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Summary

In current society, people are involved in traffic every day. In order to travel to go to
work, do the groceries, meet friends, study, visit a forest, in all these situations it is
necessary to be involved in traffic. Because of this, it is very important that traffic
is as safe as it can possibly be. Unsafe situations can be caused by many factors.
An important factor is road quality: poorly maintained roads can cause damage to
vehicles and even be a cause for accidents. Moreover, the way the road has been
laid out can be very important for safety. Hard breaking is a potential cause for
accidents. This means that roads that require hard breaking can be a cause for
accidents to happen. The fact that it is difficult and labor intensive to check every
road for damage and unsafe situations has become problematic. An automated way
to detect these situations by people driving on the road would be a possible solution
to increase awareness of which roads maintenance.

Another important cause of accidents is driver behaviour. Distracted driving is
one of the most important causes of accidents. However, it is easy to be distracted
while driving. An automated system to notify a driver that they are being distracted
could be beneficial for traffic safety.

To improve these two causes of accidents, a solution must be created to auto-
matically detect road safety, as well as driver behaviour. Therefore, this paper tries
to answers two questions:

• Can we detect unsafe situations on the road using smartwatches?

• Can we detect the behavior of a driver using smartwatches?

This paper proposes using sensors already available in wrist worn devices to
measure both road safety and driver behaviour. Based on a literature review of
existing solutions, this paper investigates three distinct machine learning techniques:
Support Vector Machines, Long Short-Term Memory model and the InceptionTime
model.

Existing options are surveyed, after which the paper describes its own solution to
the problems. The conclusion of the paper is that current methodology needs more
improvements to create a viable solution.

iii



IV SUMMARY



Contents

Summary iii

1 Introduction 1

2 Research Questions 3
2.1 Summary of current work . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Requirements 7
3.1 Must have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Should have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Could have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Won’t have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 System architecture for data collection 11

5 Implementation of data collection 15
5.1 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 The watch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.1 Initial design and limitations of the Garmin connect SDK . . . . 16
5.3 The phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3.1 Android app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.3 Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Data analysis 21
6.1 Ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.1 Limitations of ground truth due to the COVID-19 situation . . . 22
6.2 Possible methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Support vector machine . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



VI CONTENTS

6.2.4 LSTM-RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.5 HIVE-COTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.6 InceptionTime . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Evaluation 35
7.1 Can we detect unsafe situations on the road using smartwatches? . . 35

7.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Can we detect the behavior of a driver using a smartwatch? . . . . . . 36

7.2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Future work 39

9 Overview of Previous research 41

References 43

Appendices



Chapter 1

Introduction

Everyone has to participate in traffic almost every day. People participate for ex-
ample by walking, cycling or driving a car or other motorized vehicle. Because of
this high exposure to traffic, safety on the road is an important factor for the overall
safety of people. However, too many accidents still happen on the road, with various
causes. Most accidents involve a certain degree of human error. Some risk factors
increasing or decreasing the chance of human error can be influenced by the road
infrastructure.

One factor is the quality of road pavement, which can cause accidents by dam-
aging the car, or requiring drivers to evade certain patches of roads, increasing the
risk of hitting something else. Another factor is how the road is laid out. One can
think of factors such as the width of a road, or how easy it is to see upcoming traffic
at an intersection. Also, the speed difference on converging roads can directly influ-
ence traffic safety. In the area of Civil Engineering, serveral guidelines have been
laid out for safe roads [1] [2] [3] [4] [5] [6] [7] .

Another important aspect in traffic safety is driver behavior. The amount of ag-
gression that someone drives with, or how attentive someone is, directly influences
the chance of colliding. However, also distractions like listening or using the radio,
having a conversation with a passenger sitting in a car, or even opening a window
can increase the chance of an accident.

Most of these risk factors can be monitored. There are expensive machines
that can detect every irregularity in the road. Research can be done into certain
intersections, on how they can be made safer. Hazardous driving behavior can be
spotted by traffic cops. However all these options require large investments of time
and funds in either expensive machinery or employees.

Nowadays, the availability of devices equipped with potent sensors is relatively
high. This implicitly means that many participants in traffic carry one or more sensing
device. Multiple researchers have identified the possibility to use those sensors to
measure certain aspects of road safety.
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In a previous paper [8] we identified multiple areas where research has been
lacking. We identified if it would be possible to detect unsafe situations in roads, for
example by measuring whether certain areas have very tight turns or hard breaking
occurs at certain spots. Another area is monitoring driver behaviour without requir-
ing extensive setups for example involving cameras.

We think both areas can be solved using wrist worn consumer electronics. We
expect wrist worn devices with movement and position sensors can be harnessed
to detect what a driver is currently doing, such as opening or closing a window or
changing the radio station. We also expect that wrist worn devices are accurate
enough to estimate the road quality. We use smartwatches since the adoption of
smartwatches has been increasing over the past years, and is expected to keep
increasing [9].

Figure 1.1: An example of a road with a bad road quality



Chapter 2

Research Questions

2.1 Summary of current work

In this research we follow up on our previous paper [8]. In this section we will sum-
marize this paper and its conclusion to explain the reasons behind our research.

In [8] we made a distinction between 4 different fields of research into road safety.
Below we include an excerpt of the publication that explains these fields.

Road maintenance The research that focuses on road maintenance
looks at the presence of irregularities in the road, such as potholes and
bumps. This type of research tries to detect potholes and other issues
that require maintenance on the road. This research usually tries to re-
place expensive machines that are now being used in road maintenance
by detecting irregularities using vehicles which drive on the road anyway,
such as buses, taxis, or regular traffic. Most research in this area uses
a threshold based system to differentiate between bumps and normal
irregularities.

Road pavement type monitoring This type of research looks at the total
roughness of certain stretches of road. Most research either use their
own classification to classify a road, or use the International Roughness
Index (IRI) equivalent.

Driving behavior This research does not look at the roads but looks at
the driving behaviour of people. this research either looks at the overall
behaviour such as Junior et al. [10] and Guo et al. [11], or specifically
at a certain aspect of driving, such as aggressive driver behaviour, for
example the research of Jasinski et al. [12] or specifically at economical
driving, such as Torp [13] and Magana et al. [14], Most of the driver
behavior studies use data from the car, using OBD-II sensors to analyze
the throttle input. Magana et al. [14] study how economic someone drives

3
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by combining the OBD-II data, which includes both throttle application
and engine status information, such as engine speed and engine load,
with GPS and camera information.

All these research require adding an OBD-II sensor to your car. This has
the benefit of getting a lot of data about the car, however it requires every
user to add a component to their car. Also these research do not look at
steering input.

Research into distracted driving, by J.Stutts et al. [15] [16], S. Klauer et al.
[17] T. Ranney et al. [18], S. McEvoy [19], T. Dingus et al. [20], C. Pêcher
[21], A. Stelling et al. [22] all indicate a higher crash risk and more unsafe
driving behavior by performing distracting activities in the car, including
rolling down a window, controlling the radio or car electronics, eating,
drinking, making a phone call and having a conversation all increase the
risk of being involved in a crash.

Research done by K. Young et al. [23] indicate that a high percentage
of drivers, especially in the younger age ranges, are involved in these
distracting activities while driving.

This leads us to believe that a way to monitor driving behavior that does
not require acquiring additional measuring tools then already in posses-
sion by consumers can be a benefit to driver safety.

Safety The research into safety focuses on multiple aspect of safety. For
example road design, what makes a road safe. Such as Schepers [7],
who researched which design choices of a cycling path contributes to
safety, or makes the safety worse. In this field most research done is on
how to create safe roads, but not much research exists to automatically
detect if a road/cycle path is safe.

Research done by A. Dijkstra [6] [3] [5] into road choice concludes that
the route taken in a car highly influences the risk of an accident. One
of the risks indicated in the paper is the difference in speeds at certain
roads.

Table 9.1 at the end of the paper shows an overview of the existing research
done in this area. In the previous paper we identified that all existing research is
not yet capable of detecting driver behaviour. As shown in the table, P. Mohan et
al. [24] developed partial behaviour tracking, but this is limited to detecting honking
using the microphone of the smartphone. Previous research also has not covered
the detection of unsafe situations on the road.
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2.2 Research questions

As stated in the previous section, we identified two areas of research. The first is
the detection of unsafe situations on roads. For example by detecting locations with
tight turns or where heavy breaking occurs frequently. The second area covers the
influence of driver behaviour on traffic safety.

Previous research mainly uses the movement sensors in smartphones, or ded-
icated sensors built into a car. Because of the fixed placement of these sensors
it is not possible to detect the behaviour of the driver. We want to research if it is
possible to detect the driver behaviour by using sensors attached to the driver. To
make it more likely that drivers will be inclined to use this, we want to use consumer
electronics that are already being used by consumers. We identified that due to the
rise in smartwatch usage [9], this would be a viable wearable device to conduct this
research.

To be able to research these items we created the following research questions:

1. Can we detect unsafe situations on the road using smartwatches?

2. Can we detect the behavior of a driver using a smartwatch?

To answer the first research question, we need to analyse the different factors
impacting road safety. In our previous publication [8], we identified three factors
that can identify road safety. Multiple research, such as done by A. Dijkstra [6]
mention factors that civil engineers need to take into account in order to create safe
roads. One of them is how tight a turn can be. Another way to determine whether
a road is safe or not is to identify heavy breaking. Detection of heavy breaking
alone is not sufficient, since we need to differentiate between heavy breaking due to
structural deficiencies in the road design and heavy breaking due to other factors,
such as driver inattention or mistakes by other road users. We estimate that we can
differentiate between the two by looking at the amount of times drivers need to break
heavily. The actual road quality is an other important factor for traffic safety. After
all, poorly maintained roads can cause accidents and vehicle malfunctions.

Based on these considerations we divided the question up into the following
subquestions:

1.1 Can we detect heavy breaking using smartwatch sensors?

1.2 Can we detect tight turns using smartwatch sensors?

1.3 Can we combine the data of multiple drives in the same road to differentiate
between structural safety issues and occasional safety issues?

1.4 Can we classify the quality of the road?
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It is important to detect whether a driver is doing something else besides driving,
since distractions are one of the major reasons for traffic accidents. Several studies
unveiled that talking on a cell phone increases the chance of an accident [25]. Other
research indicates that different tasks, such as controlling the radio or portable music
device, negatively affect safety [26] [27] [19] [17], Listening to music [28] [29] [21],
eating or drinking are examples of such tasks [20] [15] [16]. Interestingly, it has been
shown that a large percentage of drivers actively engage in distracting activities
while participating in traffic, despite its known risks [23] [22] [30] [31] [18].

To be able to answer the second research question, we need to be able to detect
what a driver is doing. We tried to identify actions that need input from the driver.
Therefore we need to be able to detect what a driver does with their arms while
behind the wheel. Since most people wear only one smartwatch, we noted that there
would be a difference between actions with the arm with and without a smartwatch.
We want to be able to discriminate a situation where a driver has their hands on
the steering wheel from a situation where a driver is doing something else with their
arm. We assumed that we could detect the actual action with the arm wearing the
smartwatch, and that we could only detect whether the arm without the smartwatch
is on the steering wheel or not.

We divided the second question: ”Can we detect the behavior of a driver using
smartwatches?” in the following questions:

2.1 Can we detect if the arm wearing the smartwatch is on the steering wheel?

2.2 Can we detect which action the driver is performing with the arm wearing a
smartwatch?

2.3 Can we detect if the driver is performing an action with the arm not wearing a
smartwatch?

Figure 2.1: A distracted driver



Chapter 3

Requirements

The requirements are created using the MoSCoW method. We identify three stake-
holders of the project.

The first one are the maintainers of the road. The road maintainers need a
system to detect roads with structural issues, such as potholes and bad road quality.
To a lesser extend this group also needs information about which road sections have
a higher likelihood to cause unsafe situations. Currently, road maintenance requires
specialized and expensive equipment, such as shown in figure 3.1

Figure 3.1: Example of a specialized vehicle used during maintenance and con-
struction of the roads

The second stakeholder are policy makers. For this group the system needs to
identify which roads cause more unsafe situations, so they can create measures
to increase the safety of the road, either by replacing the dangerous situation or
mitigate the dangers for example by lowering the speed limits. They also benefit
from behaviour tracking. For example if unsafe situations occur more often when

7
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a driver is using specific features of the car, like changing the heat or is busy with
the radio, they can either make legislation about it, or start awareness campaigns.
Research into distracted driving, by J.Stutts et al. [15] [16], S. Klauer et al. [17] T.
Ranney et al. [18], S. McEvoy [19], T. Dingus et al. [20], C Pêcher [21], A. Stelling et
al. [22] indicate that distractions such as handling the car radio increase the change
of accidents.

We also identify the user wearing the watch as the third stakeholder. The user
could also benefit from some information given by the system. Although we recog-
nize that this will be necessary to give incentives to actually use the system, this will
be out of scope for the current research, and could be added in future work. We did
include the functionality for the user in the list of requirements, but as won’t have.

There are two main differences between road maintainers and policy makers in
our definition. The first is that the road maintainers are interested in the quality of the
road surface, so they know where repairs are neccesary. The policy makers have
no specific interest in the quality of the road surface, but more about the safety of
road, for example the gradient of the corners. The second is that policy makers also
have an interest in information about the behaviour of the drivers.

3.1 Must have

Requirements Stakeholders

R
oa

d
m

ai
nt

ai
ne

rs

Po
lic

y
m

ak
er

s

D
ri

ve
rs

Tracking of arm movement X X X
Detecting movement of the car X X X
Give information about the input the user has on the steering wheel X X X
The system works for users driving a car X X X
The system knows the location of the measurements X X
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3.2 Should have

Requirements Stakeholders

R
oa

d
m

ai
nt

ai
ne

rs

Po
lic

y
m

ak
er

s

D
ri

ve
rs

The system is able to detect when a user takes
one of their hands off the steering wheel.

X

The system is able to detect anomalies in the road,
such as potholes or bumps.

X X

The system gives information about the quality of the road. X X
The system combines the data of multiple users to provide more
accurate information about road quality.

X X X

The system will have minimal impact on battery life of the watch. X
The system will have minimal impact on battery life on the phone
if a phone is required to transmit data.

X

3.3 Could have

Requirements Stakeholders

R
oa

d
m

ai
nt

ai
ne

rs

Po
lic

y
m

ak
er

s

D
ri

ve
rs

The system will detect whether a swerve is caused after
the user takes their hand off the steering wheel.

X

The system will process the data on the watch or phone. X



10 CHAPTER 3. REQUIREMENTS

3.4 Won’t have

Requirements Stakeholders

R
oa

d
m

ai
nt

ai
ne

rs

Po
lic

y
m

ak
er

s

D
ri

ve
rs

The system will process the data on the watch. X
The system will give real time information to
the user about road quality.

X

The system will give real time information to
the user about road safety.

X

The system will give information to the user
about their driving behaviour.

X

The system will give information how the user
can improve their driving behaviour.

X

The system will give route suggestions based
on the quality and safety of roads.

X

The system will use for other types of transport,
such as bicycles, motor bikes and pedestrians.

X X X



Chapter 4

System architecture for data
collection

For our system to work, we will need to collect the sensor data from the smartwatch,
in order to analyse it later. The collection of the data is split between different areas.
At first the location data and sensor data is gathered using a wrist worn device.
Second this data will have to be sent to an external data storage to keep the memory
requirements of the wearable as low as possible.

Next to this we need to be able to gather the ground truth. For the ground truth
we need to be able to register what a driver was doing at a certain measurement,
and where the driver was doing this.

As explained in the chapter 2 we have chosen a wrist worn device because this
will give information of the movement of one of the arms of the driver. We decided
to use a smartwatch since the adoption rate of smartwatches is rising [9], and we
do not think people will buy a specific wrist worn sensing device just for measuring
data.

figure 4.1 shows the most basic implementation of the sensor data generation.
In this scenario the watch will directly send the measured data to a database.

Figure 4.1: The basic communication scheme

Since the most popular smartwatches do not have their own data connection,
nor do they have enough data to store all the gathered data locally, we will need an
intermediary device to collect the data. After receiving the data, the intermediary
device can store it in a database, as shown in figure 4.2

11



12 CHAPTER 4. SYSTEM ARCHITECTURE FOR DATA COLLECTION

Figure 4.2: The basic communication scheme with an intermediary

In chapter 3 we identified the requirements for the end system.
For the requirements of Tracking of arm movement, Detecting movement of the

car and Give information about the input the user has on the steering wheel the
system will have to be able to track movements. For this we require that the sys-
tem is equipped with movement sensors. To make accurate estimations of the arm
movement, both the directional movement of the arm needs to be measured (x, y,z)
as well as the rotational movement of the arm (pitch, power, roll). To make these
measurements we decided to use the combination of an accelerometer for the direc-
tional movements, and a gyroscope for the rotational movements. To be able to tell
on which roads the measurements of the driver were made, it is necessary to know
the location of the driver. For this we chose to have a device with GPS. To make the
measurements as accurate as possible it is beneficial to have a sample rate as high
as possible. However, to minimize the impact on the battery life on both the interme-
diary and the watch, is is beneficial to have a very low sample rate. To be able to find
a suitable sample rate that gives the best compromise between the two, we choose
to have a system in which the sample rate can be modified. To be able to send the
data to a database for processing and the data analysis, it is necessary to be able
to have a connection to an intermediary device, such as a Bluetooth connection to
a smartphone. To satisfy the requirements for energy usage, it is necessary to be
able to drive for multiple hours without needing to charge the wearable device.

To be able to store the data, we will need to be able to create our own software
for the system. The software of the system will have the same requirements as the
system. The software on the wearable needs to record the data from the different
sensors, (gyroscope, GPS and accelerometer), after which the data will need to be
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stored in the database. To be able to conduct our research we also need to collect
the ground truth. To collect the ground truth it is necessary to store the activity that
the driver is performing, as well as being able to sync it to the measured data. A
communication diagram showing this interaction is shown in figure 4.3. We created
an activity diagram in figure 4.4

Figure 4.3: The basic communication scheme including ground truth
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Figure 4.4: The activity diagram of the system

Based on the previous information we gathered the following list of requirements
for the wearable device

• Accelerometer

• Gyroscope

• GPS

• Connection to an external database

• Multiple hours battery time

• Programmable



Chapter 5

Implementation of data collection

5.1 Devices

When we chose a watch we took into account several criteria, as stated in the pre-
vious chapter. Sensors: we required a watch with at least an accelerometer, gyro-
scope and GPS Software: We required a watch with an SDK or API that would allow
us to read and store both the accelerometer, gyroscope and GPS data. Battery
usage: Since we want to be able to drive without draining the battery of the smart
watch, we wanted a watch that would be energy efficient.

After the first 2 criteria we were left with watches based on Android, Tizen (Sam-
sung watches) and Garmin watches. Since the Garmin watches are more restricted
in their functionality, as they are mainly aimed at sports enthusiasts, they also have
a better battery life. Because of this reason we went for Garmin.

Phone OS: We decided to go for Android. Since Garmin has APIs both for an-
droid and IOS, we went for android since that did not require gaining a developer
license.

5.2 The watch

We went for the most affordable watch in the Garmin arsenal that fit our require-
ments. This meant we went for the Garmin Vivoactive 4 to collect the data. The
watch is equipped with an accelerometer and gyroscope to measure the movement
data. It contains GPS for location data, with the possibility to combine it with either
Galileo or Glonass.

To gather the sensor data it is required to subscribe to receive sensordata events.
The SDK collects the data for a certain timeframe, after which it sends an event to the
program, so it is possible to process the sensor data. It is possible to select 1, 2, 3
or 4 seconds as a timeframe. For example using a sample rate of 10 measurements

15



16 CHAPTER 5. IMPLEMENTATION OF DATA COLLECTION

per seconds, and a timeframe of 4 seconds, will generate 40 measurements every
4 seconds.

To gather location data it is also required to subscribe to receive location data.
For location data it is not possible to choose the time interval, the watch will transmit
a location every time it has a GPS-fix.

Figure 5.1: The smartwatch selected for this research project, the Garmin Vivoac-
tive 4

5.2.1 Initial design and limitations of the Garmin connect SDK

In the original design the watch would send the location data and movement sensor
data every time it would receive the data. However the Garmin SDK has a queue of
1 item. This would mean that if the program would send the data to the phone, and
somewhat later the movement sensors would have data to be sent, the movements
sensor data would get lost because the location data would still be sent. Considering
the delays in the SDK combined with the delay of sending data using Bluetooth Low
Energy this would cause a significant package loss.

We circumvented this issue by combining the location data and accelerometer
data. By setting the period of the accelerometer data to 4 seconds, it increased
the chance that at least one location data point is being sent in between the time
of 2 accelerometer measurements. Every time an accelerometer measurement was
being sent, it would be stored on the watch. The next time a location would be sent
it combines the accelerometer data with the location data and sends it to the phone.
In case the previous accelerometer data has not been sent when new data is ready,
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it will sent the accelerometer data without the GPS data. This can only happen when
the GPS has no fix.

5.3 The phone

5.3.1 Android app

Figure 5.2: The simplified class diagram of the android application

We created an android app to collect the data being sent by the watch and store it
in a sqlite database using the Room abstraction layer. As discussed in chapter 3 the
software needs to be able to perform the following actions: Receive the measure-
ments from the watch, and store it into a database. We used the library provided
by the Garmin SDK to communicate between the watch and the phone. We made
it a one way communication. The Garmin SDK gives an error on the watch when a
message does not arrive at the app on the smartphone, so we do not need to send
anything back to the watch. The app has 2 purposes. The first and most important
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purpose is to collect all the data from the watch and store it in a database. The
second purpose is to give a passenger the possibility to tag in real time what the
driver is doing. A diagram showing the communication between the watch and the
app is shown in figure 5.3. We created a separate garminService, that can han-
dle the communication of multiple watches, even though in our situation we only
use one. This service is an android backgroundservice, meaning that it will go on
even if the phone screen turns off or the user does something else with the phone.
This service contains one, or theoretically multiple WatchConnectivity objects, which
handle the actual communication to the smartwatch. When the watch sends back
measurement data, the garminService broadcasts this to all WatchListeners. In our
situation we had two watch listeners, one to show the progress on the screen, and
one to send the measurements to the database, using the ResearchRun object. A
simplified class diagram, hiding the android and front-end classes is shown in figure
5.2. An image of how the passenger is able to tag the actions of the driver is shown
in figure 5.4

Figure 5.3: The original communication using an android app to collect the data
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Figure 5.4: Example view of the android app

5.3.2 Limitations

During testing on the simulator this worked well after solving the issues that resulted
from the limitations as discussed in section 5.2.1. However, during testing of the app
using the smartwatch in connection with the phone, the communication between the
watch and the phone was very unstable. Most of the messages would not come
through, and after the first error the connection would not recover and every sub-
sequent message would be lost. It would only work after restarting both the phone
and the smartwatch. After sending some requests on the Garmin support forum, it
was highly recommended to stop using the android library, and use the functionality
to send data to a web server instead.

5.3.3 Web server

We created a small web application which receives the data from the smartwatch
and stores it in a database. After that we redesigned the smartwatch app to send
requests to this web server. Since the smartwatch does not have its own internet
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connection, it will send the data to the Garmin Connect app on the smartphone,
which will make the web request. A diagram showing the communication from the
watch to the web server is shown in figure 5.5

Figure 5.5: The new implementation using a web server to collect the data



Chapter 6

Data analysis

After gathering the data, our next step was to analyse it. In this chapter we will start
by explaining how we gathered the ground truth, after which we will give an overview
of existing methods and an explanation of which methods we used. After this we will
explain how we did the implementation along with the results.

Figure 6.1: Gathering the ground truth

6.1 Ground truth

The original plan to tag the data was to use the app on the smartphone as discussed
in section 5.3.1. In this situation a passenger would press the buttons when the
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driver did a certain action, such as turning a corner. However, due to the COVID-
19 outbreak in the Netherlands during the period in which we were collecting our
data, university regulations did not allow to bring a passenger in the car. Due to
this limitation, we used the video camera on the smartphone to make a video of the
driver. Using this video, we manually tagged all actions of the driver. We asked the
driver to record the smartwatch showing the ID of the packages being sent, so it
would be possible to synchronise the video to the data.

6.1.1 Limitations of ground truth due to the COVID-19 situation

The collection of the ground truth was heavily influenced by the evolving COVID-
19 situation in the Netherlands. Due to the lockdown measures in place in the
Netherlands, citizens were asked to keep a minimum distance of 1.5 meters from
one another. Therefore it was also not allowed to be in a car with more than 1
person. Moreover, it was highly discouraged to go outside in non-vital situations.
Because of this we needed to gather data by asking people that had a reason to
drive somewhere. Because the persons would have to drive in their own car, it was
also impractical to fit multiple cameras. In accordance to these limitations we found
one person that gathered most of the data by driving to work. We also used a second
person who drove to work, however because of the lockdown rules this was a very
limited set.

Since it was impractical to fit the car with cameras, we used the cellphones of
the drivers to record videos of the trips. We experimented both with using the front
and back camera, and we found that if we used the front camera, it could give us
information about the driver and the road the driver was using. However this meant
that evaluating the road quality on the images was harder. This meant the amount
of data we could gather about the road quality was limited.

In the end we came with about 9 hours of data, spread over 44 trips. Every 10
minutes of data cost about 1 to 1.5 hours of manual processing to gather the data

Amount of drivers 2
Amount of videos 44
Hours of video 9

6.2 Possible methods

In this section we will give a short overview of the possible machine learning tech-
niques available to analyse our data, as well as explain how these methods will fit in
for our data-set.
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6.2.1 Support vector machine

A Support Vector Machine is a supervised learning model which is mainly used
for classification. Several researches have approached the problems we are facing
using SVMs. Bello-Salau et al. [32], Tai et al. [33], Seraj et al. [34], A. Fox et al. [35]
and A. Allouch et al. [36] have used SVM’s to measure the road quality. T. Brisimi
et al. [37] used a Sparse SVM to gather the data. None of the aforementioned
researches were tracking the behaviour of the driver.

6.2.2 SOM

Self Organising Maps, also known as Kohonen Maps, were invented in 1982 by T.
Kohonen [38]. Self Organising Maps are originally meant for dimensionality reduc-
tion, but are nowadays mostly used for clustering. Some research has been done
in using Self Organising Maps to measure the road quality, such as the research
by Seraj et al. [39]. However this research only analyzes the road quality, not the
behaviour.

6.2.3 Deep learning

Since one of our objectives is to detect driver behavior, we also looked into the field
of Human Activity Recognition. Research into this area uses accelerometer and
gyroscope data to classify certain behaviour of test subjects. One of the methods
researchers have been using is deep learning. In the next sections we will discuss
some of the deep learning techniques that have been used for human activity recog-
nition or road quality detection.

Most research into Human Activity Recognition using Deep learning treat the
problem as a Time Series Classification problem.

Because for Human Activity Recognition using movement sensors it is usually
not only important what is happening at a certain time, but also what has happened
before this, most deep learning techniques used for this purpose will use results to
influence the decisions in the future, for example by using some form of feed forward
network.

6.2.4 LSTM-RNN

One of the deep learning techniques used for time series classification is Long short-
term memory Neural networks. An LSTM is a recursive neural network, invented by
S. Hochreiter et al. [40]. Some of the applications for LSTMs that are relevant for
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this research are time series classification and anomaly detection, and human action
recognition [41] [42] [43] [44].

One of the improvements for human activity recognition is using Bidirectional
LSTMs, such as used by Zhao et al. [45]. The original LSTM only uses data that
has been learned from the past to classify current behavior. A downside of this is
that for human behavior context can be very important. One of the situations where
future information might be important, is on a roundabout. Driving on a roundabout
in countries which drive on the right side of the road such as the Netherlands means
that you will enter the roundabout by taking a right corner, and exiting the roundabout
will also involve taking a right corner. This means that it can be beneficial to know
what happens in the future when trying to predict an action. A bidirectional LSTM
uses two separate LSTMs, of which one will process the data from start to end, and
the other LSTM will process the data from the end to the beginning, as shown in
figure 6.2. By using a bidirectionally LSTM the accuracy of time series classification
can be greatly improved, as shown by Zhao et al. [45]

Figure 6.2: A Bidirectional LSTM

K. Saleh et al. [46] researched the use of Long short-term memory networks to
classify driver behavior. In this case driver behavior does not mean what a driver
is doing, but if the driving style of a driver is normal, aggressive, or drowsy. The
research used the accelerometer and Gyroscope sensors in smart phones. This
research used a Stacked-LSTM deep learning network to classify the driving style.
The research showed promising results, with a much higher accuracy compared to
Drivesafe [47]. This research shows that using LSTM Neural Networks are promis-
ing to classify driving behaviour.
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6.2.5 HIVE-COTE

Another methodology that has been used for research into Time Series Classifica-
tion is HIVE-COTE. HIVE-COTE is a modification to COTE. COTE was invented by
Bagnall et al. [48]. HIVE-COTE was created by J. Lines et al. [49]. This was a
huge improvement over COTE, and considered state of the art when it was created.
However, as identified by I. Fawaz et al. [50], the accuracy comes at the cost of a
computational performance. The high computational intensity means it is unviable
for large data sets.

6.2.6 InceptionTime

I. Fawaz et al. [51] identified the potential of deep learning to create a machine
learning tool with a high accuracy while still maintaining a Complexity low enough to
make it feasible for large datasets. The result of this is InceptionTime. InceptionTime
is a Time Series Classification implementation of the Inception-v4 architecture, as
created by C. Szegedy et al. [52]. InceptionTime managed to perform at a high
accuracy then HIVE-COTE, while performing much faster.

6.3 Implementation

6.3.1 Data Preprocessing

After gathering the data we had the labels as classified in figure 6.3. Since we had
a limited arangement of cameras, we had issues always identifying when the driver
was performing gear shifts. Sometimes because it was not clear if it was an up
or downshift, but also sometimes because we were not sure if the drivers just put
their hands on the arm rest or if they were actually shifting. Because of this we also
added a classifier ”Right hand”. This was for all the situations where we were not
sure what the driver was doing.
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Figure 6.3: The labels from data gathering

Most Human Activity Recognition projects assume that someone is doing one ac-
tivity at a time. For example someone is either sitting, or standing, or running. How-
ever, for our purpose, we needed to detect certain events that occur on the same
time. Some of the possible combinations that happen during driving are turning off
the blinkers while turning a corner and shifting while turning a corner. Because of
this we identified the need to split our categories in multiple classes. We identified 5
distinct classes. The classes with their activities are shown in figure 6.4
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Car
The Car class contains all actions that have a direct impact on the direction of the
car. All these actions involve turning the steering wheel, except waiting for the traffic
light. In this case the car is not moving.
Left hand
The left hand class involves any action done with the left hand. Since our test sub-
jects wore the smartwatch on the left hand, we expected the highest granularity in
which actions could be identified. The actions include controlling the blinkers, but
also different positions and actions of the left hand such as itching or the drivers
fiddling with their hair.
Right hand
The right hand class involves any action done with the right hand. Since the watch
was worn on the left hand with our experiment, we did not expect a high success
rate in this class. However we anticipated that it might be possible to measure when
the driver takes their right hand off the steering wheel to do something else.
Road surface
The Road surface class contains information about the road. Since we were not able
to fit the car with more cameras, nor were we allowed to sit next to the driver to make
notes about the road surface, as explained in section 6.1.1 our Road quality class
is very basic. We made the distinction between a smooth surface, such as asphalt
and a rough surface, such as cobblestone roads, or badly maintained asphalt. We
also added speed bumps to the class, since they were possible to detect using our
camera arrangement.
Acceleration
The acceleration class involves any action that involves the change of speed. We
included this category since a hard deceleration might indicate that a dangerous
situation has unfolded. We made the distinction between keeping the same speed,
Heavy acceleration and deceleration, such as heavy breaking, and slight accelera-
tion and deceleration, such as gentle breaking.



28 CHAPTER 6. DATA ANALYSIS

Figure 6.4: The labels from data gathering after sorting them in categories

When we created the labels we anticipated that we would need to combine some
of the labels. We anticipated that this would be necessary either because a certain
action is not performed enough, or that it is not possible to make a distinction be-
tween certain actions. We anticipated that we might need to combine most of the
Right hand actions, as well as some of the car movement actions. Since we added
very specific actions for the Left hand, we also anticipated that those might need to
be combined. As explained further in section 6.3.2 this was indeed the case. The
new activities are shown in figure 6.5.

Figure 6.5: The labels from data gathering after sorting them in categories

6.3.2 Machine learning

We shown some of the machine learning possibilities in 6.2. Since InceptionTime is
at the moment the state of the art for Time Series Classification, this seems to be
the most viable option. However there is a limitation to InceptionTime that makes it
less ideal for our situation. Since InceptionTime is built for data-sets with only one
activity at the time, it is not possible to use it with multiple output classes. To work
around this problem we needed to train multiple InceptionTime models, one for each
defined Class.

To test if training a single model with multiple outputs might be more suitable for
our situation, we decided to also use a Bidirectional LSTM, as discussed in section
6.2.4.
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Since many of the research into road quality measurements using smartphone
sensors are using SVM, we also created a SVM model. We expected this to be
mostly usable for the road quality measurements.

While analysing the data, we tried two approaches to deal with the part of the
data that was simple straight driving. Since a large aspect of driving does not involve
much actions, since most of the efficient routes contains mostly straight roads, with
sometimes a roundabout or a corner, the data was largely biased towards straight
driving. When analysing the different machine learning approaches, we took 2 ap-
proaches of dealing with the straight roads. The first approach is to include them, but
work around it. For example changing the superparameters or the preprocessing to
reduce the impact of the imbalanced data-set. Our second approach is to strip the
Straight roads out of our data-set, and train a model on this data. Our assumption
was that in this case the model would be able to more accurately make a distinction
between the more specific activities.

SVM

When we started using the SVM model, we were mostly interested in the compari-
son for road quality. As we expected the model performed very poorly on the other
categories. However, it also performed poorly at Road quality. Because we were lim-
ited to trips that were necessary, we were not able to select which roads the drivers
should drive. This gave the problem that we mostly had smooth roads, and not so
many bad quality roads. We did not manage to gain useful results
Acceleration The acceleration class is the one class with the most interesting re-
sults. As shown in figure 6.6, the model is not very accurate in predicting the accel-
eration. It does show some of the same trends as in the InceptionTime model. For
example Most of the classes will mostly map to Slightly increasing.

Figure 6.6: Confusion Matrix for the acceleration class using a Support Vector Ma-
chine
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InceptionTime

Because InceptionTime is the state of the art for Time Series Classification, we as-
sumed this would lead to the best results. Since InceptionTime does not support
multiple classes, we created separate models for each of the classes we defined.
Most of the superparameters are already predefined or calculated based upon the
data entered. However, we did experiment with combining the data. With this ap-
proach we take a collection of N measurements, and combine them into a batch.
We then take the most occurring tag, and say that the entire set is the activity that is
most prevalent in the batch. We found that it would not make a positive difference.
In many cases it did not change anything, and in some cases the results became
worse. Since there was no positive effect we did not include the results in the anal-
ysis.
Car
In our first approach we used all the data collected, including the straight roads.
As shown in figure 6.7 this did not generate a useful model. The only occurrences
where there were some predictions right was with taking a left turn, a right turn, or
waiting for a traffic light. However even in these cases the accuracy was very low.
We tried reducing the amount of Straight roads in steps to 10 percent, however this
did not improve the results.

When we completely strip away the straight roads, the results get more interest-
ing. While the accuracy of most of the tags is still not high enough, some trends are
forming in this data. As shown in the Confusion matrix in figure 6.8 the model is not
good at distinguishing right and left corners, as wel as right and left lane changes.
An interesting trend is that it is much more prone to classify something as a Right
turn than as a left turn. Our assumption is that this is because the route contains
much more right turns then left turns. There is also a problem in distinguishing a
lane change to the left from a lane change to the right.

Figure 6.7: Confusion Matrix for the Car class using InceptionTime
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Figure 6.8: Confusion Matrix for the Car class using InceptionTime Without straight
roads

Left hand
When analysing the left hand class, we see the same trend as with the car class.
when we include straight roads into the model, it will classify most activities as driv-
ing a straight road as shown in the confusion matrix in figure 6.9.

After removing the straight roads from the data-set, the role of Driving a straight
roads get taken by itching, which in this case also includes fiddling with the drivers
hair. An interesting relationship is between raising the left hand, and sneezing. This
is probably because the driver sneezed into the left hand, which meant part of the
movement was the same. The results are shown in the confusion matrix in 6.10

Figure 6.9: Confusion Matrix for the left hand class using InceptionTime

Figure 6.10: Confusion Matrix for the left hand class using InceptionTime without
straight roads

Right hand The right hand is an interesting scenario. Since moving the right
hand should not directly move the left hand, we did not expect it would be possible to
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see what a driver was doing with their right hand. We did expect it might be possible
to detect when the driver was doing something with their right hand, because of
corrections needed to be made with the left hand while the right hand is no longer
holding the steering wheel. We tried learning the model while all our tags were still
in place. After that did not work we tried to reduce the tags to controlling the radio
and any other task. We chose these tags because the radio was one thing that we
could clearly see in the video, as opposed to gear shifts. Also the driver needed to
move forward to control the radio, while remaining in their chairs for the other right
hand activities. This gave similar results to the previous approach. We shown the
results in a confusion matrix in figure 6.11.

The next approach we took was combining all the activities that involved taking
the right hand off the steering wheel into one. The results are shown in figure 6.12.
While the results greatly improved as opposed to the previous approach, it is still not
accurate enough. We did identify that increasing the amount of epochs improved
the results.

Figure 6.11: Confusion Matrix for the Car class using InceptionTime

Figure 6.12: Confusion Matrix for the Car class using InceptionTime Combining the
radio and right hand

Road surface
As explained in section 6.1.1 the COVID-19 situation affected the amount of routes
we could take, as well as the recording of the roads. Because of this we only clas-
sified 3 labels for the road surface monitoring. Smooth, bad and Speed bumps. We
expected the model to have problems distinguishing speed bumps from bad road
surface, as well as that most data would be classified as smooth, since the dataset
was greatly unbalanced towards smooth roads. When analysing the data, of which
the confusion matrix is shown if figure 6.13, we found that it had indeed some trouble
identifying speed bumps from bad road surfaces, although it still has a 60 percent
success rate. What did surprise us was the results for smooth and bad road sur-
faces. with percentages of 95 percent for bad road surfaces, and 99.77 percent
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chance that a smooth road surface was correctly identified. We conclude that using
InceptionTime is a viable model to classify road surfaces.

Figure 6.13: Confusion Matrix for the Road quality class using InceptionTime

Acceleration
We divided both the acceleration and deceleration into 4 different labels, and added
a label for no acceleration. The InceptionTime model does not manage to classify
the acceleration and deceleration very sufficiently. It does not map anything to the
larger acceleration en deceleration, and in the smaller changes it also have very low
success rates, as shown in the confusion matrix in figure 6.14.

Figure 6.14: Confusion Matrix for the acceleration class using InceptionTime

LSTM

For the Long short-term memory neural network we used a bidirectional LSTM. Al-
though it has been outperformed by InceptionTime for Time Series Classification, it
has been successfully used for road surface classification. One of the advantages
for our purpose is that it has the option of using multiple outputs, so it is possible
to model our classes in one model. By incorporating the multiple classes into one
model, we anticipated that it might improve the accuracy of the model. However,
when analyzing we found the opposite. When we created a single model with mul-
tiple outputs, the accuracy dropped below 10 percent, and almost all labels would
be classified as driving a straight road. Since this did not work we tried to approach
this with the same tactic as the LSTM and SVM Approaches, by creating 5 seperate
models. For The Car, Left hand, Right hand and Road quality models it performed
poorly. We did get more promising results with the acceleration class
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Acceleration
As with the InceptionTime model, it has issues with the larger accelerations and de-
celeration. However when the accelerations are less, the performance increases to
over 80 percent. Although this model is still not good enough to predict the acceler-
ation, it is better than the InceptionTime model as indicated by the confusion matrix
in table 6.15.

Figure 6.15: Confusion Matrix for the acceleration class using a Bidirectional LSTM

Acceleration

We found that measuring the acceleration using our machine learning models did
not yield usable results. To try if it would still be possible to determine acceleration
and deceleration, we decided to use the mathematical approach. The GPS data
provided by the watch includes the current speed, so we decided to try to calculate
the trend of the speed by performing linear regression. Using manual analysis we
found that this would be a viable solution. The only problem using the GPS data is
that it updates slower then the movement sensor data. This means it might take a
second before detecting a quick brake. We recommend that this approach would be
researched in future research.
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Evaluation

While performing the research, some circumstances outside of our control heavily
influenced the data gathering. We think that the results would be more effective if it
would have been possible to gather data from more persons, on different roads. The
other limitation that we suspect highly influenced our results is the accuracy of the
ground truth. We think that it is necessary to use more cameras to record both the
actions of the driver as well as the circumstances on the road. Using different roads
to gain a more diverse amount of road surfaces would also have been beneficial for
this research.

In the introduction we stated the following research questions.

1. Can we detect unsafe situations on the road using smartwatches?

2. Can we detect the behavior of a driver using a smartwatch?

7.1 Can we detect unsafe situations on the road us-
ing smartwatches?

To analyse if we can detect unsafe situations on the road using smartwatches we
will first analyse the subquestions:
1.1: Can we detect heavy breaking using smartwatch sensors?
We found out in section 6.3.2 that the models we used were not suitable to detect
heavy breaking. However we did identify that it might be possible using the mathe-
matical approach using GPS data instead of machine learning.
1.2: Can we detect tight turns using smartwatch sensors?
The analysis in section 6.3.2 shows that the models have problems differentiating
between a slight turn and a larger turn.
1.3: Can we combine the data of multiple drives in the same road to differenti-
ate between structural safety issues and occasional safety issues?

35
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Since the models did not manage to accurately predict the safety issues, we did not
try to combine the data of multiple drives.
1.4: Can we classify the quality of the road?
Using the InceptionTime model, we could successfully differentiate between bad
road surfaces and smooth road surfaces. Due to the lack of different types of road
we only have 2 labels saying something about the road quality. However, we as-
sume that the current model could also be used for a more granular approach, when
provided with enough data.

7.1.1 Conclusion

We did not manage to create a machine learning model that can accurately predict
unsafe road situations. However, some of the limitations we ran into were caused
by the local conditions due to the COVID-19 outbreak, so we think that it is viable
to conduct further research into this area once the data gathering limitations are
solved. We did manage to classify the roughness of the road based on the data we
had.

7.2 Can we detect the behavior of a driver using a
smartwatch?

To analyse if we can detect the behavior of a driver using smartwatches we start by
answering the sub-questions.
2.1: Can we detect if the arm wearing the smartwatch is on the steering wheel?
It was not possible to detect whether the driver has their arm on the steering wheel.
We suggest that this can be explained by the fact that we only recorded a few in-
stances where the driver takes their left hand off the steering wheel. This is caused
by the fact that most actions in the car that require you to take a hand off the steering
wheel, are performed with the right hand.
2.2: Can we detect if the driver is performing an action with the arm not wear-
ing a smartwatch?
Using InceptionTime it is possible to give a distinction between having the right hand
on the steering wheel and doing something else. However, it was not possible to de-
tect which activity the driver is performing.
2.3: Can we detect which action the driver is performing with the arm wearing
a smartwatch?
It was not possible to detect which action the driver is performing with the arm wear-
ing a smartwatch. We noticed that the amount of actions the driver performed while
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driving was quite low. We therefore expect that gathering more data could help in
the creation of a working model.

7.2.1 Conclusion

Based on the available data in this project, we can not draw conclusions about a
driver’s behaviour or actions with their left hand. We did manage to detect whether
a driver takes their right hand off the steering wheel.
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Chapter 8

Future work

We identified certain areas that would be helped by further research. Firstly, we think
that it is important to gather a more extensive data-set to train the machine learning
models. Secondly, improving the InceptionTime model to support multiple output
classes would be useful. We think this can be advantageous because this would
allow the model to take certain aspects from one class into account during the anal-
ysis of other classes into account certain aspects from one class in the other. For
example, turning on the blinkers will always be followed by either a corner or a lane
change. Thirdly, we would also recommend to try to apply the HIVE-COTES model
on the data-set using enough computing power. Since InceptionTime performs only
slightly better then HIVES-COTE it will be useful to identify if HIVES-COTE may
be more suitable for this data-set. One caveat is that HIVES-COTE requires much
more computing power than InceptionTime. We would also recommend running
InceptionTime with more Epochs. Due to limited computing power there was a max-
imum number of Epochs that was viable to run. Since for some of the data-sets,
such as to classify whether the right hand is on the steering wheel, the performance
was not converging yet, but we did not have enough computing power to continue
this analysis.

Another aspect that would benefit from additional research is to first create a
model of the human interaction in a car. If data can be gathered of which movements
a driver makes while steering, controlling the radio and activities other than driving,
a model could be made without the distortion of the car, the dampers, the movement
etc. This might create more accurate models, although this does require the actual
model to still take into account the movement of the car.
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Chapter 9

Overview of Previous research
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Table 9.1: Overview of existing technologies
paper Vehicle Sensors used Devices used behavior tracking processing technique used
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Bello-Salau et al. [32] car Y Y Y N N Y N N no automated Y N N N N N N N N N N N
Tai et al. [33] motorcycle Y Y Y Y N N N N no automated Y N N N N N N N N N N N

Seraj et al. [39] wheelchair Y Y Y Y N N N N no automated N Y N N N N N N N N N N
Seraj et al. [53] car Y Y Y Y N N N N no automated N N Y N N N N N N N N N
Seraj et al. [34] car Y Y Y Y N N N Y no automated Y N Y N N N N N N N N N
Seraj et al. [54] car, bike, train Y Y Y Y N N N N no automated N N N N Y N N N N N N N

Forslöf and Jones [55] car, bike Y N N N Y N N N no automated N N N N N N N Y N N N N
Chih-Wei Yi et al. [56] car Y Y Y Y N N N N no automated N N N N N N N Y N N N N

Kasun De Zoysa et al. [57] Bus Y Y Y N N N N Y no automated N N N N N N N Y N N N N
P. Mohan et al. [24] car Y Y Y Y N N N N partial automated N N N N N N N Y N N N N

J. Eriksson et al. [58] car Y N Y N N N N Y no automated N N N N N N N Y N N N N
Dawkins et al. [59] car Y Y Y N N N N Y no automated N N N N N N N Y N N N N

A. Mednis et al. [60] car Y Y Y Y N N N N no automated N N N N N N N Y N N N N
L. Lima et al. [61] car Y N Y Y N N N N no automated N N N N N N N Y N N N N

M. Ghadge et al. [62] car Y N N Y N N N N no automated N N N N N Y N N N N N N
V. Douangphachanh et al. [63] car Y Y Y Y N N N N no automated N N N N N N Y N N N N N

N. Silva [64] car Y Y Y Y N N N N no automated N N N N N N N Y N N N N
A. Fox et al. [35] car Y Y Y N N Y N N no automated Y N N N N N N N N N N N

X. Li and D. Goldberg [65] car Y Y Y Y N N N N no automated N N N N N N N Y N N N N
P. Harikrishnan et al. [66] car Y Y Y Y N N N N no automated N N N N N N N Y N N N N
T. Garbowski et al. [67] unspecified N N N N N N Y N no automated N N N N N N N Y N N N N

K. Zang et al. [68] bicycle Y Y Y Y N N N N no automated N N N N N N N N Y N N N
D. Rajamohan et al. [69] car Y Y Y Y N N Y N no automated N N N N N N N N Y N N N

A. Allouch et al. [36] car Y Y Y Y N N N N no automated Y N N N N N N N N Y Y N
T. Brisimi et al. [37] car Y N Y Y N N N N no automated N N N N N N N Y N N N Y
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