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ABSTRACT 

Airborne lidar (Light Detection And Ranging) is a proven technology which can be solely used to 
accurately assess aboveground forest biomass and carbon stock. The overall goal of this study was to 
develop a model for assessing carbon stock for individual trees of Pinus uncinata and Pinus sylvestris using 
high density of LiDAR data for extraction of forest biophysical metrics such as tree height and crown 
projection area (CPA). 
The novelty of this research lies in comparing original canopy height model (CHM) derived from highest 
point density (164 point/m2) of LiDAR data with four CHMs with lower point density generated using 
simple thinning algorithm in order to investigate how the average point density of lidar data affect the 
accuracy of forest biophysical models. Two methods, ‘TreeVaw’ and ‘Region Growing’ applied to detect 
trees and delineate the crown of individual trees.  
The overall accuracy of tree detection from TreeVaw and Region Growing approaches were compared. It 
was found that tree detection and crown delineation using Region Growing gives a better result with 
accuracy of 79.0% comparing to TreeVaw approach with accuracy of 72.6% while there was no significant 
difference for the accuracy of extracted tree height between two approaches.( R2= 82.5, RMSE=1.8 m  
R2= 0.80, RMSE=1.2 m respectively). 
Overall accuracy and D value for segmentation result for four CHMs derived from thinned LiDAR data 
revealed a decrease in accuracy of tree detection and height extraction when point density between CHMs 
declines. This decrease of density from 164 to 4 point/ m2 has a declined trend of accuracy from 79.0% to 
66.1% for tree detection and from R2= 0.80 to R2=0.63 for tree height. In addition, D value for 
segmentation accuracy revealed an increase from 0.18 for CHM with highest point density to 0.33 for 
CHM with lowest point density. 
A multi linear regression model was developed using height and crown area as predictors to estimate 
carbon stock of pine (R2= 0.56). The validation of the model found that the 65% (RMSE=22.83 kg/tree) 
of calculated carbon can be explained by the developed carbon model. 
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1. INTRODUCTION 

1.1. Background 
Forests have major roles in mitigating climate change by sequestering carbon. They absorb CO2 from 
atmosphere and store carbon through photosynthesis process in their leaves, stem, roots and branches. 
Forest biomass is organic matter resulting from primary production through photosynthesis minus 
consumption through respiration and harvest. Biomass estimation provides information on the structure 
and fictional attributes of a forest. Relatively 50% of dry forest biomass comprised of carbon (UNFCCC, 
2010b). Forest contribute about one-sixth of global carbon emissions when cleared, overused or degraded 
(FAO, 2011). Forests are the largest global terrestrial carbon, 650 Giga tone, of which 44 %  in the 
biomass, 11 % in dead wood and litter and 45 % in the soil (FAO, 2010). Globally, carbon stocks are 
decreasing at about 10 Giga ton for the period 1990-2010 as a result of forest fire, over logging or land use 
change. At a regional level, the South America suffered the largest net loss of forest between 2000 and 
2010 followed by Africa and Oceania whereas the forest area in Europe continued to expand (FAO, 
2010).  
The Kyoto Protocol, linked to UNFCCC, request all member countries to assess and report national 
greenhouse gas emission regularly including carbon emission reflected at carbon stock changes in forests. 
They have been identified the need to establish an accurate inventory of forest carbon stocks. 
The Clean Development Mechanism (CDM) is one of the mechanisms of the Kyoto Protocol by which 
carbon emission reduction and its estimation took on economic value. This in turn allows emission-
reduction projects such as afforestation/reforestation projects in developing countries, that are particularly 
vulnerable to the adverse effects of climate change, to earn Certified Emission Reduction (CER) credits, 
each equivalent to one ton of CO2. These credits can be traded and sold and used by industrialized 
countries to meet their emission reduction targets under the Kyoto protocol (UNFCCC, 2010a). 
Therefore having accurate estimation of carbon stock of forest biomass is increasingly necessary. 
 
Remote Sensing (RS) has been confirmed as an important mapping technique to estimate biomass in a 
larger area. Forest biomass measurement is required input to estimate carbon stock. Allometric equation is 
a direct field-based method by which wet and dry biomass of different part of trees (branch biomass, total 
foliage biomass, crown biomass, biomass of root and stem volume) are estimated. Though the direct way 
to quantify biomass by measuring sample trees in the field is an accurate approach for a particular location; 
it is time consuming, expensive, destructive and impractical in larger areas. The strengths of RS technique 
are to provide spatially and temporally explicit information of large areas as well as remote areas which 
may be hard to access and also data with spatially high resolution contributed to provide detail 
information at individual tree scale. Different RS techniques including Optical, SAR (Synthetic Aperture 
Radar) and LiDAR data can be considered.  
Optical data (e.g. Landsat, MODIS) uses visible and infrared wavelengths to measure spectral indices and 
correlate to ground based forest carbon measurements. Its limitation is that spectral indices saturate at 
relatively low carbon stocks (Gibbs et al., 2007). In addition they are more accurate for biomass estimation 
of simple forest stand structure (Lu, 2005). However, this data is limited by cloud cover which mostly 
observed in the tropical forest landscape (Thenkabail et al., 2004). Coarse resolution optical data, for 
example NOAA, AVHRR, have very limited application for  biomass estimation because of the mixed 
pixels and the huge difference between the support of ground reference data and pixel size of the satellite 
data (Lu et al., 2003). 
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Synthetic Aperture Radar (SAR) is an active remote sensing technology that has been shown to be 
sensitive to biomass levels at higher values than passive sensors (optical sensors). It provides three-
dimensional information on canopy structure. These kind of data estimate biomass accurately of relatively 
young and open conifer forest (Gibbs, et al., 2007) but less accurate in complex canopies of mature 
forests. Moreover, the SAR signal saturates at a low level of biomass.  
 
Airborne Light Detection and Ranging (LiDAR) is an active remote sensing system which uses its own 
energy sources. LiDAR system has three main components: laser sensor for distance measurement; Global 
Positioning System to determine the position of each laser reflection point; Inertial Measurement Unit 
(IMU) to record orientation of the system. LiDAR system emits laser pulse and measures return time for 
each beam to travel between the sensor and a target object. LiDAR data comprises 3-dimension point data 
(x, y, z coordinates) with associated data such as intensity and images. LiDAR systems used in forestry 
application can be categorized as either ‘discrete returns’ system or ‘full waveform‘ systems and differ one 
from another with respect to how they vertically and horizontally sample a canopy’s three dimensional 
structure (Lim et al., 2008). Development of lidar models for estimating forest structure and biomass relies 
on the assumption that the vertical distribution of lidar returns is related to the vertical distribution of 
vegetation(Magnussen & Boudewyn, 1998). Discrete-return systems have been used to successfully estimate 
aboveground biomass at individual tree level and up to stand levels (Lim & Treitz, 2004; Næsset & 
Gobakken, 2008; Bortolot & Wynne, 2005; Popescu, 2007). These systems have been used either alone, or 
in combination with passive optical or RaDAR data (Hyde et al., 2007; Lucas et al., 2008). 
 
LiDAR system is capable of achieving high vertical and horizontal accuracies because all  the 
measurements are individually geo-referenced (Suárez et al., 2005). As opposed to optical remote sensing 
methods, airborne LiDAR has certain characteristics such as high sampling density, direct measurement of 
heights, precise geo-location and automated processing that make it useful for retrieving vegetation 
characteristics (Popescu, 2007) and deriving forest biomass at multiple scales, from individual trees to 
regional extents (García et al., 2010). The strong relationship between these direct measurements and 
other biophysical parameters, such as above-ground, provide critical information about the function and 
productivity of forest ecosystems. Dubayah (2000) figures out potential contribution of LiDAR remote 
sensing (Table 1) for forestry applications as shown in Table 1 (Dubayah & Drake, 2000): 
 
Table 1: potential contribution of LiDAR remote sensing for forestry applications 

Forest characteristic LiDAR derivation 
Canopy height Direct retrieval 
Sub canopy topography Direct retrieval 
Vertical distribution of intercepted surfaces Direct retrieval 
Above-ground biomass Modeled 
Basal area Modeled 
Mean stem diameter Modeled 
Vertical foliar profile Modeled 
Canopy volumes Modeled 
Large tree density Inferred 
Canopy cover, leaf area index Fusion with other sensor 
Life form diversity Fusion with other sensor 

 
There are different methods using LiDAR data to estimate above ground biomass with high accuracy and 
low uncertainty (Gibbs, et al., 2007). LiDAR-derived tree height and LiDAR-derived crown diameter are 
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applied in order to calculate stem volume and biomass of individual trees (Brown, 2002; Suárez, et al., 
2005). High sampling density (number of points) of LiDAR data makes it possible for more accurate 
detection of the height and crown dimensions of individual trees. In a study (Persson, 2002) using high 
density of points, 71% of position of the trees (x and y coordinate) were correctly detected. Height and 
crown diameter of detected trees were estimated with RMSE of 0.63 and 0.61 meter, respectively. Leaf 
less individual trees were detected using a spatial resolution of 10 cm for LiDAR poitns (approximately 12 
points/m2) to retrieve the morphology of individual trees (Brandtberg et al., 2003). Six to ten laser hits per 
tree crown needed to detect individual trees (Magnussen et al., 2010) while detection quality was best on 
homogenous high-resolution data (Rossmann et al., 2007). 
 
In addition to the position of an individual tree other forestry attributes can also be extracted by LiDAR 
data. Attributes such as the height, crown area and also type of species (using intensity of LiDAR data) can 
be determined producing digital canopy model using LiDAR data. 
In many research LiDAR data fusion (especially low point density) with passive optical sensors is 
considered to be effective. For example estimation of carbon stock in coniferous forest using a fusion of 
aerial photography and LiDAR data (Kim et al., 2010; Suárez, et al., 2005). 
 
There are also reliable outputs of studies which applied pure LiDAR data with different point density to 
obtain biomass of trees. For instance, estimating biomass of loblolly pine plantation in Virginia, USA in 
which individual tree-based algorithm for determining forest biomass using small footprint LiDAR data 
was developed and tested (Bortolot & Wynne, 2005). Estimation of stem volume and biomass of 
individual Pinus koraiensis using LiDAR data with density of 5-7 point/m2 (Kwak et al., 2010). Brandtberg 
(2003) analyzed individual tree crown and height of deciduous forest with a point density of approximately 
12 point/m2. The coefficient of determination was 69% (Brandtberg, et al., 2003). It is feasible to obtain 
suitable estimates of forest inventory variables at stand level using low sampling density and higher 
sampling point density may add little value to forest attributes (Lim, et al., 2008). Thomas (2006) shown 
that high density models are well correlated with mean dominant tree height, basal area, crown closure and 
average above ground biomass (R2 =0.90, 0.91 and 0.92 respectively) whereas  low-density models could 
not accurately predict crown closure (Thomas et al., 2006).  
In many research tree height under-estimation has been reported for individual tree level (Gaveau & Hill, 
2003; Næsset & Økland, 2002). According to these studies it was reported that under-estimation of tree 
height is affected by the density and coverage of laser pulses, algorithm used to obtain the canopy height  
model and some other factors (Hyyppä et al., 2008). However, the vast size and complexity of forest 
introduces a number of challenges to the implementation of LiDAR for forest inventory mapping at 
different scales. In an study it was concluded that examination point density specifically on the 
performance of LiDAR models is required (Thomas, et al., 2006). 
 

1.2. Review of Allometric equations 
 
Most important independent variables which are frequently applied in biomass allometric equations are 
“diameter at breast height (DBH)” and “height of the trees”. Database of European biomass and volume 
stem equations (Zianis et al., 2005) showed that 39 tree species applied for developing 607 biomass 
allometric equations and 55 tree species for developing 230 stem volume equations. 
This research is started on the assumption that the local Forest Department of Barcelonnette (study area) 
would be able and willing to provide biomass figures or at least the local species specific allometric 
equation, if not according to the above database, available equations which can be applied for estimating 
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biomass for dominant tree species in the study area, are used that originally comes from the Netherlands 
and Italy which developed for Pinus nigra and Pinus sylvestris based on DBH and tree height.  

1.3. Problem statement and justification 
Previous studies that focused on estimation of forest biophysical variables with LiDAR scanning data 
carried out with either relatively low point density of all returns or high density with only one laser return. 
Density of LiDAR data in these works varies between <1 and 60 points/m2. Generally it can be said that 
<1-2 points/m2 considered as low and more than that  identified as high density LiDAR data. However, 
before this technology can be adopted with confidence for long-term monitoring applications in forestry, 
robust models must be developed that can be applied and validated over large and complex forested areas. 
This will require scaling-up from current models developed from high density lidar data to low density 
data collected at higher altitudes(Thomas, et al., 2006). 
Density of point is expected to be principal issue determining accuracy of tree height and tree crown area 
(Hyyppä, et al., 2008; Lefsky et al., 2002). However, the relationship between LiDAR sampling point 
density (which is directly related to acquisition and processing costs) and accuracy and precision of forest 
variables at individual tree level estimation has not yet been established across a range of forest ecosystems 
(Lim, et al., 2008). 
In this study, a high density of LiDAR data with an average of 164 points/m2 available for the Bois-Noir 
catchment, France will be utilized. “How does the average point density of lidar data affect the accuracy of 
forest biophysical models?” In other words, “can lidar data be collected at higher altitudes (i.e., lower 
average point density) for greater and more cost-effective ground coverage and still maintain the accuracy 
of the biophysical variable estimates?” is a question which this research focuses on it. A simple thinning is 
applied (Isenburg, 2012; Pirotti & Tarolli, 2010) to obtain lower sample density of available LiDAR points. 
Besides, developing regression models for aboveground carbon stock estimation, using discrete lidar data 
acquired for the study area is examined.  
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1.4. Research objectives 

1.4.1. General objective 
To model spatial distribution of carbon stock in aboveground biomass of Pinus uncinata and Pinus sylvestris, 
dominant tree species in the study area, using high density airborne LiDAR data 
 

1.4.2.  Specific objectives 
- To analyze the relationship between DBH, crown area and height as predictors for estimating 

carbon stock in pine  forest 
- To estimate the amount of carbon stock of individual tree based on allometric equations and field 

measurement 
- To assess the effect of point density on the accuracy of estimation of above-ground biomass  
- To develop  a species-specific equation to estimate carbon stock of pines  using LiDAR derived 

height and crown area as an explanatory variables  

1.5. Research Questions: 
(1) Is there a significant relationship between forest biophysical parameters?  
(2) Is it feasible to estimate carbon stock for individual tree of pine forest using solely high density 
LiDAR data? 
(3) How does the different point density of LiDAR data affect the accuracy of forest biophysical 
model? 
 (4) How significant are the variables (height and crown area derived from LiDAR data) to 
estimate the above-ground biomass and carbon stock?  
 

1.6. Research hypothesis 
- There is a significant relationship (95% confidence level) between DBH, crown diameter and 

height measured in the field(Q1) 
-  High density LiDAR data solely provides high accurate (R2 > 80%) carbon stock estimation 

using regression between carbon,  height and crown area (Q2) 
- Decreasing point density of LiDAR data affects the accuracy of canopy height model to estimate 

carbon stock (Q3)  
- There is a significant relationship (95% confidence level) between carbon stock, height and crown 

area from LiDAR that provides a reliable allometric model (Q4) 
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2. STUDY AREA 

2.1. Geographic location  
The Bois Noir catchment (3 km2) is located in the north-facing slope of the Barcelonnette Basin in the 
South-western French Alps, a tributary of the Ubaye River, 2.5 km to the southeast of Jausiers.  
The Barcelonnette Basin is representative of climatic, lithological, geomorphological and land cover 
conditions common to many regions of the South French Alps. It is located at 1130 m average elevation. 
The basin extends over an area of 200 km², with a length of 22 km (from Jausiers to the east to Les 
Thuiles to the west), and a maximum width of 10 km (Theiery et al., 2007).   
The area of study is 1.3 km2 of south and east part of the catchment showed in Figure 1.           
   

   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Bois-Noir catchment 

Study area   

Figure 1: Geographic location of study area 
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2.2. Climate  and topography 
The basin has a dry and mountainous climate with strong inter-annual rainfall variability (e.g. annual 
rainfall may vary between 400 and 1400 mm) based on the rainfall records from 1928 till 2009, measured 
at the Barcelonnette station, (Hosein 2010; Mountain Risks 2010). Summers are usually dry though some 
random storms may happen in the season. The lower parts of the watershed receive more rainfall than 
snow during winters while in the upper parts; precipitation is in form of snow. Most of rainfall occurs in 
autumn and spring (Flageollet, Maquaire et al. 1999).  
 
In the study area elevation range relatively from 1400 to 2038 and up to more than 700 steep slopes can be 
found. In the south-eastern side highly steep rock walls and in the north and north-eastern side it connects 
to river.  
The area consists of Callovo-Oxfordian unstable black marls, overlaid by deposits of reworked glacial till. 
Predisposing geomorphic and climatic influences triggered various types of landslides (Appendix 1). All 
the landslides (appendix 1) composing the landslide complex are typically shallow and occur at the 
interface between the bedrock and the surface deposits (Razak et al., 2011; Theiery, et al., 2007). 
 

2.3. Vegetation cover 
Forest covers 92% of the total surface area of Bois Noir catchment (Theiery, et al., 2007) (Figure 2) and 
consists mainly of Pinus uncinata , Pinus sylvestris, Larix deciduas and a few Picea abies (Appendix 2). Some 
broadleaves such as Fraxinus sp., Alnus sp., Juniperus sp. have been observed in lower part of the study area. 
Broadleaves and bare areas have been masked for this research, therefore total area of 1.01 km2 which 
fully covered by high density of LiDAR data comprise the study area. More explanation about dominant 
tree species(van Gils, 2011) is given below: 
Pinus uncinata Mill. ex Mirb.(Le Pin à crochet):The Mountain pine (P. uncinata) is found naturally at the tree 
line and from there down slope in scree slopes in the Pyrenees and the Western Alps. P. uncinata is aka is a 
subspecies of P. mugo found in the Central- to Eastern Alps and the Balkan in such sites.  Plantations of P. 
uncinata are used for land rehabilitation in France. P. uncinata is distinguishable from the other pines by the 
hooked bracts (scales) of its cone (“uncinata’= hooked). We have collected extremely hooked cones in 
pine plantations in the research area. 
Pinus sylvestris L. (Le Pin sylvestre): The Scotch pine (P. sylvestris L.) is indigenous in, among others, the 
mountain forest belt (<1700 m a.s.l.) of the dry inner-alpine valleys and the (dry) Western Alps, mostly as 
a mono-specific forest. The Scotch pine is distinguished from other pines by its orange and peeling bark in 
the upper half of the stem. The Scotch pine in the Alps is locally infested with Viscum album L. In 
Barcelonette this infestation is quite dramatic. 
Larix decidua Miller:The larch (L. decidua) is a deciduous coniferous tree indigenous in the Alps and found 
often up to the alpine timberline also at the pass heights close to the Barcelonette research area.  
Picea abies L. (Karsten): The spruce (P. abies) is indigenous in Northern Europe and throughout the Alps in 
the mountain belt often up to the tree line. It is widely planted outside its native distribution area. 
The forest plantations: The research area is covered by pine plantations. All four coniferous trees have 
been observed to regenerate spontaneous from seed. The Larch mostly shows signs of stress in the 
research area, but appears healthy at higher elevation in the Ubaye valley. In the lower part, roughly 
coinciding with the P. sylvestris distribution, relics of crop farming are common including terraced fields 
and cairns (pile of stones removed from crop fields). These crop farming practices have been abandoned 
at least a century ago as elsewhere in the Alps. Locally relics of intensive livestock grazing (dense Juniperus 
communis or J. sabina) were observed. 
First generation P. uncinata plantations dating from the early 20th century have often not been thinned, 
resulting in a high density of tall, even-aged trees with a low DBH without any shrub or forest flora 
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understory. Such unthinned pine plantations are also common in the Netherlands and Germany dating 
back to the same period. The even-aged, low DBH pine trees represent an unusually ideal indicator of 
landslides; more so since fallen or drunken tree are not removed. 
The Scotch pines, including its Viscum album, constitute indigenous forest at lower elevations (<1660 m) in 
the research area. The more natural tree distribution in the Scotch pine forest is less suitable as land slide 
indicator. 
The Larch and Spruce at higher elevation in the research area occur in small open groups of trees much 
taller than the surrounding pine plantations. The Larch could represent forest remnants predating the pine 
plantations. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Land use map of the study area 
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3. METHODS AND DATA  

3.1. Material  

3.1.1. LiDAR and Photography 
A high density airborne LiDAR dataset of Bois- Noir catchment was acquired in July 2009 using a 
handheld airborne laser scanning system. In order to increase the point density, seven flight lines were 
flown resulting in 214 million points, with mean density of 164 points/m2. The dataset was primarily 
acquired for the study of the landslide activities in the study area. An aerial photograph of 30 cm 
resolution was co-acquired during the same campaign along with LiDAR data. More detailed of this 
campaign can be found in Table 2.  
 
 
                     Table 2: Airborne LiDAR data characteristics 

 
 
 
 
 
 
 
 
 
 
 
 

3.1.2. Other data  
The research was carried out on coniferous forest; therefore other land uses were masked based on the 
available land use map (Figure 2). Other data used for the research listed in Table 3. 
  
Table 3: Other data used in this study 

 

Acquisition (month/year) July2009 
Laser scanner RIEGL VQ 480i 
IMU system IMAR FSAS (record up to 500 Hz) 
Positional system Topcon legacy( record up to 5Hz) 
Laser pulse repetition rate 300kHz 
Beam divergence 0.3 mrad 
Laser beam footprint 75mm at 250m 
Field of view 60o 
Scanning methods Rotating multi-facet mirror 
Mean Density of points of raw 
data  

164 points/m2  
 

Projection system Lambert-conformal_ Conic 
Minimum and Maximum 
coordinates 

951515.83 240850.96 
952589.91 242834.76 

Min & Max elevation (above sea 
level) 

1398.90 2040.10 

No data purpose data type  data source 
1 land use map stratification area shape file (Theiery, et al., 2007) 
2 land slide map stratification area shape file (Theiery, et al., 2007) 
3 allometric equations estimating  AGB NL& Italy  (Zianis, et al., 2005) 
4 train and test dataset model validation numeric /Data sheet fieldwork 
5 aerial photo 2009  Navigation ortho-rectified (TIF) ITC 
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3.1.3. Software and fieldwork equipment  
Main soft ware and equipment which used in the fieldwork listed in Table 4 and 5. TreeVaw and Lastools 
were free software’s. The first works in MS dos prompt and the later works under IDL virtual machine  
 
Table 4: Software applied 

 

  
 
Table 5: List of equipment used in the fieldwork 

1 Leica Differential GPS system 1200 
2 Clinometer Suunto 
3 Compass Suunto 
4 Diameter tape 3 meter 
5 Forestry rangefinder 550 
6 GPS Garmin 12xl 
7 Measuring tape 50 meter 
8 Stereoscope pocket small 
9 Tripod 
10 Caliper 60cm 
11 iPAQ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No software purposes 
1 ArcGis 10 Image processing, map production, generation sample points  
2 Erdas Imagine 11 filtering 
3 TreeVaw  1.0  Detection of tree and extraction of tree crown diameter  and height 
4 Lastools (October 2011) Managing, analysing 3D point clouds; producing DSM, DTM 
6 eCognition developer 8.7 Delineation of tree crown  
7 Intersector.jar validation 
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3.2. Methods 
The method for predicting above ground carbon using LiDAR data in the research area can be subdivided 

into three major steps: 1. Canopy Height Model (CHM) preparation; 2. Image partitioning in more or less 

homogenous objects representing individual tree canopies; 3. Carbon modelling and application of the 

model to the tree canopy map. 

In this research original LiDAR dataset with density of 164 point /m2 was used to generate the first CHM. 

The main product of the LiDAR dataset is CHM which comprises the absolute height for each pixel. 

CHMs with lower point density were generated after thinning LiDAR dataset as well. Individual tree 

crown delineation was done based on two approaches namely Tree Variable window (TreeVaw) 

processing implemented in IDL Virtual Machine which focusing on locating and measuring individual 

trees (Popescu et al., 2003) and ‘Region Growing’ using eCognition tool. Tree species classification was 

based on the brightness and crown size of species in the study area. Tree height and canopy projection 

area (CPA) were calculated for each CHM and used to predict the amount of carbon stock per tree. The 

method to carry out this research is described in the flowchart in Figure3. Detailed explanation is 

described in the following subsections. 
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  Figure 3: Flowchart of methodology 
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3.2.1. Canopy Height Model from LiDAR data 
The airborne LiDAR dataset is in point form, and consists of X, Y, Z and intensity. As a first pre-

processing step, LiDAR dataset has to be normalized in order to view the absolute elevation or height of 

the objects (e.g. trees). Lastools software is capable to do it (Figure 4). 

 

 

 

 

 

 

 

 

 

LiDAR dataset which is used in this research includes five returns for each pulse. The first returns refer to 

canopy hits and the last returns mostly refer to the ground. The LiDAR data was already classified into 

two classes in which the points corresponding to the ground level classified as class 2 extracted by the data 

provider and the rest kept as unclassified. The assumption that ground points  would be the last returns 

(Thomas, et al., 2006) was considered in this study. All five returns were used to generate CHMs. In order 

to make CHM, there are different ways applying different commands in “Lastools”. Using Lastools 

software which is command prompt format makes it possible to produce CHM directly from LiDAR data 

in a quick way. The steps of making CHM can be simplified as below: 

- Normalizing the data: 

 This command computes the height of each LiDAR point above the ground. This assumes that 

ground points have already been classified so they can be identified and used to triangulates the 

ground points into a triangulated irregular network (TIN), a digital data structure used in 

a geographic information system for the representation of a surface ,and then calculated the 

elevation of each point with respect to this TIN. 

- Remove noise points: 

 After visualizing the result from the previous step, any point as noise observed in the data 

information file  removed in this step. According to the field observation, points with absolute 

height above 40 m and below zero removed in this step. 

- Gridding step: This tools reads LiDAR points and grids them onto a raster. The output as TIF 

format was selected. The tool takes the elevation of each point and stores the highest, lowest or 

average elevation for inside each grid cell. In order to keep as much as point information from 

point cloud  as well as to prevent making a huge raster file in processing , the grid size of 25 cm 

Figure 4: A small subset of point cloud befor normalizing displaying by Lastools ‘View’ - 
each color refers to return pulse 
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and highest value in order to achieve the canopy height was selected. However the size of the 

pixel and the total area of the study area make a limitation of resolution selection. For any grid cell 

in which there is no point an interpolation by number of grid cell (4 grid cells) applied. So by this, 

the original height information for each given pixel saved and only the pixel without value were 

interpolated. That means generated CHM has highly original height value derived from point 

cloud.   

- Merging point files: The study area covers 17 huge single point files. Any previous step has been 

done for single file of point cloud. By this tool which simultaneously applied with previous step 

all the files merged and one raster file which covers the whole study area came out. 

Commands used for above mentioned steps can be seen in Appendix 3. 

 
 

3.2.2.  LiDAR Thinning 
Suitability of the LiDAR point density for producing CHM is done using different methods of thinning 

(Pirotti & Tarolli, 2010). Point cloud thinning is a process to give another dataset with a lower point 

density. The method of thinning (Isenburg, 2012) used in this research is:      '-keep_every_nth 2'   which 

says: keep every nth point. This option is possible because the original LiDAR points are recorded in the 

same order as they were sampled with the laser sensor (Pirotti & Tarolli, 2010). This method that basically 

considers every  nth point from the whole point dataset ordered by  time taking every nth  point which 

simulates a survey taken at higher flying altitude and therefore giving a lower point density (Pirotti & 

Tarolli, 2010). 

Subsequently, 17 thinned LiDAR datasets generated of which four datasets (Table 6) selected for 

generating new CHMs (Figure 2, 3, 4 & 5). Dataset with minimum point density of 4/m2 as used in other 

studies (Ke et al., 2010; Lim, et al., 2008; Parker & Glass, 2004) as well as three intermediate densities 

between minimum (4 point/m2) and available maximum datasets (164 point /m2) were selected.  

Table 6: CHMs generated after thinning 

 

 

 

 

 

 

 

 

However a side view of point cloud before and after thinning helped to better understanding of changes 

in generated CHMs (Figure5). 

 

No.  algorithm Point density 

for all return  

Point density of first 

return 

CHM 

1 ---- 164 115 CHM0 

2 -keep_every_nth 2 82.3 58.1 CHM1 

3 -keep_every_nth 5 32.9 23.2 CHM2 

4 -keep_every_nth 15 11.7 8.3 CHM3 

5 -keep_every_nth 25 4.7 3.4 CHM4 
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D1 

C1 
C2 

B1 

B2 

A2 A1 

E2 

E1 

Figure 5: Color (1) and black-white (2) 2D views of point clouds before and after thinning - A1 &A2) before thinning- 
point cloud with 164 p/m2,  B1 & B2) after first thinning-  point cloud with 82 p/m2, C1 &C2) after second thinning- 
point cloud with 32 p/m2, D1 & D2) After third thinning- point cloud with 11 p/m2, E1 &E2) after fourth thinning- 
point clouds with 4 p/m2 
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3.2.3. Tree height and Tree crown delineation 
Two approaches TreeVaw (Popescu & Wynne, 2004) and  ‘Region Growing’, one of the available 

algorithm in eCognition, (Rossmann, et al., 2007) applied for extracting tree location, tree height, tree 

crown diameter /tree crown area. Explanation for each approach is as follows: 

a) Individual Tree Height and Tree Crown Diameter using TreeVaw:  
In TreeVaw the input is a LiDAR-derived CHM in ENVI image format (image binary file and 

header)(Popescu & Wynne, 2002).  The output consists in individual tree positions, tree height, and crown 

radius as a text file. Using this approach trees were identified and located based on local maximum 

adaptive filtering using continuously varying windows of circular shape (Figure 6). The filtering window 

size is based on mean, minimum and maximum of tree height that is inherently present in the LiDAR 

CHM. TreeVaw uses focal filtering with a dynamically varying window size to automatically locate trees 

and extract tree heights and tree crown radius (Figure 7). This analysis is based on the assumption that a 

relationship exists between tree height and crown size- the taller the tree, the larger the crown 

size(Niemann, 1999; Popescu, 2003).This method is capable to detect individual trees and estimates  the 

dominant tree height.  CHM derived from highest point density (CHM0) was used and the parameter such 

as minimum crown diameter of 2 m, maximum crown diameter of 7.5 m, and minimum tree height of 6 in 

order to eliminate the effect of shrubs and understory vegetation and median filter size 3*3 was applied.  

Based on this information, the window size varied between 3*3 and 31*31 pixels. TreeVaw allows the user 

to specify a height-to-crown diameter relation that best describes the CHM under consideration. The best 

prediction for crown size based on tree height, with an R2 value of 0.14, was obtained when using linear 

regression with a polynomial model as shown below: 

Y= 0.0168*X2 -0.3404*X+ 4.7902 

 

 

 

Figure 6: Window view of treeVaw to set Min. tree height and 
equation 

Figure 7: Window view of TreeVaw to set Min. and Max. of 
crown width  
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The output of TreeVaw which was a text file converted to a shape point file (Figure 8) with a circle buffer 

for each tree as crown area (Figure 9) in Arc GIS in order to assess the accuracy of tree detection and 

crown diameter. 

 

                                    
Figure 8: A subset of TreeVaw result overlaid on CHM0, each point refer to a detected tree associated with height 
and crown diameter value  
 

                                    
Figure 9: A subset of TreeVaw result overlaid on CHM0, each point refer to a detected – filled-circle in light blue 
color is a buffer of crown diameter for each tree and line-circle in red color is tree crown diameter measured in the 
field  
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b) Individual Tree crown delineation and Tree Height using Region Growing approach in eCognition: 
“Region Growing” is a bottom up approach in eCognition whereby more or less homogeneous objects are 

created through gradual expansion, ’growing’, starting from the smallest unites, and gradually growing into 

larger units until distinct boundaries are met, based on predefined criteria. Start with a single pixel (seed) 

and add new pixels slowly (1) Choose the seed pixel, (2) Check the neighbouring pixels and add them to 

the region if they are similar to the seed, (3) Repeat step 2 for each of the newly added pixels; stop if no 

more pixels can be added. 

 Region Growing approach applied for individual tree segmentation using local maxima as tree top and 

local minima as tree crown edge which called ‘seeds’ in rule set (Figure 10) .  Average crown diameter of P. 

sylvestris and L. decidua in the study area is larger than average crown diameter of P. uncinata. Therefore to 

improve detection, the study area divided into two zones: High elevated zone, here after is called zone 1, 

upper than 1660 meter above sea level in with dominantly  (>90% P. uncinata) and lower zone (zone2) in 

which the dominant tree species is P. sylvestris. L. decidua, was presented in both zones with lower density. 

Region Growing algorithm (Figure 10) has been applied for both zones. To find open areas between trees, 

chessboard segmentation and shadow masking were applied. Chessboard segmentation creates identical 

sized objects. 2*2 pixel sized objects was found to appropriate based on processing capability of 

eCognition. In shadow masking any pixel with height value equal or less than 3 meter assigned as shadow 

or open area. They were not participated in segmentation. Furthermore the rest of area as vegetation area 

assigned, in zone 1 the “search range window” size of 4 for finding local minima (tree top) and local 

maxima was calculated. This size of search window is quite good for P. uncinata but neither appropriate for 

segmenting P. sylvestris nor for L. decidua which having larger crown. Therefore in zone 2 “search range 

window” of 7 pixels specified.  

 To remove false tree top and false seeds, all tree tops and seeds which neighbours to one another were 

merged. Then growing from tree top was started until significant boundaries of tree crowns found. The 

maximum height for each segment as tree height was extracted using “find enclose by image object” 

function (Kwak et al., 2007). 

 These steps of segmentation applied for other four CHMs with lower density as well and output were 

exported to ArcGIS for visualisation and validation. 

Canopy Projection Area (CPA) were calculated for all segmented trees then any trees below 5 meter of 

height and less than 2 meter of CPA removed in order to have trees with significant stem volume for 

biomass calculation. Polygon Smoothing has been done for CPA with peak tolerance of 2 meter.  
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Figure 10: Tree crown segmentation using Region Growing algorithm in eCognition- Rule set 
 

3.2.4. Object based image classification 
A “nearest neighbour” classification using eCognition algorithm applied to classify species into three 

classes as P. uncinata and “others” in zone 1 and P. sylvestris and ‘others’ in zone 2. “Others” is mostly L. 

decidua in both zones. Assessment of accuracy for L. decidua was not possible due to low sample numbers. 

The output of classification exported as a raster layer to assess accuracy in Erdas Imagine software. This 

layer in a vector format associated with attribute table including height of each individual tree and name of 

species as well. 

The nearest neighbour classification in eCognition was applied to selected object features and was trained 

by 70% samples of field data. Crown of the trees delineated manually on the CHM0.  

Parameter (Figure11) which considered for classification were maximum pixel value as tree height, area of 

segment as crown area , brightness of pixels as difference between tree top and tree crown edge and 

species  name as well. 
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Figure 11: setting parameters for species classification 
 

3.2.5. Validation for Tree attributes 
Validation of tree detection and tree crown delineation were done for both approaches (Rahman et al., 

2009). The result of tree height and crown diameter/ crown area evaluated using a coefficient of 

determination and root mean square error comparison while the results of tree detection and crown 

delineation were validated based on two approaches in which topological and geometric relationships were 

considered for segmented trees with reference trees (Moller et al., 2007): 

- Relative area of intersection between segmented objects and reference objects  

- 1:1 Spatial correspondence (Gougeon & Leckie, 2006; Li et al., 2009) 

The overall accuracy, the omission error and the commission error for tree detection and crown 

delineation quantified as follow: 

Comission error: (Nd - Nm)/ Nd * 1oo         

Ommission error: (Nr - Nm)/ Nr * 1oo         

Overall Accuracy= (Nm) / (Nr+ Nd – Nm)*100 

Where Nm is the total number of matched trees, Nr is the total number of reference trees 

measured or delineated in the plot in the field and Nd is the total number of trees detected by 

both approaches 

It was considered that the matched detected tree should fulfil the following condition (Rahman, et al., 

2009): 

1- Two segments are considered  matched if their overlap is larger than  the overlap of either 

segment with other  segments 
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2- The area of intersection should comply with > 60% of the area of reference segment and the area 

of detected segment from both approaches as well 

Furthermore, second approach was resulted to over segmentation and under segmentation as defined by 

Clinton et al (2010). The value range of over segmentation and under segmentation is between 0 and 1, 

where over segmentation is equal to 0 and under segmentation is equal to 0 define a perfect segmentation. 

Combination of over segmentation and under segmentation is interpreted as ‘D value’ which used here. D 

value means “goodness’ measure to an ideal segmentation result. Equation for D value is shown in 

figure12: 

 

 

 
Figure 12: D value which quantify the closeness measure of segmentation 

 

3.2.6. Field work  
Because the study area was affected by landslide so the probability of getting difference data in stable and 

unstable area was considered. Therefore based on Landslide map (Figure 13) purposefully 13 sample plots 

were distributed in the area. 

The data were collected during September 2011 by measuring tree location (X, Y, and Z) using DGPS and 

total stations with average 8 hours static observation for each geodetic station. The average accuracy of 

GPS stations was about 4 mm for horizontal and 7 mm for vertical components. 

DBH> 7.5cm (Vallet et al., 2006) using calliper 60cm, tree height using forestry rangefinder, crown 

diameter  using measuring tape and tree species identification collected. Crown diameter was determined 

as the average of two perpendicular crown width (south to north and east to west) (Appendix 4). In each 

plot measurement carried out for the trees which were visible through DGPS located in geodetic station. 

In Total 288 trees measured.  A routine and navigating facility such as iPAQ, Garmin GPS, maps and 

aerial photo map prepared for the field orientation as well. 
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                                                  Figure 13: sample plot distribution on Landslide map (Razak, 2011) 

 
Fieldwork data analysis 
 
Multi-collinearity of independent variables which may be a problem for dependent variable if any pair wise 
correlation is > than 0.5 was calculated. To this, VIF which stands for Variance Inflation Factor applied. 
VIF is a measure of strength of the relationship between each covariate and all other covariates. The 
strength of relationship between different part of tree (DH, tree height and CPA) were examined. 
For biomass and carbon stock calculation, the research was started on the assumption that biomass figures 
or the local species specific allometric equation would be provided by the local Forest Department. In the 
absence of both, Allometric volume equations (Figure 14) for taxonomically- related pine species were 
evaluated in France  (Vallet, et al., 2006). Three volume equations were available for pine species(Zianis, et 
al., 2005) as below:  
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Figure 14: Allometric equations for estimating stem volume of pines 

Furthermore, the stem volume was converted into carbon stock  using the carbon fraction of 0.5 (FAO, 
2010). Wood density convertor (0.5) for P. uncinata  (AFIB, 2004) was applied as well.   
 

3.2.7. Regression analysis 
Standard practice in establishing LiDAR-based models for estimating forest attributes involves the use of 
regression analysis for relating LiDAR metrics to the spatially in-situ measurements. Upon validation and 
calculating aboveground carbon stock using DBH and height information and allometric equations, 
relationship of carbon stock with height and CPA were analysed using regression analysis. These regressed 
models was applied to the rest of LiDAR data for carbon stock prediction (Naesset, 2002). The equation 
with higher R2 was selected for carbon estimation for whole study area. 
Tree crowns (delineated from eCognition approach) which have 1:1 spatial correspondence with reference 
CPA (Crown Projection Area) correctly were used for modelling. Validation of the model was carried out 
using 30% of field data to determine significance and strength of the relationship. 
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4. RESULT  

4.1. Descriptive statistics of field data  
Samples from 13 plots were collected in the study area (Figure13). In total 292 trees measured including 
204 P. uncinata, 50 P. sylvestris and 34 L. decidua. Four pines were extremely tilted and removed from the 
sample.  
Descriptive statistics for  three species have been given in following tables (Table1 to Table3). On average 
P.uncinata  has  the smallest mean DBH followed by P. sylvestris and L. decidua while P. sylvestris  is the 
shortest tree ( 1 m < P. uncinata)  followed by P. uncinata and L. decidua. P. uncinata  has the smallest mean 
crown diameter among the species. Moreover the variation in crown diameter for this species is relatively 
small.  
 

                                                                                       

 
 
 
 

 
 

Table 7: Descriptive statistics of P. uncinata Table 8: Descriptive statistics of P. sylvestris 
 DBH 

 
(cm) 

Height 
 

(m) 

Crown 
diameter 

(m) 
Mean 19.4 11.7 3.2 
SE 0.4 0.2 0.1 
Median 19 11.6 3.2 
SD 4.2 2.4 0.9 
Minimum 10 7 1 
Maximum 30 17 6.1 
n 204 204 204 

 
 
 

 DBH 
 

(cm) 

Height 
 

(m) 

Crown 
diameter 

(m) 
Mean 23.9 10.9 5.7 
SE 0.8 0.3 0.2 
Median 24 11 4.6 
SD 6.0 2.4 1.2 
Minimum 11 6.5 2.3 
Maximum 36 15 6.9 
n 50 50 50 

 

Table 9: Descriptive statistics of L. decidua 
 DBH 

 
(cm) 

Height 
 

(m) 

Crown 
diameter 

(m) 
Mean 31.9 16.4 6.3 
SE 1.7 0.4 0.4 
Median 30 17 6.4 
SD 11.6 2.9 1.7 
Minimum 15 7.8 3 
Maximum 61 22 9 
n 34 34 34 
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4.1.1. Testing normality of forest Tree attributes 
All tree attributes of P. uncinata and P. sylvestris (Figure 1 to Figure 6) shows a normal distribution. All 
median values are quite close to mean values that is interpreted the normalisation of distribution as well. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

A B 
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D E 

F 

Figure 15: A, B and C Histograms of tree attributes of P. uncinata - D, E and F Histogram of tree 
attributes of P. sylvestris 
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4.1.2. Multi collinearity verification 
 All VIF are < 10 (Table 10 and 11), so all the explanatory variables can be used in regression.  
 
 
 
 
Table 10: Multi collinearity for P. uncinata Table 11: Multi collinearity for P. sylvestris   
 

 
 
 
 
 
 
 

 
 
 

R2 VIF 

DBH (cm) 0.63 2.67 

Height (m) 0.27 1.37 

Crown diameter (m) 0.54 2.15 

n  204 

 

R2 VIF 

DBH (cm) 0.52 2.1 

Height (m) 0.27 1.36 

Crown diameter (m) 0.44 1.77 

n 50 

The strength of relationship between tree biophysical variables at the level 0f 95% confidence examined as 
showed in Table 12 &13. 
 
Table 12: Relationship between tree 
 attributes in the field – P. spp 

Table 13: Relationship between tree 
 attributes in the field– L. decidua   

 

Tree attribute R2 

DBH and Height  0.32 

DBH and Crown diameter 0.37 

Height and Crown diameter 0.15 

 

Tree attribute R2 

DBH and Height  0.76 

DBH and Crown diameter 0.64 

Height and Crown diameter 0.53 

 
 
                                        
Weaker linear association between variables for P. uncinata and P. sylvestris has been found than L. decidua. 
Height and Crown diameter had the least relationship followed by DBH and height for pines. 
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L. decidua  P. sylvestris 

4.2. Canopy Height Model (CHM) 
CHMs with different point density of LiDAR data were generated. Non-forest and broadleaves forest 
areas were masked on the CHM. Crown area of tree is recognizable in CHMs especially for those trees 
which are taller and isolated. The brighter set of pixels, the taller the tree (Figure 16). Tree crown were 
manually delineated for trees measured in the field.  A subset of each CHM was showed in Figures 17, 18, 
19 and 20.  
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: On the right showing a full raster of CHM0 - 164 point /m2 and on the left a subset of CHM0 showing 
how recognizable the tree crown is.  
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Figure 17: a subset of CHM1 derived 
from LiDAR dataset with density of 82 
point/m2 

Figure 18: a subset of CHM2 derived from 
LiDAR dataset with density of 32 point/m2 

Figure 19: a subset of CHM3 derived 
from LiDAR dataset with density of 11 
point/m2 

 

Figure 20: a subset of CHM4 derived from 
LiDAR dataset with density of 4 point /m2 
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Tree Crown by TreeVaw  

Tree crown from field 
data 

4.3. Tree height and tree crown delineation 

4.3.1. Tree height and tree crown diameter using TreeVaw 
 After pre-processing 67,518 detected trees remained (Figure 21).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tree Height and Crown diameter validation from TreeVaw: 
A high R2 and a low RMSE for tree height showed a good fit of extracted height with reference height 
from ground measurements (Figure 22).The crown diameter cannot be extracted by this approach. Four 
values of height and crown diameter recognized as outliers were removed from the scatter plots 
(Appendix 2).   
 
 
 
 
 
 

Figure 21: on the centre, a full point shape file for the study area is shown, on the left top, a subset of point is 
displayed – on the right, a subset of point with buffer of crown diameter for each tree. On the left down, 
overlaying of TreeVaw result, field data with CHM  
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Accuracy assessment of tree detection and tree crown area of TreeVaw approach was analysed using 
reference tree crowns. Overall accuracy varies from low accuracy 36.4% in plot 9 to 100% in plot 7, both 
located in unstable areas, though total accuracy of 13 plots is promising 72.6% (Table 14). 

 

 

4.3.2. Tree height and tree crown delineation using Region Growing in eCognition 
Tree crown delineation resulted in segmented trees for each CHM. As in following figures (Figure 23, 25, 
26, 27 and 28) segmentation for different CHMs are displayed. In the crown isolation process some of 
crowns were broken into more than two crowns where as some of the overlapped tree crowns could not 
be separated. It was also noticed that some of the small crowns were delineated to one bigger crown. Thus 
the problem of over-segmentation and under-segmentation persists in the segmentation Figure24.  
 
 
 
 
 

Table 14: Overall accuracy for tree detection and tree crown area using TreeVaw, St=Stable area, Ust=Unstable 
area 

Plot No. 
1 
St 

2 
Ust 

3 
St 

4 
Ust 

5  
Ust 

6  
St 

7  
Ust 8 St 

9  
Ust 

10 
 St 

11 
 Ust 

12 
 St 

13 
 St Total 

Nm 20 16 21 13 14 11 10 9 4 27 7 16 44 212 
Nr 22 17 41 18 18 16 10 13 11 30 11 30 51 288 
Nd 22 16 21 14 14 11 10 9 4 27 7 16 45 216 

Omission 
error 9.1 5.9 48.8 27.8 22.2 31.3 0.0 30.8 63.6 10.0 36.4 46.7 13.7 26.4 

Commission 
error 9.1 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 1.9 

overall 
accuracy 83.3 94.1 51.2 68.4 77.8 68.8 100.0 69.2 36.4 90.0 63.6 53.3 84.6 72.6 

* Nm is the total number of matched trees, Nr is the total number of reference trees measured or delineated in the plot in the field 
and Nd is the total number of trees detected by TreeVaw 

Figure 22: Tree height and Crown diameter validation –TreeVaw approach 

RMSE=0.7 
RMSE=1.8 
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Figure 23: crown delineation on CHM0 derived from LiDAR 
dataset with density of 164 point /m2 - the yellow polygons are 
segmented trees overlaid on CHM0 

Figure 24: Errors occurred during segmentation 
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Figure 25: crown delineation on CHM1 derived from 
LiDAR dataset with density of 32 point/m2 

Figure 26: crown delineation on CHM2 derived from 
LiDAR dataset with density of 82 point/m2 

Figure 27: crown delineation on CHM3 derived from 
LiDAR dataset with density of 11 point/m2 

Figure 28: crown delineation on CHM4 derived from 
LiDAR dataset with density of 4 point/m2 
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Tree Height and CPA validation from Region Growing in eCognition: 
 
The extracted height and crown area (CPA) from Region Growing approach for CHM0 were plotted 
against reference data (Figure29). R2 and RMSE for both variables explained how the extracted variables 
fit to reference variables.  
 
 

 
 

 
The accuracy assessment of tree detection and tree crown delineation per plot (Table 15) carried out for 
result from segmentation of CHM0. The accuracy value varies from 63.6 in plot 12 located in stable areas 
to high accuracy of 94.9 in plot 2 located in unstable areas. The overall segmentation accuracy was found 
to be 79%. This implies that 79% of the CPA-segment had good match with the manually delineated 
CPA. The missing tree was accounted as 16% for all plots out of which plot 3 has the highest value. 
  
 

Plot No. 

1 

St 

2 

Uns 

3 

St 

4 

Ust 

5  

Ust 

6 

St 

7  

Ust 

8  

St 

9 

Ust 

10 

St 

11 

Ust 

12  

St 

13 

St Total 

*Nm 18 17 29 14 15 15 10 12 10 28 10 22 45 244 

*Nr 22 17 41 18 18 16 10 13 11 30 11 30 51 288 

*Nd 18 18 30 15 15 15 14 12 11 35 13 24 42 262 

Omission error 18.2 0.0 29.3 22.2 16.7 6.3 0.0 7.7 9.1 6.7 9.1 26.7 11.8 15.3 

Commission error 5.3 5.6 3.3 6.7 0.0 0.0 28.6 0.0 9.1 20.0 23.1 8.3 2.2 6.9 

Overall accuracy 78.3 94.4 69.0 73.7 83.3 93.8 71.4 92.3 83.3 75.7 71.4 68.8 86.5 79.0 
* Nm is the total number of matched trees, Nr is the total number of reference trees measured or delineated in the 

plot in the field and Nd is the total number of trees detected by TreeVaw 

 

Table 15: Accuracy assessment of tree detection and tree crown delineation of Region Growing on CHM0 in 
eCognition , St=Stable area, Ust= Unstable area  

²

RMSE=1.2 

Figure 29: Tree height and CPA validation of Region Growing approach 
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Tree height validation (Table 16) for all CHMs is done using R2 and Root Mean Square Error calculation 
(Table16). 
The accuracy of height varies from 0.75 to 0.63 when the density decreases from 82 point/m2 to 4 
point/m2. RMSE value is similar for the last three CHMs but the least for CHM with density of 82 
point/m2. 
 
Table 16: Height accuracy for different CHMs 

 
 
 
 
 
 
 

 
Accuracy assessment for all tree crown segmentations resulted for different CHMs done and omission and 
commission errors were calculated (Table17). This accuracy varies between 80% and 66%. It has a 
negative trend when the density of point of CHMs decreases. 
 

 
Table 17: accuracy assessment of segmentation of Region Growing Approach in eCognition for five CHMs 

CHM- SEGMENTED CHM0 CHM1 CHM2 CHM3 CHM4 

Nm 244 240 238 238 234 

Nr 288 288 288 288 288 

Nd 267 257 258 293 300 

Omission error  14.9 16.7 17.4 17.3 18.8 

Commission error  8.2 6.6 7.75 18.7 22.0 

overall accuracy  79.0 78.7 77.3 69.5 66.1 
* Nm is the total number of matched trees, Nr is the total number of reference trees measured or 

delineated in the plot in the field and Nd is the total number of trees detected by Region 

Growing 

 
Moreover, the goodness of segmentation measured using D value for all segmented results of Region 
Growing approach as given in Table18. D value varies from 0.18 to 0.33 when density decreases from 164 
point/m2 to 4 point/m2. 
 
Table 18: D value for Tree segmentation in eCognition for CHMs derived from thinned LiDAR dataset 

CHM0 CHM1 CHM2 CHM3 CHM4 

Over segmentation 0.19 0.21 0.23 0.25 0.36 

Under segmentation 0.16 0.21 0.20 0.23 0.29 

D Value 0.18 0.21 0.22 0.24 0.33 

R2 RMSE Point density of LiDAR dataset/ m2 

CHM1 0.75 1.4 82 

CHM2 0.73 1.8 32 

CHM3 0.65 1.9 11 

CHM4 0.63 1.9 4 
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Assessment result of Overall accuracy and D value plotted in order to have a better understanding of 
variation of accuracy for different CHM (Figure29). The accuracy in both methods (Overall accuracy and 
D value) has a slightly decrease and increase respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4. Object based image classification 

4.4.1. Species classification 
The segmentation result was classified into three dominant species classes including P. uncinata and P. 
sylvestris and the rest of segmentation classified as Others (figure 17). The result showed P. uncinata as 
dominant species in case of number of trees with density of 1,397 trees/ha while P. sylvestris is dominant in 
case of crown area covered (Table19). In total tree density is 731. 
 
 
        Table 19: Area of each species class and number of trees 

Species Counts Total 
Crown 
area-
CPA  
(ha) 

Mean 
(CPA) 
 
 
 (m2) 

Min. of CPA  
 
 
 
(m2) 

Max. of 
CPA  
 
 
(m2) 

Total gap 
area  
 
 
(ha) 

Tree density 
 
 
 
(ha) 

P. uncinata 44988 22.0982 4.9 3 12 10.3 1,397 
P. sylvestris 22906 33.2802 14.5 3 67 20.4 429 
Others 6111 10.8817 17.8 3 86 5.3 381 
Total 74005 66.2501 9.0 3 86 45 731 

 

Figure 30: Variation of segmentation assessments for 5 
CHMs 
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Figure 31: (on the right) Tree Species map, (on the left) a subset of the map displaying individual trees  
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4.4.2. Object Based Image Classification Accuracy 
 
In order to classification validation 85 trees (30%) of field data was selected in which there were 61 P. 
uncinata,  15 P. sylvestris and 9  Others (L. deciduas). 
Confusion matrix of error and accuracies calculated as shown in Tables 20 and 21. 
 
                Table 20: Confusion matrix of errors of tree species classification 

Species P. uncinata P. sylvestris Others Total 
P. uncinata 56 3 0 59 
P. sylvestris 4 11 3 18 
Others 1 1 6 8 
Total 61 15 9 85 

 
    Table 21: Accuracy assessment for tree species classification 

 
As the result of classification showed P. uncinata was classified the most correctly with higher user’s and 
producer’s accuracy following by P. sylvestris and others. Overall accuracy and Kappa coefficient was found 
to be 81.10% and 0.62 respectively. This means that 81% of the CPA-segments were correctly classified. It 
can explain the capability of CHM for species classification in this forest. 
 
 
 

4.5. Model development and Validation 

4.5.1. Relationship between height, CPA and Carbon  
The comparison of coefficient of determination for three equations presented in Table 22 showed that 
equation 1 provided the best fit. Besides, multi linear regression resulted in a higher coefficient of 
determination for carbon modelling than simple linear regression (Figure 32). Therefore, Carbon model 
was developed for pines through multi linear regression using height and CPA. 
 
Table 22: Multi linear regression analysis for three allometric equations using height and CPA and carbon stock 

 
 
 
 
 

Species class Reference total Classification 
total 

Correct total Producer’s 
accuracy % 

User’s accuracy 
% 

Kappa 

P. unciata 61 59 56 91.80 94.91 0.71 
P. sylvestris 15 18 11 73.33 61.11 0.60 
Others 9 8 6 66.00 75.00 0.58 
Total 85 85 73    

Overall Accuracy: 81.1% 0.62 

 Coefficient of determination (R2) Standard error T Statistic P Value 
Equation 1 0.56 23.72 -4.49 1.28E-05 

Equation 2 0.49 23.36 -3.62 0.0004 

Equation 3 0.51 25.35 -3.23934 0.00143 
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As it is clear in Table 22, T Statistic for all equations is not equal to 1 and the p-value as well is less than 
0.05. Therefore one way ANOVA was applied to test the significance of coefficient of determination and 
results in Table 23 showed that the regression was statistically significant at 95% level of confidence.  
 
Table 23: ANOVA test result of P. uncinata and P. sylvestris 

 df S MS F Significance F 
regression 2 84978.94 42489.47 75.51541 1.79E-24 

residual 178 400613.6 2250.638   
total 180 740529.4    

So the model developed for carbon stock estimation in both pines in the study area is given as below: 
 
Carbon Estimation Model = -38.17 +7.91*Height+1.74*CPA  
 
Applying the model for estimating carbon for the whole study area gave some information of carbon as 
showed in Table 24. 
           

            Table 24: carbon information in the study area 

Species Counts Tree density / 
 ha 

Mean Carbon  
 kg/tree 

Mean Carbon  
tonne/ha 

P. uncinata 44988 1397 55.59 77.659 
P. sylvestris 22906 429 65.49 28.10 

 
 
 
 
 
 
 
 

Figure 32: Simple linear regression model for carbon estimation 
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4.5.2. Model validation 
The predicted values were plotted against calculated carbon stock. The model resulted of coefficient of 
determination of 0.65 using 132 trees of P. uncinata and P. sylvestris (figure 33). So it is interpreted that 65 % 
of calculated carbon from the field was explained by predicted carbon using model. The test of goodness 
of fit was done using RMSE of this validation which is 22.83 kg per tree. It was noticed that the model 
calibrated with calculated carbon with unknown error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RMSE=22.8 

Figure 33: Carbon Model Validation 
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5. DISCUSSION  

5.1.  Tree Attributes 
Though the field data showed normal distribution for all attributes the relationship between tree attributes 
is not strong for pine species. They are not comparable with the result of other studies which found 
allometric relationship among different parts of trees. The R2 >0.70 between DBH, height, crown 
area/crown diameter was found in those studies (Bartelink, 1996; Fang & Bailey, 1998; Hall et al., 1989 ; 
Hemery et al., 2005). The condition of this anomalous forest, dense tree plantation especially P. uncinata 
with a tree density of 1,397 /ha (Table19) resulted in low correlation between tree variables. 
In addition, when LiDAR data are applied for measuring trees and stands in a forest, the DBH-height 
relationship should be functionalised (Kwak, et al., 2007) while the R2 doesn’t show a strong function. 
Besides, the relationship between height and crown diameter is significantly low (R2= 0.15).  

5.2. Tree detection and extraction of forest attributes in TreeVaw 
An average of 72% of tree was detected correctly in TreeVaw approach at the highest point density. This 
result is comparable with the result with lower point density of 70 point /m2 with the same method of 
assessment with 63 % accuracy with 4 % of commission error, and 36 % omission error. On comparison 
to the result from another study in the same area  (Razak, et al., 2011) with accuracy of 80% to 94% with 
the same method of assessment is not promissing. 
This overall accuracuy varies from 36% to 100 % between plots. This high variation rises from some 
factors. One is that tree detection method is tree species dependent, for example, in plot 10, 95% of trees 
are L. deciduas which are large, tall and isolated trees, or plot13 all trees are P. sylvestris. That means they are 
easily visible by even low point density of LiDAR data but in other plots which mostly covered by P. 
uncinata trees which they don’t have large crown planted in  a very close to each other and their crown has 
a large overlay, so in this case intermingle trees make low accuracy in tree detection. It can be interpreted 
that tree detection accuracy influenced by tree density, in plot where the number of trees are low detection 
accuracy is significant acceptable (plot 7 and Plot 2) while other reason may affect the accuracy even in 
plot with low tree density. It may be because of the inclination and orientation of tilted trees. For example 
in plot 9 which located in unstable area and most of the trees tilted and number of intermingled trees is 
high, so accuracy is low, though number of trees in the plot is also low. Furthermore, Variation of 
accuracy between stable and unstable plots shows that the accuracy is not affected significantly by stability 
of the land. It implies that single reason couldn’t explain the detection accuracy. Lower commission errors 
compare to omission errors imply that TreeVaw approach was able to correctly detect trees but not all 
measured trees in the field. 

5.2.1.  Tree height 
The accuracy of the tree height estimates (R2= 0.82, RMSE=1.8 m) is also comparable to the accuracy of 
the estimations achieved by Razak (et al., 2011) with R2=0.72 -0.91 and RMSE=1.07- 1.28 m) while in 
other research with very lower point density accuracy of tree height is also similar(Kwak, et al., 2007; 
Leckie et al., 2003; Popescu, 2005). As height error (RMSE) could be closely correlated with slope(Véga & 
Durrieu, 2011)  in the study area which is highly steep >60% and measuring tree height in dense steep 
forest is associated with error as we had already in the field.  
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5.2.2. Crown diameter 
As expected, the tree crown diameter is less accurately estimated than the tree height. This result (R2=0.27 
and RMSE=1.4 m) is not in agreement with the result by Popesco (2003) for pines and deciduous trees 
with R2 values 0.62-0.63 respectively and RMSE 1.36 and 1.41 m. The reason might be due to that the 
algorithm to calculate crown diameter in TreeVaw is based on the relationship between crown size and 
height of the trees (Popescu, et al., 2003) as this relation is not significant in this forest (R2 = 0.14). Other 
part of the unexplained variance associated with crown diameter can be attributed to the fact that the 
algorithm for calculating crown diameter aimed at measuring the non-overlapping crown diameter and 
individualized crowns on the CHM, while the field measurements considered crowns to their full extent 
and therefore measured overlapping crown diameters (Popescu, 2003)  
 
 

5.3. Thinning method  
 The issue of whether or not different density of point affects the accuracy of forest biophysical model is a 
controversial one (Lim, et al., 2008). Some would argue that because many parameters such as scan angle, 
scan frequency, aircraft velocity and repetition frequency could contribute to determine point density, so it 
is counterintuitive to conclude that one of those parameter itself resulted  different point density (Lim, et 
al., 2008). However the advantage of the simple thinning method used in this study which more likely is a 
kind of filtering is that the variation of point density used here didn’t derive from different survey 
parameters, so the influence of sampling point density could have been argued with this assumption that 
all above mentioned parameters were constant but flight survey done in different altitude.This methd of 
thinning filters the point based on the time they recorded though the distribution of the points before and 
after thinning were not examined in this research. Larger point density provide more detail about the 
vertical canopy structure whinin a given area. 
 

5.4. Tree detection and extraction of forest attributes in Region Growing approach  
 Several methods exist for detecting and segmenting trees on the image. In a study by Larsen and Erikson 
(2011) different approaches (6 individual tree crown detection algorithms) for segmenting crowns of 
individual trees has been fully compared(Larsen et al., 2011). The study shows that no algorithm is optimal 
for all types of images and forest type. He concluded that the optimal approach in a specific situation 
depends on various characteristics of the image and forest stand, such as crown closure, regularity and 
species mixture. However a comparison of Region Growing method with other approaches (Erikson, 
2003; Eriksson et al., 2004) showed superiority of Region Growing method for dense forest with correct 
delineation as much as 95% of all visible tree crown segmentation of images.  
An average of ~80% of trees in Region Growing approach was correctly detected for CHM0. Though this 
result is higher than result from TreeVaw approach and is with agreement of the result of other study in 
the same area (Razak, et al., 2011), higher accuracy was expected because of high point density. Variation 
of detection accuracy between plots is also less than TreeVaw approach (63.6 – 94.40). D value of 0.18 as 
well explained an acceptable detection of trees. However this accuracy came out from the condition which 
researcher assigned for tree detection (> 60% of intersection area for true detected tree) though this 
condition is more flexible in other researches (Brandtberg, et al., 2003; Rahman, et al., 2009). Furthermore, 
function of Local Maxima in Region Growing approach may not be able to find all true tree tops, so the 
segmentation result was influenced by this function. Applying a height filter may give a better result as 
Leckie (et al., 2003).  As mentioned before, structure of forest also influences the accuracy of tree 
detection. As in the study area P. uncinata was planted in a very high density and most of trees are in a 
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same level of height while crown’s overlap is very high which affects tree detection accuracy. Furthermore 
the same finding as similar as in previous approach regarding difference of accuracy between stable and 
unstable plots was found. 

5.4.1. Tree height and crown area   
Examination of the height and crown area delineation derived from LiDAR using Region Grwoing 
approach for ground reference data demonstrated the effectiveness of the approach. The coefficients of 
determination for tree height estimations (R2 = 0.80, RMSE =1.2 m) and CPA (R2 = 0.85, RMSE =2.3 m2) 
are in an agreement with other researches (Kim, et al., 2010; Leckie, et al., 2003; Suárez, et al., 2005) and 
higher than found with the TreeVaw approach as well. 
 
 

5.5. Influence of point density on tree segmentation: 
As density of point decrease between CHMs, accuracy of tree detection resulted two methods of 
assessment (Overall accuracy and D value) declines generally. There was a slight drop in overall accuracy 
when the density decrease from 164 to 32 point / m2  followed by a significant decline when density goes 
down to 4 point /m2 . This trend has been occurred in D value in an inverse direction as well. Therefore It 
can be interpreted that point density of >11/m2 does neither influnce tree detection nor crown 
delineation. The higer ommision error than commission errors for all CHMs imply that number of trees 
which were not detected are higher than the number of tree detected wrongly. As tree detection accuracy 
is based on intersection area of matched trees, the accuracy of tree detection relies on the quality of crown 
delineation. As the density of points decreases, the probability of finding correctly tree top and seeds 
comes down in Region Growing and numbers of points which are detected as crown edge also decrease.  
It is clear that the loss in vertical accuracy (height) has significant (75%- 63%) effects especially at lower 
density (CHM4). This result is in agreement with the result in a study (Yu et al., 2004) on effect of flight 
altitude on tree height estimation. His results indicated, in general, that tree height estimation accuracy and 
number of detectable trees decreases with the increase in flight height and point density ( 10, 5 and 2.5 
point/ m2 were output of three flights in 400, 800 and 1500 m of altitude, respectively) has more influence 
on tree height than other factors. The forest tree species were Picea abies and P. sylvestris. 
Besides, this result can be supported by the result of an study in which a slightly similar method of 
thinning but with lower LiDAR point density applied (Pirotti & Tarolli, 2010). 
Furthermore, in an study (Lim, et al., 2008) the effects of sampling point density on canopy height was 
examined and was concluded that though minimum and maximum canopy height affected by sampling 
density but mean canopy height is insensitive to density of point across different types of forest plots. The 
study area was planted by P. resinosa and P. strobus  while Thomas examined the scanning density for stand-
level mapping and revealed high-density models are well correlated with mean dominant height and crown 
boundary (R2=0.84 , 0.91 respectively) and low density couldn’t predict crown boundaries. The maximum 
point density in this study was 8 point/m2 (Thomas, et al., 2006). 
Therefore it implies that CHMs derived by at least 11 point density of LiDAR data/ m2  to be  capable to 
achieve an accurate tree detection ,tree height and tree crown delinieation . It has to be noted that 
segmentation algorithm as a function also influence the accuracy of tree detection and tree crown 
delineation. 
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5.6. Tree species identification 
Recently the LiDAR data has been tested for tree species classification (Brandtberg, 2002; Holmgren & 
Persson, 2004). Holmgren classified P. sylvestris and Picea abies using LiDAR of density of 0.5 point/m2 with 
overall accuracy of 95%. In another study (Persson et al., 2006) P. sylvestris and Picea abies and Betula spp. 
were identified with an accuracy of 87% using laser scanning data of 50 point/ m2. The result of species 
classification accuracy in this study is similar to the result of researches mentioned above. 
 Tree species classification has an overall accuracy of 81% with Kappa statistics of 0.62. It was also 
observed that user’s accuracy for P. uncinata was even as high as 94%. The reason is that 71% of the trees 
sampled in the field belonged to this species. Low user’s accuracy in classifying the other two species is 
mainly attributed to fewer samples for training and validation of the result. Short time field work resulted 
in having not enough samples of all dominant tree species in the study area. Also the training and 
validation data for P. sylvestris all belongs to a single plot in zone 2 which may not represent this species 
adequately. 
 

5.7. Carbon model development 
LiDAR-measured height and LiDAR-measured CPA used for developing carbon model are high 
correlated to reference data (80% and 82% respectively) so examining how good CPA itself can be applied 
to estimate carbon stock associated with height which both can be extracted from CHM was considered.  
If local allometric equation was used for calculation of above ground carbon, the findings would be largely 
narrow down the uncertainty of this model for prediction. Whereas untested equation used in this 
research has an unknown error. This represents error propagation.  
In addition the type of forest in the research area is too anomalous (century-old abandoned plantations 
with very thin, very dense trees) unlikely to fit to any allometric equation developed in production forests 
elsewhere. Besides, when LiDAR data are applied for measuring trees and stands in a forest, the DBH–
height relationship should be functionalized. This relationship also is not strong in this forest (R = 0.57). 
A limitation of the allometric equation is that it was developed from DBH with a narrow range. So the 
model may produce extrapolation errors when applied beyond the range of model development 
data(Anderson et al., 2000). 
The validation accuracy for the carbon model with R2 of 0.65 means 65 % of calculated carbon can be 
explained by predicted carbon/tree implying an error of 22.83 kg per tree. However the mean carbon/tree 
is 55.6 and 65.5 kg for P. uncinata and P. sylvestris respectively which is comparable to 193 kg for P. densiflora 
with mean DBH 40 cm and mean height 17.2 m (Kim, et al., 2010). 
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6. CONCLUSIONS  AND RECOMMENDATIONS 

6.1. Conclusions 
In this work, LiDAR point density and accuracy of LiDAR derived height and LiDAR derived CPA to 
develop a biophysical model for estimating carbon stock was tested. In general it was found that the forest 
is too anomalous for fundamental research on biomass and carbon estimation. However, with respect to 
this, following conclusions were drawn for each research question. 
 
 
(1) Is there a significant relationship between forest biophysical parameters measured in the field to obtain an allometric 
equation?  
Significant (<0.05) but not high correlated relationship (> o.37) was found between DBH, crown area and 
height of pine trees 
  
(2) Is it feasible to estimate carbon stock for individual tree of pine forest using solely high density LiDAR data? 
Using a developed model of carbon prediction by LiDAR measured height and LiDAR measured CPA 
provided carbon stock of individual trees with R2 of 0.56. Though the relationship of this model is not 
strong it is feasible to estimate the amount of carbon using solely and effectively high density airborne 
LiDAR data. 
 
(3) How does the different point density of LiDAR data affect the accuracy of forest biophysical model? 
In this research the assessment of segmentation result from Region Growing approach was considered to 
answer to the above question. It was found that the density >11 point/m2 gives more accurate of tree 
segmentation result on CHM with overall accuracy of > 70% and D value of <0.24.  
The research indicated that LDAR point density to be used for CHM generation can be as low as 11 point 
density/m2 so the ability of low-density models to accurately map key biophysical variables of forest is a 
positive indicator for the utility of lidar data for monitoring forested areas 
 
(4)  How significant are the variables (height and crown area derived from LiDAR data) to estimate the above-ground 
biomass and carbon stock  
LiDAR derived tree height and Lidar derived tree crown area do not show a highly significant correlation 
(R2=0.32, 0.18 respectively) with calculated carbon though they are highly correlated with the height and 
crown area measurements in the field (R2 of 0.80 and 0.85 respectively). 
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6.2. Recommendation  
During this work several points were discovered which will need ongoing work and attention 

 
- The availability of such high density LiDAR data in forest area gives the opportunity of direct 

measurement of tree variables on the point clouds. So carrying out studies for extracting more 
accurate forest biometrics information which more contribute to estimate aboveground biomass 
and carbon stock such as crown volume, crown base height.  

- Species identification found the effectiveness of high density LiDAR for one of the species. More 
field data needed for identifying other dominant tree species.  

- Improving individual tree crown segmentation in eCognition using such as ‘marker-control 
watershed segmentation’ or ‘Region Growing’ based on Density of High Points (DHP) is 
recommended.  

 
- Testing thinning method considering the first returns which refer to the canopy surface is 

recommended in further studies. 
 

- The information of influence of point density derived from this research can be of interest when 
planning LiDAR flights for this specific purpose.  
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List of species observed in the Bios Noir catchment 
 Specie name Generic name 
1 Pinus uncinata Mountain pine 
2 Pinus sylvestris Scotch pine  
3 Larix decidua Larch 
4 Picea  abies Spruce 
5 Alnus spp ---- 
6 Fraxinus spp Ash 
7 Juniperus communis --- 
8 Juniperus  sabina ----- 

Outlier trees which removed from data  

Plot nomber- Tree 
Nomber 

Reference 
Crown 
diameter 
(m) 

Extracted 
crown 
diameter 
(m) 

Reference 
height 
 (m) 

Extracted 
height  
(m) 

P11T3 4 4 11 15.4 
P13T13 3.5 2 15.3 17 
P13T20 3.8 2 13.66 6.1 
P12T28 - 4 11 16 
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Appendix 3 
 
Generating CHM directly from Lidar Data: 
 
In order to make Canopy height model there are different way. The simple way that used in many research 
is making Digital Train Model and Digital Surface Model and by subtracting these two raster file , the 
CHM will be provided. 
Using lastools make it possible to produce CHM directly from LiDAR data. Using “lasheight” function 
for two times  , the first for normalizing data and the second time for dropping height less than and above 
than minimum and maximum  expected height ( here minimum  is zero and maximum  40 as the highest 
tree height) . Then by merging simultaneously  when executing the second “lasheight “ function ( we can 
merge the 17 files of data  as a separate function after doing “lasheight” , that is called “merge”) a merged 
file is provided that  will be used  in generating CHM by applying “Blast2dem” function. 
The output of this step can be tif, img or other extension. But when we are going to visualize in ArcGIS 
first we should be sure that the pixel depth is 32 bit not 8 bit. (In source), then should be done some raster 
calculation for displaying the maximum and minimum value of height in the ArcGIS as below 
 
 Generating CHM using blast2dem, example name:  CHMBlfirstret20, 15, 10, 25: 

1- lasheight -lof file_list.txt -olaz -replace_z 
2- lasheight -lof file_list.txt -merged -o Height_040_BN.laz -drop_below 0 -drop_above 35 
3- lasmerge -lof file_list.txt -merged -o Merg_2lasheight.laz   ( if  you don’t merge in previous step then this 

command should be done otherwise from step  2  goes to step 4) 
4- blast2dem -i  Merg_2lasheight.laz-o CHMBlfirstret10.tif  -step 0.1     -first_only  -kill 50   
5- blast2dem -i  Merg_2lasheight.laz-o CHMBlfirstret25.tif  -step 0.25     -first_only  -kill 50         

 
1. Generating CHM using Grid , example name :CHMGrid15,10,20) 

1.   lasheight -lof file_list.txt -olaz -replace_z  
2.   lasheight -lof file_list.txt -olaz -drop_below 0 -drop_above 40     or  
3. lasheight -lof file_list.txt -olaz -drop_below 0 -drop_above 35 
4. lasgrid -lof file_list.txt -merged -o CHM_Grid15.tif -step 0.15 -elevation -highest -fill 15 -mem    
1500 -temp_files g:\temp\temp    or 
5. lasgrid -lof file_list.txt -merged -o CHM_Grid20.tif -step 0.2 -elevation -highest -fill 15 -mem 
1500 -temp_files g:\temp\temp    or   
6. lasgrid -lof file_list.txt -merged -o CHM_Grid10.tif -step 0.1 -elevation -highest -fill 20 -mem 
1500 -temp_files g:\temp\temp     
 
 
2.  Generating CHM using substraction  DTM from DSM : 
2.1. Generating DTM  

 
In Lastools using lasground takes all of points and try to find the ground points (class 2 if it has 
beeb classified by vender) and then applying ‘lasmerge’ then blast2dem we can make a DTM: 
 
1-lasground -lof file_list.txt -olaz 
2-lasmerge -lof file_list.txt -merged -o DTM_G_merg.laz 
3- blast2dem -i  DTM_G_merg.laz -o DTM_GMB_BN_15.tif -step 0.15 -keep_class 2 -kill 10                   
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Problem: DTM with high resolution of 10 cm makes some pixles without data, so it is better to have a 
resolution bigger than 20cm. 
-  This way there will be some missed data inside the area but by “grid command” there is an 

option called “fill” that solves this problem. 
Or   
       DTM_10_low_grid.tif   
1-lasground –lof file_list.txt –olaz ………. 
2-lasgrid -lof file_list.txt -merged -o DTM_10_low_grid.tif -step 0.1 -elevation -lowest -fill 8 -
mem 1500 -temp_files i:\temp\temp 
 
(Problem; so empty pixels, number of fill pixel should increase up to 20) 

 
2.2.  Producing DSM10_BN:  (Command with all raw data) 

lasgrid -lof file_list.txt -merged -o DSM_Highs_25.tif -step 25 -elevation -highest -fill 10 -mem 1500 -
temp_files i:\temp\temp  
Or  merging all of 17 files then by applying Blast2dem and –first_only a new DSM will be provided 
 
Making Intensity Map: 
 

1. lasheight -lof file_list.txt -olaz -replace_z  
2. lasheight -lof file_list.txt -olaz -drop_below 0 -drop_above 40 
3. blast2dem -i Height_040_BN.laz -o Intensity_10cm_BN.tif -step 0.1 -intensity -kill 5050 

 
Thinning command: 
For Single file boinoi009: 

 
1-1-  las2las -i boisnoir000009_L3.las -o boi009_thinalleve10.laz -keep_every_nth 10 
1-2- las2las -i boisnoir000009_L3.las -o boi009_thinfirsev10.laz -first_only  -keep_every_nth 10 
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