misrepresentation of the object and higher point to model distances. It has been found that for a 
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straight rail a good balance between these factors is with lengths of 1 to 2 meters, see Table 2 in page 28. 
It was not possible to found a similar value in curved rails because there is no such type of rails in the 
provided dataset.   

Finally, it should be noted that pieces with long lengths require less computational time for validation but 
more filtering time than those with shorter lengths. 

4.3.5. Sensitivity to initial values 

Whereas it has been already discussed the high relevance of the initial values for the extrinsic parameters 
of the model when finding correspondences using the distance method, the impact is greatly reduced 
when using point filtering. Once the importance of the initial values is avoided in the correspondence 
process, their impact is limited to generally affecting the number of required iterations to achieve an 
adjustment. Still, when the initial estimation is far away from the real value it is not rare to reach the 
maximum iterations limit, set to 20 in the discussed implementation, ending in a convergence failure. 

4.4. Rail curvature adjustment and final model 

4.4.1. Curve fitting result 

The adjustment of the top rail edges to two Bezier curves did not preserve the distance between the two 
curves. Even being Bezier curves invariant to transformations (Campbell, 2012), the curves are not simple 
shifted copies of each other but independent curves that adapt to different transformations in each of the 
pieces. It is possible to see the effect in Figure 24 where the left-top edge of the head is plotted in green, 
the right-top one in blue and the middle curve between them is represented in red. In the figure the Z axis 
has been magnified so the differences can be appreciated. Nevertheless, the big differences between the 
two edges are also product of the torsion of the rail, but if the distance between the two curves is 
calculated for each Bezier point pair, the standard deviation results in 0.002 m, when it should be near 0 if 
the constraints of the rail model were maintained along the rail. 

 
Figure 24: Bezier curves of the reconstructed top rail edges, including control points. 
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In comparison, the other method implemented by adjusting the extrinsic parameters of each rail piece 
instead of the vertex of the edges, demonstrated a better behaviour. Being dependant of only one curve in 
this case, the reconstruction of the rail profiles ensured the maintenance of the distances constraints along 
the whole rail. In Figure 25 can be observed how all the rail profiles resulting from the Bezier adjustment 
maintain the model constraints and adapt smoothly the changes in the data. The standard deviation of the 
distance between the two top edges was consequently 0 m in this case. 

      
Figure 25: Bezier profile adjustment visualized with the input point cloud. 

4.4.2. Final model visualization 

The final model reconstructed connecting the Bezier profiles, was exported to collada format and 
imported into SketchUp for visualization. The final model showed the complete rail was reconstructed 
and the changes in the rail rotation were smooth (see Figure 26). 

 
Figure 26: Rail reconstruction using Bezier curves with 3 points per piece and 2 m (right) piece length. 

When comparing 0.5 m (left) image of rail piece (Figure 21) with that one of Bezier rail (Figure 26), it is 
possible to observe how the gaps are filled and the misalignments are interpolated obtaining a smoother 
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rail. Only the translation errors perpendicular to the rail axis are meaningfully carried over to the final 
model, in part because those are the largest errors that can be found after the least squares adjustment. 

One of the problems when using larger pieces is wrong adjustments brings larger errors in the 
reconstruction of the rail, as they affect larger sections of it. 

 
Figure 27: Comparison of the effect of wrong parameters in one piece in 0.5 m (left) and 1 m (right) length. Also 

demonstration of curves representation in curved rails. 

Finally, the four rails in the dataset where put together to obtain a model of the two tracks present in the 
input dataset (see Figure 3), the result can be seen in Figure 28. Should be noted that even rails 3 and 4 
had poor fitting results, with less than 40% of convergence rate, the Bezier adjustment was able to fill 
most of the gaps, producing a model that if not accurate, at least maybe useful for some visualization 
applications. 

 
Figure 28: Model of the four rails configuring the two tracks present in the dataset. Rails 3 is incomplete due to 

fitting of the rail pieces errors. 
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One limitation of the Bezier curves method is the final curves do not pass through the control points. It is 
possible then that some deviation from the rail pieces is introduced, although this effect could not be 
confirmed due to the lack of rails with a considerable curvature in the dataset. 

4.5. Final model validation 

As a reference model of the reconstructed rail is not available, it was not possible to perform an external 
validation of the overall modelling process. Nevertheless, an internal accuracy check against the input 
point cloud can still reveal the quality of the rail reconstruction. 

4.5.1. Internal accuracy of the final model 

In Table 3 the results of the validation for different experiments is presented. The column notes refers to 
different options selected while reconstructing the rail, being PCA the cases where principal component 
analysis was used to detect outliers, and right or left filter when one rail had only one side scanned and the 
lateral filtering correspondence was applied only to one of the sides. Regarding the distance, it is the 
geometrical distance to the nearest plane in meters. The percentiles in the table describe the percentage of 
points below a certain distance. The reason to use percentiles instead of the mean to evaluate the accuracy 
of the model is because they give a better impression of the distribution in presence of outliers. 
Nevertheless the mean and standard deviation are also provided. Finally, the percentile at 1 cm states what 
is the percentage of points that lay at less than that distance to the model, and was used as a measure of 
quality as it was considered an acceptable accuracy for most of the applications that can follow up the 
research. 

It is remarkable the result of the rail 3, because even being scanned in both sides, it was not possible to 
reconstruct it completely (see Figure 28), and even the validation method did not consider the points in 
the no completed area, the results are comparable to those of the lateral rail 1, with only 70% of the points 
within 1 cm of the model. The reason is this rail has a different shape in the point cloud that does not fit 
to the UIC 54 model due to some problem in the acquisition system, see Figure 15. 
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Rail Notes 
Piece 
length 

(m) 

Distance (m) 

Mean 
Std. 
dev. 

25 
percentile

50 
percentile

75 
percentile

95 
percentile 

Percentile 
at 1 cm 

1   2 0.008 0.009 0.002 0.005 0.010 0.024 73.9% 

1 right 
filter 2 0.008 0.009 0.002 0.005 0.010 0.024 74.3% 

2 PCA 0.5 0.014 0.023 0.002 0.005 0.011 0.076 72.8% 

2 PCA 1 0.005 0.005 0.002 0.003 0.006 0.013 90.5% 

2   2 0.005 0.005 0.002 0.004 0.007 0.015 86.1% 

2 PCA 2 0.005 0.005 0.002 0.004 0.006 0.014 89.0% 

2 PCA 5 0.005 0.005 0.002 0.004 0.007 0.014 87.4% 

2 PCA 10 0.005 0.005 0.002 0.004 0.007 0.014 86.4% 

3   2 0.008 0.008 0.003 0.006 0.012 0.023 69.3% 

3 PCA 2 0.008 0.007 0.003 0.006 0.011 0.019 70.2% 

4   2 0.009 0.009 0.003 0.007 0.012 0.020 65.0% 

4 left 
filter 2 0.019 0.024 0.003 0.008 0.026 0.072 56.4% 

Table 3: Points distance to the model by piece length. 

The analysis of the distance from the points to the planes in relation to the piece length used during the 
reconstruction process confirmed the 1 and 2 m length pieces as the best options to model the rail object. 
When using these lengths, the percentage of points with less than 1 cm distance to the model is 90%. The 
rail 2 was used for the analysis of the piece length as it was the rail with a higher correctness (100% of its 
rail pieces converged correctly). The analysis of the histograms in Figure 29 reveals that the number of 
points at less than a given distance increases rapidly until the 1 cm. 
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Figure 29: Distance histograms showing the number of points below a certain distance to the model. 

Plotting the points in the dataset with different colours depending on the distance to the nearest plane of 
the model as in Figure 30, revealed the best fitted ones lie on the head, while the distance of the points in 
the foot is larger. This is understandable as the planes in the head are the ones used for the fitting. It is 
also indicative of the higher amount of outliers in the bottom part of the rail, probably because of the 
elements as bolts or ballast laying in this area, but maybe also influenced by the laser incidence angle in 
this inclined surface. In fact it may be possible to filter the points laying at more than 1 cm from the 
model to obtain a set of points corresponding to bolts and ballast. 

 
Figure 30: Points classified according to distance to the nearest plane of a model of rail 2 with 2 m length pieces. 
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One of the problems of this validation process is to which extent the distance from the points to the 
model is the product of modelling deviations or is a result of the noise in the dataset, whereas it is intrinsic 
from the laser device or due to registration inaccuracy of the different strips. It may be revealing to 
validate the model against another dataset with higher precision, for example using a terrestrial laser 
scanning of part of the rail obtained at the same time of the mobile one. 

Additionally, in order to better understand the effect of the Bezier adjustment, calculating the distance 
between the final model and the fitted rail pieces will be required. 

4.6. Output model format 

The final reconstructed model is exported to the COLLADA file format. This format defines an open 
standard XML schema commonly used to interchange models between 3D modelling software 
applications. Its files are identified by the .dae extension. 

For the final output the patches defined from the Bezier curves are stored as they are, whereas in the case 
of the rail pieces, only one model is stored and then a translation vector and a rotation matrix are stored 
for each piece, reducing the file size. 
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5. CONCLUSIONS 

5.1. Summary 

A method to automatically model train rails from laser scanning point clouds has been developed. It has 
been proved that it is possible to generate a curved model from straight rail pieces fitted to the faces of the 
rail. The fitting result of the rail pieces depends on their length and the success of the correspondence 
method, which is sensible to outliers. Even if a considerable number of the rail sections are not 
successfully reconstructed, it is still possible to smoothly connect the fitted rail pieces to retrieve a model 
that if not always accurate for measurements can at least be useful for visualization purposes. Extra 
challenges in only one side scanned rails have still to be addressed. 

In conclusion the answers to the research questions were: 

 Can laser range data be effectively used to extract 3D vector models of train rails? 

A method demonstrating how point cloud data can be used to produce a 3D vector model of the train 
rails have been exposed along the document. 

 What are the requirements of the data in order to make possible the modelling?  

Factors of the dataset as the number of observations in the different faces of the rail or the distribution of 
the points have been analyzed (read section 4.3.2). Even if the rails present in the available dataset are 
straight, the methodology has been designed having in mind curved rails all the time, so it is feasible to 
think a test on such an environment can be as successful as the results here presented. 

 What is the internal accuracy of the gauge measurement from the reconstructed rail model? 

Although an algorithm on how to measure the track gauge have not been detailed, the followed 
methodology, fitting individual rails instead of whole track models, allows the possibility of reconstructing 
both rails in the track and then measure the separation between their internal faces. Nevertheless, such a 
method will have to face challenges on improving the modelling of only one side scanned rails. 

 Is it possible to detect misclassified points during the modelling process? 

A method has been described to automatically detect outliers in the rail head. The limitations of this 
method, as well as the consequences of not handling these misclassification errors have been discussed in 
section 4.3.3. 

 How the different faces of the rail geometry can be identified in the point cloud? 

Two automatic methods have been tested as an alternative to manual identification: distance to nearest 
plane and filtering correspondence. The distance method was highly sensitive to initial values of model 
parameters making it not suitable for the application as they cannot be pre estimated with the required 
accuracy. In contrast, filtering showed to be more suitable as it do not require estimating the initial 
location of the model with respect to the point cloud, but on the other hand it was sensible to outliers in 
the point cloud. The developed filtering method can be useful to model other objects automatically when 
it is not possible to accurately estimate the initial location of the model.  

 What algorithm can be used to model the curvature of rail objects? 

A non-rational Bezier curve algorithm has been explored to smoothly connect all the fitted rail pieces. 
Regretfully, it has been not compared with other possible algorithms to adjust a curved feature as the rails, 
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and will have to wait for datasets including curved rails in order to test the proposed method in those 
circumstances. 

 What are the parameters that allow fitting the primitives that compose a rail model? 

A set of 7 intrinsic parameters, 2 wear parameters and 6 extrinsic have been identified in order to 
characterize a rail section. 

5.2. Pros and cons of the method 

5.2.1. Advantages 

As a method to obtain the model of a rail is still a novelty, most of the characteristics of the methodology 
cannot be compared and must be considered an improvement even if they are not successful under all 
circumstances. 

One of the main advantages is the method is fully automatic, requiring only the input of the dataset and 
deciding the piece length and the correspondence algorithm. 

As for the final modelling of the rail curvature using Bezier curves, it is able to fill gaps from the dataset or 
from failure to fit some of the rail pieces during the fitting step. Additionally, it smoothly adjusts to 
orientation, rotation and slope of the rail, being able to calculate all the extrinsic parameters of a rail 
profile in any point of the rail. 

In order to fit the model to the point cloud, having points in the head of the rail is enough to reconstruct 
the object. The full geometry of the rail is reconstructed maintaining the distance and angular constraints 
of the different faces of the object, in opposition to what can be obtained by a general purpose mesh 
adjustment.  

As the rail is modelled individually, instead of constraining the relation of the two rails of each track, it is 
possible to measure the gauge between two rail models to detect problematic areas, and to adapt the 
method to three rails tracks. 

With respect to the acquisition system, the process is only dependant on single echo laser data, not 
requiring frequency, full-waveform or other lidar information. Indeed, the use of laser scanning as the 
acquisition tool, make the method independent of the light conditions, making the overall method suitable 
for use at night during train valley hours. In fact, mobile laser scanning is improving its accuracy every year 
and it is possible that higher density and better accuracy point clouds may be available in the future years 
opening new opportunities for the methodology. 

The method is deterministic; this is, if run over the same dataset with the same initial parameters the 
resulting model is always the same, making the different tests varying some parameters as the piece length 
easily comparable. 

With respect to the implementation, the method has been fully implemented in python using object-
oriented programming, enabling extension and substitution of algorithms at any step of the process. It 
also ensures it is possible to smoothly run the algorithm from an input dataset to a resulting model 
without having to manually link intermediate steps, although it is possible to do it if desired thanks to 
python scripting interactivity abilities. Additionally, the output result follows the open standard 
COLLADA, which ensures the compatibility with the most popular 3D modelling software. 

5.2.2. Disadvantages 

One of the main problems is the filtering correspondence method is not robust to outliers and they must 
be detected to limit their impact. Additionally it is also sensible to the orientation of the rail, although it is 
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possible to avoid this problem by previously estimating the orientation of the rail axis, process that will 
also improve the sectioning method. In a similar way the filtering and fitting steps are affected by the 
presence of certain elements in the head of the rail, as guard rails or joint bars. 

One of the drawbacks of using mobile laser scanning devices is only the internal faces of the rail track are 
usually scanned. In more than one track railways it is possible to scan both sides of the central rails 
combining the different acquisition strips, which may lower the precision of the dataset depending on the 
quality of their registration. Even still, the lateral rails are scanned only in one side. Nevertheless, the 
modelling method is independent of the acquisition process, and it is directly applicable to other lidar 
sources as long as they can retrieve the rail of the head with enough point density. 

Being the detection of outliers so important for the correspondence filtering step, the method for that 
purpose implemented in this study relies in principal component analysis, which is not applicable in only 
one side scanned rails. It is necessary to develop a different outlier detection algorithm able to work when 
only one lateral of the rail has been scanned. 

With respect to the intrinsic parameters of the rail, they are treated as input information depending on the 
rail type, and thus require pre-knowledge of the track to be modelled. Nevertheless, it is possible to pre-
process the rail to assess which rail model is being used in each section, being the number of possible 
types quite limited, and generally constant along the same railway track. 

The model is limited to assessing the extrinsic parameters that define the rail, its location and curvature, 
but has not addressed how to assess the wear of the rail. If the acquisition method was able to acquire 
both laterals of the rail, the method could be easily extended to model the horizontal wear. As for the 
vertical wear, the limitation is the outliers in the foot, which are produced by the presence of other track 
elements, as the bolts or the ballast. In case these elements could be detected or just filtered out, the 
correspondence method can be extended to retrieve also the foot faces, opening the opportunity to model 
the vertical wear of the rail. However, it is possible that the wear is not observable if it is too small in 
comparison with the accuracy of the acquisition method. 

The methodology requires that the points belonging to the rail are detected in a pre-step and used as 
input. Additionally, each rail in the track should be individually identified in order to model the rails one 
by one. This precondition has been fulfilled by a parallel project in ITC, but this method will require 
manual identification in the cases where that automatic algorithm is not applicable. 

The surface of the rail is approximated in the final model using triangular planes, which do not adjust to 
the real curved surfaces produced by the torsion and other deformations of the rail. The effect of this 
approximation is magnified when using larger piece lengths, but it can be reduced by increasing the 
number of Bezier points to produce the curved model, at the cost of increasing the validation time and 
increasing the output file volume. 

The parametric model used in this study is quite simple when compared to real rails design. Even if the 
result of this approximation may be acceptable as the introduced error is much less to the noise of the 
dataset, it might be possible to improve the modelling result, or at least the visualization replacing the 
simple model by a more complex one. 

5.3. Open challenges and possible follow-ups 

There are still open research lines to improve the understanding and results of rail modelling using laser 
point clouds. First of all, it is possible to improve the reconstruction of only one side scanned rails, by 
automatically detecting what side was scanned and profit that knowledge, besides of developing an outlier 
detection algorithm capable of handling such datasets. 
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The sectioning and filtering steps can benefit from having better initial estimations of the rail orientation, 
which can be done using the rail axis that have been successfully reconstructed from lidar point clouds by 
other studies (Beger et al., 2011), and can be even retrieved from the GPS signal of the mobile laser device 
when it is available. 

One of the main limitations of this research has been the availability of only one dataset to test the 
method, and the fact that it do not includes curved rails or switches. In order to accept the method as 
functional, it must be tested against other datasets and especially one including curved rails. It might be 
possible from such a dataset to test curve models different to the non-rational Bezier used here, in order 
to test which one adapts better to railway tracks. 

Due to the large effect of incorrect piece translation parameters in the final model, it remains open the 
possibility to automatically check when a piece fitting is feasibly correct or not to improve the final results. 
Statistical analysis of the changes in the adjusted parameters, and comparing the resulting parameters of 
one rail to those of the neighbours can be a line to follow in this issue. 

Additionally, the horizontal wear of the rail may be assessed by finding the points corresponding to the 
foot of the rail. Filtering can be extended to those planes if the outliers produced by the presence of bolts, 
ballast and other objects are removed from the input point cloud. 

In order to automatically detect the rail type of certain railway line, it can be interesting to build up a 
database with the different possible models, so the type present in the point cloud can be detected by 
checking which one minimizes the distance from the points to the reconstructed model.  

With respect to other railway objects, the correspondence filtering method developed in this thesis can be 
adapted in order to model them using constrained parametric models and surface fitting. As for the wires, 
it would be possible to use non-rational Bezier curve adjustment to model them but the quality of the 
result would depend on the distribution of the control points and the relation of the wire width and its 
curvature. 

Finally, adjustment of curved models seems a promising alternative to the straight pieces fitting to 
reconstruct curved rails, and it has been already applied to similar objects as curved kerbstones (Liang & 
Vosselman, 2012). Although it will require a complete different approach, it still can profit the knowledge 
of rail modelling characteristics highlighted by this research.
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