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ABSTRACT 

There is a demand for methods to accurately estimate above ground carbon stock as Kyoto Protocol 
needs reporting on carbon stock and stock changes. This study describes development of a method to 
accurately estimate and map above ground woody carbon stocks using airborne LIDAR data with an 
average point density of 0.8 point/m2 and high resolution (0.45 m) Digital Camera imagery in the hilly 
forests of Gorkha, Nepal. The study aims to develop a method for tree crown delineation using airborne 
LIDAR data and high resolution Digital Camera imagery and to analyse potential of LIDAR data in 
separating intermingled trees. In addition, models were developed using obtained biophysical parameters 
(CPA and height) for carbon stocks estimation and mapping.  
 
Digital Surface Model (DSM) was generated using LIDAR first return and Digital Terrain Model (DTM) 
was generated using only ground points. Canopy Height Model (CHM) was computed as the difference 
between DSM and DTM. RMSE of 2.8 m was obtained for LIDAR derived height. Tree crown 
delineation was done using region growing approach in object based image analysis (OBIA). Overall 
segmentation accuracy was 76.2% based on 1:1 correspondence. The delineated crowns were classified 
into two classes (Shorea robusta and others) using nearest neighbour classification. The overall accuracy of 
the classification was 75.86%.  
 
Above ground biomass (AGB) was calculated using allometric equation from DBH and height measured 
in the field which was then converted into carbon stock using a conversion factor of 0.47. Linear 
regression models were applied to derive the relation of carbon with CPA, height and a combination of 
both CPA and height. All models were significant at 95% confidence level and the lowest RMSE% of 
36.8% (Shorea robusta) and 32.4% (others) were obtained from multiple regression models. Multicollinearity 
was low, so it had no effect on the model. The results indicate that the estimation of above ground carbon 
stock improves using two variables (CPA and height) than using either of the variables alone. Multiple 
regression models were used to estimate carbon stocks of the study area. The total amount of carbon 
stocks in the study area was approximately 89.45 MgCha-1.  
 
 
 
 
 
Keywords: LIDAR, Digital Camera Imagery, Segmentation, Classification, Carbon stock, Crown 
projection area, Height, Model 
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1. INTRODUCTION 

1.1. Background 
Carbon dioxide (CO2) is one of the most important greenhouse gases (IPCC, 2007) and increased 
concentration of this gas is one of the likely causes of climate change. CO2 also occurs from natural 
sources in a natural situation without anthropogenic influences. Animal and plant respiration process 
releases CO2 in the atmosphere. On the other hand, Atmospheric CO2 is assimilated during 
photosynthesis and carbohydrates are formed which are building blocks of vegetation. Then, a lot of 
carbon is stored in vegetation. Therefore, there is almost balance between the natural CO2 emissions and 
removals from the entire carbon cycle (U.S. EPA, 2011). However, the natural carbon cycle is being 
disturbed due to human activities mainly due to fossil fuel use and land use change/deforestation resulting 
to the increase in atmospheric concentrations of CO2. 
 
Forests are large pools of carbon. They act as  carbon sinks but can also be sources of CO2 emission into 
the atmosphere, therefore they play a crucial role in the global carbon cycle (Muukkonen et al., 2007). At a 
global scale, forests hold more than  60% of the carbon contained in the aboveground biomass and about 
45% of the carbon contained in soils, roots and litter (Dixon et al., 1993). On the other hand, 
approximately 18% of global biomass carbon emission per year is from forest fire (UNEP, 1999). Forest 
fires emit carbon in a very short period of high concentration whereas deforestation emits carbon through 
a longer process. Therefore, increasing afforestation, reforestation and reducing deforestation are 
mitigation measures for global climate change (Hunt, 2009). This implies that it is necessary to maintain 
existing forests as well as increase forest areas. 
 
The United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol are 
the two important international agreements, which address the issue of reducing anthropogenic 
greenhouse gas (GHG) emissions in the atmosphere. UNFCCC is a framework convention under which 
activities take place and agreements are made. Kyoto Protocol, Bali Action Plan and recently Durban 
climate change conference are some of the agreements under UNFCCC. Although UNFCCC does not 
explicitly stipulate levels to which Parties have to reduce their GHG emissions (Patenaude et al., 2005), it 
has adopted Kyoto Protocol on 11 December 1997 which requires signatory countries to reduce human-
induced emissions of CO2 by an average of five percent below their emission level of 1990 by 2008-2012 
(UNFCCC, 1997). Signatory countries are given the option to meet part of their reduction requirements 
through conservation and enhancement of the carbon stored in forest ecosystems. For this, they have to 
estimate carbon stocks for 1990 as a baseline and report any changes since 1990 from all deforestation, 
reforestation and afforestation activities.   
 
In order to enable full, effective and sustained implementation of the convention, the Bali Action Plan 
(UNFCCC, 2007) considered Reducing Emissions from Deforestation and Forest Degradation (REDD) 
as an important climate change mitigation action. It opened opportunities for developing countries to 
participate in forest carbon financing through the REDD mechanism (MOFSC, 2009a). According to the 
REDD mechanism, industrialized countries are allowed to offset their emissions by purchasing carbon 
credits from developing countries, which reduce emissions from deforestation and forest degradation by 
avoiding such activities (Dhital, 2009). This emerging mechanism will compensate to the developing 
countries for their forest conservation and regeneration effort (Acharya et al., 2009). 
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REDD is an opportunity for developing countries including Nepal to contribute significantly to emission 
reduction efforts under international climate regime (Oli et al., 2009). Approximately 40% of the total land 
area of Nepal is covered with forests (DFRS, 1999). This indicates that Nepal is potentially a carbon sink. 
Nepal being a UNFCCC signatory and a member of REDD program has recently submitted the 
Readiness Preparation Proposal (R-PP) to participate in the Forest Carbon Partnership Facility 
(FCPF)(MOFSC, 2009b). Nepal has to present the country’s current status of carbon stored in the forest 
and emitted from deforestation and forest degradation in order to participate in carbon finance 
mechanism. Thus, reliable baseline statistics on national forest carbon stocks and sources of carbon 
emission is required to establish a national reference scenario and to implement REDD strategy. 
However, Nepal does not have statistics on any carbon stock of above or below ground biomass. Remote 
sensing can be used for assessment of above ground carbon in all land covers. Forest is the major carbon 
sink and advanced remote sensing technology can be applied for carbon estimation (Oli et al., 2009). 
Therefore, REDD implementation, it is necessary to develop a method which can accurately estimate 
forest above ground biomass (AGB) and carbon stocks at national level.  
 
“Above ground biomass is the total amount of biological material (usually oven-dried to remove water) 
present above the soil surface in a specified area” (Drake et al., 2003) and carbon is approximately 47% of 
the AGB (IPCC, 2003). Conventional methods for biomass estimation are based on field measurements 
and they are time consuming and expensive (García et al., 2010). Thus, these methods are not practical for 
regional or national scale. There are remote sensing methods available to estimate carbon stocks from 
local level to national level but these methods too cannot measure carbon stocks directly and thus require 
additional ground-based data collection (Drake et al., 2003). Although both methods need field 
measurements, conventional methods (destructive sampling) are limited in terms of spatial and temporal 
sampling as they are time consuming and labour intensive whereas remote sensing provides detailed and 
spatially explicit information on forest biomass at a wide range of spatial and temporal scale (García et al., 
2010). However, appropriate method is required to extract relevant data from it. Tree parameters such as 
crown area can be obtained from the remote-sensing measurements and forest attributes such as DBH 
and height can be obtained from ground based measurements. Then, the obtained forest attributes from 
ground based and remote-sensing measurements can be converted into estimates of carbon stocks using 
allometric equation.  
 
Allometric equations are quantitative relationships between an easily measured independent variable such 
as diameter at breast height (DBH) and height and another difficult to assess component like biomass that 
provides relatively accurate estimates (Phillips et al., 2002). DBH is the stem diameter of a tree at 1.3 m 
above the ground level (FAO, 2004b). DBH and height are the important tree parameters for biomass 
estimation (Jenkins et al., 2003). Since DBH can be more easily measured than height, most of the 
allometric equations are developed based on the DBH (Jenkins et al., 2003; Tritton et al., 1982). However, 
Ketterings et al. (2001) use DBH and height to develop a site specific allometric equation for biomass 
estimation that is applicable for trees with DBH of 8-48 cm. The study was done in mixed secondary 
forests of Sumatra, Indonesia and the standard errors for the parameters ‘a’ and ‘b’ of the developed 
equation were 0.021 and 0.106 respectively.  
 
High resolution aerial photographs such as Digital Camera imagery are a source for biomass estimation as 
it gives crown area and tree species information (Massada et al., 2006). Individual tree crown can be 
delineated using high resolution (<1 m) Digital Camera imagery (Leckie et al., 2003). This is particularly 
interesting because several studies (Hirata et al., 2009; Shimano, 1997) have proved that there is a relation 
between crown projection area (CPA) and DBH. Thus, if CPA can be obtained from the satellite images 
and aerial photographs, DBH can be calculated for these respective trees. Then, biomass can be calculated 
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using an allometric equation. However, this approach does not include height. Various remote sensing 
approaches for carbon estimation have been reviewed by Patenaude et al. (2005) who concluded that 
LIDAR (Light Detection and Ranging) techniques are promising for carbon stocks estimation. LIDAR 
provides height of the target as it sends out the pulse of laser light to the target and records both the travel 
time of the laser and the energy (intensity)  that is scattered back from the target, thus providing distance 
from the sensor to the target (Dubayah et al., 2000). LIDAR instruments have shown the capability to 
accurately estimate forest structural characteristics such as canopy heights, stand volume, basal area and 
above ground biomass (Dubayah et al., 2000). Although LIDAR does not penetrate cloud, it has the 
unique capability to measure three dimensional vertical structure of vegetation (Song et al., 2010).   
 

1.2. Overview of application of remote sensing for biomass estimation 
There are several studies done to estimate forest AGB using remote sensing data. For the global, 
continental and national scale, the coarse spatial resolution optical sensors such as NOAA AVHRR (Dong 
et al., 2003) and MODIS (Baccini et al., 2004) have been useful for estimating biomass because of spatial 
resolution, image coverage and high frequency in data acquisition (Lu, 2006). For regional and at local 
scale, medium resolution satellite imagery such as Landsat TM is required to estimate forest AGB. 
However, data saturation problem was found by Steininger (2000) when forest AGB reached about 15 
kg/m2 for Landsat TM satellite imagery. Forest AGB estimation for large areas using coarse spatial 
resolution data has been limited because of mixed pixels and the huge difference between the support of 
ground reference data and pixel size of the satellite data (Muukkonen et al., 2007). In addition, Thenkabail 
et al. (2004) found that optical sensors such as Landsat, AVHRR and MODIS cannot yet be used for 
estimation of carbon stocks of tropical forests with certainty. Satellite based vegetation indices (Lu et al., 
2004) are also used for ABG estimation. Nevertheless, this method underestimates carbon stocks in the 
tropical forest since optical sensors are less effective in the dense canopy of the forest (Gibbs et al., 2007).  
 
Very high resolution (VHR) images with spatial resolutions of  less than 5m (Lu, 2006) such as aerial 
photograph, satellite images such as Quickbird, IKONOS, WorldView and Geoeye images can detect 
individual tree crowns (Gonzalez et al., 2010). Using high resolution data, various operations like tree 
crown delineation, species identification and crown density estimation have been done (Katoh et al., 
2009). However, canopy illumination and topography cause high spectral variation and shadows which 
may create difficulty in AGB estimation (Lu, 2006). Several studies have done using VHR satellite images 
to develop methods for carbon estimation of the forest. In this context, Shrestha (2011) determined 
relationship between AGB and CPA using VHR Geoeye image for carbon estimation. In addition, 
Jamarkattel (2011) developed a method determining relationship between AGB and CPA to estimate the 
carbon stock using Geoeye and Worldview images. However, extraction of forest information such as 
crown area from VHR imagery is difficult using pixel based approach. Therefore, object-oriented 
approach is being used to analyse VHR imagery. 
 
Object oriented approach is also called object based classification (Zhang et al., 2010). In VHR imagery, 
pixel size is very small compared to the target entity such as a tree crown (Song et al., 2010). Thus, a group 
of pixels is combined to represent target entity. Traditional pixel based classification is not suitable for 
VHR images because the image contains too much detail and will get a pepper and salt noise (Ke et al., 
2010) because pixel values differ slightly even within one feature. As alternative to this traditional 
approach, object-oriented approach has been widely used for VHR images. The basic units of object-
oriented approach are image objects that are generated when spatially adjacent pixels are clustered based 
on homogeneity criteria (Ke et al., 2010). Object-oriented classification has been successfully applied for 
forest species classification using VHR imagery (Jamarkattel, 2011; Ke et al., 2010; Tsendbazar, 2011). 
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Object-oriented classification uses not only spectral information but also other information such as shape, 
texture and contextual relationships.  
 

1.3. Rationale and problem statement 
Biomass of a tree is equal to the product of volume and wood density (Ketterings et al., 2001). DBH and 
height of the tree are the parameters for volume calculation. In order to get the accurate volume and then 
biomass of a tree, it is crucial to include these tree parameters. Using satellite images and other aerial 
photographs, these parameters cannot be retrieved directly. However, CPA of trees can be obtained from 
the VHR images. There are studies done which show there is relationship between CPA and DBH (Hirata 
et al., 2009; Song et al., 2010). Then, biomass can be calculated using CPA and DBH from the regression 
model. However, models developed based on just CPA and DBH may not give sufficiently accurate 
estimate of biomass because these models do not include height of the trees. Trees with same DBH may 
differ in height and this will vary in biomass. Thus, to get the accurate estimate of biomass, height should 
also be included. It is difficult to measure tree height accurately in the forest from the current manual 
photogrammetric or field survey techniques (Popescu et al., 2004) and height information cannot be 
obtained from optical remote sensing data. To overcome this, LIDAR technique is used as it gives height 
of the trees. While CPA and height can now be obtained, DBH or biomass cannot be obtained directly 
from high resolution satellite images or LIDAR data. However, a relationship between CPA, tree height 
and biomass may be developed for accurate carbon stocks estimation through regression analysis. Since, 
two independent variables i.e. CPA and height will be used for biomass estimation, it is necessary to check 
multicollinearity between these variables.  
 
CPA is obtained from tree crown delineation. Tree crown delineation is important step in biomass 
estimation because based on the obtained CPA, tree species classification and models are developed to 
estimate biomass. Several studies have been done for tree crown delineation using high resolution images 
(Jamarkattel, 2011; Tsendbazar, 2011). However, to accurately estimate biomass, better tree crown 
delineation is required. In addition to spectral reflectance information, this research is adding height 
information. With this information, it is expected to improve tree crown delineation. In addition, tree 
height can vary between species and within species. This is expected to help in recognizing individual tree 
and species recognition. Each species has different wood density resulting in variation is carbon storage in 
the tree. Therefore, it is crucial to recognize the tree species. Once individual tree and species is 
recognized then, species specific allometric equation can be used.  
 
Information about individual tree species can be obtained from VHR multispectral imagery (Leckie et al., 
2003). VHR imagery provides opportunity to differentiate tree species (Ke et al., 2010). However, crown 
of intermingled trees cannot be separated using satellite images, which causes error in biomass estimation 
(Hirata et al., 2009; Palace et al., 2008). However, if the intermingled trees are homogenous is species 
composition, this might affect less to the AGB estimation because wood density is the same. LIDAR data 
may be able to separate intermingled tree crowns based on their tree tops as it gives tree height.  
 
Approaches using integration of aerial photograph and canopy height model (CHM) derived from LIDAR 
data are expected to give better results for forest AGB estimation than using either aerial photograph or 
LIDAR data alone (Popescu, 2007). Kim et al. (2010) found that the integration of LIDAR data (5-10 
points/m2) and aerial photograph gives better segmentation result. Leckie et al. (2003) stated that both 
LIDAR and spectral based tree delineation can lead to the close estimate of crown size. A review of 
literatures (Chen et al., 2005; Kim et al., 2010; Popescu et al., 2004) on integration of airborne LIDAR 
data and multispectral data provides an accurate measurement of AGB in the various forest biomes. This 
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is because of improvement in feature extraction task i.e. improvement in segmentation. Moreover, Ke et 
al. (2010) found that the integration of both spectral and airborne LIDAR data resulted in more accurate 
tree species classification than using either of the data alone. Therefore, in order to improve the 
assessment of carbon stocks, integration of LIDAR data with Digital Camera imagery is an appropriate 
approach as it gives information on both the crown area of individual tree and tree height. 
 
This research aims to develop a method integrating LIDAR data (0.8 point/m2 on average) with VHR 
Digital Camera imagery (0.45 m resolution). Generally LIDAR with high point density closely reflects the 
shape of the tree. But this research is using low point density because this is cheaper compared to high 
point density LIDAR data.  
  
Apart from aforementioned, Nepal being a UNFCCC signatory and a member of REDD program, 
reliable baseline statistics on national forest carbon stocks is required. Thus, this research will fill the gap 
that remains in the scientific domain of estimating carbon of forest AGB with improvement in the 
assessment. 
 

1.4. Research objectives 
The main objective of this research is to develop a method to accurately estimate and map above ground 
woody carbon stocks using airborne LIDAR data and high resolution Digital Camera imagery in the hilly 
forests of Gorkha, Nepal. 
 
The specific objectives 

i. To develop a method for tree crown delineation by integrating airborne LIDAR data with high 
resolution Digital Camera imagery 

ii. To analyse the potential of LIDAR  data in separating intermingled tree crowns 
iii. To develop and compare the accuracy of the model for carbon and CPA; carbon and height; 

carbon, CPA and height  
iv. To estimate and map the amount of above ground woody carbon stocks (as carbon stock 

hereafter) in the study area 
 
Research Questions 

i. What is the accuracy of tree crown delineation using LIDAR data and Digital Camera imagery? 
ii. How effective is LIDAR data in separating intermingled tree crowns? 
iii. Is there any multicollinearity between CPA and height? 
iv. Which model has the highest accuracy for carbon estimation? 
v. What is the amount of carbon stock in the study area? 

 
Hypothesis 

i. Tree crown delineation can be done with more than 70% accuracy using airborne LIDAR data 
and high resolution Digital Camera imagery. 

ii. There is multicollinearity between CPA and height. 
iii. Model developed including both height and CPA improves the accuracy of carbon estimation 

compared to the model including only CPA and the model including only height. 

1.5. Theoretical framework of research 
The research began with literature review and problem identification. Based on the identified problem, 
objectives were defined and research questions were formulated. Data required for the research were 
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identified and field work was carried out. LIDAR data, Digital Camera imagery and field data were 
analysed. The obtained results were discussed and conclusions were drawn. The process is shown in 
Figure 1.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.6. Concepts and Definitions 

1.6.1. LIDAR and its principle 
In the recent years, researchers are actively involved in estimation of AGB using LIDAR technology. 
LIDAR is a promising technology that can measure the height of the trees and provide highly accurate 
estimates of AGB (Lefsky et al., 2002). In addition, Kim et al. (2010) stated that AGB of the forest and its 
carbon storage can be effectively estimated using aerial photograph and LIDAR data. 
 
LIDAR is one of the active remote sensing techniques that have ability to capture 3-dimensional 
measurements over the large areas. LIDAR is also called airborne laser scanning (ALS). LIDAR system 

Figure 1.1: Theoretical framework of the research
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consists of (i) the LIDAR sensor which sends out the pulse of laser light to the target and records both 
the travel time of the laser and the energy (intensity)  that is scattered back from the target (Dubayah et al., 
2000) (ii) the Inertial Navigation Unit (INU) also called Inertial Measurement Unit (IMU) of the aircraft 
and (iii) GPS (Heritage et al., 2009). In order to correct the pitch, roll and yaw of the aircraft, INU is used 
in the system so that LIDAR measurements are corrected. Using differential GPS, accurate x, y, z position 
of sensor is obtained relative to ground-based GPS base stations. The co-ordinates of the reflecting object 
can be calculated by knowing the sensor position, the distance and incidence angle of each measurement 
(Hyyppä et al., 2000). Operation of an airborne LIDAR surveys are given in Figure 1.2. 
 
Airborne LIDAR system is useful for directly assessing vegetation characteristics because of its features 
such as extensive area coverage, high sampling intensity, ability to penetrate beneath the top layer of the 
canopy, precise geolocation and accurate ranging measurements (Popescu et al., 2004). In addition,  there 
is no saturation problem at high biomass levels (Patenaude et al., 2005). Nevertheless accurate and precise 
product of LIDAR data depends on its point density (Heritage et al., 2009). Point density for airborne 
LIDAR is the number of laser echoes (returns) per unit area. It can be considered as equivalent to the 
resolution for passive imaging sensors.    
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LIDAR systems for forestry application can be categorized based on two characteristics: (1) record of 
return signal (2) size of footprint. Based on first characteristics, LIDAR systems can be divided into 
discrete return LIDAR system (records single or multiple returns for each pulse) and full waveform 
LIDAR system (records the amount of energy returned to the sensor for a series of equal time 
intervals)(Lim et al., 2003). Based on second characteristics, LIDAR systems can be divided into small 
footprint systems which record footprint with a diameter of up to 100 cm and large footprint systems 
which record footprint in the size range 10-100 m (Heritage et al., 2009). 

1.6.2. Point cloud 
Point cloud is the output of airborne laser scanner which is a cloud of geometrically unstructured 
observations consisting of a large number of individual measurements in three dimensions (Heritage et al., 
2009) as shown in Figure 1.3.  
 
  

Figure 1.2: Typical operation of an airborne LIDAR survey, source: (Heritage et al., 2009) 
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1.6.3. Crown Projection Area 
Crown projection area is defined as the area of the vertical projection of the outermost perimeter of the 
tree crown on the forest floor (Gschwantner et al., 2009) as shown in Figure 1.4. It is an important 
variable for estimating forest above ground biomass using remotely sensed images. 
 

 

 

 

 

 
 
  
 

1.6.4. Community Forest  
Community forest (CF) is the national forest which is legally handed over to the local people for their 
development, conservation and use (Yadav, 2004).  From the local people, community forest user group 
(CFUG) is being developed in the community to carry out activities for the protection and sustainable 
management of the forest resources. The user group members participate in the decision making 
processes and implement the CF activities based on their constitution and operational plan. Constitution 
and operational plan of CFUG are being formulated with the support of a forest technician. 
 

1.6.5. Intermingled trees 
According to the Oxford English Dictionary, intermingle means to mix together. When the branches or 
canopy of two or more trees mix together, the trees are called intermingled.  
 
 
 
 

Figure 1.3: Point cloud (change in colour shows height variation of the object) 

Figure 1.4: Crown Projection Area, source: (Gschwantner et al., 2009) 
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2. STUDY AREA 

2.1. Criteria for study area selection 
The study area was selected taking following criteria under consideration. 
 

• Implementation of REDD+ pilot project 
 

For the implementation of the REDD+ pilot project, it was being piloted in three watersheds. Ludikhola 
watershed was one of the pilot sites and this watershed was selected as representative of sub-tropical 
forests of Nepal.  
 

• Accessibility and availability of data 
 

The study area was selected considering accessibility as the research should be carried out within limited 
budget and time. LIDAR data and Digital Camera imagery was available for this watershed as it was pilot 
project site.  

2.2. Overview of the study area 
Ludikhola watershed lies in the Gorkha district of western development region of Nepal. It lies in the 
southern part of the Gorkha, district and is located between 27055'02"-27059'43"N latitude and 84033'23"‐ 
84040'41"E longitude. It covers forest area of 1888 ha ranging from 318 m to 1714 m a.m.s.l. (ICIMOD et 
al., 2010; REDD, 2011) altitude having sub-tropical forests. The watershed was heavily deforested in the 
past and this has been controlled through community forest management. 
 
There are 31 community forest (CF) in the Ludikhola watershed. The study was carried out only in five 
CF (Ludidamgade, Birenchok, Kuwadi, Chisapani and Shikhar). It was not conducted in all CFs because 
of time and software limitation. eCognition software (for segmentation) cannot process the whole image 
of the watershed. The study area is shown in Figure 2.1. 
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2.2.1. Socio-economic information and demography 
The total population of the watershed is 23,197 with 3800 households comprising social diversity 
(ICIMOD et al., 2010). Ethic groups such as Magar, Gurung, Tamang, Dalit, few Brahmin and Chhetri are 
prevailed in the watershed area. Agriculture is the main occupation of the area. About 70% of the total 
population is involved in subsistence agriculture (DSCO, 2006). Intergrated systems of farming, livestocks 
and forest are being practiced in the area. 
 

2.2.2. Topography 
Ludikhola watershed lies in the mid-hill region of Nepal. The elevation of the watershed ranges from 318 
m to 1714 m a.m.s.l. (ICIMOD et al., 2010). The terrain exhibits moderate to steep slope (30-60% slope) 
and also gentle sloping lands (less than 30% slope) are found. 
 

2.2.3. Climate 
With the altitudinal variation, the climate of the area varies. At lower altitude sub-tropical type of climate is 
found and at higher altitude, the climate is temperate. Summer, monsoon, autumn and winter are the main 
season in the area.  
 

2.2.4. Temperature 
An average daily temperature of Ludikhola watershed is 23.10C (ICIMOD et al., 2010). The temperature 
has changed considerably in the past few decades and is increasing in a dramatic way (Lamichhane et al., 

Figure 2.1: Study area, Gorkha, Nepal, (a) Nepal map (b) Ludikhola watershed (c) Selected CFs for the study 
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2009). In 1978-1982, the average temperature recorded was 21.60C and in 2001-2006 it was 23.10C. 
Average monthly temperature of 1978 and 2006 is given in Appendix 1. 
 

2.2.5. Rainfall 
The average annual rainfall of the area is 1,972 to 2000 mm which occurs during Monsoon (July to 
September). There is gradual decrease in rainfall from 1980 to 1986 (1424.2 mm to 805.34 mm) and then 
gradual increase up to 1991 (1755.2 mm) (Lamichhane et al., 2009). Rainfall trend from 1978-2006 is given 
in Appendix 1. 
 

2.2.6. Vegetation 
The forest found in the area is subtropical type (Appendix 11). Shorea robusta is the dominant species of the 
forest in southern aspects and lower altitudes of northern aspects. In the upper parts of northern aspects 
Schima wallichii and Castanopsis indica are mainly found. List of tree species found in the study area is given 
in Appendix 2. 
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3. MATERIALS AND METHODS 

3.1. Data Used 

3.1.1. Digital Camera Imagery 
Digital Camera imagery was used in the study. The imagery was acquired in March 2011. The image 
consists of 3 bands (red, green, blue) and has a resolution of 0.45 m. The image obtained for the study was 
already geo-referenced in UTM 45 N and orthorectified. Detailed specifications are given in Appendix 3. 

3.1.2. LIDAR data 
The LIDAR data was acquired for the purpose of national forest inventory of Nepal by FRA (Forest 
Resource Assessment) project under the Ministry of Forests and Soil Conservation. The data was 
collected from 16 March to 2 April 2011. The data was acquired by Arbonaut Ltd., Finland and it was 
already pre-processed by the company. The LIDAR data had point density of 0.8 point/m2 on average. A 
detail of the LIDAR data acquisition is given in Appendix 4. The given LIDAR data was in the form of 
point cloud.  

3.1.3. Maps 
Topographic maps were used in the field data collection. Maps were at the scale of 1:25000 prepared by 
Survey Department of Government of Nepal. The watershed boundary of the study area, community 
forest and road shape files were obtained from ICIMOD in 2009. 

3.1.4. Software 
Various software as shown in Table 3.1 was used in this research.   
 

Table 3:1: Softwares used in the research 

S.N Software Purpose 
1 ArcGIS version 10 GIS analysis 
2 Erdas Imagine 2011 Image analysis 
3 Lastools Develop CHM 
4 ecognition Developer 8 Object based image classification 
5 R Statistical analysis 
6 Mirosoft Word Thesis writing 
7 Mirosoft Excel Statistical analysis 
8 MirosoftPowerpoint Presentation of the research 
9 Mirosoft Visio Diagrammatic representation 
10 End note Citation and reference 

11 Quick Terrain Modeler and 
Quick Terrain Reader 3D view of point cloud 

 

3.1.5. Field Equipment 
Various field equipment as shown in Table 3.2 was used during fieldwork. 
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Table 3:2: List of equipments used for the field work 

S.N Equipment Purpose 
1 iPAQ and Garmin GPS 60CSx navigation 
2 Suunto compass orientation 
3 Diameter tape 3meters diameter measurement 
4 Measuring tape 30 meters measuring the radius of the plot
5 Spherical densiometer crown cover measurement 
6 Suunto clinometer slope correction 
7 Vertex hypsometer tree height measurement 
8 Fieldwork datasheet field data record 

3.2. Image pre-processing 
Image pre-processing is also known as image restoration and rectification which increase the accuracy and 
interpretability of the data (Lillesand et al., 2008). Further manipulation and analysis of image data needs 
to be done to extract information. The obtained Digital Camera imagery was already georeferenced and 
orthorectified. Thus, georeferencing and orthorectification were not done. The obtained image was 
already mosaic by Arbonaut Limited. A subset of the image was created to extract the study area. 
 

3.2.1. Image filtering 
Image filtering is an image enhancement technique that is carried out for improving image interpretability. 
The image is smoothened when the average of pixel values in a given window size is calculated and that 
average value is used as the new value of the central pixel in the window (ITC, 2010). This is done for 
each pixel value. Window size of 3×3, 5×5 and 7×7 are commonly used for individual tree crown 
delineation (Leckie et al., 2005; Mora et al., 2010; Tsendbazar, 2011). In this study, 3×3 low pass filter was 
used to smoothen the appearance of the image. This helped in manually delineating the tree crowns on the 
image. 

3.3. Research Method 
The research method followed three major steps i.e. data collection and preparation, remote sensing 
operations, and statistical analysis. Field work was carried out to collect the data about DBH, height and 
other measures whereas remote sensing operations were done to get the individual tree crown and height 
of each tree of the study area. Finally, statistical analysis was done to find the relationship between height, 
CPA and carbon for estimation and mapping carbon stocks. Methods to carry out this research are shown 
in Figure 3.1. Detailed description of each step is given in the following subsections. 
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3.3.1. Field work 
 
Sampling design 
An appropriate sampling design that covers both forest type and condition is essential. This is a critical 
step for improving estimation of carbon stocks (Gibbs et al., 2007). He recommended using a sampling 
design developed particularly for a specific country. Therefore, sampling design according to the 

Figure 3.1: Flowchart of research method
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Community Forest Inventory Guideline of Nepal 2004 was adopted. Stratified random sampling helps to 
ensure that the sample is spread out over the entire study area and gives more precise estimates of the 
forest parameters (Husch et al., 2003). This sampling design gives less sampling error and coefficient of 
variation as it focuses at dividing population into a number of parts which are more or less homogenous 
for the specific parameters. Thus, stratified random sampling was applied for this research. Every 
community forest has its own characteristics in terms of altitude, age, slope, aspect and species 
composition. Stratification was done on the basis of these characteristics so that each community forest 
was taken as one stratum. The number of plots for the sampling was determined using following formula; 
 
Area of sampling (a) = sampling intensity (I)× total area of stratum (A)/100        (DOF, 2004) 
No. of plot (n) = area of sampling (a)/area of one sample plot (p) 
 
The study area consisted of five CFs and each CF was considered as one stratum. The number of plots 
per stratum is shown in Table 3.3. 
 
Table 3:3: Plot number in each stratum for data collection 

S.N Stratum Plot number 
1 Birenchok CF 12 
2 Kuwadi CF 10 
3 Chisapani CF 10 
4 Shikhar CF 8 
5 Ludidamgade CF 46 

Total 86 
 
In order to identify the individual tree on the map in the field, enlarged maps (Appendix-5) for each plot 
with surrounding area were printed before field work.  
 
Field data collection 
Preparation such as field equipments collection, datasheet preparation (Appendix-6) and uploading image 
in iPAQ was done before the field work. The field work was carried out in September-October 2011. 
Circular plots with radius 12.62 m and plot area of 500 m2 (IPCC, 2003) were used. Forest parameters 
such as DBH, height, crown diameter, crown density and species were recorded in the field. Intermingled 
trees were also recorded in each plot. If a tree crown was not visible as standalone i.e. completely 
separated from other crowns surrounding it, it was considered as intermingle even though their branches 
do not considerably intermixed together. Trees that were measured were marked to prevent double 
counting. Trees were measured from inward to the edge of the plot starting from North in clockwise 
direction. Besides these, information about topography such as slope and aspect were collected. Since 
trees with diameter 10 cm or less contribute little to the total carbon of the forest (Brown, 2002), only 
trees with diameter more of than 10 cm were taken into consideration for measurement. Slope correction 
was done in the sloping sample plot using slope correction factor Appendix 7. Trees on the image were 
recognized for each plot and were recorded. GPS and iPAQ were used for navigation to the plot centre. 
Tree parameters were measured in 86 plots. A map showing the total number of sample plots for data 
collection in the study area is given in Appendix-8.  
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3.3.2. Fieldwork data analysis 
After completing field work, the data collected was entered in excel and descriptive analysis of the field 
data was done. Box plots were made for depiction of collected field data for major tree species. Identified 
trees on the image during the fieldwork were delineated using ArcGIS. The identified trees were used for 
species classification and its accuracy assessment. In addition, identified trees were used for developing 
and validation of the regression models. 
 

3.3.3. Manual delineation of trees 
The identified trees on the field were manually delineated on 3*3 low pass filtered image. Same scale 
(1:250) of the image was used while delineating all the trees. In order to delineate the trees correctly, 
crown diameter measured in the field was used as reference. Only 294 trees were recognized on the 
Digital Camera image and were manually delineated. These delineated tree crown areas were used to 
extract the height of the trees from the CHM and also used for segmentation accuracy assessment. 
 

3.3.4. CHM (Canopy Height Model) Preparation 
Canopy Height Model (CHM) is obtained by subtracting Digital Terrain Model (DTM) from Digital 
Surface Model (DSM) which gives the height of the trees (Kim et al., 2010). DTM represents bare ground 
surface whereas DSM represents ground surface including all objects on it (Heritage et al., 2009). DSM is 
generated from the first canopy return of the LIDAR pulse which describes the canopy surface and DTM 
is generated from the last returns which describes ground surface. 
 
The given LIDAR data was in the form of point cloud. From the point cloud, DTM and DSM were 
developed using Lastools software. This software has the tools required to develop DTM and DSM from 
raw or pre-processed LIDAR data (point clouds) (Hug et al., 2004) and this is free software. DSM was 
created using only first returns using the Lasgrid tool. Then, cell size of 0.45 m was used as the LIDAR 
data was to be merged with Digital Camera image which has the cell size of 0.45 m. The highest elevation 
value was chosen from all points falling into a grid cell for raster generation.  
 
To create DTM, Lasground tool was used to classify point clouds into ground points and non-ground 
points. Then, DTM was developed by blast2dem tool using only ground points. The same cell size was 
given. This tool creates a raster DTM in which elevation values of a raster cell is assigned based on TIN 
(Triangulated Irregular Networks) interpolation. 
 
After creating DTM and DSM, CHM was developed by subtracting DTM from DSM. The obtained 
CHM was then filtered as there was noise resulting in high variation in height values of trees which are not 
true in reality. The maximum height measured in the field was 35.3 m. Based on this information, CHM 
was filtered and height up to 40 m was taken. 

3.3.5. Accuracy assessment of LIDAR derived height 
Accuracy assessment of LIDAR derived height was done by comparing height of the trees measured in 
the field and height of the trees obtained from the CHM (Hyyppä et al., 2000; Suárez et al., 2005). In the 
field, tree tops were measured for trees height. These trees which were recognized on the image were 
manually delineated. For the same trees, maximum height values from the CHM were extracted using 
manually delineated crowns because they represent the tree tops. Then, coefficient of determination (R2) 
was obtained for the tree height from the field and from the CHM. Further, RMSE was calculated. Then, 
average field measured height was also compared with the average LIDAR derived height.  
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3.3.6. Tree crown delineation 
Tree crown delineation (segmentation) is an initial step of object based image analysis which involves 
grouping neighbouring pixels into meaningful image objects (segments) based on homogeneity criteria. 
There are several ways to segment an image. Most appropriate method should be chosen for a particular 
image analysis. In this study, chessboard segmentation and region growing approach were used in 
eCognition software to derive the image objects or tree crowns. Both Digital Camera image (3 bands, 
RGB) and CHM (1 band) were used for image segmentation in eCognition software. The image 
segmentation process was as follows; 
 
Pre-processing in eCognition 
Both the Digital Camera image and the CHM were pre-processed in eCognition. CHM was smoothen to 
avoid the finding of false tree tops within a tree (Reitberger et al., 2007) and Digital Camera image was 
filtered to remove noise and smoothen the image (ITC, 2010). This was done by applying a Convolution 
filter to both images. Convolution filter replaces each pixel value by the average of the square of the 
matrix centred on the pixel (eCognition, 2011a). For this, 3×3 kernel size was used for the filtering. 
 
Chessboard segmentation 
Chessboard segmentation is top-down segmentation in which an image is split into smaller image objects 
into equal squares of a given size (Figure 3.2) which are in subsequent processes aggregated into 
meaningful objects. Square grids of fixed size are applied to all objects in the domain and each object is 
cut along these grid lines (Definiens, 2007). Grid size of two by two pixels was used for chessboard 
segmentation considering the processing capability of eCognition.  
 
 
 
 
 
 
 
 
 
 
 
 
After chessboard segmentation, the resulting objects were split into two preliminary classes: tree and 
others. For the assigning of pixels to classes, information from both CHM and Digital Camera image were 
used. The mean brightness values from the image and height information from CHM were used to assign 
the classes. Objects (trees) with height of less than 2 m were removed (Naesset, 1997) and only those of 
more than 2 m are taken for segmentation because the shrubs were found up to 2 m height in the study 
area and the study is on carbon stocks estimation of the trees only. In addition, during field study lopped 
trees with no crowns were found up to the 2 m height. Thus, for segmentation it is necessary to remove 
such lopped trees which had no crowns. Besides, their contribution to the carbon stock is minimal since 
they are relatively small. 
 
Region Growing approach 
In this approach, regions are grown from the seed points based on certain rules. The pixels neighbouring a 
seed point are then joined to this region and the process is continued until it reached the threshold 
(Blaschke et al., 2006). To run this algorithm for the delineation of tree crowns, firstly it is necessary to 

Figure 3.2: Chessboard segmentation
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identify the seed points and define the threshold to stop the region growing. Culvenor (2002) stated that 
local maxima (peaks) and local minima (valleys) are the fundamental image features used for the 
delineation of tree crowns. Local maxima are used as seed points to grow into meaningful objects and 
local minima are used to define likely crown boundaries (Culvenor, 2002). The algorithm assumes that the 
centre of the crown  is brighter than the edges (Culvenor, 2002). Local maxima are thus tree tops which 
looks like peak of the mountain and local minima looks like valley which is shown in Figure 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this study, tree crown delineation was done based on growing of tree tops using local maxima and local 
minima to define likely crown boundaries. Appropriate window size or threshold should be chosen in this 
method because treetop detection can vary with window size. If the window is small, for the tree with 
large crown may detect more than one tree top and if the window size is bigger, then it may not be able to 
detect tree tops for smaller trees. In this case, window size of 5×5 was taken as average crown diameter 
measured in the field was approximately 4 m.  
 
Firstly local minima were identified and local minima which were too close to each other were merged 
because this may create confusion in the segmentation. They will form the edge of the segmented object 
or the boundary of the tree crown. Then, tree tops (local maxima) were identified. However, all identified 
tree tops were not true tree tops because the algorithm identified more than one tree top for a single tree 
A tree may have several tops on a fairly flat upper canopy and in such condition false tree tops are 
detected. To remove false tree tops, at first tree tops were grown and then grown tree tops which 
neighbour to one another were merged. Then, region growing from the tree tops was done until it reached 
the local minima. Tree crowns were grown in relation with neighbouring objects. Then, basic reshaping of 
tree crown segments was done. This was done by removing small objects (object area ≤4 pixels) and 
asymmetrical crown segments. Local maxima and local minima were identified using height information 
from CHM and for the region growing, information from both the images were used. 
 
Advanced reshaping of tree crown segments 
After basic reshaping of tree crown segments, watershed transformation and morphology was done. 
These are advanced object reshaping algorithms (eCognition, 2011a). Watershed transformation was used 
to split the obtained crown segments which may consists of several trees close together into individual 
tree crown segment. This algorithm helps to separate cluster of trees into individual trees. The basic 
concept of watershed transformation is based on visualizing the image to be processed as topographic 
surface and includes three basic notions: local maxima, catchment basins and watershed lines (Chen et al., 
2006). The image is inverted due to which local maxima become local minima and holes are punched at 

Figure 3.3: Radiometric ‘topography’ of subset of VHR image of forest, source: (Culvenor, 2002) 
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the local minima. Catchment basins are in between local maxima and local minima. When water is 
introduced from the local minima, catchment basins will be flooded and barriers need to be created to 
prevent merging of water coming from two neighbouring catchment basins. These barriers are the 
watershed lines and will be used to partition trees. Thus, when watershed transformation is applied to the 
forest, tree clumps are treated as catchment basins and watershed lines are their edges thus separating 
clusters of trees into individual trees. 
 
Then, morphology algorithm was applied to smoothen the edges of tree crowns. After this, basic 
reshaping of tree crown segments was done again based on the object (crown segment) area and 
roundness. The overall segmentation process is given in Figure 3.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.4: Steps for tree crown delineation
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Individual tree crown
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3.3.7. Accuracy assessment of tree crown delineation 
Accuracy assessment of tree crown delineation is related to the matching of  reference and automatic 
segmented objects (Zhan et al., 2005). Reference objects means manually delineated polygons. There are 
several methods for segmentation validation (Zhang, 1996). However, in this study two segmentation 
accuracy measures were applied i.e. Relative Area measures developed by Clinton et al. (2010) and 1:1 
correspondence (Zhan et al., 2005). These measures are applied when manually delineated and automatic 
segments are available. 
 
Clinton et al. (2010) reviewed several segmentation accuracy measures and modified Relative Area 
measures developed by Moller et al. (2007). Over segmentation and under segmentation defined by 
Clinton et al. (2010) are given in equation 1 and 2. 
 

௜௝݊݋݅ݐܽݐ݊݁݉݃݁ݏ ݎ݁ݒܱ ൌ 1 െ
௔௥௘௔ሺ௫೔ת௬ೕሻ

௔௥௘௔ሺ௫೔ሻ
          ………..1 

௜௝݊݋݅ݐܽݐ݊݁݉݃݁ݏ ݎܷ݁݀݊ ൌ 1 െ
௔௥௘௔ሺ௫೔ת௬ೕሻ

௔௥௘௔ሺ௬ೕሻ
           ..……...2 

 
Where ݔ௜ is the reference object and ݕ௝ is the corresponding segmented object. 
 
The value of over segmentation and under segmentation lies within the range of 0 to 1 (Clinton et al., 
2010). When the value for both over and under segmentation is 0, then it is considered as perfect 
segmentation. It means segments matched exactly with the reference objects. Using over segmentation 
and under segmentation values, segmentation goodness (D) can be calculated. D (equation 3) is 
interpreted as the ‘closeness’ to an ideal segmentation result, in relation to a predefined reference objects 
(Clinton et al., 2010). D value ranges from 0 to 1. D value equals to 0 means perfect segmentation. 
 

ܦ ൌ ට௢௩௘௥ ௦௘௚௠௘௡௔௧௜௢௡మା ௨௡ௗ௘௥ ௦௘௚௠௘௡௔௧௜௢௡మ

ଶ
            ……….3 

 
1:1 correspondence was done by matching manually delineated tree crowns with automated segments. 
Matching was considered if manually delineated and automatic segments overlap by at least 50% (Zhan et 
al., 2005). There are several possibilities of two matched polygons which are shown in Figure 3.5. All the 
possibilities shown in Figure 3.5 are considered as matching by the above criteria. 
 
 
 
 
 
 
 
 
Red region in Figure 3.5 shows the matched regions whereas green is the region that is not explained by 
reference object. Blue is the region of reference object which is not overlapped. Example (a) shows more 
than 50% match between reference and segment object; (b) shows matching reference and segmented 
objects with the same shape and size but differ in position; (c) and (d) matching reference and segment 
objects with the same position but differ in spatial extent. 
 

Figure 3.5: Different conditions of 1:1 correspondence, source: (Zhan et al., 2005) 
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3.3.8. Segmentation assessment for intermingled trees 
In order to assess whether intermingled trees are separated or not using LIDAR data, segmentations were 
checked based on visual interpretation. From the field data, it is known that where those intermingled 
trees are in each plot. Then, segmentation was checked visually for each identified intermingled trees on 
the image. If there are two segments for two trees which appeared to be intermingled in the field, then 
intermingled trees are considered separated.  

3.3.9. Image classification 
Object based image classification is particularly suitable for VHR images and data obtained by airborne 
laser scanning (ALS) or microwave radar (ITC, 2010). In addition to the spectral information, this method 
use shape, texture and contextual information to interpret the image. There are two types of classification 
method available in eCognition i.e. membership function and nearest neighbour. 
 
Nearest neighbour classification was applied for tree species classification. It was applied to selected object 
features and was trained by the samples. Here the samples are the image objects (segments) obtained from 
the segmentation. After training the software using the samples, image objects will be classified based on 
their nearest sample neighbours (eCognition, 2011b). 
 
Although Shorea robusta, Schima wallichii, Castanopsis indica and   Rhus wallichii are the dominant tree species in 
the study area, classification was done only into two classes i.e. Shorea robusta and others. This is because 
most of the trees identified on the image were Shorea robusta and there were not enough Schima wallichii, 
Castanopsis indica and Rhus wallichii identified on the image. Thus, there were an insufficient number of 
samples of these species to train the image objects for classification and also for the validation. 70% of the 
data were used for training classification and 30% of the data was used for accuracy assessment. 
 

3.3.10. Classification accuracy assessment 
The output of the image classification is a raster file in which the individual raster elements are class 
labelled (ITC, 2010). It is necessary to check the actual quality of the classification result. It is done by 
selecting a number of objects of the classification output and compare the classification result and the true 
world classes i.e. field observations (ITC, 2010). Comparison is done using error matrix from which 
various accuracy measures can be computed. Classification accuracy assessment was done in Erdas 
Imagine 2011. 
 

3.3.11. Above Ground Biomass and Carbon Stock calculation 
Site specific allometric equations were not available for the tree species found in the study area. Thus, the 
allometric equation developed for tropical moist forest by Chave et al. (2005) was used to calculate AGB. 
The equation was also applied by REDD+ pilot project (ICIMOD et al., 2010). The equation is given 
below; 

ܤܩܣ ൌ 0.0509 ൈ  4.…………                 ܪଶܦߩ
Where, 

AGB = above ground biomass [kg] 
 wood specific gravity [gm/cm3] = ߩ
D = tree diameter at breast height (DBH) [cm] and 
H = tree height [m] 
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Trees found in the study area were classified into two; namely Shorea robusta and others. Wood specific 
gravity for Shorea robusta is 0.88 gm/cm3 and for others is 0.72 gm/cm3 (ICIMOD et al., 2010). Then 
carbon stock of the tree was calculated from AGB using conversion factor 0.47 (IPCC, 2003). 

 
݇ܿ݋ݐݏ ݊݋ܾݎܽܥ ൌ 0.47 ൈ  5..…………                 ܤܩܣ

 

3.3.12. Regression analysis and model validation 
Regression analysis is frequently used for AGB estimation. Regression analysis is carried out for 
determining the relationship between response variable and one or more explanatory variables. The 
analysis quantify the relationship and is expressed by an equation and its graphic representation (Husch et 
al., 2003). There are two methods commonly used to evaluate the model performances i.e. coefficient of 
determination (R2) and root mean squared error (RMSE). Generally high R2 or low RMSE value show a 
good fit between observed and predicted outcomes (Lu, 2006). R2 shows how much a model can explain 
the reality. RMSE is one of error indices commonly used for model evaluation. It shows error in unit of 
the constituent of the interest. In this study, RMSE gives error in kg. RMSE is calculated as follows; 
 

ܧܵܯܴ ൌ  ටଵ
௡

∑ ሺܺைi െ ܺ௉iሻଶ௡
௜ୀଵ                    ....................6 

Where,  
ܺை = Observed carbon 
ܺ௉ = Predicted carbon 
݊   = Number of observations 
 
Then, RMSE in percentage was calculated from the ratio of RMSE and average observed carbon. 
 
Three regression models were developed based on the linear relationships between carbon and CPA, 
carbon and height and carbon, CPA and height. Before developing the relationship of carbon with CPA 
and height, multicollinearity was checked for two independent variables i.e. CPA and height. 
Multicollinearity was detected by calculating the Variation inflation Factor (VIF). VIF value above 10 
indicates that there will be effect of multicollinearity on the model (Obrien, 2007). 
 
Only trees which had one to one matching of the segments and correctly classified were taken for model 
development and validation because incorrectly identified and misclassified trees should not be used for 
evaluation (Pouliot et al., 2002). Outliers were removed which is the prerequisite of the regression models 
(Mora et al., 2010). Therefore, total number of sample data becomes lesser than the trees that were initially 
identified on the image. Only 239 trees were used for model development and validation. For model 
development and validation, the data was divided into 70% and 30% respectively. Models were validated 
by comparing the amount of carbon calculated from the field data and carbon predicted by the model.  
 
Same number of observations was used to develop the models so that the models can be compared. For 
Shorea robusta it was 132 and for others it was 47. The accuracy of developed models was compared based 
on RMSE. 
 

3.3.13. Carbon stock mapping 
Multiple linear regression models were used for both Shorea robusta and other species to estimate the 
amount of carbon stocks in the study area. These models were chosen as RMSE% was the lowest 
compared to other models. Then, a carbon map of the study area was produced using ArcGIS. 
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4. RESULTS 

4.1. Descriptive analysis of the field data 
 
A total number of trees inventoried were 2793 and about 294 trees from the field were recognized on the 
image. The data were collected in 86 sample plots from five CFs. Among five CFs, Ludidamgade was the 
largest CF so that this CF had largest number of sample plots. In this CF, 1534 trees were measured 
among which 186 trees were recognized. There were altogether 316 intermingled trees. A detail of forest 
inventory is shown in Table 4.1. Descriptive statistics of collected data is given in Appendix 9. 
 
Table 4:1: Forest inventory 

 
There were 27 tree species found in the study area (Appendix 2). Among them, the dominant species was 
Shorea robusta followed by Schima wallichii, Rhus wallichii, Castanopsis indica, Pinus roxburghii, Terminalia alata 
and Cleistocalyx operculata. Beside these species, other species were categorized into one and given the name 
‘Others’ as their occurrence was less than 1%. A detail of occurrence of the tree species recorded during 
the field study is given in Figure 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S.N Name of CF  No. of 
plots  

Total trees 
inventoried Intermingled trees Recognized trees on 

the image 
1 Birenchok 12 451 72 41 
2 Shikhar 8 129 17 17 
3 Chisapani 10 269 21 20 
4 Kuwadi 10 410 62 30 
5 Ludidamgade 46 1534 144 186 

Total 86 2793 316 294 

Figure 4.1: Tree species occurrence in the study area
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4.2. CHM preparation and accuracy assessment of LIDAR derived height 
CHM developed by subtracting DTM (Figure 4.4 b) from DSM (Figure 4.4 a) is shown in Figure 4.5. Its 
value ranges from 0-40 m. Height of 0 m means there is no tree which is represented by black colour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LIDAR derived height was compared with field measured height using linear regression model as shown 
in Figure 4.6. This was done using approximately 281 observations. Coefficient of determination (R2) was 
0.74 and RMSE of 2.8 m was obtained. There was an underestimate of field measured tree height by 0.98 
m on average. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4:  (a) DSM and (b) DTM derived from point cloud

Figure 4.5: CHM of the study area

Figure 4.6: LIDAR derived tree height compared with field measured tree height 
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Table 4:2: 1:1 Correspondence of reference and segmented CPA 

CFs 
Total reference 

CPA 
Total number 
of 1:1 match 

Correctly segmented 
CPAs in % 

Birenchok 47 42 89.36 
Kuwadi 49 43 87.76 
Chisapani 19 12 63.16 
Shikhar 17 11 64.71 
Ludidamgade 162 116 71.6 

Overall 294 224 76.2 

4.4. Image classification and accuracy assessment 
Image classification was done with nearest neighbourhood classification algorithm in eCognition. Trees 
were classified into two groups i.e. Shorea robusta and others. The classified map is given in Figure 4.8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Tree species classification was validated using 87 observations out of which 59 observations were for 
Shorea robusta and 28 observations were for other species. The classification was assessed based on overall 
classification accuracy, user accuracy and producer accuracy using error matrix shown in Table 4.3. For 
Shorea robusta, 54 observations (Shorea robusta) were correctly classified whereas 5 observations (Shorea 
robusta) were incorrectly classified as others. In case of other species, 12 observations (others) were 
correctly classified while 16 observations (others) were misclassified as Shorea robusta. Both producer 

Figure 4.8: Tree species map of the study area in Ludikhola watershed, Gorkha, Nepal 
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accuracy and user accuracy were higher for Shorea robusta than other species. The overall accuracy of the 
classification was 75.86%.  
 
Table 4:3: Accuracy assessment of tree species classification 

Class Name  
Reference data Classified 

Totals 

Error of 
Commission 

(%) 

User 
Accuracy 

(%) Shorea robusta Others

Shorea robusta 54 16 70 23 77 
Others 5 12 17 29 71 
Totals 59 28 87 
Error of Omission (%) 9 57 
Producer Accuracy (%) 91 43 

Overall Classification Accuracy = 75.86% 

4.5. LIDAR data in separating intermingled tree crowns 
Out of 316 intermingled trees observed in the field, only 101 intermingled trees were recognized on the 
image. After segmentation, intermingled trees were checked whether the automated segment include only 
one tree or more than one tree. No intermingled trees were found to be separated. Figure 4.9 shows 
intermingled trees that were not separated.  
 
 
 
 
 
 
 

 
 

4.6. Model development and validation 
In this study, two variables, tree height and CPA were obtained using LIDAR data and Digital Camera 
image. Relationship between CPA and carbon; height and carbon; CPA, height and carbon were 
developed for Shorea robusta  and other species. Results are described below. 
 

4.6.1. Relationship between CPA and Carbon 
Linear regression models (Table 4.4) were developed to derive the relationship between CPA and carbon 
for both Shorea robusta and other species. A total of 132 measurements were used for model development 
in case of Shorea robusta where as a total of 47 measurements were used in case of the other species. The 
coefficient of determination (R2) for Shorea robusta and other species were 0.62 and 0.61 respectively 
(Figure 4.10). The regression analysis showed good correlation between CPA and carbon for both the 
classes with the correlation coefficient varying from 79% (Shorea robusta) to 78% (others). The models 
developed for carbon stock estimation of Shorea robusta and other species are; 
 
ሻܽݐݏݑܾ݋ݎ ܽ݁ݎ݋݄ܵ ሺ݇ܿ݋ݐܵ ݊݋ܾݎܽܥ ൌ െ8.99 ൅ 11.72 ൈ  1………………………… ܣܲܥ
ሻݏݎ݄݁ݐሺܱ ݇ܿ݋ݐݏ ݊݋ܾݎܽܥ ൌ 2.19 ൅ 7.68 ൈ  2..………………………………………ܣܲܥ

Figure 4.9: No separation of  intermingled trees
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Table 4:4: Regression analysis of Shorea robusta and other species 

 

 
One way Analysis of Variance (ANOVA) test at 95% confidence level (Appendix 10) showed the 
significant relationship between carbon and CPA.  
 
 
 
 
 
 

    
        
 
 
 
 
 
 
 
                            a. Shorea robusta                                            b. Others 
 

4.6.2. Relationship between height and Carbon 
Linear regression models (Table 4.5) were developed to derive the relationship between height and carbon 
for both Shorea robusta and other species. A total of 132 measurements were used for model development 
in case of Shorea robusta where as a total of 47 measurements were used in case of the other species. The 
coefficient of determination (R2) for Shorea robusta and other species were 0.64 and 0.63 respectively 
(Figure 4.11). The regression analysis showed good correlation between height and carbon for both the 
species with the correlation coefficient varying from 80% (Shorea robusta) to 79.4% (others). One way 
ANOVA test at 95% confidence level (Appendix 10) showed the significant relationship between height 
and carbon. The models developed for carbon stock estimation of Shorea robusta  and other species are; 
 
Carbon ݇ܿ݋ݐݏ ሺ݄ܵܽݐݏݑܾ݋ݎ ܽ݁ݎ݋ሻ ൌ  െ241.41 ൅ 28.97 ൈ  3……………………………ݐ݄݄݃݅݁
ሻݏݎ݄݁ݐሺܱ ݇ܿ݋ݐݏ ݊݋ܾݎܽܥ ൌ  െ58.48 ൅ 14.98 ൈ  4……….………………………………ݐ݄݄݃݅݁

 
Table 4:5:  Regression analysis of Shorea robusta  and other species 

 
 
 
 
 

  Coefficients Standard Error t Stat P-value Species 
Intercept -8.99 16.71 -0.54 0.59 Shorea 

robusta Slope (CPA) 11.72 0.81 14.56 4.48E-29 
Intercept 2.19 18.52 0.12 0.91 

others Slope (CPA) 7.68 0.92 8.38 9.8E-11 

  Coefficients Standard Error t Stat P-value Species 
Intercept -241.41 32.79 -7.36 1.84E-11 Shorea 

robusta slope (Height) 28.97 1.91 15.14 1.78E-30
Intercept -58.48 26.48 -2.21 0.03 

others Slope (Height) 14.98 1.72 8.69 3.46E-11

Figure 4.10: Relationship between CPA and carbon
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0

50

100

150

200

250

300

350

400

0 10 20 30 40

C
ar

bo
n 

st
oc

k 
of

 tr
ee

 (k
g/

tre
e)

CPA (m2)

R² = 0.62

0

100

200

300

400

500

600

700

800

0 20 40 60

C
ar

bo
n 

st
oc

k 
of

 tr
ee

  (
kg

/tr
ee

)

CPA (m2)



ESTIMATION AND MAPPING ABOVE GROUND WOODY CARBON STOCKS USING LIDAR DATA AND DIGITAL CAMERA IMAGERY IN THE HILLY FORESTS OF GORKHA, 
NEPAL 

 

32 

 
 
 
 
 
 
 
 
 
 
 
 

a. Shroea robusta                                                                     b. Others 
 

4.6.3. Relationship of Carbon with CPA and height 
In order to derive the relationship of carbon with CPA and height, firstly the multicollinearity was tested. 
This was done by checking the correlation between CPA and height for both Shorea robusta and other 
species. The correlation coefficient for Shorea robusta was 0.58 and Variance inflation factor (VIF) was 1.51 
whereas for other species correlation coefficient was 0.34 and VIF was 1.13. This indicates that there will 
not be effect of multicollinearity on the model. 
 
Multiple linear regression models (Table 4.6) were developed for both Shorea robusta and other species. For 
the models, a total of 132 observations were used for Shorea robusta whereas that for other species was 47. 
R2 for Shorea robusta and other species were 0.72 and 0.67 respectively while adjusted R2 for Shorea robusta 
was 0.72 and for other species it was 0.65. One way ANOVA test at 95% confidence level showed the 
models were significant (Appendix 10). The model developed for carbon stock estimation for Shorea 
robusta and other are; 
 
ሻܽݐݏݑܾ݋ݎ ܽ݁ݎ݋ሺ݄ܵ ݇ܿ݋ݐݏ ݊݋ܾݎܽܥ ൌ  െ163.07 ൅ 10.58 ൈ ܣܲܥ ൅ 11.58 ൈ  5.……………ݐ݄݄݃݅݁
ሻݏݎ݄݁ݐሺܱ ݇ܿ݋ݐݏ ݊݋ܾݎܽܥ ൌ  െ102.2 ൅ 6.2 ൈ ܣܲܥ ൅ 9.48 ൈ  6………..……………………ݐ݄݄݃݅݁
 
Table 4:6: Multiple linear regression using height, CPA and carbon 

  Coefficients Standard Error t Stat P-value Species 
Intercept -163.07 38.87 -4.20 5.02E-05

Shorea 
robusta 

slope (CPA) 10.58 0.73 14.50 7.15E-29
slope (height) 11.58 2.46 4.71 6.42E-06
Intercept -102.2 33.51 -3.05 0.003 

others 
slope (CPA) 6.2 0.92 6.78 2.47E-08 
slope (height) 9.48 2.32 4.08 0.0001 

 

4.6.4. Model validation 
Models thus developed were validated against the field observed datasets (n=35, Shorea robusta; n=25, 
others). The results of the modelling corresponded well with the observed values (Figure 4.12). 
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Figure 4.11: Relationship between height and carbon
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In general, all models were explaining the relationship of carbon with CPA and height. Comparing all 
models, multiple linear regression models had the lowest RMSE% i.e. 36.8% and 32.4% for both Shorea 
robusta and other species respectively. This means there is 36.8% average error in the prediction of carbon 
for Shorea robusta and 32.4% average error in the prediction of carbon for other species. The relationship 
between CPA and carbon for both classes of trees resulted in higher RMSE% i.e. 47.1% for Shorea robusta 
and 41.5% for other species. RMSE% of the model developed for height and carbon were 40.3% and 
35.3% for Shorea robusta and other species respectively. The last hypothesis mentioned in section 1.4 is not 
rejected because multiple regression models have the lowest RMSE% compared to other models. This 
means multiple regression models improve accuracy of carbon estimation than other models. 
 
   
 
 
 
 
 
 
 
 
 
 

a. Shorea robusta (model 1)                         b. Others (model 2) 
    

 
 
 
 
 
 
 
 
 
 

a. Shorea robusta (model 3)                                                 b. Others (model 4) 
 
 
 
 
 
 
 
 
 
 
 

a. Shorea robusta (model 5)                                                   b. Others (model 6) 
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Figure 4.12: Scatterplots of predicted versus observed carbon 
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4.7. Carbon Stock mapping 
Multiple linear regression models were used for both Shorea robusta and other species to estimate the 
amount of carbon stock and mapping the carbon stock in the study area. These models were chosen as 
RMSE% is the lowest compared to other models. Approximately 48973232.75 kg of carbon was estimated 
to be stored in woody biomass in the study area. The study area was of 547.44 ha thus the study area has 
approximately 89.45 MgCha-1. The carbon map produced is shown in Figure 4.13. In the Figure, both 
insets (segments and Digital Camera image) are for the same area and inset (segments) shows the details of 
carbon stock per tree. 

 
 
 
 
 
 
 

Figure 4.13: Carbon stock map of the study area and inset shows the details of carbon stock per tree  
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5. DISCUSSION 

5.1. CHM preparation and accuracy assessment of LIDAR derived height 
LIDAR derived tree height underestimated field measured tree height by 0.98 m on average. Comparison 
of LIDAR derived tree height with field measured tree height resulted to coefficient of determination (R2) 

of 0.74 and RMSE was 2.8 m. The error could be because of low point density (0.8 point/m2 on average). 
Due to the low point density, there is less probability that laser returns hit the true tree top of a tree. Some 
studies support this explanation. Saurez et al. (2005) demonstrated laser returns do not hit true tops of 
trees in the most common point densities such as 3-4 points/m2. This leads to the variation in height 
measured from the field in this research. The underestimation of tree height for low point density was 
observed in various studies. For average point density of 2 points/m2, Leckie et al. (2003) reported an 
average underestimation of ground measured tree height by 1.32 m and Saurez et al. (2005) found 
underestimation of ground measured tree height by 7-8% using airborne laser scanning (ALS) with point 
density of 3-4 point/m2. Although these studies used higher point density compared to the data used in 
this study, their underestimation was higher. In both cases, the study area was in coniferous forests. The 
crowns of coniferous trees have a triangular shape (Figure 5.1a). Compare to this, the crowns of 
deciduous trees found in CFs of Ludikhola watershed are relatively flat leading to less variation in height 
from tree top to the edges of the crowns (Figure 5.1b). Due to the crown shape in coniferous trees, laser 
returns hitting the true tree top and those hitting the edges have a higher variation in height than in 
deciduous trees. Thus, in this study with low point density the underestimation is not high compared to 
the above mentioned studies. 
 
 
 
 
 
 
 
 
 
 
LIDAR data products will be more accurate and precise with increase in point density (Heritage et al., 
2009). According to Lefsky et al. (2002) point density is the main factor for height underestimation in 
discrete return of ALS data. However, point density might not be only the factor that affects LIDAR data 
products i.e. CHM. Study area of this research do not have 100% canopy cover. Thus, canopy height 
underestimation might be due to the laser pulse penetration into the canopy before reflecting a signal and 
the signal might not be detected by the scanner as a first return (Gaveau et al., 2003).  
 
Apart from this, the gridding process might introduce error into the CHM through the interpolation 
method and the grid spacing chosen (Smith et al., 2004). Interpolation is needed as LIDAR gives point 
cloud with ‘empty’ spaces between points and there is no full area coverage like in optical systems. This 
means point clouds should be interpolated in order to convert the same coverage to an image. Beside this, 
field height measurement may have introduced errors (Brandtberg et al., 2003). During tree height 
measurements in the field, errors can be introduced by the field personnel which might cause the 

(a) (b)
Figure 5.1: Crowns shape (a) coniferous tree (b) deciduous tree 
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difference between field measured and LIDAR derived height. In addition, sometime it is difficult to 
measure the highest point of the crown in deciduous forest as there is no distinct tree top. This was 
observed in the field when tree crowns were large with irregular shape. Field height measurement in such 
situation may introduce error. 

5.2. Tree crown delineation and accuracy assessment 
In this study, tree crown delineation was done using region growing approach which is explained in 
section 3.3.6 and results are presented in section 4.3.  
 
Both images (CHM and Digital Camera image) were used in order to assign the classes trees and others 
(shadow, bare land). The use of CHM in this step helped to extract trees in shadow area (Figure 5.2) 
which would be missed if only reflectance values were used. However, it was noticed that the segments of 
tree crowns in the valleys were larger. There were big trees in the valleys. This is due to the better growth 
conditions in the valley area which was observed during the field work. The use of height information 
helped to separate trees from other vegetation (shrubs and herbs). In this regard, Leckie et al. (2003) 
found that the use of height information for tree crown delineation helped to eliminate most of the 
commission errors (delineating shrubs or other ground vegetation as trees) that often occur in open forest 
area with optical imagery.  
 
 
 
 
 
 
 

a. Shadow area                                       b. Segments on shadow area        
 
 
In this study, the segmentation result showed both commission and omission errors. In the study area, 
there are trees with different sizes ranging from DBH of 10 cm to 83 cm (based on field data collection). 
For the small tree crowns, the automated segments were matching with manually delineated crowns but 
for large tree crowns, there is often more group of automated segments. This means there were 
commission errors (Figure 5.3a). However, these errors were not observed for all large tree crowns. This 
might be because of irregular shape of the tree crown due to which an individual branch may create 
untrue tree tops, so there seems to be two trees instead of one. Similar case was observed by Chen et al. 
(2006) and explained that branches of big trees can reach far in different directions and grow into irregular 
shape. Then, the commission error occurs when each large branch is considered as a tree. Further, Leckie 
et al. (2003) stated that for a large tree, individual large branches of the tree can cause tree splitting. On the 
other hand, omission errors (Figure 5.3b) were also observed. This means the algorithm was not able to 
split the neighbouring trees and made one segment for two trees and in some part, one segment for three 
trees. This may be due to the low point density of LIDAR data and homogenous height distribution of 
neighbouring trees. In this regard, Koch et al. (2006) found that for deciduous trees, there were more 
omission errors which were due to the densely growing trees with homogenous height distribution leading 
to inability to separate neighbouring trees.  
 
 
 
 

Figure 5.2: Digital camera image showing shadow area and segments on the shadow area 
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                            a. Commission error                                  b. Omission error 
(Red polygons represent automated segments and black polygons represent manually delineated crowns) 
 
 
Apart from these, distortion of digital camera image was observed (Figure 5.4) in some parts of the study 
area. Due to this, the algorithm in eCognition does not properly segment the tree crown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this study, accuracy of tree crown delineation was 76.2% which is obtained based on matching of 
manually delineated tree crowns to automated segments and D value was 0.31. Shah (2011b) used region 
growing approach for  tree crown delineation using high resolution Geoeye image in Ludidamgade CF 
which is one of the CFs selected for the study in this research. In her study, accuracy of tree crown 
delineation was 68% with 1:1 correspondence. The segmentation accuracy is higher in this study 
compared to her study. The improvement in the segmentation could be due to the addition of height 
information for the segmentation. In this regard, Kim et al. (2010) also found better result of 
segmentation using LIDAR data and aerial photography than using either of the data alone. 

5.3. Image classification and accuracy assessment 
Overall classification accuracy achieved in this study was 75.86%. The user accuracy for Shorea robusta was 
77% whereas for other species it was 71%. The user accuracy for Shorea robusta was higher because 
approximately 68% of the trees recognized in the field were Shorea robusta. The user accuracy in classifiying 
other species is lower. This could be due to the smaller number of samples for training and validation. 
Moreover, all other species except Shorea robusta were grouped into one class as ‘others’. Different species 
have their own spectral characteristics due to which there would be confusion in spectral response from 
the class ‘others’.  
 
The overall classification accuracy of this study is lower compared with Holmgren et al. (2008) who 
obtained 96% accuracy in classifying tree species into three groups when LIDAR data (50 points/m2 ) and 

Figure 5.3: Example of commission and omission error

Figure 5.4: Distortion in digital camera image
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multi-spectral images (4 bands) were combined. In his study, several features such as canopy shape, height 
distribution, intensity of returns were extracted from LIDAR data. All these features were used for 
classification. In addition, his multispectral image had a near infrared band which is useful for vegetation 
classification. Compared to his research, this study used low point density LIDAR data and digital camera 
image without infrared band. Ali et al. (2008) achieved 86% overall classification accuracy for two species 
using multi-spectral imagery (4 bands) and LIDAR data (16 points/m2). The overall classification was 
more than 83% for three species obtained by Heinzel et al. (2008) using LIDAR data (7 points/m2) and 
aerial photographs (4 bands). Shah (2011b) obtained overall classification accuracy of 74% for two species 
(Shorea robusta and others) using Geoeye image in Ludidamgade CF, Gorkha, Nepal.  
 
Beside these, there could be several factors that affect tree species classification. The digital camera image 
used in this study contained red green and blue bands. This image does not include NIR band although  
the band gives more information about vegetation than red, green and blue bands (ITC, 2010). This could 
affect the classification in this study. Effects of shadow could be another factor that affected the 
classification. Using LIDAR data, tree segments were extracted even from shadow area but for these 
segments brightness values were different from the trees located in non-shadow area for the same species 
which affects classification. In this regard, Leckie et al. (2005) found the effect of shadow on the tree 
species classification as the spectral information of the species was influenced by the shadow. His study 
was in old growth coniferous forest and used high resolution digital imagery. 
 
Classification accuracy is also affected by segmentation quality (Ke et al., 2010). The higher classification 
accuracy will be obtained if the tree crown delineation is more precise. In this study, the classification 
could be influenced by the segmentation quality particularly omission and commission errors might create 
confusion in the classification as brightness value of those segments would be affected.  

5.4. LIDAR data in separating intermingled tree crowns 
The logic behind the hypothesis that LIDAR data can separate intermingled trees is based on the laser 
returns hitting the trees. If the laser has a sufficiently high point density, tree top (local maxima) and 
crown edge (local minima) for each tree will be detected and it should be able to separate intermingled 
trees based on height differences. In this study, this is not the case because of low point density. Due to 
this, laser returns do not hit exactly all tree tops of each individual tree and points (height value) are not 
enough to delineate the entire crown boundary (local minima). Points may fall besides the top at equal 
height, suggesting two tops exist or points may completely miss a top and only touch the edges. 
 
 
 
 
 
 
 
 

a. Multipoint on the image                                 b. Multipoint on the smoothen image             

 
In region growing segmentation, a region grows from the tree top until it reaches to the local minima. But 
here in intermingled trees as shown in Figure 5.5 there are two trees but there are not enough points with 
brightness values that are sufficiently different due to which the algorithm cannot separate two trees. Also, 

Figure 5.5: Showing multipoint (from point cloud) (red oval shapes show 2 trees that are intermingled) 
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points are irregularly spaced. However, this logic is only applicable for trees where there is a low degree of 
intermingling. Koch et al. (2006) found that for deciduous trees, there were more omission errors which 
were due to the densely growing trees with homogenous height distribution resulting in inability to 
separate neighbouring trees. He used the LIDAR data with point density of 5-10 points/m2. In nature, 
trees can be intermingled in different degrees as shown in Figure 5.5. In this study, data about the degree 
of intermingled trees were not collected. If crowns have a high degree of intermingling there would be no 
local minima or valleys between tree tops and the crowns are considered to be one. 

 
 
 
 
 
 
 

 
Beside this, CHM was developed from point clouds in an interpolation process which smoothens the data 
to some extent. Both Digital Camera image and CHM were filtered to smoothen. The degree of 
smoothing might affect tree crown delineation because the smoothing process blurs the maxima of a tree. 
Apparently, some studies (Reitberger et al., 2009; Solberg et al., 2006) showed that due to the CHM 
smoothing, two clear maxima for neighbouring trees were not visible due to which the trees were not 
separated.  However, CHM smoothing is required to avoid the detection of several local maxima in one 
tree. 
 
This study revealed that intermingled trees cannot be separated using LIDAR data with point density of 
0.8 point/m2. Nevertheless, if intermingled trees are homogenous in species composition, this might not 
affect considerably to the biomass estimation but if clusters of trees are heterogeneous, it might affect to 
the biomass estimation because wood density vary from species to species. In addition, small degree of 
intermingled trees might not affect considerably to the biomass estimation. However, high degree of 
intermingling might affect biomass estimation as intermingled trees might be delineated as a single tree 
(one segment). The intermixed portion of both the trees in the delineated crown is not considered due to 
which the delineated crown area is smaller than the sum of CPA of two trees in reality. This might 
underestimate the biomass of the trees.  

5.5. Model development and validation 
Linear relationship was found between CPA and carbon stock; height and carbon stock of the trees for 
both Shorea robusta and other species. The linear relationship was observed as most of the trees in the study 
area were young with mean DBH of 18 ± 8.7 cm and mean height of 12.6 ± 5.2 m. Mean DBH could be 
smaller than above mentioned if trees with DBH less than 10 cm had been measured in the field. Field 
observation showed that there was not competition between tree crowns in most of the cases because 
most of trees were young. During young age, DBH and crown increases linearly and later crown growth 
decreases as crown start touching each other (Shimano, 1997). Further, the use of non-linear model did 
not improve the coefficient of determination (R2) hence considering the simplicity of model, simple linear 
model was preferred.  
 
Coefficient of determination R2 obtained for the relationship between CPA and carbon in the study were 
0.62 for Shorea robusta and 0.61 for other species which is relatively low as compared to the result obtained 
by Shah (2011b). She used non-linear regression model to establish the relationship between CPA and 

Figure 5.6: Different degree of two intermingled canopy trees
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carbon and obtained R2 of 0.67 for Shorea robusta and 0.7 for other species in Ludidamgade CF, Gorkha, 
Nepal. In this study, R2 for the relationship between height and carbon were 0.64 and 0.63 for Shorea 
robusta and other species respectively which is comparable to the R2 obtained by Yu et al. (2010). He 
obtained R2 of 0.6 for a linear relationship between height and biomass in the mixed forest.  
 
Multiple linear regression was followed in this study to derive the relationship of carbon with CPA and 
height. Popescu (2007) used multiple linear regression to derived DBH using LIDAR derived crown 
diameter and height and then estimated biomass using derived DBH. Adjusted R2 for the model were 0.72 
and 0.65 for Shorea robusta and other species respectively. This means 72% of the variation in carbon can 
be explained by CPA and height for Shorea robusta and 65% of the variation of carbon can be explained by 
CPA and height for other species. The relationship was improved when two variables were used for Shorea 
robusta but for other species there was not much improvement. This could be due to the mixing of 
different trees species in the class ‘others’ due to which there were variation in CPA and height. 
 
The lowest RMSE% i.e. 36.8% and 32.4% was obtained in case of multiple linear regression for both 
Shorea robusta and other species. This shows that there were 36.8% average error in the prediction of the 
carbon stock for Shorea robusta and 32.4% average error in the prediction of the carbon stock for other 
species. The result showed that there were improvements in the models using two explanatory variables 
(CPA and height). Height and CPA are important biophysical parameters to estimate biomass of a tree 
using remote sensing. Moreover, biomass depends on volume and volume can be calculated from height 
and DBH. Since there is relation between CPA and DBH (Hirata et al., 2009; Shimano, 1997), it is 
expected that CPA and height will give a good estimate of biomass. Consequently these two variables i.e. 
height and CPA can explain more about variability of biomass than using either of variables alone. 
 
RMSE% was 47.1% and 41.5% for Shorea robusta and other species respectively in modelling the 
relationship of carbon and CPA whereas it was 40.3% and 35.3% respectively in modelling the 
relationship of carbon and height. This shows height seems to explain variation in biomass better than 
CPA. This was expected because biomass of a tree is acquired mainly from stem part than from CPA and 
height is one of the main parameters to estimate volume (stem part) of a tree. 
 
Multiple regression models were used for both Shorea robusta and other species to calculate carbon stock in 
the study area since they had the lowest RMSE%. The model performance was relatively poorer for small 
trees because of high negative intercept in the models. There are two possible reasons for the negative 
intercept in the regression model. Firstly, model parameters derived from LIDAR data and Digital Camera 
image (height and CPA) were used to estimate the biomass of a tree and found some discrepancies 
between field-measured model parameter (height) and remotely sensed model parameter (height). 
Secondly, the dataset that was used for the calibration of model did not include the small size trees.  
 
Biomass estimation was done after several steps from field data collection to model development. During 
the various processes, errors could be introduced and propagated to the model development which could 
be the reasons for the obtained RMSE%. Sources of errors affecting the biomass estimation are described 
in detail in section 5.7. 

5.6. Biomass and carbon stock estimation 
In this study, approximately 89.45 MgCha-1 of carbon stock was estimated for the study area which is 
lower compared to results of Baral et al. (2010) who found 99.43 MgCha-1 of above-ground carbon stock 
in Shorea robusta forest of hilly region in Nepal. Jamarkattel (2011) obtained 70 MgCha-1 in a study done in 
CFs where Shorea robusta is the dominant species. Compared to this study, she obtained lesser carbon 
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stock. This could be because of masking shadow area in her study due to which all the trees in the shadow 
area were not counted resulting in smaller number of trees whereas in this study trees in the shadow area 
were also considered. This would affect the total number of trees in the study area and eventually the 
carbon stocks. 

5.7. Sources of error or uncertainities 

5.7.1. Allometric equation 
The accuracy of allometric equation affects the accuracy of the model (García et al., 2010). The allometric 
equation developed for one area may introduce error when it is used for a different area. Site specific and 
species specific allometric equations are essential to accurately estimate biomass of the forest. The major 
sources of uncertainty are the coefficient parameters ‘a’ and ‘b’ in allometric equation when they are not 
calibrated for a specific site (Ketterings et al., 2001).  
 
The study area of this research was in the sub-tropical region. However, the allometric equation used in 
this study is for tropical moist forest. Thus, one of the sources of error in biomass estimation could be the 
allometric equation.  
 

5.7.2. Unsystematic shift between LIDAR data and Digital camera imagery 
Unsystematic shift of 0-1 m was observed i.e. spatial overlap between two datasets was not exactly 
matching. This shift might be due to different sensors for LIDAR data and Digital Camera imagery. The 
average crown diameter of trees is approximately 4 m and comparing with the size of trees, the shift was 
acceptable. However, the shift might affect the derived parameters CPA and height which would affect in 
the estimation of carbon stock. 
 

5.7.3. Other errors/uncertainty 
Errors and uncertainties can be introduced at any step from data and operations which are then 
accumulated and propagated to the maps (Wang et al., 2005). There were mainly four major operations in 
this study and in each operation, error could be introduced. 
 
The first step was CHM derivation from LIDAR point cloud. Coefficient of determination (R2) of 0.74 
was obtained from the comparison between LIDAR derived height and field height This shows 74% of 
variation in the field height can be explained by the LIDAR derived height and RMSE was 2.8 m. This 
error can accumulate and propagate in the further step. 
 
The next step was segmentation. The segmentation accuracy showed there were errors. Commission and 
omission errors were observed due to overlapping trees and branches of big trees which can reach far in 
different directions and grow into irregular shape. These errors can propagate in the further step. 
 
The next operation was classification of tree species. When classification is not correct, accurate 
estimation of biomass is not possible. Error in classification may lead to selection of wrong wood specific 
gravity for a tree. Error in classification could be due to spectral characteristic of vegetation, shadows, 
distortion of the image and misidentification of tree. 
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The last operation was model development. Selection of appropriate model is required. Data used for the 
model should be good representative of population (trees) in the study area. Otherwise, this might affect 
the model. Beside these, errors from allometric equation would affect the model.  
 
Apart from these, field measurements might have errors. Errors could be aroused from sampling error, 
improper measurement of DBH and height. In this regard, Gonzalez et al. (2010) studied the uncertainty 
of field measurements and found high uncertainty on these measurements. All these errors propagated to 
the models. Finally, the errors affect the carbon estimation and mapping.  
  
Figure 5.7 shows the diagrammatic representation of errors and their propagations into the final map. 
Estimation of magnitude of these errors and the error propagations in the study is beyond the scope of 
the study but it is necessary to understand why the accuracy of the carbon stock estimation is relatively is 
low. Although there are sources of errors, this research focuses on development of a method but not for a 
perfect carbon mapping application. However, the research also makes aware that there are sources of 
error which require further study. 
 
    
 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7: Sources of errors and their accumulation and propagation into the map 
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6. CONCLUSIONS AND RECOMMENDATIONS 

A significant relationship of carbon with CPA and height was found which improves carbon stock 
estimation. The method applied in this study which includes the integration of LIDAR data and high 
resolution Digital Camera imagery, can be used for carbon stock estimation. Following conclusions were 
drawn for each research question. 

6.1. Conclusions 
 
What is the accuracy of tree crown delineation using LIDAR data and Digital Camera imagery? 
The overall accuracy of tree crown delineation was 76.2% and D value was 0.31. 
  
How effective is LIDAR data in separating intermingled tree crowns? 
Intermingled tree crowns were not separated using LIDAR data with average point density of 0.8 
point/m2. 
 
Is there any multicollinearity between CPA and height? 
The correlation between CPA and height for both Shorea robusta and other species were checked. The 
correlation coefficient for Shorea robusta was 0.58 and Variance inflation factor (VIF) was 1.51 whereas for 
other species correlation coefficient was 0.34 and VIF was 1.13. This shows that the degree of 
multicollinearity was very low. This indicates that there was no effect of multicollinearity on the model.  
 
Which model has the highest accuracy for carbon estimation?  
The models including both height and CPA has higher accuracy in carbon estimation compared to the 
model including only CPA and the model including only height. In order to derive the relationship of 
carbon with CPA and height, multiple linear regressions models were developed for both Shorea robusta 
and other species. These models had the lowest RMSE% i.e. 36.8% and 32.4% for both Shorea robusta and 
other species respectively.  
 
What is the amount of carbon stock in the study area? 
The total amount of carbon stock in the study area was approximately 48973Mg which was 89.45MgCha-1. 
 
Related to the general objective - to develop a method to accurately estimate and map above 
ground carbon stocks using airborne LIDAR data and high resolution Digital Camera imagery: 
 
Although the models developed suffer from 36.8% (Shorea robusta) and 32.4% (others) of error percentage, 
this study shows that it is feasible to estimate and map above ground carbon stocks using airborne LIDAR 
data and high resolution Digital Camera imagery though it has some limitations. The main limitation is 
trees species were classified into only two classes and less number of sample sizes was used for model 
calibration and validation. Multiple regression models developed in this study did not perform well for 
small trees. Improvement can be on done by classifying more tree species and developing species wise 
regression models using more number of observations which include all sizes of trees. 
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6.2. Recommendations 
• The allometric equation used in this study was not site specific which will bring errors in the 

developed models. Therefore, there is a need to develop site specific and species specific 
allometric equations for Nepal for accurate carbon stock estimation. 
 

• There should be sufficient number of observations for each tree species. This will help to classify 
tree species and then develop species wise model of CPA, height and biomass relationship. 
Sufficient sample size should be used to develop models. This will make the models more reliable 
and improved. 
 

• In this study, due to the low point density LIDAR data, intermingled trees were not separated. 
Therefore, it is recommended to use relatively high point density LIDAR data and assessment 
should be done whether the intermingled trees are separated or not. Further, data about degree of 
intermingled trees should be collected. This may help to analyse the result in the sense that if the 
trees are separated then, up to which degree of intermingle it can separate and for which degree 
of intermingle it cannot separate.  
 

• The method developed in this study can be applied using relatively high point density LIDAR 
data and digital camera imagery. It is recommended to analyse the added value of using high point 
density LIDAR data in segmentation and tree species classification. 
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APPENDICES 
Appendix 1: (a) Average monthly temperature of 1978 and 2006 (b) Rainfall trend from 1978-2006 source: 
(Lamichhane et al., 2009) 
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Appendix 2: List of tree species found in the study area 

S.N Local name Scientific name 
1 Sal Shorearobusta 
2 Chilaune Schimawallichii 
3 Bhalayo Rhuswallichii 
4 Barro Terminaliabellirica 
5 Aap Mangiferaindica 
6 Kyamuna Cleistocalyxoperculata 
7 Karam Adina cordifolia 
8 Saaj Terminaliaalata 
9 Kumbho Cochlospermumreligiosum 

10 Januma Syzygiumcumini 
11 Katus Castanopsisindica 
12 sallo Pinusroxburghii 
13 Khirro Sapium insigne 
14 Bot Dhayaro Lagerstroemia parviflora 
15 Mainkanda Xeromphisspinosa 
16 Khaniyo Ficussemicordata 
17 Kaiyo Wendiandiapuberula 
18 Mauwa Engelhardiaspicata 
19 Amaro Spondiaspinnata 
20 Chuwa Phlogacanthusthyrsiflorus 
21 Putalikath   
22 Anger   
23 Dungre   
24 Kuhelo   
25 Panchpate   
26 Taniyo   
27 Khallo   
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Appendix 3: Details of Digital Camera imagery data acquisition 
 

Image type RGB image optimized for automatic interpretation. 

Format GeoTIFF with tfw 

Compression Image files non-compressed TIFF.  

Source  From digital sensor 

View angle Nadir –looking 

Collection procedure Image files collected during the LiDAR acquisition.  

Resolution 0.45 m at 2500 agl altitude 

Orthorectification ortho-rectified to 1 m horizontal precision over the LiDAR 

Bands The image files contain three bands: R, G, and B 

R width (app.) 610 - 660nm 

G width (app.) 530 - 590nm 

B width (app.) not available 

Flight line direction According to the LiDAR flight plan.  

Weather conditions Obtained with clear weather.  

Sun angle 
Sun angle must not be less than 40 degrees and, preferably, not more 
than 80 degrees above horizon during the collect. 

Season 
In Nepal the photographic months are from October to March. Data 
taken on March 

Projection UTM zone 45N 

Band registration error Maximum band-to-band dislocation 0.3 pixels 

Horizontal location error Max +/-1m  

Tiling Images are tiled to 12Mb each.  
Image Tile index Ortho_tileindex_Block_Icimod 
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Appendix 4: Details of LIDAR data acquisition 
 

Customer 
Forest Resource Assessment in Nepal, Ministry 

of Forests and Soil Conservation 
Date Flown 20110316 / 20110328 / 20110401 / 20110402

Times of collection (UTC) 
02:45 – 08:20 / 03:46 – 05:00 / 04:01 – 05:45 / 

03:31 – 05:30
Date Processed 20110530
Projection UTM
Datum WGS84

Files included 
ASPRS LAS v. 1.2 - 3002 nos.(IC01.las to 

IV300.las)  
Aerial Platform                  Helicopter (9N-AIW)
Flying altitude  2200 m AGL
Flying speed  80 knots
Sensor pulse rate  52.9 khz
Sensor Scan speed  20.4 lines/second
Nominal outgoing pulse density @ground level  Average: 0.8 points per square meter
Scan FOW half-angle 20 degrees
Swath @ ground level 1601.47 m
Point spacing max 1.88 m across, max 2.02 m down
Beam footprint @ ground level 50 cm
Gap file name  No gaps
Tile index file name tileindex_Block_icomod.dgn
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Appendix 5: Enlarged map of the sample plot used for the tree identification in the field 
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Appendix 6: Data collection Form 

Name of Recorder:  Date: 

Stratum ID: 
Sample Plot 
ID: 

Bearing from the road 
Bearing for the 1st tree from 

the center of the plot  Plot center 
X        X        X    
Y        Y        Y    

Angle        Angle       

Slope:       
Plot 

radius:  Aspect:  Altitude:  Crown density(%):       

S.N  Species  DBH(cm)  CD (m)  Ht (m) 

Intermingled 
tree crowns 

   Remarks 
1                   
2                   
3                   
4                   
5                   
6                   
7                   
8                   
9                   
10                   
11                   
12                   
13                   
14                   
15                   
16                   
17                   
18                   
19                   
20                   
21                   
22                   
23                   
24                   
25                   
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Appendix 7: Slope correction table 
Plot size 500 m2     
       

Slope% Radius(m)  Slope% Radius(m) Slope% Radius(m) 
0 12.62      
1 12.62  36 13.01 71 13.97 
2 12.62  37 13.03 72 14.00 
3 12.62  38 13.05 73 14.04 
4 12.62  39 13.07 74 14.07 
5 12.62  40 13.09 75 14.10 
6 12.63  41 13.12 76 14.14 
7 12.63  42 13.14 77 14.17 
8 12.64  43 13.16 78 14.21 
9 12.64  44 13.19 79 14.24 

10 12.65  45 13.21 80 14.28 
11 12.65  46 13.24 81 14.31 
12 12.66  47 13.26 82 14.35 
13 12.67  48 13.29 83 14.38 
14 12.68  49 13.31 84 14.42 
15 12.69  50 13.34 85 14.45 
16 12.70  51 13.37 86 14.49 
17 12.71  52 13.39 87 14.52 
18 12.72  53 13.42 88 14.56 
19 12.73  54 13.45 89 14.60 
20 12.74  55 13.48 90 14.63 
21 12.75  56 13.51 91 14.67 
22 12.77  57 13.53 92 14.71 
23 12.78  58 13.56 93 14.74 
24 12.79  59 13.59 94 14.78 
25 12.81  60 13.62 95 14.82 
26 12.82  61 13.65 96 14.85 
27 12.84  62 13.68 97 14.89 
28 12.86  63 13.72 98 14.93 
29 12.87  64 13.75 99 14.97 
30 12.89  65 13.78 100 15.00 
31 12.91  66 13.81 101 15.04 
32 12.93  67 13.84 102 15.08 
33 12.95  68 13.87 103 15.12 
34 12.97  69 13.91 104 15.15 
35 12.99  70 13.94 105 15.19 

       
      

Source: Y.A. Hussin (2001) from lecture note 
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Appendix 8: Total sample plots for data collection in the study area 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 9: Descriptive statistics of field collected data  
 

DBH (cm)   Height (m)   

Mean 17.92 Mean 12.55
Standard Error 0.16 Standard Error 0.09
Median 15 Median 12.2
Mode 10.5 Mode 10.2
Standard Deviation 8.72 Standard Deviation 5.18
Sample Variance 76.04 Sample Variance 26.8
Range 73 Range 34.3
Minimum 10 Minimum 1
Maximum 83 Maximum 35.3
Sum 50037.7 Sum 35058.5
Count 2793 Count 2793
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Appendix 10: ANOVA tests  
 
ANOVA test result of Shorea robusta (for relationship between CPA and carbon) 

  df SS MS F Significance F
Regression 1 1909638.61 1909638.61 211.87 4.4776E-29
Residual 130 1171700.61 9013.08     
Total 131 3081339.22       

 
 
ANOVA test result of other species (for relationship between CPA and carbon) 

 

 
 
ANOVA test result of Shorea robusta (for relationship between height and carbon) 

  df SS MS F Significance F 
Regression 1 2021005.82 2021005.82 229.18 1.78132E-30 
Residual 130 1146385.82 8818.35     
Total 131 3167391.64       

 
 
ANOVA test result of other species (for relationship between height and carbon) 

  df SS MS F Significance F
Regression 1 321817.62 321817.62 75.56 3.4589E-11 
Residual 45 191650.17 4258.89     
Total 46 513467.79       

 
 
ANOVA test result of Shorea robusta (for relationship between CPA, height and carbon) 

  df SS MS F Significance F 
Regression 2 4633027.72 2316513.86 168.34 1.10025E-36 
Residual 129 1775168.44 13761.00     
Total 131 6408196.15       

 
 
ANOVA test result of other species (for relationship between CPA, height and carbon) 

  df SS MS F Significance F 
Regression 2 502012.3 251006.2 44.30086 2.8832E-11
Residual 44 249301.5 5665.943     
Total 46 751313.8       

 
 
 

  df SS MS F Significance F 
Regression 1 194672.55 194672.55 70.18 9.7967E-11 
Residual 45 124826.13 2773.91     
Total 46 319498.68       
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Appendix 11: Photos from the field 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 


