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ABSTRACT

Carbon dioxide (CO2) is believed the main anthropogenic greenhouse gas which causes global climate 
change. In the carbon cycle, forest plays an important role both as a carbon source and a carbon sink. 
Therefore, forest carbon inventories and emission reduction programs, in particular REDD, are one of the 
main efforts to combat climate change. REDD provides opportunities for Nepal and other developing 
countries to take part in the international carbon market and to promote sustainable forest management. 
Forest inventories and programs for emission reduction require robust methods to quantify carbon 
sequestration in forests. The combination of LiDAR data and high resolution satellite imagery is one of 
potential approach for assessing forest carbon sequestration. The application of LiDAR data and high 
resolution satellite imagery in carbon estimation are mostly based on the strong relationship between tree 
parameters, crown projection area (CPA) and height, with carbon stock of individual trees. A Canopy 
Height Model (CHM) is created from Airborne LiDAR data in order to derive the tree height information. 
The crown projection area is delineated from a very high resolution Geo-Eye satellite imageey with Region 
growing algorithm. Field-based carbon stock of individual tree (obtained through an allometric equation) is 
then related to CPA and height obtained from remote sensing data through multiple linear regression 
modelling. 
The crown delineated with Region growing resulted in 71.9% accuracy, LiDAR derived height fitted well 
with the measured height with the coefficient of determination R2 =0.72. The object based image 
classification is applied to classify Shorea robusta and Other species with reasonable accuracy of 81% overall. 
Modelling the relationship between CPA and LiDAR derived height with carbon stock of Shorea robusta and 
Other species results in R2 values of 0.76 and 0.68 respectively. 
In order to complete the carbon stock accounting and monitoring process, uncertainty estimates are 
required as an essential element of the process. Uncertainty estimates can help to reduce the uncertainty of 
inventories in the future, and guide decision on the choice of method. The combination of data requires 
more complex data processing and analysis techniques than using high resolution image or LiDAR data 
alone. As a result, the risk of error propagation through carbon estimation process is higher. The main 
sources of error are associated with ground-based sampling, LiDAR data processing, image processing and 
data integration processing. Most studies have used the standard error of regression equation as a measure 
of uncertainty but the uncertainty maybe two to three times the standard error. Accordingly, error 
propagation assessment needs to be evaluated to make correct inference about forest carbon stock.  
The trees used as the input for multiple linear regression analysis mostly affect the result of carbon 
estimation process. For the purpose of error propagation analysis, Monte Carlo Simulation is applied to 
generate a number of input datasets, which then were used to develop different regression predictive models of 
carbon. The input datasets were created by adding the random error to individual tree’s parameters (CPA, 
height, field-based carbon). Carbon stock then calculated based on simulated carbon predictive model. The 
results of different iterations were compared to see the effect of error propagation. 

 
 
 
 
 
 
 
 
 
Key words: LiDAR, canopy height model, very high resolution image, object based image analysis, region 
growing, above ground biomass, forest carbon,  
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1. INTRODUCTION

1.1. Background of the study 
Carbon dioxide (CO2) is believed to be the major greenhouse gas which causes global climate change 
(IPCC, 2001). In the carbon cycle, forest plays an important role both as a carbon source and a carbon 
sink (Watson, 2009). About 60% of the terrestrial vegetation carbon and about 50% of soil carbon are 
stored in the forest (Dong et al., 2003). When forest is cleared or degraded, its stored carbon is released 
into the atmosphere as CO2. Consequently, forest turns into the carbon source which enhances climate 
change. Therefore, forest carbon inventories and emission reduction programs are crucial for combating 
climate change.   
At the Bali Climate Change Conference in 2007, REDD, which stands for Reduced Emissions from 
Deforestation and Forest Degradation, was adopted by the parties of the United Nations Framework 
Convention on Climate Change (UNFCCC). It opened new opportunities for developing countries to 
participate in forest carbon financing (MOFSC, 2009). Within the concepts of REDD, countries that 
demonstrate forest carbon reserves and emission reductions are able to sell carbon credits on the 
international carbon market (UNFCCC, 2005). Similar to other forest carbon inventories and emission 
reduction programs, estimates of forest carbon stock are required to generate baseline information for 
REDD application. 
The main carbon pools in the forest are biomass (above-ground and below-ground biomass), dead organic 
matter (dead wood and litter) and soil organic matter (IPCC, 2006a). Among these, above ground biomass 
(AGB) governs the potential carbon emission that could be released to the atmosphere due to 
deforestation (Gibbs et al., 2007).  Estimation of AGB, therefore, is the most critical step in quantifying 
carbon stocks from the forest (Gibbs et al., 2007). According to the IPCC definition, AGB is all living 
biomass above the soil including stem, stump, branches, bark, seeds, and foliage; the carbon makes up 
approximately 47% of AGB (IPCC, 2003). In other words, carbon stock is obtained from AGB by 
multiplying AGB with the rate of 0.47. Because of difficulties in collecting field data of below-ground 
biomass, most previous research focused on AGB (Lu, 2006) and this present study also focuses on the 
carbon stock contained in AGB. 
As with most forest measurement, field methods can be employed for AGB estimation with high accuracy 
but this approach is generally time consuming, labour intensive, and difficult to implement in remote areas 
(Lu, 2006). Meanwhile, remote sensing methods can be combined with field measurements to estimate 
AGB at a wide range of scales with relatively low cost (Popescu, 2007). As a result, remote sensing 
methods have been increasingly applied and become the primary source of data for AGB or carbon 
estimation (García et al., 2010; Lu, 2006).  
A variety of satellite data are used for AGB or forest carbon estimation. These data are broadly classed 
into optical sensor data, radar data and light detection and ranging data (LiDAR). Each type of data has its 
own characteristics, both advantages and disadvantages. Hence, the integration of different sources of 
remotely sensed data may enhance the information extraction process and overcome the drawbacks of 
using one type of data alone (Sohn et al., 2007). In the light of this, the combination of LiDAR data and 
high resolution satellite image is also one of potential approaches to individual tree-based carbon 
estimation (Kim et al., 2010).  
The application of LiDAR data and high resolution satellite imagery in carbon estimation are mostly base 
on the strong relationship between tree parameters, for instance crown properties and height properties, 
with the AGB or carbon stock of individual trees.  The crown properties (crown projection area, crow 
width) were used to predict the diameter at breast height (DBH) or AGB of tree in a number of previous 
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researches (Popescu, 2007; Soares et al., 2005).  The DBH comes to the forefront since AGB is often 
estimated from the allometric equation on DBH (Muukkonen et al., 2007).  Tree height derived from 
LiDAR data is also closely related to AGB of the tree (Jochem et al., 2011; Ni-Meister et al., 2010). Hence, 
the approach to model forest carbon stock based on both crown properties and tree height is expected to 
increase the accuracy of carbon stock estimation.  
 

1.2. Problem statement 
Measurement of AGB, or carbon sequestration, in trees is crucial for REDD signatory parties such as 
Nepal. However, estimating AGB is still a challenging task because of the practical or methodological 
limitations, especially for tropical and sub-tropical areas which have complex stand structure and abundant 
variety in species composition (Foody et al., 2001). 
Although LiDAR data has been widely available, it is still too costly to be used over large areas (Gibbs et 
al., 2007).  At present, one way of reducing the cost of acquiring LiDAR data for large areas is to increase 
flight altitude (Yu et al., 2004). If other scan properties (pulse repetition frequency and the scan angle) are 
not changed, the laser-sampling density is, therefore, reduced. According to previous researches, use of 
low-density LiDAR data (point density is less than 5 point/m2) might result in less accurate individual tree 
detection and crown property measurements (Takahashi et al., 2010). Thus, the combination with high 
resolution imagery is essential in order to successfully use low density LiDAR for carbon estimation over 
large areas (Jochem  et al., 2009). 
 The choice of remote sensing system will influence the levels of uncertainty in the estimates of forest 
carbon (Gonzalez et al., 2010). Combination of data sources requires more complex data processing and 
analysis techniques than using high resolution image or LiDAR data alone. As a result, the risk of error 
propagation through the carbon estimation process is higher. The main sources of error are associated 
with LiDAR data processing, image processing, data integration processing, ground-based allometry, 
ground-based sampling and regression modelling. Previous researches on carbon estimation in Nepal 
emphasized the importance of error propagation. However they just defined the sources of error and did 
not assess the actual error propagation (Shah, 2011; Tsendbazar, 2011). 
 In order to complete the carbon stock accounting and monitoring process, the uncertainty estimates are 
required as an essential element of the process (Brown, 2002). Therefore, it is significant to indicate the 
effect of error sources on the final result in our research. The uncertainty analysis is expected to be useful 
to make correct inference about forest carbon stock.  
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1.3. Objective 
The main objective of this study is to assess error propagation in the estimation of carbon from the 
combination of LiDAR data and high resolution satellite Geo-Eye imagery. The specific objectives are:  
1. Develop a predictive model of carbon using tree height derived from airborne LiDAR data and 

crown projection area (CPA) derived from high resolution satellite imagery. 
2. Analyse the sources of error causing the uncertainties in the carbon estimation process and assess the 

accuracy of each parameter, which takes part in the predictive model of carbon (LiDAR derived 
height, CPA and field based-carbon estimate). 

3. Develop a method for assessing the propagation of error in carbon estimation. 
4. Estimate carbon stock in the study area and analyse the impact of error propagation in this carbon 

stock estimation. 
 

Table 1: Research objectives, research questions and hypothesis 

Objective Research Question Hypothesis

Develop a predictive 
model of carbon using 
tree height derived from 
airborne LiDAR data and 
crown projection area 
(CPA) derived from high 
resolution satellite imagery 

1a. What is the relationship 
between CPA and carbon?  
 

Ho: There is no significant relationship between 
CPA and carbon.  
H1: There is a significant relationship between 
CPA and carbon.  

1b. What is the relationship 
between tree height and 
carbon?  
 
 

Ho: There is no significant relationship between 
tree height and carbon.  
H1: There is a significant relationship between 
tree height and carbon.  

Core problem 
 

Error propagation and Uncertainties 

Effect 

Inaccurate carbon estimation 

Cause 
 Field 

measurement 

LiDAR data 
(High cost) 

Low density LiDAR data 
(Low cost) 

Integrate with high 
resolution imagery 

Figure 1: Problem tree
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Objective Research Question Hypothesis 

1c. What is the relationship 
between tree height, CPA and 
carbon?  

Ho: There is no significant relationship between 
tree height, CPA and carbon.  
H1: There is a significant relationship between 
tree height, CPA and carbon.  
 

Analyse the sources of 
error causing the 
uncertainties in the carbon 
estimation process and 
assess the accuracy of each 
parameter, which takes 
part in the predictive 
model of carbon (LiDAR 
derived height, CPA and 
field based-carbon 
estimate) 

2a1. What are the error 
sources of LiDAR derived 
height? 
2a2. What is the accuracy of 
LiDAR derived height? 
 

Ho: The accuracy of LiDAR derived tree height 
is not acceptable (error is ± 5m or more) 
H1: The accuracy of LiDAR derived tree height 
is acceptable ( error is less than ± 5m) 
 

2b1. What are the error 
sources of image 
segmentation? 
2b2. What is the accuracy of 
image segmentation? 
 

Ho: Image segmentation accuracy is not 
acceptable (error is 30% or more) 
H1: Image segmentation accuracy is acceptable 
(error is less than 30%) 

2c1. What are the error 
sources of image 
classification?  
2c2. What is the accuracy of 
image classification? 
 

Ho: Image classification accuracy is not 
acceptable (error is 30% or more) 
H1: Image classification accuracy is acceptable 
(error is less than 30%) 

2d1. What are the error 
sources of field based carbon? 
2d2. What is the amount of 
field based carbon estimation?

Ho: The accuracy of field based carbon is not 
acceptable. (error is 5 kg or more for individual 
tree) 
H1: The accuracy of field based carbon is 
acceptable. (error is less than 5 kg for individual 
tree) 

Develop a method for 
assessing the propagation 
of error in carbon 
estimation  

3. How to link various error 
sources to final carbon 
estimation? 

Ho: The trees selected and used to develop the 
predictive model of carbon have no impact on 
carbon stock estimation process 
H1: The trees selected and used to develop the 
predictive model of carbon have most impact on 
carbon stock estimation.  

Estimate carbon stock in 
the study area and analyse 
the impact of error 
propagation in this carbon 
stock estimation 

4a. What is the amount of 
carbon in the study area? 
4b. What is the range of 
carbon stock variation due to 
error propagation? 
 
 

Ho:  The range of carbon stock variation is not 
acceptable ( error is 10 ton/ha or more) 
H1: The range of carbon stock variation is 
reasonable ( error is less than 10 ton/ha) 
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2. LITERATURE REVIEW 

2.1. Remote sensing approaches for Above-ground biomass estimation 
An overview of the various types of satellite data used for AGB or carbon stock estimation is presented in 
this section. 

Moderate optical remote sensing imagery 
Many studies have been conducted using moderate spectral or spatial resolutions optical remote sensing 
imagery such as Landsat, ASTER and MODIS to assess their usefulness for estimating AGB e.g. Foody et 
al.(2003); Muukkonen et al. (2007); Blackard et al.(2008) and Chopping et al. (2010). The relationship 
between biomass and spectral signatures or vegetation indices, primarily the Normalized Difference 
Vegetation Index (NDVI), is created to estimate AGB (Foody et al., 2003; Muukkonen et al., 2007). Using 
vegetation indices is possible to reduce the impacts on reflectance caused by viewing conditions (due to 
variation in sensor view angle or solar elevation) and shadows, especially in those sites with complex 
vegetation stand structures (Lu et al., 2004). Nevertheless, the sensitivity of vegetation indices to biomass 
varies among environments and can limit the ability of the index to represent accurately AGB (Foody et 
al., 2001). 

High spatial resolution imagery 
High spatial resolution imagery such as QuickBird, IKONOS, WorldView, and Geo-Eye are used widely 
for AGB estimation (Wulder et al., 2010). Different approaches have been applied to extract biophysical 
parameters from high spatial-resolution data, including photo interpretation, threshold-based spatial 
clustering, object oriented analysis, etc. (Lu, 2006). Among these, object oriented analysis is a promising 
technique to improve AGB estimation. This technique can overcome the drawbacks of pixel-base image 
analysis (Lamonaca et al., 2008). The relationships between tree biophysical characteristics and tree crown 
area is established to estimate forest AGB or carbon stocks with high certainty (Gonzalez et al., 2010). 
However, high spectral variation and shadows caused by canopy and topography or cloud may create 
difficulty in developing AGB estimation models using high resolution imagery, especially in tropical forest 
(Gibbs et al., 2007; Patenaude et al., 2005). 

Radar data 
Beside optical sensors, data from active sensors - in particular radar - can be used as the appropriate data 
sources to estimate AGB (Ranson et al., 1997). The backscatter of the illumination generated from radar is 
proportional to the amount and organization of forest biomass (Lefsky et al., 2001). Thus, the relationship 
between radar backscatter and forest stand parameters (diameter at breast height, tree height, basal area 
and stand diversity) has been investigated to determine ABG (Saatchi et al., 2010). The radar systems are 
able to overcome the limitation of optical data by collecting earth feature data irrespective of weather or 
light conditions (Lu, 2006). On the other hand, it has been shown that radar backscatter will saturate for 
high biomass values (Morsdorf et al., 2009; Nguyen, 2010).  

Light detection and ranging data (LiDAR) 
Light detection and ranging (LiDAR) can avoid the saturation problem and has great potential to acquire 
direct three-dimensional measurements of the forest canopy (García et al., 2010). Unlike passive remote 
sensing systems, LiDAR uses active laser pulses to capture the vertical structure of forest canopies that are 
useful for estimating a variety of forest inventory parameters (tree height, volume, and biomass) (Næsset, 
2002; Wulder et al., 2010; Zhao et al., 2009). Lefsky, et al. (2001) indicated that LiDAR has produced more 
accurate estimates of forest biomass than both Landsat, high spectral resolution sensors and synthetic 
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aperture radar (SAR). For example, using LiDAR, Næsset and Goabakken (2008)  were able to explain 
88% and 85% of the variability in aboveground and belowground biomass, respectively, in the coniferous 
boreal zone of Norway. Nevertheless, LiDAR data are limited currently to the local or regional scales  
(Popescu et al., 2011).   

2.2. Research conceptual framework 

2.2.1. Airborne LiDAR data 
In recent years, the use of Airborne LiDAR technology to measure forest biophysical characteristics has 
been rapidly increasing (Popescu et al., 2003). Airborne LiDAR system includes (i) a Laser scanner unit 
transmitting short and collimated pulses towards the Earth surface and recording both travel time of the 
laser beam and the energy (intensity) , (ii) a Global Positioning System (GPS), which is used to record the 
aircraft position, and (iii) Inertial Measurement Unit (IMU) that measures the angular attitude of the 
aircraft (roll, pitch and heading) (Jochem et al., 2011). The figure 2 shows the fundamentals of airborne 
LiDAR for forest purposes. 
 

 

Figure 2: The fundamental of airborne LiDAR (García et al., 2007) 

The data collected consist of a three-dimensional cloud of irregularly spaced points near the Earth's 
surface (James et al., 2007). Each point has x, y, z information, in which x is the latitude, y is longitude and 
z is the elevation. The retrieval of tree parameters from LiDAR data has focused largely on utilizing the 
Canopy Height Model (CHM) (Rahman et al., 2008). In order to create this canopy height model (CHM), 
the point data is filtered as first returns and last returns (or ground returns). The ground returns are 
interpolated to produce Digital Terrain Model (DTM) and the first returns are interpolated to produce 
Digital Surface Model (DSM). Subtraction of the DTM from the DSM produces a CHM (Popescu et al., 
2002).  

2.2.2.  Individual tree based approach with LiDAR data 
There are two approaches for utilizing LiDAR data for AGB assessment: i) the area-based approaches and 
ii) the individual tree based approaches (Dalponte et al., 2011).  In the first approach, distributional 
metrics, such as the mean canopy height or the standard deviation of the canopy height, are taken from 
CHM and then used in conjunction with regression equations to predict forest properties (Lim et al., 2004; 
Means et al., 2000). In terms of individual tree based approach, it is mostly based on regression models 
focusing on a relationship between LiDAR derived individual tree parameters (e.g. tree height, crown 
dimensions) and field based estimates of AGB. 
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Previous research highlighted that the individual tree based approach has several advantages over the area-
based approach (Parker et al., 2009; Yu et al., 2010). Firstly, the use of individual tree approach increase the 
accuracy for deriving biomass estimates remotely and  this approach offers the means of better 
understanding the sources of uncertainty (Popescu, 2007). Secondly, biomass or carbon estimation 
calculated based on individual tree can avoid the impact of non-forested land which may contaminate the 
measurements, causing the retrieved biomass predictions to be inaccurate (Riitters et al., 2000). In addition, 
using an individual tree-based approach permits the estimation of parameters at the tree level rather than 
the plot or stands level. This will allow detailed evaluation of silvicultural techniques, including those 
designed to boost carbon storage, and may permit individual tree-based management in the future 
(Bortolot et al., 2005). 
Both horizontal and vertical vegetation structure information of individual tree (tree height or crown 
properties) can be provided at the desired accuracy with Airborne LiDAR techniques (Zimble et al., 2003). 
The tree height is defined as the distance from the ground to the tree top or to the living crown (Erik et al., 
2002). Tree height can be derived from CHM by employing local maxima technique. The local maxima 
technique operates on the assumption that high laser values in a spatial neighbourhood represent the top 
of a tree crown (Zhao et al., 2009). The horizontal tree parameters, like crown properties, are then 
extracted from CHM through crown delineation algorithm. Popescu et al. (2003) introduced the method to 
estimate the crown diameter from a LiDAR derived CHM. 
The single tree based approaches require LiDAR data with high point densities (>5 points/m²). However, 
Næsset et al.(2004) have reported generally good  results  with  LiDAR  measurement of height, volume, 
stocking,  and basal area in coniferous areas with LIDAR point densities ranging from low density of 0.1 
to higher density of 10  points/m2. Therefore, such individual tree based approach can used for lower 
point densities (<5 points/m²) but require an extensive set of reference data (Jochem  et al., 2009). 

 

Figure 3: Outline of the process to obtain the Canopy Height Model (CHM) and extract tree height from 
local maxima [The diagram was created by combining the graphic objects from the research of Kellner et 

al. (2009); Reitberger et al. (2007) and Zhao et al. (2009)] 

2.2.3. Object based image analysis  
Object based image analysis (OBIA) and image segmentation technique have been used in very high 
resolution imagery as an option to overcome the drawbacks of pixel-base image analysis. With high 
resolution imageries, objects on the earth surface having similar reflectance properties would be hardly 
separable for forestry applications (Burnett et al., 2003). Meanwhile, image objects can be delineated by 
image segmentation based on the relationships between spectrally delineated image segments and 
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observed spatial heterogeneity in forest structure, including gaps in the outer canopy (Lamonaca et al., 
2008).  
Three main steps of object-based classification are: 1) creation of image objects using an image 
segmentation algorithm, 2) extraction of object-based metrics, and 3) classification using the object-based 
metrics (Ke et al., 2010). Various researches have attempted to estimate AGB using OBIA with different 
image segmentation techniques for individual tree crown delineation, such as Maker – controlled 
Watershed segmentation (Kim et al., 2010); Region growing algorithm or Chessboard algorithm (Soares et 
al., 2005) and multi-resolution segmentation.  The object-based metric which is widely used in carbon 
estimation studies is crown projection area (CPA)(Shimano, 1997). Crown area or crown projection area is 
defined as the proportion of the forest floor that is covered by the vertical projection of the tree crowns 
(Jennings et al., 1999) as shown in Figure 4. CPA is calculated from the maximum crown diameter 
assuming a circular crown projection (Timo, 1991).  
 
 

 
 

Figure 4: Crown projection area and segmented crowns from high resolution image [The figure was 
created by combining the graphic object from the research of Gschwantner et al. (2009) and Kim et al. 

(2010)] 

2.2.4. Integrate low density LiDAR data and high resolution imagery 
The integration of optical sensor data with LiDAR is believed to hold great promise for improving the 
accuracy of forest inventory and ecological modelling (Anderson et al., 2008; Kim et al., 2010; Leckie, 
2003; Sohn et al., 2007). In the light of this, using a combination of high resolution imagery with low 
density LiDAR data for assessing carbon storage is also a potential approach. The first reason for the 
combination is to obtain more information about tree parameters. LiDAR data can directly provide three-
dimensional information, such as tree height and crown based height, at an individual tree and stand level, 
which is difficult to obtain using high resolution imagery (Kim et al., 2010). Conversely, high resolution 
imagery can provide spectral and horizontal  information for the individual tree, like crown width or 
crown area, which would hardly be delineated from low positing density LiDAR data (Ke et al., 2010). In 
addition, these two sources of data can compensate the disadvantages of each other. The laser 
measurements do not distribute homogeneously and usually have gaps in between (Suárez et al., 2005). 
Sequentially, it causes the challenge to validate results for individual trees, when an correspondence needs 
to be established between field- and LiDAR-measured individual trees (Popescu, 2007). In this case, visual 
interpretation of high resolution imagery is used to assist LiDAR data to identify each individual tree  
(Næsset, 2004). The integration of high spatial resolution imagery and LiDAR data can produce more 
effective and efficient forest classification (Ke et al., 2010). By combining variables derived from both high 
resolution imagery and LiDAR, species-wise carbon estimations at tree level can be obtained (Packalén et 
al., 2006) which is not able to be done by using low density LiDAR data alone. 



ERROR PROPAGATION IN CARBON ESTIMATION USING THE COMBINATION OF AIRBORNE LIDAR DATA AND HIGHT RESOLUTION GEOEYE SATELLITE IMAGE

9

2.2.5. Semi-empirical AGB/carbon model 
Both empirical and semi-empirical models, which are primarily based on linear or non-linear regression 
analysis, are widely used for biomass or forest carbon estimation  (Næsset, 2004; Popescu, 2007). The 
empirical model or allometric equation is developed on the basic of the relationship between sparse 
measurements from destructive sampling (oven-dry biomass per tree) and the more easily collected 
biophysical properties of trees, such as diameter at breast height (DBH) and commercial bole height 
(CBH) (Basuki et al., 2009). Although the allometric equation is the most accurate method for ABG 
estimation, it requires destructive sampling by cutting of trees and weighing of their parts, which is 
invasive and costly. Additionally, the allometric equation is not able to be applied for carbon estimation 
and carbon mapping over large areas. Meanwhile, the semi - empirical model relates the reflectance of the 
canopy recorded at the sensor to biomass estimates based on allometric equations obtained from field 
measurement then extrapolate these estimates to entire forest ecosystems (Gibbs et al., 2007; IPCC, 2007). 
With the support of remote sensing, semi - empirical models can be used to estimate AGB and carbon 
stock over large areas. The result of allometric equation with high accuracy is often used to validate the 
predicted AGB/carbon from less invasive and costly semi-empirical methods.   
 
Table 2: Example of Empirical model and Semi-empirical model for individual - tree AGB/C estimation 

 AGB/Carbon predictive model 

(kg/tree)

Independent 

variables

Dependent 

variables 

Reference 

Empirical 
Model 

Tropical moist hardwoods:  
AGB = exp[–2.289 + 2.649*ln (DBH) -
0.021*(ln(DBH))2] 

DBH: diameter at 
breast height  

AGB IPCC (2007) 

Semi-
empirical 

Model 

Pine tree: 
AGB = Exp[-2.5356 + 2.4349*ln(-
0.16+CD+1.22*H) 

CD: crown diameter 
H: height  

AGB Popescu (2007) 

Pinux roxburghii: 
C = -9.31496 + 11.932*CPA

CPA: crown 
projection area 

C Tsendbazar 
(2011)

 

2.2.6. Error and error propagation approach 
The error should be seen, first and foremost, as a means to help prioritise national efforts to reduce the 
uncertainty of inventories in the future, and guide decision on methodological choice (IPCC, 2006b). 
Almost all related researches concentrated in assessing the accuracy of each steps in carbon estimation 
process and rarely considered carefully the error propagation in the final result (Chave et al., 2004). 
Accordingly, error propagation assessment needs to be evaluated to make correct inference about forest 
carbon stock.  
In simple terms, the word error is used to convey that something is wrong (Weir, 1999). Heuvelink et al. 
(1998) defines error as the difference between reality and our representation of reality. Measurements of 
errors are generally described in terms of accuracy. The accuracy of single measurement is the closeness of 
observations, computations or estimates to the true value or the values perceived to be true  (Weir, 1999). However, the 
“truth” can never be known; it is instead acceptable that the truth could be obtained using the best 
available field survey (Harrell et al., 1997; Persson et al., 2002; Shi et al., 2002). In this study, the field 
measurements or human visualization and interpretation is also considered the truth. 
Carbon monitoring in forests with high spatial variation of tree density and species composition poses 
major challenges (Gonzalez et al., 2010). Potentially, many sources of error may affect the final carbon 
estimate, for example tree inventory errors; errors in the allometric equations; data processing errors. 
Therefore, it is important to evaluate the degree of uncertainty of the result. Most studies use the standard 
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error of regression equation as a measure of uncertainty but the uncertainty maybe two to three times the 
standard error (Harrell et al., 1997). The reason is that system performance of uncertainties is not 
considered; error will add up and propagate in the final estimate.  Hence, error propagation analysis is 
required to assess the propagation of the uncertainty from multiple sources in carbon estimates (Lo, 2005; 
Sherrill et al., 2006).  
Error propagation analysis has been applied researches on forest inventory, e.g. Sherrill et al. (2006); 
Larocque et al. (2008); Gonzalez et al. (2010). One simple example is the error propagation in calculating 
total timber volume given by equation T = �v* a, in which v is the mean volume per unit area and a is the 
area of an individual stand (Weir, 2002). Because the mean stand volume is obtained from a sample, it has 
a standard error SEv, area also has an error SEa, v and a are determined independently, there is no 
covariance and the standard error of the total volume is:  

SET2 = SEv2 * a2 + SEa2*v2 

2.2.7. Main sources of error when combine LiDAR data and VHR satellite imagery 

Error sources of CHM generation  
The height of the tree extracted from the LiDAR -CHM is defined as the pixel having the highest value in 
a pixel cluster corresponding to a crown. However, this "top pixel" is normally situated near the center of 
the crown and sometime be found away from the center of the crown (St-Onge et al., 2001). A local 
maximum filter algorithm was introduced to detect tree tops. The main problem encountered when using 
local maxima to detect tree tops is that non-treetop local maxima are incorrectly classified as treetops 
(Huang et al., 2009). Zimble et al. (2003) indicated that trees often occur as clumps and therefore the peak 
of tree may have been missed altogether. In some case, two tree peaks are identified in the canopy of one 
tree. For all these reasons, tree height variance due to the distribution of LiDAR point. The extracted 
height from CHM may inaccurate in the following scenarios  (Suárez et al., 2005): 
- Small trees close to bigger ones are ignored 
- Laser returns do not hit true top of tree 
- One of hits is intercepted at a lower height and model produces two tree tops 
- In a situation of sparse density of returns, some trees can be ignored completely.  
In addition, some information in the original laser points is lost in the DTM and DSM interpolation 
process (Popescu et al., 2002). The residual of interpolation process is also one source of errors. 
 

 

 

Figure 5: The example of misplace LiDAR point leading to inaccurate estimates height (Suárez et al., 2005)
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Error source of crown delineation 
With regard to VHR imagery, the sources of error such as sensor view angle, sun elevation and 
topography may affect the extracted value of crown properties and then affect the regression analysis to 
estimate AGB or carbon. (Darius et al., 2002) suggested that real geometric and radiometric properties of 
tree crown can be detected best with small off nadir view angles (less than 15 degrees) and higher solar 
zenith angles. (Erikson et al., 2005) found out that low elevation angle resulted in a shaded side of the tree 
crown which makes it difficult to distinguish it on remotely sensed imagery. As for view angle, view angle 
during image collection also influences the apparent shape of tree crowns on the image and the quality of 
delineation (Leckie et al., 2005). View angle nearer to the nadir result in circular crown shape on the image 
when the solar elevation angle is high, whereas, tree crown displays a crescent shape in off-nadir images. 
 

 

 
 

(a)                                                                                      (b) 
Figure 6: (a) Templates and the corresponding polygons delineating the sun-lit areas of the template, (b) Aerial 

images with template hits shown as polygons. Left: near nadir viewing angle. Right: oblique viewing angle (Erikson et 
al., 2005) 
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3. STUDY AREA 

3.1. Study area selection 

3.1.1. Nepal and forest carbon estimation approach 
Enhancing the effective contribution of mountain people to climate change mitigation through 
programmes to encourage carbon sequestration has become an important priority (Nogués-Bravo et al., 
2006). Over the past several decades, the shift in forest management authority from state to local 
communities in the Himalayan region, including Nepal, has been successful in reducing deforestation and 
increasing biomass on common lands (Banskota, 2007). According to FAO (1998), community forest is 
National forest that has been handed over to a community forest user group (CFCG) for its development, 
conservation and utilization. Until April 2009, one-third of Nepal’s population was practising community 
forestry and directly managed over one-fourth of Nepal’s forest area (Baral, 2011).  REDD provides 
opportunities for Nepal to take part in the international carbon market and to promote sustainable forest 
management. It helps to consolidate local actions and raise concerns of communities about receiving 
benefits through programmes for forest conservation and protection (ICIMOD, 2010). Community-based 
forest management is a sustainable management regime which contributes to stabilizing atmospheric CO2 
concentrations by maintaining a carbon pool in the terrestrial ecosystem. Therefore, in Nepal and other 
developing countries participated in REDD, it has become important to determine the national scenarios 
of deforestation and forest degradation as well as estimate carbon stock of community forests (MOFSC, 
2009). 

3.1.2. Criteria to select the study area  
The Ludhikhola watershed was selected for this study based on three main criteria: i) ecological zones, ii) 
interest of the local people and iii) accessibility. These criteria are also considered in the site selection 
procedures of the REDD project in Nepal (ICIMOD, 2010). Firstly, the watershed is representative for 
hilly areas which in the sub-tropical ecological zone of Nepal. The specific species for this ecological zone 
are Shorea robusta, Schima Wallichi and Castanopsis indica. The interest of local people is important to any 
forest management and conservation programmes. Involving local communities help to increase the local 
people’s awareness of the benefits that they receive when deforestation and forest degradation is reduced. 
Local people, therefore, are ready to support and assist the research.  Last but not least, the accessibility is 
should be considered because of the limitation of time for field work as well as specific terrain in Nepal. 
The study area meets this requirement because it has good road access. 

3.2. Study area description 

3.2.1. Location 
The Gorkha district is in the Western development region of Nepal and has an area of 3,610 km2. The 
Ludhikhola watershed area is located in the southern part of Gorkha district between 27o55’02’’ to 
27o59’43’’N and 84o33’23’’ to 84o40’41’’E and covers an area of 5750 ha. 
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Figure 7: The Ludikhola watershed 

3.2.2. Topography  
The Ludhikhola watershed lies in Nepal’s Middle Mountain Ecological Zone. Generally, the area is 
mountainous with an altitude ranging from 318 m to 1714m. 61% of the land is steep sloping (slope range 
of 30-60%) and the remaining land has less than 30% slope. The watershed has four major rivers that run 
within and along it, namely Chepe, Daraudi, Marsyangdi and Budhi Gandaki. 

3.2.3. Climate 
The climate of the area varies from subtropical at lower altitudes to temperate at higher altitudes. The 
temperature in Ludhikola watershed has an average daily temperature of 23.1oC. The minimum 
temperature is 5oC and the maximum is 33oC, the hottest and driest days are in March, April and May. The 
rain season commences in June and ends in August with an average annual rainfall of 1972 to 2000m.  

3.2.4. Settlement 
The population in Ludhikhola watershed is 23,197 with 3800 households (ICIMOD, 2010). The main 
ethnic groups are Magar, Gurung, Tamang, Dalit and few Brahmin, Chhetri.  
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3.2.5. Forest  
Forest type 

 
Table 3: Land cover  in  Ludhikhola watershed (ICIMOD, 2010) 

Land cover type Area (ha) Percentage (%)

Closed to open broadleaved (dense) forest 3873 67.34 
Open broadleaved (sparse) forest 996 17.31 
Natural water bodies 9 0.17 
Bare Soil 241 4.19 
Agriculture land and built up areas 632 10.99 
Total 5750 100 
 

Table 3 reveals that forest forms major land use in all the watersheds. Within these forest categories, the 
dense forest area occupies the largest proportion in the watershed. The forests are mostly young forest 
which is characterised by upper tropical to sub-tropical lower forests. The forests are mixed forest and 
species vary with the change of altitude and aspects. Shorea robusta (Sal) is the dominant species most 
commonly found in the southern aspects and lower altitudes of northern aspects. In the upper parts of 
northern aspects Schima wallichii (Schima) and Castanopsis indica (Chestnut) are the dominant species. In 
addition, there are a small number of Mangifera indica (Mango), Ficus racemosa (Fig), Terminalia bellirica 
(Belliric Myrobalan), Syzygium cumini (Black plum), Rhus wallichii (Ceasar weed), Bombax ceiba (Cotton), 
Lyonia ovalifolia (Oval leaved Lyonia), Lagerstromia parviflora (Myrtle), Garuga pinnata (Balsam). 
Forest management 

The main forest management regimes in Ludhikhola watershed are community forest and government 
managed forest. Private forest occupies only a very small area. There are 31 community forests (CFUGs) 
covering a total of 1880 hectares of forest area, and the remainder of the forest is classified as government 
and private forests. Community managed forest management is the new type of management which is 
recommended in the government’s Master Plan for the Forestry Sector in1988. Community forest is 
autonomous and perpetual and provides institutions with rights to mobilize all types of resources to 
ensure the wellbeing of communities (Baral, 2011).  Commercial timbers such as Shorea robusta and 
Terminalia are generally auctioned by the government for revenue generation. The forests where these 
valuable stocks predominated were rarely handed over to local communities until the early 2000s 
(Bhattarai et al., 1999). Community forestry has become the most important program to conserve, manage 
and utilize forest resources in Nepal (Maskey et al., 2006). Recently, community forest has been involved in 
different types of community development works including REDD program. 
The forested areas under government control have virtually complete open access. This is because the 
district forestry staffs are mostly engaged in community forestry activities after the implementation of 
community forestry programs and therefore do not control access to the forest. The relatively high loss of 
forest area under state control can be explained by this condition of open access.(Krishna, 2011). 
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4. MATERIALS AND METHODS 
4.1. Material 
The main materials used for this research are the remote sensing data and the software which supports the 
analysis of these remote sensing data, software for statistical analysis and for the composition of the thesis.  

4.1.1. Very high resolution satellite Geo –Eye imagery 
The Geo-Eye imagery used for this research are Geo-Eye panchromatic 0.50 cm and Geo-Eye 
multispectral 2m images recorded on 2 September 2009 (Source: ICIMOD, Nepal). The Geo-Eye 
multispectral image consisted of four bands: blue (450-510 nm), green (510-580 nm), red (655-690 nm) 
and near infrared (IR) (780-920 nm). The obtained images were already ortho-rectified and geo-referenced 
to the UTM WGS 84 coordinate system by the ICIMOD project in Nepal.  

4.1.2. Low density LiDAR data 
The Airborne LiDAR data used for this research was recording using a Leica ALS50-II LiDAR-scanner 
consisting of a laser scanner, a geodetic-quality GPS receiver and an inertial measurement unit (IMU), 
which provide information about scan angle and the aircraft coordinates. The data was collected from 16 
March to 2 April 2011 in UTM WGS 84 coordinate system (Source: FRA, Nepal). The average point 
density of the LiDAR data is 0.8 points per m2. The LiDAR scanning process was at an absolute altitude 
of 2200m and recorded with a scan frequency of 52.9 kHz.  

4.1.3. Other reference dataset 
- Topographic maps at 1:25000 scale, published by the Survey Department of the Government of 

Nepal in 1994. 
- Digital Elevation Model (DEM) with 20 m resolution (generated from contour lines of the  

topographic maps) 
- Gorkha geo-database, which consists of the following layers: watershed boundary, land cover, 

community forest boundary, roads, rivers (Source: ICIMOD and FRA, Nepal) 
- Digital camera imagery acquired in March 2011, consists of 3 bands (red, green, blue) and has a 

resolution of 0.45 m. The  imagery was ortho-rectified by FRA in Nepal  (Source: FRA, Nepal) 

4.1.4. Software 
In order to facilitate the research, different software was employed which is shown in the below table. 
Among these, Lastool was mainly used for LiDAR data processing and the Erdas Imagine 2011 and 
eCognition Developer 8.7 software was used for object based image analysis. 
 

Table 4: Software used in the research 

S.N Software Purpose 

1 ArcGIS version 10 GIS analysis
2 eCognition Developer 8.7 Object based image analysis
3 Erdas Imagine 2011 Image processing and remote sensing applications
4 LasTool LiDAR data processing
5 Treevaw LiDAR data testing
6 SPSS Statistical analysis

  7   Microsoft Excel  Statistical analysis
  8   Microsoft PowerPoint  Presentation of research
  9   Microsoft Word  Writing thesis
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4.2. Workflow of research method 

The flow chart showed below in the figure 8 summarizes the procedures of the individual tree-based 
approach for carbon estimation and uncertainty assessment through error propagation analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Workflow of the research method
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4.3. Image pre-processing 

 Image pre-processing in the research comprises two processes: image stacking and image fusion. 

4.3.1. Image stacking 
The Geo-eye imagery was obtained in five separate images (4 multispectral bands and 1 panchromatic 
band) so the first operation done was to stack the image before images fusion. This task was performed in 
Erdas Imagine 2011.  

4.3.2. Image fusion 
Image fusion is the process of merging two or more images to retain the most desirable characteristics of 
each. A panchromatic (PAN) image was fused with multispectral imagery in order to acquire the image 
that has the spatial resolution of the panchromatic imagery and the spectral resolution of the multispectral 
imagery. There are several methods that are commonly used to fuse remotely sensed images, notably IHS 
(Intensity Hue Saturation); HPF (high pass filter) and wavelet resolution merge.  
In this research, Geo-Eye panchromatic imagery was fused with Geo-Eye multispectral imagery using 
HPF (high pass filter) pan-sharpening method in Erdas Imagine 2011. In HPF resolution merge, small 
high-pass filter is applied in PAN image, and then this result is combined with the lower resolution 
multispectral data, pixel to pixel. HPF maintains the spectral properties of the original multispectral image 
and therefore the fused image has higher spatial resolution with all the bands of original multispectral 
image (ERDAS, 2011). Therefore, HPF is employed for image fusion in this research. 
As a result, a MSS pan-sharpened image with 0.5 resolution has 4 bands which will be useful for tree 
species classification and identification.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

4.3.3. Image filtering/Convolution  
Image filtering is an image enhancement technique which helps to sharpen the image objects. A moving 
window/ kernel containing an array of coefficient or weighing factors is established and moved over the 
original image pixel by pixel and the average of the values within the window is placed the result in the 
centre pixel (ITC, 2010). The process used to apply filters to an image is known as convolution.  
There are three main image filter methods: low pass filtering, high pass filtering and Laplacian filtering 
.e.g. Low pass filtering is a means for increasing class reparability of a data set consists of multi-pixel 
objects (1998). In the low pass filter method, an image is smoothed by decreasing the disparity between 

Figure 9: The image processing
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pixel values by averaging nearby pixels so the image will become blurred or smoothed and noise will be 
removed. Platt et al (2009) indicated that low pass filtering can reduce the over segmentation. In the 
segmentation task, we need only detailed outline and shapes of the trees. Hence it is necessary to remove 
the pattern of gray-level changing per pixel. Different window sized median filters can be used for 
individual tree crown delineation, for example 3-by-3, 5-by-5, and 7-by-7. In this study, 5-by-5 filter was 
used because it avoids removal of small peaks in the canopy (small trees) while maximizing the smoothing 
function (Parker et al., 2009).   

4.4. Field work  

4.4.1. Sampling design 
Sampling design was done in order to indentify the number of plots and the location of plots which direct 
the field work operation. Stratified random sampling was selected since stratification generally yields more 
precise estimates for a fixed cost than the other options (MacDicken, 1997). Stratification was based on 
community forests and random sampling was done in each stratum. The community forest is used as a 
stratum to ensure that the samples are separated in the whole study area. In addition, the REDD project in 
Ludhikhola watershed focuses on sequestering carbon through community-based forest management. 
Therefore research on carbon estimation in community forest in Ludhikhola watershed is needed. The 
number of plots is calculated through the equation taken from Community forest guideline in Nepal 
(DOF, 2004): 

a = I*A/100 
         n= a/p 

Where a is the total study area (the area of sampling); I is the sampling intensity; n is the number of plot; p 
is the area of one sample plot. 
Secondary data of local community forestry areas was used to facilitate the stratification. The number of 
plots was calculated for each stratum and plots were located randomly in stratum using ArcGIS. A map of 
the study area showing the individual stratum and all plots as well as images of plots were prepared for 
field work.  

Figure 10: Random sampling in selected community forests 
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4.4.2. Field equipment 
 
The equipment used during the fieldwork is shown in table 5 below. Geo-Eye imagery, Gorkha geo-
database, sampling plot with correct geo-reference were uploaded on iPAQ. The watershed map and plot 
images were printed for the identification of recognizable trees. 
 

Table 5: The equipment used in the field 

Instrument Purpose  

iPAQ and Garmin GPS Navigation 
Diameter tape ( 5meters) Tree diameter measurement 
Meter tape ( 30 meters) Distance measurement 

Clinometer Slope measurement 
Plot centre marker Marking plots 

Chalk Marking trees 
Haglof Vertex V4 Tree Height measurement 
Suunto compass Find direction in the field 

Data sheet Taking notes and recording data 
 

4.4.3. Data collection 
Circular plots of diameter 12.62 m with an area of 500m2 (IPCC, 2003) were established in the field. Both 
IPAQ and GPS Garmin were used to navigate to the plot center.  In each plot, individual tree 
measurements were taken for DBH, tree height and canopy density. Only trees with DBH more than 10 
cm were considered because it is generally assumed that the trees with diameter 10 cm or less contribute 
little to the total biomass carbon of a forest (Brown, 2002). Slope and aspect were record in the field. For 
the areas with slope greater than 5%, slope correction was applied. (The slope correction table is attached 
in the appendices-appendix 5). 
Data were collected in five community forests: Shikhar, Birenchok, Chisapani, Kuwadi, Ludi Damgade. 
The community forests were selected based on the accessibility and theie elevation characteristics. Among 
these, Ludi Damgade is the largest community forest and it is diverse in elevation. A previous study on 
carbon stock in Nepal also shows that Ludi-Damgade is one of the community forests that has the highest 
forest carbon stock (ICIMOD, 2010). 

4.4.4. Field data analysis 
After field work, all the collected data were entered in appropriate format and descriptive analysis was 
carried out. The trees recognized in image during the fieldwork were recorded using ArcGIS. Afterwards, 
manual tree delineation was done based on the recognized trees. These delineated trees were later used for 
the validation of segmentation accuracy as well for validation of the regression model. The tree height 
measured in the field was used to validate the LiDAR derived height.   
The DBH of identified tree was used to calculate the field -based AGB or field-based carbon of that tree 
through an allometric equation.  The field based carbon was then considered as the ground truth data for 
carbon model validation.  
In this research, the allometric equations for Shore robusta and Other species were selected from the research 
of Basuki et al (2009) in the tropical forest of Indonesia. These allometric equations were used since the 
mean annual rainfall (2000mm) and temperature (210 C to 340 C) was similar to that of the study area. It 
therefore provided the best available allometric equation for use in the study area. In addition, these 
allometric equations come together with the error of residuals, which is needed for further analysis. 
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i. TAGB = EXP [-2.193 +2.371*Ln(DBH)] …………….Allometric equation for Shorea robusta 

ii. TAGB = EXP(-1.201+2.196*Ln(DBH)) …………….Allometric equation for Other species 

Where, TAGB = Total above ground biomass, 
DBH= Diameter at breast height  

The total above ground biomass obtained from these equations is  converted to carbon stock using a 
conversion factor  (IPCC, 2007)  

 C=TAGB * CF  
Where, C= carbon stock (kg for individual tree and MgC for study area) 
TAGB = Total above ground biomass 
CF= Carbon fraction of biomass (=0.47) 

4.5. Creating the DSM, DTM and CHM from the LiDAR data  

DTM and DSM were created directly using LasTools software. Digital surface model values (DSM) were 
computed for each point by gridding the point to desired pixel size. If a cell contained no laser reflection 
point, the value of this cell was determined by averaging the height values found in the eight neighboring 
cells (St-Onge et al., 2008). The DTM is generated using the ground return (last returns) elevation values 
using an initial triangulated irregular network (TIN). Triangulation with linear interpolation is an exact 
interpolator that works by creating triangles by drawing lines between data points(Popescu et al., 2002). 
The interpolated grid cell size for both DTM and DSM was 0.5m which is the spatial resolution of Geo-
Eye imagery. The tree height information on the field data collection was used to threshold the laser 
height values in order to eliminate the effect of shrubs and understory vegetation. 
The Canopy height model (CHM) is computed as the difference between DSM and the corresponding 
DTM values. Hence, the CHM gives the interpolated height of all points in the canopy in the form of a 
regularly spaced grid with a 0.5 m pixel size. 

4.6. Image- to- image coregistration 

Image to image co-registration is the process of geometrically aligning Geo-Eye imagery with CHM in 
order to use the information of individual tree from both sources of data. The dissimilarities between the 
Geo-Eye imagery and the CHM due to differences in the acquisition process (different sensors, platforms, 
time of recording) need to be corrected by co-registration procedures. Among these, manual registration 
remains the most common way to accurately align their imaging data (Zavorin et al., 2005). In this 
research, manual registration with polynomial transformation was used to co-register Geo-Eye imagery 
with the Digital camera imagery as reference image instead of using CHM. The reason is that it would 
hardly to find the control points from CHM. Meanwhile, the ortho-rectified Digital camera imagery was 
simultaneously acquired with LiDAR data and matches with the LiDAR.. 
The procedure of image co-registration consists of two stages which can be executed using Erdas Imagine 
2011. The first stage is a standard co-registration of images based on a set of corresponding points on the 
images. This stage is meant to provide the first approximation to a matching of images, and for 
convenience the co-registration points are chosen by eye. The second stage makes use of a polynomial 
transformation to fit the conjugate matching points.  
Polynomial equations are used to convert source file coordinates to rectified map coordinates. A 
transformation matrix is computed from the image and ground coordinates of the Ground control points 
(GCPs). The matrix consists of coefficients that are used in polynomial equations to convert the 
coordinates. The goal in calculating the coefficients of the transformation matrix is to derive the 
polynomial equations for which there is the least possible amount of error when they are used to 
transform the reference coordinates of the GCPs into the source coordinates 
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Co -registration validation 

Root mean square error is used to validate the co-registration result. RMS (Root Mean Square) error is the 
discrepancy in A, Y and the total between the reference CGPs and the retransformed point. A small RMS 
error means that the desired output coordinate for a control point and the actual output coordinate for the 
same point is close. For the registered images, the higher the total RMS error is, the higher the local 
geometric distortion is.

4.7. Tree crown delineation 

4.7.1. Hybrid techniques approach 
A pre-requirement for delineation of tree crown is that the crowns should be at least visually recognizable 
as a distinct object in the remote sensing images and the spatial resolution of the image should be much 
higher than the size of tree crowns (Zhengrong et al., 2008). Many researchers have explored the use of 
segmentation technique to delineate tree crown on high spatial resolution imagery (resolution >1.0 m) e.g. 
Brandtberg et al.(1998); Pouliot et al.(2002) Ke et al (2011). There are primarily four types of segmentation 
techniques: thresholding, boundary-based, region-based, and hybrid techniques(Jianping et al., 2001).  
Among these, hybrid methods tend to combine boundary detection and region growing together to 
achieve better segmentation (Haddon et al., 1990; Jianping et al., 2001; Pavlidis et al., 1990; Tsendbazar, 
2011). This technique makes use of the phenomenon that in high spatial resolution imagery, trees appear 
as bright objects surrounded by a shaded area and the tree tops typically the brightest spot within the 
bright object. Local maxima and minima have frequently been used to detect tree tops and define crown 
boundaries, respectively (Leckie et al., 2005). Local maxima are used as seeds for growing and local minima 
are used as a restriction for growing region (Darius et al., 2002). Starting at a potential seed pixels, 
neighboring pixels are examined sequentially and merged to growing region based on the similarity to the 
seed pixels, which is defined through both the spectral variance and geometry of the object (Definines, 
2009). This process continues until a significant boundary is found and then these pixels are considered to 
belong to the region corresponding to the seed pixel (Ke et al., 2011). 

4.7.2. Tree crown delineation using eCognition software 
Based on the theories described above, tree crown delineation was done in eCognition Developer 8.7. The 
steps are as follows: 

- Image segmentation: apply a top-down segmentation algorithm to the pan-sharpened Geo-Eye 
imagery in order to cut the image into square objects with the desired size. The selected algorithm 
is a so-called chessboard with the grid size of 2 pixels (equal to 1m2). The grid size selection 
affects tree top detection. If the grid size is too small, one tree may contain more than one top. If 
the grid size is too big, the top of tree A may be assigned to the top of tree B. 

- Masking non-tree objects: non-tree objects are the objects that belong to water bodies, bare soil 
and shadows. Non-tree objects are separated from trees by selecting the certain threshold for each 
class. The aim is to avoid mistakes in the tree top detection. It can be observed from the image 
that bare soil and water have brightness that is greater than that of a tree. If they are not removed, 
the system would assign  tree tops within bare soil or water body. Masking shadow to avoid the 
situation that the seed (top tree) may grow over shadow area.  

-  Finding local maxima and local minima: The local maxima (tree tops) and local minima are 
detected based on the brightness of the image.  

- Apply region growing algorithm to the seeds: The local minima are used to define the crown 
boundaries. Local minima seeds are grown with respect to neighboring object that have the least 
mean difference to the local minima. In this way, objects that have the least difference to local 
minima are merged and grown to create the boundary of the tree crown. The tree top is then used 
as a seed point which is then expanded under region growing algorithm with the search range of 
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five objects (to detect smaller tree crown recorded in the field ). The neighbouring objects of the 
tree top are examined and added to the seed if their mean difference to the tree top seed is 
similar. Region growing continues until significant boundaries of tree crown are found.  

- Refine the shape of crown: The crown is refined and sharpened by mean of Watershed 
transformation and Morphology operation. Watershed transformation helps to split the 
overlapping tree crowns into individual tree crowns based on the splitting threshold. This 
threshold is given on the basis of expert knowledge on crown width.  The Morphology operation 
is carried out to smooth the border of the segment crowns. 
Segmentation validation 

One of the methods to validate the segmentation is by means of checking for one to one correspondence 
(Zhan et al., 2005). One to one correspondence describes the similar aspects between reference objects 
(manual digitized objects) and segments. The first aspect is the difference in area between reference 
objects and the segments they intersect. The second is the positional difference between reference objects 
and segments. The reference objects and segments are considered one to have one matching if the 
following four criteria are fulfilled (Clinton, 2010): 

1. The centroid of the reference object is in segmented object 
2.  The centroid of the segmented object is in reference object 
3. area(xi � yj) / area(yj) >0.5  (The area (xi � yj) = the area of the geographic intersection of 

reference object xi and segment yj)  
4. area(xi � yj) / area(xi) >0.5 (The area (xi � yj) = the area of the geographic intersection of 

reference object xi and segment yj)  

Clinton et al. (2010) proposed a measure which they call the closeness (D) and which considers both the 
over-segmentation and under-segmentation. D is interpreted as the closeness measure to an ideal 
segmentation result. It ranges between 0 and 1. With D =0 corresponding to an ideal segmentation. 
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4.8. LiDAR derived height 

The height of a tree is defined as the maximum value of CHM corresponding to the tree crown. The 
delineated crowns from Geo-Eye imagery were used as the zone to extract the local maximum value from 
the CHM. Within each crown, the maximum pixel value was extracted from CHM using Zonal statistic 
tool in ArcGIS 10. Zonal statistic calculates statistics on values of a raster within the zone (the crown). 
The highest value in each zone is assigned the local maxima of the zone.  

LiDAR derived height validation 

The LiDAR derived height was compared to corresponding height of the corresponding measured tree. 
Linear regression is performed between ground-measured heights and LiDAR derived heights yielded a R2 
to validate CHM created (St-Onge, 2000) 
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4.9. Object-based classification 

Once the tree crowns have been delineated, the tree species can be classified by means of the nearest 
neighborhood algorithm in eCognition Developer 8.7 software. In comparison to pixel based training, the 
object based approach of nearest neighbor requires fewer training samples. The training samples are image 
objects which are the result of the segmentation process. The species information of the object was taken 
from the field sample data. The field sample data was divided into two parts, 2/3 was used for training 
data and 1/3 was used for classification validation. The feature space was created based on the training 
samples. The object features that were selected for feature space creation are layer value of each MSS 
bands, panchromatic band; object geometry and the thematic layer information related to each object. 
Starting from the selected sample, nearest neighbor classification looks for the closet sample in the feature 
space for each image object and assigns the class for that object.  The descriptive statistic as well as the 
observation from the field shows that more than 70% of the trees in study area are Shorea robusta.  
Therefore the image was classified in two classes: 1) Shorea robusta and 2) Other species. 

Image classification validation 

The accuracy of the classified image is assessed by comparing it to reference (ground truth) data (ITC, 
2010). Accuracy assessment is done using the error matrix or confusion matrix which compares the 
classification result with true world. Accuracy assessment was done in Erdas Imagine 2011.  

4.10. Multiple regression for carbon estimation 

Regression analysis has been widely applied to spatially extend predictions of total aboveground biomass 
(TAGB) and other biophysical properties over large forested areas (Frazer et al., 2011). Above ground 
biomass or the carbon stock derived from it  is highly related to other canopy structural parameters such 
as tree crown area (Gill et al., 2000) and stem height (Fang et al., 2006; Lim et al., 2004; Næsset, 2002). 
Then, to estimate carbon, the regression model can be established between field based carbon stock and 
height or between field based carbon stock and tree crown area. 
Both simple and multiple regression models can be used for the estimation of AGB (Soares et al., 2005) 
and ultimately, carbon estimation. Research of Nakai (2009) has indicated that the multiplicative equation 
offered better results than the ones using tree height  or crown area alone. Therefore, multiple regression 
models relating field-based carbon stock with tree height (from CHM) and crown projection area (CPA) 
were developed. The significance of these models would be compared and the most significant one 
selected..  
The regression analysis contains three main steps: 

-  Prior to regression analysis, the detected and delineated trees are automatically linked with the 
field measured trees to combine the information for each tree.  Each tree has the information 
about tree height (extracted from the CHM), CPA (extracted from the tree crown delineation 
result) and field-based carbon (calculated using the appropriate allometric equation) 

- Using Microsoft Excel to develop regression analysis. The independent variables are height and 
CPA, the dependent variable is carbon (C). The developed model is called the regression predictive 
model of carbon 

- Testing the significance of the model  through an analysis of variance (ANOVA) 
The trees selected for the development of the model are the trees that are well-delineated (one to one 
matching) and correctly classified. In addition, the accuracy of predicted height of the tree has to be 
acceptable. Trees were excluded if  a CHM-extracted height was more than 1.5 times the field-measured 
height (Holmgren et al., 2004). The expected final model has the form as shown in table 6.  
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Table 6:  The expected final carbon predictive model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Outline of the multiple regression model development for carbon estimation [The diagram was 

created by combining the graphic objects from the research of Kim et al. (2010)]; Zhao et al. (2009)] 
 
Carbon model validation 

The model was validated using the test data set obtained from the field. Validation of the model was done 
by comparing the amount of carbon predicted by the model and amount calculated from the field data. 
Root mean square error (RMSE) is calculated to check the amount of error in the carbon stock map. 
 

     !"#$ � %& �'()'*�+, ……………. RMSE 

 
Where, RMSE = Root Mean Square Error,  
Cp- Carbon predicted by the model 
Co-Carbon calculated 
N-Number of observations 
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4.11. Monte Carlo Simulation 

4.11.1.  Monte Carlo Simulation introduction 
In our study, carbon stock of individual tree is the output of regression predictive model of carbon. The 
uncertainty of this output is affected by uncertainty in the input data. The uncertainty analysis is carried 
out to answer the question how the output changes with the variation in the input. Both sensitivity 
analysis and Monte Carlo analysis are used for evaluating output uncertainty based on the input (Jochem  
et al., 2009; Weir, 2002). However, sensitivity analysis is used to assess the impact of changes in each input 
parameters on the output but not the effect of error in this parameters (Larocque et al., 2008). Meanwhile, 
the purpose of uncertainty assessment carried out using Monte Carlo simulation is to combine 
uncertainties in order to analysis the changes in the output (Monni et al., 2007). 
To quantify uncertainty of forest carbon estimates, the IPCC recommends Monte Carlo analysis 
(Gonzalez et al., 2010; IPCC, 2006b). Lo (2005) recommended that Monte Carlo Simulation is especially 
useful for studies that involve step by step calculations where measurements taken at a smaller temporal or 
spatial scale are used to estimate a value at larger scales. Monte Carlo simulation is based on the repetition 
of many individual model realizations with each realization using a randomly constructed set of 
parameters. The model outputs are then aggregated into a probability distribution  which shows the 
variation in the output (Schade et al.). In simple words, Monte Carlo simulation is essentially a statistical 
analysis  (Kuo et al., 1983) which relies on repeated random input sets to compute their results. As Monte 
Carlo analysis is based on simple assumptions and does not require the development of complex 
algorithms, it constitutes a major advantage when applied to complex models (Larocque et al., 2008). The 
model can be written as Y = f (X1, X2, ..., Xk). The Monte Carlo simulation procedure for error 
propagation involves four main steps:

(1) Assign a random error for each input factor Xi 
(2) Generate randomly N (a number of realizations or iteration) sets of input factors Xi, with l =1, ..., 

N (a set of input factors is called a sample);  
(3) Evaluate the model and compute the corresponding model output Yi 
(4) Analyse the resulting output values Yi , with l = 1, ..., N. 

To give a simple example, if a tree has the measured height of 15m and the error of LiDAR 
predicted height is ± 2m, so the Monte Carlo simulation to analyse error propagation of predicted 
height of that tree consists of the flowing steps: 
(1) Assign a random error for LiDAR predicted height, for example: E1= 1m, E2= 1.2m, E2= -

0.5m… 
(2) Adding the random error to the measured height of the tree. For each realization, new value 

of tree height is generated:  
- Realization 1: H1’ = 15 + 1= 16; Realization 2: H2’ = 15 + 1.2 = 16.2; Realization 3: H3’ 

= 15 – 0.5 = 14.5 ….Realization N 
(3) From N realization, the frequency of height error can be obtained for this tree 

Many runs (N) are required to provide statistically reliable information about the predicted mean and the 
total variance. There is no formula for determining an acceptable number of iteration to use (Haness et al., 
1991),  the choice of number of iterations to include in the simulation therefore depends on the purposes 
of the model. As a result, each researcher has their own reason for the selected number of repetition. In 
the research of James (1983), 30 Monte Carlo runs were required to define the mean variance of a simple 
model. Meanwhile, Haness et al. (1991) conducted at 1000, 10 000, 100 000 iterations and explored that 
there was no significant differences the 10 000 and 100 000 iteration runs. The selection of suitable value 
for N is therefore a matter of balancing the requirements for statistical confidence level against the 
computational load (Weir, 1999).  
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4.11.2. Monte Carlo Simulation for carbon estimation 

Models used for Monte Carlo Simulation 
In this study, uncertainty impacts of different input parameters were combined to analyse the variation of 
the output using Monte Carlo simulation.  The Monte Carlo Simulation is applied separately for 2 classes: 
Shorea robusta and Other species. Each class employs two models in the carbon estimation procedure. The 
first model is the allometric equation used to estimate field-based carbon, which is used as the input for 
establishing the second model called regression predictive model of carbon. Regression predictive model of carbon 
describe the relationship between field-based carbon and parameter extracted from remote sensing data 
(The expected Regression predictive model of carbon was shown in table 6).  
The Monte Carlo Simulation starts with the task of identifying the error sources which propagate in the 
two models (different for classes). The error sources are showed in the following diagram: 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Unit of Monte Carlo Simulation 
The Monte Carlo Simulation is applied to each individual tree because the individual tree is the research 
subject or the sample unit. Specifically, we focus on the trees selected for building the regression predictive 
model of carbon, which are considered one to one matching between field measurement and remote sensing 
data. For Monte Carlo analysis, we assumed that we have n’ Shorea robusta trees and n’’ Other species trees.  

Input variables for Monte Carlo Simulation 
The accuracy of the output depends on the accuracy of both dependent and independent variables used to 
create the regression predictive model of carbon. The coefficients of the regression predictive model of carbon may 
change due to the change of input data including: field based carbon, LiDAR derived height and CPA 
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Figure 12: The error sources and the propagation of error 
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extracted from the Geo-Eye imagery segmentation. Hence, the input data sets for Monte Carlo Simulation 
contain three main variables: field-based carbon (Cfield-based); Height and CPA of each tree.  

The sources of error causing the uncertainties of Cfield-based; Height and CPA were explained in the Figure 
12. In the created input data sets, each tree will have the simulated values of Cfield-based; Height and CPA. 
These new value are used to develop regression models. The variance of the carbon stock of individual 
tree calculated based on different models is studied for uncertainty analysis.  

Random number generation  
For the first step of simulation, random number is required to simulate the stochastic nature of the model. 
Random numbers are generated from input distributions (e.g. thousands of times), and the output 
distribution is calculated based on each set of random numbers.(Monni et al., 2007). There is some 
assumption that should be met when performing this estimation procedure. The residual must be 
distributed normally, independently and with constant variance (Samalca, 2007). Gonzalez et al. (2010) 
generated random number from a normal distribution with mean =0 and standard deviation = 1 for 
Monte Carlo analyses. This method also selected for generating random number in this research. We 
called the random number for each variable is Vvariable. Vvariable is a random number (different for each 
variable) from a normal distribution with mean = 0 and standard deviation = 1.  

4.11.3. Error estimation from the error sources 

Field based carbon error (E C-field based)
Field based carbon for Shorea robusta and Other species was obtained from the allometric equations as follows: 
Cfield-based Shorea robusta = 0.47* EXP [-2.193 +2.371*Ln (DBHShorea robusta)] 
Cfield-based Other Species =0.47 * EXP[-1.201+2.196*Ln(DBHother Species)] 
 
In the analyses of field data, the sources of error are (i) filed measurement errors of tree diameter (DBH) 
and (ii) statistical uncertainty of allometric equations. We also applied the Monte Carlo approach to 
quantify the uncertainty in field measurement of carbon stock. We generated N (N=1000) realizations of 
field- based carbon stock for each tree, adding error terms for (i) and (ii) to the original value of DBH and 
Cfield-base respectively.  

Cfield-base= f(DBH + VdbhEdbh) + VallometricEallometric 
Vvariable is random number (different for each variable) from a normal distribution with mean = 0 and 
standard deviation = 1 
Edbh: standard error of DBH measured in the field 
Eallometric : standard error of allometric equation (taken from reference) 
 
 
The process is as follows: 

Step 1: For each tree, generate a random number VDBH, Vallometric 
Step 2: For each tree, generate a random error:  

� DBH = VdbhEdbh 

� allometric = VallometricEallometric 
Step 3: Adding the error of parameter for each tree:  

DBH’ = DBH + VdbhEdbh 
Step 4: Repeat step 1, 2and 3… N times for each tree and store the results. Each individual tree 
has N combination of simulated DBH’ and VallometricEallometric 

Step 5: From each combination, new value of field-based carbon of the tree is calculated 
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Step 6: Calculate the RMSE between the simulated field-based carbon and initial value obtained 
from allometric equation (without simulation), store the result. 
Step 7: Repeat step 5 and 6… N times 
Step 8: Calculate E C-field based 

Edbh is expressed as the relative RMSE of the difference between the initial diameter measurement and the 
repeated measure. Due to the time limitation of the research, Edbh is taken from previous research of field 
measurement research of DBH. Gonzalez et al. (2010) estimated Edbh as the diameter error from repeated 
measures of a random sample of 169 trees (19 cm<148cm) and Edbh equalled 0.027.  
For Eallometric, we used the standard error of each equation which goes along with the allometric equation 
taken from the research of Basuki et al (2009). For each of the trees chosen for regression predictive model of 
carbon, 1000 realizations were generated. The simulated -./��0��–1�	�� for individual tree is calculated based on 
the equation:  

������������������������������-./��0��–1�	��� � ��2223 4 -56789):;<79;88�=7;86>;?6*@< A 

 -.field-based   is the  simulated value of field based carbon for individual tree.  
The field based carbon error is the RMSE between the simulated field-based carbon value and the initial 
field-based carbon from original allometric equation: 

            

                     E C-field based  =  !"#$ � %& �'./��0�B1�	���)'CDEFGHIJKEG�+,   

Height extraction error (E Height) and CPA extraction error (E CPA) and the involvement of tree detection error 
A visual interpretation was used to link automatically delineated crown segments with trees measured on 
the ground. For each segment, three different cases can occur: (1) no field tree is within the segment, (2) 
one field tree is within the segment, and (3) more than one field tree is within the segment. Only the case 
(2), the field tree was linked to the delineated tree crown (tree detection) for generating the regression 
predictive model of carbon. The wrong link between delineated crown and the tree measured on the ground 
mostly happend to poor delineated crowns. The segmentation accuracy is acquired in percentage, for 
example S (%), then the error of segmentation is S’ (%) = 100 – S. It means there is S’ (%) of delineated 
crowns might wrongly link to the trees measured on the ground. 

The poor-delineated tree has an error magnitude lager than the well-delineated tree. Therefore, the data set 
was divided into well-delineated trees and poor-delineated trees in order to involve the linking error 
between field measurement and satellite data in error propagation analysis. The error of CPA extraction 
contains E CPA-well and E CPA-poor in which the E CPA-well is estimated from the well-delineated crown dataset 
and E CPA-poor is obtained from the poor-delineated crown dataset. The error of CPA extraction is caused 
by the following sources: understory and overlapping crown, shadow in the image, inclination angle, 
automatic segmentation, shadow. ECPA is the RMSE of estimates height; calculate the difference CPA 
taken from manual digitization and the CPA taken from segmentation. 
 

         E CPA-well   =   !"#$ � %& ���-LMNOPP�QOPRSOTUOQ�VWXNS)-LMQRYRURZOQ�+,   

 

         E CPA-poor   =   !"#$ � %& ���-LM[XXW�QOPRSOTUOQ�VWXNS)-LMQRYRURZOQ�+,   
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Similarly, the error of LiDAR derived height also contains E Height-well and E Height-poor in which the E Height-well 
is estimated from the well-delineated crown dataset and E Height-poor is obtained from the poor-delineated 
crown dataset. The error of LiDAR derived height is affected by the following sources: LiDAR quality 
data (point density, seasonal acquired), CHM creation procedure (interpolation algorithm), co-registration 
error, and image segmentation error. Delineation error leads to the error of CPA. In addition, it is also a 
problematic to used delineated crown to derive information of tree height. Eheight is the RMSE of estimates 
height; calculate the difference between height measurement from the field and height extracted from 
CHM.  

E Height-well = ��!"#$ � %& ���\ORY]U^R_M!�QOWR`OQ�aWXb�NOPP�QOPRSOTUOQ�VWXNS)\ORY]UaROPQ�cTdOQ�+,  

E Height-poor = ��!"#$ � %& ���\ORY]U^R_M!�QOWR`OQ�aWXb�[XXW�QOPRSOTUOQ�VWXNS�)\ORY]UaROPQ�cTdOQ�+,  

The involvement of classification error in Monte Carlo Simulation process  
The image classification will be validated by the error matrix, from which the classification accuracy is 
obtained in percentage. For example, the accuracy of Shorea robusta is A% (A�100%) and the accuracy of 
Other species is B % (B�100%). In other words, classification error for Shorea robusta is A’ (%) = 100 – A; 
and the classification error for Other species is B’ (%) = 100 – B. 
If an individual tree is classified incorrectly (Shorea robusta is classified as Other species or Other species is 
classified as Shorea robusta), the affected variable is Cfield-based. The Cfield-based of incorrect classified Shorea 
robusta is obtained from the allometric equation for Other species and the Cfield-based of incorrect classified 
Other species  is taken from the allometric equation for Shorea robusta. The error of classification therefore 
affects the regression predictive model of carbon stock. In order to involve the classification error, one 
more variable should be generated, Cfield-based-wrong.  
 

Table 7: Allometric equation applied for incorrect classified trees 

Class Allometric equation to calculate Cfield-based-wrong 

Shorea robusta Cfield-based-wrong = 0.47 * EXP(-1.201+2.196*Ln(DBH)) n 
  (the allometric equation of Other species) 

Other species Cfield-based –wrong = 0.47* EXP [-1201 +2.196*Ln (DBH)     
                (the allometric equation of Shorea robusta) 

 

Calculate field-based carbon stock error of incorrect classified tree (E C-field based-wrong) 

Similar to E C-field based, E C-field based-wrong is also obtained from Monte Carlo Simulation. The only 
difference is that the allometric equation used for simulation is exchanged.  
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4.11.4. Monte Carlo Simulation process 
The Monte Carlo Simulation process is as follow: 

Step 1: For each tree, generate random number Vvariable  
Step 2: For each tree, generate random error  

� Cfield-based = V C-field based . E C-field based 
� Cfield-based –wrong= V C-field based-wrong. E C-field based-wrong 
� Height well = V Height-well . E Height-well 
� Height poor = V Height-poor . E Height-poor 
� CPA well = V CPA-well . E CPA-well 
� CPA poor = V CPA-poor . E CPA-poor 

Step 3: Adding the error of parameter for each tree: 

C’field based =Cfield-based + � Cfield-based 
C’field-based –wrong = Cfield-based -wrong + � Cfield-based -wrong 
Height’well = Height + � Heightwell 

Height’poor = Height + � Heightpoor 

CPAwell’ = CPA + � CPAwell 
CPApoor’ = CPA + � CPApoor 

Step 4: Repeat step 1 and 2, 3 N times for each tree and store the results. N sets of selected trees 
(n’ Shorea robusta tree and n’’ Other species tree) will be generated, each tree has the combination of 
C’field-based; C’field-based –wrong;  Height’well’; Height’poor;   CPA’well; CPA’poor 
Step 5: In each generated set, randomly select:  

� From n’ Shorea robusta tree”: 
(4)  Randomly select S’ (%), we have a number of n’*S’/100 trees. These trees will 
be assigned as poor-delineated trees and the parameter Height is taken from 
Height’poor ; the parameter CPA is taken from CPA’poor. Store the result 
(5) From previous result, randomly select A’ (%), we have a number of n’*A’/100 
trees.  These trees will be assigned as incorrect classified tree and the field based 
carbon is taken from C’field-based –wrong.  

� Similarly, from n’’ Other species tree” 
(6) Randomly select S’ (%), we have a number of n’’*S’/100 trees. These trees will 
be assigned as poor-delineated trees and the parameter Height is taken from 
Heighpoor’; the parameter CPA is taken from CPA’poor. Store the result. 
(7) From previous result, randomly select n’’*B’/100 trees which are assigned as 
incorrect classified tree and the field based carbon is taken from C’field-based –wrong. 

Step 6: Generate the regression model based on the selected combination. This model called 
simulated regression model.  
Step 7: Calculate carbon with the simulated regression model for each tree  
Step 8: Calculate the RMSE between the carbon estimated from simulated regression model and 
initial regression model which was created with the original set of data (without simulation), store 
the result 
Step 9: Repeat step 5, 6, 7 and 8 …N times 
Step 10: Analysis the propagated error and the error frequency 

As there are many variables and symbols may cause confusion, the variables and symbols table is 
introduced in the following table: 
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Table 8: Table explains the variables and signs in Monte Carlo Simulation 

Variable Meaning 

Individual 

simulated 

error 

Meaning 
Estimated 

Error 
Meaning 

Cfield-based 
Field-based carbon taken from true 
allometric equation  � Cfield-based

Random error of  
Cfield-based 

E C-field based 
Error of  

Cfield-based 

Height Tree height extracted from CHM � Height Random error of 
Height E Height 

Error of 
Height 

CPA Crown projection area taken from 
Image segmentation result � CPA Random error of 

CPA ECPA Error of CPA 

Cfield-based –

wrong 

Field-based carbon obtained from 
the wrong allometric equation (i.e in 
case of tree is incorrectly classified 

�Cfield-based –

wrong 

Random error of 
Cfield-based –wrong 

E C-field based 

wrong 

Error of  

Cfield-based wrong 

C’field-based 
Simulated field-based carbon  

(= Cfield-based + � Cfield-based) 
 

 
 

 

C’field-based- 

wrong 
Simulated C’field-based- wrong 

(=  Cfield-based –wrong+ � Cfield-based –wrong) 
 

 
 

 

Height’well 

Simulated Height with the error 
obtained from well-delineated 
segments (= Height + � Heightwell ) � Heightwell

Random error of 
extracted Height 
from well-
delineated 
segments 

E Height-well 

Error of 
extracted 
Height from 
well-delineated 
segments 

Height’poor 

Simulated Height with the error 
obtained from poor-delineated 
segments (= Height + � Heightpoor ) �Heightpoor

Random error of 
extracted Height 
from poor-
delineated 
segments 

E Height-poor 

Error of 
extracted 
Height from 
poor-delineated 
segments 

CPA’well  

Simulated CPA with the error 
obtained from well-delineated 
segments 

(= CPA + � CPA well ) 

� CPAwell 

Random error of 
extracted CPA 
from well-
delineated 
segments 

E CPA-well 

Error of 
extracted CPA 
from well-
delineated 
segments 

CPA’poor 

Simulated CPA with the error 
obtained from poor-delineated 
segments 

(= CPA + � CPA poor ) 

� CPApoor 

Random error of 
extracted CPA 
from poor-
delineated 
segments 

E CPA-poor 

Error of 
extracted CPA 
from poor-
delineated 
segments 

Other Character: N: time generating regression predictive model of carbon;   n’: number of Shorea robusta tree;  

n’’: number of Other species tree;   A: Accuracy of classification (Shorea robusta); A’: Error of classification (Shorea 
robusta);  ;   B: Accuracy of classification (Other species); B’: Error of classification (Other species);  

S: Accuracy of segmentation; S’: Error of segmentation          
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Figure 13: Outline of a Monte Carlo simulation process for each individual Shorea robusta tree 

Randomly select n’*A’/100 trees 

Adding error for each variable: 
C’field based =Cfield-based + � Cfield-based 
C’field-based –wrong = Cfield-based -wrong + � Cfield-based -wrong 
Height’well = Height + � Heightwell 

Height’poor = Height + � Heightpoor 

CPAwell’ = CPA + � CPAwell 
CPApoor’ = CPA + � CPApoor 

Generate random number Xvariable for each variable 

Generate random error: 
� Cfield-based = X C-field based . E C-field based 
� Cfield-based –wrong= X C-field based-wrong. E C-field based-wrong 
� Height well = X Height-well . E Height-well 
� Height poor = X Height-poor . E Height-poor 
� CPA well = X CPA-well . E CPA-well 
� CPA poor = X CPA-poor . E CPA-poor 

Repeat  
N time 

Realization1 

Realization 2 

C’field based 1    C’field-based-wrong 1    Height’well 1    Height’poor 1    CPA’well 1    CPA’poor 1         

C’field based2     C’field-based-wrong2    Height’well 2    Height’poor 2     CPA’well 2    CPA’poor 2        

................................................................................................................................. 

C’field based n’  C’field-based-wrong n’  Height’well n’    Height’poor n’   CPA’well n’     CPA’poor n’         

Realization N 
 C’field based 1    C’field-based-wrong 1    Height’well 1    Height’poor 1    CPA’well 1    CPA’poor 1         

C’field based2     C’field-based-wrong2    Height’well 2    Height’poor 2     CPA’well 2    CPA’poor 2        

................................................................................................................................. 

C’field based n’    C’field-based-wrong n’ Height’well n’    Height’poor n’   CPA’well n’   CPA’poor n’       

 n’ is the number of Shorea robusta tree 
considered one to one matching  

C’field based 1    C’field-based-wrong 1    Height’well 1    Height’poor 1    CPA’well 1    CPA’poor 1         

C’field based2     C’field-based-wrong2    Height’well 2    Height’poor 2     CPA’well 2    CPA’poor 2        

................................................................................................................................. 

C’field based n’   C’field-based-wrong n’  Height’well n’    Height’poor n’  CPA’well n’    CPA’poor n’          

Repeat 
N time 

Randomly selected 1 combination 
of C’field-based; C’field-based-wrong 
Height’well, Height’poor,, CPA’well,  
CPA’poor for tree 1 to tree n’ 

Randomly select n’*S’/100 trees 

Assign Height and CPA for each tree” 
n’*S’/100 trees: use the value of 
Height’poor;  CPA’poor 
n’ - n’*S’/100 trees: use the value of  
Height’well;  CPA’well 

Assign field based carbon for each tree
n’*A’/100 trees: use the value of  
C’field-based-wrong 
n’ - n’*A’/100 trees: use the value of 
C’field-based 

Generate regression models 
C = a1*CPA + b1*Height + c 

...... 

C = an*CPA + bn*Height + c 

Calculate carbon for each tree based 
on the new models 

Calculate the variation of carbon stock

Study the effect of error propagation
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4.11.5. Monte Carlo Simulation implementation and validation 
The input data was prepared in Excel Microsoft Office. The function NORMSINV(RAND()) was used to 
generate random number to generate random error for each parameter. Visual Basic Language is applied 
to generate N time of simulation and the results are stored in the Excel file type.  
In practice, the Visual Basic method described above is rather cumbersome in its operation and the 
computation time is quite long for 1000 realizations. Therefore, a professional programmer rewrote the 
procedure in IDL programming language, which enables the routines to be significantly speeded up. 
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5. RESULTS 

5.1. Descriptive statistics 
In the field work, forest stand parameters data of 2935 trees were collected in 86 plots within five 
community forests in the Ludikhola watershed, Gorkha, Nepal. Out of these trees, about 265 trees were 
recorded as understory and lopped trees, 982 trees were detected on the image and 369 trees were 
digitized as a source of reference data. In total, 28 species were recorded, of which Shorea robusta is the 
dominant species (accounting for 75 % of total) and then followed by Schima wallichi  (accounting for 13 
%). The contribution of other species for example Rhus wallichi, Castanopsis Indica, Terminalia alata and Pinus 
Roxbughii are less than 3%. There are some species that can be rarely observed in the field, such as Spondias 
pinnata or Phlogacanthus thyrsiflorus (only one tree of each species was recorded). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Species composition in the study area 

 
The measured DBH and height of Shorea robusta , Schima wallichi and other species were analysed and 
presented in the following box-plots (Fingure 15).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Box-plot of DBH and height of Shorea robusta, Schima wallichi and other species 
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The average DBH of Schima wallichi and Shorea robusta are more than that of other species. As for height, 
Shorea robusta is the tallest species and Schima wallichi has the average height lower than the average height 
of other species. From the field observation and recorded data, Schima wallichi is primarily under the crown 
of Shorea robusta and other species. Therefore, it is difficult to detect Schima wallichi on the image. 

5.2. Canopy Heght Model 
The canopy height model was created by subtracting DSM to DTM. The pixel value of CHM, which 
represents the height of cover vegetation, was filtered to the range of 0 to 40 (0-40m). The reason to select 
the range is that the maximum measured height is not in excess of 35 m. 

5.3. Image- to- image coregistration  
The root mean squared error (RMSE) obtained from the process of co-registering the Geo-Eye imagery 
with the ortho-rectified digital camera imagery was 0.39 m. The following image shows an example of the 
co-registration process. 
 

 

 
 
 
 
 

Figure 16: Canopy height model and 3D-view of canopy height model 

Figure 17: Co-registration result
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5.4. Tree crown delineation
Individual tree crown was delineated using Region Growing approach, the result of image segmentation 
process is shown in figure 20: 
 
 

 
 
The total 369 trees were digitised as the reference to assess the accuracy of segmentation, classification 
result as well as the extracted height from the CHM. Accurate segments are the segments that have one to 
one matching with the corresponding reference crown. The one to one matching criteria were introduced 
in the Methodology chapter. 
Out of 369 trees, there are 265 trees meet the one to one matching criteria. Thus, the segmentation 
accuracy in general is 71.9 % (28.1% error). It means 71.9 % of total reference crowns were matching to 
Region Growing crown delineation with 1:1: correspondence. The higher the percentage of 1:1 matching 
indicates higher accuracy.  
In addition, the quality of segmentation outputs are defined in terms of under and over segmentation as 
well as goodness of fit (D). The goodness of fit (D) is the function of the degree of under and over 
segmentation. The obtained D value is 0.32. As the goodness of fit increases the degree of mismatch 
between the segmented and reference objects increases which indicates minimum accuracy. Over 
segmentation yields commission errors as one tree is segmented to more than one object for one reference 
tree. If there is no tree is identified for one reference tree exist, under segmentation or omission errors are 
made. 
 

Table 9: The accuracy assessment result of segmentation 

 

Class 

Under 

segmentatio

n 

Over 

segmentation
D 

One to 

one 

matching 

crowns 

Accuracy of 

segmentation 

S (%) 

Error of 

segmentation

S’ (%) 

Shorea robusta 0.101 0.427 0.32 216/301 71,8% 28.2% 
Other species 0.11 0.425 0.33 49/68 72,0% 28% 

All trees 0.104 0.424 0.32 265/369 71.9% 28.1% 

Figure 18: Image segmentation result
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5.5. Canopy height model validation 
Within each delineated crown, the maximum value derived from the CHM is assigned as the height of 
individual tree. The linear regression model was used to relate the LiDAR-derived heights with the field 
inventory data of the individual trees. The independent variable is LiDAR-derived height and dependent 
variable is the measured height. Of the 369 trees, one third was selected randomly to validate the LiDAR-
derived height of individual tree. The obtained coefficient of determination is 0.72. The RMSE is 2.68 (m), 
RMSE in percentage is 17.9%.  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

5.6. Object-based image classification 
The reference dataset of 369 trees was randomly divided into two parts, two third was used as training 
data, one third was used as validation data. The delineated crowns were used to classify into two classes: 
Shorea robusta and Other species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Predicted and field- measured height

Figure 20: Map of tree species in the study area
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The classification result was validated using 123 trees. Confusion matrix of errors and accuracies are 
shown in the following table:  

 
Table 10: Confusion matrix of classification error 

Class Name 
Reference Data Classified 

totals 

Error of 

commission 

(%) 

User’s 

accuracy 

(%) Shorea robusta Others 

Shorea robusta 78 3 81 3.7% 96.3%
Others 20 22 42 47.6% 52.4%
Totals 98 25 123

Error of omission (%) 20.4% 12%
  Producer's accuracy (%) 79.6% 88%

Overall Classification Accuracy =     81.30%          
 
Overall classification accuracy is 81.30% (19.7% error) and kappa is 0.4023. Shorea robusta was classified 
better compared to Other species with Producer’s accuracy is 79.6% and Users accuracy is 96.3%.  

5.7. Regression analysis 
Out of a total of 369 trees, 73 Shorea robusta trees and 26 Other species trees was used for regression analysis. 
Firstly linear regression analysis was used to test whether CPA and LiDAR-derived height of individual 
crown could explain the amount of carbon stock of individual tree. The test was applied for the two 
classless: Shorea robusta and Other species. Analysing the result will help us to make sure that it makes sense 
to include both independent variables (CPA and Height) in multiple regression models.  
 

Table 11: The relationship between CPA and Height with the carbon stock of Shorea robusta 

Shorea robusta

Regression Statistic CPA (segment) Height (LiDAR) 

Multiple R 0.782579 0.820546 
R Square 0.612429 0.673296 
Adjusted R Square 0.606971 0.668695 
Standard error 37.2344 34.18581 
Observations 73 73 

Coefficient
Intercept -115.411 -99.5807 
Slope 11.18141 10.93337 

P-value
Intercept 4.29E-08 8.35E-09 
Slope 2.91E-16 6.46E-19 

One Way ANOVA test
F 112.1924 146.3223 
F significant 2.91E-16 6.46E-19 
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Table 12: The relationship between CPA and Height with the carbon stock of Other species 

Other Species

Regression Statistic CPA (segment) Height (LiDAR) 

Multiple R 0.763434 0.731133
R Square 0.582832 0.534555
Adjusted R Square 0.567381 0.517316
Standard error 29.59039 31.2557
Observations 29 29

Coefficient
Intercept 218.5738 8.381427
Slope -5.90025 6.284426

P-value
Intercept 8.72E-12 0.65129
Slope 1.46E-06 6.64E-06

One Way ANOVA test
F 37.72208 31.009
F significant 1.46E-06 6.64E-06

 
It can be seen from the above two tables that, both CPA and height have a significant relationship with 
the amount of carbon of each individual tree. Therefore, it is significant to involve both CPA and height 
in the multiple regression analysis to estimate carbon. In the multiple regression model, the independent 
variables are CPA and height and the dependent variable is carbon. The carbon model was built for 
species class. 

Table 13: Multiple regression analysis for Shorea robusta and Other species 

Shorea robusta Other Species 

Regression Statistic Regression Statistic 

Multiple R 0.872763 Multiple R 0.82393
R Square 0.761716 R Square 0.678861
Adjusted R Square 0.754908 Adjusted R Square 0.654158
Standard error 29.40335 Standard error 26.45676
Observations 73 Observations 29
Coefficient Coefficient
Intercept -139.75 Intercept 125.3983
Slope CPA 5.886757 Slope CPA -3.85821
Slope Height 7.133373 Slope Height 3.500388
P-value P-value
Intercept  1.49E-13 Intercept 0.002566
Slope CPA 2.82E-06 Slope CPA 0.002087
Slope Height 6.05E-09 Slope Height 0.009776
One Way ANOVA test One Way ANOVA test
F 111.8833 F 27.48093
F significant 1.58E-22 F significant 3.86E-07
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It is also needed to test the correlation of CPA and height to ensure that there are no relationship between 
CPA and height of the tree. The correlation between CPA and Height is calculated bases on the variance 
inflation factors (VIF): 

VIF=1/(1-R2) 
Where R square is the coefficient of determination obtained from  regression analysis of CPA and height. 
The rule is VIF >10 indicate that multi-collinearity may influence linear regression analysis. For Shorea 
robusta and Other species, the value of VIF is 4.1 and 3.0 respectively. Therefore, we can conclude that there 
is no relationship between CPA and tree height. The One way Analysis of Variance (ANOVA) test 
indicates the significant of the model. From the table 13, it can be clearly seen that explanation of carbon 
stock by segmented CPA and LiDAR derived height was statistically significant at 95% confidence level. 
Model validation 

A linear regression model was applied to validate the developed carbon predictive model above. Measured 
and predicted carbon stocks were plotted against each other and the regression co-efficient was calculated. 
The coefficient of regression for Shorea robusta is 0.68 and for Other species is 0.62. The RMSE is equal to 
36% for Shorea robusta and 23.8% for Other species. 
 

a. Shorea robusta                                                                b. Other species 

5.8. Monte Carlo Simulation implementation 

5.8.1. Error estimated based on the error sources 
The Monte Carlo Simulation process was applied separately for both classes Shorea robusta and Other species. 
The input table contains the number of tree used for regression predictive model of carbon. In order to operate 
the simulation process, the error of each parameter was estimated. The following table shows the range of 
error as the input for Monte Carlo Simulation: 
 
 
 
 
 
 
 
 
 
 

Figure 21: Scatter plot of measured carbon stock and predicted carbon stock 
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Table 14: The magnitude of various errors used for Monte Carlo Simulation 

Estimated error 
Value 

Shorea robusta Other species 

E C-field based 2.1 (kg) 4.5 (kg) 

E C-field based wrong 4.3 (kg) 2.6 (kg) 

E Height-well 2.6 (m) 5.2 (m) 

E Height-poor 4.4 (m) 6.1 (m) 

E CPA-well 6.5 (m2) 6.8 (m2) 

E CPA-poor 12 (m2) 11.6 (m2) 

 Other errors 

 Shorea robusta Other species 

Segmentation error 28.3% 28% 

Image classification error 3.7% 47.6% 

Standard error of allometric equation 0.95 (kg) 3.35(kg) 

 

5.8.2. Output of Monte Carlo Simulation 
The Monte Carlo Simulation process is aimed at generating different sets of input data by adding random 
error for each parameter.  Each realization created one regression predictive model of carbon. After N 
realizations, N set of coefficient and intercept was obtained. From that, the carbon stock of the individual 
tree as well as the carbon stock of study area can be calculated and compared with the calculated value 
without error. 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.8.3. Analysis result of Monte Carlo Simulation 
Monte Carlo studies result in a large amount of data to be analysed (Hutchinson et al., 1997). For this 
reason, two analyse approached were selected to analyse the results of Monte Carlo simulation process.  
 
 

Figure 22: An example of the output of Monte Carlo Simulation 
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The variation of predicted carbon stock in the study area 
From the set of simulated regression model (1000 model), 50 models were randomly selected for each 
class. Afterward, these models were used to calculate carbon stock for the total study area.  The figure 23 
shows the result of 50 simulation of carbon stock in the study area. The straight line shows the estimated 
carbon stock using the carbon predictive model without error propagation simulation. The zigzag line 
shows a distribution of possible values for carbon stock in the study area.  The value of carbon stock in study 
area varies between 35ton/ha and 42.5 ton/ha. 

 
Figure 23: The variation of carbon stock in the study area 

The variation of predicted carbon stock of individual tree 

The variation of predicted carbon stock of individual tree can be extracted from the simulation results. 
The figure (24) and (25) are two example of the extracted information about predicted carbon stock 
variation. In almost all cases, the amount of carbon stock varies in the range 1 to 10 kg of carbon of 
individual tree. There are some extreme cases, in which, the variation of carbon stock is around 20 kg for 
small tree (DBH<20), and around 30 kg for bigger tree (DBH>20). These cases are corresponding to the 
scenario that the tree is wrongly classified. 

 
 Figure 24: The variation of carbon stock of individual tree (Shorea robusta) 
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 Figure 25: The variation of carbon stock of individual tree (Other species) 

Monte Carlo Simulation validation 

The results which are obtained from IDL programming language program were found to be similar to 
those from the Visual Basic program. The following figures show the comparable results from Visual 
Basic program IDL program. 

 
a. Output of Visual Basic program (Shores robusta)        b.  Output of IDL program (Shores robusta)         

 
 
c.  Output of Visual Basic program (Other species)             d. Output of IDL program (Other species)         

 Figure 26: Outputs of Visual Basic and IDL programs
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From the results of Monte Carlo simulation obtained after using IDL program, the mean of simulated 
carbon stock from 100 realizations were calculated for one individual tree. This mean value was compared 
with the mean of simulated carbon stock from 100 realizations for the corresponding tree using the results 
obtained from Visual Basic model. The comparison was executed for both Shorea robusta and Other species. 
The results show the comparable resultsfrom Visual Basic program IDL program. 

 
Figure 27: Validation of simulated carbon stock of 73 individual Shorea robusta - trees using the result of 

Visual basic and IDL program 

 
Figure 28:  Validation of simulated carbon stock of 29 individual Other species -trees using the result 

of Visual basic and IDL program 

 
 
 
 



ERROR PROPAGATION IN CARBON ESTIMATION USING THE COMBINATION OF AIRBORNE LIDAR DATA AND HIGHT RESOLUTION GEOEYE SATELLITE IMAGE

45

6. DISCUSSION

6.1. Field based carbon estimation 
The error of field-based carbon estimation for individual tree is primarily related to the allometric equation 
and the field measurement of DBH. In this research, the standard error of the allometric equation is 
considered in the error propagation process. However, the uncertainty of allometric equation selection 
could not be explored because the tree in study area does not have its own allometric equation. The 
allometric equation was selected based on the rainfall and the temperature of study area only whereas 
other information of tree age, soil type and stand structure also needed to be considered.  
The error of DBH measurement propagates to carbon estimation through the allometric equation. Several 
researches have noticed the contribution of DBH measurement error in final biomass estimation. Chave et 
al (2004) demonstrated that the error of DBH measurement proportionally relates to the magnitude of 
DBH, for example, the tree with 30 cm DBH has a typical error of 0.27 cm. However, in the research of 
Chave et al (2004), the mean error of DBH measurement is not mentioned. Gonzalez et al (2010) assessed 
the DBH measurement error by repeated measures of a random sample of 169 trees (19cm<dbh<148cm) 
and determined the error of DBH measurement is 0.027. This 0.027 cm error of DBH measurement was 
used in our research.  
In our research, the error of field based carbon estimation may cause 2.1 and 4.5 kg error in carbon 
estimation for Shorea robusta and Other species, respectively. In the research of Chave et al (2004), the error of 
AGB due to the error of DBH measurement error was found to be in the range between 0.235 to 0.547 kg 
in AGB estimation (or 0.03 to 0.25kg C). Chave et al (2004) also studied the effect of allometric equation 
selection separately and cited that an error of greater 20% on the AGB estimate due to the choice of 
allometric equation.  

6.2. Tree crown delineation 
The accuracy assessment of individual tree crown delineation was obtained by one to one matching of 
manually digitized reference polygons to automatic segments. One to one matching of the segements 
resulted in 71.9%. The uncertainties of tree crown delineation may due to the algorithm used to delineate 
the tree crown as well as the image quality.  
The Region growing algorithm for individual tree delineation releases the satisfactory results in previous 
study (Broadbent et al., 2008; Darius et al., 2002). The accuracy of segmentation achieved in this study is 
almost exactly similar to the results of research of Bunting et al (2006) who obtained 72% well isolated 
trees. Tiede et al. also reported 72% accuracy of crown delineation of the tree in forest area Germany. Ke 
et al. (2011) obtained the accuracy of 70% while using region growing to delineate the tree crown for 
Norway spruce trees. 
However, in dense forest area, the neighbouring trees might have shade and obscure the edges of their 
neighbours which results in darker image values at tree boundaries and leads to the identification of false 
seeds (local minima and local maxima) (Li et al., 1992). The over-segmentation produced multiple 
segments overlapping with a single reference object. On the other hand, under-segmentation may produce 
larger segments which contain the reference (Ke et al., 2010). In our study, the number of tree over 
segmentation was found more than the tree under segmentation. Among the reference crowns, Shorea 
robusta has 81 over-segmented crowns and only 4 under- segmented crowns; Other species class poses 16 
over segmented crowns and 3 under segmented crowns. The reason for these uncertainties may also be 
explained by the complex forest structure in the study area. We have observed the overlapping and 
intermingling situation in almost sampling plot.  
The shadow is also the main factor causing uncertainties in crown delineation (Martinez Morales et al., 
2008). The shadow in the image is due to the affect of view angle, topography and sun elevation. The 
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image for this study was acquired around 10a.m with view area within ±220 off-nadir with sun angle 450. 
The view of ±220 off-nadir may result in casting high shadows because the trees trend to lean away from 
the nadir. In addition, the study area is on the mountainous terrain, therefore, topographic distortions is 
observed negatively affect the image quality by causing more shadow effect. The poor spectral separability 
between different species is also one of reasons causing poor delineated crown. Additionally, there are a 
number of trees cannot delineated because of the weak signal. 
The tree crown delineation accuracy indirectly affects the LiDAR derived height and classification 
accuracy. Ke et al. (2010)  highlighted that better segmentation lead to higher classification accuracy. In 
addition, poor delineated crowns pose challenges when relating image-based crown delineation results to 
field measurement (Pouliot et al., 2002). 

6.3. LiDAR derived height 
Each crown delineated from the Geo-Eye imagery is considered an individual tree. The height of one 
individual tree is the maximum pixel value of CHM which is inside the boundary of the tree crown. In 
general, the height derived from LiDAR data (point density of 0.8/m2) fitted quite well with the measured 
height from the field with the R2 of 0.72. Compared to the research of Leckie et al (2003) in coniferous 
forest, the R2 when fitting measured height and predicted height yields 0.84  with the LiDAR point density 
of 2/m2 for . With the same point density (2/m2), St-Onge (2000) archived the R2 of 0.90 for coniferous 
forest. Reitberger et al (2007) results indicate that the detection rate for coniferous trees is 61 % and for 
deciduous  trees 44 %, respectively 7 % of the detected trees are false positives. There are a limited 
number of researches on the LiDAR derived height in the deciduous forest and tropical forest (Asner et 
al., 2011). Drake et al.(2002) examined the relationship between corresponding LiDAR and field profile 
metrics and achieved R2 of generally 0.83. 
There are many reasons causing the error of LiDAR derived height. Firstly, the LiDAR point does not hit 
the top of the tree (St-Onge et al., 2001), especially in dense forest like the study area, and leads to the 
inaccurate predicted height. In addition, the extracted tree height in this study also depends on the 
delineated crown from Geo-Eye imagery. If the crown is poor delineated, the top of tree A may be placed 
in the crown of tree B. The residual of DTM and DSM interpolation process is also one source of errors. 

6.4. Error of CPA and height  from well-delineted and poor-delineated segments 
In our study, the crown delineation accuracy is the factor that mostly affects the accuracy of carbon 
estimation. The reason is that inaccurate delineated crown leads to the error of CPA and extracted height 
which are the independent variable in the carbon predictive model. The error magnitude of extracted CPA 
and height from poor delineated crowns is obviously larger than the error magnitude of well-delineated 
tree crowns.  With the aim at uncertainty analysis, the delineated crown is necessary to separate in two 
sets, one is well-delineated and one is poor-delineated. 
Lim et al (2003) highlighted that the CHM is generally underestimate the measure height, the height was 
underestimated by 2.1-3.7m. Næsset (1997) also found that the mean of the LiDAR canopy heights within 
each stand underestimated ground-based estimates by 4.1–5.5 m. In our study, the error of LiDAR- 
extracted height is mainly due to the under-estimation. The error of LiDAR-derived height of well 
delineated crowns (2.6 m for Shorea robusta and 5.2 m for Other species) is less than the error of poor 
delineated crowns (4.4 m for Shorea robusta and 6.1 for Other species). Leckie et al (2003) also indicated that 
the poor delineated crown produced poor height estimate. In his research, Leckie et al (2003) found the 
error of height estimate from poor isolated crown ranging from 3.5 to 10 m mean while the height 
estimate error of good match tree is within 0.6 to 2.0 m.  
Song et al.(2010) started that the error from delineation of trees crown can affect the result of modelling 
DBH based on CPA. The error of CPA of well-delineated tree crown is 6.5 m2 and 6.8 m2 for Shorea 
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robusta and Other species, respectively. Meanwhile, the error of CPA of poor-delineated tree crown is almost 
double 12 m2 and 11.6 m2 for Shorea robusta and Other species, respectively. 

6.5. Object based image classification  
The classification accuracy achieved in this study gives reasonable results, with a classification accuracy of 
80 %.  This result is comparable to the classification accuracy of 77 % obtain from the research of 
Erickson (2004) with less than 10 cm spatial resolution images. The user’s accuracy obtained in this study 
for Shorea robusta was relatively high (96.3%) and the user’s accuracy for Other species is rather low (only 
52.4%). The overall Kappa is 0.53. We can consider this is a good result while comparing to the Kappa 
statistic range define by Landis, et al. (1977). Landis, et al. (1977) defined the agreement criteria for Kappa 
statistic as poor when K<0.4, good when 0.4 <K<0.7 and excellent when K>0.75. 
The reason for the high user’s accuracy of Shorea robusta is that approximately 75% of the trees recognized 
in the field were Shorea robusta. In addition, in the Other species class, different species with variation in 
spectral characteristics had to be grouped together to form a single class which introduced confusion in 
the spectral response from this class. According to the field observation, Other species are all most 
understory trees (under the crown of Shorea robusta) therefore it leads to the difficulty of detecting them in 
the image. With the same trend, Voss et al (2008) using nearest neighbour classification acquired 57% 
accuracy while classifying the tree species and revealed the low accuracy is due to less number of samples 
given to the classifier. Clark et al. (2011) estimated the tropical forests plot-level mean height. 

6.6. Model Development 
Multiple regression analysis was used to develop the relationship between CPA, height and carbon stock 
of the individual tree. The regression analysis shows that tree height of Shorea robusta has stronger 
relationship with the carbon stock (R2=0.67) compare to CPA. Meanwhile, for other species, the opposite 
is the case, the CPA (and not the height) of Other species is more strongly link to carbon stock. 
The coefficient of determination obtained for Shorea robusta was 0.76 and 0.67 for Other species. The reason 
why Other species has lower coefficient of determination is that many different species are used the same 
allometric equation for this class. Different species each have their own characteristics, for example, 
Schima wallichhii is short but the crown is large mean- while Castanopsis indica is tall but the crown is medium 
in size.  
Both CPA and height can be include in the multiple regression model because, CPA and height is tested 
and has no relationship. The reason is that the leaves of Shorea robusta are always collected to make 
traditional bow by the local people, there for many tree has the deformed crown.  

6.7. Biomass and Carbon stock estimation 
The results of this research show that the carbon stock of the study area was approximately 41 Mg Cha-1. 
This result is comparable to the carbon stock estimated with the range of 34.30 – 97.86 MgCha-1 in Nepal 
forest of  Baral et al. (2009). Rachna (2011) also chose Ludhikhola watershed as the study area. However 
the research of Rachna (2011) focused on the carbon estimation Ludi damgade community, one of five 
community forests in our research, with the carbon estimate of 31MgCha-1.  

6.8. Model development and Monte Carlo Simulation 
The Monte Carlo Simulation was generated in order to assess the variation of carbon stock estimation 
when the whole source of uncertainty involves in the carbon estimation process. From the Monte Carlo 
simulation result, the error of different error source may cause the variation of carbon estimates in the 
study area varies between 1 and 7 Mg Cha-1. This result is comparable to the research of Chave et al 
(2004), who found that the error of carbon estimation may vary from 4.2 to 50 Mg Cha-1 based on the 
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different sources of error. Samalca (2007) explored the integration of error in biomass estimate in 
Indonesia and indicated that the variation of biomass estimate is in between ± 29.7 Mg Cha-1 ( equal to 
13.95 Mg Cha-1 carbon).  
In general, the bias of estimated carbon stock for individual tree may vary in the range of 0 to 20kg. The 
largest error occurred for carbon estimate for individual tree when the tree is wrongly classified. The 
medium error occurred for carbon estimate for individual tree when the tree is poor delineated. The error 
of field based carbon contributes least to the error of carbon stock estimate.  

6.9. Limitations of the research 
The limitations of the research are: 

- Low density LiDAR data may lead to the lack of height information in some places where the 
LiDAR points are missing. 

- No ground truth data with points of known elevation were collected to estimate the accuracy of 
DEM itself. The accuracy of DEM is therefore in the accuracy of estimating tree heights. 

- The dissimilarities between LiDAR data and Geo-Eye imagery cause random error of co-
registration. Although the co-registration was applied, there are still several places where the 
crown in Geo-Eye imagery does not match with the CHM. 

- The affect of shadow and distortion in Geo-Eye imagery leads to the inaccuracy of CPA and 
LiDAR derived height. 

- The eCognition software only allows delineation process on a small area (<250ha). Therefore it 
causes the difficulties to apply the developed crown delineation method in the large area. 

- In the error propagation process, the error from the sampling design method and the allometric 
equation selection are not considered.  

- The height measured in the field is considered the truth to estimate the range of predicted height. 
However, this measurement itself contains the error which is not considered in this study. 

- Identifying the tree in the field is a key step in the carbon estimation for an individual tree. Due to 
the error of GPS and the personal ability of tree recognition, the tree may also be wrongly linked 
with the crown in the image. However, it is hard to assess this uncertainty. 

- The Monte Carlo Simulation developed in this study can be applied for related researches; 
however, it is needed to re-analysed the sources of error as well as the magnitude of error as the 
input for the process.  

- Like any methodology, Monte Carlo studies are not without disadvantages; their usefulness 
depends in large part on the realism of the conditions that are modeled. An inappropriate choice 
of model conditions will result in a lack of external validity for the study. In addition, Monte Carlo 
simulation is computationally intensive and not amenable to detailed analysis of error structure. 
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7. CONCLUSION AND RECOMMENDATIONS 

The main objective of this study is to assess error propagation in carbon estimation using the combination 
of LiDAR data and VHR Geo-Eye imagery in five community forests of Ludhikhola watershed, Gorkha, 
Nepal. With respect to this, the following conclusions are drawn for each sub-objective. 

7.1. Conclusions
Related to the sub-objective 1, “Develop a predictive model of carbon using tree height derived 

from airborne LiDAR data and crown projection area (CPA) derived from high resolution satellite 

imagery” 

For each class (Shorea robusta and Other species), linear regression analysis was used to relate carbon stock of 
individual tree with CPA and height, one after other. The results of linear analysis show that, both CPA 
and height have relatively good relationships with the carbon stock of individual tree. Therefore, the 
multiple regression analysis was applied to use both CPA and height to explain carbon stock. The 
developed model then was called the regression predictive model of carbon. The multiple coefficient of regression 
obtained from regression predictive model of carbon for Shorea robusta is higher than the one of Other 
species, R2= 0.76 and 0.68 respectively.  
Related to research sub-objective 2, “Analyse the sources of error causing the uncertainties in the 

carbon estimation process and assess the accuracy of each parameter, which takes part in the 

predictive model of carbon” 

 

The error in our study come from (i) field measurement of DBH, (ii) selection of the allometric equation, 
(iii) co-registration CHM and Geo-Eye imagery, (iv) CHM processing, (v) crown delineation processing; 
(vi) wrong link between measured tree and delineated crown and (vii) image classification. The first five 
sources lead to the error of field-based carbon stock (obtained from the allometric equation on DBH), the 
extracted CPA and derived height of individual trees. The magnitudes of error of these three parameters 
were shown in table 14. In addition, it can be seen that well delineated tree suffer from less error than 
poor delineated trees. Hence, the reference trees were divided into two sets to estimate the error 
magnitude for CPA, height and field based carbon. The segmentation accuracy is 72.9%. It means there is 
28% of chance that a tree will be poor delineated, ultimately leading to a wrong link between measured 
tree and delineated crown. As for the contribution of object-based image classification error, the wrongly 
classified tree will use the wrong allometric equation to calculate field-based carbon. For example, if the 
Shorea robusta tree was classified as Other species, this tree will use allomtric equation of Other species to 
calculate field based carbon. The accuracy of image classification is 80% overall, with the error of 4% and 
47.6% for Shore robusta and Other species, respectively.  
Related to research sub-objective 3, “Develop a method for assessing the propagation of error in 

carbon estimation” 

In general, the set of reference trees is randomly divided in two parts, one for model development and one 
for validation. This random selection will cause the error in carbon predictive model, and ultimately 
carbon estimation. Monte Carlo Simulation is applied for the one-to-one matching and truly classified 
trees which are considered to have less error. The main idea of simulation is generating different input by 
randomly adding error to the variables used for regression analysis, both independent variables (CPA, 
height) and the dependent variable (carbon – C) to see the variation in the output. The output of iteration 
can be link with simulated input in order to analyses the contribution of different error source. 
Related to research sub-objective 4, “Estimate the carbon stock in the study area and analyse the 

impact of error propagation in this carbon stock estimation”  
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The carbon estimation from the developed model with the tree without error released 41 Mg Cha-1. When 
the error is propagated, by mean of Monte Carlo simulation, we found that the error of carbon estimation 
can range from  this value can range from ±1 and ±7 Mg Cha-1. 
This research indicated the utility of the combination of LiDAR data and VHR Geo-Eye imagery for 
forest carbon estimation accompanied with error propagation analyses. Monte Carlo simulation provides a 
robust method to assess the uncertainties due to error propagation. This method is purely based on 
statistical analysis and the complicated relationships between variable are not required to be defined. 

7.2. Recommendations 
- The combination of LiDAR data and VHR Geo-Eye imagery provides a good source of 

information which can be used for forest carbon stock estimation 
- In order to increase the accuracy carbon estimation using the combination of LiDAR data and 

VHR Geo-Eye imagery, the foreseen uncertainties should be reduced by: (i) developing local level 
allometric equations for Nepal for better carbon stock estimation, (ii) finding a method to better 
integrate the CHM and Geo-Eye imagery in tree crown delineation process.  

- Due to the limitation of time, this study only uses Monte Carlo Simulation to analyse the 
uncertainties of one input data set and one method.  However, the research suggests that Monte 
Carlo Simulation can be used to compare the results of different methods and different datasets 
for carbon estimation.  
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Data Collection Format 
Name of Recorder: Date: 
Stratum 
ID: Sample Plot ID: 

Bearing from the road 
Bearing for the 1st tree from the center 
of the plot Plot center 

X   X     X   
Y   Y     Y   

Angle   Angle     

Slope: 
Plot 

radius: Aspect: E Altitude:  
Crown 
density (%):   

S.N Species 
Scientific 

name DBH(cm) CD (m) Ht (m) Intermingled Remarks 
1               
2               
3               
4               
5               
6               
7               
8               
9               

10               
11               
12               
13               
14               
15               
16               
17               
18               
19               
20               
21               
22               
23               
24               

 

Appendix 1: Data collected form 
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APPENDICES
 Appendix 2: Map of the sample plot used for tree identification in the field
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Appendix 3: Region growing rule set for crown delineation 
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Appendix 4: Co-registration process 
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Slope correction table      
Plot size 500 m2      

Slope% Radius(m)  Slope% Radius(m) Slope% Radius(m) 
0 12.62       
1 12.62  36 13.01  71 13.97 
2 12.62  37 13.03  72 14.00 
3 12.62  38 13.05  73 14.04 
4 12.62  39 13.07  74 14.07 
5 12.62  40 13.09  75 14.10 
6 12.63  41 13.12  76 14.14 
7 12.63  42 13.14  77 14.17 
8 12.64  43 13.16  78 14.21 
9 12.64  44 13.19  79 14.24 

10 12.65  45 13.21  80 14.28 
11 12.65  46 13.24  81 14.31 
12 12.66  47 13.26  82 14.35 
13 12.67  48 13.29  83 14.38 
14 12.68  49 13.31  84 14.42 
15 12.69  50 13.34  85 14.45 
16 12.70  51 13.37  86 14.49 
17 12.71  52 13.39  87 14.52 
18 12.72  53 13.42  88 14.56 
19 12.73  54 13.45  89 14.60 
20 12.74  55 13.48  90 14.63 
21 12.75  56 13.51  91 14.67 
22 12.77  57 13.53  92 14.71 
23 12.78  58 13.56  93 14.74 
24 12.79  59 13.59  94 14.78 
25 12.81  60 13.62  95 14.82 
26 12.82  61 13.65  96 14.85 
27 12.84  62 13.68  97 14.89 
28 12.86  63 13.72  98 14.93 
29 12.87  64 13.75  99 14.97 
30 12.89  65 13.78  100 15.00 
31 12.91  66 13.81  101 15.04 
32 12.93  67 13.84  102 15.08 
33 12.95  68 13.87  103 15.12 
34 12.97  69 13.91  104 15.15 
35 12.99  70 13.94  105 15.19 

 

Appendix 5: Slope correction table 
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Customer 
Forest Resource Assessment in Nepal, 

Ministry of Forests and Soil Conservation 

Date Flown 20110316 / 20110328 / 20110401 / 20110402

Times of collection (UTC) 
02:45 – 08:20 / 03:46 – 05:00 / 04:01 – 05:45 / 

03:31 – 05:30
Date Processed 20110530
Projection UTM
Datum WGS84

Files included 
ASPRS LAS v. 1.2 - 3002 nos.(IC01.las to 

IV300.las)  
Aerial Platform                  Helicopter (9N-AIW)
Flying altitude  2200 m AGL
Flying speed  80 knots
Sensor pulse rate  52.9 khz
Sensor Scan speed  20.4 lines/second
Nominal outgoing pulse density @ground level  Average: 0.8 points per square meter
Scan FOW half-angle 20 degrees
Swath @ ground level 1601.47 m
Point spacing max 1.88 m across, max 2.02 m down
Beam footprint @ ground level 50 cm
Gap file name  No gaps
Tile index file name tileindex_Block_icomod.dgn

Appendix 6: Details of LIDAR data acquisition 
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Appendix 7: Field-work pictures 


