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Summary

The field of sensor fabrication based on Additive-Manufacturing (AM) with thermoplastics, is
relatively fresh and under active research. The potential of embodied 3D printed sensing is
already giving rise to a variety of applications, especially in the field of soft-robotics and bio-
medical engineering. Albeit, solutions on how to properly interpret the non-linear response of
such sensors in control, are still sparse.

In this project, with the purpose of obtaining insight on the controllability of AM based sensors,
a differential strain-gauge is designed and fabricated with the focus on addressing the symme-
try of the sensor’s strain gauges in terms of resistance and overall print quality by further tuning
of the printing process. The fabrication consists of two materials, a flexible TPU (Ninjaflex) for
the sensor’s body and conductive flexible TPU (Ninjaflex) for the traces of the strain-gauges.

The sensor is placed on an experimental setup where load-unload cycles stress and compress
the traces while the potential difference across each trace is measured. After post-processing
the data and via a differential measurement the hysteretic response is exposed.

With aim to develop a model capable of capturing the hysteretic response of the strain-gauge,
the analysis of a hysteresis model (Power-Law) is described along with several modifications
based on various excitations.

Next, the inverse model is derived as means to compensate for the non-linearity. During the
course of training the model under various excitations, the often observed instability of the
compensator revealed the necessity to determine a stability criterion. When active, the crite-
rion guarantees a proper compensator solution. It is then shown, given the trained excitations
that the approach strongly reduces the non-linear response of the flexible 3D printed strain-
gauge.

Finally, in a simulated environment, two control schemes are tested and compared. The first
scheme is characterized by the direct application of the compensator upon the sensor’s re-
sponse. The second scheme discards the inverse model in favor of weighting the input trajec-
tory with a forward hysteretic model. By training both compensation methods under a sine-
wave excitation, it is shown that both approaches perform adequately under the trained condi-
tions with the input-weighting performing slightly better while also being more resilient when
modified excitations are considered.

Overall, the derived model and its modifications prove to sufficiently capture the sensor non-
linearity. The inverse model effectively linearizes the majority of the response at a certain fre-
quency and amplitude. The ideal simulation allowed for a low-degree of insight on the con-
trollability, although the results hint that further investigation on the derivation process of the
compensator is required.
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1 Introduction

1.1 Context

Additive Manufacturing (AM), as a technology, has been around for over 50 years but it was not
until recently that it received such extensive attention, effectively leading to the emergence of
new AM technologies and the rapid-growth and optimization of the existing ones [10]. This
advancement gave birth to numerous solutions to the multi-material printing challenge [11].
As a consequence, printing with a variety of different materials, opens many possibilities in
polymers based research. The focus of this report lies on the development of 3-D printed sen-
sors, including the manufacturing and modelling, but with emphasis how they can be used in
control loops in real-world applications.

The motivation behind this project stems from the current research of the NIFTy (Nature In-
spired Fabrication and Transduction) group of the University of Twente. At the moment, a lot
of focus of the group lies on exploiting AM processes as means to develop sensory systems. A
key part for this research is the ability to use multi-material printing with conductive filaments,
enabling the embedding of electrical circuits into rigid or soft bodies based on polymers, such
as PLA, PETG to name a few.

From an application perspective, in the fields of soft-robotics, bio-mechanics, physiology and
kinesiology often large strain responses are encountered, where traditional MEMS-based rigid
sensors under-perform due to their low stretchability and sensitivity in such cases [12]. Al-
though, research towards flexbile MEMS-based sensor exists in the form of miniaturizing cer-
tain sensors [12] or manufacturing based on flexible polymer films [13], these processes are still
complex, challenging to manufacture and require additional assembly steps to be attached in
the sensing body.

3D printing enables in-house manufacturing, higher freedom in design patterns, does not re-
quire extra assembly steps since the sensor can be embodied and is comparable cost-effective
to manufacture in low-scale.

1.2 Problem Statement

AM-based sensors, despite their potential, they have been shown to exhibit a highly non-linear
response [14]. Drift, hysteresis as well as creep render the task of acquiring useful feedback sig-
nificantly challenging. Specifically, compensating for the hysteretic non-linearity of 3D printed
sensors is a relatively fresh subject. Although the results presented in [14] show a great increase
in the linearisation of the differential tactile sensor, the fact that a manual synchronization of
the signals had to be used, reduced the confidence in the results.

1.3 Objectives

The main objective of this thesis is to investigate control approaches for a system equipped
with a 3D printed sensor. Typically, in order to compensate for a certain behavior, the behavior
itself should first be captured.

Given the fact that such sensors experience drift, hysteresis and creep, the main objective can
be sub-categorized in the following tasks:

• How can the non-linearities of flexible, 3D printed sensors be captured in (a) model(s)?

• Is it possible to compensate for sensor non-linearities by means of modelling, and, if so,
can this compensation be generalized?
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• What control strategies can be used to successfully exploit the flexible 3D printed sen-
sors?

1.3.1 Model objectives

Additionally, towards capturing the exhibiting behaviors it is crucial to define their role in the
model. More specifically:

Hysteresis: A model should contain a memory component, carrying the information of previ-
ous states of the system. This is an integral part in order to compute the current state of the
system at each instant of time for a proper representation of the hysteretic behavior.

Creep: The materials involved in the fabrication process of 3D printed sensor are (for the most
part) polymers which are commonly modified with additions such as carbon black, in order
to enhance the mechanical properties of the plastics involved or add extra properties such as
electrical conductivity. It is well-known that polymer based solids experience plastic deforma-
tion when exposed to constant forces for an extended period of time. This behavior is defined
as creep. In the words of [15], the model should (ideally) be able to capture the logarithmic time
dependence of the creep relaxation dynamics. Although, in order to validate a model against
such behavior, considerably long experiment should take place.

Drift: Can be described as the gradual change of the output signal independently of the mea-
sured property. In this work, the interest is primarily on the short-term drift which can be
observed in relatively short experiments, and not in the long-term drift which is observed due
to changes in the physical material of the sensor [].

In the following chapters we will look in the literature for previous works towards the mod-
elling of these behaviors (mainly hysteresis). Identify the advantages and disadvantages of each
model for our use-case and finally conclude to the most appropriate model using a decision ta-
ble.

1.4 Report structure

There are a number of non-trivial challenges to face for a successful completion of such a
project. Starting from the sensor development, setting up a proper measurement configura-
tion, the development of a mathematical model capable of following the sensor’s non-linear
behavior and last, investigating different control techniques. For this reason, the current docu-
ment is constructed in such a way as to treat each subject separately, taking as requirement/in-
put the outcome of the previous work. Chapter 2 provides an overview of the often used math-
ematical models of hysteresis and relatable control approaches present in literature. Chapter
3 gives an overview of the sensor fabrication process. Chapter 4 describes the experiment and
the post-processing of the gathered data. Chapter 5 focuses on the description and analysis of
the hysteresis model as well as the derivation of the so-called compensator. A strategy based
on an FEM representation of the sensor as means of digital substitution is given in Chapter 6.
Possible control schemes along with tests carried out via simulations are presented in Chapter
7. Last, the overall work of the project is discussed in Chapter 8, along with several suggestions
towards future work.
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2 Literature

2.1 Mathematical model of Hysteresis

Attempts to model hysteretic and creep behavior have been the object of many studies since
1935 where Ferenc (Franz) Preisach first introduced his approach of creating a phenomenolog-
ical model of hysteresis for ferromagnetic materials [16]. Since then, a lot of research has been
focused on how to overcome the original model’s shortcomings [17], like the input rate depen-
dency, incongruency, multi-variable non-scalar inputs and the computationally heavy double
integration in order to estimate the model weights.

Before an overview of the models that paved the way for the development of the model cho-
sen for the current work, it would be beneficial to provide an overview of often used models
designed to exhibit hysteretic behacior. Some common approaches are categorized in Fig. 2.1:

Figure 2.1: Hysteresis models categorization.

Due to the many years of research surrounding the topic, there are of-course a large number of
models not mentioned or reviewed by this work. According to the literature research during this
thesis, the models outlined in chapter 2 form some of the major milestones along the hysteresis
understanding research.

It has been shown that 3D printed sensors exhibit hysteresis [14]. Additionally, creep phenom-
ena are expected to be present as well due to the materials involved [18]. The latter presents
a limitation to the suitable models. The creep effect, which can be informally defined as the
elongation or contraction of the material due to constant forces, is basically a rate-dependency
and can prove detrimental for applications where position accuracy and repeatability are im-
portant. Due to that reason, the focus is set on a rate-depended model.

In order to define a basis for the understanding, flow and terminology of this report, a brief
summary of the Preisach model is required.

2.1.1 Preisach Model

Considering the phenomenological nature of the Preisach model, an approach from a math-
ematical perspective is in order. From the prism of mathematics, the Preisach model is com-
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prised by an infinite set of hysteresis operators γ̂αβ. The input-output plot shown in Fig. 2.2
represents the rectangular shape of an elementary γ̂αβ operator (y = γ̂αβ(u)). Here, the out-
put can be represented with only two values, either +1 or −1, therefore, the whole model can
be thought of as a two position relay with α and β the switching trigger values for each branch.
From Fig. 2.2 the two branches are clear, the accending abcde and the descending edfba branch.

Figure 2.2: Preisach hysteresis operator input-output relationship.

In [17], where I.D. Mayergoyz gives an elaborate explanation of the Preisach model, it is shown
that the γ̂αβ operators are capable of representing the hysteresis non-linearities with local
memories (meaning that the past values can only influence future values through the current
output). Furthermore, the classical model is able to fit first-order transition (reversal) curves
(see appendix 9.4). The model can then be expressed with the following

f (t ) = Γ̂u(t ) =
∫ ∫

α≥β
µ(α,β)γ̂αβu(t )dαdβ (2.1)

Where, µ(α,β) is an arbitrary weight function and Γ̂ a concise notation for the Preisach hystere-
sis operator y = γ̂αβ with shape as shown in Fig. 2.2.

For an elaborate analysis of the inner workings of the model the reader is advised to read
through Chapter 1 of [17], for a brief overview see Appendix 9.3. With a practical implementa-
tion in mind, Mayergoyz presents the digitization of the Preisach model (short description in
Appendix 9.5) in order to avoid the heavy computation of the double integration as well as the
differentiation of the experimental data in order to obtain the weight function µ(α,β), which
can further amplify the noise in the data.

2.1.2 Generalized Preisach Model

Mayergoyz, in his work towards the generalization of the Preisach model, he tackled with the
following shortcomings:

• Relaxation of the congruency property.

• Ability to represent dynamical properties.

• Extend the Preisach model to work with two-input variables (as practical adaptations
require [17].)
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For the first, a definition of the congruency property in Preisach model, in the words of Mayer-
goyz in [17]:

"All minor hysteresis loops corresponding to back and-forth variations of inputs between the
same two consecutive extremum values are congruent."

Alternatively, the congurency property states that the loading and un-loading paths of a formed
hysteresis (major or minor) loop are symmetric mirrors of each other. This effectively illus-
trates a limitation of the classical Preisach model when non-symmetric hysteresis loops are
concerned.

Towards a model to answer these challenges the following "Non-linear Preisach" model was
published in 1988 by [1]

Γ̂u(t ) = f (t ) =
∫ ∫

α≥β
µ(α,β,u(t ))γ̂αβu(t )dαdβ+

∫ +∞

−∞
v(α)λ̂αu(t ),dα (2.2)

In 2.2 it is distinct that there are two main difference in contrast to the classical model. First,
the weight function µ now depends on the current input value u(t ), fact responsible for the
non-linear part of the model, and second, an extra term which contains the fully reversible
component of the hysteresis non-linearity [1] is added. The second term incorporates a second
set of operators called the step-operators λ̂α, as well as the v(a) which, similar to the first term,
is a weight function used to fit the second term to the major loop [1].

This model is capable of fitting second-order transition curves, in contrast to the original model
which only allows first-order ones (Fig. 2.3).

With this model, Mayergoyz & Friedman presented an extended application range over the
original Preisach model as well as greatly improved accuracy [1].

Figure 2.3: (a) First-order transition curves (original Preisach model), (b) Second-order transition curves
(generalized Preisach model), as presented in [1].

As a final note towards the work of Mayergoyz in [17]. His contributions to the subject and
the work towards the analysis of rate-independent hysteresis with non-local memory, has been
wildly appreciated and provided the basis of understanding for a large amount of literature
in that subject. For that reason it is not possible to cover all the contributions and analytical
descriptions in a brief summary of his approach. Nonetheless, results and conclusions of his
work are inherent in the majority of the following models of hysteresis.

2.1.3 Chua & Stromsmoe approach

The aforementioned models rely on the superposition of the hysteresis operators [17]. In 1970,
Leon Chua and Keith Stromsmoe presented an alternative mathematical model able to repre-
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sent dynamical hysteresis loops with local memory [2]. In this approach, the model relates the
input variable u(t ) and the output variable y(t ) with

d y

d t
= g (u(t )− f (y(t ))) (2.3)

Here, g and f are strictly monotically increasing functions and differentiable onto functions
with non-zero slopes throughout the entire real line and satisfy g (0) = f (0) = 0 [2]. The g (·)
is thought of as the dissipation function, characterizing the energy dissipation in the element.
Function f (·) is seen as the restoring function, describing the energy storage in the element.
One benefit of this approach is the relatively simple (compared to other methods at the time)
determination of g (·) and f (·) function from experimental data in the case of symmetric Hys-
teresis loop.

Briefly, two pair of waveforms are used, one cosine waveform y(t ) is used for excitation while
an x(t ) waveform is measured. Following property 9 as presented in [2] it is stated that if y(t )
is half-wave symmetric, then the corresponding x(t ) exhibits half-wave symmetry as well, then
the g and f are odd functions. Expressing x(t ) as a sum of even functions xe (t ) and odd func-
tions xo(t ) we get

x(t ) = xe (t )+xo(t )

x(t ) = f (y(t ))+ g−1(y ′(t ))
(2.4)

Solving the above relationship algebraically for two known points results in expressions for g
and f functions. If the device in interest is not characterized with a symmetric hysteresis then
more complex optimization techniques are required in order to obtain these expressions.

For the symmetric case, a step-by-step analysis of the procedure to determine the f (·) and g (·)
function, the reader is advised to read section II of [2].

V

i
iL'

+
VL'

_
VR'

_

+
iR'

Figure 2.4: Lumped circuit model of an iron-core inductor, as presented in [2].

Fig. 2.4 shows one of the examples used in [2]. The characteristic curves of the non-linear
elements of the circuit are shown in Fig. 2.5.
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Figure 2.5: (a) i −λ curve of the non-linear inductor,(b) v − i curve of the non-linear resistor.

The model has shown the ability to form the hysteresis loop, as well as represent minor loops
and increasing loop area when frequency is increased. Altough, initially developed with ferro-
magnetic hysteresis in mind, it is claimed, that the mathematical formulation of the model is
capable of modelling stress-strain relationships in the mechanical domain. A main disadvan-
tage, as mentioned in [2], is the inability of the model to predict dc behaviors.

2.1.4 Mechanical model alternative

S.Bobbio and G.Marrucci in 1993 presented an alternative way of modelling rate-independent
hysteresis with non-local memory. In the literature, local memory property of hysteresis mod-
els is used to describe the fact that at each instant of time the output is calculated given only
the current value. Non-local memory is used to describe the output values which are depended
not only in the current value but on past input extrema values as well [19]. In their work, it is
stated that it is important for the local memory assumption to be avoided since it was shown
by [20] from an exhaustive set of experimentally obtained measurements that most materials
can not be properly represented with the local memory assumption.

With first objective to reduce the computation complexity of the Preisach model, Bobbio &
Marrucci introduced the idea of the combination of elements in series instead of the parallel
algorithm architecture required for the computation of the Preisach model. It is shown that the
model manages to sufficiently describe the hysteretic behavior.

F

1 2 N-1 N

Figure 2.6: Proposed mechanical model containing N sliding pistons and N springs.

In Fig. 2.6 the mechanical system is comprised with a series of N linear springs (with assumed
spring constant of 1) and N −1 sliding pistons. The most important assumptions for this model
to work is that because of the friction, the state of each piston will not translate as long as
the net force acting on it remains lower than the threshold defined as |Fk − Fk+1| ≤ 1. It is
further assumed that the velocity does not affect the force difference required for the motion to
start [19]. The latter simplification results in the rate-independency of the model.

Robotics and Mechatronics Dimitrios Kosmas



8 Model-Based Hysteresis Compensation and Control with 3D Printed Lousy Sensors

The known state variables of the system are the applied force F and the deformation imposed
by the spring sequence Y = ∑

Yk . As shown in Fig. 2.7 the mechanical model is able to form
hysteresis loop as well as inner loops.

Figure 2.7: Comparison between the proposed mechanical model (a) with 4 linear springs and 3 pistons
and the Preisach (b) equivalent with 4 particles.

Moreover, the model as seen in Fig. 2.6 is able to represent hysteretic behavior with non-local
memory [19]. Fig. 2.8 nicely decribes the behavior of the non-local memory property. Looking
at point P we can see that depending on the previous history, two different decreasing paths
may occur.

Figure 2.8: Behavior of the non-local memory.

In section 3 of [19] Bobbio & Marrucci elaborate on how these paths are generated and under
which conditions the paths PQ or PR are followed.

It is crucial to point that the response of each individual element, does not exhibit hysteresis.
The hysteretic memory is generated by the updating mechanism of the internal state which is
described as

|Uk −Uk+1| ≤ ak , (k = 1,2, ..., N ) (2.5)

Here, Uk are the input forcing variables and ak are the material constants (assumed unity
throughout the paper).

Fig. 2.9 shows the model’s ability to represent the major as well as the inner loops.
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Figure 2.9: (a) Model comprised of 15 spring elements (abrupt saturation), (b) same as (a) but with four
of the fifteen elements gradually saturating.

2.1.5 PWL Ladder Circuit

The works of [16], [2], [19] has led to the formulation of the model proposed by M.Parodi, M.
Storace and S.Cincotti in 1994 [3]. Here, a circuit model that contains a ladder structure of
linear capacitors and non-linear resistors (Fig.2.10) whose response is described with a Piece-
Wise Linear (PWL) characteristic (Fig. 2.11) is proposed.

Figure 2.10: PWL ladder circuit that exhibits hysteresis.

Figure 2.11: PWL characteristic of the non-linear resistors.
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With the fact that an interpretation of the Preisach model in circuit terms proved to be not so
direct [3], the authors attempt to transfer the model proposed by [19] from the mechanical to
the electrical domain. Following the techniques of [2] the proposed lumbed circuit model was
developed. In contrast though to the work of Chua & Stromsmoe, the non-linear elements of
this circuit are only the resistive ones and not the inductors. The claim is that this assumption
allows for the simplest form of model analysis [3].

In section 4 of their work, it is shown that non-local memory property arises from the local
memory contributions of the linear capacitors [3].

Overall, the model can be considered as the result of the discretization of Preisach’s model,
where the N number of linear capacitors and non-linear resistors are the first parameters of
this discretization [3]. The latter leads to a less cumbersome identification procedure, in com-
parison to the Preisach’s continues model.

In their work, a comparison between the proposed PWL ladder circuit and the Preisach model
is conducted, where the model’s ability to maintain all the crucial elements of the hysteretic
non-linearity is proved with the extension of the ability to model the non-local memory. Fur-
thermore, a suggestion for further work towards a dynamical model of hysteresis is proposed.

Figure 2.12: (a) Limit hysteresis cycle and ‘first-polarization’ curve for a circuit with N = 4, (b) two con-
gruent minor loops. Both as presented in [3].

In 1996, the authors continue their work in [21] towards the generalization of the model. In 1998
M.Storace & M.Parodi with the work published in [22] address again the identification problem.
This contribution improved the computation efficiency of the proposed model enough to make
it usable with common computational packages such as MATLAB [22].

2.1.6 Kuhnen model

The increased demand in performance enhancements in nano-positioning systems, consisted
commonly of Piezo-Electric Actuators (PEA’s), has led to a recent focus in literature around the
modelling of rate-dependent hysteresis with non-local memories. Even though, the previously
described models have shown remarkable results on capturing the main characteristics of the
hysteretic non-linearity, rate-dependency with "global-memory" is crucial for a complete un-
derstanding of the dynamics involved in a smart-material based system (such as the ceramics
based PEA’s).
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K.Kuhnen, with his work as described in [23], [24], [25], [26] and [27], tackled with the chal-
lenge of identifying, modelling and compensating for hysteretic as well as creep non-linearities
which are commonly observed not only in ferromagnetics but in piezoelectric, electroresistive,
magnetostrictive and shape-memory alloys incorporated in smart-materials systems.

Kuhnen’s approach is based on operator-based hysteresis and creep operators. More specifi-
cally, he presents a modified model based on the Krasnosel’skii-Pokrovskii (KP) [28] operator
and the threshold-discrete Prandtl-Ishlinskii (PI) [29] operator. This model belongs to the fam-
ily of Preisach operators, as described in the previous sections, but extended with a second
set of operators which a responsible of modelling the creep behavior. As a result, the model
is of purely mathematical nature as the underlying physics are not taken into account and a
phenomenological approach is followed which if appropriately implemented, is able to char-
acterize the non-linearities in a sufficiently accurate manner.

Figure 2.13: Combined complex hysteretic non-linearity with log(t)-type creep dynamics.

Fig. 2.13, at the top left, describes the response of the typical input voltage as used in micro-
positioning applications. At the right part, the corresponding response (displacement) of the
ceramic is shown. This example aims to describe the type of the creep dynamics to be mod-
elled. Given a time resolution of Ts =1 ms the displacement response∆s consists of an immedi-
ate hysteretic part∆ss and a time delayed creep part∆sp of approximately the same magnitude.
The local step response is shown in the bottom right encirclement against the transformed time
axis log (∆t/Ts), here it is immediate that the creep part ∆sp has an almost linear response,
hence the name "log − t y pe(t ) creep" [25].

Robotics and Mechatronics Dimitrios Kosmas



12 Model-Based Hysteresis Compensation and Control with 3D Printed Lousy Sensors

Figure 2.14: Elementary play-operator.

In summary, the two parts are modelled as follows. The complex hysteretic non-linearity is
approached with a PI model:

Γ[x](t ) = S[H [x]](t ) (2.6)

Where, H stands for threshold discrete Prandtl-Ishlinskii hysteresis operator defined as

H [x](t ) = w T
H ∗H rH [x, zH0](t ) (2.7)

where w T
H is the vector of weights, zH0 the vector of initial states, and H rH the so-called ele-

mentary play operator which maps

y(t ) = H rH [x, y0](t ) (2.8)

In [25] defined by the recursive equation

y(t ) = H(x(t ), y(ti ),rH ) (2.9)

With initial condition,

y(t0) = H(x(t0), y0,rH ) (2.10)

Described by the skewed relay shown in Fig. 2.14

With,

H(x,u,rH ) = max{x − rH ,min{x + rH , y}} (2.11)

S in 2.6 stands for the PI superposition operator

S[x](t ) = w T
S ∗SrS [x](t ) (2.12)

where w T
S is the vector of weights, and SrS is the vector of one-sided deadzone operators which

is fully characterized by the threshold parameter rs ∈ℜ. In [24] these parameters are explained
in detail, but in a summary the S superposition operator allows the modelling of input-output
trajectories which are not convex and not odd symmetric.

The resulting forms of 2.6 are shown in Fig. 2.15.
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Figure 2.15: Formed loops of the asymmetrically complex hysteretic non-linearities.

For practical implementation the model can be reformed as

Γ[x](t ) = w T
S ·Sr s[w T

H ·H [x, z H0]](t ) (2.13)

Here, w are the weights and z H0 the initial conditions.

The creep operator is modelled as a second PI operator

K [x](t ) = w T
K ·K r k ak [x, Z K 0](t ) · i (2.14)

Finally, the combined model is formed as

Γ[x](t ) = S[H [x]](t )+K [x](t )

= w T
S ·Sr s[w T

H ·H [x, z H0]](t )+w T
K ·K r k ak [x, Z K 0](t ) · i

(2.15)

In equation 2.15 the extended PI model proposed by Kuhnen is shown.

Due to the main objective of K.Kuhnen’s work being the compensation and control of systems
that exhibit the aforementioned complex non-linearities, his work is re-visited from a control
point of view during the literature study surrounding the topic of control.

2.1.7 Power Law PL model of hysteresis and creep

Along the same motivation as K.Kuhnen (to capture the rate-depended phenomena typically
observed in PEAs), the previous authors M.Parodi and M.Storace together with M. Biggio, A.
Oliveri & F.Stellino [15] proposed a modified and extended circuit model, able to capture the
rate-depended hysteresis as well as the "log − t y pe(t )" creep dynamics.

Based on the work of [3], [19] and [21] the new circuit (2.16) is formed as the combination of two
distinct sub-circuits. In a summary, sub-circuit (a) is responsible of modelling the hysteretic
memory through a parallel architecture comprised with a linear capacitor C and a non-linear
resistor R whose characteristic is as shown in 2.11. The second sub-circuit, contains the pa-
rameters related to the identification procedure, namely a voltage bias Vb, a PWL non-linear
resistor and a set of in-series connected VCVS’s (Voltage Controlled Voltage Source’s [15]). The
VCVS’s are configured by the weighed voltage across the linear capacitor of sub-circuit (a).
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14 Model-Based Hysteresis Compensation and Control with 3D Printed Lousy Sensors

Figure 2.16: Circuit model for Hysteresis and Creep.

In terms of the original PWL ladder network model, it is shown that the new apporach based
on the parallel structure is able to exhibit all the previously described attributes. Apart from
the updated circuit representation, a new representation of the non-linear resistive elements
of the circuit (Fig. 2.17 (b)) extends the model with the ability to capture the "log − t y pe(t )"
creep relaxition dynamics [15]. The novel feature, is the representation of the middle part of
the PWL linear function of the resistive elements with the odd power function shown in equa-
tion 2.16. The thresholds, as described in Fig. 2.17 (b), define the Driving Points (DP). As it is
shown in [15], depending on the configuration of the DP’s the model is capable of capturing
the logarithimic time dependence of the creep dynamics.

Figure 2.17: (a) PWL linear characteristic, (b) PL adapted characteristic.

ik = IT

p −1

(
uk

kVt

)p

, p = odd (2.16)

It is assumed that the non-linear resistor of the second sub-circuit can be represented as the
sum of weighted PWL linear functions φ(t )

f (i ) =
M∑

k=1
a jφ j (t ) (2.17)

In the system as whole, the input is the e(t ) voltage source of sub-circuit (a) and that total
output is the current i (t ) running through the non-linear resistor of sub-circuit (b). The consti-
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tutive relation of the latter is described as u = f (i ) with u(t ) (eqn. 2.18) the voltage across the
resistor.

u(t ) = w0e +
N∑

k=1
wk uk −Vb (2.18)

With, w0,wk weights and uk the voltages across each capacitor (described by equation (6) of
[15].

Finally, the entire mode output is computed with the inverse i (t ) = f −1(u).

The Power Law model is shown to exhibit both the hysteretic and creep non-linearities.

In [4], the PL model is implemented in an open-loop control scheme for hysteresis and creep
compensation and in [5] an extended comparison between the last two models (Kuhnen and
PL) is conducted. Although, the discussion and results of these papers are better suited for the
literature towards the control strategies that will follow.

2.1.8 Results

With the brief summary of some commonly used hysteresis models, we can formulate a deci-
sion table (2.1) to help us derive to a conclusion regarding the modelling approach to follow.

Table 2.1: Hysteresis modeling technique decision table.

Rate- Rate- Local- Non-local- Minor
independent dependent memory memory loops

Classical Preisach Yes No Yes* Yes Yes

Generalized Preisach Yes No Yes Yes Yes

Chua & Stromsmoe Yes Yes Yes No Yes

Bobbio & Marrucci Yes No Yes Yes Yes

PWL ladder Yes No Yes Yes Yes

Kuhnen Yes Yes Yes Yes Yes

Power Law Yes Yes Yes Yes Yes

1

Looking at the objectives set for our case (section 2.1), the above tables tells us that only the
Kuhnen and Power Law model have the capability to capture the creep dynamics. In order
to choose between the two, a MATLAB toolbox, provided by [30] is to be used. This toolbox,
incorporates four different hysteresis modeling techniques (including the latter two models).
Therefore, in order to obtain a final conclusion about which model to use, first some experi-
mental data from a 3-D printed sensor will be obtained and used with the toolbox facilities to
get an estimate of the performance of each model.

Another advantage that may prove detrimental for the selection of the proper technique, is the
computation efficiency of the model. In [5], where the comparison between these models is
conducted, it is claimed that the Power Law model, achieves the accuracy of the Kuhnen model
by employing a lower number of parameters.

1Preisach can generally model hysteresis with local memories, but that does not mean that all hysteresis non-
linearities with local memories can be modelled with Preisach. There are in fact some hysteresis non-linearities
with local memory that has been shown that they cannot be modelled with the Preisach model, like the hysteresis
observed in single Stoner-Wohlfarth magnetic particles [17].
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2.2 Control strategies towards hysteresis compensation

Towards compensation of the hysteretic non-linearity, literature focusing directly on 3D
printed sensor non-linearities is non-existent as per research realized at the time of the current
assignment. Although, as mentioned, the subject of the hysteresis compensation is heavily
investigated in the past few decades, especially towards nano-positioning control for Piezo-
Electric Actuators (PEAs).

There are several different approaches for compensating PEA hysteresis and creep where the
majority of them is based on feedback loops based on bulky sensors [31], or current control
methods instead of voltage control that appear to exchibit a much less hysteretic response in
the expense of complicated controllers and electronics [32]. Although, none of this approaches
is applicable in our sensor scenario since the use of extra sensor to compensate for already ex-
isting 3D printed sensor renders the concept unnecessary and any kind of current control is not
applicable since the sensor is not actively actuated. The third option of compensating for these
non-linearities in PEAs is based on the modelling of such behavior and deriving the inverse as
means to eliminate them. The latter is a sensorless open-loop approach whose performance is
heavily depended on the model accuracy.

Models as the ones of Kuhnen and Power-Law are specifically developed with that concept in
mind. Although, as shown in the previous section, the model and inverse generation for both
models is substantially different, the control implementation of both is quite similar where the
inverse model (compensator) is directly applied prior to the plant (PEA).

If the PEA is considered as single input-output block as follows:

Figure 2.18: Non-compensate PEA system. Actual system (top), modelled equivalent (bottom) [4]

Then, the compensation scheme is described as:

(a) [Kuhnen,2003 [25]] (b) (a) Model, (b) actuation test scheme [4]

Figure 2.19: Typical Open-Loop hysteresis compensation scheme for PEAs.

The models Γ and H are described in the previous section for both the Kuhnen and Power Law
model respectively.
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Kuhnen derives the controller by taking the inverse of 2.15 which is expressed as:

Γ−1[y](t ) = w ′T
S ·H ′

r s[w ′T
H ·Sr ′

s
[y], z ′

H0](t ) (2.19)

Where for the Power-Law the inverse is derived from 2.18 such as the compensated output is
represented with:

ĕ(t ) = ŭ

w0
+ Vb

w0
− 1

w0

N∑
k=1

wk ŭk (2.20)

Initialization

It is important to note here that in order for 2.20 to work as the inverse of the H a proper initial-
ization is required. In [4] this is done by an input wave-form that synchronizes the forward and
inverse model to the same conditions. Due to the hysteretic non-linearity the initial conditions
of the state of a PEA at rest are not always known. The same intuition can also be applied in
the sensor non-linearity. Therefore, the implementation of a robust initialization procedure is
crucial. Different techniques have been introduced to tackle with this challenge, such as an
excitation with a decaying sine [33] or a cyclic excitation of a triangular signal [34]. In [4], an
alternative approach is proposed by acting on the voltage e(t ) (Fig. 2.19(b)) such that:

e(t ) = esync(t ) =
{

E0, t < t0

E0 −2NVT, t ≥ t0
(2.21)

Where N is the cell number and VT the voltage threshold defined as VT = E/(N +1).

With NVT ≤ E0 ≤ E it is shown in [4] that ∀uk (t−0 ),∀ŭk (t−0 ) it holds that uk (t+0 ) = ŭk (t+0 ) = E0 −
(2N −k)VT, with k = 1, .., N . Additionally,

e(t ) = esync(t ) =
{

E0, t < t0

E0 +2NVT, t ≥ t0
(2.22)

With −E ≤ E0 ≤ NVT it is again shown that ∀uk (t−0 ),∀ŭk (t−0 ) it holds that uk (t+0 ) = ŭk (t+0 ) =
E0 + (2N −k)VT, with k = 1, .., N . Meaning that since uk (t+0 ) = ŭk (t+0 ), then ỹ(t ) = y(t ) for t > t0.

Identification

Both of the latter model-based techniques require measurement data so that the weights are
estimated towards the best fit possible. Subsequently, last step before applying the compen-
sator is the identification process.

Kuhnen applies a quadratic optimization problem using the generalized-error function as min-
imization function (see eqn.33 of [25]) upon the normalized data. Towards the identification for
the Power-Law model, the authors use the combination of an exhaustive search for the param-
eters N , p, M and S [4], again upon the normalized data. The remaining weights are obtained
by minimizing the contrained quadratic cost function as defined in eqn. 11 of [15].

Since an analytical description of the identification process is not the main objective of the
current work, emphasis will be put upon the derivation of the model and its inverse where
towards the identification problem, widely available tools such as the Optimization Toolbox
from [35] may be used as means to obtain the estimated parameters/weights in an off-line
processing manner.

Results & Comparsion

A qualitative comparison between the two latter described inverse-model compensation meth-
ods is discussed in [5]. The authors (the team behind the development of Power-Law model)
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performs detailed comparison of the two models in question by first describing the basis of
comparison in terms of cells (PL)/hysteresis operators (Kuhnen). This results in a qualitative
comparison between the two, with similar variables to be estimated in each case.

Figure 2.20: Time evolution of the PEA output ψ (light greyline), Kuhnen’s model output ψ̂ (dark grey-
line), power-law modeloutput ψ̃ (black thickline), Preisach model output ψ̆ (black thinline) [5].

Table 2.2: Fitting errors for a given set for both PL and Kuhnen models [5]

Power-Law Kuhnen

Training set

min RMSE 5.7 10−3 5.6 10−3

mean RMSE 6.0 10−3 7.1 10−3

variance RMSE 1.15 10−7 9.49 10−7

Test set

min RMSE 6.9 10−3 6.5 10−3

mean RMSE 8.2 10−3 12.3 10−3

variance RMSE 7.78 10−7 1.73 10−5

The fitting results of table 2.2 provide enough confidence for a good fit towards a hysteretic re-
sponse. Additionally, from Fig. 2.20 the fitting results of both models along with the original
Preisach one is plotted against the real data of the experiment. It is imminent that the Preisach
model shows a considerable lower performance which is due to rate-independence character-
istic of the model where the creep phenomena present in PEAs are not captured [5].

2.2.1 Conclusion

Direct application of the inverse model prior to the hysteretic plant was shown in literature to
be a reliable method as long as the model sufficiently captures all the non-linearities. Of course,
these results demonstrate compensation towards PEA whereas the current work focuses on
sensors that are passively actuated from a given plant. However the same concept can act as
the initial goal for compensation where the compensator is directly applied, but in this case
after the sensor. More on the adaptation towards 3D-printed sensors can be found in chapter
7.
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3 Sensor Development

3.1 Introduction

A first step towards the characterization of the non-linearities of 3D printed sensors would be to
fabricate a number of sample sensors to be used in gathering experimental data. In this chapter
the design and fabrication procedure is discussed. Additionally, an experiment towards the
resistance-drop effect of fresh printed sensors is presented as means to identify the minimum
resting period until the resistance settles to a certain value, after which the sensor can then be
used with (more) confidence.

3.2 3D Model

Following on the basis of the design of [14] a new 3D model is generated. As described in the
introduction chapter, the target is to improve the performance of the previous sensor such that
the differential measurement potential for control is maximally exploited.

(a) 3D model of the tactile sensor as presented
in [14]

(b) 3D model of the modified tactile sensor.
Bottom R1 (red) and top R2 (green).

(c) CAD drawing of the modified tactile sensor. Dimentions in [mm].

Figure 3.1: CAD models of previous and current work.

In the work of [14], a very simple strain sensitive pattern with two traces (top & bottom) was
designed and fabricated (Fig. 3.1a). The goal is to keep this simple design, while improving on
a couple of shortcomings. First, the sensor symmetry issue, meaning that the magnitude of the
top and bottom trace resistances need to be as similar as possible, Secondly, to configure the
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fabrication process such that the filament dripping/mixing is eliminated. These improvements
are crucial for the final goal which is to use a sensor for a position control scheme since the
response measurement of the sensor is the determining value fed into the controller. Section
3.4 elaborates on the proposed improvements.

3.3 Equipment

The main equipment available to perform the design and fabrication task consists of:

• Diabase H-series 3D printer (see Fig. 3.2).

This multi-material printer (see [36] for review towards multi-material FDM printing) is
capable of simultaneously printing with up to 5 filaments. The filament switching mech-
anism is based on a turret configuration that places the idle nozzles at a safe distance
from the building platform. For the current purpose 3 out of 5 filament paths are used.

• PI-ETPU 85-700+ conductive flexible filament [37].

• Ninjatek EEL TPU conductive filament [38].

• Ninjatek TPU flexible filament [39].

• E-Sun PVA soluble support filament [40].

Software:

• Dassault Solidworks, as 3D modelling software.

• Simplify3D, as slicer software.

Figure 3.2: Diabase H-series Multi-Material 3D printer.

3.4 Improvements

A Main issue with the previous sensor to address is the asymmetry of the sensor’s gauge resis-
tances due to the printing process. In a typical FDM manufacturing manner, the sensor in [14]
has been printed with its back side flat on the printer’s heated bed (see coordinate frame in
Fig. 3.1a). Typically, the initial layer is squeezed on to the heated bed, as means to provide
consistent adhesion. Although, in the case of the current design, one of the two resistive traces
lies on the back side as well. Subsequently, this trace’s conductive lines end up forming in a
more condense manner in contrast to the top resistive trace. This is indeed exemplified by the
measurements in [14].

The idea to solve this issue is to raise the sensor’s first layer above the heated bed. A number
of approaches can be used to achieve this. For example: including the so-called raft, which is
basically a number of 3D printed layers that act as solid base support which is to be removed
during post-processing. With a raft the risk of a rough first layer of the sensor is introduced,
due to the detachment step, or even blending of the support material with the model material.
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Table 3.1: R per strain-gauge

Sensor Material R1 (top) [kΩ] R2 (bottom) [kΩ] 2 R1−R2
R1+R2

[%]

Sample 0 [14] PI-ETPU 1.58 2.78 -55

Sample 1 EEL TPU 15 16.82 -11

Sample 2 PI-ETPU 12.7 28.2 -75

Sample 3 PI-ETPU 14.3 35.8 -86

Sample 4 PI-ETPU 15.7 22.4 -35

Another solution is to use water-soluble support material (e.g PVA) in order to avoid damage
to the sensor’s first layer during post-processing. With that approach, the 3D printed sensor
is placed into a water bath for a given amount of time until the soluble material completely
dissolves. While practicing this technique, it was noted that it was challenging to remove all the
PVA material from the bottom side, some residue was always present.

To address this issue, the so-called ironing feature is used (first introduced by Ultimaker Cura
slicer engine [41]). The idea is to use PVA material for the few first layers as means to avoid the
squeezing of the bottom resistive trace, and then via ironing, smooth out the layer upon which
the sensor printing process begins. Finally, this approach provided improvements towards the
sensor’s symmetry which is demonstrated by the resistance (R) values as shown in table 3.1
(samples 1 & 4).

Some comments for table 3.1. Sensor 0 is fabricated > 12 months before the shown measure-
ment which (as shown in section 3.5.1) has an impact on the trace resistance. Additionally,
samples 2 & 3 reveal a high-asymmetry where the bottom gauge has ≈ x2 resistance value. This
is due to the PVA raft attempt (more on sec. 3.5) without ironing feature, where residuals of the
PVA form a thin layer over the conductive trace.

The choice of the number of conductive layers is arbitrary. Although, in order to provide a
stronger bond and path for the current to flow, at least two conductive layers per strain-gauge
are suggested.

3.5 Fabrication

With the aforementioned equipment and insights, a total of 4 sample sensors are printed. Table
3.2 summarizes the printing parameters and 3.1 describes the resistance values per sensor per
strain-gauge. In Fig. 3.3b the PVA raft is shown, which is afterwards removed during the post-
processing.

(a) PVA support shown in yellow. (b) 3D printed tactile sensor sample 4 on top of
PVA ironed layer.

Figure 3.3: PVA raft addition as means to raise first layer from the building platform.
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Table 3.2: Fabrication top-level parameters

Parameter Value

Layer thickness 200µm

First layer thickness 150 %

Hotend temperature

Ninjatek EEL 200 ◦C

Ninjatek TPU 200 ◦C

PI-ETPU 200 ◦C

Heatbed temperature 60 ◦C

Printing speed 35 mms−1

Support type custom PVA raft

Newly printed conductive traces seem to show a decrease of their resistance value over time
(more on this in section 3.5.1). As observed, after allowing a settling time as described in the
following section, the resistance from each trace is significantly reduced and stabilized.

3.5.1 Resistance drop effect

Through past fabrications of 3D printed sensors within the NIFTy group, it has been observed
that a significant drop in the resistance of the traces of 3D printed conductive structures takes
place after the printing process. This effect is shared across most of the commonly used generic
conductive filaments. In an attempt to obtain a better practical insight regarding the usability
of sensors employing such materials, an extended measurement experiment has been carried
out.

A total of 4 samples, blocks of purely conductive filament and size 30 mm×10 mm×1 mm,
were printed. A pair of Ninjatek EEL conductive filament and a pair of PI-ETPU filament. One
set (1x EEL, 1x ETPU) went through heat treatment over a period of 16 h at 150 ◦C. The printing
process of the second pair was planned to complete simultaneously with the heat treatment
(annealing) of the first pair.

A custom clamp was manufactured with 4 screws along its length in equal distances. In the
inside of the clamp a total of 8 conductive copper tape strips (3M 1181, 6 mm wide) have been
placed (2 per block) and 4 wires per sensor were soldered as means to obtain 4-point measure-
ments. The clamp is then connected to a multimeter with a 10-channel multiplexer (Keithley
2000 with 7011 multiplexer card). The multimeter is interfacing with MATLAB through serial
communication [42]. A control script is set to obtain 1 measurement per minute per sensor
and log the data. Fig. 3.4 shows the experimental setup and following are the results of this
experiment.
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(a) Non-annealed pair. (b) Annealed pair.

Figure 3.5: Resistance drop effect experiment results.

Figure 3.4: Lab setup for resistance-over-time measurement.

From Fig. 3.5 it is immediately clear that heat treatment greatly reduced the resistance (~x10
for EEL and ~x5 for ETPU) as well as provided a more stable behavior. It also interesting, that
non-annealed samples (Fig. 3.5a) are showing a steep increase during the first hours and then
a significant drop until saturation at ≈ 2−3 days This behavior is in line with previous obser-
vations of the group. Moreover, due to the known creep effects of the polymers in use, it may
be possible that the peaking present at the non-annealed samples is the effect of the creep re-
laxation dynamics due to the constant force acting from the clamp screws, although this is just
a conjecture. In such a case, the annealed sample also shows a much better response where
no initial peaking is observed. Furthermore, it can be deducted from Fig. 3.5a, that allowing a
settling time of 2 days after the print process is finalized, will suffice in order to obtain more
consistent results later on. This is best observed when plotting the results versus the logarithm
of the time.

As a last note, the EEL filaments were both average quality samples, the reason being the brittle
behavior of the printed part, possibly due to the long exposure of the filament spool in hu-
midity, although this is just a guess. This fact, may also provide a reason for the "unstable"
measurements seen in 3.5b.

Following on, samples 1 & 4 will be used for various measurement sessions (see chapter 5),
due to the better printing results of these sensors and for a side comparison between the two
distinct conductive filaments.
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3.6 Conclusion

Four sensor samples are fabricated where the original issues observed in [14] are addressed.
The trace resistances are of the same magnitude although there is room for further improve-
ments in that area, as the resistance values suggest. The new print settings produced a clean
sensor in terms of filament mixing during printing. Lastly, following the resistance-drop ex-
periment a minimum resting period of 2 to 3 days is mandatory before safely measuring and
implementing a measuring circuit for the non-annealed strain gauges.
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4 Experimental Setup and Measurements

4.1 Introduction

In this chapter, the setup for gathering the required data is discussed in terms of equipment
configuration, overview of an experiment based on a sine-wave excitation, along with the anal-
ysis and post-processing of the resulting data. The importance of the sensor symmetry along
with the hysteretic nature of the response of the 3D printed sensor is revealed and, lastly, a de-
scription of the work of [9] is made, where experiments with various excitations (decaying sine,
frequency sweep and noisy signal) are carried out as means to further evaluate the derived
model.

4.2 Components

With the fabricated sensor, the next task is to develop a setup to serve as experiment and mea-
surement platform. The main components for, simple, sensor-focused, isolated measurements
are enumerated:

1. Fabricated strain sensor.

2. Oscilloscope:

(a) Pico Technologies Picoscope 5443D.

(b) TiePie Handyscope HS5.

3. SMAC linear actuator LCA25-050-15F.

4. SMAC controller.

5. PSU 1-30V.

6. PC - MATLAB.

7. Mechanical assembly.

The main purpose of the setup is to measure voltage changes in both traces of the sensor under
various excitations. Towards this goal each component, along with the related configuration,
should be described in further detail, with an eye to reproducibility.

The sensor and the fabrication have already been described in chapter 3. Powering of the ex-
periment is done by a generic 1-30V PSU.

4.2.1 Oscilloscope

Figure 4.1: 4-Channel PicoScope 5443D. Figure 4.2: 2-Channel Handyscope HS5 module.
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For data acquisition, a digital oscilloscope is used in combination with the accompanied soft-
ware. Initially the Picoscope 5443D (Fig. 4.1) is employed, as part of the first measurement with
a sine-wave excitation (more details in section 4.3.1). The scope has a maximum resolution of
16-bit, but in case all 4-channels are measured simultaneously the maximum resolution is of
14-bit.

From the work of [14] a challenge on the synchronization of the signals is considered as a possi-
ble source of measurement inaccuracy. In order to address this issue, one solution would be to
measure all the interesting signals under the same device, effectively generating measurements
synchronized under the same time scale.

In order to achieve this, the encoder signal (direction from SMAC actuator to SMAC controller)
needs to be extracted and measured by the employed data acquisition device. The sensor used
inside the SMAC linear actuator is a differential quadrature encoder with 5µm resolution. Typ-
ically, in order to take full advantage of this hardware, five measurements would be required
for the encoder alone. As described by Fig. 4.3, the two encoder channels incorporate differen-
tial measurements (A+, A−,B+,B−) and the encoder Z channel, which provides a single pulse
when the stroke is aligned with the default home position, which is identified during startup in
the initial calibration cycle.

Figure 4.3: Encoder signal extraction diagram.

In the current situation the setup is limited to one data acquisition device, hence measure-
ments by 4-channels simultaneously is the maximum possible. Due to this fact, a compromise
needs to be made. The most basic form of encoder reading is by reading the single end channels
A and B , omitting that way the differential channels as well as the zero channel. Furthermore,
the two channels are combined into one merged signal in order to reserve one more channel
for a possible reference voltage measurement as means to account for potential power-supply
output voltage instability.
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(a) Encoder merger cable. (b) Merger schematic.

Figure 4.4: Merger cable for encoder channels measurement.

The merger, as the word suggest, serves as a signal merger for the encoder signals A+ and B+.
It employs a hex inverter buffer as the signal amplifier [43]. A voltage divider with resistance
values of Rd1 =1 kΩ Rd2 =2 kΩ is used to assign a unique voltage magnitude for each encoder
channel. That way the combined signal is described by 4 different voltage states. These states
are used during post-processing in order to invert the merging, decompose the combined sig-
nal into two distinct signals and reconstruct the commanded position (more on that on the
post-processing section 4.3.1).

The Picoscope 5443D comes with 4-channels. For the first experiment with a sine excitation,
two channels are used for the sensor channels output (R1 and R2 as seen in Fig. 3.1b). The third
channel is used for the encoder readout. Last, the fourth channel is used for the reference mea-
surement. The goal of the latter is to allow AC measurements and to be further used towards
removing any noise of the power supply.

For the remaining measurements, which include a decaying sine, a frequency sweep and a
white-noise induced sine the HandyScope HS5 is used. The HS5 comes with 2-channels as a
single module, but parallel stacking of multiple modules is allowed, therefore allowing more
channels depending on the number of available devices. For this case, two modules are avail-
able. Matching then the 4-channels of the PicoScope.

During the second set of measurement experiments, it was noted that the ability to remove
noise by the use of the reference channel is limited. Moreover, the experiment have been fur-
ther constrained into purely DC measurements. With the fourth channel free at this state, the
encoder measurements used two scope channels, simplifying post-processing of the encoder
signal.

More details about the technical specifications of both devices are in [44] and [45].
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4.2.2 Linear actuation

Figure 4.5: SMAC LCA25-050-15F. Figure 4.6: SMAC single axis controller.

The SMAC LCA25-050-15F (Fig. 4.5) is a 24 V solenoid based linear actuator with a 50 mm
stroke. The actuator can be either position or force controlled and has the capability of contin-
ues force loading of 6 N or constant force of 9.5 N/A.

The actuator is controlled with a dedicated controller (LC-10)(Fig. 4.6) employing the Embed-
ded Motion Control Library (EMCL) which controls the system in a feedback-loop scheme as
described in Fig. 4.7. The controller communicates via a USB serial interface with a PC where
several options for operation are included. First option is the provided Graphical Control Inter-
face. Another option is to manually open a communication channel and supply the controller
with the appropriate commands as found in the manual [6].

Figure 4.7: SMAC feedback control scheme [6].

For these experiments a combined approach is followed. For the actuator initialization the pro-
vided interface is used. Then, custom scripts (provided), with two different implementations
(position & force control) are used.

During all the experiments the SMAC is calibrated with a set voltage at 25.2 V.

4.2.3 Software

Connecting all the parts on the software side is done through the MATLAB environment. The
provided SMAC control scripts as well as the custom dedicated drivers for both acquisition de-
vices are written in MATLAB. Moreover, offline post-processing of the data as well as the devel-
opment of a non-linear model (described in section 5) are all written in the same environment.

Crucial snippets of the code developed during this assignment are included in the appendix
section 9.6.

4.2.4 Layout

The assembly of the complete set up is based on a 50 cm×50 cm×3 cm aluminum plate which
incorporates 5 mm threaded bores placed in a symmetric grid along the surface. This part al-
lows for quick & easy assembly of different geometrical structures based on single blocks of
different size. Therefore, in a modular manner, a variety of different loading experiments can
be achieved.
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For the current experiment, the goal is to apply a mechanical load in a single direction, along
the Z axis as shown in Fig. 3.1a. Rectangular blocks are used to fix the parts in place in such
a way that the SMAC applies a force along the sensor Z axis. The sensor is then clamped in a
dual-purpose custom vice. The vice acts both as the mechanical constrain, blocking translation
and rotation along the X /Y axes and also incorporates the electrical connection pads. Here,
the electrical contact between the sensor conductive traces (carbon black filled TPU) and the
measurement system is done with a flexible conductive copper tape which is attached on the
clamp’s inside surface. The clamping force acts a pre-load to ensure sufficient contact.

Figure 4.8: Actual experiment setup.

4.3 Measurements

4.3.1 Sine

The 4th sensor sample is used for the first experiment. The SMAC actuator configuration can
be found in Appendix 9.7

To read out the sensor, it is placed in a half-bridge configuration using a 10 kΩ resistor and a 2 V
DC voltage source. The half-bridge output voltage is measured using the Picoscope 5443B set
at a sample frequency of 2 MHz.

Following the discussion under the Oscilloscope section, the encoder signal is fed into the third
channel as means to obtain proper time synchronization.

The actual sampling interval returned from the driver [42], is ∆ts = 5.0400 ·10−7. This yields an
actual sampling frequency of 1.9841 MHz during streaming. AhardwareDownSampleRatio
of 20 is defined in the driver configuration [42]. The time-step of the discrete system is then
∆t = ∆ts ∗hardwareDownSampleRatio ⇒ ∆t = 1.008 · 10−5. At the sensor channels, an
additional down-sampling ratio of 5 is applied.

Moreover, also digital filtering is applied. The description of this filter will be discussed after the
measurements are obtained since it depends on the frequency analysis of the sensor’s response.

Due to an observed 78 kHz interference of the SMAC controller, a hardware RC low-pass filter
is added to the sensor measurement channels with R =10 kΩ and C =15 nF with a cut-off fre-
quency fc =1.0585 kHz effectively leading to a noise suppression of ≈ 37.35 dB. For clarity, a
block overview of the complete setup revealing the top-level connections is presented in Fig.
4.9.
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Figure 4.9: Overview of the experiment set-up (orange box represents the splitter cable for the extraction
of encoder’s channels A & B signals).

With this setup, two experiments have been conducted, each of 5 min duration. One mea-
surement set is to be used for model training and the second for validation (more in chapter
5). From each experiment three data sets are to be obtained. From the perspective of the PL
model, the first set ê(t ) represents the SMAC position and î1(t ) and î2(t ) which represent sensor
response (half bridge output voltage for each trace).

Results

In order to avoid conclusions that will not hold , there is one crucial point that needs to be
clarified. Due to the measured quantities being displacement (input) and voltage (output) a
domain coupling is present between the mechanical and electrical domain. Therefore, any
non-linearity or any insight revealed by processing these data, is not appropriate for character-
izing either the mechanical nor the electrical behavior of such sensor.

Therefore, the conclusions drawn within this assignment have the goal to describe the 3-D
printed sensor behavior from a phenomenological view and not to analytically describe the
physical behavior of the sensor. For the latter, the first step would be to work in the domain of
interest, e.g for the mechanical hysteresis, either by deriving the relation between the measured
voltage and the force applied to the material, or by contacting force-controlled experiments
with the displacement being the measured quantity or vice versa.

The last step before obtaining usable results is to apply a digital filter to clean out the noisy data.
Since all the post-processing takes place offline a zero-phase filter is employed by filtering once
in the forward and then in the reverse direction. The filter chosen is a 2nd order Butterworth
filter. In order to select the appropriate cut-off frequency the frequency analysis of each signal
is considered, as seen in Fig. 4.10

From Fig. 4.10 it can be assumed that a minimum cut-off frequency of fcmin ' 8 Hz is needed so
that the higher harmonics are included up to the point that the magnitude of the highest har-
monic is buried under the signal noise. Then, by conservatively choosing a cut-off frequency
of fc =20 Hz a reasonable balance between the noise and sensor bandwidth is obtained. The
filter can then be expressed with a transfer function (in the z-domain) as:

B2(z) = 0.0626 ·10−5 +0.1252 ·10−5z−1 +0.0626 ·10−5z−2

1−1.9978z−1 +0.9978z−2
(4.1)

Dimitrios Kosmas University of Twente



CHAPTER 4. EXPERIMENTAL SETUP AND MEASUREMENTS 31

Figure 4.10: FFT of both strain gauges.

Figure 4.11: Strain sensor response of top and bottom traces.

To obtain the position (input), the measured output signal from the encoder merger is post-
processed such that the signal is reconstructed back into the original encoder channels A+
and B+. To achieve this, a split-logic algorithm is applied to the measured data which looks
ahead in the signal to determine how to assign the appropriate normalized state 0 or 1 to each
reconstructed channel, based on the four different voltage states (Fig. 4.12(a)). With the re-
constructed channels available (Fig. 4.12 (b)), the original excitation signal (Fig. 4.12 (c)) is
obtained through a Finite State Machine (FSM) given an increment of 5 nm for each encoder
pulse (one for each channel state change (quadrature)). The results are visualized in the fol-
lowing figures.
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Figure 4.12: (a) Merger output, (b) Re-constructed Encoder channels, (c) FSM output position.

Figure 4.13: Strain sensor individual trace input-output relation, R1 (top), R2 (bottom).

With the reconstructed position, the input-output relation. when plotted against time (color
gradient), clearly shows that the material exhibits a hysteretic behavior. Moreover, it helps to
visualize the sensor drift.

The differential measurement y = R1 −R2 then yields the results of Fig. 4.14, where the non-
linearity can be observed with a close inspection of the differences between the commanded
position signal and the output measurement, where the sine peaks seem to be in phase but
the rest of the signal is not. Here, the second y axis portraits the SMAC position control signal,
which is scaled in magnitude for a better comparison.

Last, the input-output plot of the differential measurement reveals the hysteresis loop (Fig.
4.15).
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Figure 4.14: Reference (black line) versus sensor output (pink line).

Figure 4.15: Strain gauge differential response to commanded position

The effect of the differential measurement upon the drift can be better visualized by plotting
a limited number of cycles with a quite large time interval between the cycles as shown in Fig.
4.16.

To calculate the relative resistance change∆R/R from the half-bridge voltage measurements of
the strain gauges the resistance is first computed as follows.

From circuit (see Appendix 9.8)

Vm = Rbr

Rbr +RS
V0 (4.2)

Where Rbr represents the bridge resistance and RS the resistance of the sensor. Solving for RS

RS = Rbr ·
V0 −Vm

Vm
(4.3)

With mean R̂S

R̂S = 1

n

n∑
k=1

RSk (4.4)
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With n the number of data points. Finally,

∆R

R
= RS − R̂S

R̂S
(4.5)

Where Rbr is the 10 kΩ used in the half-bridges, V0 =2 V the DC supply voltage and Vm stands
for the sensor measured voltage data (for R1, R2 and R1 −R2). From 4.14 the period of T =2 sec
can be extracted. The relative resistance change ∆R/R of each gauge can then be plotted for
specific load-unload cycles (instead of the entire measurement) as means to increase the clarity
of the results (Fig. 4.16).

Figure 4.16: Relative resistance change over SMAC position for 5 cycles.

In the current scenario, in contrast to the results of [14], the differential measurement alone
is not enough in order to linearize the sensor output. Of course, the differential measurement
when compared to Fig. 4.13 provides a more usable signal where the loop crossing is less em-
phasized and it additionally improves the sensor readout in terms of measurement noise as
well as, in certain cases (as in the current one), it cancels out a significant amount of drift (Fig.
4.16). Although, the latter is found to not always be true, therefore not fully reproducible. Fur-
ther research is required in order to properly model the drift behavior of such sensors.

4.3.2 Various excitations

Moving on, the following experiments aim to produce the required data for a thorough valida-
tion of the model that is to be developed. With the goal to develop a model that can capture the
non-linear behavior of the sensor, it is important to obtain data that will reveal the non-linear
response of the sensor under various circumstances, typically more complex than a simple sine
wave.

From the literature, one of the main attributes of the hysteresis models, is the ability to capture
the behavior of the minor-loops. Therefore, experiments with an excitation signal of a decaying
sine wave can be considered sufficient for that purpose.

Due to the stated non-linearities, convenient methods such as an impulse response to validate
the systems response under any excitation are not possible. Although, the sensor’s response
can be validated for a given range of frequencies via a frequency sweep experiment. The data
obtained from the latter can also be considered as a benchmark to obtain the functional fre-
quency range. Moreover, with a given frequency band in mind, a true random signal, such as a
pure Gaussian noise generated excitation can potentially cover any expected system response
within the used frequency band.

To sum up, all the required data for validating a model in the context of this assignment can be
obtained with three distinct experiments given the following excitations:
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• Decaying sine-wave

• Frequency sweep (or chirp)

• Gaussian noise

The gathering of these data, along with the model performance which will be discussed later,
can be found at [9]. The exact excitations used for each signal can be summarized as follows [9]:

1. A decaying sine wave with a frequency of 0.5 Hz and an amplitude that exponentially
decreases over 200 s from 2 mm to 100µm.

2. A frequency sweep with a frequency exponentially increasing over a period of 100 s from
0.1 Hz to 3 Hz and an amplitude of 3 mm.

3. Gaussian noise filtered with a 500th order FIR low-pass filter with a −3 dB cut-off fre-
quency of 4 Hz

Similarly to the first sinusoidal excitation experiment, a 2nd order 20 Hz zero-phase Butter-
worth filter is applied. During this second round of measurements, the Handyscope HS5 (Fig.
4.2) is used. The sampling frequency is set at 6.25 MHz. The half-bridge readout resistors are
switched to lower value ones with R=560Ω, due to the aging effects as described in section 3.3.1,
as means to match the sensor trace resistances, and the DC supply voltage is set at Vs =1 V. Ad-
ditionally, all three following signals are downsampled to 40 Hz [9]. Last, the computation of
∆R/R follows from equation 4.5.

Following are the results of these measurements and as expected, for the decaying signal, the
forming of minor loops is present. The frequency sweep is limited to maximum frequency of
3Hz and subsequently terminated at 150 sec since the higher excitation frequencies did not
provide usable results. This may be due to the unstable behavior of the SMAC actuator towards
higher frequencies, where the tuned velocity and acceleration profiles where not calibrated
properly.

Decaying signal

Figure 4.17: ∆R/R versus commanded position for 5 equally spread cycle 1.

For the decaying sine-wave, looking at Fig. 4.17 the significant drift in the sensor response is
clear and in this case, the differential measurement, although it improves the response in that
regard, it is not able to completely eliminate the drift such that all the minor loops lie inside the
major loop.

11st cycle represents the first loop of the processed data, meaning that this loop occurs at t =50 sec of the exper-
iment.
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Forming of minor loops that are subject to such drift in the response, renders the existing mod-
els short-handed since all of the models described in the literature that are able to capture
minor-loop behavior, focus on the branching that occurs inside the confined space defined by
the major loop. Meaning, that all models covered by the overview of the chapter 2 are prone to
not accurately modeling such responses.

The following plots for the measurements of both the sweep and noisy excitation include the
entire set of gathered data due to the varying frequencies.

Frequency sweep sine

Figure 4.18: Frequency sweep ∆R/R versus commanded position. (a) R1, (b) R2 and (c) R1 −R2.

Gaussian noise

Figure 4.19: Noise excitation ∆R/R versus commanded position. (a) R1, (b) R2 and (c) R1 −R2.

A remark that can be obtained following the observation of the measurement results of all exci-
tation signals, is that in the differential sensor, the strain-gauges reveal an opposing behavior,
as expected, where the hysteretic non-linearity seems to be more emphasized towards the con-
traction maximum (+3mm for R1 and −3mm for R2) of each gauge and the response shows
a less hysteresis towards the expansion maximum (−3mm for R1 and +3mm for R2), as illus-
trated in Fig. 4.20. Although, towards the expansion maximum, a loop crossing is present which
is persistent after the differential measurement as shown in Fig. 4.16. This crossing in the re-
sponse is often observed within the NIFTy group experiments [14, 46]. Despite the multiple
observations, the reason behind it is unidentified. However, following the results of [9] (see
Figs. 4.17-4.19) it does not appear to be present in all measurements.
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Figure 4.20: Illustration of contraction (blue) and expansion (green) phases of each strain-gauge. Data:
isolated 10th loop response of R1 and R2 from the sine experiment (direction arrows with help of [7]).
Dotted red line represents the resting position of the sensor and red cycle indicates the first data point
of the loop.

Following the conclusions of [14] the importance of sensor symmetry is clear: the more sym-
metrical the gauges are, the better the cancellation of each other non-linear response is, hence
for future development of such sensors more focus should be on sensor symmetry. Two sug-
gestions can be made towards further improving the sensor symmetry: (a) fine-tuning the PVA
raft-Ironing combination measure (sec. 3.4) by adjusting the offset between the ironed layer
and 1st sensor layer, or (b) by printing the sensing element within the sensor body, meaning
that (at least) the first printed layer of the sensor will be a non-conductive material. With the
latter, the extra challenge of attaching the measurement cables is added.

4.4 Conclusion

An experimental setup to characterise the 3D printed tactile sensor is described and an
overview of obtained measurement results is presented. The excitation configuration is dis-
cussed and digitally implemented. Data are gathered for the sine-wave excitation and a low-
pass filter is described. The response from each trace is logged from which the differential
output is computed and the hysteresis is revealed. The work towards a decaying sine, a fre-
quency sweep and a noise induced signal is briefly described further validating the hysteretic
response as well as more clearly showing the sensor remaining drift that persists in the differ-
ential measurements. The processed data are ready to be used for training and validating the
model derived in the following chapter.
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5 Hysteresis Modeling and Compensation

5.1 Introduction

With the measurements obtained, the next task is to develop a model that can capture or mimic
the non-linear behavior of the sensor to a satisfactory degree. To avoid over-complexity, the
focus is shifted towards the hysteretic non-linearity, and rate-depended phenomena such as
creep or stress relaxation, as well as sensor drift are neglected. However, even though these
phenomena are not directly modelled, they are still part of the measurement data that was
gathered (more on this in the model selection section). Following from the domain coupling as
explained in the results section of 4.2.1, there is not a direct way to distinguish these effects with
the current experimental setup. Therefore, it is important to point out that even though the
focus is on the hysteresis, additional non-linearities are inherent in the data, but they cannot
be distinguished, hence separately model each one. Albeit, given that these non-linearities are
present in both strain-gauges the more identical (symmetry) they are, the more these effects
are cancelled when a differential measurement is considered. The task is then categorized as
follows:

1. Select a suitable model from table 2.1 to build upon.

2. Insert measurement data in the existing black-box implementation of the model1 as
proof of concept.

3. Model development and modification.

(a) Modified model analysis.

(b) Parameter estimation.

(c) Model inverse (Compensation).

(d) Model stability analysis.

4. Discuss on results and model performance.

5.2 Model selection

Following the insight from [18] it is known that due to the materials involved in the sensor, rate-
depended phenomena such as stress relaxation and creep are inherent in the system. Aiming
for the model with the most potential on accurate representation of the sensor, even though
the focus is not on analytically addressing the rate-dependency it is beneficial to build upon a
model that incorporates components able to capture this behavior.

This insight effectively limits the available models to the ones of Chua & Stromsmoe, Kuhnen
and the Power Law model. The Chua & Stromsmoe model is limited to capturing hysteresis with
local memory only. Even though this is computationally less expensive compared to models
based on a stronger notion of global memory, with the nowadays available computation power
in commonly used PC’s and considering the fact that during the development phase, the model
fitting procedure is to be handled offline the Chua & Stromsmoe model is ruled out as well.

The final selection between the Kuhnen and the Power-law model is more challenging. Both
models carry the same feature set although they are developed in different ways. The roots of
both models lie in the Preisach model, although the Kuhnen model has a stronger relation to
the original implementation through the work of Krasnosel’skii-Pokrovskii as well as the work
of Prandtl-Ishlinskii where the approach is based on an operator-based concept, as explained

1With the help of [47].
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in the literature section. The Power-Law model on the other hand, follows a circuit model al-
ternative representation. The decision is made to work with the Power-law model for the fol-
lowing two reasons. First, being a circuit model, it is more straightforward to analyse it through
the circuit dynamics and second, following the comparison of [5] the Power-law model is less-
sensitive to parameter changes and similarly accurate to the one of Kuhnen with considerable
lower number of parameters.

5.2.1 Black-box Power-Law

A first hint as to whether the model selection is valid, can be obtained by plugging the obtained
measurement data into the black-box Power-law model provided by [5]. Two simulations are
then performed, one for testing the model with a single cell, therefore with minimum number
of parameters, and a second one where the number of cells N is increased until no substantial
performance boosts are obtained.

Figure 5.1: Hystool 1 cell simulation response. Figure 5.2: Hystool 1 cell fitted loop

Figure 5.3: Hystool 10 cell simulation response. Figure 5.4: Hystool 10 cell fitted loop

It is immediate that out of the box the Power-Law seems to be able to capture the hysteretic
behavior of the sensor. A single cell model with 6 parameters for the estimation (w0, w1 of the
VCVSs, the IS,P of the non-linear resistor dN , the voltage bias Vb and last, the α j coefficients of
the non-linear resistor of the second sub-circuit), is able to correctly scale to the data (Fig. 5.2),
although the loop’s corner points are slightly misaligned and half of the unloading path of the
fitted model is in an offset to the original data. A second simulation is then run with a 10 cell
Power-law model. The resulting parameters are now 19 and the fitting is significantly improved
as seen in Fig. 5.4.
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Table 5.1: Hystool Simulations overview

Toolbox Parameters

Model Cells (N ) No. pars erms % emax % M S p

Power-Law 1 6 2.799 15.555 1 0.001 20

Power-Law 10 19 1.746 15.208 5 0.001 20

The Toolbox Parameters are defined in [47]. Briefly, M represents the number of PWA basis-
functions that describe the model output (current of non-linear resistor of sub-circuit (b), see
Eqn. 2.17. S and p are toolbox representation for the estimation parameters of the non-linear
functions that are optimized either through a brute-force or the fmincon algorithm [15].

The above results, provide enough confidence that the Power-law model is a good candidate for
capturing the non-linear response of 3D printed sensors. Therefore, the next task is to develop
the model from scratch in order to more thoroughly analyse it and incorporate it in a given
application.

5.3 Modified Power-Law

5.3.1 Development

An overview of the original implementation can be found under the literature section 2.1.7. In
the context of this assignment the decision was made to start as simple as possible and fur-
ther build on complexity depending on the performance. Again, starting with the simple sine
measurements, and then expanding towards more complicated excitations.

The first simplification step can be seen in Fig. 5.5 where a form of the circuit whose dynamics
are more straightforward, is described. The first striking difference is the decision to discard
the non-linear resistor of the sub-circuit (b) and represent it as a linear one. The insight for
this move stems from the fact that the sub-circuit (a) network comprises the main building
block for modeling hysteretic complexities as well as the rate-depended behavior when an odd
power function is used as part of the representation [15], where the sub-circuit (b) main func-
tionality is for the identification procedure which will also change in contrast to the original
implementation.

Figure 5.5: Modified Power-law model.

Second, following Fig. 2 of [15] where the characteristic of the non-linear resistor of the sub-
circuit (a) is represented with a strictly increasing piece-wise function, the choice is made to
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represent the resistor with a continues strictly increasing function across the whole range. Aim-
ing for shape similarity, a good candidate is then the hyperbolic sine function.

ik = f (vk ) = ISk

(
e

vk
VTk −e

−vk
VTk

)
(5.1)

Where ISk and VTk are the resistor shaping parameters (unique for each cell), e is Euler’s number
and vk is the voltage across the non-linear resistor.

Of course, the selected form is a choice, and as shown later, assuming polynomial representa-
tions will yield similar and in some cases better results.

Figure 5.6: Hyperbolic sine form of the non-linear resistor dk .

Moving on, with the modifications in place the circuit dynamics are addressed.

First the model output should be defined. Repercussions of the first simplification is that by
choosing a value of the linear resistor as R = 1, the model output can be chosen to be either the
current, as the original implementation, or the voltage across the resistor. Therefore, assuming
voltage as the model’s output, from kirchhoff’s voltage law (KVL) for sub-circuit (b) it follows:

i R = w0e +
N∑

k=1
wk uk −Vb (5.2)

Where, Vb is the voltage bias of sub-circuit (b). Similar to the original PL, the weights
w0...wk , k = [1...N ] as well as Vb are to be estimated during the identification.

The voltage uk across the capacitor for a cell can be calculated from the natural response of
the system. Starting from Kirchhoff’s current law (KCL) for the sub-circuit (a) the following first
order differential equation is obtained:

Ck
duk

d t
= ik

(5.3)

Substituting with f (vk ) from 5.1,

C u̇k = fk (vk )

u̇k = 1

C
fk (vk ) (5.4)
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Then from KVL for sub-circuit (a):

u̇k = 1

C
f (e −uk )

(5.5)

From the definitions of 5.2 and 5.5 the state-space representation of the modified model can
be formed, with u̇k the state variables.

Towards the digital implementation, for each iteration the state is computed via the Forward
Euler Integration method:

ukn+1 = ukn +
1

C
f (en −ukn )d t

(5.6)

With n the sample number.

Knowing that voltages uk are to be weighted by the estimated weights through optimization
the assumption is made to fix all C = 1. Although this simplification is trivial since the time-
constant of each cell is depended on the product dkC which eventually is shaped during pa-
rameter estimation. In the diagram of Fig. 5.7 the flow of the digital implementation of the
forward mPL model focusing on post-processing is shown.

5.3.2 Identification

With the model equations ready next step is the estimation of the remaining weights. Simi-
larly to the original PL, sub-circuit (b) includes the main parameters for the identification. This
means that the main parameters to be estimated are the weights of the VCVS’s and the volt-
age bias Vb. Additionally, the parameters VTk and ISk of the non-linear resistors of each cell
are chosen to also be included in the optimization. This effectively increases the amount of
parameters per cell but simultaneously reduces the number of cells necessary for good fit (as
shown later in Sec. 5.3.3).

For the identification MATLAB’s function fmincon from the Optimization Toolbox is em-
ployed, which is defined as a non-linear solver that finds the minimum of a constrained non-
linear multi-variable function [35]. In this case it is configured to work with an interior-point
algorithm. Briefly, an Interior-point algorithm is given the task to minimize a function f such
that

min
x

f (x), subject to h(x) = 0, g (x) ≤ 0
(5.7)

where h(x) and g (x) are the constraints, which in this case are left to their default values (inter-
nally computed). The problem can also be represented in the following form [35]

min
x,s

fµ(x, s) = min
x,s

f (x)−µ∑
i

ln(si ), subject to h(x) = 0, g (x)+ s = 0
(5.8)

The approximate problem of 5.8 represents a sequence of equality constraints instead of the
inequality of 5.7 effectively rendering the solving easier [35]. In the latter equation, the log-
arithmic summation term is the Barrier function, the si are the slack variables and they are
restricted to be positive as means to keep the barrier function positive. Moreover, the number
of the slack variables is defined by the number of the inequality constraints of g . For a more in
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Figure 5.7: Process flow of the digitized mPL algorithm. N denotes the number of cells and dim(e)
denotes the length of the input vector. Code in 9.6

depth description of the inner workings of the solver, the reader is advised to read through [35]
and references therein.

Back to the modified model, as stated, the choice can be made to include in the optimization
the parameters of the non-linear resistors of the first sub-circuit. Meaning that the parameters
ISk and VTk will be passed as estimation variables in the multi-variable problem, summing up to
a total of 3N +2 total parameters. Subsequently, optimizing the non-linear resistor parameters
the shape of its characteristic curve it is expected to change as well. The effect of this shaping
through optimization, can theoretically lead to a fewer number of required cells for a given
performance in comparison to the original PL.

For this minimization problem, a good cost function candidate that is often used is the sum-
squared error (SSE), in this case defined as

SSE =
tend∑
t=0

(
î (t )− i (ê(t ))

)2
(5.9)

where î (t ) is the measured output, and i (ê(t )) the model output for the input ê(t ).
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5.3.3 Fitting

The last step is to insert the measured input data in to the model, and plot the modelled against
the measured output. First of all the two obtained datasets (input-output) for the sine excita-
tion are then used. Both datasets, one used for fitting and one for the compensation/validation
to come, are normalized as follows:

en = en

max |e| with n = [1 · · ·dim(e)]

im = im

max |i | with m = [1 · · ·dim(i )] (5.10)

The initial conditions can be found under table 5.2.

Then using the initial weights the optimization is subjected to a single constraint b = 102 that
defines the maximum of the sum of the optimized weights.

Figure 5.8: High level flow chart of the fmincon based parameter identification.

Finally, the input data is applied to a single cell (N = 1) modified PL (mPL) model given the
optimized weights and parameters.
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Figure 5.9: Model output for initial conditions. Figure 5.10: Model output with fitted weights.

Figure 5.11: Non-linear resistor shape after optimization.

The modified PL seems to be able to capture the non-linear response of the sensor even after
the proposed simplifications. Table 5.2 describes the weights pre and post optimization and
table 5.3 summarizes the single cell mPL performance.

Table 5.2: Estimation Parameters

Parameter Initial condition Fitted weights

IS 0.1 1.72e-07

VT 0.2 0.0307

w0 [1,0.4] [0.1972, 0.1975]

Vb -0.6 -0.6775

Table 5.3: Single cell PL vs mPL performance.

Model Cells No. pars erms % emax %

PL 1 6 2.279 15.555

mPL 1 5 1.369 11.867

The errors described in the above tables are defined as follows for a direct comparison to the
black-box model with the errors provided by the Hystool Toolbox.

erms(ψ,ψ̂) = 100

√√√√ 1

N

N∑
i=1

(ψ(i )− ˆψ(i ))2

emax(ψ,ψ̂) = 100(max |ψ(i )− ˆψ(i )|)
(5.11)
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Moving on, for fitting performance evaluations the coefficient of determination R2 is chosen,
which, in contrast to the RMSE that indicates the absolute2 fit of the model, it is a relative
indicator of the goodness of the fit in a scale of [0,1] with 1 indicating that the model can predict
all the variability of the response data.

From table 5.3 it can be observed that the mPL model performs better than the original PL
model with the same number of cells and for one parameter less for estimation. This result
may stem partly from the optimization of the non-linear resistor and the continuous hyperbolic
sine function representation. Although, this effect may be emphasized towards higher number
of cells since the PL model optimizes the VT and IS non-linear resistor threshold through an
exhaustive search once and then the same thresholds are applied to all the cells with the volt-
age threshold kVT linearly increasing with the cell number N = (1...k), whereas in the mPL the
VTk and ISk shaping parameters are optimized for each cell individually. Meaning, that for a
single cell, the non-linear resistors of both models can be considered optimized. Additionally,
the optimization tolerances for the fmincon were set considerably high while testing without
affecting computation time significantly (a local minimum is always found within similar exe-
cution times). Since there is no reference as to the configuration of the exhaustive search used
by the original model, it is not possible to have a one-to-one comparison of the model itself.

Although the results seem promising, and the mPL model developed is capable of capturing
the strain-gauge response, there are a few concerns towards the decision to represent the non-
linear resistor as a hyperbolic sine. More specifically, since the function f (vk ) is unbounded,
it can be deducted from Fig. 5.11 by looking at first and third quadrant that towards the
max |uk | values, the current |ik | starts growing/decreasing in much higher rate than the voltage
uk leading to a steep resistance decrease/increase. While the resistance decreases/increases
unbounded so does the time-constant of the circuit, leading to an over-reacting or very slow
system that eventually becomes unstable.

To address this issue, in section 5 a stability analysis is described which provides a constraint
that avoids the steep resistance decrease, effectively extending the values where the non-linear
function does not cause instability. This analysis is also part of the work of [9] where a polyno-
mial representation of non-linear resistor dk is assumed.

5.3.4 Compensation

The final step is the validation of the model by using its inverse as a means to compensate for
the non-linear response. Due to the system being non-linear, common techniques such as an
impulse response as means to obtain insight on the systems behavior towards all possible exci-
tations is not adequate. In fact, there is not a single excitation able to provide an insight that can
be generalized, it would take an infinite set of measurements corresponding to all excitation to
establish the validity of a non-linear model [2]. Therefore, the non-linear compensator’s per-
formance shall be validated given certain signals as means to obtain an understanding towards
each individual excitation. In spite the fact that a generalized conclusion for the compensator
can not be derived, the behavior of the system given common excitations can be tested which
should provide a degree of confidence for the use-cases when these excitations are used. This
step is done differently for the first attempt towards the sine excitation than towards the various
other excitations.

First, the initial work focusing on the sine excitation is discussed.

2RMSE can be thought of as a measure of how spread the residuals ((ψ(i )− ˆψ(i ))) are and how much data con-
gestion is present along the fitting path.
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Figure 5.12: Flow chart revealing the process order within the compensator algorithm. Code in 9.6

From equations 5.5 and 5.2 the following state space is formed:

u̇k = 1

C
fk (e −uk )

i R = w0e +
N∑

k=1
wk uk −Vb

(5.12)

Solving for e by simply rewriting this equation such that

ê = i R

w0
−

N∑
j=1

w j

w0
u j + Vb

w0
(5.13)

And substitute that to the state

u̇k = 1

C
fk

(
i R

w0
−

N∑
j=1

w j

w0
u j + Vb

w0
−uk

)
(5.14)

For the digital implementation of the compensator it is crucial to reverse the order of the com-
pensator, meaning that first the VCVSs of sub-circuit (b) need to be derived and then the es-
timated input ê (compensator output) can be computed from KVL. Fig. 5.12 reveals the order
inversion of the processes, wherey is the filtered differential sensor response. The weights used
are the optimized ones from the identification section, as seen in table 5.2.

An important effect of the compensation is the impact on the system’s causality. During initial-
ization an array of zeroes needs to be defined with the initial state set to zero. This is okay as
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long as the system initial state is defined at the origin but extra care is needed when different
initial states are present, such as an initial process that synchronizes the sensor and compen-
sator state. This is more crucial if the inverse model is adapted in a real-time computation
scheme where the causality issue results in a delay.

With the model set, the second set of data obtained from the measurements is to be used. Here
the input data to the compensator is the normalized sensor response and the compensator
returns the normalized predicted position ê. The compensator output is then plotted against
the measured position e. The results are shown in the following figure.

Figure 5.13: Applied compensator prediction vs measured position.

Clearly, it can be seen that the hysteretic behavior is significantly reduced. The predicted posi-
tion ê shows a greatly improved match with the SMAC control signal. The plotted results (Fig.
5.13 (top)) have the normalization removed for a better comparison with Fig. 5.10. As a mea-
sure of how much the hysteretic response of the sensor is reduced the normalized loop area for
all the important signals is calculated using equation 5.15 and the results are summarized in
table 5.4.

Â = 1

n

∫ x̂t=n·T

x̂t=0

ŷ ·d x̂

with:

x̂ = x −min(x)

max(x)−min(x)

ŷ = y −min(y)

max(y)−min(y)

(5.15)

The strong loop reduction is then further validated, although from the Noise to Distortion ratio
it can be seen that the signal non-linearity is not affected. The latter is to be expected as the
compensator signal is the inverse of the model that is fitted to predict the behavior of the sensor
non-linear response.

In terms of the sine excitation experiments, the only thing left is to incorporate the compen-
sator in a control task and analyze the results and practical effects of the model.
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Table 5.4: SINAD & Area.

Signal SINAD (dB) Â (%)

SMAC encoder signal 32.2 0

R1 4.9 -10

R2 5.7 15

R1 −R2 18.4 -18

Fit 23.6 -20

Compensated 20.6 0.8

The discussion towards the more complicated signals follows, as introduced in section 4.2.2.

5.3.5 Equilibrium stability

The work towards stability analysis, fitting and compensation for various excitations is dis-
cussed in [9] and briefly described in this report by focusing on the sections of [9] that emerged
from co-effort of the authors.

Issue

Before describing the various excitations, the instability issue needs to be addressed. From trial
and error simulation towards generating a compensator for signals such as the decaying signal
or a frequency sweep, it has been observed that a compensator output is not guaranteed. In
these cases the computation starts from the zero state, as the initial step guarantees, although
the estimated weights shape the non-linear resistor such that the RC time goes from too low to
too fast and eventually, after a few iterations, the compensator state uk output is out of bounds.

Therefore, it is crucial to obtain a criterion that refrains too steep shaping. In order to improve
the fitting performance, in [9] the non-linear resistor of sub-circuit (b) that was initially re-
moved towards the mPL simplification process, is used again. Then, in the new mPL model,
both non-linear resistive elements are assumed to be representable with the following polyno-
mial function:

f (x) = f0 + f1x + f 2
2 x2 + f 3

3 x3 (5.16)

By using a non-linear resistor in the second sub-circuit the output of the model is then defined
as the current i across the resistor. The non-linear state space then formed is

u̇k = fk (e −uk )

i = g

(
w0e +

N∑
k=1

wk uk −Vb

)
(5.17)

Direct compensator fitting

Schouten in [9] works around the idea of fitting the compensator model directly to the mea-
sured data, instead of predicting the sensor behavior with a model and then inverting it to
compensate. This is a more straightforward approach towards a direct application, although it
should be noted that the fitted model no longer represents the sensor non-linearity.

Analysis

Before any kind of insight towards the stability of the system can be obtained, it should be lin-
earized around an equilibrium point. Suppose uk0 and e0 are the state and system input at rest.
Then, from the Taylor expansion and by neglecting the higher-order terms, and assuming that
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in close proximity to the equilibrium uk0 the dynamics of the system are sufficiently described
by the first-order terms, the linearized system is described with the following equation:

u̇k = fk,0 + f ′
k,0e − f ′

k,0uk

i = g0 + g ′
0w0e + g ′

0

N∑
k=1

wk uk − g ′
0Vb

(5.18)

Where:

fk,0 = fk (uk,0 −e0)

f ′
k,0 = f ′

k (uk,0 −e0)

g0 = g

(
w0e0 +

N∑
k=1

wk uk,0 −Vb

)

g ′
0 = g ′

(
w0e0 +

N∑
k=1

wk uk,0 −Vb

) (5.19)

From the state of 5.18 and for N cells it follows:

˙̂u =


˙̂u1

˙̂u2
...
˙̂uN

=


− f ′

1,0 0 . . . 0

0 − f ′
2,0 . . . 0

...
...

. . . 0

0 0 − f ′
N ,0


︸ ︷︷ ︸

Â


û1

û2
...

ûN

+


f ′

1,0

f ′
2,0
...

f ′
N ,0


︸ ︷︷ ︸

B̂

e +


f1,0

f2,0
...

fN ,0


︸ ︷︷ ︸

o

(5.20)

And state space output

i = g ′
0

[
w1 w2 . . . wN

]
︸ ︷︷ ︸

Ĉ


û1

û2
...

ûN

+ g ′
0w0︸ ︷︷ ︸
D

e − g ′
0Vb + g0︸ ︷︷ ︸

f

(5.21)

Looking at 5.20 and 5.21 it can be seen that the linear state is not in the standard u̇ = Au +Be
form due to the extra o and f terms. The state vector can be augmented to effectively absorb the
extra terms into the state and output matrices, such that the extra terms can be incorporated
into the state and output matrix:

u̇ =
[

u1 u2 . . . uN 1
]T

(5.22)
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Finally, for the standard form:

u̇ =



− f ′
1,0 0 . . . 0 f1,0

0 − f ′
2,0 . . . 0 f2,0

...
...

. . .
...

0 0 − f ′
N ,0 fN ,0

0 0 0 0


︸ ︷︷ ︸

A

u +



f ′
1,0

f ′
2,0
...

f ′
N ,0

0


︸ ︷︷ ︸

B

e

i =
[

g ′
0w1 g ′

0w2 . . . g ′
0wN −g ′

0Vb + g0

]
︸ ︷︷ ︸

C

u + g ′
0w0︸ ︷︷ ︸
D

e

(5.23)

With the standard state space linear form obtained, the stability around the equilibrium can
easily be checked by looking for the eigenvalues of matrix A. For the continues form, the system
is said to be asymptotically stable if λ ≤ 0. Towards the digital implementation, the system
discretized form is

u(k +1) = Adu(k)+Bde(k)

i =Cdu(k)+Dde(k)
(5.24)

Where index d stands for the discretized version. Finally, to obtain the stability criterion for the
discretized system, the eigenvalues λk must lie within the unit circle. The eigenvalues can be
obtained by satisfying

det(Ad −λk I ) (5.25)

From 5.25 it is found that the eigenvalues are located at

λk =



0

(1− f ′
1,0)∆t

(1− f ′
2,0)∆t
...

(1− f ′
k,0)∆t


(5.26)

By adding a constrain to f such that the unit circle perimeter is never reached it follows:

|(1− f ′
k,0)∆t | < 1 (5.27)

Solving the inequality yields

−1 < (1− f ′
k,0)∆t < 1

−2 < (− f ′
k,0)∆t < 0

−2

∆t
≤− f ′

k,0 < 0

0 < f ′
k,0 <

2

∆t

(5.28)
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Finally, from 5.28 it can be deduced that asymptotic stability for the discrete system requires fk

to be limited in the following way

fk,lim =


fk (x+)+ 2

∆t (x −x+) for x > x+

fk (x) for x− > x > x+
fk (x−)+ 2

∆t (x −x+) for x < x−
(5.29)

with x− and x+ the minimum and maximum values of the set of solutions of the equation
f ′(x) = 2

∆t .

This criterion is enough to always generate a compensator by keeping the system responsive
and avoiding too steep decrease of the RC time. Although, towards a stronger notion for global
stability of a non-linear system, checking for Lyapunov stability is necessary.

The claim of [9] towards equation 5.29 is that when fk (x) for x− > x > x+ then the system can
become unstable, although such instability will eventually drive the system either towards x >
x+ or x < x− where the criterion is active and the system will effectively stabilize.

5.3.6 Various excitations

Since a direct compensation method is followed, the inverse/backward model does not need to
be derived. Again from the two data sets, the first is used to train the compensator and optimize
the weights.

The optimization towards this method is done with the patternsearch algorithm of the
MATLAB Optimization Toolbox [35], and a single cell (N = 1) model is used for all excitations.

Then the trained model is applied to the second set.

Figure 5.14: Direct compensation fit (orange) over linear fit (faded blue).

In contrast to the mPL of the sine excitation, due to the second non-linear resistor of the sub-
circuit (b) the single cell model results with 11 parameters to be estimated instead of 5. The
linear fit shown in Fig. 5.14 is obtained with the polyfit function of MATLAB which utilizes
a least-square estimation algorithm. This fit is used as a comparison measure to the compen-
sator output.

Last, the coefficient of determination R2 is used as performance criterion and is shown in table.
5.5.
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Table 5.5: Ordinary coefficients of determination.

Model (mPL) Linear fit (polyfit)

Sine 0.990 0.928

Chirp 0.984 0.945

Decay 0.987 0.710

Noise 0.958 0.882

Compensation for all these signals has been applied using both an unconstrained polynomial
fk (eqn. 5.16) and the limited fk (eqn. 5.29) obtained through the stability criterion. In this
case the limited fk prove to be essential towards fitting of the chirp.

For further details towards initial fitting conditions and optimized weights see [9].

5.4 Conclusion

The Power-law model has been tested (HysTool toolbox) and then developed from scratch by
simplifying its structure in terms of discarding (in the sine-wave excitation case) the second
non-linear resistor as well as assuming a continues representation based on a hyperbolic sine
function. The modified model is analysed, digitally implemented and an identification proce-
dure is followed by means of the Optimization Toolbox of MATLAB and the sum-square error
between the real and model output as the minimizing function.

The fit proves sufficiently close to processed measured data. Additionally, the work towards
various excitation is briefly described and the relevant modifications are discussed, further val-
idating the model’s capability of capturing the hysteretic nature of the sensor response.

Towards derivation of the so-called compensator, the inverse model is described as well as the
alternative concept of fitting the forward model to the inverted training data. In the simple case
of sine-wave excitation, a direct inversion of the model as described in section 5.3.4 proves suf-
ficient, although, in more complicated excitation the compensator tends to become unstable.

A stability criterion is then developed and described for the alternative model where polyno-
mial representations for the non-linear resistors is assumed. The criterion applies a limit to the
polynomial function from which the resistor response is linearized, avoiding the steep decrease
of the RC time. The criterion guarantees that, even over longer time, the state of the cell (u̇k )
will eventually be stable. When applied to the alternative PL, the model strongly linearizes the
response of a decaying sine-wave, a frequency sweep and a pure Gaussian noise signal.

Overall, with the proposed modifications, the Power-Law model proves to effectively model
and (partially) compensate for the hysteretic non-linearity observed in 3D printed sensors
when plotted against the reference signal. As far as the creep modelling goes, further exper-
iments with longer excitations times are required as means to validate whether the modified
model is still capable. And if it is, additional analysis on the specific components affecting the
creep capturing behavior is crucial.

It is also clear that the compensator output is not a perfectly linearized response. Therefore,
the conclusion on whether applying the inverse model directly after the sensor is sufficient for
a compensation in a control scheme, or if the modelling errors are detrimental for the closed-
loop performance, is still to be evaluated.
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6 FEM Based Feedback

6.1 Introduction

The set final goal of the current work is to apply the proposed non-linearity compensation
scheme in a real experimental setup. The simplest case to obtain insightful results towards a
hardware implementation, is to use the closed-loop already present for gathering the exper-
imental data, but this time using the 3D printed sensor as feedback medium instead of the
incremental encoder of the SMAC actuator.

Unfortunately, due to unexpected global circumstances at the time of implementation (Covid-
19) and the applied restrictions, access to the laboratory facilities has been restricted. Leading to
goal shaping and adjustments such that the work can be continued in a digital manner.

Following the aforementioned circumstances, the decision was made to perform a digital ex-
periment by utilizing the already obtained data as much as possible. The goal is then extended
such that the additional step of Finite-Element Analysis (FEA) is introduced as a medium to
simulate the sensor behavior digitally.

6.2 Strategy

6.2.1 Goal

The idea behind FEM sensor substitution is that a co-simulation strategy between the control-
plant (modeled) in MATLAB and the sensor finite element model (FEA software such as Ansys,
Comsol etc.) will provide an approximate non-linear response. Then the compensation via
the derived compensator will take place in MATLAB. Fig. 6.1 provides an overview of this idea
where Ansys is used as the FEA tool for (1) training the modified PL model (Fig. 6.1(a) in Matlab
using the FEA output) and (2) act as sensor simulation tool (Fig. 6.1(b)) in order to generate the
approximate ‘real’ sensor response during simulation.

Figure 6.1: Ansys in a loop concept scheme. (a) overview of data gathering setup in digital form, (b)
in-loop Ansys simulated response.
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6.2.2 Requirements

Of course there are numerous implementation challenges towards the realization of the above
schemes. First and foremost, an Ansys version of the sensors is required. Assuming that a
successful description of the sensor is present within Ansys, then the next technical challenge
is to establish a real-time co-simulation connection between MATLAB and Ansys.

Towards the first challenge, in Ansys a model of the sensors requires:

• 3D CAD model.

• Material mechanical properties.

• Material electrical properties (in case of an eletrical domain analysis).

The 3D model is required for the fabrication of the sensor and therefore is available. The ma-
terial properties to characterize the sensor such as the proper response are computed from the
finite-element engine. Meaning, that the less accurate the material data are, the less realistic
the response will be. On the other hand, while setting-up a proof of concept initial scheme,
a perfectly accurate model is not the goal. The important objective is for Ansys to generate a
model that can mimic the response of the measured data in a satisfactory manner. Then, the
response of this model shall be used as means to generate new data to fit the modified PL onto
and derive the appropriate compensator.

The reasoning behind developing yet another model (Ansys based) lies in the fact that the fit-
ting process (subsequently the compensator) comes with certain errors. Therefore, it is impor-
tant for a more realistic simulation to not use the exact same model for generating the sensor
behavior and for compensating for it, since this will result in an identity that produces unre-
alistic ideal results. Furthermore, successfully generating an Ansys description of the sensor,
can help systemize the characterization of said sensor via FEA (such that the same procedure
may be applied to more materials) and provide additional insight on the mechanical behav-
ior. Worth noting is the fact that current FEA solutions do not support layered structures as
produced by additive manufacturing with plastics, but consider most solids as isotropic. This
fact alone, limits the accuracy of the response even if a perfectly described material with a well
configured solution is assumed.

6.2.3 Material Model Options

The main challenge in this phase, is to describe the non-linear response of the given material
(eTPU) within Ansys. From the pre-defined materials within the Ansys libraries, the following
options are available:

• Linear models

• Non-linear models

• Non-linear models (specialized)

The linear models naturally do not suit the given case. However, a number of non-linear ma-
terial descriptions are included (e.g. hyperelastic models), which add a layer of complexity in
terms of curve fitting or knowing the material constants beforehand and additional solution
configuration. Further inspection of the Ansys libraries, reveals that the a proper candidate
viscoelastic model capable of exhibiting rate-depended hysteretic behavior, is the so-called
Bergstrom-Boyce model (BB) which is under the category of specialized hyperelastic mod-
els (no curve fitting support). Additional sources (explained later in 6.2.4) provide more op-
tions towards modelling viscoplastic polymers such as the Three-Network Viscoplastic model
(TNV) [8].
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6.2.4 External model calibration

For training several non-linear material models, the MCalibration package from PolymerFEM
software suite is used. There are several ways to train-calibrate a material model with the MCal-
ibration. All of the options can be described in two categories:

• Pre-set Cases.

The software provides the option to use common pre-defined load-cases which becomes
useful when data from specific well defined experiments are available, such as stress-
strain data, creep data, stress relaxation data, friction tests, fatigue tests, Poisson’s ratio,
E-modulus, to name a few. In [48] a systematic procedure on obtaining the proper exper-
imental data for the case of a BB model is described.

• Custom load-cases.

Configuring a custom load-case requires an external solver (such as the one from Ansys)
for solving an inverse problem. Includes generic cases with Force-Displacement data.

6.2.5 Adaptation

Measured quantity issue

The problem that arises at this point, is related to the fact described under chapter 3 where the
obtained data are analysed. The current measurement data do not fit any of the pre-defined
categories (displacement-voltage measurements).

Assumption

Immediate deduction is that the measurements are not compatible neither meant to be used
with the material models such as BB or TNV. Of course, that was known and explained in sec-
tion 3. Nonetheless, following the decision that an accurate description of the sensor in terms
of mechanical characterization is not the focus, and additionally, following the aim to shape
the given model such that response from Ansys fits the sensor, an attempt can be made to
curve-fit either the BB or TNV model to the data. A custom load-case can be defined for a
Force-Displacement experiment where the force is replaced with the voltage measurements,
assuming of course a linear relationship between force and voltage.

A calibrated model then, given the same excitation (sine-wave displacement), is expected to
generate a Force-Displacement (at a node) output similar to the original Voltage-Displacement
measurement. The new simulated results will then be used to derive a new compensator in
MATLAB.

6.3 Non-linear material models

Towards the two non-linear models, BB and TNV, following is a brief introduction to said mod-
els. Since, as can be seen later, the implementation of the models only requires the use of
experimental data during the calibration phase, an analytical description of the derivation of
these models is not given, instead a descriptive overview can be found in [8].

6.3.1 Bergstrom-Boyce (BB)

The BB is an advanced model for predicting the large-strain, time-dependent behavior of elas-
tomer like materials [8]. Its rheological representation consists of two spring and a damper
configuration in parallel as shown in Fig. 6.2.

For the fabricated sensor, as explained in chapter 3, two polymers are used. A common TPU for
the sensor body and a conductive variant of a TPU polymer for the strain gauges. From com-
parison of the BB model parameters (PolyUMod manual (MCalibration) [8]) and the material
properties of the used TPU [39] it is concluded that several parameters are unknown/unavail-
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Figure 6.2: Rheological representation of the Bergstrom-Boyce model [8].

able towards an initial estimate of the BB model. Fortunately, there is another solution towards
obtaining the remaining properties which relies on the curve-fitting solution using experimen-
tal data.

The BB model is the best candidate model available within the Ansys library, although is not
specifically designed to model thermoplastics but focused towards rubber material. It can be
used for modeling said thermoplastics but the yield evolution will not be properly captured
[49].

6.3.2 Three-Network Viscoplastic (TNV)

Looking at third party packages that are able to generate Ansys compatible material models
(details in sub-section 6.3.3), the TNV model is the suggested solution towards modelling ther-
moplastic materials.

The TNV model is presented as a general purpose viscoplastic model capable of capturing the
experimentally observed behaviors of thermoplastic materials. These behaviors include time-
dependence, pressure-dependence of plastic flow, pressure dependent bulk modulus, volu-
metric plastic flow, damage accumulation, and triaxiality dependent failure [8].

Briefly, the model consists of three parallel networks (see Fig. 6.3). Each network can be
thought of as the combination of a non-linear spring in series with a non-linear damper. The
TNV model requires a considerable larger number of parameters. Some of the features can be
deactivated by purposely setting certain parameters to a zero value. For the parameters related
to the activated features, an iterative identification process for estimation is used given a set of
experimental data.

6.3.3 MCalibration

The BB and especially the TNV model comes with increased complexity. Additionally, since the
curve-fitting feature is not supported for the Ansys implementation of BB model, as far as Ansys
is concerned the material parameters need to be provided. Fortunately, the author of the BB
model offers an external package called PolymerFEM that includes the tool MCalibration used
to auto-calibrate a wide variety of non-linear models, including the BB and TNV, given a set
of experimentally obtained measurement data, as explained in section 6.2.4. Given the mea-
sured quantity issue, the only viable option is the route of custom-load case where an inverse
calibration takes place.

Calibration process overview

The steps required for a calibration cycle are:

• A complete solution configuration in Ansys given a default (linear) material.
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Figure 6.3: The TNV material model framework that consists of three parallel networks [8].

Figure 6.4: Model calibration scheme via MCalibration.

At this state, it is most convenient to work with the user interface of Ansys (Ansys Me-
chanical) for a more intuitive setup of the simulation.

• Generation of the Input-file carrying the complete configuration in APDL commands.

Once the solution is ready, the entire configuration can be exported in auto-generated
scripting commands.

• Input-file modification such that the desired property (Force,stress etc) is extracted from
a certain node and written to a given location.

The most crucial step in the current implementation is the extraction of the proper pa-
rameter. This requires user intervention in the input-file. First, the default material is re-
placed with a link to an external file that is iteratively modified by MCalibration. Second,
an algorithm must be set during the post-processor phase of the simulation responsible
for extracting the desired Force, stress or strain from a specific node at each simulation
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sub-step. The extracted values should then be stored for reading from the MCalibration
package.

• MCalibration material selection and optimization approach configuration.

The chosen material models in this case are the BB and/or TNV. To start with less cpu
load, the minimum amount of necessary parameters is used for the optimization. There
are several algorithm options available to choose for the optimization approach, such
as Random Search, Levenberg-Marquardt, Quasi-Newton, Global Optimum Search and
others.

• A batch file (Windows) that guides MCalibration to the Ansys solver, initialize the batch
mode operation of Ansys core (APDL) and executes the modified input-file.

At this phase an iterative process starts that involves the optimization of the set material
in MCalibration before passing at each iteration the current parameters in the input-file.

At this state, the configuration required for Ansys to simulate the sensor, given the part ge-
ometry and a proper material model, is layed-out. As a last step before proceeding into an
implementation attempt, the communication between the two environments (Matlab-Ansys)
should be established. This process is described in appendix section 9.9.

6.4 Initial FEM solution

A basic FEA solution with a default linear material is the first implementation step. The analysis
is based on a simple beam loading configuration as shown in Fig. 6.5. From [39] the material
properties of TPU are used to generate the default material (linear). The simulation is set for
load-unload cyclic excitation via a sinusoidal signal at 0.5 Hz.

Figure 6.5: Beam loading at SMAC stroke point.

The specific details of the analysis and solutions settings are provided in the Appendix 9.9.

Figure 6.6: Initial FEA simulation. Displacement load (left), Reaction force (center) and equivalent stress
(right).
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Figure 6.7: Ansys simulation with linear material model for one cycle of loading-unloading. Probed
Force represenets the reaction force at the node where the displacement is applied.

Looking at Fig. 6.7 the effect of the linear material is clear. This is the expected behavior. The
entire configuration can now be exported in an Input-file to be used with Ansys APDL and
MCalibration software.

6.5 Model calibration

Second phase of the strategy is the calibration of the non-linear BB or TNV model using the
MCalibration software. With the Input-file ready, the two crucial user interventions are (1) to
replace the material definitions within the Input-file with pointers to tuning materials from
MCalibration and (2) implementing a data extraction and storing algorithm during the post-
processor phase of the FEA solver. The flow chart1 of Fig. 6.10 describes the actions for (1) and
(2).

The pipeline for the communiction between Ansys APDL and MCalibration throught the batch
file that calls the modified Input-file is successfully working and an iterative optimization is
possible.

The processed data consist of one loading-unloading cycle as shown in Fig. 6.8 and 6.9.

Figure 6.8: Model output for initial conditions. Figure 6.9: Model output with fitted weights.

Unfortunately, a good fitness performance was impossible to obtain.

There are several possible reasons behind the fit failure. Based on the failed results these may
be:

• Poor initial conditions for the optimization problem.

1Code based on example provided in the tool documentation.
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• Returning force prediction from the FEA inverse solution too low in magnitude.

• Data extraction algorithm implementation is prone to errors.

• Voltage output of the experimental sensor may be a bad indicator of loading force.

Figure 6.10: Input file required modification for material tuning through MCalibration. Orange area
represents the points of user intervention. Actual code can be found in Appendix sec. 9.6.

Troubleshooting the given scenario has a high complexity due to the measured quantity issue
leading to the lost meaning of the parameters which effectively limits the effectiveness of the
initial guess through intuition. Additionally, towards the TNV model, the latter is magnified
because of the large number of estimation parameters.

6.6 Conclusion

Overall, it is concluded that in order to obtain a non-linear material description in Ansys either
the material constants need to be defined beforehand, or curve fitting process (Ansys native or
not) should take place as means to obtain the parameters.

Given the gray area of the entire FEM-based sensor scenario (Fig. 6.4) is the fact that the appro-
priate data are not present. And additionally, the limitation towards a dual-simulation, where
Matlab can only provide inputs for FEM once and wait until the results are generated (cus-
tom implementation), instead of a true co-simulation where Matlab has access to the running
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FEA solver substeps (official toolbox) [further explanation in appendix 9.9], there is not enough
confidence to continue in the path of this strategy.

Although, the overall description of the process towards calibrating a non-linear model (e.g
BB or TNV) is believed to be sound when provided with the appropriate experimental data
(such as stress-strain, or any data that would fit the pre-set load-cases, see sec. 6.2.4). Then
the generated models should exhibit the mechanical domain non-linearities observed in the
sensor, and could be used for a FEM analysis with higher confidence.
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7 Control Strategies

7.1 Introduction

From chapter 6 it is clear that, given the lack of sufficient data, the FEA strategy based scheme of
Fig. 6.1 cannot be applied. Nevertheless, following the work of [9] where several modifications
of the PL model are presented, there is the possibility to implement the entire simulation within
the MATLAB Simulink environment by employing one of the models as the approximation of
the real sensor. That is, the complexity from the non-linear material model calibration as well
as the dual-simulation scheme is discarded in favor of obtaining insight in the control scheme,
omitting any characterization towards the mechanical properties of the actual sensor.

The discussions and insights from the following strategies are based on analysis from the per-
spective of the simulation results only. Subsequently, the goal of the proposed schemes is to
provide an overview of possible approaches towards compensation. Based on the simulations,
insight on the compensation performance and limitations is drawn in the absence of a thor-
ough stability analysis.

7.2 Feedback Position Control with Output Estimator Compensation

The idea behind the only-MATLAB approach is similar to the one presented in Fig. 6.1 but the
Ansys modelled sensor is replaced with one of the models developed in [9]. As explained in
chapter 4 in that work four different experiments were carried out, one for each excitation
(sine,decaying sine, sine frequency sweep and random signal (noise)). From the results of these
four excitations, it can be deducted that the noise-trained model is the best candidate to rep-
resent the real sensor due to the wider range of frequencies and amplitudes included in the
excitation. Therefore, from here on, the noise excited response will be used to model the real
sensor in the loop, instead of the Ansys generated response.

Analysis

Figure 7.1: Feedback loop with direct application of the compensator.

Fig. 7.1 describes the feedback loop where the estimated position ŷ is used to calculate the
driving error e(t ) = r (t )− ŷ(t ) fed into the controller CPID. The plant Pm here represents the
SMAC stroke which can be modelled by a simple moving-mass system since the friction off the
bearings and the stiffness of the sensor are expected to be much smaller than the force needed
to accelerate the mass. Therefore

Pm = 1

mstroke · s2 , with mstroke = 0.250[Kg] (7.1)

Sr stands for the real sensor representation, in this case modelled as the mPL noise version
model with output equation 5.17 using the estimated weights that fit the original measure-
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ments from the lab experiments (Fig. 7.2). Scomp
m represents the derived compensator from the

first modification of the original PL model where a hyperbolic function is used to describe the
non-linear resistor for sub-circuit (a) (see ch. 5). Additionally, for a better fit, the Scomp

m model is
extended with a second non-linear resistor at the output, represented by a 3rd order polynomial
of the form described by 5.16.

Figure 7.2: Noise excitation experimental data used for training the real sensor representation. Coeffi-
cient of determination R2 = 0.9793. PP: polynomial representations for both non-linear resistors of the
circuit [9].

To gather data for the parameter estimation a simulation is run where the loop is closed with
plant output y . The logged time t , reference r and sensor response s are used to directly derive
the compensator with s input and ŷ output. Here, Sr is excited with a sine-wave of frequency
f =0.5 Hz and amplitude A =3 mm. Figs. 7.3a and 7.3b show the measured response as well as
the inverted data and fit.

(a) Noise fitted mPL response to sine excita-
tion.

(b) Inverted simulation data & fit with fitness
measure R2 = 0.995.

Figure 7.3: mPL compensator training towards simulation.

The controller CPID, is a discrete in-series PID controller as seen in Eqn. 7.2, with time-step
ts = 5.04 ·10−4 derived from the filtered measurement data.

CPID = Kp ·
(
1+ 1

Ti
· Ts

z −1
+·Td ·

z −1

Tsz

)
(7.2)

Towards tuning, the process followed is next explained. First a controller is tuned for the linear
closed-loop system HL =CPIDPm/(1+CPIDPm) with [50] in the frequency domain and a target
cross-over fc =20 Hz. Then, concerning the complete non-linear system, starting with the de-
rived C as a basis, than plan is to follow an iterative process where, based on the response of the
system, first the proportional gain is adjusted either to reduce overshoot by reducing the gain
or make the system faster by adding gain. The integral time is adjusted with the aim to elimi-
nate the residual steady-state error. The derivative time is then modified as means to improve

Dimitrios Kosmas University of Twente



CHAPTER 7. CONTROL STRATEGIES 65

the system settling time. It should be noted that starting with a controller tuned for the linear
system is expected to yield sub-optimal results. In the current scenario, under the assumption
that the compensator is compensating for the majority of the non-linearities (following the re-
sults of ch. 5), in case only weak non-linearities remain the system, the controller is expected
to still be operational at relatively low bandwidths. Initiating the tuning process, it is found that
the controller tuned for the linear system, sufficiently operates. Therefore there is no need to
enter the phase of iterative tuning based on the system response.

The tuned paramaters are Kp = 545 the proportional gain, Ti =0.029 s the integration time,
derivative time Td =0.0573 s and Ts = ts.

The open-loop system with output y is described with a bandwidth of fc =20 Hz (Fig. 7.4).

Figure 7.4: Bode magnitude plot of the linearized system at t = 0.

The reference signal is initially set to be identical to the excitation used towards obtaining the
compensator, therefore:

r (t ) = 0.003 · sin(πt ) (7.3)

s describes the sensor response, which is the compensator Scomp
m input.

The transfer from r to y is then described with (assuming Scomp
m perfectly linearizes Sr)

Hy/r = PmC

1+PmC Scomp
m Sr

(7.4)

In this scenario, the ideal situation would be when the model perfectly fits the real sensor data
and no errors are produced during fitting or by inverting the model. In such an ideal case then

ŷ = (Scomp
m (Sr︸ ︷︷ ︸

≈I

))y
(7.5)
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Here the importance of an accurate model becomes clear: since the more the pair Scomp
m Sr

strays away from I the worse the plant position estimation is.

The scheme has been implemented in MATLAB Simulink for simulation. It should be noted,
that the entire model is re-implemented in Simulink enviroment from scratch, meaning that
it is not as thorough tested as the previous derived models. Nonetheless, the response of the
Simulink model has been evaluated with the Matlab models and found to be identical in the
given scenario. The results of 5 periods are then shown in Fig. 7.5.

Figure 7.5: Feedback loop with direct application of the compensator. From the top (1) Reference po-
sition, Plant positon and Estimated plant position respectively. (2) sensor response, (3) Track error fed
into the controller (estimated position from compensator), and (4) Plant error.

Plant error performance:

epmax
= 6.94 ·10−4

epmean
=−1.543 ·10−4 (7.6)

The effect of the fitting errors on the real plant position is clear. The tracking error shows a good
performance with a average error of 3.93 ·10−7. This means that the controller does a good job
minimizing e = r − ŷ . On the other hand, it can be seen that even with a very good fit, the plant
output still deviates enough to produce a higher average error1 (epmean

) and this effect is also
visible in the position tracking of Fig. 7.5 (top).

Because the non-linearity is not entirely eliminated, there exists a counter-effect when control-
ling the modelled compensator’s output that affects the position of the plant.

Although the scheme shows to adequately follow the reference, the errors of 7.6 reveal a per-
formance that in certain cases may be considered poor in terms of accuracy. Especially given

1The minus sign of the mean error is more conveniently understood by visualizing the loop crossing that remains
from the un-compensated non-linearities.
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Figure 7.6: Plant position versus excitation on three different frequencies.

Figure 7.7: Plant position versus excitation on two different amplitudes.

the ideal configuration of the simulation (linear plant, no disturbances, low-frequent excita-
tion). Although, applications that require very low error performance in combination with fast
tracking would benefit more from the linear response of traditional sensors.

Towards further testing of the scheme’s performance the excitation is modified by lowering and
increasing the frequency.

Fig. 7.6 reveals the performance of the plant’s output in three different frequencies. It is im-
mediately clear that a change on the trained frequency affects the performance of the system
significantly. Decreasing the frequency has a slightly less impact than increasing, although in
both cases the position is outside of any acceptable error for most applications.

A similar observation is seen when exciting the plant at a fixed frequency (0.5 Hz) and varying
amplitude. Notably, increasing the amplitude (A > Atrain) has a severe impact on the stability
of the system. The compensator becomes unresponsive at the first corner case (output grows
to infinity) and subsequently the controller fails to minimize the error. This is not the case for
decreasing the amplitude, although the performance is still very poor as seen in 7.7 where an
additional drift is revealed.

It is clear that the scheme of Fig. 7.1 appears to be very sensitive in any change of the periodic
excitation signal. The source of the performance decrease is the failure of the compensator
to properly invert the sensor’s non-linearity. The work of [9] towards fitting the noise excited
sensor measurements is the most likely model to perform better in this case since this model
fits a non-periodic entirely random excitation. Next, an alternative scheme is considered as
means to avoid the extra complexity added by the inverse compensator.
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7.3 Feedback Indirect-Position Control with Model-Weighted Input

Figure 7.8: Input-Weighting based on the modelled sensor response scheme.

An alternative scheme that discards the need of an inverse model (or inverse data trained for-
ward model) is illustrated in Fig. 7.8. In this case, in contrast to the direct application of the
compensator to the feedback loop, the error is not tracking position but sensor response (mod-
elled as current output i of the mPL in this case subtracted from the real measurement which
is the filtered differential measurement of the strain gauges voltage response).

Sr, Sm (forward-model) and r are the same ones used in scheme 7.1. Towards the controller,
in this case, the system is found to severely over-react given the previously tuned controller.
Therefore, entering again in the tuning phase, the most notable change is the significant re-
duction of the proportional gain as means to avoid the system’s overshooting. Subsequently
the effective open-loop bandwidth is greatly reduced.

Post-tuning, the parameters are Kp = 16.76 the proportional gain, Ti = 2.46 s the integration
time, Td = 0.4619 s the derivative time and Ts = ts the sample time.

In this case the open-loop system is described with a cross-over frequency of fc ≈5 Hz (Fig. 7.9).

Figure 7.9: Frequency response of the open-loop system with input-weigthing compensation.

The new transfer from input r to output y is then described as follows2:

Hy/r = PmCPIDSm

1+PmCPIDSr
(7.7)

2Again assuming S
comp
m perfectly linearizes Sr.
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Figure 7.10: Feedback loop with model-based input-weighting compensation.From the top (1) Refer-
ence position, Plant positon and Estimated plant position respectively. (2) Weighted reference and sen-
sor response, (3) Error between the reference r with the plant position and estimated position respec-
tively, and (4) Track error fed into the controller (sensor response).

First note from Fig. 7.8 is that the plant position y is not directly part of the tracking but the
main goal is still to position y such that eplant = r − y is minimized, even though the signal y is
not available.

The idea is that assuming a good model Sm the signal ŝ represents the ideal reference that will
minimize eplant given the non-linear response of the sensor. Downside is that fitting errors are
given as the ideal reference and fed into the tracking, although fitting errors are also a limiting
factor in the previous scheme. On the benefit side, the scheme is not depended on model
inversion (or inverted data fitting to derive a compensator), which, given the simulation results
of Fig. 7.6 under-performs.

At the initial measured frequency and amplitude the performance is comparable to the direct
compensation scheme in terms of how the remaining non-linearities counter affect the plant
output. Although, with a closer look in the plant errors it is clear that eplant is significantly lower
than the direct compensation with the average error as seen in eqn. 7.8.

Plant error performance:

epmax
= 1.86 ·10−4

epmean
=−2.29 ·10−5 (7.8)

Furthermore, the illustration of Fig. 7.8 does not provide an estimation of the plant output ŷ
for the user and in realistic situation the original y signal is not measured. To obtain ŷ , either
the previously derived compensator shall be used to obtain an estimate ŷ given the sensor

Robotics and Mechatronics Dimitrios Kosmas



70 Model-Based Hysteresis Compensation and Control with 3D Printed Lousy Sensors

response, or a model of the plant can be employed as means to generate ŷ given the controller
effort. In this case since no identified plant or hardware-in a loop setup is present, the plant
is already a model. Therefore, the scheme of Fig. 7.8 can be extended as in Fig. 7.11. The
estimated position along with its error can be seen in Fig. 7.10. At the fitted frequency and
amplitude, the estimation may be consider satisfactory since the error is of low magnitude
(10−4) and the fact that at the current state this estimate does not play any crucial role in the
feedback loop.

Figure 7.11: Plant estimation extension on 7.8.

From Fig. 7.10 it can seen that the controller does again good job at minimizing esens = ŝ − s
and the counter-effect on the plant position is less emphasized with the average plant error
one magnitude lower than the previous scheme. Hence, an improvement in performance is
already observed in terms of error performance. Next, the same steps towards modifying the
excitation are used.

Figure 7.12: Various amplitudes of excitation for input-weighting based scheme. Each case plotted in
pair with its reference (blue).
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Figure 7.13: Various frequencies of excitation for input-weighting based scheme. Increasing frequency
(top), decreasing frequency (bottom).

Looking at the results of figures 7.12 and 7.13 it is clear that the alternative scheme performs
better when compared to the direct application of the previous scheme. From Fig. 7.13 it
can be seen that this compensation scheme handles the frequency variation significantly bet-
ter. Amplitudes variation though, have a higher impact on the plant response as seen in Fig.
7.12. Specifically, while decreasing the amplitude shows an adequate tracking, increasing am-
plitudes start to show a tracking performance decline, where not only the sine-wave minima
and maxima are not followed by the plant, but the constant mismatch with the reference re-
veals a hysteretic response from the plant. This effect only worsens by further increasing the
amplitude. Although, again in contrast to the direct compensation scheme where the higher
amplitude rendered the system response unstable, the current approach is still able to be re-
sponsive and the controller actually works as intended (minimizing esens).

7.3.1 Third-order trajectory test

For the next test, with the higher confidence obtained from the alternative scheme results, the
system is excited with a cubic trajectory as means to evaluate the model behavior given an
entirely different excitation signal. The trajectory is constructed given an arbitrary set veloc-
ity and acceleration boundaries with the help of cubicpolytraj [51]. The boundaries for
acceleration and velocity are ab = |0.15| m/s2 and vb = |7.5 · 10−3| m/s respectively. The jerk
jk is obtained from the acceleration slope. The position waypoints xp can then be computed
through integration (Eqn. 7.9).

xp =
n∑

k=1

(
jk

6
· t 3

i +
ak−1

2
· t 2

i + vk−1 +xk−1

)
(7.9)

Where n is the number of points present in the profile and ti the time interval between two
points. The resulting profile is shown in Fig. 7.14.

Overall the tracking of the cubic trajectory is good, first observation would be the compensator
output (for the estimated ŷ) is not capturing the y , once again hinting that a compensator
trained at a fixed frequency and amplitude is inadequate. Since the estimation of y is not cru-
cial at this scheme, for now the focus is shifted on the actual plant performance. Fig. 7.15 shows
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Figure 7.14: New excitation based on cubic trajectory.

that the system is able to follow the reference and the errors of both the plant ([m]) and sensor
response ([i]) are in the same magnitude as in the previous (sine) case.

Figure 7.15: Simulation results from 3rd order excitation. From the top (1) Reference position, Plant
positon and Estimated plant position respectively. (2) Weighted reference and sensor response, (3) Plant
error, and (4) Track error fed into the controller (sensor response).
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7.3.2 Output disturbance test

As means to test the impact that tracking the sensor response s or the estimated position ŷ has
on the plant output in terms of output-disturbance rejection, a series of simulation tests is set
were a disturbance in the form of step-function with amplitude of Astep = [1, 3] · 10−3 [m] is
injected at the time window from tstart = 1.7 [s] to tend = 2.2 [s]. The results for both schemes
are shown in Fig. 7.16 and Fig. 7.17.

The direct compensation scheme shows lesser performance in terms of plant positioning. Al-
though, from the results, it is shown that both systems are able to recover. The direct compen-
sation scheme, under-performs during the period that the disturbance is active, which is to be
expected based on the previous results (Fig. 7.6, 7.7).

In comparison of the overall performance, the tracking of the indirect position control is much
better in this scenario. Following the results of sec. 7.2 this is to be expected since the com-
pensator’s performance deteriorate significantly in slight changes from the trained excitation.
These results, enhance the confidence towards scheme’s (b) performance for indirectly con-
trolling the plant position y when the sensor response s is the tracking variable.

Towards a real setup, immediate remedy for the issue of the error offset in the direct compen-
sation, would be to use a noise trained model for compensating the non-linearity of the actual
3D printed sensor.

Figure 7.16: Feedback loop with model-based direct compensation for various output disturbances.
DC: Direct Compensation (scheme (a)).

Robotics and Mechatronics Dimitrios Kosmas



74 Model-Based Hysteresis Compensation and Control with 3D Printed Lousy Sensors

Figure 7.17: Feedback loop with model-based input-weighting compensation for various output distur-
bances. IW: Input-Weighting compensation (scheme (b)).

7.4 Discussion

As part of discussion, the two schemes are extended with a disturbance-observer estimating
filter as means to address system and measurements noise typically present in an actual setup.

With a real application in mind, the results of an ideal simulation, albeit providing an insight,
are not expected to entirely, maybe not even partly hold. Typically any real system is subject
to external and non-modelled disturbances. It is common then for system and measurement
noise to be considered as such disturbances. Of course, shielding a system such that it is able
to handle these uncertainties is a subject backed up with decades of literature and practical
implementations. Building upon the existing knowledge and using the insight from the ideal
simulations, a suggestion can be made towards addressing these disturbances.

One elegant approach towards handling disturbances in rigid systems is proposed in [52]. In
this work, a Disturbance-Observer estimating filter is described and a systematic process for
deriving said filter is proposed. Practical implementation of this design has shown good re-
sults and despite the fact that the system under consideration is not rigid (soft-polymer based
sensor), the disturbance rejection process might still be relevant.

For a clear interpretation of the observer process the exposed scheme of Fig. 2 of [52] will
be used as a base instead of the feedback interpretation ( [52] Fig. 4). Further work on the
actual implementation of this suggestion should consider the scheme reduction to obtain the
feedback representation since the added value of controller-based stability proofing as well as
the intuitive understanding of the controller tuning variables, is a great benefit.

Next, the disturbance-observer scheme can be extended using both of the proposed compen-
sation methods (direct and input-weight).

7.4.1 Direct Compensation with Disturbance-Observer

Fig. 7.18 illustrates the suggested scheme in conjunction with a direct application of the com-
pensator. Similar to the ideal case, the tracking consists of the estimated position e = r − ŷ . The
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Figure 7.18: Direct compensation extended with disturbance-observer. Compensation (green area),
disturbance-observer (blue area).

Figure 7.19: Input-Weighting compensation extended with disturbance-observer. Compensation
(green area), disturbance-observer (blue area).

observer filter Q acts on the plant input by using the difference between the controller effort
and the modelled prediction of the input post-measuring where noise is present. The idea be-
hind the original scheme as seen in [52] aims to eventually cancel the disturbance dynamics
and replacing them with the nominal plant Pn.

7.4.2 Input-Weighting Compensation with Disturbance-Observer

Once again, starting with the insight from the ideal simulation, the disturbance rejection ex-
tension is shown in Fig. 7.19.

However, in contrast to the ideal case, the important difference in the scheme of 7.19 is that, in
spite of the fact that the tracking follows the sensor response and not the estimated position, the
inverse compensator is still crucial for deriving the estimated input û. Meaning, that in either
case of the disturbance-observer estimating filter schemes, the issues of the compensator and
its limited performance should first be addressed.

Based on the simulation results of schemes (a) and (b), both extensions suggestions look as
good candidates for a first approach towards sensor non-linearity compensation in a real setup.
Of course, the systematic procedure proposed in [52] for deriving the filter Q should be adapted
to new system (with the added process of sensor compensator).

Of course, it is critical to re-state that all the insight gained through simulation results, resides
on the assumption that the noise fitted mPL model from [9] sufficiently captures the behavior
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of the real sensor. The fitting errors present from that model are an inherent truth in this ideal
scenario (which of course holds for both presented schemes). An actual implementation of
these approaches, based on the response of the real sensor, is then necessary before deriving
conclusions that will hold in a real-world application.

7.5 Conclusion

The decision is made to assume that the noise trained model of [9] satisfactory captures the real
sensor response given different excitations. This model is used as the closest representation of
the sensor during simulation. A first simulation is run to log the response of the noise-trained
mPL model when the direct output y of the plant P is used for the tracking. These data are
then used to fit the first modified mPL model. This model is finally used either to derive a com-
pensator (scheme (a)) or to compensate for the non-linearity by acting on the input r (scheme
(b)).

The initial approach of direct application of the compensator within the feedback loop (scheme
(a)) is simulated in various tests where the excitation frequency and amplitude deviate in prox-
imity to the ones used for training. It is shown, in spite of the fact that at the trained frequency
the compensation partially works (partially linearizing the sensor), that any deviation from
these conditions renders the performance inadequate or even unstable (when A > Atrain).

An alternative concept (scheme (b)) is then proposed where the tracking follows the sensor
response instead of the reference and plant position. This is done by weighting the input tra-
jectory with the sensor model. A performance boost is observed in terms of the plant position y
following the reference r and evaluated by varying the excitation as well as exciting the system
with a cubic trajectory. Attempting to obtain the estimated ŷ position with the use of the com-
pensator reveals the possible source of the scheme’s (a) failure, where again the compensator
properly inverts the non-linear response only at the trained conditions. Although, the response
used for feedback in the indirect compensation is a non-linear (hysteretic) signal. Meaning that
a PID controller tuned on the linear open-loop would be expected to be sub-optimal, resulting
in lower bandwidth and slower controller.

Therefore, a conclusion can be made based on the results of the two proposed schemes that
for the direct compensation of scheme (a) the dependence on the inverse model (or invert data
trained model) trained from a single excitation severely limits the operation range of the com-
pensation. On the other hand, given a model trained to capture multiple frequencies and am-
plitudes, the scheme has the prospect to enable often used linear control techniques, assuming
the fact that only weak non-linearities remain in the output signal. Towards the indirect com-
pensation of scheme (b), in terms of compensation, the approach is simplified and an inverse
model is not required. It is shown that the scheme is less sensitive to excitation deviations and
the tracking performance is improved in contrast to the direct compensation, even under the
same trained conditions. Despite the latter, due to the non-linear response not being compen-
sated within the feedback loop, the scheme either significantly limits the linearly-tuned PID
controller, or requires more elaborate non-linear control techniques.
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8 Conclusions

The work towards the investigation of possible control approaches for compensating the hys-
teretic non-linearity observed in a 3D printed flexible strain-gauge is described. With the pres-
ence of hysteresis validated after the examination of the experimental data, the research ques-
tions can now be answered as follows:

– How can the non-linearities of flexible, 3D printed sensors be captured in (a) model(s)?

In this project, the question is approached by means of model training. Measurement experi-
ments are first carried out. Then, through a parameter estimation process, a model designed
to capture said non-linearities is trained. Towards that end, a modified Power-Law model is
proposed which, provided with the optimized weights and parameters, is shown to sufficiently
capture the hysteretic response.

– Is it possible to compensate for sensor non-linearities by means of modelling, and, if so,
can this compensation be generalized?

It is shown that by deriving the inverse of the PL model, the resulting compensator eliminates
the majority of the hysteretic response at the trained conditions. Towards generalization, since
validation over all excitations is practically impossible, in order to obtain a model capable
of capturing a wide range of responses, data from an experiment with a random excitation
(noise) [9] are shown to generate a mPL model capable of capturing the range of frequencies
and amplitudes included in the excitation.

– What control strategies can be used to successfully exploit the flexible 3D printed sensors?

With the focus on the 3D printed flexible strain-gauge, two schemes are proposed for control-
ling the position of a moving-mass system with feedback from the (approximated) 3D printed
sensor in a simulated environment. The first scheme applies the compensator directly at the
sensor’s output (direct compensation) and the estimated plant position (compensator output)
is fed into the tracking. The scheme, although partially following the reference, shows poor
tracking performance and large sensitivity to slight deviations from the trained conditions. Ad-
ditionally, a second scheme is proposed that discards the need of an inverse model (or invert
data trained forward model) by weighting the input with a forward model. The scheme shows
improved performance and less sensitivity to modified excitations. Although, at the price of a
lower bandwidth.

8.1 Future Work

The main objective of this work has been to investigate how 3D printed sensors shall be used
for control purposes. Following the decision to pursue a model-based compensation, a lot
of focus has shifted towards deriving, describing and analyzing the hysteresis model and the
compensator. This fact had a clear impact on the work towards control. Therefore, aside of a
few suggestions towards the fabrication and modelling, there are still several open questions
around the topic of control.

While the sensor fabrication process has been improved, there is room for further improvement
as the resistance values of the strain-gauges suggest. This may be done in terms of additional
tuning and experimenting with higher/lower resolution nozzles. Moreover, since 3D printing is
rapidly evolving and new materials emerge in a rate of every few months, there is high chance
that conductive filaments will be further optimized for printing effectively yielding better sens-
ing performance fresh from the spool.
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The modified PL models show promising results by sufficiently representing the hysteretic non-
linearity, although obtaining a good fit is not a straightforward process. A systematic process
of obtaining the initial estimate is needed. Moreover, hysteresis is not the only non-linearity
present in the response, creep is expected to be inherited as well due to the material properties.
Currently, no focus is put towards validating if the model is still capable (post-modification)
of capturing the rate-dependency of polymers. Additionally, experimentation with alternative
cost-functions (MSE currently used) may prove fruitful when trying to improve fitting perfor-
mance.

Towards the compensator, the insight from the control simulations suggest that it is crucial to
investigate how to shape the compensator such that it captures a wider range of excitations
and not only the one used for its derivation. Concerning the latter, first suggested approach
when the actual setup is used (instead of a simulation) is to deploy a noise-trained model as the
compensator, as this would be the best candidate for capturing a broader range of the actual
sensors response.

With focus on an actual implementation, the development of a process that initializes (syn-
chronizes) the model/compensator with the real sensor might become necessary.

Finally, towards control, since the described schemes are only evaluated during simulation in
ideal conditions, the simple schemes of direct and input-based compensation are expected to
provide more insight from an actual experiment where the loop is closed with the 3D printed
sensor. Furthermore, a proper analysis of the stability of these systems at the operating equi-
librium point is required with the optimum goal to derive insight in the global stability of the
non-linear system. Moving forward, assuming the compensator issue is addressed, as already
proposed, the more sophisticated observer-based designs may be good candidates for address-
ing system and measurement noise.

3D printed sensors, along with their great prospects, come with great challenges. Addressing
the aforementioned open questions, while undoubtedly raising even further research ques-
tions, will bring us a step closer to the full potential of embedded 3D printed sensing.

Dimitrios Kosmas University of Twente



Hysteresis Compensation of 3D Printed Sensors by a
Power Law Model with Reduced Parameters

Dimitrios Kosmas, Martijn Schouten, Gijs Krijnen
Robotics And Mechatronics group, University of Twente, Enschede, The Netherlands

Email: gijs.krijnen@utwente.nl

Abstract - We propose a modified Power Law Model [1]
for hysteresis compensation. A simplification of the original
model, resulting in a lower number of parameters to be
estimated, is introduced. It has no nonlinear resistor in
the output stage and the nonlinear resistance function in
the input section(s) is given by a sinh function resulting
in 3N + 2 parameters for a model with N input stages. A
cantilever beam with two symmetric piezoresistive sensors
was 3D printed and shown to exhibit hysteretic behavior.
The sensor’s differential measurements have been used to
obtain training and validation data. We present promising
fitting results obtained with a single cell model and 5
parameters only. Finally, the inverse model (compensator)
is derived and applied to the experimental data in order
to strongly reduce the hysteretic nonlinearity.

Keywords - 3D-Printing, Hysteresis, Creep, Compensation,
Flexible, Soft, Tactile sensor, Power Law, Non-linear

I. INTRODUCTION

Rapid growth of Additive Manufacturing (AM) with the
possibilities of multi-material printing, along with the recent
developments in Soft Robotics has led to the investigation of
embedded sensing in soft structures [2]. Fabrication of such
sensors has already shown promising results [3], but at the
expense of high nonlinearities such as viscoelastic hysteresis
[4], [5], hysteretic piezo-resistive response [6] as well as rate-
depended phenomena like stress relaxation and creep [5].
For these types of sensors to be incorporated into real-world
applications, e.g. for mechatronic purposes, a model that can
satisfactorily describe such behavior is needed.

Modeling of hysteretic and rate-dependent phenomena has
been the object of an extensive amount of literature since
1935 when F. Preisach introduced his approach of modeling
hysteresis in ferromagnetic materials as a sum of infinite
rectangular shaped hysteresis operators [7]. Chua & Stromsoe
introduced a Lumped Circuit model of hysteresis consist-
ing of non-linear inductors and non-linear resistors [8]. In
1994 Parodi, Storace & Cincotti proposed a piece-wise linear
(PWL) ladder circuit model [9] in which the only non-linear
elements are the resistive ones, in that way eliminating the
extra complexity added by the nonlinear inductors. Biggio &
Storace [1] proposed an extended model based on [9], which
enables to capture the logarithmic time dependence of the
creep relaxation dynamics.

This work was developed within the Wearable Robotics programme, funded
by the Dutch Research Council (NWO).
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Fig. 1. Power Law model with the proposed circuit modification shown
within the dotted area (top right). Adapted from Fig. 1 of reference [1]

In the current work, we attempt to further reduce the
complexity of the model of Biggio & Storace, by choosing
an alternative way to represent the characteristic of the non-
linear resistive elements of the circuit and by changing the
fitting procedure. These modifications to the model will first
be discussed. Subsequently the model is fitted to measurements
obtained on a 3D printed sensor and the inverse of the model
is applied to another set of measurement data demonstrating
that the model indeed can be used to significantly reduce the
hysteresis of a 3D printed sensor.

II. MODEL
A. Modification

The main background of this model is thoroughly explained
in [1] and based on the previous work of [9], [10], [11], [12]
(and the references therein). Briefly, the Power Law model
attempts to model the hysteretic and creep nonlinearities via
an electronic circuit model where the hysteretic memory is
modelled by a parallel architecture of 1..N sub-circuits (a),
fig 1. These sub-circuits contain a non-linear resistor dk and
a capacitor in series with a voltage source with a voltage
equal to the input signal e(t). The sub-circuit (b) contains a
set of Voltage Controlled Voltage Sources (VCVSs) of which
the voltage depends on either a weighted, by wk, version of
the voltage uk(t) over the capacitors or the input signal e(t)
in the first circuit, and a bias voltage Vb. The output signal
of the model is the current i(t) going through the non-linear
resistor which is in series with the VCVSs. The weights of
the VCVS’s are estimated through an identification procedure
using measurement data. The other elements in the circuit have
fixed parameters.

In this work we show that a modified version of this model
can be used to reduce the hysteresis and improve the linearity
for a sinusoidal input signal using only a single instance of
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the sub-circuit a. This modified version of the model discards
the second non-linear element by fixing it to a value of R = 1
(panel (b)). Also it assumes that the non-linear resistor (panel
(a)) can be expressed as a weighted hyperbolic sine function

ik = f(uk) = IS

(
e

uk
VT − e

−uk
VT

)
, k = (1, 2, ..., N) (1)

Finally we optimise not only the weights wk of the VCCSs,
but also the shape of the non-linear resistor by optimizing
the parameters VT and IS. This optimisation is done using a
non-linear optimization procedure that finds the minimum of
a constrained nonlinear multivariable function [13].

The model can be represented as a non-linear state-space
equation

u̇k =
1

C
f(vk) =

1

C
f(e− uk)

iR = w0e +
N∑

k=1

wkuk − Vb

(2)

Hence, the inverse (compensator) output can be represented as

u̇k =
1

C
f


 iR
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wj

w0
uj +

Vb

w0
− uk
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
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iR

w0
−

N∑

j=1

wj

w0
uj +

Vb

w0

(3)

B. Identification

In order to estimate the remaining weights (w0, w1, Vb, IS,
and VT), a set of measurement data is obtained for ê(t) and
î(t) (see section III). The number of cells N is to be provided.
A cost function is defined as the summed squared error

SSE =

tend∑

t=0

(
î(t) − i(ê(t))

)2
(4)

where î(t) is the measured, and i(ê(t)) the output modelled
for the input ê(t).

For the minimization, MATLAB’s fmincon is used in
order to estimate the weights that minimise the cost func-
tion defined in 4. An interior-point based algorithm [13] is
employed, limited such that the sum of all of the weights is
smaller than 102.

C. Verification

As a measure for the amount of hysteresis of a sensor, the
average area encircled in a plot of the normalised input versus
the normalised input, will be used. To calculate this area the
following equation is used.

Â =
1

n

∫ x̂t=n·T

x̂t=0

ŷ · dx̂

with:

x̂ =
x− min(x)

max(x) − min(x)

ŷ =
y − min(y)

max(y) − min(y)

(5)

Where x is the input displacement of the sensor, y is the output
signal of the sensor, T is the period of the excitation signal

R1

R2

x

y

z

Fig. 2. 3-D CAD render of the
differential sensor exposing top
& bottom resistive traces (co-
ordinate frame representing the
printing orientation).

Fig. 3. Fabricated sensor
on top of a PVA layer.

and n is an integer representing the number of periods in the
test signal.

III. MEASUREMENTS
A. Sensor

The sensor fabrication was largely based on the design
of the previous work of [3], where it was demonstrated that
differential measurements can improve the linearity of the
sensor. Here we follow the same concept by implementing two
symmetric piezo-resistive elements on both the top and bottom
faces of the sensor (fig. 2). The piezo resistors are based on
a carbon black filled thermoplastic polyurtherane (TPU) by
Ninjatek called EEL [14], as shown in figure 3.

In contrast to the previous sensor, the sensor used in the
current work was printed on a raft of PVA. This was done
because the first layer often has different properties than the
succeeding layers, which causes asymmetry in the sensor.

The measured resistances of the piezo-resistive traces, after
allowing a settling period, were found to be 22.4 kΩ (top) and
15.7 kΩ (bottom).

B. Set-up

The sensor is mechanically loaded using a linear actuator
(SMAC LCA25-050-15F) running a position control loop
generating a sine with a frequency of 0.5 Hz and an amplitude
of 3 mm. To read out the sensor, it is placed in a half-bridge

PSU

Scope SMAC
Controller

SMAC

x

encoder
R1 R2

GND

V x

Sensor

5V

Fig. 4. Overview of the experiment set-up (orange box represents the splitter
cable for the extraction of encoder’s channels A & B signals).
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Fig. 5. Differential measurement(left y-axis) lags the commanded com-
manded position (right y-axis).

configuration using a 10 kΩ resistor and a 2 V DC voltage
source. The half-bridge output voltage is measured using a
Picoscope 5443B running at a sample frequency of 2 MHz. In
order to be able to guarantee a perfect time synchronization
of the half bridge measurement with the position readout, the
encoder signal from the SMAC actuator controller is extracted
and read by the PicoScope.

At the sensor channels, a down-sampling ratio of 5 along
with a digital zero-phase low-pass 2nd order Butterworth filter
is applied with a cut-off frequency of fc =20 Hz. Due to an
observed high-frequency interference of the SMAC controller,
a hardware RC low-pass filter is added with R =10 kΩ and
C =15 nF. An overview of the setup is presented in fig 4.

IV. RESULTS

Two data sets of ê(t) (SMAC position) and î(t) (half bridge
output voltage) were obtained by two distinct experiments of
5 min duration each. Cross-validation is used, with one set
of data for fitting and one for validation respectively. The
differential measurement versus the input position, see figure 5,
is forming the hysteresis loop. Using the measured time series
ê(t) and î(t) the model is nonlinearly fitted with the first set.
For the computation, sub-circuit (a) is comprised with a single
cell (N = 1). The capacitance is fixed at C =1 F. The initial
conditions are given as: IS = 0.1, VT = 0.2, w0 = 1, w1 = 0.4
and Vb = −0.6. Hence, a total of five parameters are to be
optimized through the optimization process. The model fit is
shown in fig 6.

The inverse model, given the optimized parameters, is
applied to the second set of data and the output is plotted
against the experiment data in fig 7. The SINAD and the
normalised hysteresis when compared to the SMAC encoder
signal as defined in equation 5 are calculated for the most
important signals (Table I).

V. DISCUSSION AND CONCLUSIONS

The modified model shows a good fit against the experi-
mental data, correctly representing the hysteretic nonlinearity.
MATLAB’s fmincon proves that a good fit is possible.
However a more efficient, in terms of computation time,
approach is likely required before the model can be adapted
in an online estimation.
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Furthermore, the inverse model is applied and is shown to
provide a good estimation of the original position (fig. 7-top).
Subsequently, the response of the compensator is shown to
reduce the hysteretic non-linearity (fig. 7-bottom-) as compared
to fig. 5. As far as the linearity is concerned, only a slight
improvement was observed. (table I).

In this experiment, an empirical model is constructed for a
system that consists of both a cantilever beam fabricated out
of a viscoelastic material as well as a piezo-resistive sensing
element. In order to be able to model these elements separately
the force applied on the cantilever should be measured as well.

Further research is required in order to validate the sim-
plified model’s performance. The presented results hold for a
specific frequency and amplitude. For different cases the need
to employ a larger number of N cells might be necessary. The
ability to represent inner loops and the model’s performance
for excitation at different frequencies and amplitudes is still
to be investigated. Preliminary results are promising, albeit at
the expense of requiring multiple cells instead of one.

TABLE I. SINAD

Signal SINAD (dB) Â (%)
SMAC encoder signal 32.2 0
R1 4.9 -10
R2 5.7 15
R1 − R2 18.4 -18
Fit 23.6 -20
Compensated 20.6 0.8
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Abstract - We calculated the stability criterion for the
modified power law model and subsequently adjust the
model such that it’s stability can be guaranteed. We applied
both a sinusoid, a chirp, an exponentially decaying sine
and bandwidth limited noise position excitation to a 3D
printed symmetric piezoresistive cantilever and measure
the differential response. A modified power law model is
fitted directly to the inverse of the sensor data, to directly
obtain a compensator for the sensor. The result was a stable
compensator that reduced the hysteresis of the 3D printed
sensor.
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I. INTRODUCTION

3D printing is a promising technique for the fabrication
of sensors, since the technique allows sensors to be produced
cost effectively in low volumes, at high integration levels and
considerable complexity [1], [2]. The technique is also well
suited for the fabrication of soft sensors [3], [4].

A common material used in 3D printing of soft sensors
is TPU, which is known to show visco-elastic behaviour [5].
Furthermore the piezoresistive elements that are often used,
show a non-linear relationship and hysteresis [6]. Together
both effects often result in hysteretic sensing behaviour.

To model hysteretic behaviour a circuit model was pro-
posed by Biggio et al [7]. A simplified version of this model
was shown to be able to significantly reduce the hysteresis in
a 3D printed cantilever beam for a sinusoidal input [8]. In this
paper the stability of this model is further improved and it is
shown that this model can also be used to reduce the hysteresis
for more complicated excitation signals.

II. MODEL

The model that is used is based on the model described in
[7]. The model has an electrical circuit representation which
is shown in figure 1. The model consists of multiple cells
consisting of a non-linear resistor and a capacitor (with C=1 F).
The voltage on the capacitors in subcircuit (a) is linked to the
voltage of the voltage controlled voltage sources (VCCS’s) in
sub-circuit (b). These VCCS’s, a VCCS directly linked to the
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Fig. 1. A circuit representation of the model. Image courtesy of [7]

input and a fixed voltage source determine the voltage over
a second non-linear resistor. The current through this second
non-linear resistor is the output of the model. This circuit can
be represented using a non-linear state space equation [8]:

u̇k = f(e− uk)

i = g(w0e+

N∑

k=1

wkuk − Vb)
(1)

where e is the input signal, i is the output, uk are the voltages
on the capacitors and f and g are non-linear functions. wk and
Vb are weights of the model and are to be fitted together with
the parameters of the non-linear functions.

A. Linearisation

This non-linear state space equation can be linearised,
around a certain state uk,0 and input e0, by using a first order
Taylor series approximation of the non-linear functions.

u̇k = fk,0 + f ′k,0e− f ′k,0uk

i = g0 + g′0w0e+ g′0

N∑

k=1

wkuk − g′0Vb
(2)

With the following definitions:

fk,0 = fk(uk,0 − e0), g0 = g(w0e0 +
N∑

k=1

wkuk,0 − Vb)

f ′k,0 = f ′k(uk,0 − e0), g′0 = g′(w0e0 +
N∑

k=1

wkuk,0 − Vb)

(3)
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Fig. 2. Graphical illustration of the limit applied by equation 9

This can be written as a linear state space representation.
ẋ = Ax+Be

i = Cx+De
(4)

With:

A =




−f ′1,0 0 . . . 0 f1,0 0

0 −f ′2,0 . . . 0 f2,0 0

...
...

. . .
0 0 −f ′N,0 fN,0 0

0 0 0 0 0

0 0 0 0 0




, B =




f ′1,0
f ′2,0

...
f ′N,0

0

0




, x =




u1

u2

...
uN
1

1




C = [g′0w1 g′0w2 . . . g′0wN 0 g′0Vb + g0] , D = g
′
0w0

(5)

B. Discretization

This continuous state space equation can be discretized into
the form:

x(k + 1) = Adx(k) +Bde(k)

i = Cdx(k) +Dde(k)
(6)

When each matrix exponential is approximated using only
the first two terms, only the A matrix will change during
discretization [9, p. 315]. This A matrix will change in the
following way

Ad = I +A∆t (7)

C. Stability

This system is asymptotically stable in case the magnitude
of all eigenvalues of Ad are less than unity [9, p. 329]. The
eigenvalues of Ad are located at λk = 1− f ′k,0∆t and at zero.
This means the system is asymptotically stable in case:

0 < f ′k,0 <
2

∆t
(8)

To prevent instability the function fk is limited such that:

fk,lim =





fk(x+) + 2
∆t (x− x+) for x > x+

fk(x) for x− > x > x+

fk(x−) + 2
∆t (x− x+) for x < x−

(9)

where x− and x+ are respectively the minimum and the
maximum value of the set of solutions of the equation f ′(x) =
2

∆t . Figure 2 graphically shows the implication of this limit.
Note that this limitation allows the model to be unstable for
x− > x > x+, but that such an instability always will cause
the model to enter a part of the function where it is stable again,
since the model is stable for both x→∞ and x→ −∞.
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Fig. 3. Graphical illustration of the used measurements setup [8] ( c©[2020]
IEEE).

III. MEASUREMENTS

The used sensor and setup were previously described in [8]
and [10]. In summary a linear actuator (SMAC LCA25-050-
15F) is used to deform a 3D printed cantilever and a differential
measurement of the resistance of piezoresistive elements on
both sides of the cantilever is used to measure this deformation,
see figure 3. An optical encoder is used as reference of the
applied position signal. In this work two coupled Handyscope
HS5 scopes sampling at 6.25 MHz were used to measure the
encoder signal and the voltage of two half bridges both with
a 560 Ω resistor, one of the piezoresistive elements and a DC
supply voltage of 1 V. A high sampling frequency was used
in order to be able to have enough bandwidth to measure all
the pulses of the 5 µm resolution encoder.

Each measurement was executed twice in order to obtain
one data set to fit the model to and one to validate the
model on. A 2nd order zero-phase 20 Hz Butterworth filter was
applied to the measured voltages and the decomposed encoder
signal in order to reduce the noise in the measurement. After
applying this filter all signals are downsampled to 40 Hz to
speed up the model execution.

The difference between the relative resistance changes
of both piezoresistors is calculated from the measured half-
bridge voltages and used as the sensor output. The mean of
the data was subtracted from both the sensor output and the
encoder signal, to reduce the influence of drift that occurred in
between the measurements. To normalise the data, the fitting
and validation data are divided by the maximum of the absolute
value of the fitting signals. The used excitation signals were:

1) A 0.5 Hz sinusoid of 200 s duration with an amplitude
of 3 mm.

2) A Chirp signal with a frequency exponentially in-
creasing over a period of 100 s from 0.1 Hz to 3 Hz
and an amplitude of 3 mm

3) A sinusoid with a frequency of 0.5 Hz and an am-
plitude that exponentially decreases over 200 s from
2 mm to 100 µm.

4) Gaussian noise filtered with a 500th order FIR low-
pass filter with a −3 dB cut-off frequency of 4 Hz

In the rest of this paper these signals will be abbreviated as
Sine, Chirp, Decay and Noise respectively. The sensor output
is used as input for the model and the parameters of the model
are optimised such that the model output predicts the position
of the encoder. In this way the model can be used directly as
a compensator for the hysteresis and non-linearity of the data.



TABLE I. LEFT: INITIAL CONDITIONS OF THE USED POLYNOMIAL
FUNCTIONS. RIGHT: ORDINARY COEFFICIENTS OF DETERMINATION

0 1 2 3
f(x) -1 0.1 0.1 1
g(x) 0.1 1 0.1 1

Model Linear
Sine 0.990 0.928
Chirp 0.984 0.945
Decay 0.987 0.710
Noise 0.958 0.882

TABLE II. FITTED WEIGHTS

Sine Chirp Decay Noise
f0 -2.516 -0.469 -0.258 -4.719
f1 -2.666 -1.712 0.663 3.412
f2 1.975 -2.228 -0.002 -1.244
f3 1.953 3.125 0.008 1.469
g0 0.100 -0.369 -0.779 -0.119
g1 1.195 1.094 1.320 1.125
g2 0.006 0.006 -0.002 0.006
g3 0.475 -0.384 -0.240 -0.259
w0 1.000 1.516 0.984 1.156
w1 -0.492 -0.531 -0.875 -0.406
Vb 0.135 -0.537 -0.302 0.010

The fit is done using MATLAB’s patternsearch running
on all 6 cores of an Intel I7 9850 for 60 s. Executing the model
with the sine data takes 18 ms. For both f(x) and g(x) a 3th

order polynomial of the following form is used:
f(x) = f0 + f1x+ f2

2x
2 + f3

3x
3 (10)

The initial conditions of f and g can be found in table I
on the left. In all cases N = 1 and the initial condition of
the remaining weights w0, w1 and Vb were 1, -1 and 0.01
respectively. As a reference of the performance, the model is
compared to a linear fit, using MATLAB’s polyfit.

IV. RESULTS

Figure 4 shows the hysteresis in the measured signals.
Figure 5 shows the hysteresis of the model and the linear fit
after they are applied to the data. The ordinary coefficient of
determination between the encoder position and the position
predicted by the the model as well as a linear fit can be found
in table I on the right.

The fitted model parameters can be found in table II. The
shape of the corresponding polynomials flim(x) and g(x) can
be found in figure 6. Without the limits set in equation 9 the
fitted model of the chirp is unstable with the used validation
data-set.

V. DISCUSSION AND CONCLUSIONS

A stability criterion for a modified power law model was
derived. The model was subsequently adjusted to meet this
criterion and it was shown that the model reduces the hysteresis
of a 3D printed sensor in comparison to a linear fit, for
several input signals. The used model only has 11 parameters
and although the training was computationally intensive, the
execution of the model was not. This research only shows
a reduction of the hysteresis for the same sensor under the
same conditions as was used during training. Further research
is needed to determine the applicability in other situations.

Although a differential measurement is employed, which
is expected to remove drift common to both strain gauges,
it was necessary for a good fit that the mean of the signal
was subtracted from both the fitting and the validation signals.
Since the model itself does not remove inaccuracies due to
drift further research on reducing drift is required when the
sensors should be used for absolute force measurements.

Fig. 4. Difference between the relative change in resistance of the two
piezoresistive elements (∆R/R) against the position measured by the encoder
(Enc) for different excitation signals

Fig. 5. Position estimated by the model (red) and a linear fit (blue) versus
the position measured by the encoder (Enc) for different excitation signals

Fig. 6. The shape of the fitted flim and g functions
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9.3 Preisach basic principle

In order to properly describe the Preisach model some definitions need to be mentioned. The
mathematical analysis of the Preisach model is based on its geometric interpretation. This
interpretation is based on the fact that an one-to-one relationship exists between the ˆγαβ op-
erators and the points (α,β) of the half-plane α≥β, as show in Fig. 9.1a. This would mean that
each point in the α ≥ β plane, is decribed with a single ˆγαβ operator, whose "up" and "down"
switching values are the α and β coordinates of the point (Fig. 2.2).

(a) Preisach αβ plane of the switching points. (b) αβ plane S sub-sets.

Figure 9.1: Preisach αβ plane.

At each moment in time the triangle T (formed by the hypotenusα=β) is split into two sets (S−

and S+) by the line formed from current input (a = u(t )). Assuming a sequence of monotically
increasing input values until umax and of monotically decreasing input values until umi n , the
staircase interface L is formed as shown in Fig. 9.3a. The conclusion that can be drawn is that at
each instant of time the triangle T is subdivided in the two sets, the S− set for which the points
(α,β) correspond to ˆγαβ operators in the "down" position, and the S+ set for which the points
(α,β) correspond to ˆγαβ operators in the "up" position. Therfore at each t the Preisach integral
from eqn. 2.1 can be represented as:

f (t ) = Γ̂µ(t ) =
∫ ∫

S+(t )
µ(α,β)γ̂αβu(t )dαdβ+

∫ ∫
S−(t )

µ(α,β)γ̂αβu(t )dαdβ (9.1)

Since ˆγαβ = 1 for (α,β) ∈ S+(t ) and ˆγαβ =−1 for (α,β) ∈ S−(t ), it follows:

f (t ) =
∫ ∫

S+(t )
µ(α,β)dαdβ−

∫ ∫
S−(t )

µ(α,β)dαdβ (9.2)

It is shown then that the resulting shape of the straicase interface L depends on the past ex-
tremum values of the input because the vertices of these inputs are shaping the interface. The
instantaneous value of the output in this case, depends on the subdivision of the limiting tri-
angle T in the two subsets S− and S+. This is in fact the mechanism in the Preisach model of
how the past input extrema leave their mark upon the future [17].

9.4 Preisach transition curves

The goal of the identification problem for the Preisach model is the derivation of the distribu-
tion function µ(α,β). Towards that end a set of first-order transition curves were used. In order
to provide a definition on what these curves represent, lets first assume that the input u(t ) is
decreased to value less than β0. This will bring the hysteresis nonlinearity to a point of neg-
ative saturation. Then, the input is monotically increased to a point where u(t ) = α′ (see Fig.
9.2b). While the input increases the asceding branch of the major loop is tracked (Fig. 9.2a),
also called the limited ascending branch since no branch exist below it.
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(a) Input-output generalized Preisach hystere-
sis as shown in [17].

(b) αβ plane first state of monotically increas-
ing input.

Figure 9.2: Preisach transition curves.

The so-called first-order transition curve is generated when the aformentioned monotic in-
crease of the input is succeded by a monotonic decrease. The term "first-order" stems from the
fact that each of these curves is formed after the reversal of the input.

9.5 Preisach digitization

The digitized equations are shown in 9.3. Here, f1 represents the output for a monotonically
increasing input, and f2 the output for a monotonically decreasing input. These explicit ex-
pressions are expressed in terms of experimental measured data. An extensive explanation for
the derivation of the relation between the following equations and the experimental data is
shown in the "Identification Problem for the Preisach model. Representation Theorem." section
of the Chapter 1 of Mayergoyz’s book.

f1(t ) =− f ++
n−1∑
k=1

( fMk mk − fMk mk−1 )+ fMn u(t ) − fMn mn−1′

f2(t ) =− f ++
n−1∑
k=1

( fMk mk − fMk mk−1 )+ f−mn−1 − f−mn−1,−u(t )

(9.3)

Where, Mk and mk form the alternating series of dominant input extrema, shown in Fig. 9.3a
as the vertices that describe the staircase interface L(t ) between the sets S+ and S− (which
correspond to γ̂ operators in the "up" and "down" position respectively), briefly described in
appendix 9.3 and in more detail in Chapter 1 of [17].
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(a) αβ plane for monotonically decreas-
ing input. [17].

(b) αβ plane for monotonically increas-
ing input. [17].

Figure 9.3: αβ input evolution.

The f + term represents the positive saturation output value. The fMk mk terms are area calcula-
tions which are obtained as follows:

Towards identification, in order to relate the f function to the experimental data, the following
function is defined [17]:

F (α′,β′) = 1

2
( fα′ − fα′β′) (9.4)

Where α and β as shown in Fig. 9.4a, with fα′β′ a notation used for the output value on the
transition curve attached to the limiting ascending branch at the point f (α′) [17].

(a) Generalized input-output major loop. (b) α−β at t when u =β′

Figure 9.4: Input-output and α−β equivalence.

Then, using the fact that, as seen from the above plots, the triangle T (α′,β′) is added to the
negative set S− and subtracted from the positive set S+, it is found by Mayergoyz then that
the Preisach model matches the output increments along the first-order transition curve if the
function µ(α,β) satisfies

fα′β′ − fα′ =−2
∫ ∫

T (α′β′)
µ(α,β)dαdβ (9.5)
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Then by comparing equations 9.4 and 9.5 it follows:

F (α′β′) =
∫ ∫

T (α′β′)
µ(α,β)dαdβ (9.6)

Now, looking in Fig. 9.3a, by further dividing the set S+ into n number of trapezoids Qk , then
the integral can be expressed as

∫ ∫
S+(t )

µ(α,β)dαdβ=
n(t )∑
k=1

∫ ∫
Q+

k (t )
µ(α,β)dαdβ (9.7)

Next, by expressing each trapezoid Qk as a difference of two triangles T (Mk mk−1), T (Mk mk )
such that:∫ ∫

Q+
k (t )

µ(α,β)dαdβ=
∫ ∫

T (Mk mk−1)
µ(α,β)dαdβ−

∫ ∫
T (Mk mk )

µ(α,β)dαdβ (9.8)

Then using equation 9.6 it follows:

FMk mk−1 =
∫ ∫

T (Mk mk−1)
µ(α,β)dαdβ

FMk mk =
∫ ∫

T (Mk mk )
µ(α,β)dαdβ

(9.9)

With T the triangle defined from the S+ and S− sets in the α,β plane as shown in Fig. 9.3a

Substituting 9.9 to 9.8 ∫ ∫
Q+

k (t )
µ(α,β)dαdβ= FMk mk−1 −FMk mk (9.10)

Next, with the numerical implementation in mind, equation 2.1 can be expressed as an addi-
tion and subtraction of the integral of µ(α,β) over the S+(t ) [17]

f (t ) =−
∫ ∫

T
µ(α,β)dαdβ+2

∫ ∫
S+(t )

µ(α,β)dαdβ (9.11)

With T, the limiting triangle as shown in fig. 9.3a.

From 9.6 ∫ ∫
T
µ(α,β)dαdβ= F (α0,β0) (9.12)

And then from 9.11, 9.12, 9.8, 9.10 and the fact that mn = u(t ) (from Fig. 9.3a) it follows:

f (t ) =−F (α0,β0)+2
n(t )−1∑

k=1
[FMk mk−1 −FMk mk ]+2[FMn mn−1 −FMn u(t )] (9.13)

Finally, using the formula of 9.4 upon the above equation and repeating the same procedure but
this time for a monotonically increasing input, the numerical versions of the preisach output
functions f from equation 9.3 are obtained.
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9.6 Power-Law digital implementation

9.6.1 mPL process

Following then are the two code snippets responsible of computing the model state at each
sample n for N number of cells:� �
1 % Calculate voltage across each c e l l ’ s capacitor by solving the
2 % c i r c u i t equations using Euler Integration method
3 for k = 1 :N
4 for n = 1 : length ( e )−1
5 % euler
6 u( k , n+1) = u( k , n) + . . .
7 NLRe_s( e (n)−u( k , n) , Vt ( k ) , I s ( k ) ) * dt ; % i_k
8 end
9 end

10

11 % VCVSs weighting
12 wUk = w( 2 : end) . * u ’ ;
13

14 % Voltage across the l i n e a r r e s i s t o r , by s e t t i n g R=1 , Equation [ 5 . 2 ]
15 y = w( 1 ) *e + sum(wUk’ , 1 ) − Vb ;� �� �

1 function I = NLRe_s( vk , Vt , I s )
2 % Equation [ 5 . 1 ]
3 I = I s *exp ( vk/ Vt )−I s *exp(−vk/ Vt ) ;
4 end� �

9.6.2 mPL compensator process

Following then are the two code snippets responsible of computing the compensator state at
each sample n for N number of cells:� �
1 l = length ( y ) ;
2 u = zeros (N, l ) ;
3 e = zeros ( 1 , l ) ;
4 for n = 1 : l
5 % Moving from r i g h t to l e f t , s t a r t by solving the r i g h t part .
6 wUk = w( 2 : end) . * u ( : , n) ’ ;
7

8 e (n) = (1/w( 1 ) . * y (n) ) − (1/w( 1 ) . *sum(wUk’ , 1 ) ) + (Vb/w( 1 ) ) ;
9

10 % now use the computed x from the r i g h t to solve the c i r c u i t s on the l e f t .
11 i f n ~= l
12 for k = 1 :N
13 % euler
14 u( k , n+1) = u( k , n) + . . .
15 NLRe_s( e (n)−u( k , n) , Vt ( k ) , I s ( k ) ) * dt ; % i_k
16 end
17 end
18 end� �� �

1 % apply compensator on second dataset with sensor response as input
2 [pos_comp , ~ ] = PLcompensator ( time2 , sens_out2 , par , w_fit , weight_loc ) ;� �
9.7 SMAC excitation

The SMAC actuator is controlled in position-control mode under a sine-wave excitation of
0.5 Hz and an amplitude of 3 mm.

xsmac(t ) =O + Asmac · sin(2π f t )

xsmac(t ) = 50+600sin(πt )
(9.14)
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Where, the offset O (distance from zero point) and amplitude A are expressed in unitless en-
coder increments. With a 5µm encoder resolution, a 3 mm amplitude is expressed as

Asmac = 3

5
= [mm]

[um]
= 600 (9.15)

Although, based on the most current (regarding this assignment) calibration, the relation be-
tween the stroke displacement and the encoder can be expressed with the following linear re-
lation

y = 0.0051x −0.0656 (9.16)

Where y is the stroke displacement in mm and x is the encoder points. Based on this calibration
the produced amplitude is

Âsmac = 0.0051 ·600−0.0656 = 3.1256 mm (9.17)

9.8 Half-bridge readout

Figure 9.5: Half-Bridge (Voltage-Divider) configuration for a single strain-gauge measurement.

9.9 MATLAB-Ansys Link

Towards the technical issue of communication between MATLAB and Ansys, due to the wide
use of both software packages, the desire to use a combined simulation has been an object of
several studies. Two main solutions are found:

1 MATLAB AAS Toolbox.

2 Interface through batch files (Windows) directly to Ansys core (APDL).

3 Community provided packages [53, 54] in combination with [2].

Option 1 is the most straightforward and requires the least amount of implementation. The
link between the two packages is established with the additional toolbox and examples of con-
figuration for both ends are available within toolbox documentation. The only drawback in
the specific case of the current work, is that the toolbox is not accessible through the provided
Ansys client.

Option 2 requires more effort, basic knowledge of batch commands in Windows OS, the knowl-
edge of the APDL scripting interface of Ansys and from scratch development of the link between
the two packages.

Option 3 combines examples already available from the MATLAB community with option 2,
minimizing that way the effort required for a manual setup of the link.

Dimitrios Kosmas University of Twente



CHAPTER 9. APPENDIX 1 93

Figure 9.6: Dual-simulation scheme.

The toolbox would be the suggested solution to almost all scenarios, but the fact that it is not
available for the current project renders the option impossible to follow. Therefore the third
option is the remaining alternative.

Drawback

Both option 2 & 3, as currently planned, do not receive output from the running Ansys FEA
solver. For the latter, the toolbox is necessary. Given the toolbox a true co-simulation is possi-
ble. With the other options, the APDL commands passed via a batch file can accept arguments
where the excitation signal should be given as whole. Therefore, these alternative result in a
dual-simulation, instead of a co-simulation.

Towards the implementation, given the entire set-up for the non-linear model calibration, the
majority of the work is already present. Specifically:

• APDL command script of the entire simulation (Input-file).

• A .batch file responsible for calling the APDL core in batch mode and passing the current
iteration arguments.

The last step is the MATLAB implementation for calling the batch file and reading from the
stored results. Both of the latter are solved problems which minimal technical complexity. An
overview of this scheme is given in Fig. 9.6.
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