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ABSTRACT

Forests play a major role in global warming and climate change issues through its unique nature of carbon 
sinks and sources. Therefore, precise estimation of carbon stock is crucial for mitigation and adaptation of 
these issues through REDD+ carbon incentive program. Very high resolution (VHR) satellite imagery in 
combination with airborne LiDAR (Light Detection And Ranging) data using object based image analysis 
technique provide new opportunities to accurately estimate carbon stock of the forests. This study aims to 
develop species specific regression model using canopy projection area (CPA) and LiDAR derived tree 
height as predictor variables for accurate estimation and mapping of carbon stock in tropical forests of 
Chitwan, Nepal.  
 
WorldView-2 image was co-registered to airborne LiDAR data. Lidar data was further processed to obtain 
the canopy height model (CHM) by subtracting digital terrain model (DTM) from digital surface model 
(DSM). Both the pan-sharpened image and CHM layers were used for tree crown delineation to extract 
CPA and height of the individual trees. Above ground carbon stock was calculated from field measured 
DBH and height using species-specific allometric equation and a conversion factor. Species wise multiple 
regression models were developed using CPA, Lidar height and field measured carbon stock for carbon 
mapping of the study area. Shannon diversity index of each community forests (CF) was calculated to find 
out the relationship between tree species diversity and carbon stock of CF. 
 
LiDAR derived height showed overestimation of field height with RMSE of 3.84 m and was able to 
explain 76% of variability in height measurement. Multi-resolution segmentation resulted with overall 
accuracy of 76% in 1:1 correspondence and 67% segmentation accuracy (33% error) was observed from 
goodness of fit (D value). Transformed divergence indicated a good separation among different tree 
species with best average separability of 1970.99. NIR1, NIR2 and Red-Edge of WorldView-2 image were 
found to be the best bands for spectral separabilty. Tree species classification resulted in overall accuracy 
of 58.06% and Kappa statistics 0.47 for classifying six tree species. On average correlation coefficient of 
CPA and carbon, height and carbon and CPA and height was found to be 0.73, 0.76 and 0.63 respectively 
and indicated significant relationship for five dominant tree species. Species wise multiple regression 
models were able to explain 94%, 78%, 76%, 84% and 78% of variation in carbon estimation using CPA 
and LiDAR height for Shorea robusta, Lagerstroemia parviflora, Terminalia tomentosa, Schima wallichii and others 
respectively. A total of 188485 Mg C carbon stock was estimated with an average of 216 MgCha-1. The 
relationship between tree diversity and carbon stock at CF level was not significant and indicated weak 
correlation.  
 
WorldView-2 satellite imagery and airborne LiDAR data are very promising remote-sensing sources for 
estimating and mapping species wise above ground carbon stock of tropical forests. Further research is 
suggested to improve the carbon estimation by using non-linear multiple regression model and to explore 
the relationship between tree diversity and carbon stock at a broad scale of various forest types. 

 

Keywords: Carbon Stock, CPA, LiDAR derived tree height, Co-registration, CHM, Allometric equation, 
Multi-resolution segmentation, Multiple regression models, Tree diversity, REDD+ 
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1. INTRODUCTION
1.1. Background
The growing concentration of greenhouse gases (GHGs) in the atmosphere increases temperature of the 
earth and have raised concerns about global warming and climate change issues. Carbon dioxide (CO2) is 
one of the main contributors of greenhouse effect in the atmosphere along with other gases. The global 
atmospheric concentration of CO2 has increased from 280 ppm in pre-industrial era (1970) to 379 ppm in 
2005 at an average of 1.9 ppm per year which will further contribute to increase the temperature from 
1.8oC to 4o C by the end of this century (IPCC, 2007). The sudden increase of CO2 concentration is highly 
related with anthropogenic causes such as heavy use of fossil fuels, deforestation and degradation of land. 
Deforestation and forest degradation are responsible for about 20% of GHGs emissions, a major issue for 
climate change (World Bank, 2010) 
 
Carbon is sequestered and stored by terrestrial and marine ecosystems. About 2,500 gigatonne carbon (Gt 
C) are stored in terrestrial ecosystems, compared to approximately 750 Gt C in the atmosphere (CBD, 
2009). Healthy forests sequester and store more carbon compared to any other terrestrial ecosystem and 
are considered to be an important natural brake on climate change (Gibbs et al., 2007). At present, forest 
covers around 31 percent of total global land area and stores a vast amount (289 Gt) of CO2 in their 
biomass alone (FAO, 2010). Forests sequester CO2 from the atmosphere through photosynthesis process 
and act as a carbon sink. At the same time, some areas of forests are being destroyed, overharvested or 
burned, and converted to non-forest use, consequently becoming the source of carbon emission. Tropical 
forests are a large pool of both the carbon sinks and sources, therefore the estimation of carbon stock is 
crucial for understanding the global carbon cycle and to reduce the global warming (Sierra et al., 2007). 
 
The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) 
contains quantified and legally binding commitments to limit or reduce GHGs emissions at an average 
rate of 5% to 1990 level over the five-year period 2008-2012 (UNFCCC, 2011). All the contracting parties 
to the convention commit themselves to develop, periodically update, publish and report to the 
Conference of Parties (COP) about their national inventories to emissions by sources and removals by 
sinks of all GHGs using comparable methods (Houghton et al., 1997). In addition, the Bali Action Plan 
(COP-13) of UNFCCC in 2007 opened windows of opportunity for developing countries to participate in 
forest carbon financing through the mechanism of "reducing emissions from deforestation and forest 
degradation" (REDD) (MOFSC, 2009). REDD is an international effort to create a financial value for the 
carbon stored in forests. It offers incentives for countries to preserve their forestland in the interest of 
reducing carbon emissions and investing in low-carbon paths of sustainable development (UN-REDD, 
2009). The UNFCCC meeting of COP-15 introduced "REDD+" mechanism which is concerned with 
both reducing emissions and enhancing carbon stocks through actions that address deforestation, forest 
degradation, forest conservation and sustainable forest management (Cerbu et al., 2011). To achieve the 
entire target in one hand, REDD+ will require the full engagement and respect for the rights of 
indigenous peoples and other forest-dependent communities.  
 
Nepal is acknowledged and highly appreciated for its participatory forest management regimes. At present, 
approximately 39.6% of geographical area of the country is covered by forests, 25% of which are managed 
by local and indigenous community as a Community Forestry (DoF, 2010). The role of Community 
Forestry in REDD+ implementation is a central topic of discussion in Nepal’s REDD process, and it is 
likely to be an important part both for environmentally effective and equitable approach (REDD net, 
2009). Nepal, being a UNFCCC signatory and a member of UN-REDD Program, has recently submitted 
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the Readiness Preparation Proposal to participate in the Forest Carbon Partnership Facility. In order to 
further participate in the Carbon Finance Mechanism, Nepal has to show its current status of carbon 
stored by forests and emitted from deforestation and forest degradation (MOFSC, 2009). Therefore, it is 
crucial to precisely estimate the national forest carbon stocks in terms of biomass and sources of carbon 
emissions to determine a national reference scenario and to develop a national REDD strategies in Nepal.  

1.2. Overview of techniques for above ground carbon estimation 
FAO (2010) has defined biomass as "the organic material both above and below the ground, and both 
living and dead, tree, crops, grasses, dried litter, root etc" which is an important measure for analyzing 
ecosystem productivity. Above ground biomass (AGB), below ground biomass (BGB), dead wood, litter 
and soil organic matter is the main carbon pools in any forest ecosystem (FAO, 2010). AGB contains 47% 
of carbon which is defined as "all biomass of living vegetation, both woody and herbaceous, above the 
soil including stems, stumps, branches, bark, seeds and foliage (IPCC, 2007). Majority of biomass 
assessments are done for AGB of trees because these generally account for the greatest fraction of total 
living biomass in a forest and can be readily measured in the field (Brown, 1997). Others like the 
understory is estimated to be equivalent to 3% of above-ground tree biomass, dead wood 5-40%, and fine 
litter only 5% of that in the above-ground tree biomass. Hence, measuring AGB has received considerable 
attention in recent years because biomass can be readily converted to carbon storage, and quantifying 
carbon storage is important in understanding the carbon cycle (Malhi et al., 2002).  
 
There are different methods in practice to measure AGB and consequently the carbon stock of forests. Lu 
(2006) reviewed and summarized some approaches to estimate forest biomass based on field 
measurements, Remote Sensing (RS) and Geographic Information System (GIS). The AGB can be 
accurately estimated by destructive sampling (cutting and weighing) but it is not a practical approach 
because it is extremely costly, time consuming and labour intensive (Brown, 2002). Carbon estimation 
based on field measurements can be done by the measurements of diameter at breast height (DBH) alone 
or in combination with tree height which can be further converted to estimates of forest carbon stocks 
using allometric relationships (Gibbs et al., 2007). Allometric equations statistically relate these measured 
forest attributes to destructive harvest measurements, and exist for most forests. Additionally, a sufficient 
number of field measurements are a prerequisite for developing AGB estimation models and for 
evaluating the AGB estimation results. GIS-based methods require ancillary data such as land cover type, 
site quality and forest age to establish an indirect relationship for biomass in an area (Lu, 2006).  Such 
methods are difficult to implement because of problems in obtaining good quality ancillary data and the 
comprehensive impacts of environmental conditions on biomass accumulation (Brown, 2002; Lu, 2006). 
In RS based method, statistical relationship between satellite extracted tree parameters and ground based 
measurements is used in biomass estimation (Gibbs et al., 2007). However, ground data is still necessary to 
develop the biomass predictive model (i.e. calibration) and its validation (Zianis et al., 2005) because RS 
does not measure biomass, but rather it measures some other forest characteristics (e.g. spectral reflectance 
from the canopy).  
 
The combination of above mentioned approaches provide an alternative to traditional methods which 
gives spatially explicit information and enable repeated monitoring, even in remote locations and in a cost 
effective way (Patenaude et al., 2005). Therefore, with the advantage of having the capability to provide 
spatial, temporal and spectral information, remote sensing can be used as a tool for accurate estimation of 
carbon to meet the requirements of the Kyoto Protocol and UN-REDD Program (Andersson et al., 2009; 
Rosenqvist et al., 2003).  
 
A range of satellite sensors from low to very high spatial resolution is available for mapping and 
monitoring forest resources. Andersson et al. (2009) has categorized the passive sensors as ultrafine (<5m), 
fine (10-100m), medium (100-250m) and coarse (>250m) on the basis of spatial resolution and further 
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explained their application in various field. For example, fine resolution satellite images are well suited for 
the land classification while ultrafine resolution are better adapted for measuring forest variable inputs for 
the allometric models (Andersson et al., 2009) but medium to coarse resolution images are more suitable 
for monitoring changes in spatial extent of forests and identifying geographic areas. However, optical 
coarse resolution imageries are often used for biomass estimation at national, continental and global scales 
(Baccini et al., 2004; Clark et al., 2001). For example, NOAA-AVHRR data is probably most extensively 
used dataset to study vegetation dynamics on continental scale. It has shown its utility to represent net 
primary productivity for year 1982 (Warrick et al., 1986). Coarse resolution pixels usually receive response 
from several stands, which makes the direct biomass estimation problematic (Muukkonen & Heiskanen, 
2007) and tends to underestimate carbon stock. Lu (2006) reviewed that the AGB estimation based on 
coarse spatial resolution data is limited because of the common occurrence of mixed pixels and results in 
drawbacks in the integration of sample data and RS derived variables. In addition, Steininger (2000) faced 
problem of data saturation while estimating AGB in tropical regenerating forest using medium resolution 
Landsat TM data. Therefore, recognizing and understanding the strengths and weaknesses of different 
types of sensors and data are essential for selecting suitable sensor data for AGB estimation in a specific 
study (Lu, 2006; Tsendbazar, 2011).  
 
Remote sensing based AGB estimation is a complex procedure in which many factors, such as 
atmospheric conditions, mixed pixels, data saturation and complex biophysical environments may 
interactively affect estimation performance (Lu, 2006). However, very high resolution (VHR) satellite 
images such as IKONOS, Quickbird, WorldView-2 and GeoEye-1 can be used to recognize, identify and 
delineate individual tree crown by object based image analysis (OBIA) (Gougeon & Leckie, 2006). Baral 
(2011) used OBIA method to compare the segmentation accuracy of tree crown and species classification 
accuracy and found better result of GeoEye than WorldView-2 images. Similarly, Tsendbazar (2011) 
demonstrated higher accuracy of tree crown delineation by region growing approach than valley following 
approach in mixed forest using the GeoEye images. However, effect of shadow, sun elevation angle and 
off-nadir viewing angle could not be overcome by the high resolution satellite images.  
 
In principle, optical remote sensing technologies face the problem of frequent cloud cover which limits 
the acquisition of high quality RS data. In this situation, the use of Radar (Radio Detection and 
Ranging)/SAR (Synthetic Aperture Radar) becomes a feasible means for acquiring RS data in a given 
period of time irrespective of weather or light conditions (Ahamed et al., 2011). Radar systems are active 
remote sensors operating in the microwave portion of the electromagnetic spectrum (ca. 1cm to 10m 
VHF). It generates their own source of electromagnetic radiation allowing to capture images 
independently of solar energy (Patenaude et al., 2005). The Radar backscatter returned from the ground 
and tops of the trees are used to estimate tree height, which are then converted to forest carbon stock 
estimates using allometry (Gibbs et al., 2007; Toan et al., 2004). Although Radar backscatter has the 
capability to penetrate the clouds, it poses a saturation problem in tropical forest environments where 
AGB level generally exceed 200-250 Mg/ha (Ustin, 2004) and sometimes mountainous and hilly 
conditions also increase the errors (Toan et al., 2004). To overcome this problem, active remote sensing 
sensor (e.g. airborne laser scanning or airborne LiDAR) is a promising mapping technique for estimating 
forest biomass, as no saturation is  observed at high biomass levels (Patenaude et al., 2005). Airborne 
LiDAR also offers the unique capability of measuring the three-dimensional vertical structure of 
vegetation in great detail which in itself is an advantage over high resolution satellite imagery (Song et al., 
2010). Moreover, forest structural characteristics such as canopy heights, stand volume, basal area and 
aboveground biomass can be accurately estimated directly by LiDAR data (Hyyppa et al., 2008).  
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1.3. What is Lidar and how does it work?
LiDAR, is an acronym derived from LIght Detection And Ranging. As Lidar is a commonly used 
acronym, I will use 'Lidar' hereafter in this thesis. It is an active remote sensing technology that promises 
to both increase the accuracy of biophysical measurements and extend spatial analysis into the third (z) 
dimension (Lefsky et al., 2002). The Lidar device directly measures the distance between the sensor and a 
target surface, obtained by determining the elapsed time between the emission of a short duration laser 
pulse and the arrival of the reflection of that pulse (the return signal) at the sensor’s receiver. Multiplying 
this time interval by the speed of light results in a measure of the round-trip distance, and dividing that 
figure by two yields the distance between the sensor and the target (Bachman, 1979).  
     

[Distance = (Speed of light*Travelled time)/2]...........Equation 1: Lidar height measurement 

Lidar sensor, generally for terrestrial application, operates in the wavelengths range of 900–1064 
nanometers where vegetation reflectance is high (Lefsky et al., 2002) because in visible wavelengths, 
vegetation absorbance is very high and only a small amount of energy would be returned to the sensor. 
Lidar instruments can be categorized on the basis of two major characteristics i.e. the width of the laser 
beam and the way of return signal recorded in the devices. According to the first characteristics, it can be 
divided either as a large footprint 
or small footprint. Large 
footprint systems, such as 
Scanning Lidar Imagery of 
Canopies by Echo Recovery 
(SLICER) or the Laser 
Vegetation Imaging Sensor 
(LVIS), have a laser beam that is 
greater than 5 m in diameter, 
whereas small footprint systems 
use a more narrowly focused 
beam that is typically less than 50 
cm in diameter (Dubayah & 
Drake, 2000b; Lefsky et al., 
2002). To date, all large footprint 
systems are experimental devices 
constructed by research 
institutions. Based on the second 
characteristics, Lidar sensor can 
be categorized into two forms as 
shown in Figure 1-1 i.e. Discrete-
return device (DRD) and 
Waveform recording devices 
(WRD) (Lefsky et al., 2002). 

Figure 1-1: Illustration of the conceptual differences between 
waveform and discrete-return Lidar (Lefsky et al., 2002) 

 
Discrete-return Lidar devices measure either one (single-return systems) or a small number (multiple-
return systems) of heights by identifying, in the return signal, major peaks that represent discrete objects in 
the path of the laser illumination (Lefsky et al., 2002). While WRD records the time-varying intensity of 
the returned energy from each laser pulse, providing a record of the height distribution of the surfaces 
illuminated by the laser pulse (Dubayah et al., 2000a; Harding et al., 1994).  



MAPPING ABOVE GROUND CARBON USING WORLDVIEW SATELLITE IMAGE AND LIDAR DATA IN RELATIONSHIP WITH TREE DIVERSITY OF FORESTS

5

Both discrete-return and waveform sensors are typically used to measure the position of any x, y, z point 
on the Earth’s surface from three 
sources: (i) the Lidar sensor, (ii) the 
Inertial Navigation System (INS) and 
(iii) Global Positioning System (GPS) 
(Figure 1-2). The Lidar measurements 
must be corrected for the pitch, roll 
and yaw of the aircraft by INS, and 
the GPS information allows the slant 
distances to be corrected and 
converted into a measurement of 
ground elevation relative to the 
WGS84 datum or local mapping 
system (Heritage, 2009). Combining 
this information with accurate time 
referencing of each source of data 
yields the absolute position of the 
reflecting surfaces for each laser 
pulse.  
      Figure 1-2: A typical operation of a Lidar survey (USDA, 2006) 

1.4. Application of Lidar data for above ground carbon estimation
Lidar mapping can be done from both the platforms i.e., airborne and space borne, but till the date it has 
been carried out based on airborne sensors data only, and there is yet no option before 2015 from the 
space (Gibbs et al., 2007). Airborne Lidar data has capability to monitor forest biomass and volumes 
across ecosystems and aboveground biomass ranges. In contrast to optical remote sensing methods, Lidar 
has certain characteristics such as high sampling intensity, direct measurements of heights and precise geo-
location, which enable it for directly assessing vegetation characteristics and deriving forest biomass at 
multiple scales, from individual trees to regional extents (Popescu, 2007). Lefsky et al. (2002) and Lim et al. 
(2003b) reviewed the potential of Lidar devices for retrieving forest parameters. The Lidar data were used 
to estimate Douglas fir western hemlock biomass (Lefsky et al., 1999a; Means et al., 1999), temperate 
mixed deciduous forest biomass (Lefsky et al., 1999b), tropical forest biomass (Drake et al., 2002), tree 
height and stand volume (Nilsson, 1996), stand height (Wulder & Seemann, 2003), tree crown diameter 
(Popescu et al., 2003), and canopy structure (Lovell et al., 2003). Similarly, Patenaude et al. (2004) estimated 
the above ground carbon content (AGCC) in a temperate deciduous woodland, by means of a discrete-
return small-footprint airborne Lidar. They obtained a high correlation (r = 0.85) between field based 
estimates of AGCC and Lidar estimation from 20*20 m grid. 

Very high resolution (VHR) optical imagery has been used extensively for forest inventory and health 
monitoring. The advancement of technology has extended the possibilities of using VHR imagery with 
other active remote sensing data (e.g. Lidar system). This system cannot provide all the information about 
the canopy structure and other forest parameters (basal area, volume etc) that is desired, however, it can be 
used to accurately assess biomass and height metrics. Combining these two types of complementary 
datasets is a very promising technique for improving forest classification (Ke et al., 2010), species 
identification (Persson et al., 2004), and individual tree crown analysis (Leckie et al., 2003) and individual 
tree detection and carbon stock estimation (Kim et al., 2010).   
 
Furthermore, previous research indicated that either only use of Lidar data or in combination with other 
sensor or ancillary data, provide an important data source for forest parameter estimation (Drake et al., 
2003; Lim et al., 2003b). For example, Popescu (2007) developed a method for assessing AGB for 
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individual pine trees using small footprint airborne Lidar data and found more accurate result (R2 =0.88) 
between model based and ground based measured biomass. Ke et al. (2010) found more accurate forest 
classification accuracy (Kappa =91.6%) using both spectral and Lidar data than using either spectral-based 
segmentation (88%) or Lidar-based segmentation (87%). Merging of Lidar and optical imagery and 
applying circular window filtering algorithm, Popescu et al. (2004b) claimed the improvement of volume 
and biomass estimates for pines and deciduous forest as opposed to use of Lidar data alone. Additionally, 
Holmgren et al. (2008) presented the benefits of integrating Quickbird multispectral imagery and high-
density Lidar data for individual tree based classification, the accuracy increased from 88 to 96%. Similarly, 
Leckie et al. (2003) fused high-density Lidar data and digital camera imagery for suitable tree crown 
isolation and tree height measurement and the results showed between 80 to 90% good correspondence 
with ground reference tree delineations. 
 
There are two methodological approaches for utilizing Lidar data for AGB assessment, (i) area-based 
approach and (ii) single-tree-based approach. Existing small footprint Lidar processing techniques follow 
one of the two approaches. In the first approach, distributional metrics such as the mean canopy height 
and the standard deviation of the canopy height are taken from either an interpolated grid corresponding 
to the height of the canopy a) canopy height model (CHM) or b) the raw returns. These metrics are then 
used in conjunction with regression equations to predict forest properties (Lim et al., 2003a; Means et al., 
1999; Naesset & Bjerknes, 2001; Nelson et al., 1988). The second approach is to use computer vision 
techniques to locate and measure the properties of individual trees using CHM (McCombs et al., 2003; 
Persson et al., 2002; Popescu et al., 2003). It requires high point densities (>5 points/m²) Lidar data, and is 
mostly based on regression models focusing on a relationship between Lidar derived individual tree 
parameters (e.g. tree height, crown dimensions) and field based estimates of AGB. Whereas, area-based 
methods can also be used for lower point densities but require an extensive set of reference data (Jochem 
et al., 2010). Several researches have been carried out for the estimation of AGB carbon based on area 
based approach or plot level (Jochem et al., 2010; Nilsson, 1996; Patenaude et al., 2004; Popescu et al., 
2004b) as well as single tree based approach (Kim et al., 2010; Popescu, 2007; Popescu et al., 2003).

1.5. Problem statement and justification
Several remote sensing based approaches have been developed for quantifying biomass and carbon stocks.  
However, most of the existing methods have considerable uncertainties for estimation results of carbon 
stocks and, thus reliable and accurate methods are required (Köhl et al., 2009). In this context, integration 
of VHR satellite imagery such as WorldView-2 and Lidar data may provide more accurate estimation of 
carbon stock than other previous approaches. Airborne Lidar is a proven technology that can be used to 
accurately assess AGB but it cannot differentiate the species with low point density. Similarly it could not 
measure relative health of forest ecosystems which is relatively possible to extract from passive optical 
sensors. Individual tree and stand-level physical attributes such as tree height, canopy height, canopy 
closure, and density can be generated from Lidar data (Zimble et al., 2003). In comparison to Lidar point 
cloud analysis, high resolution satellite image analysis does not provide 3D structural information of forest 
at either an individual tree or stand level for detailed biomass estimation. Therefore, integration of two 
technologies can be used for accurate estimation of AGB and carbon in tropical forests (Pilger, 2008 ) and 
also possible in Nepalese environment. 
 
WorldView-2 is said to be the second generation satellite having a unique combination of various bands 
(DigitalGlobe, 2010). The spectral coverage of bands is: two bands of blue i.e. blue and coastal blue, 
followed by green, yellow, red, red edge and two bands of Near Infrared (NIR1 and NIR2). The yellow, 
Red-edge and two bands of NIR are regarded as important for vegetation study. The NIR1 band has a 
great potential to identify the vegetation type at species level (DigitalGlobe, 2010). Therefore, it is highly 
recommended by Baral (2011), who carried out her research in the same area, to use this image for further 
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explanation to estimate the amount of carbon stock since she could not achieve the good classification 
result due to geo-referencing and other artifacts.  
 
DBH and tree height are crucial forest inventory attributes for calculating timber volume, above ground 
biomass, site quality and silvicultural treatment scheduling. Measuring of stand height or tree height by 
current manual photogrammetric or field survey techniques is time consuming and rather expensive 
(Popescu & Wynne, 2004a). DBH cannot be directly retrieved either from VHR satellite imagery or from 
low point density Lidar data. Therefore, relationship between DBH, crown diameter/crown projection 
area (CPA) and tree height should be established from regression analysis so that AGB can be estimated 
from remote sensing techniques (Popescu & Wynne, 2004a). However, crown diameter or CPA can be 
obtained from VHR satellite imagery whereas tree height can be easily obtained from canopy height model 
developed from Lidar data. Thus, the combination of VHR optical imagery and Lidar systems permit 
individual tree and canopy height information to be extracted along with the species, health, and other 
biophysical tree attributes (Leckie et al., 2003). Besides, the integration of both spectral and Lidar data will 
be resulted in more accurate forest classification than using either of the data sources independently. 
Several studies (Andersen et al., 2005; Gautam et al., 2010; Hudak et al., 2002; Kim et al., 2010; Lu, 2006; 
Popescu et al., 2004b) also showed that the integration of VHR satellite images and airborne Lidar data 
provides an accurate and efficient measurement of AGB in a variety of forest types and extensively larger 
areas. Furthermore, Shrestha (2011), Tsendbazar (2011) and Shah (2011), who already done their research 
in the same geographical location, highly recommended the integration of VHR images such as GeoEye 
and WorldView-2 with Lidar data for accurate estimation of AGB in the mountainous topography.  
 
The UNFCCC and Convention on Biological Diversity (CBD) aim at addressing the global agenda of 
climate change and loss of biodiversity. The existence of potential synergies between the two conventions 
offers opportunities for implementing practices that aim at achieving the objectives of both conventions 
simultaneously (Caparros & Jacquemont, 2003). The relationship between tree species diversity and above 
ground carbon stock is of great concern among forest managers interested in estimation and mapping of 
carbon stock over a short time period and at a local level. But a few studies have been conducted to 
analyze this relationship. Sharma et al (2010) conducted a research on twenty major forest types of India to 
assess the relationship between tree diversity and carbon stock and found a negative correlation between 
them. On contrary, Nakakaawa et al (2010) found a strong positive correlation between carbon density and 
tree diversity in agro-ecosystem (afforestation/reforestation area) in south western Uganda.  
 
Caparros & Jacquemont (2003) found that creating economic incentives for carbon sequestration may 
have negative impacts on biodiversity, especially for afforestation and reforestation programs. However, 
they also concluded that emphasis on carbon sequestered by means of forest management with economic 
incentives is not expected to have a great negative influence on biodiversity. Therefore, it is essential to 
assess the relationship between carbon stock and tree diversity of the tropical forests since Nepal is 
preparing for REDD+ implementation which addresses the issue of forest management and ensure the 
rights of indigenous community. In other words, a synergistic relationship between REDD+ and 
biodiversity conservation program should be considered before setting up the priorities for biodiversity 
protection and carbon sequestration. Thus, this study aims to explore the possibility of accurate estimation 
and mapping of carbon stock from the fusion of VHR satellite imagery and Lidar data in relationship with 
tree diversity which will be useful for mapping of carbon stock in tropical environment. 
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1.6. Research objectives
The main aim of this research is to develop an approach for accurate estimation of carbon stock using 
WorldView -2 satellite image and airborne LiDAR data and its relationship with tree diversity of tropical 
forests. 

1.6.1. Specific objectives
1. To develop a canopy height model (CHM) for tropical broadleaved forests based on Lidar raw data and 

evaluate its accuracy. 

2. To determine the relationship among CPA, height and carbon stock of different tree species. 

3. To estimate/map carbon stock of study area using WorldView-2 image and airborne LiDAR data. 

4. To evaluate the relationship between tree diversity and carbon stock of tropical broadleaved forests. 

1.7. Research questions
1. How accurately the height of individual trees can be estimated from the Lidar derived CHM? 

2. How accurately WorldView-2 image can differentiate tree species on the basis of spectral separability? 

3. How accurate is the segmentation of CPA from WorldView-2 image in combination with Lidar data? 

4. What is the relationship between CPA, height and carbon stock of dominant tree species? 

5. How much carbon is stored by each major type of tree species in the study area?  

6. What is the relationship between tree diversity and carbon stock of each community forests (CF)? 

1.8. Research hypotheses
1.  Ha: There is no significant difference between the height of tree measured from field and from Lidar. 

2.  Ha: There is a significant relationship between CPA, height and carbon stock of dominant tree species. 

3. Ha: Worldview-2 image in combination with Lidar data using OBIA can accurately and significantly 
segment the CPA. 

4.  Ha: There is a difference between carbon stored by each major dominant tree species. 

5.  Ha: There is no significant relationship between tree diversity and carbon stock in the study area. 
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2. DESCRIPTION OF THE STUDY AREA

2.1. Criteria for the selection of study area
Nepal’s first REDD+ pilot project 

Kayerkhola watershed is one of the three watersheds which have implemented the REDD+ pilot project 
through Community Forest User Groups (CFUGs) network in Nepal. The necessity of measuring the 
carbon stock in tropical forest of Nepal also gives the emphasis to choose this study area. The project area 
is fully financed by the Norwegian Agency for Development Cooperation (Norad) under the Climate and 
Forest Initiative. The project covers over 10,000 hectares of community-managed forest and has an 
outreach to over 16,000 households with over 89,000 forest-dependent people. It is one of the world’s 
first carbon offset projects involving local communities in monitoring the carbon in their forests and 
providing the necessary training for them to do so. Now, the Forest Carbon Trust Fund provided an 
opportunity to claim reward for enhancement of carbon stock in pilot project. Norad provided a seed 
grant of US$ 100,000 to initiate the fund (ANSAB, 2011). 

Data availability 
Very high resolution satellite image i.e. WorldView-2 was only available for this watershed from ICIMOD 
and wall to wall mapping of Lidar data was provided from FRA project, Nepal for the research purpose in 
the same area. Lidar mapping in Nepal is the first practice in South Asia and hence it became important to 
choose the study area for carbon mapping of tropical forests. Other additional data such as detail 
delineation of CFUGs border (shape file), a landuse map and topographic map were also available from 
ICIMOD.  

Accessibility  
The study area is fully accessible from the centre of the district so that the field has to be done on limited 
time and budget.  

Diverse forest type 
The watershed constitutes of three different type of forest namely Sal (Shorea robusta) forest, mixed 
hardwood forest and Riverine forest which is one of the criteria to achieve the objective of this research. 

2.2. Overview of Chitwan district

2.2.1. Geographical location and topography
Geographically, Chitwan district is located in lowland and Siwalik regions of the country. It is situated 
between 27030'51"N - 27052'01 N latitude and 83055'27"E - 84048'43"E longitude in central development 
region of Nepal. Chitwan is surrounded by Makwanpur district in the east and Nawalparasi in the west. 
Dhading, Gorkha and Tanahu are neighbouring district in the northern part while Parsa district and India 
are in the south. The district is around 70 kilometres south east (133°) of the approximate centre of Nepal 
and 80 kilometres south west (260°) of the capital Kathmandu. The altitude varies from 300m to 1200m 
above sea level. The land is characterized by many steep gorges and slope varies from 30% to more than 
100%. The area is drained by Khayarkhola stream having many small tributaries feeding into it. 

2.2.2. Climate
Chitwan has a diverse climate and rainfall over its landscape and land configuration. The district 
experiences tropical to sub-tropical type of climate which generally favours for the luxuriant growth of the 
vegetation. The average annual rainfall of the district is 1510mm/year. It is characterised as hot and wet 
during the summer and cool and dry during the winters. The average maximum and minimum 
temperature of the district is 30.30 and 16.60 Celsius respectively (Panta, 2003). 
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2.2.3. Land use
The district has a large amount of forested area as it constitutes two conservation areas i.e. Chitwan 
National Park, enlisted in world heritage site, covers an area of 970 km2 and part of Parsa Wildlife reserve. 
Forest covers about 60% of the total land with an area of 128500 ha. Similarly agricultural land and urban 
area accounts for 40% covering 89500 ha.  

2.2.4. Social, economic and demographic
Chitwan district is one of the most populated districts of Nepal with a total population of 623,677. The 
population density of the district is 9.17 km2 and growth rate is 2.86%, which is higher than the average 
growth rate of Nepal. Chitwan district has several castes and ethnic groups, ranges from indigenous to 
elite people. Main centre of the district, Narayangadh, is renowned for the business activities although 
most of the people’s occupation is in agriculture.  

2.2.5. Vegetation
Basically, the study area has three dominant types of forest. They are Sal (Shorea robusta) forest, mixed 
hardwood forest and Riverine Khair-Sissoo forest (Panta, 2003). Sal is pre-dominant tree species found in 
the study area and occupies nearly 70% of forest composition. It is commercial woody species of Nepal 
and mainly found as Terai and hill Sal. Mixed hardwood forest is composed by Sal and other hardwood 
species. The major associate species are Asna (Terminilia tomentosa), Karma (Adina cordifolia), Botdhairo 
(Lagerstroemia parviflora) and Banjhi (Anogeissus latifolia). Riverine Khair-Sissoo forest is mainly distributed 
along the riverside of the study area and is mixed of Khair (Acacia catechu) and Sissoo (Dalbergia sissoo). 
Other associate tree species found in the study area are Terminalia bellirica, Schima wallichii, Semicarpus 
anacardium, Mallotus phillippensis, Cassia fistula, Cleistocalyx operculatus, Careya arborea, Holarrhena pubescens, 
Syzygium cumini, Aesandra butyracea, Terminalia chebula. 

2.3. Description of Kayerkhola watershed
Kayarkhola Watershed is located in north east part of Chitwan district and covers an area of 8002 hectare. 
Out of total area of watershed, 5821 ha is covered by forests which comprises 2381.96 ha as community 
forest managed by 16 CFUGs. 23223 people of 4163 households of 4 village development committees 
(VDCs), namely Shiddi, Shaktikhor, Chainpur and Pithuwa have been involved in the forest management 
activities and REDD+ pilot project. Within the CF 1902.72 ha is considered as dense forest whereas 
479.19 ha are regarded as sparse forest type. Landuse profile of the watershed is mainly divided into five 
parts according to the classification done by ICIMOD. The area covered by each landuse type is given in 
Table 2-1. 
 

Table 2-1: Land cover types of Kayerkhola watershed 

Land cover types Area (ha) Area (%) 
Close to open broadleaved (dense) forest 4119  51.48% 
Open Broadleaved (sparse) forest 1702  21.27% 
Natural water bodies 31 0.39% 
Bare Soil 30  0.38% 
Clouds 81  1.02% 
Agriculture Land and built-up areas 2038  25.47% 

Source: Land cover analysis report (ICIMOD, 2011)  
 
The watershed is inhabited by socially and ethnically diverse forest-dependent indigenous communities 
such as Chepang and Tamang (ICIMOD, 2011). These ethnic groups are few of the most marginalized 
ethnic groups in the country. Chepang and Tamang communities practice shifting cultivation which puts 
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severe pressure on forest resources. The pilot project implemented in the area plays a major role to 
address the issues of forest degradation and deforestation by promoting sustainable forest 
management practices and linking it with REDD+ incentive mechanism. Out of 16 CFs of the watershed 
only 7 CFs from three different clusters have been selected for the research purpose in order to represent 
diverse type of forest structural attributes (Figure 2-1).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2-1: Location map of the study area. 

 
Details of the CFs selected for this research is given in the Table 2-2. 
 

Table 2-2: Details of selected community forests (CFs) 

S. N. Name of CFs Location (VDC) Area (ha) Area in % 
1 Samphrang  Shaktikhor -2 55.60 6.38 
2 Janpragati Shaktikhor -2 40.27 4.62 
3 Jamuna Shaktikhor -5 34.53 3.96 
4 Pragati Shaktikhor -6 79.06 9.08 
5 Janpragati (B) Shaktikhor -5 78.57 9.02 
6 Devidhunga Shaktikhor -8 253.86 29.14 
7 Nibuwatar Siddi – 2 & 3 329.18 37.79 
Total  871.07 100 
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3. MATERIALS AND METHODS

3.1. Materials

3.1.1. Satellite data
Worldview-2 very high resolution satellite imagery obtained on 25th October 2010 was used for this study. 
It is the first commercial high-resolution satellite to provide 8 spectral bands in the visible to near-infrared 
range. The 8-bands multispectral of 1.84 cm spatial resolution has been resampled to 2 m, while 
panchromatic of 46 cm is resampled to 0.5 m. Metadata of the satellite image is given in Appendix1.  

3.1.2. Airborne Lidar data
Lidar data were originally acquired for the purpose of national forest inventory of Nepal by Forest 
Resource Assessment (FRA) project under the Ministry of Forests and Soil Conservation. The data was 
collected by Arbonaut Ltd., Finland from 16 March to 2 April 2011 (leaf-off season) using a Leica ALS -
40 (Airborne Laser Scanner-40) sensor with aerial platform. A detail list of parameters for Lidar 
acquisition is given in Table 3-1. 
 

Table 3-1: Lidar data collection parameters for Leica ALS-40 sensor 

Parameter  Performance 

Aerial Platform  Helicopter (9N-AIW) 
Flying height (above ground level)  2200 m  
Flying speed  80 knots 
Laser pulse rate  52.9 khz 
Field of view (FOV) half-angle 20 degrees 
Sensor scan speed  20.4 lines/second 
Swath width @ ground level 1601.47 m 
Nominal outgoing pulse density 
@ground level  0.8 points per sq m 

Point spacing max 1.88 m across, max 2.02 m down 
Beam footprint @ ground level 50 cm 
Projection UTM 
Datum WGS84 
Sidelap 60 % 
Side overlap 30 % 
Average horizontal accuracy 45 cm 
Average vertical accuracy 45 cm 

3.1.3. Maps and other ancillary data
Topographic maps (2784-03C, 2784-03D, 2784-07A and 2784-07B) of the study area at scale of 1:25000 
published by the Department of Survey, Government of Nepal in 1994 were used for this research. 
Similarly, other thematic map (local land use) was also used in the field during data collection. The 
watershed boundary, shape files of community forests (CF)and other infrastructure layers of study area 
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were obtained from ICIMOD, 2011. Besides, CF operational plan and District Forestry Sector Plan of the 
Chitwan districts were also used to obtain the detail information of forest management activities. 

3.1.4. Field instruments
Various field equipments were used to collect the field data during fieldwork. Details of field instrument 
and its use are given in Table 3-2. 

Table 3-2: Field instruments used for the data collection  

S.N. Instruments Purpose 
a.  Garmin GPS Map 60 CSx and iPAQ Navigation or positioning 
2. TruPulse 360 B (laser technology) Measuring the tree height 
3. Diameter tape (5m) Measurement of DBH 
4. Measuring tape (30m) Measuring radius of plot, crown diameter 
5. Spherical densiometer Measuring the canopy density 
6. Field work dataset Field data collection 

3.1.5. Software and tools
Different softwares were used for the analysis of satellite image and airborne Lidar data during pre and 
post-field work. Specific use of software for data base creation, processing and analysis is depicted in 
Table 3-3.  

 

Table 3-3: List of the software and purpose of its use 

S.N Name of Software Purpose of usage 
1. Erdas Imagine 2011 Image processing and Coregistration 
2. ArcGIS 2010 GIS analysis  
3. PCI - Geomatica Co-registration of image and Lidar data 
4. eCognition Developer 8.7 Object based image analysis 
5. LasTools  Processing of Lidar raw data 
6. Quick Terrain Modeler Processing and visualization of Lidar data 
7. SPSS 16 and R stat Statistical analysis 

  8.   Intersector.jar tools 
 (in Java  environment)   Segmentation accuracy assessment 

  9.  MS Office 2010   Data analysis and thesis writing 

3.2. Methods
The method of this research mainly comprises of three parts: field work for data collection, satellite image 
and Lidar data processing, object based image analysis (OBIA), and model development. Panchromatic 
and MSS image of Worldview-2 were co-registered to intensity image obtained from Lidar point cloud. 
Co-registered panchromatic and multispectral images of WorldView-2 were fused to create pan-sharpened 
very high resolution image which was further smoothened to remove the noise. The Lidar data was 
further processed to obtain the canopy height model (CHM) by subtracting the digital terrain model 
(DTM) from the digital surface model (DSM). Both the pan-sharpened image and CHM layers were used 
for tree crown delineation and later the canopy projection area (CPA) and height of the individual tree can 
be extracted. Accuracy assessment of segmentation was performed and later used for species classification. 
After that, multiple regression models were developed using CPA and height as explanatory variables for 
carbon estimation/mapping. Field measured tree parameters were used to analyze tree species diversity 
and to estimate carbon stock of each tree and also for accuracy assessment of CPA, Lidar derived tree 
height and regression models. A flow diagram showing the research methodology is illustrated in Figure 3-
1 and detailed explanations are described in the following sections. 
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Figure 3-1: Flow diagram of research methods 
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3.3. Image processing
Image processing includes atmospheric, radiometric and geometric correction of the satellite image. The 
WorldView-2 image was already pre-processed for atmospheric and radiometric correction while geo-
referencing and registration of the image was done to UTM 45 N zone projection and WGS 84 datum.  

3.3.1. Subset of image
For this study only one image scene was required for the data processing although two images are needed 
for the entire Kayerkhola watershed. The subset of the selected CF area is selected for further processing. 
The study area from both the panchromatic and MSS image was extracted as a new subset using ERDAS 
Imagine 2011. 

3.3.2. Image fusion
Image fusion is the combination of two or more different images to form a new image by using a certain 
algorithm. In general remote sensing fusion techniques can be classified into three levels i.e. pixel/data 
level, feature level and decision level (Pohl & Genderen, 1998). Pixel level fusion of optical images is 
mainly applied to improve spatial resolution, enhance structural and textural details and retain the spectral 
fidelity of the original multispectral data simultaneously. Therefore, it is also called as pan-sharpening 
(Zhang, 2010).  Pan-sharpening is a pixel level fusion technique that combines the lower resolution colour 
pixels with the higher resolution panchromatic pixels to produce a high resolution colour image. Several 
pixel based image fusion methods like Intensity, Hue and Saturation (IHS), principal components analysis 
(PCA), high pass filter (HPF), Gramm-Schmidt (GS) and watershed transformations are commonly used 
for pan-sharpening. 
 
In this study, a new pan-sharpening algorithm so called Hyperspherical Color Sharpening (HCS) is used as 
it is specifically developed for WorldView-2 imagery (ERDAS, 2011). This algorithm accepts any number 
of bands and handles both spatial and spectral recovery over a wide variety of scenes. Moreover, Padwick 
et al., (2010) found that HCS algorithm maintains the best balance between spectral and spatial quality 
when compared among the 4 algorithms i.e. HCS, IHS, GS and PCA. This technique is based on the 
mathematics which required the forward and reverse transformations to and from the native colour space 
to the hyperspherical color space. A detail operation of the algorithm is applied for the hyperspherical 
transformation to pan-sharpening. Thus pan-sharpening quality index is calculated to measure both the 
spectral and spatial quality of pan-sharpened image, with respect to the original multispectral and 
panchromatic images.  
 
WorldView-2 MSS image of 2 m resolution and panchromatic of 0.5 m resolution were fused to get a pan-
sharpened image of 0.5 m spatial resolution with all multispectral information. The pan-sharpening 
process was carried out in ERDAS Imagine 2011. In the Hyperspherical Color Space Resolution merge 
dialog box the following options were checked: bilinear interpolation resampling technique, smoothening 
filter size 5, select layers 1 to 8 and unsigned 16 bit output data type. Bilinear interpolation technique was 
assigned because it reduces the alteration of spatial information and lead to smoother image compared to 
nearest neighbour resampling. For manual delineation of tree crowns and during the segmentation of 
images, a 5*5 low pass filter was used for smoothening the image. 

3.4. Pre-fieldwork
Before the commencement of field work, different reference source data and images were collected and 
pre-processed. Pan-sharpened subset image was too large (1.68 GB) to upload in iPAQ for the field work. 
Therefore, this image was exported to enhanced compressed wavelet (ECW) format that reduced file size 
to 29.6 MB. The RGB 743 band combination was selected while exporting the image to ECW format so 
that output ECW image would be similar to pan-sharpened image (img format) in the same band 
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combination. For identification of recognizable tree on the image in the field, pan-sharpened image of 
each sample plot with its surrounding areas were printed in 1:1000 scale in JPEG format (Appendix 2). 
Apart from this, separate polygon shapefile for each 16 CFs were produced and a number of sample plots 
for each polygon were randomly generated in ArcGIS. Later these shapefiles were uploaded in the iPAQ. 
Road, river, high elevation point and contour information were also uploaded in the iPAQ in order to find 
out the selected plot without difficulty in the field. Field data collection sheet was prepared as its contents 
are given in Appendix 3. All necessary field equipment was borrowed from ITC field equipment section 
for the measurement of tree parameters. 

3.4.1. Sampling design
Stratified random sampling procedure was adopted for sampling design. The study area, Kayerkhola 
watershed, consists of 16 CFs. Each CF has its own characteristics in terms of altitude, slope, aspect, age, 
species composition and stand structure. Stratification was done on the basis of these characteristics so 
that each CF will be one stratum and hence homogeneity prevails within CF. Stratified random sampling 
estimates population parameter of interest (mean or total) more precisely than non-stratified sampling for 
a given sample size or cost. Conversely, it will estimates population parameters as precise as simple 
random sampling or systematic sampling using a fewer plots for a lower cost (Shiver & Borders, 1996). 
 
Total sample units were calculated using Equation 2 and second hand data of tree DBH already collected 
from the study area. It is almost impossible to determine the sample size of inventory without having 
some kind of prior knowledge of field therefore preliminary survey might be necessary to establish 
reasonable information of population parameters (Husch et al., 2003). 
  

 N plots = t2*CV2 (1/E) 2 ……....... Equation 2: Sample size determination 

Where,  
 N plots  =  Minimum number of sample plots  
  t2        = Value of Student's t distribution for N plots at desired probability 
  CV2 = Coefficient of Variation (in percent) of DBH of trees to be sampled  
 E  =  Estimated allowable error or desired precision (in percent) for DBH of trees 
    to be sampled, 20% is the common starting point for E (Husch et al., 2003) 
 
The number of sampling plots for each stratum was computed in proportion to the area of one stratum.  

3.4.2. Plot layout
A circular plot of 500 m2 area with a 12.62 m radius was chosen for the measurement of tree parameters. 
The circular plot is widely used as a single dimension, the radius, to define the perimeter and easy to 
measure in the forest. It has minimum perimeter for a given area without any predetermined orientation 
and consequently the lowest number of borderline trees will be selected (Husch et al., 2003). For 
measurement of tree diversity, within the plot of 500 m2 two more concentric plots were established with 
radius of 5.64 m (100 m2) and 2.68 m (25 m2).  

3.5. Fieldwork 
The center of each plot was demarcated in the forest according to the designed layout of sample plot on 
the map using iPAQ and Garmin GPS Map 60 CSx. The XY coordinate of centre of the plot and if 
possible coordinates of few measured trees were also located in the iPAQ. Within the circular plot, trees 
with DBH 10 cm or greater were only measured because trees with less than 10 cm diameter contribute 
little to the total biomass carbon of a forest (Brown, 2002). Hence, different tree parameters such as 
DBH, tree height, crown cover, canopy density and crown diameter were measured in the sample plot. 
The trees (DBH 10 cm) measured in the plot was also identified and recognized in the printed image 
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and was marked an outline with numeric notation. The numeric notations were also recorded in the data 
sheet as well. At least ten trees were recognized on the printed image coincide with the field measurement 
so that it can be used for development of regression model based on CPA and height.  
                    
In addition, all the species within the plot were 
recognized and noted on the sheet for analysis of tree 
diversity. For this purpose, trees of DBH 10 to 5 cm 
were measured within the radius of 5.64 m (100 m2) 
and sapling and regeneration of all the species below 
5 cm DBH were only counted in radius of 2.68 m (25 
m2) as shown in Figure 3-2. Furthermore, other 
important information such as aspect, slope, 
exposure and valuable species such as non-timber 
forest products (NTFPs) were also taken into 
consideration. During the measurement of plot radius 
and crown diameter, slope correction was performed 
in the areas more than 50 slope. In total 75 plots were 
measured in seven CFs although it was intended to 
measure 72 plots only. The details of the sampling 
plots measured are given in Table 3-4 and the 
coordinates of all the plots given in Appendix 4.  

        Figure 3-2: Schematic representation of sample plot layout 
 

Table 3-4: Number of sample plots measured in the field 

S. N. Name of CFs Area (ha) 
No of plots 
measured 

No of trees 
measured 

Trees recognized 
in image 

1 Samphrang  55.60 5 70 47 
2 Janpragati 40.27 3 57 13 
3 Jamuna 34.53 3 53 18 
4 Pragati 79.06 7 99 32 
5 Janpragati (B) 78.57 5 125 35 
6 Devidhunga 253.86 28 436 96 
7 Nibuwatar 329.18 24 307 102 
Total 871.07 75 1147 343 

3.6. Secondary data collection
Secondary information such as households benefitted from REDD+ program, management activities and 
involvement of local people for forest management and carbon mapping was collected from the 
concerned agencies such as district forest office (DFO), CFUGs, ICIMOD and ANSAB. The detail 
information about the proper CFs was obtained from their operational plan prepared by CFUGs and local 
people involved in the forest management and REDD+ program. 

3.7. Data analysis
Data analysis stage comprises of data analysis (e.g. raw field data like DBH, height and crown diameter and 
other subsidiary information), descriptive analysis, calculation of field-based AGB estimation, and manual 
delineation of trees on the image. 
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3.7.1. Fieldwork data analysis
After fieldwork, all the collected field data were screened and sorted according to the data sheet and 
entered appropriately in an excel file. The missing information was either fulfilled from the inquiry or 
removed from the data sheet. The preliminary statistical analysis such as outlier detection and its removal, 
descriptive analysis and box plot was made for actual reflection of the field scenario. Scientific name of 
local species found in the study area was searched from literature and enlisted to get the idea of tree 
diversity as a whole. The list of species found in the study area is given in Appendix 5. 

3.7.2. Tree diversity analysis
There are several measures of diversity known as “diversity indices” to describe complexity of a biological 
community. Each of these indices seeks to characterize the diversity of a sample or community by a single, 
quantitative value (Magurran, 1988). Common measures of diversity include counts of number of species 
(species richness) and use of indices such as Shannon-Wiener’s index (Shannon & Weaver, 1962) or the 
Gini-Simpson index. In this research, Shannon diversity index was used as an indicator of the tree species 
diversity because this diversity index is the most commonly used and acceptable indicator of biodiversity 
(Magurran, 1988). Moreover, this index reflects both evenness and species richness without favouring 
either dominant or rare species. Tree diversity was calculated based on Shannon diversity index using the 
general formula (Equation 3). 
 

H' = -  .................Equation 3:  Shannon diversity index 

Where, 
 H' is Shannon diversity index, 
 pi is the proportion of individuals belonging to ith species, and 
 ln is natural log (i.e. base 2.718) 

 
In each plot, the number of tree species with DBH more than 10 cm, DBH less than 10cm to 5 cm and 
DBH less than 5 cm were counted. Similarly, seedlings and regeneration of all the species and NTFPs 
were also counted and recorded in the tally sheet (Appendix 3) in order to calculate the proportion of 
individual species in each plot. 

3.7.3. Allometric equation and carbon stock calculation
The use of allometric equations is a crucial step in estimating above ground biomass (AGB) which can be 
used to estimate carbon stock of forests. In general AGB is estimated from volumetric and structural 
dimension of the trees for which DBH and height are considered as major parameters. In absence of 
species specific biomass equation of the trees, species specific volume equations developed by Sharma and 
Pukkala (1990) were used to estimate the AGB of forests. Total stem volume of individual trees was 
calculated from field measured DBH and tree height using the relationship in the following form (Sharma 
& Pukkala, 1990).   
 

ln (V) = a + b * ln(DBH) + c * ln(Ht) .....Equation 4: Allometric volume equation  

Where,  
ln is natural logarithm to the base 2.71828 
V is the total stem volume with bark in m3, to obtain the volume in cubic meters the prediction is 
to be divided by 1000 
DBH is the diameter at breast height in cm 
Ht is the tree height in m  
and a, b and c are model parameters  
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The estimated parameter value of a, b and c for different species and wood density of the major tree 
species is given in Table 3-5.  

Table 3-5: Model parameters and wood density of major tree species 
 

Species a b c R2 
Wood density 

(Kg/m3) 
Shorea robusta -2.4554 1.9026 0.8352 98.3 880 
Lagerstroemia parviflora -2.3411 1.7246 0.9702 97.5 850 
Adina cordifolia -2.5626 1.8598 0.8783 98.1 670 
Terminalia tomentosa -2.4616 1.8497 0.8800 98.9 950 
Schima wallichii -2.7385 1.8155 1.0072 98.3 689 
Albizia species -2.4284 1.7609 0.9662 97.8 673 
Syzizium cumini -2.5693 1.8816 0.8498 98.3 770 
Miscellaneous in Terai -2.3993 1.7836 0.9546 98.3 720 

 
The obtained volume was multiplied with dry wood density (specific gravity) of the species to get air dry 
weight of stem biomass (Chaturvedi & Khanna, 1982) using the following formula (Equation 5). Species 
found in the study area other than mentioned above was categorized as Miscellaneous in Terai and volume 
was calculated accordingly (see Equation 5). 
 
Stem biomass = Stem volume * Wood density………Equation 5: Calculation of stem biomass  

Due to absence of established biomass relationship of different tree components of individual tree species 
of sample forest types, this study used the relationship developed by Sharma (2011) for a single species of 
similar forest types of Nepal which was later adopted by Shrestha & Singh (2008) and Khanal et. al. (2011). 
The biomasses of branches and leaves (foliages) were estimated to be 42% and 8% of the stem biomass 
respectively (Sharma, 2011) to calculate the total biomass of trees. However, in case of Shorea robusta 
branch to stem and foliage to stem ratio was applied as suggested by Sharma & Pukkala (1990). Thus, the 
AGB of different tree species of the study area was calculated by sum of stem, branch and foliage biomass 
of the tree as shown in Equation 6.  
 
Total AGB = Stem biomass + Branch biomass + Foliage biomass……Equation 6: Calculation of AGB from 
tree component biomass 

The total AGB thus obtained from the above equation were converted to carbon stock of the individual 
trees using conversion factor of 0.47 (about 47% of the dry biomass is assumed to be carbon for all parts 
of trees as a default value) as suggested by IPCC (2006) and is expressed in Equation 7.   
 
Total Carbon Stock = Total AGB*0.47……Equation 7: Calculation of carbon stored by individual trees   

3.7.4. Manual delineation of tree crowns
Although large number of trees measured in the field, only one third of them could be recognized in the 
image for manual digitization/delineation due to the difficulties in identifying actual tree crown. The 
delineation of the recognized tree crowns was done for assessing the segmentation accuracy and validating 
the model. For this purpose, both panchromatic and 5*5 filtered pan-sharpen image were used in such a 
way that tree crown can relatively easy to be recognized. Both images were visualized in ArcGIS at several 
scales for the better view of tree crown using different band combinations such as 743, 876 and 632. 
Shape files of the sample plot and identified trees were also overlaid on the image for proper tree 
delineation. Finally, 1:400 scale and 743 band combination was selected for digitization of tree crown. The 
crown diameter of the trees was taken as a reference for delineation because the area of tree crown can be 
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estimated from it. Pan-sharpened and panchromatic images were checked and unchecked alternatively 
during the crown delineation for a better result. About 30% trees measured from field were delineated for 
accuracy assessment. 

3.8. Species differentiation capability of image
Due to high spectral diversity of WorldView-2 image, the dominant and co-dominant trees of the tropical 
forest can be identified at species level through its new band like Red Edge, NIR1 and NIR2. Two NIR 
band of the image has potential to identify different vegetation types and enables broader vegetation 
analysis and biomass studies (DigitalGlobe, 2010). Therefore, following test was carried out to examine 
the potential of WorldView-2 image to differentiate tropical forest trees at species level. 

3.8.1. Transformed Divergence (TD)
Divergence is one of the first measures of statistical separability used in remote sensing data for feature 
selection (Jensen, 2005). Transformed Divergence (DT) is an advanced divergence method, which 
calculates the statistical distance between the pairs of signatures to maximize the separability among the 
different classes. This statistic gives an exponentially decreasing weight to the increasing distance between 
the classes. It estimates the probability of correct classification between pair of classes. The class pairs 
with highest DT maximize the likelihood of high classification accuracy.  
 
The scale of the DT values can range from 0 to 2000. The values greater than 1900 showed that the class 
can be separated. When DT is between 1700 and 1900 it is said to be good separation but below 1700 is 
regarded as poor separation. A transformed divergence value of 2000 suggests excellent between-class 
separation (Jensen, 2005). In other words, if the calculated divergence is equal to upper bound then the 
signatures assumed to be totally separable in the bands being studied. It is based on the covariance. The 
mean vectors of the signatures are compared to determine which set of the band is most useful for 
classification.  
 
The pan-sharpened image was used to evaluate the signature separabilty using DT by overlaying training 
samples of tree classes before image classification taken place. 

3.8.2. Spectral separability of the tree classes
A common way to represent the spectral separability of different tree species is by means of a spectral 
response/reflectance curve plot. An individual spectral response curve results from the quantitative 
measurement of the spectral properties of target object at one or several bands of the image (Amelinckx, 
2010). There are different ways to present a spectral response data. The conventional representation is a 2-
dimensional plot in which the recorded reflectance/emittance (y-axis) is plotted along a wavelength 
gradient/band (x-axis).  
 
This technique was employed for the study to assess the potential of species differentiation of 
WorldView-2 image using ERDAS 2011. Vector layer of training samples of major tree species was 
overlaid on pan-sharpened image. Pixel values (DN) of each sample trees were extracted from the spectral 
profile viewer as each profile has its own DN value in each band of the image. In this way sufficient 
number of profiles was created for different type of species and the respective mean values was exported 
to excel sheet. The mean DN values were plotted in y-axis against eight spectral bands in x-axis on line 
graph. Thus, distinct separability of tree classes can be seen in the graph along the x-axis (bands). The 
band which has maximum separation among the tree classes (reflectance curve) were chosen as the best 
band for separability between the classes. Visual inspection of spectral profile curve would be the criteria 
to assess the potentiality of species spectral separability of image i.e. how distinctly each band of image can 
separate the tree classes. 
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3.9. Lidar data processing
Lidar point cloud was obtained from FRA, Nepal project in the las format which consists of 147 tiles for 
the whole watershed. Pre-processing of raw laser data was done in TerraScan software by Arbonaut Ltd., 
Finland. LasTools was used for further processing of data because it is easily available and open source. 
This software can be used for converting, filtering, viewing, gridding, and compressing Lidar point cloud 
data in different file formats. Thus, selected tiles of study area were imported in LasTools in order to get 
the detail information of laser point returns using lasinfo function. There are 5 returns in the point cloud, 
however only the first and last returns were used in this study. Tree canopy hits or first-return points are 
usually interpolated to a regular grid that corresponds to the DSM whereas last return or ground hits are 
interpolated as DTM. 
 
Furthermore, ground (class 1) and non-ground points (class 2) from the point cloud were separated using 
lasground function. After that the ground points in laz format of each tile was merged into a single laz file 
(compressed las file) for subset area which was further converted into a DEM using blast2dem function. 
Similarly, canopy returns or non-ground points were converted into DSM using TIN (Triangulated 
Irregular Network) interpolation methods. Interpolation of elevation attributes from the point clouds of 
the first and last-returns to two spatially continuous surfaces was achieved in two stages. Firstly, a TIN 
based on a Delaunay triangulation was applied to each dataset. Secondly, a rectangular grid of pixels was 
extracted from each TIN using a linear interpolation method at a constant sampling interval of 0.5 m to 
generate the surfaces (Patenaude et al., 2004).  
 
Quick Terrain Modeler was used for the visualization and presentation of point cloud, DTM, DSM and 
CHM as it provides a better interpretability as compared to LasTools (lasview function). Since the QT 
Modeler is commercial software, only 15 days are given for a trial version. Noise filtering of some tiles and 
visualization and presentation of the surface models and CHM were performed using this software. 
Hence, most of the work (e.g. interpolation of DEM, gridding, generation of DTM and DSM) on Lidar 
data processing was done in LasTools. 

3.9.1. CHM generation
The tree canopy height model (CHM) was computed as the difference between tree canopy hits and the 
corresponding Lidar-derived terrain elevation values. The same method was used by Popescu and Wynne, 
(2004a). The DTM and DSM created in LasTools were exported to ArcGIS and CHM was thus obtained 
by subtracting DTM from DSM using a raster calculator in order to get the height of individual tree. 
Height of individual tree was filtered from CHM as there was still some noise in data which showed 
different value of tree height i.e. greater than maximum field height and less than 0 even in negative value. 
Therefore, minimum and maximum value of the CHM was kept as 0 and 40 according to the field data. 
The height value out of 0-40 m range was filtered out using con function of raster calculator. 

3.9.2. Accuracy assessment of CHM
Accuracy of CHM was quantitatively assessed on the basis of field measured height of individual tree 
taken as a test data. The Lidar derived tree height was extracted from CPA of same individual tree as a 
maximum pixel value from manually delineated CPA of the CHM. Lidar derived tree height was regressed 
against field height using least square method and thus validated using field measured data. Different 
statistical test such as Pearson’s correlation test and one way ANOVA was done to find the significant 
difference between these two heights. Lidar derived height was regarded as response variable while field 
height was a predictor variable for regression analysis. 

3.10. Coregistration of image and Lidar data
The basic idea for registration of a satellite image to a Lidar data is to utilize the Lidar intensity data and 
the satellite imagery to find the correspondence between image and image pairs acquired at different 
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times, perspectives or even from different sensors (Toth et al., 2011). There are several methods for image 
to image registration such as map based registration and image-to-image registration. The latter method 
was adopted in this study. The principle of image-to-image registration is to use an already geo-referenced 
image with higher resolution as a master data in order to register the raw image so called slave (Du, 2008). 
In comparison to map based registration, this method provides one step process in which reference points 
on the master image and the corresponding points in the slave image can be found out simultaneously. 
 
PCI Geomatica software was used to co-register the Lidar intensity data and WorldView-2 satellite image. 
The Lidar intensity map was generated in LasTools and prepared in tif format. Lasgrid function of 
LasTools was used for this purpose. The intensity data of point cloud was interpolated using 0.5 m pixel 
size and applying 5 pixels as a fill for rasterization. Lidar data is more accurate than satellite image as it has 
x, y and z coordinates of each point on the ground and already geo-referenced to WGS 1984 UTM Zone 
45N. Therefore, in this study, Lidar intensity data was taken as a master image to register the 
panchromatic band (as slave) of WorldView-2 image. Then, this registered panchromatic band was used as 
a master image to register the multispectral bands of WorldView-2 satellite image. The Lidar-derived DSM 
was also used as an elevation model during the co-registration of image in Orthoengine tool of PCI 
Geomatica for removing the distortion of objects on the ground. Various common and prominent object 
features were collected as ground control points (GCPs) from both the image and thus the satellite image 
was registered based on the Lidar intensity data. Altogether 26 points were taken as GCPs that resulted in 
an overall RMSE of 1.2 m for panchromatic and 1.5 m for multispectral image. 

3.11. Layer stacking of image and CHM
All bands of pan-sharpened image and Lidar derived CHM were stacked and used as a combined layer in 
eCognition software for segmentation purpose. The proposed segmentation method used a data fusion 
technique available from eCognition to identify objects with correlated characteristics in terms of 
reflectance and height. This was obtained by linking the CHM with reflectance values in MSS bands from 
the image of each segment.  Multi-resolution segmentation was followed to partition the combined layer 
of image and CHM. This method identifies geographical features using scale and homogeneity parameters 
obtained from the spectral reflectance values in different bands from WorldView-2 image and the 
elevation values in the CHM (Suarez et al., 2005).  

3.12. Image segmentation 
Image segmentation is the process by which an original image is partitioned into some homogeneous 
regions by subdividing, merging and reshaping operation of the image objects (Liu & Yang, 1994). It is a 
preliminary and critical step in segment based classification and assumed that the segmentation results 
directly affect the performance of the subsequent classification (Gao et al., 2001). Although there are 
several types of segmentation techniques available, it can be divided either into boundary based/edge 
based or region based algorithms. In the other way, segmentation techniques can be grouped into top-
down and bottom-up strategy. Top down strategy includes cutting big objects into smaller pieces such as 
Chessboard, Quadtree, Contrast filter and Contrast split segmentation. Whereas bottom up strategy 
includes merging of small pieces to get bigger objects based on homogeneity criteria that are also called as 
region based algorithm for example Multi-resolution segmentation. Region based algorithms extract 
information from the image by grouping spatially and spectrally similar pixels into homogenous area to 
form an image object. In this research, multi-resolution segmentation technique was applied to segment 
tree crown onto WorldView-2 image. 

3.12.1. Multi-resolution segmentation
Multi-resolution segmentation, developed by eCognition Developer 8.7 software, is the process of 
delineating individual objects in the image based on homogeneity criteria such as colour, shape and 
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texture. For a given number of image objects, it minimizes the average heterogeneity and maximizes their 
respective homogeneity for producing meaningful objects.  

The segmentation starts by considering each pixel as a separate object or seed and subsequently, pairs of 
image objects are merged to form bigger segments until the homogeneity is reached. The homogeneity 
criterion for multi resolution segmentation is defined by scale and shape parameters. The seed looks for its 
best-fitting neighbour for a potential merger. If best fitting is not mutual, the best candidate image object 
becomes the new seed image object and finds its best fitting partner. When best fitting is mutual, image 
objects are merged in each loop (Definiens, 2011). The loops continue until no further merging is possible 
and the procedure then starts with another image object. 
 
Scale parameter is an important parameter in multi-resolution segmentation and is used to determine the 
upper limit for a permitted change of heterogeneity throughout the segmentation process. It also 
determines the average image object size. Therefore a higher scale parameter will allow more merging and 
consequently bigger objects, and vice versa (Rahman & Saha, 2008). The segmentation algorithm does not 
only rely on the single pixel value, but also on pixel spatial continuity (texture and shape) as well as their 
position within the hierarchical network. The homogeneity of the objects on which the scale parameter 
depends is called as composition of homogeneity i.e. mutually exclusive interaction between colour and 
shape. Colour refers to the spectral response of the objects, whereas shape conveys information about the 
semantic consistency of the objects. Shape is divided into two equally exclusive properties: smoothness 
and compactness. The value of shape field modifies the relationship between shape and colour criteria, 
(colour = 1-shape) so, decreasing the shape value will increase the colour criteria (Definiens, 2011). On 
the other hand, smoothness/compactness criteria is used when user wants to determine whether the 
objects should become more compact (fringed) or more smooth if the shape criterion is larger than 0. The 
relationship between scale parameter and composition of homogeneity is shown in Figure 3-3. By 
applying different scale parameter and colour/shape of combinations, the user is able to create a 
hierarchical network of image objects (Definiens Imaging, 2004).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3: Multi-resolution concept flow diagram: adapted from (Definiens, 2011) 
 
The success of multi-resolution segmentation depends on selecting the appropriate parameter 
combinations. In order to select the best parameter combinations, the panchromatic image was segmented 
20 times iteratively using different parameter combination of scale, shape and compactness. Thus, the best 
combination of parameters was chosen as scale 21, shape 0.8 and compactness 0.6 for the segmentation. 
For the selection of best fit scale parameters, Estimation of Scale Parameter (ESP) tool was used in the 



MAPPING ABOVE GROUND CARBON USING WORLDVIEW SATELLITE IMAGE AND LIDAR DATA IN RELATIONSHIP WITH TREE DIVERSITY OF FORESTS

25

segmentation procedure. Figure 3-4 shows detail processing steps of multi-resolution segmentation and its 
corresponding rule set developed in eCognition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-4: Segmentation processing steps and its corresponding ruleset 

a. Estimation of Scale parameter  

ESP tool is based on the idea of local variance (LV) of object heterogeneity within an image at multiple 
scales. It determines the upper limit of heterogeneity throughout the segmentation process. The variation 
in heterogeneity was explored by evaluating LV plotted against the corresponding scale. The thresholds in 
rates of change of LV indicate the scale levels at which the image can be segmented in the most 
appropriate manner (Dragut et al., 2010). The ESP tool was downloaded from the website and loaded as a 
rule set in the process tree of the eCognition interface. Figure 3-5 shows the ESP tool to estimate the scale 
parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3-5: Interface of ESP tool for determining scale parameter 
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After that value of different parameters was set in the edit process dialogue box to choose the appropriate 
scale parameter. Since selecting scale parameter is an iterative process, it was done several times by 
keeping different value of each parameter.  

b. Smoothening/Filtering 

Filtering of WorldView-2 image was done in eCognition. Gaussian smoothing filter (Gauss Blur) of a 5*5 
kernel was used for both the panchromatic and pan-sharpened image to remove the noise and smooth the 
appearance of image. After convolution filtering of image the processing time for segmentation also 
decreases. A convolution filter uses a kernel, which is a square matrix of a value that is applied to the 
image pixels and each pixel value is replaced by the average of the square area of the matrix centered on 
the pixel. 

c. Segmentation of image 

Segmentation of whole image was done using multi-resolution segmentation algorithm to partition the 
image pixel into smaller image objects. Out of eight spectral bands of pan-sharpened image, only three 
bands (NIR1, NIR2 and Red-Edge) and a CHM layer was given the higher weight i.e. 7, 6, 5 and 4 
respectively for segmentation. It is because these bands were found to be the best bands for spectral 
separability of tree species and thus regarded as important for tree crown delineation. The segmentation 
was based on the thematic layer of panchromatic shape file that was already segmented and exported to 
shape file after validation. Segmentation process was done using 21 as scale parameter, 0.8 as shape and 
0.6 as compactness value. 

d. Shadow, cloud and open area masking  

Due to the viewing angle and time of data acquisition, shadow and cloud were prominent on the image. 
Besides, there was some open and bare land in the study area. So such non-vegetated area needs to be 
masked from the image for better delineation of tree crowns. For masking out non-vegetated area, the 
reflectance values of vegetation and non-vegetation (shadow, cloud and open areas) was checked by 
updating the range of brightness value in a feature view window. Once the feature value identified for tree 
and non tree areas, the rule set was developed for masking of those area. For example, the pixels with 
CustRatio  more than 1400 was regarded as cloud, values more than 450 as open areas and values less than 
270 as shadow. Therefore, these areas were masked out accordingly to delineate the vegetated areas and 
tree crown delineation. However, the pixels value for shadow, cloud and open area are dependent on the 
subset of image. 

e. Delineation of tree crown based on object features 

Area other than non-vegetative class i.e. shadow, cloud and open areas were regarded as vegetative areas 
and the tree crowns were delineated using specific rule set developed for combined use of three bands of 
image and CHM. Certain threshold condition of brightness value and CHM value was given for the tree 
crown delineation for instance the pixels in between 270 and 450 and CHM greater than 4 was delineated 
as tree. Trees fall in the shadow area was delineated using the rule that if the CHM value is greater than 4 
in shadow area it should be regarded as tree.  

f. Watershed transformation 

The watershed transformation algorithm is commonly used to separate image objects from others. This 
algorithm helps to split the overlapping tree crowns into individual tree crown based on splitting 
threshold. The threshold is given on the basis of expert knowledge and average crown diameter of tree 
measured in the field.  
 
Watershed transformation considers the image to be processed as topographic surfaces and includes three 
basic notions: local maxima, catchment basins and watershed lines (Chen et al., 2004). If the gray scale 
image is inverted the local maxima become the local minima and holes are punched at the local minima. In 
between the local maxima and minima there are catchment basins which correspond to the tree crowns. 
The watershed lines are the local maxima of an inverted image and image looks like a watershed 
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catchment. When water is introduced in the system each valley will collect water from local minimum until 
water spills over the watershed into an adjacent valley (Wang et al., 2004). The watersheds surrounding the 
valleys constitute closed contours, which separate the whole area into different catchment basins and 
forms the desired boundaries of each object. In this way, when applying watershed transformation to the 
forest, tree clumps are treated as the catchment and under flooding water assumption, the trees (as valleys) 
touch each other and then those trees are separated into individual trees.  

g. Morphology 

Morphological operation was done to reshape the advanced object of image. The border of the image 
objects is smoothened by the pixel-based binary morphology operations i.e. opening or closing. Open 
image object removes pixels from an image which is completely separated from an image object while 
Close image object adds surrounding pixels to an image object (Definiens, 2011). Closing is defined as the 
complementary area to the surrounding area of an image object that can completely contain the mask. 
Close image object was applied in this study so that the smaller holes due to shadow and difference in 
spectral properties inside the area are filled. Another operation of morphology is to define the shape and 
size of mask. The mask is the structuring element, on which the mathematical morphology operation is 
based. Masking can be done either by circular or square as available in eCognition. Circular mask was 
created with 10 pixels size in this segmentation since the tree crowns are circular in shape. 

h. Refining the shape of tree crowns 

When the segmentation and other operations like watershed and morphology were completed, the tree 
crown of each segment was smoothened and refined by minor processing (i.e. removing smaller crowns 
on the basis of pixel number, roundness and asymmetry) so that the tree crown looks like natural tree. For 
this purpose, some unwanted segmentation such as tiny objects, noise and elongated objects from shadow 
and tree class were removed on the basis of roundness, asymmetry and area of pixels attributes. In 
addition, some temporary classes except tree crowns were merged to shadow class 

3.12.2. Validation of segmentation
Accuracy assessment of image segmentation can be done by several methods. However, they are broadly 
based on visual and geometrical techniques. The visual assessment which is based on visual judgment of 
the degree of fit of segmented objects with that of known objects whereas the geometrical assessment is 
made with a comparison of segmented objects with training/reference objects is terms of various indices.  
 
Möller et al., (2007) developed an accuracy assessment method based on visual techniques, also known as 
relative area approach to validate the segmentation by using reference polygons from manual digitization. 
If the reference polygon is completely covered by segmented objects, best scores are given. On the other 
hand, Clinton et al., (2010) developed a geometrical segmentation accuracy assessment of segmented 
outputs with reference to clearly defined training sets. The quality of segmentation outputs are defined in 
terms of over- and under segmentation as well as goodness of fit (D). Over segmentation and under 
segmentation as defined by Clinton et al., (2010) are described as follows (Equations 8 and 9). 
 
 
 
 
 
 
 
Where,  
 

xi is the training objects or reference polygons, relative to which the segmentation to be judged  
yj is the set of all segments in the segmentation. 
 

….Equation 9: Calculation of under segmentation 

…Equation 8: Calculation of over segmentation 
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The over and under segmentation forms ‘distance’ index (D) which indicates the quality of segmentation. 
D value is interpreted as the ‘closeness’ measure to an ideal segmentation result, in relation to a predefined 
reference set and ranges from 0 to 1 (Equation 10). As the value of D increases, the deviation of 
segmented objects and their respective reference object increases which indicated a high level of mismatch 
between objects. As the goodness of fit (D value) increases the degree of mismatch between the 
segmented and reference objects increases indicating minimum accuracy. 
 

 
 

 
In this research, the method proposed by Möller et al., (2007) and Clinton et al., (2010) was used for 
accuracy assessment of tree crown segmentation. Segmentation accuracy measures are also assessed by 1:1 
spatial correspondence between the segmented and reference objects. These accuracy measures were 
calculated for segmented tree crowns of each CFs. 1:1 spatial correspondence was assessed by comparing 
the number of 1:1 corresponding tree crowns of the reference and segmented polygons with the total 
number of reference tree crowns. A higher percentage of 1:1 correspondence indicates a higher accuracy. 

3.13. Image classification and accuracy assessment
Conventional pixel based classification approaches are poorly suited to very high spatial resolution 
imagery because within-class spectral variation increases with increased spatial resolution. Object based 
classification method uses not only spectral information but also considers texture (mean, variance, 
contrast, homogeneity and dissimilarity), spatial, contextual and semantic information to interpret an 
image (Definiens, 2011).  There are two different kinds of classification approaches in eCognition i.e. 
membership function and nearest neighbour. Both are the supervised classification scheme. While the first 
can be edited directly and enable the user to formulate knowledge about the image content, the latter 
needs appropriate sample objects to determine the desired class properties. Samples can be selected 
manually (click and classify) or based on training area masks (Definiens Imaging, 2004). 
 
The nearest neighbour classification is applied to selected object features and trained by samples. In 
comparison to pixel based training, the object based approach of the nearest neighbour requires fewer 
training samples. Samples are image objects which are the result of the segmentation process. After a 
representative set of sample objects has been declared for each class, the algorithm looks for the closest 
sample object in the feature space for each image object. If an image object's closest to sample object 
belongs to Class A, the object will be assigned as Class A (Definiens Imaging, 2004). 
 
The supervised nearest neighbour classification was applied to classify the tree crowns at the species level. 
The image objects (tree crown) was classified into six species altogether on the basis of training data 
collected from field. The tree that was clearly recognized and annotated in the image and field both was 
used as training sample for classification. 70% of sample trees recognized in the image were used as 
training samples while the rest 30 % as a test data for accuracy assessment in case of each major dominant 
species. The mean value of NIR1, NIR2 and Red-Edge band of pan-sharpened image and maximum value 
of CHM was chosen in object features for the classification.  
 
A classified image of eCognition was exported to ERDAS 2011 using export thematic raster files 
algorithm and export type as classification in edit process window of eCognition. The exported raster file 
should be changed to thematic layer as data type was in continuous layer. Accuracy assessment was carried 
out on the basis of allocated test samples. Confusion matrix, Kappa statistics and overall accuracy report 
was generated to calculate complete statistical measures.  

.….Equation 10: Measure of closeness 
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3.14. Feature extraction 
The procedure employed for the extraction of the relevant objects like point, line or polygon from the 
image is called feature extraction. Feature extraction could be manual by visual image interpretation, 
semiautomatic by using different filtering algorithms and techniques in addition to automatic by using 
segmentation and classification. In this study, mainly two types of feature i.e. canopy projection area 
(CPA) and tree height from the particular CPA were extracted using multi-resolution segmentation in 
eCognition software. The rule set for image segmentation and CHM was developed for individual crown 
delineation and tree height extraction from the same segment in terms of maximum pixel value contained 
in CHM. Feature extraction was only carried out after the complete process of segmentation and object 
based classification of the image in eCognition. The required object features were exported as a vector and 
raster format to ArcGIS 2010. 

3.15. Statistical Analysis
Statistical analysis is vital for any scientific research therefore, it was carried out for both types of data 
either collected in the field or extracted from remote sensing technique. The major statistical analysis 
includes correlation and regression analysis of two variables i.e. response and explanatory, model 
development and its validation based on the regression results.  

3.15.1. Correlation analysis
A scatter diagram of related two variables was depicted in order to see the relationship between them for 
instance the field measured CPA and image CPA, field height and Lidar derived height, carbon and CPA, 
carbon and Lidar derived height. Correlation coefficients and coefficient of determination (R2) was 
calculated which showed the percentage of variation in one variable which associated to other variables 
and can be explained by the given regression. Analysis of variance (ANOVA) test was also used to 
calculate the mean difference of different variables. 

3.15.2. Multiple regression analysis
The regression analysis has intensively been used for modelling the relationship between remotely sensed 
data and field measurements. The objective of regression analysis is to quantify the relationship between 
response variable and one or more explanatory variables. It determines the relationship between 
dependent and independent variable and works on the cause and effect relationship. The change in 
independent variable resulted the changes in dependent variable (Husch et al., 2003). After calculating 
aboveground carbon stock using DBH and height of tree and using species specific allometric equations, 
relationship among carbon stock and CPA and height was developed using multiple regression analysis. 
Multiple linear regression analysis was employed using field measured carbon stock as response variable 
and CPA and Lidar derived height as an explanatory variable. In order to avoid multi-collinearity amongst 
the explanatory variables (i.e. CPA and height), a tolerance limit of the variance inflation factor [VIF = 1/ 
(1 – Ri2)] was used, where Ri2 is the multiple correlation of the variable with all other explanatory variables 
in the regression model. 

3.15.3. Model calibration and validation
The classified individual trees that have 1:1 spatial correspondence with reference and delineated tree 
crowns were used for model development and validation since misclassified trees cannot be used for 
evaluation (Pouliot et al., 2002). Apart from this, few outliers were also removed which is the prerequisite 
of regression models to establish a robust model. Thus, the number of observations becomes less than the 
number of trees collected from the field or recognized on the image. Only 264 trees (25%) from the total 
trees recognized in the field were used for the modelling. 
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The model thus obtained was validated with 30% of field measured data in case of each major dominant 
species. The R2 and root mean square error (RMSE) was used to assess the performance of the model. 
RMSE explains the difference between model predicted values and the calculated values. Equation 11 
shows the RMSE in kg per tree. Similarly, RMSE in percentage was calculated from the ratio of RMSE 
and average calculated carbon. 
 
 

 
 
Where, 
 RMSE is root mean square error of the model 

Yi is the measured/calculated value of carbon 
 i is the predicted carbon value by the model  
 n is the number of samples 
 
Carbon stock of whole study area was calculated for each CF and species wise on the basis of validated 
regression model. 

3.15.4. Relationship of carbon stock and tree diversity
Pearson’s correlation analysis and t-test was applied to explore the relationship between tree diversity 
(Shannon diversity index) and carbon stock of each CF calculated from field data. One way ANOVA was 
used to test whether there was statistically significant difference between the mean value of tree diversity 
and Shannon diversity index. 
 
 

 RMSE = …………..Equation 11: RMSE calculation 
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4. RESULTS

4.1. Descriptive analysis of field data

Forest stand parameters (DBH, height and crown diameter) of each individual sampled tree were 
measured in every sampling plot for all seven CFs of the study area. In total DBH for 1147 trees were 
measured while height and crown diameter of 727 and 497 trees were measured respectively in 75 plots. 
Descriptive statistics of each parameter for whole study area and for each CF are shown in Table 4-1 and 
Appendix 6 respectively.  

Table 4-1: Descriptive statistics of sampled trees 

Statistic DBH (cm) Height (m) Crown Diameter (m) 

Mean 26.07 12.93 4.96 
Minimum 5 2 1 
Maximum 152 37 20 
Standard Deviation 19.86 6.73 3.11 
Number of Trees 1147 727 497 

 
Kayarkhola watershed has immense tree species diversity with a total of 72 species encountered during 
forest inventory. 73% of the forest is covered by only six species and Shorea robusta contributes most with 
42% followed by Lagerstroemia parviflora 12% and other major three species with 5% each. Similarly, 
Semecarpus anacardium contributes 4% in species composition. Other four major identified tree species has 
8% contribution whereas the rest of the species is categorized as Miscellaneous with 19% as shown in 
Figure 4-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4-1: Species composition of study area 
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DBH, height and crown diameter of each major dominant tree species was analyzed and presented in 
Box-whisker plot to identify the outliers and further processing of the data as shown in Figure 4-2 (abc). 
Detected outliers were removed from raw data and presented in Appendix 7. 
 
 
 
 
 
 
 
 
 
 
 
 

 
a. Box plot of DBH     b.  Box plot of height 

 
Figure 4-2: Box plot of DBH height and crown diameter of major tree species 

On average, others species category had the 
largest DBH and was the tallest followed by 
Shorea robusta and Terminalia species whereas 
Terminalia species had the largest crown 
diameter followed by Shorea robusta, Schima 
wallichii and others. Moreover, these species 
have the highest variability in terms of DBH 
and height as well as crown diameter. On 
the other hand, DBH, height and crown 
diameter of Semecarpus anacardium, Mallotus 
philippinensis and Lagerstroemia parviflora were 
smaller than remaining tree species. In 
particular, DBH of these species were not 
more than 50cm in average and also the 
height and crown diameter was reported less 
than the other species.                                              C) Box plot of crown diameter  
  
(SR = Shorea robusta, SA = Semecarpus anacardium, SW = Schima wallichii, MP = Mallotus philippinensis, LP = 
Lagerstroemia parviflora, TS = Terminalia species) 
 

4.2. Shannon diversity index
Tree species diversity for all seven CFs was assessed by Shannon diversity index. Number of regeneration 
(seedlings), saplings and trees found in each sampling plot were counted individually and summarised for 
each CF per ha. Janpragati B CF has the highest stem density with all forms i.e. regeneration, sapling and 
tree density whereas Samphrang CF has least stem density with equal contribution of saplings and 
regeneration.  
 
Shannon diversity index, species richness, stem density per ha and number of plots measured for each CF 
is presented in Table 4-2. Shannon diversity index was calculated for every plot and then made average for 
each CF. Shannon diversity index ranges from 0 to 4.5 whereas species richness showed the exponential 
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value of Shannon index. Samphrang is most diverse CF with 1.898 diversity index (DI), 6.944 species 
richness and 2320 stem density followed by Devidhunga with 1.536, 4.897 and 8591 respectively. On the 
other hand, Japragati CF has least number of species with 0.888 DI, 2.616 species richness and 6680 stem 
density.  

Table 4-2: Diversity measures of CF 

Community Forest Tree Diversity 
Index Species Richness Stem Density per 

ha 
No of plots 

(500 m2) 
Devidhunga 1.53 4.89 8591 28 

Nibuwatar 1.47 4.91 10427 24 

Janpragati (B) 0.98 2.78 17140 5 

Samphrang 1.89 6.94 2320 5 

Jamuna 1.21 4.17 9253 3 

Janpragati 0.88 2.61 6680 3 

Pragati 1.20 3.36 10383 7 
 

4.3. Carbon stock calculation from field data
Above ground carbon stock was calculated from field measured DBH and height by using species specific 
allometric equation as described in Section 3.7.3 for whole study area. Carbon stock of individual trees 
was calculated species wise then total carbon of trees measured in the sampling plots were calculated and 
averaged (e.g. per plot) for each community forest. After that, carbon stock per ha was calculated by 
extrapolating the carbon stock from plot (500 m2) to ha. The carbon stock (MgCha-1) for each CF is 
shown in Table 4-3.  
 
A total of 91141Mg C was found in the study area with 104.63 Mg C per ha. Nibuwatar CF has highest 
carbon stock of 41817 with 127.03 MgCha-1 followed by Janpragati B with 101.52 MgCha-1. Janpragati has 
least carbon stock among all CFs with 36.83 MgCha-1  followed by Jamuna with 40.54 MgCha-1 while 
Pragati and Samphrang has less than average carbon stock with 83.37 and 98.05 MgCha-1. 
 

Table 4-3: Carbon stock calculated from field data 

Name of 
Community 

Forest 

No of 
plots  

Carbon in 
all plots 

Average 
Carbon per 

plot 

Carbon 
per ha in 

Kg 

Carbon 
per ha 

(MgCha-1) 

Area of 
CF 

Total 
carbon in 

CF (Mg C) 
Devidhunga 28 142124 5076 101517 101.52 253.86 25771 
Nibuwatar 24 152440 6352 127033 127.03 329.18 41817 
Janpragati  B 5 26355 5271 105421 105.42 78.57 8283 
Samphrang 5 20842 4168 83368 83.37 55.60 4635 
Jamuna 3 6082 2027 40544 40.54 34.53 1400 
Janpragati 3 5524 1841 36827 36.83 40.27 1483 
Pragati 7 34317 4903 98049 98.05 79.06 7752 
Total 75          871.07 91141 

4.4. Species differentiation capability of image

4.4.1. Transformed divergence (TD)
Transformed divergence was calculated on the basis of field training dataset of different major tree species 
to assess the potentiality of WorldView-2 image for differentiating tree species as shown in Table 4-4. All 
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eight bands of pan-sharpened image were used to extract the value of transformed divergence. Table 4-4 
shows the best average separability of 1970.99 which indicates an image with a good separation among the 
several species. Excellent separabilty between Semecarpus anacardium and Mallotus philippinensis, Schima 
wallichii and Terminalia tomentosa, Mallotus philippinensis and Schima wallichii, and Semecarpus anacardium and 
Terminalia tomentosa was found with DT of 2000. Shorea robusta and Lagerstroemia parviflora has best 
separabilty with rest of the species as shown in table because all the values are greater than 1900, which 
indicated that these species can be separated distinctly. The segmented image was classified into six classes 
as recognized in the table although Semecarpus anacardium and Mallotus philippinensis could not be classified 
for all CF due to lack of sufficient observations. Moreover, one general class known as others which could 
not be categorized as any of these classes was also classified on the image.  
 

Table 4-4: Transformed divergence of WorldView-2 image 

Signature 
Name 

Lagerstroemia 
parviflora 

Terminalia 
tomentosa 

Shorea 
robusta 

Schima 
wallichii 

Mallotus 
philippinensis 

Semecarpus 
anacardium 

Lagerstroemia 
parviflora 0 1907.41 1911.88 1998.25 1947.53 1996.7 

Terminalia 
tomentosa 1907.41 0 1908.29 2000 1999.14 2000 

Shorea robusta 1911.81 1908.29 0 1984.51 1933.01 1996.34
Schima wallichii 1998.25 2000 1984.51 0 2000 1982.64
Mallotus 
philippinensis 1947.53 1999.14 1933.01 2000 0 2000 

Semecarpus 
anacardium 1996.7 2000 1996.34 1982.64 2000 0 

Best Average Separability : 1970.99 

4.4.2. Spectral separability of tree classes
The mean DN values of six major tree species and one other class were plotted against eight band of 
WorldView-2 image for assessing the potential of image spectral separability before the classification 
process. Spectral profile of each species was extracted from pan-sharpened image and later the reflectance 
curve against each band was analyzed (Figure 4-3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3: Spectral separabilty of forest tree species 
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Figure 4.3 demonstrates that all the species can be separated in NIR1, NIR2 and Red-Edge bands because 
the separation between the classes, which is higher in near infra-red bands compared to the visible bands 
of the image. Semecarpus anacardium and Schima wallichii was in distant from the rest of all species which was 
followed by Shorea robusta. It also shows that all six classes of different tree species can be separated from 
WorldView-2 image.  

4.5. CHM generation from Lidar data
Lidar data was processed to obtain the CHM as shown in Figure 4-4. The extracted ground points were 
interpolated for generating a DTM, while DSM was created by interpolating the first return points which 
are often located on top of the trees (Figure 4-4 (a) & (b)). Figure 4-4 (c) shows the CHM which was 
obtained from subtraction of DTM from DSM. The actual tree height in 3D view is shown in Figure 4-4 
(d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4: Lidar-derived images a) DTM, b) DSM), c) CHM, d) CHM visualized in 3D 

4.6. Accuracy assessment of Lidar derived tree height
Tree height collected from the field and the one derived from Lidar was evaluated using Pearson’s 
correlation coefficient and one way ANOVA. A total of 205 tree height measured in field and 
corresponding Lidar height extracted from the manual delineation of tree crown were used as a sample 
dataset. Summary of statistics for both height performances is given in Table 4-5. On average mean value 
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of Lidar derived height was 0.14 m greater than the field height, which was explained by about 111 trees 
were overestimated and 94 underestimated. 
 

Table 4-5: Summary of statistics for tree height measurements 

Statistic Field height (m) Lidar derived height (m) 
Mean 14.64 14.78 
Minimum 3 3.13 
Maximum 30.5 34.78 
Standard Deviation 6.31 6.19 
Observations 205 205 

 
Best of fit between field and Lidar-derived tree height was analyzed in R stat. Summary of regression 
equation was depicted in Figure 4-5. Field height was considered as independent variable, whereas Lidar 
derived height as dependent variable for linear regression. R square and adjusted R square showed that 
Lidar derived height was best predicted at 76 % with 3.84 m RMSE. . 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-5: Scatterplot and summary of fit for tree height measurements 

Pearson’s Correlation test and one way ANOVA was applied to test the hypothesis and conclusion made 
that there is no significant difference between height measured from field and derived from Lidar. 
Different test statistic and conclusion is presented in Table 4-6. 

Table 4-6: Summary of statistical test 

Test  df Test stat P value Test critical  
Pearson’s correlation 203 0.871 0.527 0.178 
One way ANOVA 1, 408 0.051 0.820 3.864 
Conclusion: r statistic is greater than critical value of r so null hypothesis is rejected i.e. there is statistically 
significant relationship between height measured from field and derived from Lidar (P<0.05)  
Conclusion: F statistic is less than F critical so two means are not statistically significant different i.e. there 
is no significant difference between height measured from field and derived from Lidar (P<0.05) 

4.7. Image segmentaion
Image segmentation was done in two steps. Firstly, multi-resolution segmentation was performed in 
panchromatic image by using the best multi-resolution segmentation parameter combinations (scale, shape 
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and compactness) for each subset area of forest. The best segmentation parameter combination for 
panchromatic image, after an iterative process, was found at scale 21, shape 0.8 and compactness 0.6. The 
output of multi-resolution segmentation of panchromatic band is shown in Appendix 8.  
 
Secondly, the output of panchromatic segmentation was used as a thematic layer to segment the pan-
sharpened image and CHM in order to get the same size and shape of crown. Convolution filter of 5*5 
was used to filter pan-sharpened image as well as CHM as shown in Figure 4-6 a. Shadow, cloud and non- 
tree cover was masked out from the image before segmentation process so that the overestimation of the 
crown projection area can be avoided. The masked image visualized as a red border and blue surface as 
shown in Figure 4-6 b. 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

Figure 4-6: a) Subset of pan-sharpened filtered image b) shadow and non-tree cover masking 

The CHM and pan-sharpened images were used as a different layer for segmentation. The different 
weights were given to the NIR1, NIR2, Red-Edge and CHM layers. The filtered image was segmented 
using the same scale, shape and compactness as used in the panchromatic band. Rule set for segmentation 
was applied according to the brightness of near-infrared band and height threshold of CHM. After 
watershed transformation, morphology and refining the shape of tree crown, the final output of 
segmentation was obtained as shown in Figure 4-7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7: Segmentation of pan-sharpened image and CHM 

ba
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4.8. Validation of segmentation
Validation of tree crown segmentation was obtained using accuracy measures of D and 1:1 spatial 
correspondence for 344 manually delineated reference tree crowns. Figure 4-8 shows accuracy measures 
of D of segmented crowns for each CF. Overall, the over-, under-segmentation, and D were 0.29, 0.34, 
and 0.33, respectively. Total accuracy of tree crowns delineation was about 67% which means 33% of 
segmentation error. In Jamuna CF, D value was the lowest (0.29), as it implied a lower over segmentation 
error, whereas Janpragati and Pragati CF have a higher D value of 0.40 and 0.39 respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-8: Measure of closeness (D value) for accuracy assessment of segmentation 

For accuracy measure of 1:1 spatial correspondence, matching of reference and segmented polygons was 
observed on one to one basis. Out of 344 reference polygons obtained from manual delineation, only 261 
automatic polygons obtained from segmentation had one to one relationship as shown in Table 4-7. Put 
differently, only 76% of the total reference crowns were matching to the segmented tree crown thus the 
reported accuracy of segmentation was 76%.  
 

Table 4-7: Matching 1:1 correspondence of reference polygons to segmented polygons 

CF Name No of Reference polygons 1:1 Correspondence Correctly Segmented CPA (%) 

Devidhunga 97 75 77.32 
Nibuwatar 102 73 71.57 
Janpragati B 32 25 78.13 
Samphrang 47 39 82.98 
Janpragati 13 9 69.23 
Jamuna 18 12 66.67 
Pragati 35 28 80.00 
Overall Accuracy         344 261 75.87 % 

4.9. Image classification and accuracy assessment
Segmented tree crowns were classified into six major dominant species i.e. Shorea robusta, Lagerstroemia 
parvifloa, Terminalia tomentosa, Schima wallichii, Mallotus philippinensis and one general class so called others. 
Classification was performed on the pan-sharpened image using nearest neighbourhood classifier in 
eCognition. All seven CFs were segmented in 4 clusters viz. Devidhunga, Nibuwatar, Janpragati B and 
Samphrang, Jamuna, Janpragati and Pragati because all above mentioned species were not common in 
each CF and eCognition could not process large dataset at one run. Therefore, the output segmented 
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image was classified for each of four clusters with different number of species (Figure 4-9). A total of 228 
(Devidhunga - 67, Nibuwatar - 63, Janpragati B - 22 and Samphrang, Jamuna, Janpragati and Pragati – 76) 
observations were used to train the image and 101 observations (Table 4-8) to assess the accuracy of the 
classified image. Table 4-8 shows number of species classified, an overall classification accuracy and 
Kappa statistic for each cluster. Detail of confusion matrix, users and producers accuracy for each cluster 
is supplied in Appendix 9. 
 

Table 4-8: Summary of classification accuracy assessment 

Name of CFs 
Number of 

species classified 
Reference/ 

classified Totals 
Correctly 
classified 

Overall 
Accuracy (%) 

Kappa 
statistics 

Devidhunga 6 31 18 58.06 0.47 
Nibuwatar 5 27 15 55.56 0.43 
Janpragati B 3 11 8 72.73 0.62 
Samphrang, Janpragati, 
Jamuna and Pragati 

5 32 20 62.50 0.48 

 
The classification of CFs resulted as Janpragati B CF with the highest overall accuracy and Kappa statistic 
with three species whereas Nibuwatar CF implied a lowest rank based on an overall accuracy and Kappa 
statistics with 5 numbers of species classified. 18 out of 31 reference polygons of Devidhunga CF were 
correctly classified with overall accuracy of 58.06% and 0.47 Kappa statistics and six species could be 
classified. A moderate overall accuracy (62.50%) and Kappa statistics (0.48) was obtained from group of 
four CFs with five classified species. Table 4-9 shows users and producers accuracy of species 
classification for each species. 
 

Table 4-9: User's and producer's accuracy of species classification 

Species 
name 

Devidhunga  Nibuwatar  Janpragati B  
Samphrang, Jamuna, 

Janpragati and Pragati  
User 

accuracy 
Producer 
accuracy 

User 
accuracy 

Producer 
accuracy 

User 
accuracy 

Producer 
accuracy 

User 
accuracy 

Producer 
accuracy 

Shorea  66.67 85.71 75 50 100 60 71.43 62.50 
Terminalia 100 25 42.86 50 - - 100 75 
Lagerstroemia  75 75 100 50 - - 50 50 
Mallotus  100 66.67 - - - - 66.67 40 
Semecarpus 100 50 - - - - - - 
Schima  - - 50 100 66.67 100 - - 
Others 35.71 62.50 33.33 50 50 66.67 56.25 66.67 

 
Shorea robusta, Lagerstroemia parviflora, Mallotus philippinensis and Semecarpus anacardium have 100% user’s 
accuracy in case of Janpragati B CF, Nibuwatar CF, Devidhunga CF and Devidhunga CF respectively. 
Terminalia tomentosa achieved 100% user’s accuracy in case of Devidhunga and group of four CFs. Schima 
wallichi and other class have lower user’s accuracy in comparison to the rest of the tree classes for all CFs. 
However, Shorea robusta could be classified in all four cluster of CFs with more than 65% user’s accuracy. 
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4.10. Feature extraction
After classification and accuracy assessment of classified image, different features like CPA and maximum 
height of tree within each segment was extracted using an export algorithm in eCognition for further 
analyses. Attribute CF table provides attributes such as class name, CPA_image, CHM_ht and mean 
reflectance value of different bands of pan-sharpened image. Thus, CPA and maximum value of tree 
height within each segment were used to develop and validate the regression model as well as for 
calculation of carbon stock for each tree species in the study area 

4.11. Correlation analysis 
Pearson’s product-moment correlation coefficient was calculated using SPSS software to analyze the 
strength of linear relationship between the variables i.e. CPA, Lidar derived tree height (written as height 
in the table) and carbon stock of trees. The relationships among 3 variables were calculated for each of 
five species as shown in Table 4-10. The datasets for five species were randomly divided into 70% for 
model calibration and 30% for validation.  
 

Table 4-10: Correlation among the variables of regression model 

Species Name Variables df (n-2) t- statistic r R Square P value 

Shorea robusta 
CPA and carbon 60 6.89 0.70 0.49 < 0.01 
Height and carbon 60 8.58 0.77 0.60 < 0.01 
CPA and height 60 6.56 0.68 0.47 < 0.01 

Lagerstroemia parviflora 
CPA and carbon   5.46 0.62 0.38 < 0.01 
Height and carbon 29 7.97 0.75 0.56 < 0.01 
CPA and height 29 5.70 0.63 0.40 < 0.01 

Terminalia tomentosa 
CPA and carbon 16 9.16 0.79 0.63 < 0.01 
Height and carbon 16 11.90 0.86 0.74 < 0.01 
CPA and height 16 6.47 0.68 0.46 < 0.01 

Schima wallichii 
CPA and carbon 23 10.75 0.84 0.70 < 0.01 
Height and carbon 23 6.83 0.70 0.49 < 0.01 
CPA and height 23 5.51 0.62 0.38 < 0.01 

Others 
CPA and carbon 49 6.64 0.69 0.47 < 0.01 
Height and carbon 49 7.33 0.72 0.52 < 0.01 
CPA and height 49 4.66 0.55 0.31 < 0.01 

 
There are strong positive correlations (>0.70) between tree height and carbon in all five species. The 
correlation between them are highly significant (P<0.01). In general, the correlation coefficient of CPA 
with carbon and CPA with height was found less than that of height with carbon. The correlation 
coefficient between CPA and carbon is more than 0.70 in particular the Schima wallichii and Terminalia 
tomentosa. The lowest r value was found for CPA and height of others relationship. However, on average 
correlation coefficient of CPA and carbon, height and carbon and CPA and height was found to be 0.73, 
0.76 and 0.63 respectively. It indicates that the relationship between tree height and carbon was the 
highest and statistically significant for all five species. According to the result of correlation coefficient and 
t-statistics, the null hypothesis was rejected and concluded that there is significant relationship between 
CPA, height and carbon stock of study area at 95% confidence level.  
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4.12. Model calibration and validation
Multiple regression models were developed for five tree species in such a way that the carbon stock can be 
properly estimated. CPA and height were used as explanatory variables to estimate the carbon stock of 
individual trees. Linear regression model in Log form as shown in Equation 12 was developed for each 
species because it can describes the relationship between CPA, height and carbon stock. The relationship 
between these variables was also significant at 95% confidence level. Besides, in order to avoid multi-
collinearity amongst the explanatory variables (i.e. CPA and height), collinearity test was done using a 
variance inflation factor (VIF) and it was less than 10 for all five species. Summary statistics and regression 
coefficient of variables is given in Table 4-11 and details of ANOVA table and other parameter estimates 
are given in Appendix 10 

 

0 1* Ln (CPA) 2 * Ln (Height)........Equation 12: Multiple regression model 

 Where,   
 Ln is natural logarithm to the base 2.71828 
 Carbon is above ground carbon stock per tree in Kg 

0 is intercept 
1 is coefficient of CPA 
2 is coefficient of Lidar derived tree height 

 

Table 4-11: Regression coefficients and summary statistics of model 

 Species 0 1 2 R 
Square 

Adjusted R 
square 

Standard 
error Observations 

Shorea robusta -0.877 0.597 1.873 0.66 0.65 0.90 62 
Lagerstroemia parviflora 0.205 0.370 1.494 0.60 0.57 0.58 31 
Terminalia tomentosa -0.126 0.458 1.848 0.82 0.80 0.37 18 
Schima wallichii -0.144 1.124 0.883 0.75 0.73 0.61 25 
Others 0.044 0.616 1.396 0.64 0.63 0.57 51 
Model for each species and regression coefficient was tested using F-test and t-test respectively. All the 
models and regression coefficients showed statistically significant at 95% confidence level.  
 

Multiple regression models were validated using randomly selected 30% of independent datasets (total 77) 
in case of each species as described in Table 4-12. Observed and predicted carbon stock from regression 
models were plotted against each other as shown in Figure 4-10 and co-efficient of determination (R2) was 
calculated to see goodness of fit. A root mean square error (RMSE) and RMSE percentage (average field 
measured carbon divided by RMSE) were calculated. Shorea robusta described the best fit of model with 
94% of variation explanation and 24.85% of RMSE. For all species R2 values was greater than 75% which 
means carbon stock of individual trees estimated by the regression model were able to explain up to 75% 
the carbon stock measured from the field. However, model error varies from 22.48 to 289.68 kg/tree 
depending on the species and calculated mean carbon stock and 24.85 to 49.75% of RMSE. 
 

Table 4-12: Summary of model validation and RMSE (kg/tree) 

Species Coefficient of 
determination  

Calculated 
mean carbon RMSE RMSE % Observations 

Shorea robusta 0.94 849.39 211.12 24.85 25 
Lagerstroemia parviflora 0.78 80.98 22.48 27.77 11 
Terminalia tomentosa 0.76 865.93 289.68 33.80 10 
Schima wallichii 0.84 198.21 75.24 37.96 11 
Others 0.78 163.36 81.27 49.75 20 



MAPPING ABOVE GROUND CARBON USING WORLDVIEW SATELLITE IMAGE AND LIDAR DATA IN RELATIONSHIP WITH TREE DIVERSITY OF FORESTS

43

 
 
 
 
 
 
 
 
 
 
 
 

a. Shorea robusta 
 
 
 
 
 

     
 
 
 
 
 
 

b. Lagersroemia parviflora        c.  Terminalia tomentosa  
  

 
 
 

 

 

 

 

 
d. Schima wallichii         e.  Others 

Figure 4-10: Scatterplot of observed and predicted carbon stock 

4.13. Carbon stock mapping of study area 
Multiple regression model developed for each species was used to estimate total carbon stock of study 
area. Species wise model was used to estimate amount of carbon stock of major dominant tree species for 
all seven CFs and later a carbon map was produced using ArcGIS 2010. Carbon map produced for each 
CF is presented in Appendix 11 and for Devidhunga CF at tree level is shown in Figure 4-11. The amount 
of carbon per tree varies from less than 500 kg/tree to more than 2000 kg/tree. Few big trees with large 
CPA and height have even more the 5000 Kg, with a good indication reported for the Shorea robusta and 
Terminalia tomentosa. Lagerstroemia parviflora, Schima wallichii and most of the species from others category 
have less carbon stock within a range of 500 to 1500 kg per tree.  
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Figure 4-11: Carbon stock map of Devidhunga CF and carbon stored by one tree (inset) 

A total of 188485 Mg C carbon was estimated in the study site which covered an area of 871.07 ha and 
thus on average 216.38 Mg C per ha was found as shown in Table 4-13. Nibuwatar CF has the highest 
carbon stock (86391 Mg C) with major five species followed by Devidhunga CF (58373 Mg C) whereas 
Jamuna CF has the least carbon stock with four tree species.  

Table 4-13: Summary of species wise carbon stock (Mg C) 

CF Name 
Species Name 

Total 
Carbon 

Area of 
CF (ha) 

Carbon 
Per ha Shorea 

robusta 
Lagerstroemia 

parviflora 
Terminalia 
tomentosa 

Schima 
wallichii Others 

Devidhunga 33969 2139 12582   9683 58373 253.86 229.94 
Nibuwatar 56055 402 12276 10510 7147 86391 329.18 262.44 
Janpragati (B) 5682     1925 682 8290 78.57 105.51 
Samphrang 2392 286 2414   3219 8311 55.60 149.48 
Janpragati  3403 208 407   2297 6314 40.27 156.78 
Jamuna  2627 255 374   1159 4415 34.53 127.85 
Pragati 8509 428 893   6562 16392 79.06 207.34 
Total 112637 3717 28945 12436 30749 188485 871.07 216.38 
Per ha 129.31 4.27 33.23 14.28 35.30 
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The percentage carbon stock of each CF is presented in Figure 4-12. It shows that 60% of carbon stock of 
the study area was contributed by Shorea robusta expect in the case of Samphrang CF. Schima wallichii is 
mainly found in the Janpragati B and Nibuwatar CF which constitutes about 20 and 10% respectively. 
Other species was found in all the CFs but the percentage coverage of carbon stock varies from 10% to 
40% whereas Lagerstroemia parviflora contributed less than 10% of carbon stock except in Samphrang CF.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-12: Species wise carbon stock of the study area 

4.14. Relationship between tree diversity and carbon stock 
The strength of relationship between tree diversity and carbon stock was depicted after plotting these two 
independent samples in scatter plot diagram. Pearson’s correlation coefficient and one way ANOVA test 
was employed for the correlation of tree diversity and carbon stock. Table 4-14 shows the result of 
Pearson’s correlation. According to the table, correlation between tree diversity and carbon stock was not 
statistically significant at 95% confidence level for all of the CF except Janpragati CF. The result of 
Jnparagati CF was statistically incorrect due to insufficient degrees of freedom. Pragati CF and Nibuwatar 
CF have negative correlation between tree diversity and carbon stock while rest of five CFs have positive 
correlation but not statistically significant.  
 

Table 4-14: Summary of Pearson's correlation analysis 

F Name Pearson 
Correlation 

Coefficient of 
determination (R2) df t-stat t critical Critical values for 

Pearson's r 

Nibuwatar -0.290 0.084 22 -1.422 2.074 0.404 
Devidhunga 0.109 0.012 26 0.557 2.056 0.374 
Janpragati B 0.349 0.122 3 0.645 3.182 0.878 
Samphrang 0.506 0.256 3 1.016 3.182 0.878 
Janpragati  1.000 0.999 1 33.305 12.710 0.997* 
Jamuna 0.877 0.769 1 1.826 12.710 0.997 
Pragati -0.576 0.332 7 -1.865 2.365 0.666 
Overall 0.566 0.321 7 1.817 2.000 0.666 
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One way ANOVA as shown in Table 4-15 indicated that there is statistically significant difference 
between the mean values of tree diversity and carbon stock for each of the seven CFs with different P 
value because in each of the cases F statistic is greater than the F critical. Thus, there is no significant 
relationship between tree diversity and carbon stock of CF. 

 
Table 4-15: Summary of one way ANOVA 

 
 CF Name F Stat P-value F crit 

Nibuwatar 85.36848 4.73E-12 4.051749 
Devidhunga 47.76784 5.74E-09 4.019541 
Janpragati B 19.6368 0.002193 5.317655 
Samphrang 11.48234 0.00952 5.317655 
Janpragati  20.90318 0.010245 7.708647 
Jamuna 14.18708 0.019663 7.708647 
Pragati 6.937025 0.021821 4.747225 
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5. DISCUSSIONS
5.1. Canopy height model (CHM) generation and accuaracy assessment
Canopy height model (CHM) generation and its accuracy assessment were described and reported in this 
study. It showed that 54% field measured tree height was overestimated and 46% was underestimated by 
Lidar height. Tree height extracted from CHM was evaluated by plotting against field measured height of 
205 sampled trees in scatterplot. The coefficient of determination (R2) of estimated tree height was 0.76, 
with RMSE of 3.84 m. The Pearson’s correlation test and F test revealed that there is statistically 
significant relationship between tree height measured from field and the one derived from Lidar. 
 
Several studies have been done for the estimation of tree height from Lidar data and reported different 
results. Kwak et al., (2007) obtained 0.77, 0.80 and 0.70 coefficient of determination (R2) for two 
coniferous and one deciduous species respectively by using 1.8 m point density, whereas Lim et al., (2003a) 
found 0.68 R2 value for leaf-on hardwood stands of Ontario, Canada. Similarly, Brandtberg et al., (2003) 
obtained an accuracy of field and Lidar height within 1.1 m mean standard error and 0.69 coefficient of 
determination using high sampling density (e.g., 12 points/m2) in deciduous forest of North America. In 
another study Heurich et al., (2003) found mean differences of 0.53 m between ground measurements and 
the Lidar height for all species while for deciduous trees the mean differences was 0.37 m with a standard 
deviation of 1.43 m. In both the cases it was overestimation. In addition, Takahashi et al., (2005a) observed 
an overestimation of Lidar derived tree height with an average error of 0.90 m in mountainous (steep 
slope >380) area of Sugi plantation in Japan.  
 
In this study, the reported accuracy of tree height is within acceptable range as the previous studies carried 
out by Kwak et al., (2007), Lim et al., (2003a), Heurich et al., (2003) and Takahashi et al., (2005a). 
Nevertheless, comparison cannot be done directly due to different forest types, densities, composition of 
tree species, topographic features and quality of the Lidar data. In this study, the percentage difference of 
overestimation and underestimation of tree height is very small and there is a tendency for the heights of 
smaller trees to be overestimated and those of tall trees to be underestimated. Different types of error can 
be attributed due to the following reasons: interpolation of the point cloud data into a grid-based canopy 
height model, precision of laser height measuring instruments (TruPulse 360 B), random errors introduced 
by the field personnel during height measurements. Complexity of the landscapes (undulating, rugged, 
steep slope) and uneven forest age may contribute to the error propagation found in this study. 
 
Lidar data (0.8 m point density) used for the study is sufficiently beneficial for estimating tree height at a 
plot level but not particularly recommended for an individual tree level. The point cloud data has 
numerous noises arises from external object and sensor itself which cannot be overcome by simple 
interpolation like TIN. The reason behind is that the interpolation is a prediction of what is not known. 
TIN interpolation techniques make the prediction using the direct/close neighbours of three points on 
the triangle and fit them into a model therefore the larger the distance between the points, higher the 
chance of error in estimating elevation of tree height. It may also be biased when interpolation done in the 
elevation for steep slope and irregular surface. Thus another method should be tried for better noise 
removal because LasTools only uses the TIN methods for interpolation. Noise could be one of the 
prominent reasons for overestimation of tree height because maximum height of the tree on the ground 
was up to 37 m but Lidar height showed beyond this range. It might be occurred due to the low quality 
(unfiltered) raw Lidar data. 
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Several literatures (Leckie et al., 2003; Naesset & Bjerknes, 2001; Persson et al., 2002) showed that Lidar 
under-predicts the tree height in plot level i.e. mean height of the plot and mostly in coniferous stands of 
temperate region in relatively flat terrain. Persson et al., (2002) found 0.99 correlation coefficients and 0.63 
RMSE in a coniferous forest and further explained that low laser sampling density caused tree height 
underestimation in their study. Furthermore, they argued that because the uppermost parts of the tree 
tops were not likely to be hit when using small footprint airborne LiDAR, the estimates of tree heights 
would consequently be underestimated. But in case of our study, the terrain is rugged and hilly with 
tropical natural broadleaved forests and tree height was estimated on individual crown basis not on plot 
level as usual. Therefore, the failure to sample tree tops because of an insufficient laser sampling density is 
likely to be of greater relevance in coniferous forests where crown shape is more conical than in broadleaf 
forests where crowns are more rounded.  
 
Error in height measuring instruments could be attributed for overestimation of tree height because the 
laser instruments (TruPulse 360 B) used in the field have precision of 0 to 1.67 m (Clark et al., 2004). 
Another reason for overestimation in steep slope is the horizontal positional error between the tree top 
and stem because Lidar height calculated from the distance between tree top and the ground surface 
would be overestimated. Apart from that, it is difficult to measure the exact top of the trees in dense 
deciduous forest due to intermingling or overlapping between tree canopies. It is often challenging in the 
field to decide on the highest point of the crown as there is no distinct peak, especially when trees are 
leaning or have large crowns as shown in Figure 5-1. In addition sometimes the peak is hidden behind a 
green wall of leaves because the branches of different trees are mixed. Therefore, more detailed research 
about the overestimation of tree heights in mountainous deciduous forest like Chitwan is suggeted 
 
 
 

Figure 5-1: Errors in tree height measurements (Köhl et al., 2006)

5.2. Image segmentation and accuracy assessment

Multi resolution segmentation was chosen for the segmentation of WorldView-2 image in this study. 1:1 
spatial correspondence and measure of closeness i.e. goodness of fit between reference polygons and 
segmented polygons was employed for accuracy assessment of segmentation. Results thus obtained from 
measure of closeness showed 67% accuracy with 0.33 D value whereas from 1:1 spatial correspondence 
76% accuracy was obtained. Measure of closeness gives the ‘distance index’ while the latter is based on 
positional accuracy of the reference polygons to segmented polygons i.e. if there was overlap of at least 
50% between these two polygons then the segmentation was regarded as correctly classified as done by 
Zhan et al., (2005). The reason for difference between two methods of accuracy is due to different 
approach of assessment while some of the segmentation error is caused by the slight discrepancies in the 
co-registration of image and Lidar data which could not be overcome during the image registration. 
Therefore, further research will be needed to address the issue of co-registration. 
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The finding of this study can be compared with different study done by several researchers (Baral, 2011; 
Wang et al., 2004; Workie, 2011). Our study is very similar to Baral, (2011) who obtained segmentation 
accuracy of 74.4 % using WorldView-2 image and 77.6 % with GeoEye in the same study area by applying 
1:1 correspondence method. Similarly, Workie (2011) achieved relatively low segmentation accuracy in 
broadleaved forest (67%) compared to the coniferous (73%) using measure of closeness methods while on 
the basis of 1:1 correspondence the study reported 71% accuracy for coniferous and 55% for broadleaved 
forest in the Netherlands. In addition Wang et al., (2004) obtained 75.6% segmentation accuracy for the 
spruce and fir forests. In comparison to above studies, results obtained in this research are relatively 
higher due to the combined use of satellite imagery and Lidar data. Because, it is possible to delineate the 
tree crown in shadow and low structured vegetation using height information of CHM which cannot be 
addressed by satellite images. Holmgren et al., (2008) found an accuracy increase up to 8% in tree crown 
segmentation by integrating data from the laser-based sensor and optical satellite imagery.  
 

In this study, the multi-resolution segmentation coupled with watershed transformation was implemented 
for delineating tree crown with respect to its capability to segment highly heterogeneous forest (Kim et al., 
2010) and captivating more than one band during the segmentation process (Ke & Quackenbush, 2011). 
Other tree crown delineation algorithms considered trees that have conical shape and treetop to be the 
brightest point of the tree (Culvenor, 2002; Gonzalez et al., 2010; Wang et al., 2004). Compared to 
coniferous tree crowns, the within-crown brightness variation for broadleaved trees tends to be greater 
due to the large branches and non-conical shape of the crown. Since, this study area is natural broadleaved 
forest type with several age gradation and different species composition, multi-resolution segmentation 
technique was performed to fully explore the information content of VHR satellite images. In addition, 
Lamonaca et al. (2008) discovered that multi-resolution segmentation is preferable for segmenting 
heterogeneous forest and to explore the dimension of forest structural attributes.  
 

The success of multi-resolution segmentation depends upon several parameters including weights given to 
image layers, a colour/shape ratio associated with the spectral/shape criterion of homogeneity, a 
compactness/smoothness ratio associated with object shape and a scale parameter. Therefore, higher 
weight was given to NIR2, Red-Edge and CHM, while fine scale i.e. 21 and shape and compactness value 
of 0.8 and 0.6 was chosen by iterative process during the segmentation. However relatively lower accuracy 
was obtained when assessed from measure of closeness “D value”. Overall D value (segmentation error) 
in this research was higher mainly due to under segmentation (0.34) of big trees and large number of 
clumped trees (Figure 5-2).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2: a) Ground view and b) canopy view of clumped trees 

This might be due to improper splitting up of bigger crowns into actual trees using the multi-resolution 
segmentation and also images still affected by the cloud, huge light shadow and distortion (Figure 5-3). 
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Other sources of error such as co-registration of image and CHM and viewing nadir angle is described in 
Section 5.7.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3: WorldView-2 image a) cloud and huge shadow b) distortion in image 

5.3. Image classification and accuracy assessment
Segmented tree crowns were further used for classification of dominant tree species as described in 
Section 3.13 and results are shown in Section 4.9. A nearest neighbourhood classifier was used in 
eCognition which resulted in different accuracy for different cluster of CFs.  
 
Species classification resulted in overall accuracy of 58% and Kappa 0.46 for classifying six species, overall 
accuracy of 56% and Kappa 0.43 for five species, overall accuracy of 63% and Kappa 0.48 for five species 
and overall accuracy of 73 % and Kappa 0.62 for three species depending on the cluster of CFs as shown 
in Table 4-8. Thus, it depicted that classification accuracy increased when the number of classified species 
decreased. The user’s accuracy of Shorea robusta was higher (more than 66% in each case) and distinctly 
classified whereas others category implied a relatively low accuracy (below 63% in each case) than 
remaining species. But for Lagerstroemia parviflora, Schima wallichii, Terminalia tomentosa and Mallotus 
philippinensis, the user’s accuracy varies from 25% to 100% depending on the cluster and number of species 
classified (Table 4-9). A higher user’s accuracy of Shorea robusta was obtained due to a significant number 
(ca. 42%) of this tree species found in the field. The obtained result is comparable to Baral (2011) with an 
overall classification accuracy of 66.7% and Kappa 0.32 for two classes i.e. Shorea robusta (user’s accuracy 
76.47%) and others (user’s accuracy 58.33%), using the same satellite imagery in the same study area. With 
regards to the number of species classified by Baral (2011), this study revealed that the integration of Lidar 
and imagery data is significantly improved the accuracy of tree classification in the tropics. Best average 
separability of transformed divergence (Table 4-4) also proved that WorldView-2 image has huge potential 
to separate different species on the basis of spectral signature and thus classification accuracy was 
improved. Moreover, NIR1, NIR2 and Red-Edge were found to substantially improve the classification 
results of the dominant tree species which also observed from spectral separabilty analysis of the image 
(see Figure 4-3).  
 
Tree species classifications based on high resolution satellite imagery and Lidar data have been widely 
used. For example, Tsendbazar (2011) achieved relatively low accuracy of 64.5% and Kappa 0.48 for four 
species classes of Alnus nepalensis, Pinus roxburghii, Schima wallichii, and others using GeoEye image, the 
accuracy increased to 90.3% and Kappa 0.80 when species were generalized into broadleaf and needle leaf 
species. Waser et al., (2011) achieved an overall accuracy of 76% and 84% with kappa 0.70 and 0.73 when 
classifying 7 species and 4 species by using airborne digital sensor 40 of 0.25 m resolution and Lidar with 
0.8 m point density. Voss & Sugumaran, (2008) obtained an accuracy of 57% and 56% when classified 5 
deciduous and 2 evergreen tree species from two hyperspectral dataset. The accuracy was increased up to 
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19% when combined with 0.6 m posting of Lidar data. Holmgren et al., (2008) obtained an overall 
accuracy of 96% when classifying groups of Norway spruce, Scots pine, and deciduous trees, using 
autumn multispectral aerial images (0.1m panchromatic and 0.6 m colour infrared) and very high-
resolution LiDAR data (50 points per m2) whereas only 88 and 91% accuracy was obtained from either 
Lidar or aerial imagery alone. Nevertheless, the range of previously reported accuracy value suggests that 
the species classification in this study is comparatively successful because six broadleaved tree species were 
classified using WorldView-2 (2m MSS and 0.5 panchromatic) imagery and 0.8 m Lidar point density data. 
 
The classification accuracy reported from different researchers reveals that accuracy increased in four 
cases i) lower the number of species classified higher the accuracy obtained (Baral, 2011; Tsendbazar, 
2011), ii) use of very high resolution aerial camera imagery (Waser et al., 2011), iii) the combination of 
Lidar with images (Voss & Sugumaran, 2008), and iv) the type of forest either plantation or needle leaf 
(Holmgren et al., 2008). In general, research showed that classification accuracy of planted coniferous trees 
is relatively higher than broadleaved natural forest. Although WorldView-2 image has a great potential for 
the species differentiation as described in Section 4.4, higher accuracy could not be achieved due to several 
reasons: a) Automatic tree crown delineation errors during image segmentation; b) Time difference 
between the season of image acquisition from image and Lidar data, image was acquired in autumn 
(October, 2010) while Lidar mapping was done in March, 2011; c) Less number of samples given to the 
classifier as a training data and also for validation because insufficient trees were recognized in the image; 
and d) Effect of shadow and cloud on remotely sensed image at both tree level and landscape level (see 
Figure 5-2) 
 
Quality of tree crown segmentation also affects species classification results. The higher classification 
accuracy would be obtained if the tree crown delineation is more precise. Erikson (2004) and Brandtberg 
(2002) discussed that delineation error of tree crowns can affect the classification system and with better 
segmentation, the classification can most probably be better. Leckie et al., (2005) investigated the influence 
of quality of tree crown delineation and noted that classification accuracy was higher (40-70%) for well 
delineated tree crowns, while classification accuracy was much lower for all crowns when poorly 
delineated ones are included.  

5.4. Modelling the relationship of CPA, height and carbon
The relationship between CPA and carbon, CPA and height and height and carbon was evaluated by 
correlation analysis and t-test. Correlation analysis demonstrated that the strength of linear relationship 
between height and carbon were strong (r>0.70) and highly significant (P<0.01) for all five species 
whereas correlation coefficient of CPA with carbon and CPA with height was found less than that of 
height with carbon. The linear relationship (r value) between CPA and carbon was 0.70, 0.84 and 0.79 for 
Shorea robusta, Schima wallichii and Terminalia tomentosa respectively which is very similar to the results of the 
study done by Shah (2011). He obtained r value of 0.80, 0.73 and 0.79 for Shorea robusta, Schima wallichii and 
Terminalia tomentosa respectively. Terminalia tomentosa resembles the same value while other two species have 
big difference. It could be due to the variability of sample correlation coefficient which depends on 
sample size and data outliers. This result is comparable to Kuuluvainen (1991) who modeled the 
relationship between CPA and AGB of Norway spruce plantation and obtained R2 of 0.79. Moreover, 
Hemery et al., (2005) found close linear relationship (R2 >0.80) between crown diameter and stem diameter 
form 20 to 50 cm DBH for different species of broadleaved trees.  
 
Multiple regression models were employed to get the combined effect of both predictor variables to 
estimate carbon stock which ensures better prediction (Ketterings et al., 2001) and higher coefficient of 
determination (Cairns et al., 2003). CPA and Lidar height were used to predict the carbon stock of 
different tree species as VIF was less than 10 and no multi collinearity existed. A log transformed 
multiplicative model was preferred to predict the carbon stock as indicated by previous studies which 
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found that such models are suitable for predicting the stand tree volume and biomass of the trees 
(Bartelink, 1996; Holmgren et al., 2003; Means et al., 2000; Sharma & Pukkala, 1990; Takahashi et al., 
2005b). Log transformation is explicitly recommended when the standard deviation is proportional to 
mean and the variables typically showed skewed distribution which can often be made symmetric using 
transformation (Keene, 1995). Watt & Kirschbaum (2011) found linear relationship of 0.73 R2 between 
height and DBH of even aged coniferous stands when both the variables have been log transformed. 
Bartelink, (1996) demonstrated the relationship between stem diamensions and biomass of needle leaf 
forest using log transformed regression equation which expalined 94% of variation. In natural forest, tree 
parameters such as DBH, CPA and height have wide range of distribution and they often does not show 
the normal distribution therefore response and predictor variables were log transformed in order to 
address extreme value of tree parameters. In this study, Lidar derived tree height and CPA of individual 
tree showed heteroscedasticity and positively skewed, so regressions were fit to the natural logarithm to 
develop multiple regression models. Moreover, the allometric equations used for estimation of AGB also 
based on log transformed linear equations (Section 3.7.3) so that it fits well with the model developed to 
predict the carbon stock. Thus, carbon stock predicted from such models give higher accuracy than the 
models developed using only one variable i.e. CPA and can be used for wide range of CPA and height. 
 
Species wise regression models developed for this study was significant at P<0.05 and showed R2 value of  
0.66 for Shorea robusta, 0.60 for Lagersroemia parviflora, 0.82 for Terminalia tomentosa, 0.75 for Schima wallichii 
and 0.64 for others. The results is in line with the study of Takahashi et al., (2010) who achieved R2 of 0.73 
for the tree canopy area, height and volume of Japanese Cedar using low density Lidar data and QuickBird 
panchromatic imagery using log transformed linear regression. Thus it can be said that our result is 
satisfactory for the model development. However, no study has been done to estimate the carbon of 
broadleaved species using CPA and Lidar height in combination with satellite image and airborne Lidar 
data. Results of this study is relatively higher in comparison to Baral (2011) who found R2 of 0.64 for 
Shorea robusta and 0.80 for other species using GeoEye image in the same study area. Moreover, Holmgren 
et al., (2003) found 0.90 R2 and 37 m-3/ha RMSE between Lidar derived tree height and canopy area using 
6.8 points/m2 Lidar data. They estimated stand volume of three coniferous trees species from Lidar height 
and canopy area measured at plot level using log transformed regression model. The reason for achieving 
lower R2 value in case of this study was the effect of shadow which influenced the relationship of carbon 
stock of broadleaf tree and CPA. 

 
The coefficient of determination (R2) and RMSE show how accurately carbon stock of the forest can be 
predicted from the regression model. Validation of the models resulted in least value of RMSE (22.48 
kg/tree) for Lagerstroemia parviflora and highest (289.68 Kg/tree) for Terminalia tomentosa whereas highest R2 
for Shorea robusta (0.94) and lowest for Terminalia tomentosa (0.76). The results can be compared to Baral 
(2011) who obtained lower R2 for Shorea robusta (0.77) and almost same value for others (0.79). Higher 
result obtained in this study is due to interaction of CPA and Lidar derived height which can better 
explain the variation of carbon stock in the field. RMSE value per tree is a relative measure and it depends 
on the mean carbon stock of the individual tree species. For example, mean carbon stock of Lagerstroemia 
parviflora was 80.98 Kg/tree so the RMSE value is lowered compare to rest of the tree species. Regression 
models developed for Shorea robusta were able to explain up to 94% of variability associated with carbon 
stock of individual trees however there was 24.85 % RMSE error in carbon stock estimation. In terms of 
values of R2, it indicated that on average carbon stock can be predicted with 82% variability and 35% 
RMSE from the model developed for each species. Thus, it can be highlighted that carbon stock can be 
predicted more accurately from regression models of this study which composed of both CPA and height 
than the use of CPA or tree height alone.  
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5.5. Carbon stock estimation 
Above ground carbon stock of different dominant tree species was estimated using multiple regression 
models. The models predicted higher carbon stocks for trees which have higher CPA and height than the 
trees which have lower CPA and height. The result showed 188485 Mg C carbon stock with an average of 
216.38 Mg C per ha in total study area. There is a variation of carbon stock per ha in case of each major 
species and CFs. Nibuwatar CF had highest carbon stock (262.44 MgCha-1) whereas least carbon stock 
was in  Janpragati B with 105.51 MgCha-1. Similarly, carbon stock constituted by Shorea robusta is 129.31 
MgCha-1 but Schima wallichii showed 35.30 MgCha-1 (Table 4-13). All the CFs except Samphrang was 
constituted by 60% of carbon stock with Shorea robusta.  
 
The result thus obtained is relatively higher than the other study done so far (Baral, 2011; Baral et al., 2010; 
ICIMOD, 2011; Kaul et al., 2010). Comparison with other forests of similar ages indicates that the present 
estimates of carbon stock for study area are evidently higher such as Kaul et al., (2010) reported 156 
MgCha-1 carbon stock for slow growing long rotation forests e.g. Shorea robusta of India. Result of this 
study is also comparable to the study done by ICIMOD, (2011) in the same study area i.e. Kayerkhola 
watershed. They reported a mean above ground carbon stock of 153.10 Mg C per ha which is lower 
estimate than our study. However, Baral (2011) achieved relatively lower result of 70 MgCha-1 in the same 
study area whereas Baral et al., (2009) found 96.6 MgCha-1 in the same forest types of Nepal. Both the 
results are much lower than this study. Usuga et al., (2010) obtained 99.6 MgCha-1 for Pinus patula and 85.7 
MgCha-1 for Tectona grandis in a commercial plantation in Columbia. Thus, it is evident that tree species 
found in the study area were slow growing and tend to have larger long-term carbon storage in forest 
biomass compared to the fast growing and short rotation tree species. Estimation of carbon stock of 
several tree species using species specific allometric equation can be one of the reasons for higher 
estimation than the previous studies because they have used different allometric equation for different 
studies. Nevertheless, higher RMSE and RMSE percentage calculated for each species showed error in 
model which could also be attributed for higher estimation.  

5.6. Relationship between tree diversity and carbon stock 
Present study revealed that there was no significant relationship (weak relationship) between tree species 
diversity and carbon stock of forest at small scale and local level i.e. community forests. Out of seven CFs, 
two CFs indicated negative correlation (Nibuwatar -0.29, Pragati -0.57) between tree diversity and carbon 
stock. Overall correlation between tree diversity and carbon stock for all seven CFs was 0.57 indicating 
positive relationship but statistically not significant at 95% confidence level.  
 
This study can be compared with the result of Sharma et al., (2010). They obtained a correlation coefficient 
of -0.25 between Shannon diversity index and total carbon density of several forest types of India and 
implied that natural forests with higher diversity are not rich in carbon density. On the contrary, 
Nakakaawa et al., (2010) discovered that there was a strong positive correlation between the carbon density 
and tree species diversity, a study carried out in plantation farmland of Uganda.  The relationships 
between carbon storage and tree species diversity of natural forest at small scale are still unclear. It is 
because tree carbon storage generally increases with increasing tree species richness but for stands with 
same species richness, tree carbon storage varies dramatically Chen, (2006). He also observed that 
different tree species have different carbon storage abilities therefore, the evenness of same main tree 
species is important to control the stand tree carbon storage at small scale when tree species are similar. 
Hence, it can be said that carbon stock of forest depends on the composition of forest and regime of 
management because carbon stored by species is almost half of its biomass. Manmade forest always 
produces more carbon than the natural forest because plantation forests has even aged monoculture 
plantation but natural forest has a diverse type of species which have different capacity of carbon 
sequestration.  
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It is evident that climate change and biodiversity loss are two crises of global magnitude each posing 
individual as well as synergistic risks to human well-being (Strassburg et al., 2010). There is still a debate of 
setting priority between reducing carbon emissions and increasing biodiversity conservation. Therefore, 
understanding the relationships between biodiversity and carbon sequestration owing to international 
interest is important aspect both in preserving terrestrial carbon pool and conserving biodiversity. 
Although this study showed a weak relationship between tree diversity and carbon stock at local level, 
attention should be given to the conservation of tree species diversity along with the carbon stock 
enhancement of natural forest. Focusing only to afforestation or reforestation program for forest carbon 
could be counterproductive to biodiversity conservation, because forests are managed as “carbon farms” 
with the application of intensive silvicultural management that could homogenize diverse forests of the 
country. Conservation of forests having large amount of carbon stocks is also a valuable way to reduce 
CO2 emission as it may be more beneficial than afforestation in the short term. Sharma et al., (2010) 
revealed that preserving old growth stands may not only maintains large amounts of stored carbon but 
could be continued to sequester much more carbon than artificial forests. In this context, REDD+ 
provides unique opportunity for conservation of natural forests along with biodiversity conservation. 
Hence, attention should be given not only for the carbon stock measurement but also for the 
conservation of tree species diversity which will further preserve our forests and reduce carbon emissions.
Moreover, REDD+ also addresses the rights of indigenous and local communities who have played a 
significant role in conserving biodiversity and cultural value through customary laws or other effective 
means which are not usually included in official records (Khatun, 2011).  

5.7. Uncertainties  and sources of error for carbon mapping
There are several uncertainties associated with the estimation of above ground carbon in the tropical 
forest of Nepal. These uncertainties depends on the different sources of error occurred from field 
measurement to data acquisition, image processing, and model development for carbon mapping. 
Different sources of errors introduced at several steps of research are discussed in the following 
subsections. 

5.7.1. GPS error occurred during navigation 
Printed image and coordinate of each sample plot was used to navigate plot location in the forest using 
GPS. Precision and accuracy of GPS depends upon various factors such as density of forest, topographic 
features, atmospheric conditions, satellite position, noise in the radio signal and natural barriers to the 
signal. In the forested mountainous area, GPS signal is often not properly work and may lead to 
inaccurate positional reading. Although accuracy of GPS Map 60 CSx has up to 3 m in a clear sky 
condition, it could not be used to collect exact plot locations in Kayerkhola watershed. Noise can create 
an error between 1 to 10 meters and results from static or interference from something near the receiver 
or something on the same frequency. However, barriers between the satellite and the receiver can produce 
error up to 30 m (maps-gps-info.com, 2012).   

5.7.2. Uncertainty on tree level estimation
Chave et al., (2004) summarized the sources of error in AGB estimation of tropical forests which mainly 
includes the uncertainties on tree level AGB estimation, allometric model selection error, sampling 
uncertainties for one plot and estimation of AGB of the whole forest. Tree DBH and total tree height are 
the most commonly used variables to predict AGB and introduces the error at initial stage. Tree level 
error propagates from measurement of DBH for individual trees in the field for example, measuring DBH 
for trees of higher diameter like 150 cm could be wrong due to the deformity of trunk at 1.3 m or irregular 
shaped-trunk. Similarly, actual tree height of individual trees might be measured wrongly due to personnel 
and instrumental error of measurement as described in section 5.1. Thus, overall estimation of carbon 
stock for individual tree would be affected if those parameters were not measured correctly.  
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5.7.3. Co-registration of image and Lidar data
Registration of two types of data sources is a crucial step in order to extract the required information from 
both the data at one time. The co-registration of panchromatic and multispectral band of WorldView-2 
image was done with Lidar intensity image which resulted with RMSE of 1.5 m. Due to random error of 
object shift in image it could not be corrected for less than 1.5 m RMSE. Thus, error introduced during 
the co-registration process is inevitable which subsequently leads to the segmentation error in height 
extraction from the tree segments and species classification. Figure 5-4 shows the corner of buildings 
before and after co-registration of image (colour) and Lidar intensity image (black and white). Even after 
co-registration there is still small shift of few pixels which could not be correctly adjusted.  
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-4: Error caused by co-registration  

5.7.4. Sun elevation angle and off nadir view
Sun elevation angle and viewing angle of the sensor are most important factors for true vertical projection 
area of canopy. Viewing angle of WorldView-2 sensor was 250 off-nadir which makes the tree canopy to 
appear differently and causes confusion for the algorithm in eCognition to recognize the tree. Song et al., 
(2010) observed that topography, off-nadir viewing and illumination angles make different tree size in the 
image than the real one as 
shown in Figure 5-5. Although 
trees are always vertical 
regardless of whether they grow 
on a slope or on a flat surface, 
topography and off-nadir 
illumination can change the 
amount of shadows in the image 
seen by the sensors. Thus, off 
nadir viewing angle changes the 
size of crown projection area on 
the image which ultimately 
affects the segmentation and 
classification accuracy of 
WorldView-2 image.  
 

       Figure 5-5: Tree crown shape from different angle of view (Li et al., 2008) 



MAPPING ABOVE GROUND CARBON USING WORLDVIEW SATELLITE IMAGE AND LIDAR DATA IN RELATIONSHIP WITH TREE DIVERSITY OF FORESTS

56

5.7.5. Summary of analysis of error 
The chronological order of error for estimation of above ground carbon stock in the study area is shown 
in Table 5-1. The propagation of error starts from field measurement and accumulates at model 
development which ultimately affects the carbon prediction of the whole study area. 

 
Table 5-1: Several stages of sources of error and uncertainties 

 

 

5.8. Limitation of the research
 

1. GPS error encountered in the field could not be avoided due to dense canopy, steep slope and 
atmospheric conditions. A better validation field data leads to a better prediction or modelling. 

2. Species wise model was only developed for few dominant tree species of the study area due to 
less sample measurement of tree parameters. Regression models could not estimate above ground 
carbon stock for undergrowth and trees less than 10 cm DBH and 5 m height  

3. Relationship between tree diversity and carbon stock could not be explored in full fledge due to 
small number of samples extracted from remote sensing data. 
 

Stages of error Measurements Impacts Error 
propagation 

Image acquisition Off nadir angle, shadow and 
cloud  

Quality of image  

GPS measurement Location of sample plot  Recognizing tree on image 
Tree measurement DBH, height and crown width  Quality of field data 
Co-registration of image  Data fusion Image segmentation 
Tree crown delineation Extraction of CPA and height Quality of CPA and height  

Classification Species identification Classification accuracy 
Model development Parameter estimate Carbon stock estimation  
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6. CONCLUSIONS AND RECOMMENDATIONS
6.1. Conclusions
WorldView-2 satellite imagery and airborne Lidar data are very promising remote-sensing sources for 
estimating and mapping the above ground carbon stock of tropical broadleaved forest in Nepal. The 
species specific regression models developed from CPA and height of the tree using object based image 
analysis is the main technique to estimate the carbon stock of study area. With respect to this approach, 
following conclusions were made to address the research questions.  
 
How accurately the height of individual trees can be estimated from the Lidar derived CHM? 

The result showed that Lidar derived tree height was able to explain 76% of field measured tree height 
with RMSE of 3.84 m. Pearson’s correlation analysis indicated statistically significant correlation between 
field height and Lidar derived tree height at P<0.05 whereas F-test showed no difference between means 
of the two heights.  

How accurately WorldView-2 image can differentiate tree species on the basis of spectral 
separability? 

Transformed divergence among six major dominant tree species showed the best average separability of 
1970.99 which indicated a good separation among the species. NIR1, NIR2 and Red-Edge of WorldView-
2 image were found to be the best bands for spectral separabilty of different tree species in comparison to 
other visible bands of the image. Classification accuracy reported as 58.06% and Kappa statistics 0.47 for 
classifying six dominant tree species whereas overall accuracy of 72.73% and Kappa statistics 0.62 were 
achieved for classifying three dominant tree species. 

How accurate is the segmentation of CPA from WorldView-2 image in combination with Lidar 
data? 

Two types of accuracy assessment for segmentation of image were applied in this study i.e. measure of 
closeness (D value) and 1:1 spatial correspondence. Overall D value for the study area was found to be 
0.33 with 0.29 over segmentation and 0.34 under segmentation that means there was 33% error (67% 
accuracy) in segmentation whereas 76% accuracy of segmentation was obtained from 1:1 spatial 
correspondence.  

What is the relationship between CPA, height and carbon stock of dominant tree species? 

Pearson’s correlation analysis indicated that there is a strong positive correlation (r>0.70) between height 
and carbon stock for all five tree species. The correlation between CPA and carbon was 0.70, 0.79 and 
0.84 for Shorea robusta, Terminalia tomentosa and Schima wallichii respectively whereas poorer relationship (r< 
0.70) was found between CPA and height for all the species. However, on average correlation coefficient 
of CPA and carbon, height and carbon, and CPA and height was found to be 0.73, 0.76 and 0.63 
respectively. 
 
Model validation results showed that species wise regression models were able to explain up to 94%, 78%, 
76%, 84% and 78% of variation in carbon estimation for Shorea robusta, Lagerstroemia parviflora, Terminalia 
tomentosa, Schima wallichii and others respectively.  
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How much carbon is stored by each major type of tree species in the study area?  

A total of 188485 Mg C carbon was estimated in the study area with an average of 216 Mg C per ha. 
Approximately 60 % of carbon stock (112637 Mg C) was stored by Shorea robusta with 129 Mg C per ha. 
Lagerstromea parviflora, Terminalia tomentosa, Schima wallichii and other species constitutes about 3717 Mg C, 
28945 Mg C, 12436 Mg C and 30749 Mg C respectively. 

What is the relationship between tree diversity and carbon stock of each community forests (CF)? 

There is no significant relationship between tree diversity and carbon stock of each CF of the study area. 
Pearson’s correlation test and F-test did not indicate any statistically significant relationship between tree 
diversity and carbon stock of forest at 95% confidence level. However, there is a negatively weak 
relationship in case of Pragati CF and Nibuwatar CF. 

 

Finally, it can be concluded that correlation among CPA, Lidar derived tree height and carbon measured 
from field data was found to be significant. Therefore, multiple regression models developed for each 
species using CPA and Lidar derived height can be used to estimate the carbon stock of similar forest 
types.  

6.2. Recommendations
Use of very high resolution imagery in combination with airborne Lidar data and applying OBIA method 
is very effective for accurately estimating the species wise carbon stock and thus, is recommended for 
implementation of REDD+ pilot project in Nepal. However, some recommendations are listed for 
further research. 
 

An accurate field validation technique is strongly recommended. For instance differential GPS 
(DGPS) should be used to minimize the field based location error and recognizing the individual 
trees on image, Lidar data and field data. 
Co-registration of image and Lidar data should be improved by using DEM of Lidar point cloud 
data which can eliminate the shift between trees identified on the image and Lidar. 
The Lidar point density per sq m used in this study is relatively low and it thus could not identify 
the individual trees in the field. In future work, Lidar mapping should be acquired at relatively 
high point density (preferably at least 5 points per sq m). 
Non-linear multiple regressions are recommended to reflect the true relationship of CPA, height 
and carbon stock of tree species. 
Sufficient sample size and a range of forest types i.e. according to elevation gradient or climatic 
zone should be preferred to generalize the relationship of tree diversity and carbon stock.  
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Appendices
Appendix 1: Features of satellite image 

 

*Distribution and use of imagery at better than .50 m GSD pan and 2.0 m GSD multispectral is subject to prior 
approval by the U.S. Government. 

 

Sensor Name WorldView-2 

Launch Information  Date: October 8, 2009 
 Vandenberg Air Force Base, California, USA 

Orbit  Altitude: 770 kilometres, Type: Sun synchronous 
 Period: 100 minutes 

Mission Life  7.25 years, including all consumables and degradable  (e.g. 
propellant) 

Spectral Range 

Panchromatic: 450 – 800 nm 
Coastal Blue: 400 – 450 nm 
Blue: 450 – 510 nm 
Green: 510 – 580 nm 
Yellow: 585 – 625 nm 
Red: 630 -690 nm 
Red-Edge: 705 – 745 nm 
Near Infrared 1: 770 – 895 nm 
Near Infrared 2: 860 – 1040 nm 

Sensor Resolution  
(GSD = Ground Sample Distance) 

 Panchromatic: 0.46 meters GSD at nadir* 
 Multispectral: 1.84 meters GSD at nadir* 

Radiometric resolution  11-bits per pixel 
Swath Width  16.4 Km at nadir 
Max Viewing Angle / 
Accessible Ground Swath 

 Nominally +/-45° off-nadir = 1355 km wide swath 
 Higher angles selectively available 

Revisit Frequency  1.1 days at 1 meter GSD or less 
 3.7 days at 20° off-nadir or less (0.52 meter GSD) 

Acquisition Time   10:30 am local time; 04:45 GMT 

Spacecraft Size, Mass and Power 

4.3 meters (14 feet) tall x 2.5 meters (8 feet) across 
7.1 meters (23 feet) across the deployed solar arrays 
2800 kilograms (6200 pounds) 
3.2 kW solar array, 100 Ahr battery 

Max Contiguous Area Collected in a Single 
Pass (30° off-nadir angle) Mono: 138 x 112 km (8 strips) 

Geo-location Accuracy (CE90%) 

Specification of 6.5 m CE90, with predicted performance 
in the range of 4.6 to 10.7 m (15 to 35 feet) CE90, 
excluding terrain and off-nadir effects  
With registration to GCPs in image: 2.0 m (6.6 feet)  

Onboard Storage 2199 gigabits solid state with EDAC 
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Appendix 2: Printed image of sample plot 
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Appendix 3: Sample of data collection sheet 
 

Data Collection Sheet 
 

Name of recorder:       Date: 

CF Name  
Coordinates 

X: 

Sample plot ID  Y: 
 

Slope (%):    Aspect:    Altitude: 

Canopy Density: 1.      2.       3.        4.           5.   Average: 

Reference Points:     Bearing:   Distance: 

Undergrowth:  
 

S.N. Species 
D B H 

(cm) 

Height 

(m) 

Crown 

diam (m) 

Tree 

Class* 

 

X_ 

Coord 

Y_ 

Coord 
Remarks 

1.         

2.         

3.         

4.         

5.         

6.         

7.         

8.         

9.         

10.         

11.         

12.         

13.         

14.         

15.         

* D=Dominant    CD= Codominant  Others= Dominated or Suppressed 
Diversity Index 

S. 
N. 

Species 
Sapling/ 

Regeneration 
No. of 

individuals 
Relative 

abundance 
Remarks 
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Appendix 4: Location of sample plots 

CF Name 
Plot  

name 
X- 

coordinate 
Y- 

coordinate  
CF Name 

Plot  
name 

X-
coordinate 

Y- 
coordinate 

Samphrang  SAM1 263219 3070730 Nibuwatar NIB16 264729 3067341 
Samphrang  SAM2 264232 3070552 Nibuwatar NIB17 266279 3066543 
Samphrang  SAM3 264426 3071262 Nibuwatar NIB18 263634 3066797 
Samphrang  SAM4 264062 3071109 Nibuwatar NIB19 266131 3065901 
Samphrang  SAM5 264155 3071362 Nibuwatar NIB20 264862 3066165 
Janpragati JAN_1 263330 3070083 Nibuwatar NIB21 264802 3067632 
Janpragati JAN_2 262273 3070226 Nibuwatar NIB22 266042 3066109 
Janpragati JAN_3 263158 3070359 Nibuwatar NIB23 265557 3066212 
Pragati PRA1 261706 3070133 Nibuwatar NIB24 263815 3067369 
Pragati PRA2 261103 3069195 Nibuwatar NIB25 265101 3066323 
Pragati PRA3 261867 3070002 Nibuwatar NIB26 265024 3067175 
Pragati PRA4 261753 3069633 Nibuwatar NIB27 264707 3066700 
Pragati PRA5 261185 3069470 Devdhunga DEV1 262850 3067609 
Pragati PRA6 261529 3069649 Devdhunga DEV2 262774 3067127 
Pragati PRA7 261239 3069282 Devdhunga DEV3 263292 3065384 
Jamuna JAM1 262652 3069794 Devdhunga DEV4 262528 3066328 
Jamuna JAM2 262831 3069668 Devdhunga DEV5 262362 3067320 
Jamuna JAM3 263062 3069976 Devdhunga DEV6 263185 3066495 
Janpragati (B) JANP1 263735 3068187 Devdhunga DEV7 263052 3065947 
Janpragati (B) JANP2 263433 3068367 Devdhunga DEV8 263233 3067037 
Janpragati (B) JANP3 264205 3068184 Devdhunga DEV9 262497 3067065 
Janpragati (B) JANP4 263980 3068456 Devdhunga DEV10 262985 3067101 
Janpragati (B) JANP5 263312 3067851 Devdhunga DEV11 262452 3066558 
Janpragati (B) JANP6 263374 3067702 Devdhunga DEV12 263620 3066534 
Nibuwatar NIB1 265209 3066098 Devdhunga DEV13 262805 3067827 
Nibuwatar NIB2 264470 3066725 Devdhunga DEV14 262398 3067941 
Nibuwatar NIB3 264322 3067913 Devdhunga DEV15 263449 3066099 
Nibuwatar NIB4 265646 3066052 Devdhunga DEV16 263232 3067613 
Nibuwatar NIB5 265408 3065941 Devdhunga DEV17 263330 3065895 
Nibuwatar NIB6 264447 3067706 Devdhunga DEV18 262944 3066576 
Nibuwatar NIB7 264272 3067708 Devdhunga DEV19 263307 3066197 
Nibuwatar NIB8 265861 3066137 Devdhunga DEV20 263415 3066338 
Nibuwatar NIB9 263892 3067796 Devdhunga DEV21 263357 3066565 
Nibuwatar NIB10 265384 3066539 Devdhunga DEV22 263540 3065587 
Nibuwatar NIB11 265463 3065741 Devdhunga DEV23 263697 3066029 
Nibuwatar NIB12 263866 3066459 Devdhunga DEV24 263704 3066148 
Nibuwatar NIB13 266986 3066327 Devdhunga DEV25 263461 3065427 
Nibuwatar NIB14 263953 3067587 Devdhunga DEV26 263136 3066577 
Nibuwatar NIB15 264558 3066228 Devdhunga DEV27 262979 3066618 
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Appendix 5: Name list of plant species found in the study area 

 

S.
N. 

Species SScientific name  Form of 
species 

S.
N. 

Species Scientific name Form of 
species 

1 Aankhatare Walsura trijuga Tree (M) 41 Khamari Gmelia arborea Tree (M) 
2 Amala Emblica officinalis Tree (M) 42 Khasreto Ficus hispida Tree (M) 
3 Arkhole Quercus spicata Tree (M) 43 Khatire Vernacular name Tree (S) 
4 Arkhu Quercus spicata Tree (M) 44 Khirro Holarrhena pubescens Tree (M) 
5 Asare Mussaenda frondosa Shrub 45 Kukhurekath Vernacular name Tree (S) 
6 Asna Terminalia tomentosa Tree (L) 46 Kummi Careya arborea Tree (M) 
7 Badkaule Caseria graveolens Tree (M) 47 Kutmiro Litsea polyantha Tree (M) 
8 Bandare Cynocardia odorata Tree (M) 48 Kyamuna Syzygium serasoides Tree (M) 
9 Banpipal Sapium baccatum Tree (L) 49 Latikath Cornus oblonga Tree (M) 

10 Bansupari Ophiopogon wallichianus Tree (M 50 Madane Randia dumetorum Shrub 
11 Barro Terminalia belerica Tree (L) 51 MasureKatus Castonopsis tribuloides Tree (M) 
12 Bhalayo Semicarpous anacardium Tree(M) 52 Mayankanda Tetrameles nudiflora Tree (L) 
13 Bhalebhusha Vernacular name Shrub 53 Nimaro Ficus roxburghii Tree (M) 
14 Bhalukath Sida rhombifolia Tree (M) 54 Odane Vernacular name Tree (L) 
15 Bhellar Vernacular name Tree (M) 55 Padake Albizzia julibrissin Tree (M) 
16 Bhorla Bauhinia vahilii Shrub 56 Padari Stereospermum personatum Tree (M) 
17 Bilaune Maesa chisia Shrub 57 Parijaat Nyctanthes arbortristis Tree (M) 
18 Botdhairo Lagerstromia parviflora Tree (M) 58 Pipal Ficus religiosa Tree (L) 
19 Champ Michelia champaca Tree (L) 59 Rajbriksha Cassia fistula Tree (M) 
20 Chhatiwan Alstonia scholaris Tree (L) 60 Sal Shorea robusta Tree (L) 
21 Chilaune Schima wallichii Tree (M) 61 Sandan Ougeinia oojeinensis Tree (M) 
22 Chiuri Bassia butyracea Tree (L) 62 Sidhali Vernacular name Tree (M) 
23 Dabdabe Bassia butyracea Tree (M) 63 Simal Bombax ceiba Tree (L) 
24 Dhalnekatus Castonopsis indica Tree (M) 64 Sindure Mallotus phillippensis Tree (M) 
25 Dhangero Dillenia aurea Tree (S) 65 Singane Quercus pachyphylla Tree (L) 
26 Dolikath Dillenia aurea Tree (M) 66 Tantari Dillenia pentagyna Tree (M) 
27 Dumari Ficus benjamina Tree M) 67 Tatelo Oroxylon indicum Tree (S) 
28 Falame Vernacular name Tree (M) 68 Tendu Diospyros melanoxylon Tree (M) 
29 Gayo Bridelia retusa  Tree (M) 69 Thinke Vernacular name Tree (M) 
30 Gindari Premna latifolia  Tree (M) 70 Tiari Vernacular name Tree (M) 
31 Guelo Elaeagnus latifolia Tree (M) 71 Tirchaule Vernacular name Tree (S) 
32 Harro Terminalia chebula Tree (L) 72 Tuni Cedrela toona Tree (L) 
33 Jamun Syzygium cumini Tree (L) 
34 Jhakrisyaula Actinodaphne angustifolia Tree (S) 
35 Jhirenge Vernacular name Tree (S) 
36 Kadam Anthocephalus cadamba Tree (L) 
37 Kalibakhre Vernacular name Tree (S) 
38 Kalikath Myrsine semiserrata Tree (M) 
39 Kalo Siris Albizia lebbek Tree (M) 

40 Karma Adina cordifolia Tree (L)  
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Appendix 6: Descriptive statistics of trees for each CFs 

Statistics DBH (cm) Height (m) Crown Diameter (m) 

Samphrang CF 

Mean 27.55 10.18 7.02 
Minimum 7.00 4.00 2.00 
Maximum 86.00 29.10 12.00 
Standard Deviation 18.88 5.73 2.99 
Number of Trees 70.00 43.00 25.00 

Jamuna CF 

Mean 17.33 10.82 4.50 
Minimum 6.50 2.00 1.00 
Maximum 113.00 35.00 15.50 
Standard Deviation 18.79 6.65 4.17 
Number of Trees 53.00 25.00 15.00 

Janpragati CF 

Mean 17.65 9.48 3.18 
Minimum 7.00 5.00 1.50 
Maximum 51.50 14.70 10.00 
Standard Deviation 8.77 2.50 2.20 
Number of Trees 57 36 22 

Pragati CF 

Mean 23.04 11.59 4.32 
Minimum 6.00 3.00 1.00 
Maximum 77.00 30.50 11.00 
Standard Deviation 18.98 7.30 2.65 
Number of Trees 99.00 78.00 48.00 

Janpragati B CF 

Mean 20.21 11.69 4.25 
Minimum 5.00 4.80 1.00 
Maximum 105.00 23.90 14.00 
Standard Deviation 18.66 4.80 3.04 
Number of Trees 125.00 78.00 56.00 

Devidhunga CF 

Mean 25.93 13.76 5.09 
Minimum 7.00 2.00 1.00 
Maximum 116.00 33.00 20.00 
Standard Deviation 18.08 7.17 3.40 
Number of Trees 436.00 221.00 158.00 

Nibuwatar CF 

Mean 32.33 14.15 5.03 
Minimum 6.00 2.00 1.00 
Maximum 152.00 37.00 14.00 
Standard Deviation 22.98 6.81 2.77 
Number of Trees 307.00 243.00 169.00 
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Appendix 7: Details of outlier trees 

CF Name Plot No Tree No Species 
DBH 
(cm) 

Height 
(m) 

Crown 
diameter (m) 

Devidhunga 73 1 Shorea robusta 102 25.7 13 
Devidhunga 27 1 Shorea robusta 104 30.8 10 
Devidhunga 61 11 Terminalia belerica 105 25.6 20 
Devidhunga 30 13 Shorea robusta 116 28.5 11.5 
Jamuna 5 25 Shorea robusta 113 35 15.5 
Nibuwatar 42 4 Vernacular name 99 20   
Nibuwatar 49 1 Shorea robusta 101 20.9 9 
Nibuwatar 48 1 Terminalia tomentosa 105 28.5 10 
Nibuwatar 42 2 Vernacular name 111 34 8 
Nibuwatar 42 5 Michelia champaca 152 37 14 
Janpragati B 36 26 Shorea robusta 105 9.6   
Nibuwatar 48 4 Mallotus philippinensis 11 2   

 
 
 

Appendix 8: Segmentation of Panchromatic WorldView-2 image 
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Appendix 9: Accuracy assessment of species classification for each CFs 

Accuracy assessment for Devidhunga CF 
Class 
Name 

Shorea Terminalia 
Lagerstr
oemia 

Mallotus 
Semec
arpus 

Others Total 
Commission 

Error 
User 

Accuracy 
Shorea  6 0 0 0 0 3 9 33.33 % 66.67 % 
Terminalia 1 1 0 0 0 2 4 75 % 25 % 
Lagerstroemia  0 0 3 0 0 1 4 25 % 75 % 
Mallotus  0 0 0 2 0 0 2 0 100 % 
Semecarpus 0 0 0 0 1 0 1 0 100 % 
Others 0         0 1 1 1 5 8 37.50 % 62.50 % 
Unclassified      3 3   
Total 7 1 4 3 2 14 31   
Omission 
Error (%) 14.29 0 25 33.33 50 64.29    

Producer 
Accuracy  85.71 100 75 66.67 50 35.71    

Overall Accuracy 58.06 %        

Kappa Statistic  0.4683        

 
 Accuracy assessment for Nibuwatar CF 

Class Name Shorea Terminalia Lagerstroemia Schima Others Total 
Commission 

Error 
User 

Accuracy 
Shorea  6 1 1 0 0 8 25 % 75 % 
Terminalia 2 2 0 0 0 4 57.14 % 42.86 % 
Lagerstroemia  0 0 2 0 0 2 0 100 % 
Schima  1 1 0 3 2 7 50 % 50 % 
Others 3 0 1 0 2 6 66.67 % 33.33 % 
Total 12 4 4 3 4 27   
Omission 
Error (%) 50 50 50 0 50    

Producer 
Accuracy (%) 50 50 50 100 50    

Overall Accuracy 55.56 %       
Kappa Statistic  0.4255       

 
Accuracy assessment for Janpragati B CF 

Class Name 
Shorea 
robusta 

Schima 
wallichii 

Others Unclassified Total 
Commission 

Error 
User 

Accuracy 
Shorea robusta 3 0 0 0 3 0 100 % 
Schima wallichii 0 2 1 0 3 33.33 % 66.67 % 
Others 2 0 2 0 4 50 % 50 % 
Unclassified 0 0 0 1 1   
Total 5 2 3 1 11   
Omission Error  40 % 0 33.33      
Producer Accuracy  60 % 100 % 66.67      
Overall Accuracy 72.73 %      

Kappa Statistic  0.6207      



MAPPING ABOVE GROUND CARBON USING WORLDVIEW SATELLITE IMAGE AND LIDAR DATA IN RELATIONSHIP WITH TREE DIVERSITY OF FORESTS

73

 
Accuracy assessment for Samphrang, Jamuna, Janpragati and Pragati CF 

Class Name Shorea Terminalia Lagerstroemia Mallotus Others Total 
Commission 

Error 
User 

Accuracy 
Shorea  5 0 1 0 1 7 28.57 % 71.43 % 
Terminalia 0 2 0 0 0 2 0 % 100 %  
Lagerstroemia  1 0 2 0 1 4 50 % 50 % 
Mallotus  0 0 0 2 1 3 33.33 % 66.67 % 
Others 2 2 2 1 9 16 43.75 % 56.25 % 
Total 8 4 5 3 12 32   
Omission 
Error (%) 37.5  25  50 60  33.33     

Producer 
Accuracy (%) 62.5  75  50 % 40  66.67    

Overall Accuracy 62.50 %       

Kappa Statistic  0.4804       

 

Appendix 10: Details of ANOVA table and regression parameters  

SShorea robusta 

ANOVA 
  df SS MS F Significance F 

Regression 2 92.06343754 46.03172 56.13121 2.22E-14 
Residual 59 48.3843361 0.820073 
Total 61 140.4477736       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept -0.87673818 0.758643601 -1.15567 0.252477 -2.39478 
CHM_log 1.872509034 0.35371466 5.293841 1.85E-06 1.164728 
CPA_log 0.59725025 0.193917053 3.079926 0.003142 0.209223 

 

1. Lagerstroemia parviflora 

ANOVA 
  df SS MS F Significance F 

Regression 2 13.834 6.917002 20.76638 2.95E-06 
Residual 28 9.326422 0.333087 
Total 30 23.16043       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept 0.204751 0.725493 0.282224 0.779847 -1.28135 
CHM_ht 1.493948 0.382768 3.903014 0.000545 0.709884 
CPA_image 0.370105 0.244679 1.512614 0.141584 -0.1311 
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2. TTerminalia tomentosa 

ANOVA 
  df SS MS F Significance F 

Regression 2 9.519374 4.759687 35.18614 2.17E-06 
Residual 15 2.029075 0.135272 
Total 17 11.54845       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept -0.12553 1.032274 -0.1216 0.904827 -2.32577 
CHM_ht 1.847621 0.455095 4.059856 0.001027 0.877609 
CPA_image 0.458059 0.173854 2.634729 0.018755 0.087497 

 
3. Schima wallichii 

ANOVA 
  df SS MS F Significance F 

Regression 2 25.22783 12.61391 33.83419 1.94E-07 
Residual 22 8.201944 0.372816 
Total 24 33.42977       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept -0.14415 0.837675 -0.17209 0.864942 -1.88138 
CHM_ht 0.883293 0.406765 2.171506 0.040953 0.039714 
CPA_image 1.124459 0.229827 4.892637 6.83E-05 0.647827 

 

4. Others 

ANOVA 
  df SS MS F Significance F 

Regression 2 27.88288 13.94144 43.47844 1.68E-11 
Residual 48 15.39129 0.320652 
Total 50 43.27416       

 

Regression coefficients 

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept 0.0436 0.60867 0.071631 0.943193 -1.18021 
CHM_ht 1.395735 0.291881 4.781868 1.69E-05 0.80887 
CPA_image 0.615528 0.153948 3.998295 0.000219 0.305996 

 



MA
PP

IN
G 

AB
OV

E 
GR

OU
ND

 C
AR

BO
N 

US
IN

G 
W

OR
LD

VI
EW

 S
AT

EL
LIT

E 
IM

AG
E 

AN
D 

LID
AR

 D
AT

A 
IN

 R
EL

AT
IO

NS
HI

P 
W

IT
H 

TR
EE

 D
IV

ER
SI

TY
 O

F
FO

RE
ST

S

75

A
pp

en
di

x 
11

: C
ar

bo
n 

m
ap

 o
f s

tu
dy

 a
re

a 
(C

F 
w

ise
) 

 

 



MA
PP

IN
G 

AB
OV

E 
GR

OU
ND

 C
AR

BO
N 

US
IN

G 
W

OR
LD

VI
EW

SA
TE

LL
IT

E 
IM

AG
E 

AN
D 

LID
AR

 D
AT

A 
IN

 R
EL

AT
IO

NS
HI

P 
W

IT
H 

TR
EE

 D
IV

ER
SI

TY
 O

F
FO

RE
ST

S

76



MA
PP

IN
G 

AB
OV

E 
GR

OU
ND

 C
AR

BO
N 

US
IN

G 
W

OR
LD

VI
EW

 S
AT

EL
LIT

E 
IM

AG
E 

AN
D 

LID
AR

 D
AT

A 
IN

 R
EL

AT
IO

NS
HI

P 
W

IT
H 

TR
EE

 D
IV

ER
SI

TY
 O

F
FO

RE
ST

S

77



MA
PP

IN
G 

AB
OV

E 
GR

OU
ND

 C
AR

BO
N 

US
IN

G 
W

OR
LD

VI
EW

SA
TE

LL
IT

E 
IM

AG
E 

AN
D 

LID
AR

 D
AT

A 
IN

 R
EL

AT
IO

NS
HI

P 
W

IT
H 

TR
EE

 D
IV

ER
SI

TY
 O

F
FO

RE
ST

S

78

 

                          
 

 



MAPPING ABOVE GROUND CARBON USING WORLDVIEW SATELLITE IMAGE AND LIDAR DATA IN RELATIONSHIP WITH TREE DIVERSITY OF FORESTS

79

Appendix 12: Photographs from the field 

 
 

 
 


