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ABSTRACT

The current increase in population has resulted in widespread spatial changes, particularly rapid
development of built-up areas, in the city and its environs. Up-to-date spatial information is requi-
site for the effective management and mitigation of the effects of built-up area dynamics. Spectral
heterogeneity in built-up areas, however, remains a challenge to existing classification methods.
This study developed a method for detecting built-up areas from SAR and ASTER images using
conditional random field (CRF) framework. A feature selection approach and a novel data de-
pendent term of CRF was designed and used to classify image blocks. Mean, standard deviation
and variogram slope features were used to characterize training areas with slope describing spatial
dependencies of classes. The association potential was designed using support vector machines
(SVM), which can handle redundant data with any form of distribution while the inverse of trans-
formed euclidean distance was used as a data dependent term of the interaction potential. The
latter maintained stable accuracy when subjected to a range of small to large smoothness param-
eters while preserving class boundaries and aggregating similar labels during classification. This
enforced a discontinuity adaptive model that moderated smoothing given data evidence unlike
MRF, which penalizes every dissimilar label indiscriminately. The accuracy of detecting built-
up areas using CRF exceeded that of markov random field (MRF), SVM and maximum likelihood
classification (MLC) by 1.13%, 2.22% and 8.23% respectively. It also had the lowest false positives.
The method illustrated that built-up areas increased by 98.9 hectares while 26.7 hectares were con-
verted to non-built-up areas. Thus, it can be used to detect and monitor built-up area expansion;
hence provide timely spatial information to urban planners and other relevant professionals.

Keywords

Spatial dependencies, built-up areas, non-built-up areas, Conditional Random Field (CRF), Markov
Random Field (MRF), Support Vector Machines (SVM), variogram.
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DETECTION OF BUILT-UP AREAS IN SAR AND ASTER IMAGES USING CONDITIONAL RANDOM FIELDS

Chapter 1

Introduction

1.1 BACKGROUND

Technological development in remote sensing has increased availability of data with rich spec-
tral, spatial and temporal resolutions. Consequently, demand of remotely sensed data for urban
area applications such as, monitoring urban growth, study of population density, road network
planning and land-use planning has increased. Remote sensing provides a fast and cost-effective
means of automatically obtaining up-to-date information, temporal datasets over large areas, fast
digital image processing and analysis amongst others. Technological advancement is often faced
with new challenges some of which are foreseen while others are unforeseen. One emerging de-
mand is the need for new efficient image analysis methods to extract information from the ever
increasing data. This is because existing classification methods are no longer effective in extracting
information from outcomes of daily acquired geospatial data.

1.2 MOTIVATION AND PROBLEM STATEMENT

Developed and developing countries are currently characterized by rapid urbanization process
and accelerated population growth [40]. Cities are expanding to accommodate these processes
and the subsequent challenge is growth of built-up areas. Nairobi city is expanding rapidly and
built-up areas have become common [32]. The dynamic growth demands regular update of land-
use information in order to ensure correspondence with changes in built-up area extent and loca-
tion. Urban planners lack efficient tools because existing data capture methods like, surveying or
digitizing of aerial photos, have technical and economic constraints which hamper frequent and
wide area updates [12]. Ground surveys, for instance, are often limited by logistical constraints
and are confined to small areas. Synoptic view of remote sensing sensors makes data acquisition
over wide areas efficient. This offers a timely and cost-effective way of gathering information on
built-up areas if appropriate an classification method is developed.

Precise detection of built-up areas using remote sensing techniques is a challenge to ordinary
pixel based classification methods. Built-up areas are composed of a complex mixture of land-
cover classes (i.e. impervious surfaces, grass, scattered trees and small gardens) all which occur
within a small area [29, 48]. The mixed land-cover structure causes substantial intra-class and
inter-class spectral variability. This is a problem to ordinary per-pixel classifiers which perform
well in spectrally homogenous areas as opposed to areas with high spectral variability [48]. In
spectrally heterogenous areas, pixel-based methods like maximum likelihood classification (MLC)
produce noisy classified images with "salt and pepper" like appearance [18, 30]. MLC is based
on the assumption of normal distribution which is violated when used in built-up areas where
data deviate from normal distribution. Thus, built-up area inter-pixel and intra-pixel spectral
changes, hampers the ability of pixel-based methods to resolve inter-class confusion. A method
that can delineate built-up areas accurately from remote sensing images is requisite. A multi-
source strategy integrating synthetic aperture radar and optical images was adopted as one of the

1
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solutions as demonstrated by [14].
Choice and performance of a classification method depends on the resolution of images used [30].

The study used 15 m resolution ASTER1 and ALOS-PALSAR2 images. In such resolution indi-
vidual objects, i.e. buildings, trees and roads, except large structures, in urban areas are merged
into a single class "built-up area" which consist of heterogenous spectral mixture [18]. Though the
images are of medium resolution, considerable spectral variability still exist in the optical image.
In addition, SAR images are accompanied by speckle which degrades accuracy of per pixel analy-
sis. This can be minimized by analyzing each pixel within its neighbourhood as noted by [14]. A
new approach that can overcome pixel variability — optical image spectral variability and speckle
noise in SAR image — during classification is needed.

Object oriented classification approach is designed to deal with the challenge of pixel vari-
ability. The technique merges pixels into blocks known as "objects" using image segmentation.
Classification is then conducted using "objects" instead of an individual pixel. This improves
classification accuracy because spectral variability and noise in pixels is averaged. Despite im-
proved accuracy, the method still ignores contextual information. Context accounts for spatial
dependencies among pixels. It determines probability of a pixel or a group of pixels occurring
at a given location based on the nature of other pixels in the image [42]. Goodchild [15] de-
fines spatial dependence as "the propensity for nearby locations to influence each other and to
possess similar attributes." Neighbouring locations in built-up areas indeed have similar spatial
attributes. Therefore, integration of spatial dependencies using contextual classification methods
can enhance detection.

Markov Random Field (MRF) is one of the commonly used contextual classification methods.
It is a probabilistic approach that models spatial dependencies of labels in a classified image [26].
Despite the popularity of MRF, its underlying assumption of conditional independence of pixels
adopted for computational tractability, neglects spatial dependencies in the observed data [49]. In
reality, images exhibit a coherent scene because pixels that represent objects in it have strong spa-
tial dependencies [22]. This is illustrated by Figure 1.1, which proves that images contain strong
spatial dependencies rather than being a random collection of independent pixels. Modelling this
spatial dependency can improve classification accuracy [23].

A method that models spatial dependencies in both image data and labels can improve clas-
sification [18]. Conditional Random Field (CRF) framework was adopted as it includes spatial
dependencies of both class labels and data in a statistical manner [49]. Their structure incorpo-
rates data-dependent interaction in image classification unlike conventional MRF method [23].
This facilitated design of a discontinuity adaptive smoothness model used in detection of built-up
areas. The framework was developed to model features3 useful for built-up area detection. Detec-
tion of built-up areas was done using blocks of merged pixels in a 8×8 window size. Use of image
blocks minimized spectral variability common in built-up areas [see 48, chap. 3].

1.3 RESEARCH IDENTIFICATION

1.3.1 Research objectives

The main objective of this research is to develop and apply a method based on CRF to detect
built-up areas from SAR and ASTER images. This is achieved through the following specific
objectives:

1Advanced Spaceborne Thermal Emission and Reflection Radiometer
2Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar
3Features refer to characteristics or attributes that provide a quantitative measure of a class, i.e. mean or standard

deviation.

2
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(a) (b) (c)

Figure 1.1: An illustration of the fact that remotely sensed images contain strong spatial depen-
dencies rather than being a random collection of independent pixels or blocks. (a) Natural image
scene. (b) Image obtained by randomly combining pixel values in (a). (c) Image obtained by
randomly combining the original image blocks. Modified from [22].

1. To identify, select and incorporate features characterizing built-up areas from SAR and
ASTER images.

2. To design an algorithm that model spatial dependencies of features using CRF.

3. To apply the designed algorithm in detection of built-up areas including their temporal
changes.

4. To evaluate performance of the designed method compared to maximum likelihood classi-
fication, support vector machines and markov random field.

1.3.2 Research questions

1. Which land-cover classes and features are suitable for detection of built-up areas?

2. How can spatial dependencies in built-up areas be modelled using CRF?

3. Which scale/block size is suitable for detecting built-up area and their temporal changes?

4. What is the performance of the designed method compared to maximum likelihood classi-
fication, support vector machines and markov random field?

1.3.3 Innovation aimed at

This research aimed at developing a multi-source classification approach for detecting built-up
areas using spatial dependencies of features. Optimal features characterizing built-up areas were
selected and used for classification. Variogram slope, mean and standard deviation image features
were used. CRF unary potential was designed using Support Vector Machines (SVM) non-linear
decision boundary instead of the ordinary logistic classifier. A new data dependent term was
developed for CRF interaction potential using inverse of transformed euclidean distance. Slope
features derived from the variogram were used in the data dependent term to model spatial depen-
dencies of built-up areas.

3
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1.3.4 Research approach

In order to attain the stated objectives a sequence of activities were adopted. To begin with,
a review of contextual classification methods was done with much emphasis on limitations of
conventional MRF and how CRF addresses the limitations. An approach of feature selection
and modelling spatial dependencies using CRF was then designed. A novel data dependent term
based on inverse of transformed euclidean distance was designed and used for the first time. The
designed CRF was then used to classify built-up areas. Figure 1.2 illustrates the main research
approach. A detailed methodological approach is summarized in Figure 4.1.

Figure 1.2: Research approach.

1.4 THESIS OUTLINE

This thesis consist of seven chapters. Chapter one sets the research background, problem, objec-
tives and research questions. A review of theoretical concepts of contextual classification meth-
ods and related works is addressed in the second chapter. The third chapter describes the study
area chosen, data and software used to execute the research. Chapter four sets out a detailed ex-
planation of research implementation including the details of the designed method. Results are
presented in chapter five followed by the discussion in chapter six. The last chapter presents con-
clusions from the study and makes suggestions for further work.

4
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Chapter 2

Literature review

This chapter provides a theoretical background to the research content. The use of spatial de-
pendency in image classification as well as the relevant methods for modelling spatial dependency
in images have been discussed. Some key urban area terminologies and physical characteristics
are defined while addressing ways of measuring them using remote sensing techniques. Finally, a
review of urban area detection studies using contextual classification techniques is provided.

2.1 THEORY AND CONCEPTS

2.1.1 Texture or context?

Humans naturally use spectral, textural and contextual features to interpret information in im-
ages. Features refer to characteristics or attributes that provide a quantitative measure of a class,
i.e. forest, from an image. Such attributes may be spectral reflectance or emittence values from
optical image or secondary measurements derived from an image like texture [42]. An overview
of these features is addressed in this paragraph with reference to [16]. Spectral features describe
the average tonal variations over various bands of an image. Textural features bear information
on the spatial distribution of tonal variations within an image. The concept of tone is derived
from different shades of gray scale of image pixels while texture describes the spatial distribution
of gray tones. Contextual features contain information derived from a pixel based on the nature
of pixels in the neighbouring and/or remainder scene. Spatial context determines the probability
of a pixel occurring at a given location in the image based on the attributes of the surrounding
pixels; hence spatial dependencies.

Land-use/land-cover classification aims to delineate homogeneous areas in an image as op-
posed to separate objects such as tree or building. The homogeneous areas are referred to as classes.
Built-up areas consist of heterogeneous spectral features which are related in a given neighbour-
hood. These neighbourhoods form a homogeneous area as opposed to being independent pixels.
Probability of pixels occurring within a given neighbourhood is described by spatial context while
their spectral features account for their differences. Textural features contain information about
the structural arrangement of features and their neighbourhood [16]. Similarly, spatial context
accounts for the relationship between a pixel being analyzed and those in the remainder of the
scene [see 42, pg. 221]. Generally, the two describe spatial structure of an object in an image [see
42, pg. 63]. This depicts an inextricable relationship between texture and spatial context.

Context is used to model different spatial dependencies in images. In [22], two categories of
context are defined viz: local and global. Local context models local smoothness of pixels or de-
pendencies among different parts of an object while global context describes dependencies among
bigger objects and classes in images. Modelling spatial dependencies in images can improve clas-
sification results. Commonly used methods in modelling spatial dependencies are conventional
MRF and recent CRF used in the study. Theoretical frameworks of the methods are reviewed in
Sections 2.1.2 and 2.1.4 based on the works of [see 42, chap. 8] and [see 26, chap. 1 and chap. 2].

5
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2.1.2 MRF

Markov random fields provide a convenient and consistent framework for modelling context-
dependent entities by characterizing their mutual influences using local conditional probabilities.
Assuming that W = {W1, . . . , Wm} is a family of random variables defined on the set S, of pixels
values, where each random variable Wi is assigned a value wi in a set of labels L, then W is called
a random field. For consistency with notations w is used in this study to refer to random field W .
Thus, w is a MRF with respect to a defined neighbourhood system N if its probability density
function fulfills three properties namely:

1. Positivity: P (w) > 0 ∀ possible configurations of w,

2. Markovianity: P (wi|wS−i) = P (wi|wNi), and

3. Homogeniety : P (wi|wNi) is the same ∀ sites i.

where S − i is the set of all pixels in S excluding i, wS−i denotes the set of labels at sites1 S − i and
Ni are the neighbours of site i. Markovianity property shows that labelling of a site i is dependent
on its neighbours (local neighbourhood property). Homogeneity property defines the likelihood
for a label at site i given its neighbourhood regardless of the relative position of i in S. Figure 2.1
shows commonly used neighbourhood systems.

MRF is used in a generative probabilistic framework where joint (prior and the conditional)
probability distribution of the observed data and the corresponding labels is modelled. It is a
generative model because it uses Bayes rule to predict the posterior probability of a label and then
pick the most likely label. For instance, if d is observed data (image) where d = {di}i∈S and di

is data from a given site i, S the set of all pixels in the image and w = {wi}i∈S the corresponding
labels, the posterior probability P (w|d) over the labels, given the observed data, is expressed using
Bayes’ rule:

P (w|d) = P (d|w)P (w)
P (d) (2.1)

A pixel at a site i can then be allocated to a class wk which has the highest value of the term
P (w|d), that is, the Maximum A Posterior (MAP) solution:

wk = arg max
w

{P (d|w)P (w)} (2.2)

where arg max denotes maximum value of the argument. MAP probability is a popularly used
optimization statistical criteria chosen for MRF modeling. MRF and MAP concepts together
form a MAP-MRF classification framework that determines the joint probability of class labels
given a neighbourhood system. The objective function, MAP in Equation 2.2, is then adopted for
classification where labelling is performed by minimizing the posterior energy. Minimum energy
in this case is equivalent to maximum probability of a label.

Neighbourhood system

Spatial dependency of a set of sites S in an image is defined by a neighbourhood system. A guid-
ing principle of MRF is that the information contained in the local neighbourhood of a site i
is sufficient to obtain a good global image representation. This is attributed to its equivalence
with Gibbs Random Fields (GRF). GRF describes the global properties of an image in terms of
joint distribution of labels in all sites. This property allows MRF model to be defined in terms

1Site refer to a pixel at agiven location in the image.
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of GRF formulation which makes it easier to deal with spatial dependency. The GRF considers a
neighbourhood system based on cliques. A clique is a subset in which all pair of sites are mutual
neighbours as illustrated in Figure 2.2.

(a) (b)

Figure 2.1: MRF neighbourhood systems according to [26]. (a) First-order four local neighbours
sharing a side with pixel i. (b) Second-order eight local neighbours of pixel i. Higher-order can be
extended in a similar fashion.

Energy functions

Markov random fields model spatial dependency by optimizing local conditional distributions.
The MRF-GRF equivalence allows the use of GRF to model spatial dependency during classifi-
cation. A GRF provides a global model for an image by modelling the probability distribution
function (p.d.f) as:

P (w) = 1
Z(d) exp

[
−U(w)

T

]
(2.3)

where T is a constant termed temperature, Z(d) is a data normalizing constant referred to as the
partition function and U(w) is referred to as energy function. The role of the energy function is
twofold. First, it acts as a quantitative measure of global quality of a solution. Second, it acts as
guide in the search of a minimal solution.

Z(d) =
∑

∀ configurations of w

exp

[
−U(w)

T

]
(2.4)

Maximizing P (w) in Equation 2.3 is equivalent to minimizing the energy function:

U(w) =
∑
c∈C

Vc(w) (2.5)

where C is known as a clique and Vc(w) is the potential function with respect to clique type C.
Cliques of first order neighbourhood system with respect to a site i are illustrated in Figure 2.2.

MAP-MRF labelling

The popularity of MRF in labelling can be attributed to its equivalence with GRF as proved
in [4]. A MRF is defined by local property whereas GRF describes global properties of an im-
age in terms of joint distribution of classes of an image. This provides a means of dealing with
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Figure 2.2: Figures (a), (b) and (c) show first order neighbourhood system cliques.

MRF-based spatial dependency and reduces the complexity of the model as it can be expressed in
terms of GRF formulation. The MAP-MRF framework has two roles. One is to derive poste-
rior distribution using Bayesian formulation and to determine the parameters in it. Second is to
design an optimization algorithm to find the maximum posterior distribution. An optimal solu-
tion for Equation 2.2 is computationally intractable for any practical situation. Computational
tractability is attained by simplifying the likelihood model to:

P (d|w) =
∏
i∈S

P (di|wi) (2.6)

Consequently, this implies computational complexity is minimized by factorizing global opti-
mization with a collection of local optimizations. This simplifies the MAP estimate into a mini-
mization of a sum of local energy functions:

ŵ = arg min
w

U(w|d) (2.7)

Where U(w|d) is the energy function being minimized [see 26, chap. 1]. In binary classifica-
tion, the prior P (w) is assumed to be homogeneous and isotropic with only pairwise non-zero
potentials. The model often used for classification is,

P (w|d) = 1
Z(d) exp

⎧⎨
⎩

∑
i∈S

log P (si(di)|wi) + 1
2

∑
i∈S

∑
j∈Ni

βwiwj

⎫⎬
⎭ (2.8)

where β is the interaction parameter of MRF and si(di) is a single site feature vector acting as
an association parameter [23]. Multiplying the interaction parameter by half accounts for dou-
ble counting of labels that occurs in a given neighbourhood system. Optimization methods are
used to determine the solution of Equation 2.7 by maximizing Equation 2.8. Iterative algorithms
such as Iterated Conditional Modes (ICM), Simulated Annealing (SA) and Maximizer of Posterior
Marginals (MPM) are usually adopted [see 42, chap. 8.4].

2.1.3 Image labelling with CRF

A good classification approach involves a method capable of learning diverse dependencies in an
image automatically in a single consistent framework from the training data [23]. To achieve this
two types of spatial dependencies can be modelled. First, remotely sensed images exhibit spatial
smoothness in labels of the same class. Accordingly neighbouring sites tend to bear similar labels
except at class boundaries. Second, complex spatial dependencies exist in the observed data. CRF
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proposed by [25] offer this capability by relaxing the assumption of conditional independence in
the observed data.

As depicted in Equation 2.6, for computational tractability, the likelihood model of MRF is
assumed to be a fully factorized form. The assumption is too restrictive as it ignores spatial depen-
dencies inherent in remotely sensed images when assigning labels to classes [18, 49]. For instance,
a class that contains man-made structures like built-up areas is highly dependent on its neighbours.
This is because in built-up areas, the lines or edges at spatially adjoining sites follow underlying
rules other than being random [23]. Heterogenous appearance of built-up areas in images also
show local inter-related patterns which should be modelled [18]. This exhibits a spatial order in
images where an observation at a particular site is correlated with those of the surrounding sites.
In addition, when the observations are conditioned on the labels, they are not independent from
each other as assumed by MRF [33]. While it is essential to have a model that attains a tractable
inference, it is also desirable that it represents the data without making unwarranted indepen-
dence assumption. To fulfil both requirements, the conditional distribution over the labels given
the observed data is modelled instead of the joint probability distribution over both labels and the
observations [38]. This avoids modelling a complicated probability distribution function over
the data, P (d), that can lead to intractable models. This is the discriminative approach adopted
by CRF. A review of CRF theory is addressed in section 2.1.4 with reference to [18, 25, 26].

2.1.4 CRF theory

For consistency with notations, let d = di . . . dm be a family of random variables over the ob-
served data and w = wi . . . wm be a family of random variables over the corresponding labels.
Lafferty et al. [25], defines a label set w conditioned on d to be a CRF if every wi satisfies the
markovianity property with positivity assumed, where w and d are random fields. Therefore, a
CRF can be viewed as a MRF globally conditioned on the observations d.

P (wi|d, wS−i) = P (wi|d, wNi) (2.9)

Markov-Gibbs equivalence provides a global model for observed data by specifying a probability
distribution function as:

P (w|d) = 1
Z(d) exp

{
− 1

T
U(w|d)

}
(2.10)

Where U(w|d) is the energy function and T is temperature which controls the width of the dis-
tribution. MRF generative classification approach determines class labels by maximizing the pos-
terior, P (w|d), over the class labels given the data. In contrast, CRF discriminative framework
model the posterior probability, P (w|d), directly as an MRF without modeling the prior and
likelihood individually [26]. This reduces the complexity encountered by MRF in modelling the
prior and likelihood individually. The conditional distribution over the labels is expressed as:

P (w|d) = 1
Z(d) exp

⎧⎨
⎩

∑
i∈S

Ai(wi|d) +
∑
i∈S

∑
j∈Ni

Iij(wi, wj |d)

⎫⎬
⎭ (2.11)

Determination of Z is computationally intractable and approximate methods are used to com-
pute parameters and optimize the solution in Equation 2.11. The association potential Ai links
the class label wi at site i to the observed data d. Interaction potential Iij models the dependen-
cies between the labels wi and wj of neighbouring sites i and j and the data. The association and
interaction potentials offer two advantageous differences compared to MRF. First, the association
potential of site i is a function of all the data as well as the label of that site wi. Therefore, data
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from neighbouring sites Ni are no longer conditionally independent as in MRF where the associa-
tion potential is a function of data only at that site, i,e., di. Second, MRF models dependencies in
labels only making the interaction term, adopted from prior probability P (w), to act as a smooth-
ness term over the labels. The interaction potential in CRF models spatial dependencies between
the labels and the data.

CRF was proposed by [25] in the context of labelling and segmenting one dimensional (1-D)
text sequences by directly modelling the posterior as Gibbs field. Image classification is a binary
problem which involves assigning labels to pixels, i.e. wi ∈ {−1, 1}, on a two dimensional (2-D)
regular grid. Assuming the random field in Equation 2.11 to be homogenous and isotropic, that
is Ai and Iij are independent of locations i and j, CRF model simplifies to:

P (w|d) = 1
Z(d) exp

⎧⎨
⎩

∑
i∈S

A(wi|d) +
∑
i∈S

∑
j∈Ni

I(wi, wj |d)

⎫⎬
⎭ (2.12)

The association (unary) and interaction (pairwise) potentials can be regraded as arbitrary local
classifiers. This property enables use of domain-specific discriminative classifiers in structured
data rather than restricting the potentials to a certain form [50]. Sections 4.4.1 and 4.4.2 defines
CRF functional model of A and I .

Association potential (A)

The association potential is a measure of how likely a site i takes a label wi given the observed
data di without influence of all other sites. Kumar et al. [24] propose use of local discriminative
classifiers to determine A. To achieve this, Generalized Logistic Models (GLM) are used to deter-
mine local class posteriors (conditional probability of a class wi at site i given the observed image
d) of the A. Thus, a logistic function is used to fit the local class posteriors directly as:

P ′(wi|d) = 1
1 + e−(x0+xT

1 f(di))
= σ(x0 + xT

1 f(di)) (2.13)

where x = {x0, x1} are model parameters, σ(w) = 1
1+e−w and f(di) is a site-wise (unary) feature

vector computed for site i but may also depend on the entire image d [23]. The form of logistic
model in Equation 2.13 yields a linear decision boundary spanned by feature vectors f(di). The
logistic model can also be extended to introduce a non-linear decision boundary by adopting a
transformed feature vector in 2.14 at each site i.

h(di) = [1, φ1(f(di)), . . . , φN (f(di))]T (2.14)

where φ1, . . . , φN are arbitrary non-linear functions and N + 1 is the dimension of the trans-
formed feature space. The first coefficient of h(di) is fixed to one in order to accommodate the
bias parameter x0. Equation 2.13 becomes:

P ′(wi|d) = 1
1 + e−(x0+xT

1 h(di))
= σ(x0 + xT

1 h(di)) (2.15)

where the vector x = [x1, x2, . . . , xN , α1]T contains the weights/parameters of the features in
h(di) that are tuned during the training process, and α1 is a bias term [27]. Basically, the logistic
model adopted for A does not include interaction among neighbouring image sites. This simplifies
the model of A into an expression of local log-likelihood of an individual image site:

P ′(wi|d) = log σ(wix
T h(di)) (2.16)

The transformation of A in Equation 2.16 ensures that the CRF model (Equation 2.12) simplifies
to a logistic classifier when I is set to zero.
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Interaction potential (I)

The interaction potential acts as a measure for the influence of image data d and the neighbouring
label wj on the label wi of site i. It imposes spatial interaction and can be seen as a data depen-
dent smoothing function. The homogenous and isotropic Ising model, I = βwiwj , in MRF
framework does not permit data dependent interaction due to the assumption of conditional in-
dependence in observed data. This ignores existing spatial dependencies in images. The MRF
I model penalizes each dissimilar pair of labels by a constant smoothness parameter (β). Such
model gives preference to piecewise constant smoothing without explicitly accounting for discon-
tinuities in the data [24]. In contrast, I in CRF is a function of all the observed data d. It can be
linked to the conditional probability, P ′′(wi = wj |d), of the existence of similar labels at sites i
and j given the observed image d:

I(wi, wj , d) = log P ′′(wi = wj |d) (2.17)

Thus, the model for I is:
I(wi, wj , d) = wiwjvT Ψ(dij) (2.18)

where Ψ(dij) is a pairwise feature vector obtained by concatenation or passing the two vectors
h(di) and h(dj) through a distance function i.e. by subtraction (Ψ(dij) = |h(di) − h(dj)|)
[23]. The first component of Ψ(dij) is fixed to 1 to accommodate the bias term in vT . Vec-
tor v = [v1, v2, . . . , vN , α2]T contains the weights of features where α2 is a bias term. The model
in Equation 2.18 was proposed by [24, 23] as it is simple and makes parameter learning a convex
problem. Substituting the defined models of A and I , the CRF model can be expressed as:

P (w|d) = 1
Z(d) exp

⎧⎨
⎩

∑
i∈S

log σ(xT h(di)) +
∑
i∈S

∑
j∈Ni

wiwjvT Ψ(dij)

⎫⎬
⎭ (2.19)

The CRF model is normally used for classification after determining interaction and associ-
ation potentials. This requires determination of posterior probability P (w|d) in Equation 2.19.
Computation of posterior probability involves evaluation of partition function Z(d) which is
computationally intractable. A solution can be obtained by using sampling techniques or ap-
proximations such as pseudo-likelihood (PL), mean field or Loopy Belief Propagation (LBP) to
estimate the parameters. After the partition function is determined, image labelling is performed
by determining optimal class label w given the extracted features. This is done by inference meth-
ods. A MAP estimate is normally adopted as the solution to the inference problem [22].

2.2 BUILT-UP AREA DETECTION USING REMOTE SENSING

Urban area or built-up area? Bhatta [5] defines an urban area as "towns and cities — an urban
landscape". The author notes that definition of urban varies country to country. For instance, a
country may define a farmland surrounded by a residential area as part of an urban area while in
another country is defined as non-urban. Thus, determination of land-use classes is often subjec-
tive. Bhatta proposes eliminating such confusion by differentiating urban land-cover and urban
land-use. Land-cover refers to objects on land surface natural or man-made while land-use refers to
activities on land. This study considers built-up area as a land-cover class composed of impervious
surfaces2, grass, scattered trees and small gardens surrounding buildings: urban cover. Non-built

2Impervious surfaces are mainly constructed surfaces — rooftops, sidewalks, roads, runways, and parking lot —
covered by impenetrable materials such as asphalt, concrete, and stone [5].
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area land-cover class includes: vegetation, cropland, bare-soil and water. The terms built-up area
and urban area are therefore used synonymous in this study.

It is important to consider patterns of built-up areas occurring in an urban setting, for instance
urban sprawl. Similar to urban area, urban sprawl has several definitions. Rashed et al. [see 36,
chap. 2] adopts a physicalist definition due to difficulties inherent in measuring and characterizing
urban sprawl. They define urban sprawl as the rapid and uncoordinated growth of urban settle-
ments at urban–rural frontier, associated with modest population growth and sustained economic
growth. Galster et al. [13] classified patterns characterizing urban sprawl with respect to: density,
continuity, concentration, clustering, centrality, nuclearity, land-use mix and proximity as shown in
Figure 2.3. These patterns depicts a correlated nature of development that is a property of built-up
areas. Modelling such spatial dependencies can enhance detection of built-up areas.

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Physical patterns characterizing built-up area development. (a) Compact develop-
ment. (b) Scattered development. (c) Linear strip development. (d) Legend. (e) Leapfrogging
development. Modified from [13].

Built-up areas have high spectral variability due to heterogenous land-cover. This presents a
challenge to conventional image processing algorithms and techniques [see 48, chap. 1]. Para-
metric approaches like MLC perform well in homogenous areas. In heterogeneous areas, MLC
produces noisy results with "salt and pepper" like appearance [18]. This can be attributed to MLC
limitation caused by frequency distribution assumptions [see 42, pg. 61]. Better classification can
be achieved when within-class variation is less than between-class variation. In built-up areas,
within-class variance is high due to high spectral variability of land-cover classes hence parametric
classifiers fail. While built-up area heterogeneity is a challenge to basic classifiers, the nature of
such areas can be exploited for optimal classification. For instance, [31] assessed the performance
of pixel based, segmentation based and spectral-spatial combined classification approaches in het-
erogenous urban landscapes. Pixel based method performed poorly while the inclusion of spatial
information improved land-cover classification. Thus, making use of spatial information (spectral
and spatial), through incorporation of non-spectral information [42, pg. 62] like spatial dependen-
cies in built-up areas, can improve detection. Moreover, use of complementary information from
images of different sensors, i.e. SAR and optical sensors, has indicated improved classification
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results.
SAR and optical sensors deliver contrasting yet complementary information. Optical sensors

record reflected and thermal radiation of the earth surface objects. Similarly, SAR sensors detect
emitted and reflected microwave radiation from natural and man-made objects. Use of SAR and
optical images enhances exploitation of complementary information [43]. Optical images are
easier to interpret visually while geometric perturbations in built-up areas and speckle compli-
cates interpretation of SAR images. Nonetheless, SAR sensors overcome some major drawbacks
of optical sensors: their signals can penetrate clouds and are independent of daylight [14, 43].
SAR images convey information about geometric configurations (structure), texture and dielec-
tric properties of man-made features in urban areas [10, 2]. These attributes emphasize objects
appearing with low contrast in the optical image counterpart like man-made objects in urban ar-
eas [43]. This is echoed by [1] whose results illustrate that SAR data enhanced discrimination of
urban areas. SAR is typically characterized by speckle, layover, foreshortening and shadows [43].
These effects give additional information not available in the optical images. For instance, in [17]
layover and shadows from SAR were used to extract buildings. The work of [2] demonstrated that
multi-source information and a good classification method improved urban land-cover classifica-
tion. The authors also recommend the use of spatial properties of classes in places such as built-up
areas which have similar spectral properties. SAR data holds a potential for analysis of built-up
area structural characteristics, however, some effects like speckle and shadows hamper automated
classification. Integration of spatial dependencies of built-up areas can be used to overcome this
challenge [11].

2.3 BUILT-UP AREA DETECTION STUDIES USING SPATIAL CONTEXT

Classification techniques using contextual information for image segmentation and classification
have recently gained popularity [42]. Conventional MRF has been used in many studies but
recent CRF has become more popular. Several studies have used CRF for urban related mapping
using remotely sensed images. Hoberg et al. [18], designed a simple binary CRF model used
to classify settlements in a rural area using IKONOS image. Their method outperformed the
standard MLC approach but was unable to distinguish between forest and settlements. They
recommend extension of CRF framework to incorporate: prior segmentation results, spatial as
well as temporal context and more than two classes during classification. The study motivated
extension of CRF by a time-dependent parameter to incorporate temporal differences in land
cover classification [19].

Zhong et al. [49] developed a multiple CRF (MCRF) ensemble learning classifier that uti-
lized five groups of texture features from Quickbird and SPOT to detect urban areas. Texture
features were fused by multiplicatively combining their conditional distribution with MRF as-
signing labels. In an earlier study [50], they integrated MRF with CRF to learn from multilevel
structural information using gradient magnitude, gradient orientation and line length features to
detect urban areas. A challenge of redundant features was considered in the work of [27] where
a feature selection strategy was used in detection of urban areas. Another study by [7], utilized
Gaussian MRF (GMRF) to incorporate texture in delineating urban areas using complementary
features from SAR and optical sensors. The study proved suitable for urban growth monitoring
which is essential in obtaining new information on built-up areas. This inspired another study to
evaluate the performance of multi-parameter SAR data for delineating urban areas using a similar
method [6]. Similar GMRF texture method by [28] proposed a parameter estimation approach
for extracting urban areas from images of different resolutions.

Some studies have been done using CRF to detect buildings in urban areas. Wegner et al. [46],
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applied CRF to detect buildings from one orthophoto and Interferometric SAR (InSAR) data
using orthophoto colour features and SAR texture features. The outcome demonstrated that
CRF performed well compared to standard MLC and MRF. Combined use of InSAR and optical
features was also significant. This inspired another study where use of irregular and regular image
grid structure for building detection was evaluated [47]. The irregular grid structure reduced
computation time significantly and produced better results. In the work of [17], CRF was used to
extract buildings from Polarimetric SAR data. Layover and shadow of buildings proved promising
for building analysis application.

2.4 SUMMARY

It is evident that levels of development in built-up areas are mutually dependent. Most urban area
studies have demonstrated that non-spectral information can improve classification accuracy. Spa-
tial information and use of multi-sensor data are among proposed approaches. Spatial information
integrate spatial dependencies of features while multi-source information exploits complementary
properties of different images during classification. Spatial dependencies can be incorporated us-
ing contextual classification methods. Classical MRF integrate spatial dependencies in labels only
ignoring existing dependencies in images. In contrast, CRF theory demonstrates its robustness to
handle diverse dependencies in images and class labels. Therefore, exploiting the proposed CRF
framework can improve classification results.
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Chapter 3

Materials

This chapter provides a description of selected study area, data used for analysis including refer-
ence data and software.

3.1 STUDY AREA LOCATION

Study area selected is located in Nairobi province, Kenya. It lies between 36◦39′ 46′′ E–37◦06′07′′

E and 1◦09′19′′ S–1◦26′ 27′′ S. The area covers a fast growing city engulfed in up coming built-
up areas commonly referred to as "satellite towns". An area extending to the western part of
the city was selected as illustrated in Figure 3.1. It contains a complex mixture of heterogeneous
land-cover materials encompassing a transition between built-up and non-built-up areas which
challenges conventional classification. The area proved suitable for developing and evaluating the
performance of CRF method in built-up area detection.

3.2 DATA

Data used for urban studies must meet certain spectral, spatial, radiometric and temporal charac-
teristics. An evaluation by [48] demonstrated that improved spectral and radiometric resolution
are helpful in achieving better classification accuracies as compared to improved spatial resolution.
Increased spatial resolution not only increases interclass variability but also intra-class variability
which challenges classification. In this study medium resolution images were chosen for built-up
area detection.

3.2.1 Optical images

ASTER level 1B images were used. The study used bands in the visible and near infrared (VNIR)
part of the spectrum with 15 m resolution and 8-bit unsigned integer data type. VNIR consist of
three bands namely: Band 1 (green), Band 2 (red) and Band 3 (near infrared). Band 3 consist of
two bands: backward-scanning band labeled Band 3B which creates parallax and at nadir scanning
band labelled Band 3N. Band 3B is used in production of stereo view images of the earth useful
in developing elevation information. The band was not used in any analysis or classification.
Nadir looking band (Band 3N) was used in classification. A total of two images of 2011 and 2006
both acquired in January with 0% cloud cover were used. Figure 3.2a shows part Nairobi city on
ASTER image of 2011.

3.2.2 SAR images

ALOS-PALSAR level 1.5 fine beam single horizontal-horizontal (HH) polarized data were used.
Level 1.5 products are geo-referenced and can be obtained from a resolution of 6.25 m. SAR
images of two time periods acquired in january 2011 and december 2006–january 2007 with spatial
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Figure 3.1: Study area location.
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resolution of 6.25 m and 12.5 m were used respectively. Figure 3.2b illustrates part of Nairobi city
as seen from SAR image.

(a) (b) (c)

Figure 3.2: Part of Nairobi city as seen from: (a) ASTER false colour composite (3,2,1) image. (b)
SAR image. (c) Aerial photo.

3.2.3 Subset images

Figure 3.3 shows subset images used to test designed CRF potentials. The area consist of a complex
mixture of impervious surface materials, forest, grass and bare-soil land-cover classes.
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Figure 3.3: (a) ASTER false colour composite (3,2,1) image and (b) SAR intensity image.

3.2.4 Reference data

Vector data, GeoEye 5 m resolution and aerial photography 30 cm resolution data were used as
reference data. Nairobi land-use vector data made available in 2010 was used during feature ex-
traction and validation. The data is based on a 2003 base map updated in 2010 by the University
of Nairobi, Department of Urban and Regional Planning (DURP). The original dataset was pro-
duced by a collaboration between the Center for Sustainable Urban Development (CSUD) and
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the Spatial Information Design Lab (SIDL) at Columbia University, generously funded by the
Volvo Research and Educational Foundations (VREF). More information on Nairobi land-use
vector data can be obtained at [8]. The GeoEye image of 2011 was used to update the vector
land-use data. Aerial photographs acquired in 2003 as shown in Figure 3.2c were used for geo-
referencing the satellite images.

3.3 SOFWARE

The following software were used in the study:

• ERDAS Imagine 2011: this software was used for preprocessing task which include: image
mosaic, geo-referencing, geo-coding and sub-setting the study area.

• ENVI 4.8: this software was used for training area selection and computing general class
statistics.

• R programming software version 2.14.0. Most analysis was done in this software including
classification with CRF see Appendix A.1 and A.3 for implemented code. Packages used
include:

1. kernlab

2. rgdal

3. GEOmap

4. geoR

• ArcGIS 10: used to prepare the land-use reference data for use in validation.
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Chapter 4

Implementation

This chapter gives a sequential explanation of research execution as summarized in Figure 4.1.
Details of how CRF framework was extended and used for built-up area detection are presented
in Section 4.4.

Figure 4.1: Methodological framework.

4.1 DATA PRE-PROCESSING

ASTER data was acquired in TIFF1. Each band was stored in a separate TIFF file with accom-
panying metadata in a text file. Bands 1, 2 and 3 (green, red and near infra red) in VNIR2 spec-
trum of ASTER were stacked to produce a false colour composite (3,2,1) image of the area. The
false colour composite image was used for visual analysis, which facilitated definition of classes
and identification of suitable features to discriminate them. ALOS-PALSAR images acquired in

1tagged image file format
2visible and near infrared
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CEOS3 format were imported into TIFF and mosaicked using ERDAS Imagine 2011. Study area
extent was then defined and used to subset ASTER and SAR images.

Pixel coordinates in SAR, ASTER and GeoEye images did not correspond to ground loca-
tions. This is normally attributed to effects such as sensor geometry distortions, platform insta-
bilities and earth rotation. Some of these distortions are corrected by data providers. However,
pixel locations in the acquired images did not match. The images were geo-referenced to a high
resolution aerial photograph to ensure co-registration. Geo-referencing was done using ERDAS
Imagine 2011. An affine transformation with evenly distributed Ground Control Points (GCPs)
in the study area was used. Pixels of SAR images were re-sampled to 15 m resolution using nearest
neighbour method. This allowed direct comparison of ASTER and SAR data on a pixel by pixel
basis. Table 4.1 gives a summary of Root Mean Square Error (RMSE) in pixels obtained and the
number of GCPs used in geo-referencing the images.

Table 4.1 Image geo-referencing accuracy summary.

Image Resolution (m) Year RMSE (pixels) Number of GCPs

ASTER 15.0 m 2011 0.092 21
SAR 6.25 m 2011 0.063 21
SAR 12.5 m Dec 2006–Jan 2007 0.066 21
GeoEye 5.0 m 2011 0.076 10

ASTER intensity was computed using three bands: intensity = (NIR+R+G)/(3×255). A
square root transformation was used to transform SAR intensity to amplitude. Features computed
from the data were standardized by dividing the difference of the features from the mean with
their standard deviation.

The last phase of data pre-processing involved preparation of reference data. First, land-use
classes in the vector reference data were reclassified into built-up and non-built-up land-cover
classes. This was followed by an update of the reclassified vector data using GeoEye image. Refer-
ence images at relevant scales were then created through a vector to raster conversion. Polygon to
raster option in conversion tools of ArcMAP 10 was used. Pixels whose cell centers and maximum
areas overlapped the polygons inherited their attributes.

4.2 CLASS DEFINITION

A visual analysis was done on the pre-processed images to identify built-up area land-cover classes.
Two main super-classes: built-up and non-built-up areas were used. The following sub-classes were
defined in each super-class:

• Built-up area- composed of three categories:

1. High density built-up: high proportions of impervious surfaces with little or no
vegetation.

2. Medium density built-up: mixed proportions of impervious surface materials
and vegetation.

3. Low density built-up: high proportions of vegetation with little impervious
surfaces.

3Committee on Earth Observation Satellites
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4. Tarmac and pavements.

• Non-built-up area- composed of four categories:

1. Vegetation: forest, grass and shrubs.

2. Cropland.

3. Bare-soil.

4. Water.

The study assumes that built-up areas are composed of impervious surfaces and proportions of
vegetation. Ambiguities exist with such definition, for instance, as to whether there is a park or
swimming pool in a built-up area. However, the aim of the study is to delineate land-cover and
not land-use as discussed in Section 2.2.

The classes were defined using blocks of merged pixels in a defined window size. Three win-
dow sizes: scale I, II and III of pixel size 16 × 16, 8 × 8 and 4 × 4 respectively were tested in an
experiment area. Scale II was adopted in order to conform to a minimum requirement of one
hectare in land-use/land-cover mapping [3]. Dividing the image into blocks reduced noise due
to spectral variability and speckle. Use of image blocks also introduces a human concept in im-
age classification. Human interpreters normally identify classes in an image using observation
windows rather than individual pixels [20].

4.3 FEATURE SELECTION

Several combinations of features were identified, tested and optimal ones selected through exper-
imental classification. The features formed part of CRF framework; the unary feature vectors
f(di) used in both A and I . Hue, intensity and amplitude images were chosen and discrimina-
tive ability of their features tested. Mean, standard deviation and variogram (slope) features were
computed from the image blocks.

Variability of pixel values in the images was influenced by their spatial locations. A pair of
neighbouring pixels were more likely to have similar spectral values as opposed to a pixel else-
where in the image. This spatial dependency was well described using a variogram. The vari-
ogram related variance/semi-variance (γ) to distance/lag (h) which illustrated variability of pixels
at given spatial scales. It was used to extract information on local variability of pixels used for char-
acterizing spatial dependencies. Variogram features, viz: range (r), sill (σ2), slope at origin (θ)
and nugget (n), have been proposed for training set characterization [see 9, chap. 6]. The study
adopted slope features computed from ASTER intensity only. Slope features were computed as
follows:

1. The intensity images (2006 and 2011) were divided into blocks of pixels.

2. Coordinates and spectral values corresponding to each pixel in a block were
defined.

3. An omnidirectional variogram was computed for each block using Cressie’s ro-
bust estimation method.

4. Slope was then computed by fitting a linear regression model on the first three
points of semi-variance and lags as shown in Figure 4.2 and Equation 4.1.

Three points were chosen for two reasons. First, they represent a better linear model fit for
approximating slope at origin of a block. Second, some sample variograms reached a partial sill
on the third point as shown in Figure 4.3.
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In total, three features: mean fμi(d), standard deviation fσi(d) and slope at origin fθi(d), were
used for training set characterization. Mean and standard deviation features were used in both
the association and interaction potentials while slope features were included in the interaction
potential only. Slope features were exempted in scale III as it is recommended to have atleast 50
points in order to compute a sample variogram [see 45, sec. 6.1.2]. Use of slope in the interaction
potential incorporated spatial dependencies of built-up areas during classification.

γ = θh + n (4.1)

Figure 4.2: Slope (θ) computation using first three points of lag and semi-variance from the vari-
ogram.

4.4 CONDITIONAL RANDOM FIELDS FOR BUILT-UP AREA DETECTION

Conditional random fields classification framework was designed in order to model spatial depen-
dencies. This involved design of association and interaction potentials. The framework was then
used in a supervised classification approach to predict class labels of data instances in the training
set given their features.

4.4.1 Association potential (A)

Conditional random fields framework offers much flexibility because local discriminative classi-
fiers can be used to determine the A and I . Most studies, [18, 50, 49], have used logistic classifiers
to determine local class probabilities. Logistic classifiers are prone to over-fitting when subjected
to large number of features and are not capable of handling redundant data which is a character-
istic of built-up areas. Li et al. [27] used SVM recursive feature elimination for feature selection
in an attempt to reduce redundancy. In the study, the association potential was designed using
SVM. SVM makes no assumptions on class distribution and performs well when subjected to
large amount of features. SVM performs classification by building an optimal separating margin
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Figure 4.3: Sample variogram with a linear model fit on the first three points.

in the feature space of provided classes [42]. Therefore, it separated built-up and non-built-up
classes from training data using a hyperplane corresponding to the decision function:

g(f(d)) = m(f(d)) + b (4.2)

where m is the normal to the hyperplane, b denotes the bias, f(d) is 4 dimensional site-wise feature
vector of: mean and standard deviation features from intensity and amplitude. The hyperplane
constructed by SVM is a decision boundary that separated classes in the feature space.

SVM offers linear and non-linear decision boundaries. A non-linear decision boundary was
constructed using Gaussian Radial Basis Function (RBF) kernel. The boundary considered data
not separable using a linear hyperplane. It used a function Φ to map the feature vector f(d) into
Φ(f(d)), a high dimensional feature space (H) [see 42, chap. 4]. This spread the distribution of
the training features in a way that facilitated fitting of a linear hyperplane. The decision function
in Equation 4.2 can be expressed as:

g(f(d)) = sign

⎛
⎝ k∑

i=1
αiwiK(f(d), f(di)) + b

⎞
⎠ (4.3)

where αi are positive Lagrangian multipliers, wi are class labels, k is the total number of features
computed for each site i, K(f(d), f(di)) is the RBF kernel function and sign is a discriminant
function defined as {1, -1} corresponding to built-up and non-built areas respectively.

The non-linear RBF kernel has two parameters that were determined during training: penalty
(C) and sigma (σ). Class posterior probabilities of A, P (w|d), were then generated from decision
values using the function in Equation 4.4 proposed by [34].
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P (w = 1|g) = 1
1 + eAg+B

(4.4)

where g are decision values generated from SVM’s decision function in 4.2, A and B are parame-
ters that were estimated by fitting the negative log-likelihood function.

4.4.2 Interaction potential (I)

Designing I using a data-dependent term and a constant smoothing parameter (β) of the Ising
model has been proposed by [23] among other studies. The design incorporates a distance func-
tion to model the data dependent term. In the study, the data dependent smoothness parameter
is modelled as a function of inverse of transformed euclidean distance (TED) of a pair of block
features in a first order neighbourhood system. The concept is extended from [41] where trans-
formed divergence, as a class separability measure, was used in determining an optimal smoothness
parameter in MRF based super resolution mapping. The design generates two scenarios: First,
when separability value is low, then a pair of neighbouring image blocks belong to the same class.
The smoothing parameter is increased so that the blocks are aggregated into the same class. Sec-
ond, when separability value is large, then the pair of image blocks belong to different classes. In
this case the smoothing parameter is decreased to maintain the blocks in different classes. This de-
sign was used as a data dependent discontinuity adaptive model that moderated smoothing when
data from neighbouring blocks were "dissimilar". The indiscriminate smoothing nature common
with MRF was thus controlled using the designed model. Equation 2.17 was extended as:

I
(
wi, wj , d

) ≡ βt−1δ(wi, wj) where: (4.5)

δ(wi, wj) =

⎧⎨
⎩0 if wi = wj

1 if wi �= wj

where β is a constant smoothness parameter and t (transformed euclidean distance) is defined as:

t = 1 − exp

⎧⎨
⎩−

i=Ni∑
i=1

(
(Ψ(dij))2

)⎫⎬
⎭ (4.6)

where Ni are neighbours of site i and Ψ(dij) is a 5 dimensional pairwise feature vector of: intensity
slope features, mean and standard deviation features of intensity and amplitude. Ψ(dij) is obtained
by subtracting two feature vectors (f(di) and f(dj)) of a pair of neighbouring blocks i and j as
shown below:

Ψ(dij) = f(di) − f(dj) (4.7)

The term δ(wi, wj) in Equation 4.5 compared a pair of neighbouring labels wi and wj . Dissimi-
lar labels were penalized while preserving corresponding labels and edges (class boundaries). The
magnitude of penalization was controlled by the discontinuity adaptive model in Equation 4.6.
Therefore, by substituting the designed models of A and I , the adopted CRF model can be ex-
pressed as:

P (w|d) = 1
Z(d) exp

⎧⎨
⎩−

∑
i∈S

log 1
1 + eAg+B

− 1
2

∑
i∈S

∑
j∈Ni

I
(
wi, wj , t−1

)⎫⎬
⎭ (4.8)

Multiplying the interaction potential by half accounts for double counting of labels in the neigh-
bourhood Ni of a block.
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Performance of the designed data dependent model (t−1) was compared to: euclidean distance
e and absolute difference a as illustrated below:

e =
i=Ni∑
i=1

(Ψ(dij))2 (4.9)

a =
i=Ni∑
i=1

|Ψ(dij)| (4.10)

4.4.3 Training of designed association potential

Training CRF model designed and presented in Equation 4.8 involved determination of (C, σ)
RBF kernel parameters from training samples for use in classification. Optimal parameters that
minimized the overall training error were determined. Parameter values (2,2), (2,2) and (10,10)
were used during experiments with scales I, II and III respectively. In application of CRF in the
study area, parameter values (1,1) were used in classification of 2011 and 2006 images. Figure 4.4
illustrates the training error attained with corresponding parameters values.

The training process was done simultaneously with visual assessment of classified image. Not
all combination of parameters with minimum training error gave accurate results. Therefore, the
quality of classified results influenced the final choice of parameters.
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Figure 4.4: Training of association potential to determine most optimal values for cost (C) and
sigma (σ) parameters. (a) Scale I and II. (b) Scale III.

A total of 80 training blocks, 40 each for built-up and non-built-up areas, were used. The
training set blocks were collected from a larger scene image and used in classifying study area and
subset images. Figure 4.5 shows 40 training blocks, 20 each in built-up and non-built-up class,
falling inside the study area. The remaining 40 blocks were collected outside the study area. This
was done to avoid model over-fitting due to biased collection of training samples.
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Figure 4.5: ASTER false colour composite (3,2,1) image showing study area training samples
collected using scale II blocks.
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4.4.4 Classification of built-up areas using CRF

Classification task involved determination of optimal class labels w from input image blocks given
training features. This was done by determining MAP estimate that maximized the posterior
probability P (w|d) in Equation 4.8 which, is equivalent to minimizing the posterior energy:

ŵi = arg min
wi

U(wi|wNi , d) ≡
(

U(wi|f(di)) + 1
2U(wi = wj |t−1, Ni)

)
(4.11)

The solution of Equation 4.11 required a specifically designed estimation approach. This was done
iteratively using ICM. ICM is a local optimization method which converges at local minimum
of the defined energy function in Equation 4.11. The minimum energy defined the maximum
probability of a given class label. The procedure used in optimization is shown below:

Optimization using ICM:

1. Number of iterations Niter and first order neighbourhood system Ni using
cliques of the energy function in Equation 4.11 were defined.

2. Block labels were initialized from association potential solution.
3. For each block i, the energy for every class (built-up and non-built-up) w′

i was
estimated, and wi updated by the minimum energy w′

i.
4. Step 4 was repeated Niter times.

The implementation of designed CRF potentials and optimization using ICM are provided in the
Appendix Section A.1 and A.2 respectively.

4.4.5 Test of CRF interaction potential data dependent models

Classification experiments were conducted using the subset images in Figure 3.3 to determine a
suitable data dependent model of CRF. Overall classification accuracy of the models were com-
pared against values β in a logarithmic scale. The experiment was conducted using the three block
scales (I, II and III) with 2011 images. Inverse of transformed euclidean distance performed better
than normal transformed divergence, euclidean distance (Equation 4.9) and absolute difference
(Equation 4.10) of site-wise features. A threshold was used to exempt zero values in the denomi-
nator of t−1 that would have otherwise led to infinite values.

4.5 APPLICATION OF CRF IN DETECTING BUILT-UP AREAS INCLUDING TEMPORAL CHANGES.

The designed CRF model using inverse of transformed euclidean distance as a data interaction
term was used to classify built-up areas using 2011 and 2006 images. Inverse of transformed eu-
clidean distance was selected based on insights from the experiments conducted in a complex area
described in Section 3.2.3. Scale II was used in order to conform to approximately one hectare
land-cover classification requirement. A constant smoothness parameter β = 1 was used. Cost
and sigma parameters (1,1) were used in the association potential to classify 2011 and 2006 images
respectively. Reference information available corresponded to date 2011 and thus 2006 classifica-
tion was not validated. However, a visual assessment was done on the classified image.

In order to detect temporal changes, a change detection using 2011 and 2006 classified images
was done. Image-differencing method was used where the later image was subtracted from the
earlier image. Built-up area class was re-assigned label 1 and non-built-up area class label 2 from
the original binary labels (1 ,-1). After image differencing, blocks with labels 0, 1 and −1 re-
ferred to no change, non-built-up to built-up and built-up to non-built-up changes respectively.
Implementation code is provided in Appendix A.3.
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4.6 ACCURACY ASSESSMENT

A quality assessment technique was essential in evaluating the performance of the designed clas-
sification method. The outcome of this assessment enabled a degree of confidence to be attached
to the results. A commonly used accuracy assessment method in remote sensing, confusion ma-
trix/error matrix, was employed for this purpose. The error matrix shows the proportions of
correctly classified (overall accuracy) and misclassified image blocks in a table. Therefore, several
accuracy measures were derived from it [see 21, chap 6.2.4].

Error matrices were generated by comparing each classified pixel against the reference image.
Overall accuracy, false positives, false negatives and kappa statistics were used as quality measures.
False positives and false negatives are synonymous to type I and type II errors which indicate the
proportions of image blocks omitted and incorrectly classified respectively. They are a conse-
quence of producer and user accuracies. Kappa statistics was useful in evaluating different remote
sensing methods since it accounted for the degree of accuracy that were attained when labels were
assigned at random.
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Chapter 5

Results

Results of research objectives implementation are presented sequentially in this chapter.

5.1 FEATURE SELECTION

Standard deviation features clearly outline areas of high spectral variability such as built-up ar-
eas. Mean features delineate homogenous regions such as forest, grassland and cropland. These
appearance is the same in all experiment scales. The images in Figure 5.1 depicts the appearance
of mean and standard deviation features derived from intensity and amplitude images using scale
II. These features capture homogeneity and variability of land-cover classes respectively. This im-
plies, mean features accounts for inter-class spectral variability while standard deviation features
describes intra-class spectral variability; hence defining dissimilarity and similarity of classes re-
spectively.

Mean and standard deviation feature space plots using scales I, II and III are illustrated in Fig-
ure 5.2. The plots show that the built-up and non-built-up classes are not completely separable.
Separability of features derived from intensity increases with reduction in block size as shown
in Figures 5.2a, 5.2c and 5.2e. In contrast, separability of features derived from SAR amplitude
decreases with reduction in block size as shown in Figures 5.2b, 5.2d and 5.2f. Decreasing sepa-
rability of amplitude derived features is a consequence of speckle noise whose influence increases
on reduction of block size; see Figure 5.4.

Table 5.1 shows kappa and overall accuracy obtained by including and exempting hue (colour)
information. Combining hue, intensity and amplitude reduces classification quality as demon-
strated by kappa and overall accuracy percentages. Decreasing block size further degrades the
classification quality. In contrast, classification quality remains high in all scales when amplitude
and intensity features are used. There is a slight decrease in accuracy when block size is reduced
though, classification quality remains high compared to inclusion of hue features.

Contribution of SAR amplitude and ASTER intensity in the overall classification was also
evaluated as shown in Table 5.2. Amplitude gave high overall accuracy and kappa values in scale I.
The classification quality decreases with reduction in block size due to increase in speckle noise.
On the contrary, reduction in block size increases classification quality when only intensity image
is used.

Table 5.3 summarizes the outcome of slope features discriminative ability assessment. On
average, built-up areas have higher slope values compared to non-built-up areas. The slope of
high density built-up areas, water and forest derived from amplitude is zero. The shape of the
variogram of these classes, Figure 5.3, illustrate a nonzero intercept termed as "nugget effect"
which has zero slope value. Such variogram shape suggest that the data lack a spatial structure
as a result of random noise. Intensity image gives positive slope in all the subclasses. Figure 5.4
show images of densely built-up area and forest used to compute slope. Amplitude image blocks
show noisy pixels with little or no spatial structure compared to intensity which show a spatial
structure.
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Figure 5.1: Mean and standard deviation image features showing homogeneity and variability
of classes respectively using scale II. (a) Mean of amplitude features. (b) Standard deviation of
amplitude features. (c) Mean of intensity features. (d) Standard deviation of intensity features.

Table 5.1 Summary of evaluation of suitable combination of features from hue, amplitude and
intensity.

Hue, intensity & amplitude Intensity & amplitude

SCALE I
OA1 79.7% 86.2%
Kappa 0.454 0.665
SCALE II
OA 78.3% 82.2%
Kappa 0.428 0.570
SCALE III
OA 66.2% 77.8%
Kappa 0.043 0.453
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(a) Scale I feature space using ASTER intensity.
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(b) Scale I feature space using SAR amplitude.
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(c) Scale II feature space using ASTER intensity.
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(d) Scale II feature space using SAR amplitude.
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(e) Scale III feature space using ASTER intensity.
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(f ) Scale III feature space using SAR amplitude.

Figure 5.2: Amplitude and intensity training blocks feature space plots.
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Table 5.2 Summary of evaluation of detection ability of amplitude and intensity features.

SAR Amplitude ASTER intensity

SCALE I
OA 83.1% 72.2%
Kappa 0.622 0.400
SCALE II
OA 77.6% 74.0%
Kappa 0.503 0.393
SCALE III
OA 64.6% 78.4%
Kappa 0.268 0.490

Table 5.3 Summary of assessment of variogram’s slope features detection ability using scale I
blocks.

Built-up areas

Class Intensity slope Amplitude slope
High density built-up 1.10 × 10−05 0
Medium density built-up 4.68 × 10−06 16.9
Low density built-up 4.73 × 10−05 1.52
Tarmac 1.52 × 10−05 0.38
Average 1.95 × 10−05 4.70
Non-Built-up areas

Baresoil 1.07 × 10−05 0.93
Cropland 1.15 × 10−06 1.89
Water 1.67 × 10−06 0
Grassland 8.25 × 10−07 0.19
Forest 4.68 × 10−07 0
Average 2.97 × 10−06 0.60

1Overall accuracy (OA).
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(a)

(b)

Figure 5.3: Sample variograms of built-up and non-built-up super-classes as defined in Section 4.2.
(a) Sample variograms of scale I blocks using ASTER intensity. (b) Sample variograms of scale I
blocks using SAR amplitude.
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Figure 5.4: Scale I block samples from high density built-up and forest classes using amplitude and
intensity images; amplitude blocks gave zero slope.
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5.2 DESIGNED CRF RESULTS

5.2.1 Designed association potential

Figures 5.5a and 5.5b show association potential classification results and misclassification error
distribution, where white blocks over black background and black blocks over white background
represent false positives and false negatives respectively with reference to built-up area detection.
Most of the areas misclassified occur at the margins of the two classes. Homogenous areas with
white and black colours were correctly classified as built-up and non-built classes: they correspond
to the reference.

(a) (b)

Figure 5.5: Association potential classification results and misclassification error distribution. (a)
Scale I. (b) Scale II.

5.2.2 Test of CRF interaction potential data dependent models

Experiment results of four data dependent models and MRF constant smoothing term are pre-
sented in Figure 5.6. The Figure shows overall accuracy of each model against β parameter values
using a logarithmic scale. At scale II and III inverse of transformed euclidean distance model gives
the highest overall accuracy when subjected to a range of low to high values of β. This is followed
closely by MRF model. In scale I, overall accuracy of the two models gradually decreases below
that of association potential for β > 100. The overall accuracy of transformed euclidean distance,
euclidean distance and absolute difference models, Equations 4.6, 4.9 and 4.10, decline gradually
going below that of association potential for β > 1. The trend is the same in all three scales.

CRF false detection, using the model in Equation 4.5 as a data dependent term, is shown
in Figures 5.7a and 5.7b. Classified blocks are displayed over reference image. White blocks
over black background depict false positives (areas misclassified as non-built-up) and black blocks
over white background shows false negatives (areas misclassified as built-up). CRF minimized the
misclassifications errors compared to association potential (Figures 5.5a and 5.5b), however, errors
at class boundaries remained.
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Figure 5.6: Results of interaction potential designs in comparison to MRFs.
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(a) (b)

Figure 5.7: CRF classification and misclassification error distribution. (a) Scale I. (b) Scale I.

5.3 APPLICATION OF CRF IN DETECTING BUILT-UP AREAS INCLUDING TEMPORAL CHANGES

Figure 5.10 shows class probabilities in 2011 generated from the association potential. Probability
of built-up area class is shown in Figure 5.10a while that of non-built area class in Figure 5.10b
respectively. The class probabilities and data features were used in the interaction potential to
incorporate spatial dependencies in classification of built-up areas.

Figure 5.8 shows classification results of application of CRF to detect built-up areas in 2006
and 2011 dates respectively. It is evident from 2011 classification that built-up areas have spatially
expanded compared to 2006. Major changes have occurred outside the city boundary where there
is space for development. The development mainly follows a linear strip pattern as depicted by
the change detection results in Figure 5.9. Such development is constrained along major roads.

5.4 ASSESSMENT OF CRF IN DETECTING BUILT-UP AREAS

Validation results of CRF application in detection of built-up areas as compared CRF, MRF, SVM
and MLC are presented in Tables 5.4, 5.5, 5.6 and 5.7 respectively. CRF method has the highest
overall accuracy and kappa values followed by MRF, SVM and MLC. MLC has the lowest and
highest false positives in non-built-up and built-up area classes as compared to the other three
methods. CRF maintains the lowest false positives with respect to built-up areas with the least
false negatives in both classes. The false positives in non-built-up area class is higher compared to
MLC which has the lowest percentage.
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Figure 5.8: CRF classification of built-up areas. (a) 2006 classification. (b) 2011 classification.
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Figure 5.9: Built-up area changes from 2006–2011 and reference data. (a) Land-cover changes. (b)
Study area reference data for 2011.
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Figure 5.10: 2011 class probability images computed using association potential. (a) Probability
of built-up areas. (b) Probability of non-built up areas.

BU2 NBU FN3

BU 16935 2828 14.3%
NBU4 1274 9754 11.6%
FP5 7.00% 22.5%
OA 86.7%
Kappa 0.720

Table 5.4: CRF accuracy assessment.

BU NBU FN

BU 16697 2936 14.9%
NBU 1512 9646 13.5%
FP 8.30% 23.3%
OA 85.5%
Kappa 0.696

Table 5.5: MRF accuracy assessment.

BU NBU FN

BU 16486 2939 15.1%
NBU 1723 9643 15.2%
FP 9.46% 23.4%
OA 84.9%
Kappa 0.682

Table 5.6: SVM accuracy assessment.

BU NBU FN

BU 15591 2828 15.3%
NBU 4565 11318 28.7%
FP 22.7% 20.0%
OA 78.4%
Kappa 0.560

Table 5.7: MLC accuracy assessment.

2Built-up area
3False negatives
4Non-built-up area
5False positives
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Chapter 6

Discussion

Colour information did not improve classification results when integrated with amplitude and
intensity. This occurred because discriminating built-up and non-built-up areas based on colour
information is not sufficient. Built-up areas are composed of heterogeneous land-cover materials
some of which also occur in non-built-up class. For example, bare-soil and built-up areas with tiled
roofs have similar spectral reflectance which is difficult to discriminate by colour information.
The outcome corresponds to that of [18] whose work indicates that addition of mean of hue
features does not improve classification of settlement areas.

Amplitude features gave high detection quality at scale I, but decreased on reduction of block
size. SAR images are accompanied by speckle which introduces sudden variation in pixel values
due to noise. The effect of noise is averaged out when features are computed from a larger block
size. Variability due to noise increases on reduction of block size. Consequently, class separability
reduces, as illustrated by feature spaces, degrading classification accuracy. Gomez-Chova et al. [14]
noted the inaccuracies due to speckle and concluded that each pixel be analyzed with respect to
its neighbours. How many pixels should be considered as neighbours is still an open question.
As demonstrated in the three scales, SAR image block size considerably affected classification
accuracy. The study proposes 8 × 8 window size (scale II) for built-up area related analysis using
SAR. This is not a general rule because such choices depend on the minimum size of a class, i.e.
building or park, to be detected. In contrast, intensity features improved detection quality when
block size was reduced. The number of spectrally different pixels reduced enhancing homogeneity
within a block. Thus, separability of intensity features in the feature space increased improving
classification quality. Therefore, scale II was selected for classification in a bid to optimize the
synergy of amplitude and intensity features.

Slope features were computed by fitting a linear regression model using first three points of
the variogram. Experiments conducted proved that this approach is better than model based
approach which, automatically fits a model to a variogram. In some blocks of a given class, the
chosen variogram models were inaccurate and slope values computed using sill, nugget and range
of the fitted model were misleading. This problem is also confirmed by [35].

Amplitude slope features could not enhance discrimination of water, forest and dense built-up
area blocks. The variogram of these block have zero slope. This is an indication that scale I and
II blocks lack a meaningful spatial structure mainly as a result of random noise due to speckle.
Water, forest and dense built-up areas scatter SAR signals differently which contribute to pixels
with random brightness variation that introduce noise [see 37, chap. 5]. These land-cover classes
could not be delineated using amplitude slope features because they have the same slope value.
Therefore, mean and standard deviation features derived from both amplitude and intensity in-
cluding intensity slope features were selected for classification. Mean, standard deviation and slope
incorporated information on homogeneity, variability and spatial dependencies of classes respec-
tively. The feature selection approach is better than subjecting a classifier to multiple features
introducing redundancy which, increases computational complexity and degrades classification
accuracy [27, 50].
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The designed CRF consist of association and interaction potential considered as local site-wise
and context classifiers. Association potential was trained such that training error was as low as pos-
sible. Despite low training error, misclassifications were still evident. A visual assessment with
reference to image in Figure 3.3a showed that bare-soil blocks were misclassified. Thus, associa-
tion potential alone was not sufficient to detect built areas. Spatial dependency was incorporated
with the inclusion of slope features in the data dependent term of the interaction potential. This
enhanced detection when the smoothness parameter was properly selected.

Experiments were conducted to evaluate data interaction models as shown in Figure 5.6. Stud-
ies like [17, 19] and [27, 49, 50] used a classical approach of modelling the data dependent term
by adopting absolute difference and concatenation of features respectively. The study introduced
a novel data interaction term using the inverse of the transformed euclidean distance of site-wise
features. This design maintains stable overall accuracy when subjected to different smoothness pa-
rameters unlike transformed euclidean distance, euclidean distance and absolute difference models
whose accuracies decline when high values are used. The stable trend in accuracy is an attribute
of the model’s scaled values between 0 and 1. The model controls smoothness parameter imposed
based on similarity of blocks. Similar blocks are subjected to high smoothing and regulated in
areas with dissimilar blocks. This allows the interaction potential to partition space of the rela-
tional features in Equation 4.7 into pairs hypothesized to have similar labels and dissimilar labels
as concluded by [23]. In contrast, transformed euclidean distance, euclidean distance and absolute
difference models degrade the accuracy when subjected to high β values. These models penalize
dissimilar blocks thereby destroying class boundaries and so, produce over-smoothed classified im-
ages. The same is exhibited by MRF models. Therefore, the inverse of the transformed euclidean
distance was considered a better model and applied in detection of built-up areas.

The designed CRF detection accuracy exceeds that of MRF, SVM and MLC by 1.13%, 2.22%
and 8.23% respectively. It has the lowest false negatives in both classes and false positives with re-
spect to built-up areas. The percentage difference in accuracy are substantial given that reference
data used only covered main city core and other areas were exempted during validation as illus-
trated in Figure 5.9b. Built-up areas are detected better than non-built-up areas as demonstrated
by false positive percentages. This is because CRF is a discriminative model and requires training
examples of all possible combinations especially in non-built-up areas, where land-cover structure
is complex [44, 49, 50]. Inner areas of built-up class have stable and homogenous spatial depen-
dencies hence CRF performs well. The challenge prompted [50] to integrate MRF and CRF;
the former can handle all class compositionality present in the image [44]. CRF also slightly de-
creased misclassification errors because of the optimization method (ICM) used. ICM is a local
optimization method and results from it depend very much on the performance of initial esti-
mator (association potential) [26]. Therefore, CRF slightly enhanced classification, specifically
along the margins of built-up areas and bare-soil, because association potential failed in those ar-
eas. MLC and SVM have high false negative percentage compared to MRF and CRF because they
don not integrate spatial dependencies during classification.

Developed CRF attained an overall accuracy of 86.7% with over 77.5% producer and user
accuracies per class. There are no specific standardized accuracy thresholds for land-cover classi-
fication. Nevertheless, [3, 39] agree on a target of an overall accuracy of 85% with [39] setting
a threshold of not less than 75% accuracy per class. The designed method exceeds the established
accuracy targets. Moreover, whether the accuracy values are acceptable or not lies solely on user
requirement. The study recommends applying the method for built-up area detection. During the
five year period built-up areas increased by approximately 98.9 hectares while 26.7 hectares were
converted to non-built-up areas. Such information is useful in urban growth studies, population
density estimation and general urban planning needs.
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In retrospect, it cannot go without mention that assumptions were made in the study for
practical implementation. First, a binary classification was used. Classes with diverse spectral
values were merged into either built-up or non-built super-classes. This reduced class separability
which degraded classification quality of the association potential. Future work should extent
the method to handle multi-class classification. Second, the features used in the data dependent
term were computed using pixels in a fixed block size. Variability of pixel values was averaged
to one value. Computational efficiency and accuracy increased. However, modeling of spatial
dependencies was constrained to neighbouring blocks within a first order neighbourhood system.
The trade off can be addressed by including features from different block sizes using a multi-scale
approach. Third, the designed data dependent term controlled smoothing using values directly
computed by the inverse of the transformed euclidean distance. In reality, spectral values of a given
land-cover class have intra-class variability. Thresholds can be introduced in the data dependent
term to accommodate intra-class and inter-class variation.
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Chapter 7

Conclusion and recommendations

The aim of the research was to develop a method for detecting built-up areas. Blocks of pixels
as opposed to individual pixels were used during classification. This reduced noise due to spec-
tral variability and speckle, increased computational efficiency and classification accuracy. The
approach introduced a human concept into classification, where classes in an image are identified
using observation windows as opposed to individual pixels which enhanced detection of built-up
areas. A feature selection approach was used rather than entrusting the classifier the task of op-
timizing all set of possible features. Slope features incorporated spatial dependencies of classes
which improved classification. The use of varogram’s slope for classification is promising. Over-
all, integration of mean, standard deviation and slope features from SAR and ASTER images
enhanced detection of built-up areas.

Based on several experiments conducted, the inverse of the transformed euclidean distance
emerged the best model of integrating spatial dependencies. The model presents two advantages:

1. it maintains stable accuracy when subjected to a range of small to large constant smoothness
parameter (β)

2. it regulates preserves edges/class boundaries and allows aggregation of similar labels during
classification thus playing the role of a discontinuity adaptive model.

The notion of the inverse of the transformed euclidean distance was to support the hypothesis
of retaining "similar" and "dissimilar" labels given the evidence from the data. This was realized
with implementation provided.

The designed CRF model is promising for detection of built-up areas and their temporal
changes. Scale II enhanced discrimination of built-up areas compared to scale I and III. It is evi-
dent that to overcome spectral variability and speckle noise, spatial dependencies in the image and
labels should be included in classification. The developed CRF method addresses this challenge
compared to MLC, SVM and MRF. MLC and SVM completely ignore spatial dependencies while
MRF considers spatial dependencies in labels only ignoring existing spatial dependencies in data.

The use of variogram for training set characterization is promising. Further work should
consider investigating how it can be exploited to efficiently characterize features from SAR. In
addition, integration of multi-scale features and a multi-class approach is expected to improve
classification results.
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Appendix A

Appendix: Part one

A.1 DESIGNED CRF POTENTIALS: R PROGRAM CODE

#==========================================================
#VARIABLE DEFINITION
#==========================================================
S <− 8 # B l o c k s i z e
b e t a 0 <− 1 #CRF p e n a l t y P a r a m e t e r
Nneighb <− 4 # N e i g h b o u t h o o d s y s t e m d e f i n i t i o n
# Image d i m e n s i o n s
d <− ASTER@grid@cells . dim # o r i g i n a l Image
p s i z e <− ASTER@grid@cel ls ize # p i x e l s i z e

M <− d [1 ] #Number o f rows in t h e o r i g i n a l image
N <− d [2 ] #Number o f co lumns in t h e o r i g i n a l image
Mdeg <− f l o o r (M/S ) #Number o f rows in t h e b l o c k image
Ndeg <− f l o o r (N/S ) #Number o f co lumns in t h e b l o c k image
#==========================================================
#DEFINITION OF CRF POTENTIALS
#==========================================================
# B l o c k N e i g h b o u r h o o d d e f i n i t i o n
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Nns <− array ( 0 , Mdeg Ndeg )
Bns <− array ( 0 , c ( Mdeg Ndeg , 4 ) )
for ( bn in 1 : ( Mdeg Ndeg ) )
{

j <− f l o o r ( ( bn−1)/Mdeg )+1
i <− bn−( j −1) Mdeg
Nns[bn ]<−0
k<−1
i f ( i >1)
{

Bns [bn , k ]<−bn−1
k<−k+1
Nns[bn ]<−Nns[bn]+1

}
i f ( i<Mdeg )
{

Bns [bn , k ]<−bn+1
k<−k+1
Nns[bn ]<−Nns[bn]+1
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}
i f ( j >1)
{

Bns [bn , k ]<−bn−Mdeg
k<−k+1
Nns[bn ]<−Nns[bn]+1

}
i f ( j<Ndeg )
{

Bns [bn , k ]<−bn+Mdeg
k<−k+1
Nns[bn ]<−Nns[bn]+1

}
}
blocknr <− funct ion ( i , j )
{

return ( i+( j −1) Mdeg )
}
# D e f i n i t i o n o f f e a t u r e s u s e d in I n t e r a c t i o n p o t e n t i a l
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Nf <− 5
norms <− array ( 0 , c ( Nf , 2 ) )
D<− array ( 0 , c ( Mdeg Ndeg , Nf ) )
D[ , 1 ] <− as . matrix ( Ib lock@data [ , 1 ] ) #ASTER mean
D[ , 2 ] <− as . matrix ( Ib lock@data [ , 2 ] ) #ASTER s d
D[ , 3 ] <− as . matrix ( Ib lock@data [ , 3 ] ) #ASTER S l o p e
D[ , 4 ] <− as . matrix ( Ib lock@data [ , 4 ] ) #SAR mean
D[ , 5 ] <− as . matrix ( Ib lock@data [ , 5 ] ) #SAR mean
# S t a n d a r d i z i n g b l o c k f e a t u r e s by mean and s d
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
norms <− array ( 0 , c ( Nf , 2 ) )
for ( k in 1 : Nf )
{

norms [k , 1 ] <− mean (D[ , k ] )
norms [k , 2 ] <− sd (D[ , k ] )
D[ , k ] <− (D[ , k]−norms [k , 1 ] ) /norms [k , 2 ]

}
F<− array ( 0 , Mdeg Ndeg )
F <− as . vec tor ( SVM@data$ c l a s s )
Uc<−array ( 0 , c ( Mdeg Ndeg , 2 ) )
Uc [ , 1 ]<−SVM@data$Ucond1
Uc [ , 2 ]<−SVM@data$Ucond2

I n i t i a l <− F # I n i t i a l c l a s s p r o b a b i l i t i e s from SVM
I <− funct ion ( x , y ) {

v a l <− 1
i f ( x==y ) v a l <− 0
return ( v a l )
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}
# Data d e p e n d e n t s m o o t h i n g term
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Bf <− funct ion ( v1 , v2 ) {

E <− ( v1−v2 )
v a l <− 1/ (1−exp (−sum ( E^ 2 ) ) ) # T r a n s f o r m e d E u c l i d e a n d i s t a n c e
# T h r e s h o l d t o exempt z e r o in t h e denominator

i f ( v a l==0)
{

v a l =0.001
}

return ( v a l )
}
# I n t e r a c t i o n p o t e n t i a l
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Uinter <− funct ion ( bn ) {

v a l <− 0
F0 <− F[bn ]
D0 <− D[bn , ]
for ( k in 1 : Nns[bn ] )
{

bn1<−Bns [bn , k ]
F1 <− F[Bns [bn , k ] ]
beta <− b e t a 0 Bf ( D0 ,D[bn1 , ] )
v a l <− v a l + beta I ( F0 , F1 )

}
return ( 0 . 5 v a l /Nneighb )

}
# A s s o c i a t i o n p o t e n t i a l
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Uasso <− funct ion ( bn )
{

v a l <− Uc[bn , F[bn ] ]
return ( v a l )

}
#CRF
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
U <− funct ion ( bn )
{

v a l <− Uinter ( bn ) + Uasso ( bn )
return ( v a l )

}
# T o t a l e n e r g y o f a b l o c k
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Tota lEnergy<−funct ion ( F )
{

v a l <− 0
for ( bn in 1 : ( Mdeg Ndeg ) )
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{
v a l <− v a l + U( bn )

}
return ( v a l / ( ( Mdeg ) ( Ndeg ) ) )

}
#==========================================================
#END OF DEFINITION OF CRF POTENTIALS
#==========================================================

A.2 OPTIMIZATION OF CRF USING ICM: R PROGRAM CODE

#==========================================================
#OPTIMIZATION USING ICM
#==========================================================
Niter <− 10 # Maximum a l l o w e d number o f i t e r a t i o n s
E t o t a l <− array ( rep ( 0 , Ni t e r ) , 1 ) # T o t a l e n e r g y a r r a y
windows ( )
par ( mfrow=c ( 2 , 2 ) )
Fd i sp <− SVM
Fdisp@data <−data . frame ( F )
for ( i t e r in 1 : Ni t e r )
{

upd_count <− 0
for ( bn in 1 : ( Mdeg Ndeg ) )
{

F_ update <− 3−F[bn ]
Ft <− F[bn ]
u1 <− U( bn )
F[bn ] <− F_ update
u2 <− U( bn )
u1 <− u2−u1
i f ( u1>0)
{

F[bn ] <− Ft
}
e l s e upd_count<−upd_count+1

}
E t o t a l [ i t e r ] <− Tota lEnergy ( F )
i f ( upd_count==0) break

}
Fdisp@data <−data . frame ( F ) # S a v i n g o p t i m i z e d image / c l a s s e s
names ( Fd i sp )<−" c l a s s "
image ( Fdisp , co l=c ( " s i e n n a 4 " , " s e a g r e e n 1 " ) , x l a b=" " , y l ab=" " )
t i t l e ( "CRF" ) # D i s p l a y s CRF c l a s s i f i c a t i o n
i f ( WithRef )
{

image ( Ref , co l=c ( " s i e n n a 4 " , " s e a g r e e n 1 " ) , x l a b=" " , y l ab=" " )
t i t l e ( " R e f e r e n c e " ) # D i s p l a y s r e f e r e n c e image

}
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p lo t ( 1 : i t e r , E t o t a l [ 1 : i t e r ] , type = ’ l ’ , main = ’ Energy
m i n i m i s a t i o n ’ , x l a b = ’ I t e r a t i o n ’ , y l ab = ’ E t o t a l ’ )

i t e r # Number o f i t e r a t i o n s
E t o t a l [ i t e r ] # The o b t a i n e d e n e r g y v a l u e :
#==========================================================
#END OF OPTIMIZATION USING ICM
#==========================================================

A.3 CHANGE DETECTION: R PROGRAM CODE

#==========================================================
#CHANGE DETECTION BY IMAGE DIFFERENCING
#==========================================================
rm ( l i s t= l s ( a l l=TRUE) )
requ i re ( r g d a l )
S <− 8 # P i x e l b l o c k s i z e
Path <− ’D: \ \ Benson _CRF\\ChangeDetect ion ’

# Reading 2006 c l a s s i f i e d image
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
setwd ( Path )
image . fn<− pa s t e ( ’ 2006 _CRF ’ , S , ’BY ’ , S , ’ ’ , ’ . TIF ’ , s ep= ’ ’ )
# −−− GDAL D e f i n i t i o n
fn . r e g i o n<−image . fn
work . r e g i o n . t i f <− new ( " GDALReadOnlyDataset " , fn . r e g i o n )
CRF2006 <− work . r e g i o n . t i f [ , , 1 ]
# −−− c l o s e image
GDAL. c l o s e ( work . r e g i o n . t i f )
names ( CRF2006 )<− " c l a s s "
# D i s p l a y i n g 2006 c l a s s i f i e d Image
windows ( )
par ( mar = c ( 2 . 2 , 2 . 2 , 2 . 2 , 2 . 2 ) )
image ( CRF2006 , co l=c ( " s i e n n a 4 " , " s e a g r e e n 1 " ) , x l a b=" " , y l ab=" " , a x e s
=TRUE)

c l a s s e s . P a l e t t e <− co lorRampPa l e t t e ( c ( " s i e n n a 4 " , " s e a g r e e n 1 " ) )
legend ( " b o t t o m l e f t " , c ( ’ B u i l t −up Area ’ , ’Non−B u i l t −up Area ’ ) , f i l l=

c l a s s e s . P a l e t t e ( 2 ) , bty= ’ n ’ , h o r i z=TRUE)
t i t l e ( ’ 2006 CRF C l a s s i f i c a t i o n ’ )

# Reading 2011 c l a s s i f i e d image
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
image . fn<− pa s t e ( ’ 2011 _CRF ’ , S , ’BY ’ , S , ’ ’ , ’ . TIF ’ , s ep= ’ ’ )
# −−− GDAL D e f i n i t i o n
fn . r e g i o n<−image . fn
work . r e g i o n . t i f <− new ( " GDALReadOnlyDataset " , fn . r e g i o n )
CRF2011 <− work . r e g i o n . t i f [ , , 1 ]
# −−− c l o s e image
GDAL. c l o s e ( work . r e g i o n . t i f )
names ( CRF2011 )<− " c l a s s "

A-5



DETECTION OF BUILT-UP AREAS IN SAR AND ASTER IMAGES USING CONDITIONAL RANDOM FIELDS

# D i s p l a y i n g 2011 c l a s s i f i e d Image
windows ( )
par ( mar = c ( 2 . 2 , 2 . 2 , 2 . 2 , 2 . 2 ) )
image ( CRF2011 , co l=c ( " s i e n n a 4 " , " s e a g r e e n 1 " ) , x l a b=" " , y l ab=" " , a x e s
=TRUE)

c l a s s e s . P a l e t t e <− co lo rRampPa l e t t e ( c ( " s i e n n a 4 " , " s e a g r e e n 1 " ) )
legend ( " b o t t o m l e f t " , c ( ’ B u i l t −up Area ’ , ’Non−B u i l t −up Area ’ ) , f i l l=

c l a s s e s . P a l e t t e ( 2 ) , bty= ’ n ’ , h o r i z=TRUE)
t i t l e ( ’ 2011 CRF C l a s s i f i c a t i o n ’ )

# Change d e t e c t i o n by Image d i f f e r e n c i n g
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CRF2011$ change <− as . matrix ( CRF2006$ c l a s s )−as . matrix ( CRF2011$

c l a s s )
Disp <− CRF2011
Disp@data <− data . frame ( CRF2011$ change )
windows ( )
par ( mar = c ( 2 . 2 , 2 . 2 , 2 . 2 , 2 . 2 ) )
image ( Disp , co l=c ( " s e a g r e e n 1 " , ’ white ’ , " s i e n n a 4 " ) , x l a b=" " , y l ab=" "

, a x e s=TRUE)
c l a s s e s . P a l e t t e <− co lo rRampPa l e t t e ( c ( " s e a g r e e n 1 " , ’ white ’ , "

s i e n n a 4 " ) )
legend ( " b o t t o m l e f t " , c ( ’ B u i l t −up to Nonbuilt−up ’ , ’ Unchanged ’ , ’

Nonbuilt−up to B u i l t −up ’ ) , f i l l=c l a s s e s . P a l e t t e ( 3 ) , h o r i z=TRUE,
bty= ’ n ’ , x . i n t e r s p =0 .8 )

t i t l e ( ’ B u i l t −up a r e a change s 2006 −2011 ’ )

# Computing c h a n g e s in h e c t a r e s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# B u i l t −up a r e a i n c r e a s e in ha :
B u i l t _up <− ( sum ( CRF2011$ change==1) S 1 5 ) / 10000
B u i l t _up
#Non−B u i l t −up a r e a i n c r e a s e ha :
Non_ B u i l t <− ( sum ( CRF2011$ change==−1) S 1 5 ) / 10000
Non_ B u i l t
#==========================================================
#END OF CHANGE DETECTION BY IMAGE DIFFERENCING
#==========================================================
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