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ABSTRACT 

Forests reduce impacts of climate change and its consequences by sequestering CO2 from the atmosphere 

and storing carbon in different parts of them which include above ground biomass, belowground biomass,  

forest understory and soil. This storage depends on forest ecosystem management, disturbances, forest 

succession and climate variation among others. The impact of forest management activities on the ability 

of forest ecosystems to sequester and store atmospheric carbon is of increasing scientific and social 

concern. A quantitative understanding of how forest management enhances carbon storage is lacking for 

most forest types because few studies have been conducted. Therefore, this study endeavours to estimate 

and compare the above ground biomass (AGB)/carbon stock of two forest types under different forest 

management regimes. 

 

Very high resolution Geoeye satellite images and airborne LiDAR data were used for this study. Both 

images have 0.5 m spatial resolution with Geoeye having a 2D view while airborne LiDAR has a 3D view 

of the forest canopy. Individual tree crowns were generated using multiresolution segmentation which was 

followed by species classification in eCognition Developer. Total AGB was estimated by allometric 

equation using DBH and tree height measured in the field. The total AGB was used to predict the AGB 

for the entire study area by regressing it with crown projection area (CPA) and height from the LiDAR 

canopy height model (CHM). Non-linear interactive models are used for two species classes (Shorea robusta 

and others). 

 

Segmentation accuracy for community forest was 70% (“D” value = 0.3 or 30% error) and 77% 1:1 

correspondence, while that for government forest was 70% (“D” value =0.3) and 78% 1:1 

correspondence. The image objects generated are classified per species and result in 70% and 82% 

accuracy for community and government forests respectively. Modeling of the relationship between CPA, 

height and AGB result in accuracies of R2 = 0.81, RMSE=10% for Shorea robusta and R2 = 0.62, 

RMSE=13% for other species in community forest and R2 = 0.69, RMSE=25% for Shorea robusta and R2 

= 0.73, RMSE=13% for other species in government forest.  

 

The average carbon stock was found to be 244 t C/ha and 140 t C/ha for community and government 

forest respectively. These results of carbon stock obtained agree with those in other studies for the same 

area and confirm the results of other researchers. Based on the findings of this study, we conclude that 

forest management significantly affects the carbon stock of a forest. 

 

 

 

Keywords: Forest management, LiDAR, Object Based Image Analysis, Multiresolution segmentation, 

Classification, Allometric equation, Regression, Carbon Stock 
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1. INTRODUCTION  

1.1. Background  

Forests cover approximately 30% of the global land area and account for almost half of the terrestrial 

carbon pool. A growing forest sequesters and stores more carbon than any other terrestrial ecosystem 

(IPCC, 2007; Kauppi et al., 1992; Dixon et al., 1994; USAID, 2009) and is an important natural ‘brake’ on 

climate change. It is estimated that, global vegetation and soils removed carbon from the atmosphere at a 

rate of 4.7 ± 1.2 Gt (Giga tones) y−1 in 2008, compared to carbon emissions from fossil fuels and 

deforestation of 8.7 ± 0.5 Gt y−1 and 1.2 ± 0.7 Gt y−1 respectively (IPCC, 2007). When forests are 

cleared or degraded, their stored carbon is released into the atmosphere as carbon dioxide (CO2) (Gibbs et 

al, 2007). On the other hand however, timber harvesting from forests has enabled substantial storage of 

carbon in wood products and structures (Miner & Perez-Garcia, 2007; USAID, 2009) and allowed more 

carbon storage from forest regrowth. FAO (2010) reported that a significant fraction of the carbon in 

industrial round wood is stored in products for periods ranging from months to centuries.  

 

The largest source of greenhouse gas emissions in most tropical countries is deforestation and forest 

degradation (Gibbs et al, 2007). In Africa, for instance, it accounts for nearly 70% of the total CO2 

emissions (FAO, 2005). Increase in CO2 concentration and other greenhouse gases have raised concerns 

about global warming and climatic changes (IPCC, 2007;  Malhi & Grace, 2000). According to the 

Intergovernmental Panel on Climate Change (IPCC, 2007) report, CO2 in the atmosphere is increasing by 

1.4 parts per million (ppm) per year and this will contribute to the increase in temperature by 1.50 C to 40 

C by the end of the century. These increases have resulted to global warming which in turn is changing the 

earth’s climatic conditions. This changing of the earth’s climate (climate change), has far reaching effects 

on the social, environmental and economic facets of the planet Earth (EPA, 2011).  

 

As a response to these effects, various international agreements on climate change such as UNFCCC of 

1992 and Kyoto Protocol of 1997 (Patenaude et al., 2005), have come together to address the problem 

through mitigation and adaptation mechanisms (USAID, 2009). UNFCCC particularly, has considered the 

need for reducing carbon emissions from deforestation and forest degradation (REDD) as one of the 

central efforts to combat climate change. REDD has gained major attention in international climate 

negotiations (ANSAB, 2010). It creates financial value for the carbon stored in forests, and offers 

incentives for developing countries to reduce emissions from forested lands and invest in low-carbon 

paths to sustainable development (UN - REDD, 2009). These incentives are based on quantification of 
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the carbon cycle components. Effective measurement of this carbon, in both space and time is therefore a 

crucial activity in order to secure this financial compensation.  

 

Carbon estimation plays a key role in national carbon management schemes, - such as the national 

reporting of emissions and sinks under the UNFCC and in carbon trading (USAID, 2009) as well as 

meeting Kyoto obligations by signatory countries. The process should meet international standards and, at 

the same time, be manageable in a cost-effective manner within the local context (ANSAB, 2010). REDD 

programmes require reliable, accurate, and cost-effective methods for measurement and monitoring of 

forest carbon storage (ANSAB, 2010).  

1.2. Overview of forest Biomass and carbon estimations  

Carbon is approximately 47% of the Above Ground Biomass (AGB) which is defined as “all biomass of 

living vegetation, both woody and herbaceous, above the soil including stems, stumps, branches, bark, 

seeds, and foliage” (IPCC, 2007b). The carbon stored in the aboveground living biomass of trees is 

typically the largest pool and the most directly impacted by deforestation and degradation. Thus, 

estimating aboveground forest biomass / carbon is the most critical step in quantifying carbon stocks and 

fluxes especially from tropical forests (Gibbs et al., 2007).  

 

To understand the planetary carbon budget, it is necessary to generate accurate and reliable estimates of 

global forest cover and the amount of biomass and carbon harboured by the planet’s forests (Skole et al., 

1994; Treuhaft et al., 2010; Fagan & DeFries, 2009), yet widespread uncertainties in forest measurements 

have hampered efforts to obtain this basic scientific data (Fagan & DeFries, 2009; Myneni et al., 1997 & 

Smith et al., 1993). Large-scale estimates of terrestrial carbon stocks and fluxes are uncertain, particularly 

over regions where measurements are sparse (Hurtt et al., 2004). 

 

Greenhouse gases inventories and emissions reduction programs require robust methods to quantify 

carbon sequestration in forests (Gonzalez et al., 2010). Forest inventories and remote sensing (RS) are the 

two principal data sources used to estimate AGB (Krankina et al., 2004). This estimation is based on 

measurement of forest attributes that are highly correlated with biomass such as diameter at breast height 

(DBH), basal area, height and crown volume (Husch et al., 1982; Smith & Brand, 1983). For worldwide 

forest biomass or carbon stock measurements, satellite imagery is essential. Aerial observations are 

expensive at present and only cover small areas at a time. Ground measurements, such as destructive 

sampling of carbon stocks, are expensive (Fagan & DeFries, 2009; Gonzalez et al., 2010), while indirect 

estimates, such as NDVI, are often inaccurate (Anderson et al., 1993; Brown, 1997; Smith & Brand, 1983).  
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1.3. Application of Remote Sensing measurements for Biomass/Carbon stock mapping  

Remote sensing, the process of imaging the interactions between electromagnetic energy and matter at 

selected wavelengths, has the ability to monitor terrestrial ecosystems at various temporal and spatial scales 

and has been widely tested for land cover mapping and forestry applications (Patenaude et al., 2005). 

Forest carbon stocks can be evaluated using remote sensors mounted on satellites or airborne platforms, 

but substantial refinements are needed before routine assessments can be made at national or regional 

scales (Baccini et al., 2004; DeFries et al., 2007). The three main RS sensor systems are optical, Light 

Detection and Ranging (LiDAR) and Radar (Goetz et al., 2009). 

 

Optical remote sensing, i.e., passive sensing of visible, near-infrared and middle infrared reflectance from 

the earth, forms the basis for much of the current global scale mapping (Gibbs et al., 2007). Optical 

measurements have been widely used in studies that link AGB measurements from the field to satellite 

observations, based on sensitivity of the optical reflectance to variations in canopy structure. These 

measurements, however, have not proven to be consistent over large areas because surface conditions may 

change more rapidly than the repeat time of the cloud-free satellite observations, producing artefacts in 

the derived maps (Goetz et al., 2009). Attempts have been made to estimate forest carbon stocks indirectly 

by developing statistical relationships between ground-based measurements and satellite-observed 

vegetation indices (e.g. Foody et al., 2003; Lu, 2005). This method however, tends to underestimate carbon 

stocks in tropical forests where optical satellites are less effective due to dense canopy closure, and has 

been unsuccessful in generating broad or transferable relationships (Waring et al., 1995).  

 

Whereas remote-sensing systems relying on optical data (visible and infrared light) are limited in the 

tropics by cloud cover, new technologies, such as radar systems, can penetrate clouds, haze and smoke, 

while providing data day and night (Asner, 2001). Radar transmits microwave energy that penetrates into 

forest tree canopies, with the amount of backscattered energy largely dependent on the size and 

orientation of canopy structural elements, such as leaves, branches and stems. The radar signals returned 

from the ground and tops of trees are used to estimate tree heights (Hyde et al., 2007), which are then 

converted to forest carbon stock estimates using allometry. One major limitation of satellite Radar data is 

that the signal tends to saturate at fairly low biomass levels (~50-100 t C/ha) when used to quantify 

carbon stocks in homogenous or young forests (Patenaude et al., 2004; Le Toan et al., 2004). Saturation 

here refers to the biomass level where radar backscatter no longer increases with biomass for C band 

(Imhoff, 1995).  

 

LiDAR (Light Detection and Ranging) is based on the concept of actively sensing the vegetation using a 

pulse of energy from a laser operating at optical wavelengths. LiDAR systems send out pulses of laser light 

and measure the signal return time to directly estimate the height and vertical structure of forests 
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(Dubayah & Drake, 2000; Patenaude et al., 2004), which is highly correlated with biomass (Hyde et al., 

2007). Forest carbon stocks are estimated by applying allometric height–carbon relationships (Hese et al., 

2005). However, this can introduce some challenges in tropical forests that reach their maximum height 

relatively quickly but continue to accumulate carbon for many decades (Gibbs et al., 2007). LiDAR has 

been used for more than a decade and has revolutionized biomass estimations from satellites (Herold and 

Johns, 2007). Large-footprint LiDAR remote sensing far exceeds the capabilities of radar and optical 

sensors to estimate carbon stocks for all forest types (Drake et al., 2003). However, airborne LiDAR is 

currently very expensive for use over large areas (Gibbs et al., 2007).  

1.4. Forest management and carbon  

Forest management can be defined as management practices in forests used for production of wood or 

non-wood forest products (IPCC, 2007b). Forests reduce impacts of climate change and its consequences 

by sequestering CO2 from the atmosphere and storing carbon in different parts of them which include 

above ground biomass, belowground biomass, forest understory and soil.  According to (FAO, 2010), 

forests and their carbon sequestration potential are affected by management practices, climate and the rise 

in atmospheric CO2 among others. One of the aspects of Kyoto Protocol is the possibility of 

compensating part of the emission reduction in the “Land Use, Land Use Change and Forestry” sector 

(LULUCF). Articles 3.3 and 3.4 of Kyoto Protocol refer to how signatory countries must report net 

emissions from the following activities; afforestation, reforestation, deforestation and forest management. 

 

Klaus et al (2010) highlight that, to fully account for the CO2 sequestration potential of forests, the 

temporal changes in forest structure and function at the stand and landscape level, and their effects on the 

net primary productivity (NPP) and the net ecosystem carbon balance (NECB) must be assessed. Changes 

in forest management practices can improve the quality of forests for carbon sequestration (Jandl et al., 

2007; Bravo et al., 2008). In a study by Gonzalo et al., (2007) forest thinning regimes have been found to 

result in an increase in carbon (C) stock by up to 12% from various tree species in boreal forests. Davis et 

al (2009) and Karjalainen et al., (2003) also demonstrated that actively managed forests sequester 

substantial amounts of carbon. Net carbon loss due to poor management practices has also been reported 

by (Leighty et al., 2006; Gough et al., 2008). Janssens et al., (1999) emphasized the effect of forest 

management techniques on forest growth and biomass.  

1.5. Forests and Forest management in Nepal  

According to Nepal’s Department of Forest, Nepal’s forests area is estimated to be about 5.83 million 

hectares or 39.6% of the total geographical area of the country. Agencies responsible for forests in Nepal 

are: the Department of Forests of the Ministry of Forest and Soil Conservation, the National Planning 

Commission, District Forest Offices, non-governmental organizations (NGOs) and local communities 
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(user groups). Forestry laws make provision for handing over forests to an industry, institution or the 

community after signature of an agreement between the government and the concerned party. Nepal’s 

current forest policy and legislation classify forests mainly based on their tenure or control to the 

following categories: government-managed forests, community forests, leasehold forest and religious 

forest. In the government forests, scientific forest management plans are applied to large areas of forests, 

away from settlements, to fulfill timber and the fuel wood demands, principally of urban areas, and to 

contribute to national income. For community forests, use rights and management responsibilities are 

officially handed over to a group of people who depend on the forest resource for their day to day use. 

Approximately 30% of Nepal’s forest, although officially owned by the government, is under the de facto 

use of local communities which for generations have depended on the forests to meet their subsistence 

requirements for fuel wood, forage and timber.   

The Department of Forests is responsible for the management, demarcation, control and conservation of 

national forests, as well as conservation and utilization responsibilities for private and community 

managed forests. All types of national forests are required to be managed under a management plan. The 

management plans for government managed forests are prepared by the department of forests while those 

for community forests are prepared by Forest User Groups with assistance from District Forest Office 

staff. Most of the Forest User Groups are implementing silvicultural interventions and when appropriate 

they undertake selective felling, planting, thinning, and pruning operations known as Ban Godne 

silviculture. These activities are generally geared towards providing products and services to meet users’ 

current needs such as fuel wood.  

The Community Forestry programme is regarded to be successful in Nepal, not only in restoring the 

degraded sites, biodiversity and improving the supply of forest products to rural people, but also in 

forming local level institutions for resource management and in improving the environmental situation in 

the hills of Nepal (Acharya, 2002). However, approximately 70% of Nepal’s forests remain under 

government jurisdiction, and most of these receive inadequate scientific silvicultural management due to 

lack of a proper forest management policy while the planned and active forest management is poor and 

forests are under-utilized or not utilized within the legal framework. The exceptions are valuable lowland 

production forests, particularly in the Terai region which has trees of high economic value. These forests 

comprise of high proportions of Sal tree species (Shorea robusta) and are managed under scientific coppice 

with standards regimes, although encroachment by migrants has regularly compromised management 

efforts (FAO, 2010) both in Terai and other government managed forests. This has been attributed to 

conflicts between the forest guards (Royal Nepal Army) and the people, conversion of part of protected 

areas into buffer zone community forest, restriction of community forestry to mid-hills that produce trees 

of lower economic value, proximity to timber market across the border in India, as well as deployment of 

the Royal Nepali Army for counter – insurgency duty (to the Maoist rebels). The latter activity reduces the 

presence of the guards in the forest, giving the illegal loggers a free hand in cutting trees for timber 

(ForestMonitor, 2006). In view of this context, the aim of this study is to estimate and compare 
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biomass/carbon stock between community managed forests and government managed forests. To do this, 

high resolution optical GeoEye satellite imagery in combination with airborne LiDAR data were used. 

1.6. Problem statement and Justification 

There are no practical methods to directly measure all forest carbon stocks, both ground-based and 

remote-sensing estimation of forest attributes have been used (Gibbs et al., 2007).  However, these 

methods have some level of uncertainty (Drake et al., 2002; Hajnsek et al., 2009; Treuhaft et al., 2009). How 

to overcome these uncertainties still remains a challenge for researchers today. Use of ground based 

methods would be the most direct and accurate technique. However, it is expensive, time consuming and 

impractical for large areas (Gibbs et al., 2007). The present suite of optical satellite sensors, such as 

Landsat, AVHRR and MODIS, cannot yet be used to estimate carbon stocks of tropical forests with 

certainty (Thenkabail et al., 2004), because they have limited ability to develop good models for tropical 

forests while spectral indices saturate at relatively low C stocks (Gibbs et al., 2007).  

 

Very High resolution airborne and optical sensors have been used with low to medium uncertainty. With 

spatial resolution of less than 5m (Lu, 2006), it is possible to recognize, identify and delineate individual 

tree crown (Gougeon & Leckie, 2006). However, they are expensive and technically demanding. They 

relate biomass estimated using allometric equations with crown projection area (CPA) delineated from 

satellite imagery. There are no allometric equations related to CPA available currently and delineation of 

heights is impossible with 2D optical data. Tree height and diameter at breast height (DBH) are highly 

correlated with biomass. DBH has been widely used because it is easy to measure and explains 95% of tree 

biomass while accurate estimations of tree height in the field remain a challenge. LiDAR data has the 

capability of measuring 3D vertical structure of vegetation in great detail (Dubayah and Drake 2000; 

Patenaude et al., 2004). With LiDAR, biomass is estimated by applying allometric height–carbon 

relationships (Hese et al., 2005), which can introduce some challenges in tropical forests that reach their 

maximum height relatively quickly but continue to accumulate carbon for many decades (Gibbs et al., 

2007). For this reason, DBH, CPA and Height information need to be integrated for any meaningful 

biomass estimation. This study therefore seeks to enhance the capability of GeoEye images in estimating 

biomass by incorporating LiDAR data (height information) to improve the accuracy of carbon stock 

estimation. 

 
Forest carbon storage depends on disturbances, forest succession, and climate variation (Gough et al., 

2008) as well as forest ecosystem management (Ryan et al., 2010). The impact of forest management 

activities on the ability of forest ecosystems to sequester and store atmospheric carbon is of increasing 

scientific and social concern (Swanson, 2009). The nature of these impacts varies among forest ecosystems 

(Swanson, 2009). Different forest management regimes for instance have been found to have an effect on 

carbon sequestration and storage (Karjalainen et al., 2003; Leighty et al., 2006; Gonzalo et al., 2007). Stand 
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conditions and density are impacted by management and other growing conditions, which determine the 

carbon content. Forest thinning regimes have been found to result in an increase in carbon (C) stock by 

up to 12% (Gonzalo et al., 2007). Net carbon loss has also been reported by Leighty et al., (2006) which 

contradicts the results of many studies which have reported that forest management increase carbon stock 

e.g. (Gonzalo et al., 2007; Davis et al., 2009; Heath et al., 2010). However, there are few studies on the 

effect of forest management practices on the condition of the forest such as deforestation and tree 

density. Gibbs et al (2007) emphasized on appropriate sampling design that accounts for both forest type 

and condition in order to improve the understanding of carbon stocks and fluxes. FAO (2010) also noted 

that connections between sustainable forest management and carbon are not explicit. Gough et al., (2008) 

highlights that a quantitative understanding of how forest management enhance C sequestration is lacking 

for most forest types because few whole-ecosystem C storage studies have been conducted in managed 

forests. Moreover, many questions remain unanswered about how whole-ecosystem C storage responds to 

contemporary forest management practices and to treatments that may enhance C sequestration (Gough et 

al., 2008). For this reason, this study endeavors to find out if there is a difference in carbon stock of the 

two management regimes.  

 

Nepal is a signatory country to the Kyoto Protocol and implementing the REDD pilot project for 

developing countries initiated by UNFCCC. As a result, it is required to report on its CO2 reductions 

through conservation and enhancement of carbon stored in forest (Patenaude et al., 2005). For this 

reason, carbon stock estimations are obligatory to Nepal.  

 

Nepal’s forests are under different forest management regimes mainly government managed forest (GMF) 

forests and community managed forest (CF). According to (FAO, 2010), forests and their carbon 

sequestration potential are affected by management practices. They can improve the quality of forests for 

carbon sequestration (Jandl et al., 2007; Bravo et al., 2008; Natural Resources Canada, 2010) or contribute 

to net carbon loss (Leighty et al., 2006). According to USAID (2009), any carbon accounting system must 

measure and monitor two variables: the area of forest and the changes in the area due to deforestation or 

afforestation, carbon stock density and its changes due to degradation, reforestation and forest 

management. This makes the focus on forest management an important aspect in this study.  

 

Estimating AGB with certainty is still a challenge today due to the complicated biophysical environments 

especially in the tropics and the uncertainties in accuracy of the available data. For this reason, various 

biomass studies have sought for better approaches to estimate AGB with higher certainty. Presently, the 

focus is on integrating multi-sensor data. In this context, (Goetz et al., 2009; Lu, 2006; Koch, 2010) 

highlights that use of ground based data in a synergistic fashion can potentially overcome the limitations 

of the previous methods. Therefore, the essence of incorporating Airborne LiDAR data in this study is to 
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find out if the biomass estimations can be obtained with improved accuracy than in previous studies 

through additional height information provided by LiDAR data.  

1.7. Research Objectives, Questions and Hypotheses  

1.7.1. General objectives  

 
1.  To model and map carbon stock using very high resolution GeoEye satellite images, airborne 

LiDAR data and object oriented classification. 

2. To compare the forest management regimes in community managed forests and government 

managed forests and investigate if, and how, they affect the above ground biomass (AGB)/carbon 

stock. 

1.7.2. Specific objectives  

 

1 To estimate AGB/carbon stock of subtropical forest using a combination of airborne LiDAR 

data and High Resolution optical Geoeye satellite images and assess the accuracy of the 

estimation.  

2 To map AGB/carbon stock in the two managed forest types, to compare and analyze the results  

3 To assess and compare forest management practices in relation to AGB/carbon between GMF 

and CF forests. 
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1.7.3.  Research Questions and Hypotheses 

 
Table 1-1: Research objectives, questions and hypotheses 

Objectives Research Questions Research Hypothesis 

   1. 1. What is the accuracy of biomass estimation for the 

two forest management types? 

 

                                         

2. 

2. What is the AGB/carbon stock in   the two forest 

management types? 

3. Is there a significant difference in AGB/carbon      

stock from the two forests? 

4. Is there a relationship between the management 

practices and AGB /carbon? 

 

H0: There is a significant difference in 

AGB/carbon stock from the two forests. 

H1: There is no significant difference in the 

AGB/carbon stock from the two forests 

H0: There is a relationship between forest 

management practices and AGB/ carbon 

H1: There is no relationship between the 

forest management and AGB /carbon 

3. 5. What are the management types/activities for    each 

forest? 

6. Is there evidence of deforestation in the forest units? 

7. What is the tree density in each management unit? Is 

there a significant difference in tree density between 

the two units? 

 

 

 

H0: There is a significant difference in tree 

density between the two units 

H1: There is no significant difference in tree 

density between the two units 

Assumptions: That the respective forest management plans are followed in both cases. 

1.8. Theoretical framework of research 

This study started with the reviewing of literatures and identification of research problem, which was then 

used to formulate research objectives and questions. Data needs were identified and field work was carried 

out. This was followed by data processing and analysis and finally discussions and conclusions. This 

process is shown in Figure 1-1. 
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Figure 1-1: Theoretical Framework of research 
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2. STUDY AREA 

2.1. Study Area selection 

Nepal’s forests are classified into three namely protection, conservation and production forests. Chitwan 

district, specifically Kayarkhola Watershed was selected for this study because it is a major forest area in 

Nepal.  

The study area was selected based on the following criteria. 

1) Accessibility: Most of Nepal is characterized by very rugged terrain/steep slopes. Due to the 

limited time for fieldwork, this site was preferred because it is relatively accessible in comparison 

to other forested sites.  

2) Data availability: Both optical satellite data and Airborne Lidar data that were proposed for use in 

this study were available for this area. 

3) REDD implementation: Kayerkhola watershed is amongst the three watersheds in Nepal under 

REDD pilot programme being implemented by Asia Network for Sustainable Agriculture and 

Bioresources (ANSAB), International Centre for Integrated Mountain Development (ICIMOD) 

and Federation of Community Forest Users’ Nepal (FECOFUN).  

4) Existence of various forest management regimes: This study aims to investigate if different 

management regimes have impact on carbon stock. The site has a range of forest management 

regimes such as community, government, leasehold and religious forests. 

2.2.   Background of the carbon project 

ANSAB, ICIMOD, and FECOFUN, are implementing the project “Design and setting up of a 

governance and payment system for Nepal’s Community Forest Management under Reducing Emissions 

from Deforestation and Forest Degradation (REDD)” in three watershed areas of Nepal, namely, 

Kayarkhola of Chitwan district, Charnawati of Dolakha district and Ludhikhola of Gorkha district with 

financial support from The Norwegian Agency for Development Cooperation (NORAD). This REDD 

pilot project aims to demonstrate the feasibility of REDD payment mechanism in Community Forest (CF) 

by involving local communities including marginalized groups so that deforestation and forest degradation 

can be reduced by linking sustainable forest management practices with economic incentives (ICIMOD, 

2010).  For this reason, estimation of carbon stock in Kayarkhola watershed holds a lot of significance to 

REDD mechanism. 
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2.3.  Study Area Description 

2.3.1. Geographic Location 

Chitwan District is one of the seventy-five districts of Nepal, located in the Central lowland area at 

approximately 150 km southwest of Kathmandu, the Capital City (Figure 2-1). It is located between 

27040’07” to 27046’37” northern latitude and 84033’25” to 84041’48” eastern longitude. It covers an area of 

2,218 km2 and bordered by Dhading, Gorkha and Tanahum districts in the north, Parsa district and India 

to the South. 

 

Figure 2-1: Map of the location of study area 
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2.3.2. Climate 

The Kayarkhola watershed represents tropical and sub-tropical with huge altitudinal variation, which 

ranges from 245 m to 1944 m. The average temperatures are between 160C to 190C minimum and 290C to 

320C maximum (Land Cover analysis, 2010). The average rainfall is about 1500mm (Panta, 2003). July is 

the onset of monsoon and therefore the study area receives summer rain while the winters are relatively 

dry 

2.3.3. Vegetation / Forest types 

Although most of Nepal lies within the subtropical monsoon climatic region, the wide range of 

topographic conditions allows for a variety of forest types. The distribution of natural forests generally 

follows altitudinal zones. According to broader climatological categorization of forests, forests in 

Kayarkhola fall under tropical broadleaved forests. Dominant forest tree species range from the hilly 

Shorea robusta (Sal) forest to Schima- Castanopsis to Rhododendron. 

2.3.4.  Land cover / Land use 

Conservation areas are the dominant land use with forest covering about 60% of the total land area 

(128500 ha). Agriculture and urban area account for 40% (89500ha). Chitwan National Park which covers 

an area of 970km2 and part of Parsa Wildlife Reserve are found in this district. Table 2-1 gives a summary 

of the land cover/land use in the watershed.  

 

Table 2-1: Summary of land cover in Kayarkhola watershed 

Land cover type Area in Ha Percentage 

Forest  5821  73% 

Natural water bodies 31 0.39% 

Bare soil  30 0.38% 

Agricultural land and Built up areas 2038 25% 

(ICIMOD Report, 2010) 

2.3.5. Social, economic and demographic 

Kayarkhola watershed has a population of approximately 22,090 people, all from diverse ethnic 

backgrounds. The area has good population of Chepang community, one of the most vulnerable 

communities in Nepal. These people mostly depend on forest for their livelihoods. Additionally, shifting 

cultivation, a traditional rotational agriculture system, is being practiced.  

2.4. Management Interventions 

Generally, the entire watershed covers an area of 8,002 ha and hosting over 15 community forests. 

Although the watershed site represents community forest management systems, there are many different 

interventions such as government, private and leasehold forests. Community forests in this area cover an 
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area of 2381ha. These community forests were originally under government management but were later 

handed over to the forest adjacent communities for management since 1970s. Forest management systems 

in Kayerkhola are very diverse. This watershed area hosts large Chepang populations who mostly depend 

on forest for their livelihoods. Additionally, shifting cultivation, as a traditional rotational agriculture 

system, is being practiced by this community that are believed to be deteriorating the status of forest 

continuously. As a management strategy for the government forests, the forest area is fenced round and 

deep trenches dug to curb any illegal extraction of timber from the forest (Figure 5-3). 

 

Almost all the Community Forest User Groups (CF) have approved constitutions and operations plans. 

The government forests are under the jurisdiction of Chitwan District Forest Office. 

 

The focus of this study is the community and government forest regimes (Figure 2-1). Five out of the 15 

CFUGs covering an area of 764 ha, and a government forest of 213 ha, were considered for sampling 

plots. 
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3.  MATERIALS AND METHODS 

3.1. Material Description 

3.1.1. Data set 

Remote Sensing Data 

Two different datasets for Kayerkhola watershed were used for this study namely GeoEye (MSS and 

Panchromatic) images and Airborne LiDAR data. 

 

Geoeye1 satellite images 

Geo-eye1 satellite was launched by Geo Eye on the 6th September 2008 by the U.S Air force. It has the 

highest resolution of any commercial imaging system. The GeoEye used in this study was obtained on 2nd 

November 2009. GeoEye Multispectral Image consists of 4 bands (3 in visible and 1 in NIR (GeoEye, 

2010). The MSS image at time of acquisition has 1.65m spatial resolution but is resampled to 2m 

resolution. The Panchromatic GeoEye image has one band (450 -800nm), also obtained on the same date 

has 0.41m resolution and is resampled to 0.5m.  The images are resampled from their actual resolution at 

time of acquisition (1.65m and 0.41m) because Geo-Eye’s operating license from the U.S Government 

requires this to be done for all customers who are not explicitly granted a waiver by the U.S Government. 

The image specifications are shown in Table 1-1.  

Table 3-1: Geoeye Satellite Images characteristics 

Spatial Resolution Panchromatic: 0.5 m 

Multispectral: 2 m 

Dynamic Range 11 bits 

Band wavelength (nm)  Blue (450 – 510nm) 

Green (510 – 580nm) 

Red (655 – 690nm)  

NIR  (780 – 920nm) 

PAN  (450- 800nm)  

Orbit height 684 km 

Orbit type Sun – synchronous 

Swath width 15.2 km 

Processing Level Geometric and Radiometric correction 

Projection Universal Transverse Mercator UTM 

Specific Parameters Hemisphere: N Zone Number: 45 

Datum WGS84 

Acquisition time 05:12 GMT; 10:57 Kathmandu 

 

 

Airborne LiDAR Data 

Airborne laser scanning, LiDAR data of average point density ranging from 0.5 to 2.0 return pulses/m2 

for both first and last Lidar echoes, is normally suitable for forest mapping (Arbonaut, 2011). LIDAR 
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technology provides horizontal and vertical information 3D point clouds (Gautam & Kandel, 2010) at 

high spatial resolution and vertical accuracies. Forest attributes such as canopy height can be directly 

retrieved from LiDAR data through modelling process. LiDAR data has great advantage over optical data 

because it is not affected by saturation and penetrates through spaces of dense canopy and helps to detect 

height and density. It allows mapping in inaccessible terrain conditions. 

 

The LiDAR data used for this project of average (0.8 points/m2) was acquired by Arbonaut in March 2011 

and supplied for our use by the Forest Resources Assessment (FRA) of Nepal funded by Finish 

Government. The LiDAR system used was mounted on a Helicopter 9N-AIW)-platform with a sensor 

pulse rate and sensor scan speed of 52.9 Khz and 20.4 lines/second respectively. The flying altitude and 

speed of the sensor were 2200 m AGL and 80 knots respectively. More sensor details are summarized in 

(Table 3-2). 

 

Table 3-2: Summary of Airborne LiDAR sensor characteristics 

Aerial Platform  Helicopter (9N-AIW) 

Flying altitude 2200 m AGL 

Flying speed 80 knots 

Sensor pulse rate 52.9 Khz 

Sensor Scan speed 20.4 lines/second 

Nominal outgoing pulse density @ground level Average: 0.8 points/m2  

Scan FOW half-angle 20 degrees 

Swath @ ground level 1601.47 m 

Point spacing max 1.88 m across, max 2.02 m down 

Beam footprint @ ground level 50 cm 

 

Maps 

Other reference data provided by FRA were used in this study which includes: 

 Topographic maps at a scale of 1:25000 (source: Survey Department of Government of Nepal) 

 RGB Airborne Digital Ortho-photo image of 0.45 m resolution of Kayerkhola watershed. 

3.1.2. Other Materials 

In addition to the dataset, other materials were used for the study which includes: instruments used for 

fieldwork (Table 3-3) and Software for data analysis and thesis writing (Table 3-4). 
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Table 3-3: List of instruments used for field work 

Equipment Name 

 

Purpose 

Garmin GPS & IPAQ Navigation and marking sample plots 

Haga altimeter  and Laser range finder Measuring tree height 

Measuring Tape (30m) Measuring the plot radius 

Diameter tape (3m) Measuring DBH & crown diameter 

Clipboard and pencil Recording data 

Data sheets Recording field data 

Print out plot maps Identifying and marking the trees 

Spherical densiometer Canopy cover measurement 

Clinometer Haga Slope measurement 

Compass Navigation 

Slope correction sheet Slope correction 

Chalk Marking all trees within the plot 

Digital camera Taking photographs 

 

Software 

  Table 3-4: List of software used in this research 

Software Usage 

ArcGIS10 GIS Analysis 

Canopy density modelling (from LiDAR data) 

Erdas Imagine 10, 11 Image pre-processing and processing 

eCognition 8 Tree crown delineation and classification 

R   statistical Software 

SPSS 

Microsoft Excel 

 

Statistical analysis 

Lastools LiDAR analysis 

Adobe Acrobat Professional 

Microsoft word 

End note 

 

Thesis writing, editing 

 

Microsoft Visio Diagrammatic representations 

Microsoft Powerpoint Powerpoint preparation 

Intersector Assessing segmentation accuracy (D-Value test) 

QT Modeller 3D Visualisation of the LiDAR output/images 

 

3.2. Fieldwork 

Fieldwork was carried out for this study to identify the trees and measure their parameters for AGB 

estimation. This data was also used as ground truth data for individual tree crown delineation, species 

classification and validation of the models for the relationship between the CPA, height and carbon stock 
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of trees. Since some forest stand parameters such as volume and biomass are impossible to measure 

directly in the field, relationships between directly measurable stand parameters (e.g. DBH, height) and 

biomass have to be established (Husch et al., 2003). Thus, forest stand parameters DBH and height were 

measured and used for biomass estimation by applying allometric equations. 

3.2.1. Pre-fieldwork 

Navigation facilities (IPAQ and GPS), measuring tools for forest stand parameter measurements as well as 

the data sheets were prepared ahead of the fieldwork. Reference data were prepared based on secondary 

data provided by ICIMOD, Nepal. For the identification of recognizable tree on the map in the field, large 

scale Geo-Eye map of every sample plot with its surrounding areas were printed before fieldwork. 

3.2.2. Design of sampling and measurement techniques 

Stratified random sampling 

Stratified random sampling (SRS) was used to find the location of sampling plots in the study area as well 

as basing the data collection and filed measurements on the SRS. The study site was divided into two 

strata depending on management type namely community forest and government forest. The community 

forest comprised of five CFUGs or substrata (Kankali, Satkanya, Kalika, Dharapani and Davidhunga) 

covering a total area of 764 ha while the government forest was one block with a total area of 213 ha. The 

formula below was used to determine the sample size. 

.........................................................................................................................................eqn 3-1 

Where n = minimum number of samples required  

 

t= t value associated with specified probability  

Sj2 = Variance of X for jth stratum  

E= allowable standard error in units of X (Husch et al., 2003)  

Pj= proportion of total forest area in jth stratum =Nj /N  

M= Number of strata in population  

Nj= total area of sampling units in jth stratum  

N= total area of sampling units in population 

The sample size for CF was 86 plots while that for government forest was 23 plots. This was based on the 

proportion of the area of each forest.  

3.2.3. Training local field assistants  

With the aims of ensuring consistency in collection of data and field measurement, two local persons were 

hired and taken through a short introductory training on the data collection exercise prior to the 

commencement of the work. 
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3.2.4. Delineation of Government forest boundary 

Owing to the unavailability of the government forest boundary shapefiles, the boundary was digitized with 

the help of local community experts’ knowledge of the area and use of topographic maps for the area. 

3.2.5. Field data collection  

Circular plots of 12.62m (500m2) radius (Husch et al., 2003; ANSAB, 2010) were established in the field. 

Circular plots are used because they are relatively easy to establish (ANSAB, 2010). A base map was used 

to produce locations of random sample plots. Print outs of each sample plot (appendix 4) made prior to 

fieldwork were used for tree identification in the plot. IPAQ and GPS were used to navigate to the plot 

centre. A slope correction factor was applied for every plot depending on the slope percentage (%) 

(appendix 6), which in turn was used to determine the plot radius.  All trees measured in the field were 

also marked on the image print outs. It is generally assumed that the trees with diameter less than 10 cm 

have little contribution to the total biomass/ carbon of a forest and thus they are often not measured 

(Brown, 2002). In this study, tree parameters (DBH, height, crown diameter, species) were measured and 

recorded for trees with DBH ≥10cm. Canopy density, slope, elevation, aspect and photographs were 

taken for each plot. 

Sampling plots 

This study considered two strata for analysis namely government managed forests and community 

managed forests. Tree parameters were measured in 86 plots in five community forests and 23 plots in the 

government forest as shown in Table 3-5. The location of the sample plots is shown in (Appendix 2) 

 

                        Table 3-5: Summary of area (ha) and no. of samples collected from each forest. 

Stratum 

Name 

Substratum name Total area 

(Ha) 

No. of Plots 

Community 

Forest 

(CFUGs) 

Kankali 92 86 plots 

Satkanya 58 

Kalika 214 

Davidhunga 254 

Dharapani 147 

Government 

Forest 

One block 213 23 plots 

 

3.3. Research Methods 

Figure 3-1 shows the steps that were followed to achieve this study’s objectives. The methods are divided 

into three parts: Fieldwork, image/data analysis and statistical analysis. Tree parameters (DBH, height and 

crown diameter) were obtained through fieldwork. LiDAR data processing and image analysis was also 

carried out to obtain canopy height model (CHM), and crown projection area (CPA). CPA refers to the 

proportion of the forest floor that is covered by the vertical projection of the tree crowns (Jennings et al., 

1999). It is calculated from the average crown diameter assuming a circular crown projection 
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(Kuuluvainen, 1991). Statistical analysis was done through allometry relating DBH and height to calculate 

the AGB/ carbon for the measured trees. Further, regression modelling relating CPA, height and biomass 

was done to estimate the carbon stock for the entire study area (Figure 3-1).  
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Figure 3-1: Flowchart of research methods 

3.4. Data preparation and Image Pre-processing 

3.4.1. Geometric correction 

Geometric correction is done to correct the sensor and platform-specific radiometric and geometric 

distortion of the raw data and aims to correct the distorted or degradation of the image generated at the 



AGB / CARBON MAPPING USING AIRBORNE LIDAR DATA AND GEOEYE SATELLITE IMAGES IN TROPICAL FOREST OF CHITWAN-NEPAL: A COMPARISON OF 

COMMUNITY AND GOVERNMENT MANAGED FORESTS  

 

21 

time of acquisition. The satellite images used in this study were ortho-rectified basing on the Ortho-photo 

of 0.45m resolution before fusing them for further analysis. Geoeye MSS 2m was ortho-rectified with an 

accuracy of 0.9m RMSE while Geoeye panchromatic image 0.5m was corrected at RMSE of 0.36m. 

3.4.2. Image Fusion 

Image fusion of Multispectral Geoeye 2m resolution and Panchromatic Geoeye 0.5m resolution was done 

to improve the spatial resolution of the image as well as to maintain the spectral characteristics.  This 

technique can be implemented using data from the same sensor or different sensors. Image fusion 

normally can be done at three different processing levels: signal, feature and decision (Petrovic, 2003). 

Signal level image fusion, also known as pixel-level image fusion, represents fusion at the lowest level, 

where a number of raw input image signals are combined to produce a single fused image signal (Petrovic, 

2001). Specifically, image pan-sharpening (e.g. fusion technique) was used in this case to enhance MSS 

images with high radiometric resolution geometrically by merging it with a panchromatic image (Neteler & 

Mitasova, 2008).  

When a panchromatic image (PAN) 0.5m, is fused with multispectral imagery (MSS) 2m,  the result is an 

image with the spatial resolution and quality of PAN imagery and the spectral resolution and quality of the 

MSS imagery (Amolins et al., 2007). This technique of fusing high resolution PAN image with a low 

resolution MSS to produce a high resolution multispectral image is known as pan-sharpening (Amro & 

Mateos, 2010). 

There are various image fusion techniques such as high pass filter (HPF), Intensity, Hue and Saturation 

(IHS), principal components (PC) and wavelet transformation that are commonly used for image fusion. 

The HPF resolution merge function allows the combination of high-resolution panchromatic data with 

lower resolution multispectral data, resulting in an output with both excellent detail and a realistic 

representation of original multispectral scene colours. The low spatial resolution image is resampled to the 

pixel size of the high resolution image. The resulting HPF image will, therefore, have the same pixel size 

as the high resolution image (Erdas, 2010). This HPF resolution-merge has proven useful in spectral 

analysis, especially spectral classifications (Ahmad & Singh, 2002). IHS method processes three bands at a 

time and it follows three steps. First, MSS bands are transformed from RGB to IHS space. Secondly, 

intensity of low resolution MSS image is replaced by intensity of high spatial resolution image (PAN), then 

the original hue and saturation and new intensity images are transformed back to RGB display for 

visualization. More than three bands also can be produced by doing multiple iterations for RGB 

combinations.  

Geoeye MSS image with 2m resolution was fused with Geoeye PAN image 0.5m resolution and a pan-

sharpened image with spatial resolution of 0.5m was obtained. Both IHS and HPF were used. IHS gave 

better visual appearance while HPF was spectrally appealing. The IHS output was used for tree 

identification and manual delineation of tree crowns after applying a 3x3 convolution filter.  
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3.4.3. Image filtering/ Convolution filter 

Image filtering is an image enhancement technique which improves the visual interpretability of an image 

by increasing the distinction between the scenes. Spatial filters work on a number of adjacent cells to 

smooth data, enhance edges, or remove or decrease noise patterns in images. Spatial filters can be divided 

into three categories: low pass, high pass and edge detection filters.  Low pass filters are used to remove 

small random spatial variations, typically noise, through averaging a smoothing process (Neteler & 

Mitasova, 2004). High pass filters emphasize high frequency detail to enhance or sharpen linear features 

such as roads, faults, and land/water boundaries. Edge detection filters emphasize edges surrounding 

objects or features in an image to make them easier to analyze. 

Prior to segmentation, a low pass filter is applied to smoothen the image and to avoid over segmentation 

(Platt & Schoennagel, 2009). This filter produces more homogenous image segments and may reduce the 

amount of convolutions in the final segmented polygons (Mora et al., 2010). Depending on homogeneity 

of the images, researchers have used different kernel sizes, e.g. median filters for individual crown 

delineation, but kernel of 3-by-3, 5-by-5, and 7-by-7 are the most commonly used (Erikson and Olofsson, 

2005; Gougeon and Leckie, 2006; Mora et al., 2010) 

3.4.4.  Image masking 

Geoeye image obtained covered the entire Kayerkhola watershed area.  Image subset was done in ArcGIS 

2011 to extract the study area from the whole image. This was done for the two study sites (government 

managed and community managed forests). The image areas with “missing data” in the LiDAR data were 

masked out both in the CHM and the Geoeye image. Figure 3-2 shows an example of areas of missing 

data on the DSM and DTM respectively. 

     

Figure 3-2: Missing data areas in the DSM (left) and DTM (right). 

3.4.5. Tree Identification and Manual crown delineation 

After fieldwork, the trees marked on the plot sheet were identified on the images. A total of 341 and 111 

trees were identified for community and government forests respectively. Image objects or tree crowns 

generated in eCognition are usually validated using manually delineated tree crowns. Manual crown 

delineation for the identified trees was done on a 3*3 filtered image so that the tree crowns would be 

smooth. Delineation of the individual tree crowns was carried out with the following rules in 

consideration 1) use of crown width measured in the field as reference for delineation of the trees 2) 

carried out only on the trees that were actually recognized in the field 3) the same trees are clearly visible 

in the LiDAR canopy height model (CHM) 4) a comparison of the field measured height and LiDAR 
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height.  A total of 228 and 103 tree crowns were delineated for community and government forests 

respectively.  

3.4.6.  Lidar Data analysis 

Data Component of point clouds 

LiDAR field data set is usually supplied in point format as a laser file (.las) hence the name point clouds. 

With some software such as Lastools, Terrascan and TerraMoulder, the las file can be changed into a text 

file containing X, Y, Z and intensity information. Here, coordinate_X, coordinate_Y, height vale_Z indicate the 

geometry of a certain point while intensity indicates the optical information of the echo (Wu et al., 2008). 

Figure 3-3 shows airborne LiDAR data in laser format, points (vector) and raster. 

 

             
Figure 3-3: LiDAR laser file (left) LiDAR point clouds in vector (centre) and LiDAR points in Raster 

(right)                                                                         

3.4.7. Canopy Height Model (CHM) generation from Lidar point clouds 

Light detection and ranging (LiDAR) technology provides horizontal and vertical information at high 

spatial resolutions and vertical accuracies. Forest attributes such as canopy height can be directly retrieved 

from LiDAR data. Direct retrieval of canopy height provides opportunities to model above ground 

biomass and canopy volume (Lim et al., 2003). A CHM model is generated through three distinct 

processing steps as shown in the simple flowchart (Figure 3-4). 

 
 

 

 

 

 

Figure 3-4: flowchart for generating a canopy height model. 

A DTM is a topographic model of the bare earth – terrain relief. It represents the spatial elevation of the 

terrain. A DSM on the other hand, contains all the features on the terrain such as vegetation and buildings. 

An example of a DTM and DSM are shown in Figure 3-5.  
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Figure 3-5: DTM (Source: Terrainmap.com) (left) and DSM of Bezmiechowa airfield, S. East Poland 
(right) 

A height difference between the DSM and DTM represents the absolute height of the trees normally 

referred to as normalized Digital Surface model (nDSM or CHM) which represents the tree height of the 

forest canopy (Ali et al., 2008). The tree heights for CHM in this study were limited to a minimum of 5m 

and a maximum of 40m with reference to the field data. Trees with heights below 5m were assumed to be 

small and contributing insignificantly to biomass. Additionally, this helped in masking out the shrubs and 

other understory vegetation from the image. This analysis was carried out in lastools software and 

command prompt. Leftsky et al., (1999a), also modelled canopy height and limited CHM height values to 

between 4m and 40m for deciduous forests of eastern Maryland, USA. The steps below show the 

command lines for the processing procedure. Before undertaking the steps, las files (blocks) for the area 

of interest were selected and merged as one .las file in the lastools software.  

Step 1: Generating a DTM (blast2dem tool) 

Command 

 blast2dem -i Study_sites2.las -o Study_sites2dem.tif -v -step 0.5 -keep_class 2 

Step 2: Generating a DSM (lasgrid tool) 

 lasgrid -i Study_sites2.las -o Study_sites2_dsm.TIF -first_only -highest -step 0.5 -fill 5 -mem 2000 

Step3: Generate Canopy Height Model (CHM) 

Subtract function in Raster Calculator in ArcGIS 10 was used. 

The commands for steps 1 and 2 above were implemented in the command prompt.  

3.5. Forest condition assessment  

Tropical forest communities are among the world’s most threatened systems and urgent measures are 

required to protect and restore them in degraded landscapes (Sagar & Singh, 2006). For planning 

conservation or management strategies, there is a need to determine the essential measurable properties, 

such as species distribution, stand density, basal area and canopy density that describe the forest 

vegetation and also influence the forest biomass/carbon stocks. For this reason, these parameters were 

estimated in this study as described in the following section. 
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3.5.1.  Stand density and Basal area estimation 

Stand density estimation 

Stand density is a quantitative measure of tree cover in an area or number of trees per unit area or space. It 

is useful in analysis and estimation of forest growth and yield. Stand density is important in forestry 

because, within limits, the more growing space made available to a tree, the less competition it will face 

and the faster it will grow (Fennerschool, 1996). Stand density monitoring has been used as an indicator of 

the level of deforestation and forest degradation as well as the contribution of stand to forest carbon 

stocks. Estimates of stand density are made to express the degree to which the growing space available for 

tree growth is utilized hence it is a function of number of trees, tree size and spatial distribution on the 

ground. In this study, density was determined by summing up all the trees measured in the field. The mean 

stand density per plot (0.05ha) was estimated which was then converted to density per ha.   

Basal area estimation 

Basal area (BA) is a term used in forest management that defines the cross-sectional area of a tree at DBH, 

inside the bark (Hedl et al., 2009). Measurements are usually made for 1 hectare of land for comparison 

purposes to examine a forest’s productivity and growth rate or the stocking of trees in a unit area. It is a 

useful parameter for forest inventory because it is relatively easy to estimate and can be related to many 

other parameters of interest e.g. site density and stand volume. The internationally accepted symbol for 

basal area is G (m2/ha) and for tree basal area, g(m2). G values commonly range from 10 to 60m2/ha in 

both coniferous and hardwood forests. G values of 150m2/ha may be reached on exceptionally good sites. 

To estimate a tree’s basal area, the tree’s diameter at breast height (DBH) is used. The basal area of a 

forest stand (G) is found by adding the basal areas of all the living trees in an area and dividing by the area 

of land in which the trees were measured. G is usually expressed as ft2/acre or m2/ha.  

 

In this study, the formula in eqn 3-2 was used for calculating the basal area for the trees in the two forest 

management types.  

Basal area = 0.00007854*dbh2………………………………………………………………..........eqn 3-2 

The result will be in m2  

NB: The equation is only applicable if the DBH is cm units (Hedl et al., 2009). 0.0007854 = 

(π/40000).The division by 40000 corrects for the difference in units (cm and m) and diameter to radius 

(Fennerschool, 1997).  

3.5.2.  Canopy density modeling and Validation 

Deforestation and forest degradation is a major threat to vast forested areas particularly in the tropical 

forests where currently it contributes to more than 70% of CO2 emissions (FAO, 2005). The 

anthropogenic intervention in the natural forest reduces the number of trees per unit area and canopy 

closure (Jamalabad & Abkar, No date).  

Due to the interaction of numerous bio-physical and socio-economic factors, the dynamics of 

deforestation and degradation is rendered more complex and difficult to analyse. Therefore modelling 
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approaches hold a high potential for analysis of such complex phenomena (Namaalwa et al., 2007). In 

addition, satellite remote sensing has played a pivotal role in generating information about forest cover, 

vegetation type and land use changes. Jamalabad and Abkar, (no date), note that, for better management of 

forest, changes in stand density should be considered.  

Canopy density is the ratio of vegetation to ground as seen from the air or space. Canopy density models 

are unique in capturing the forest systems behaviour by assessing deforestation and degradation, which is 

approximated through changes in forest area and stand density (Namaalwa, 2007), which have direct 

impacts on forest carbon stocks. It is one of the most useful parameters to consider in the planning and 

implementation of rehabilitation program (Jamalabad and Abkar, no date). Conventional methods for 

forest density estimation include 1) Measurement with instruments (ground survey) 2) Aerial photo and 

satellite image interpretation and 3) satellite based methods. 

In this study, a remote sensing approach utilizing fused airborne Lidar data of 0.8 points/m2 density 

(resampled to 3m spatial resolution) was used to model canopy densities for the two forest management 

sites. Lidar was preferred to satellite data because it has the capability of measuring 3D vertical structure of 

vegetation in great detail (Drake et al., 2002; Patenaude et al., 2005). Forest canopy density is used in this 

study to assess the forest condition in the two study sites under investigation, with the aim of explaining 

the variations in carbon stocks due to implementation of different management regimes. Figure 3-6 

represents a flowchart for procedure of modelling canopy density.  
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Figure 3-6: The procedure for modelling canopy density 
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Canopy density models are relevant in many forestry applications such as quantifying crown fuel layer 

development (Falkowski et al., 2005), biomass estimation (Muukkonen and Heiskanen, 2005) and mapping 

invasive plant species (Joshi et al., 2006).  

 

Canopy density model validation 

The canopy density models generated were validated using the canopy density data collected from the 

field. This involved fitting a scatterplot of the generated canopy densities per plot against the field 

estimated canopy cover (%). The validation was done in Erdas imagine 2010.  

3.6. Object-Based Image Analysis (OBIA) 

Pixel-based classifications have difficulties in adequately or conveniently exploiting expert knowledge or 

contextual information in the image. Object-based image processing techniques overcome these 

difficulties by first segmenting the image into multi-pixel objects of various sizes, based on both spectral 

and spatial characteristics of groups of pixels (Flanders et al., 2003).  

3.6.1. Image segmentation 

Image segmentation procedures are used to generate image objects by partitioning an image into non-

intersecting or non-overlapping regions (Blaschke, 2010; Moller et al., 2007). Similarly, for the delineation 

of individual tree crowns, OBIA is used to create objects that are rough approximations of the size and 

shape of the individual tree crown area (Kim et al., 2009). There are various segmentation techniques 

currently in use, the major ones being edge based and region based. In this study, region based type of 

segmentation (multi-resolution) was used. 

Multi-resolution segmentation is the most commonly used method. It uses the multi-resolution 

segmentation algorithm, which merges pixels or existing image objects. It is a bottom-up segmentation 

based on a pairwise region merging technique. It is an optimization procedure which for a given number 

of image objects, minimizes the average heterogeneity and maximizes their respective homogeneity 

(Definiens, 2011). 

3.6.2. Tree crown delineation in eCognition 

Estimation of Scale Parameter (ESP) 

Currently, there is no tool available to objectively guide the selection of appropriate scales for 

segmentation (Dragut et al., (2010). Scale in image segmentation plays a vital role in determining the size of 

image objects generated. The degree of heterogeneity within an image-object is controlled by a subjective 

measure called ‘scale parameter’ as implemented in eCognition Developer software. ESP tool builds on 

the idea of local variance (LV) of object heterogeneity within a scene. This tool iteratively generates image-

objects at multiple scale levels in a bottom-up approach and calculates the LV plotted against the 

corresponding scale. The thresholds in rates of change (ROC) of LV (ROC-LV) indicate the scale levels at 
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which the image can be segmented in the most appropriate manner, relative to the data properties at the 

scene level.  

During the segmentation process, higher values for the scale parameter result in larger image objects and 

smaller values in small objects. Estimation of Scale Parameter (ESP) tool in eCognition was used to 

determine the most appropriate scale for multi-resolution segmentation. Figure 3-7 shows the estimation 

of scale parameter graph for the Geoeye Panchromatic image and LiDAR CHM loaded in eCognition 

Developer, which shows that scale parameter of 18 or 24 among others, are the appropriate scales to 

segment the images. Scale of 18 was used because the objects of interest in the study area are trees whose 

average crown diameter was 6 m. Higher scale parameter is used when the objects of interest are large for 

example in the detection of buildings.  

 
                         Figure 3-7: ESP Tool for Geoeye and LiDAR CHM 

 

 

Multi-resolution Segmentation 

Different image segmentation techniques of OBIA are being used for forest inventory, especially for 

individual tree crown delineation. For instance, image segmentation for tree crown delineation can be 

done using Individual Tree Crown delineation suite (ITC), an extension of the image processing software 

PCI Geomatica and OBIA software eCognition (Kim et al., 2009). 

For this study, multi-resolution segmentation was carried out in eCognition. Multi-resolution means that 

the algorithm is able to segment images at any given resolution. This segmentation is based on Region 

Growing approach starting at the level of pixel and neighbouring pixels having similar spectral values are 

grouped into the same objects (Platt & Schoennagel, 2009).  The procedure identifies single image objects 

of one pixel in size and merges them with their neighbours, based on relative homogeneity criteria. This 

homogeneity criterion is a combination of spectral and shape criteria.  

Unlike the Region Growing from local maxima (tree top), Multi-resolution segmentation uses user 

specified parameters such as the scale parameter, from which size and shape of resulting object is 

determined (Hay et al., 2005; Kim et al., 2009). From 3-7, Estimation of scale parameter was carried out 
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and a scale of 18 was used for the segmentation. Figure 3-8 shows the segmentation procedure and the 

ruse-set developed for object based image analysis in this study. 

 

Figure 3-8: Rule-set and the segmentation procedure 

 

 

 

Validation of tree crown delineation 

The quality of segmentation is related to quality of data (spatial and spectral resolution, noise) as well as 

data integration procedures and the optimization of scale parameter settings, which enables the adaptation 

of segmentation results on the target objects (Moller et al., 2007). The image objects generated were 

validated using the manually delineated tree crowns as the reference crowns. Two accuracy measures for 

goodness of image segmentation were carried out namely, “D” value and one to one (1:1) matching of 

crowns. “D” measure is used to obtain the over-segmentation and under-segmentation ratio which helps 

to decide on the parameter to be used. The “D” value ranges from 0-1 and value closer to 0 is the best 

with the objects (reference and segmented) exactly overlapping each other. 

1:1 matching of reference crowns verses the segmented crowns for the same trees was done. It is based on 

the visual interpretation. Accuracy is determined by comparing the objects overlap with the reference. 

Objects with 50% overlap with the reference are considered to be matching. Figure 4-8 shows the 

reference crowns (purple) versus the segmented objects in green colour (tree crowns) from eCognition. 
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3.7. Classification and accuracy assessment 

3.7.1. Classification 

Object-oriented classification techniques based on image segmentation are being actively studied in the 

high-resolution image process and interpretation to extract a variety of thematic information. Different 

from the pixel-based image analysis, the processing of the object-oriented method is based on image 

segment, not single pixel. The object-oriented classification includes two consecutive processes. An image 

is subdivided into separated regions according to the spectral and spatial heterogeneity in the image 

segmentation process. Then the objects are assigned to a specific class according to the class’s description 

in the image classification process (Zhao et al., 2007).  

Before assigning classes in eCognition, image-object primitives are created. These objects are polygons of 

roughly equal size exhibiting interior homogeneity (within-object variance is small compared to between-

object variance) (Flanders et al., 2003). The segmented objects were classified according to species 

composition in the study areas. Two classes were taken which are Shorea robusta (Sal) (dominant species) 

and all others subdominant species were grouped into a class called others. These species include Caeseria 

graveolens (Barkaule), Cassia fistula (Raj Brikshya), Holarrbena pubescens (Khirra), Lagerstromia parviflora (Bot 

Dhayero) and Cleistocalyx operculatus (Kyamuna). Classification was carried out using the panchromatic 

Geoeye image and the nearest neighbour approach. The eCognition Developer version 8.64 software was 

used for object-based classification analysis. Classification results were exported as a raster file for 

accuracy assessment in Erdas Imagine.   

3.7.2. Accuracy assessment 

To assess which classes may contain membership ambiguities, eCognition provides a fuzzy membership 

value and stability values for each object. The fuzzy logic that forms the basis for classification assigns a 

membership value to each object between zero (totally ambiguous) and one (unambiguous) for each 

potential class. In this study, accuracy assessment was done in Erdas Imagine 2010. The species 

information from field data was used as reference for the accuracy assessment. An independent validation 

dataset comprising of 30% of field data which was 67 and 38 tree samples for community and government 

forest respectively was used. 

3.8.  Above Ground Biomass and carbon stock calculation 

Forest biomass is commonly estimated using allometric equations (Ketterings et al., 2001). Allometric 

equations are used to extrapolate both in situ and remotely sampled data to a larger area and to derive 

biomass from other variables. Allometry relates the size of one structure in an organism to the size or 

amount of another structure in the same organism. Therefore, it is possible to estimate biomass from tree 

diameter, height, etc., and extend the datum to a larger area with the same characteristics (Bombelli et al., 

2009).  
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In this study, species wise allometric equation  relating both DBH and height to biomass were not 

available hence a generalized equation recommended by (Chave et al., 2005) for tropical moist hardwood 

forests was used. Moist tropical forest is considered to be area receiving an average annual rainfall of 

between 1500mm to 3500mm/yr. The sites under investigation in this study receive an average annual 

rainfall of 2250mm/yr hence the allometric equation was considered applicable for the carbon stock 

analysis in these areas. Secondly, all the species in the study area were hardwoods. The equation made use 

of species specific wood specific gravity. Wood specific gravities of 0.88 and 0.72 (ICIMOD, 2010) were 

used for Shorea robusta other species respectively.  

Equations 

AGTB= 0.0509*pD2H……………………………………………………..........................................eqn 3-3       

Where; 

 AGTB = above ground tree biomass (kg) 

 p=Wood specific gravity (kg/m3)  

 D=Tree Diameter at Breast Height (DBH cm)  

 H=Tree Height (m) 

(ICIMOD et al., 2010, Chave et al., 2005) 

3.9. Regression analysis 

Regression analysis is aimed at quantifying the relationship between a response variable and one or more 

explanatory variables. Quantitative relationship is expressed by an equation and its graphic representation 

(Husch et al., 2003). Coefficient of determination (R2) shows the percentage of variation in one variable 

that is associated with other variable(s) which is explained by the given equation. R2 value ranges from 0-1, 

a model with a value closer to 1 and with a low RMSE is considered to be a good model. Generally, for 

biomass estimations, models with a R2 of above 0.5 are considered to be good for prediction.  

Regression models are used for biomass estimation because of their relative simplicity and ease for 

converting inventory data into a biomass estimate (Baishya & Barik, 2011). Although it is difficult and 

tedious at the initial stage to develop the best-fit models, tree dimension values as the input data 

requirement for subsequent estimations have made the regression-based biomass estimation method 

extremely popular (Brown, 1997). Several regression models have been developed to estimate biomass or 

biomass-related parameters (Brown et al., 1989; Schmitt et al., 2009), which are being used to prepare 

volume tables for several forestry species (Li & Weiskittel, 2010) and to estimate carbon in a variety of 

forest types (Schroeder et al., 1997). The total biomass data obtained from such models are then 

converted into carbon content for estimating carbon by applying a conversion factor of 0.5 or 0.47 (Kale 

et al., 2009; Somogyi et al., 2008) on the assumption that a tree contains 50% or 47% carbon of the dry 

biomass.  

In this study, non-linear interactive regression models were used to model the statistical relationship 

between biomass, CPA and Lidar derived canopy height. Non-linear regression was preferred to linear 
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regression because changes in above ground biomass over time are non-linear and vary among ecoregions 

(Scheller & Mladenoff, 2005). Before the models were fitted, scatter plots were used to check the general 

trend of the data (Appendix 5). This guided in the choice of the model since they show that the 

relationship between the predictor or independent variables (CPA and height) and response or dependent 

variable (AGB) is non-linear. Interactive modelling was preferred to other models because of the 

interaction between parameters height, tree density and CPA. With higher tree density, trees tend to grow 

more vertically than laterally hence limiting the crown expansion, thus have interaction effect. 

Additionally, in a dense forest, the growth of tree crown is not directly proportional to height; rather it is 

constrained by height.   

The individual trees which were identified, correctly classified and had 1:1 matching of the segments were 

used for model development and validation. Outliers were also removed to ensure a robust model. Model 

calibration was done using 70% of the field data set. The models for these sites were developed basing on 

the species classification. Therefore, four models were developed for the two forests types. Shorea robusta 

and other species were modelled and validated independently in each of the forest management types.  

The fitted models were validated using 30% of the test data from the field. This involved comparing the 

amount of biomass calculated from field data (observed carbon) with the carbon predicted by the model. 

Coefficient of Determination (R2) and Root Mean Square Error (RMSE) were calculated to assess the 

goodness of fit and to determine amount of error in the models.  

RMSE= ………………………………………………………………………….eqn 3-4 

Where, RMSE = Root Mean Square Error, 

Cp – Carbon predicted by the model 

Co – Observed carbon (Calculated from field data) 

N – Number of observations 

3.10. Carbon stock Mapping 

After the models were developed and validated, AGB /carbon stock was calculated and visualized in 

carbon stock maps. 
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4. RESULTS 

4.1. Forest condition assessment 

4.1.1.  Canopy density modeling 

An assessment of the condition of each forest through canopy modelling, stand density and basal area 

analysis was carried out and results shown in (Table 4-1). The output of canopy density models prepared 

for CF and GMF are shown in Figure 4-1 and Figure 4-2 respectively. The green areas show dense forest 

cover (areas where a few LiDAR shots could reach the ground surface) while the blue areas show areas 

with little or no vegetation cover (areas where higher LiDAR shots could reach the ground surface). Also, 

the basal area for the CF is higher (20 m2/ha) than GMF which has (15m2/ha). Table 4-1shows the 

average stand density distribution per plot (0.05 ha) and per hectare as well as the basal area per hectare 

for the two sites. 

 

Table 4-1: Stand density and basal area for the forest management types 

 

Site Name 

Average Stand density 

(trees/plot) 

 

Stand density (trees/Ha) 

 

Basal area (m2/Ha) 

Community Forest 19 397 20 

Government Forest 6 120 15 
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Figure 4-1: Canopy density model for CF forest 
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Figure 4-2: Canopy density model for GMF forest 
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4.1.2. Canopy density model validation (CDM) 

Figure 4-1and Figure 4-2 show the CDMs derived from LiDAR data and were validated using the canopy 

cover percentage (%) from the field data.  Figure 4-3 shows that there is 89% and 77% agreement 

between the field canopy cover and LiDAR derived canopy cover (%) for GMF and CF forests 

respectively.  

 

  
Figure 4-3: Scatter plots of observed canopy density and estimated canopy density from LiDAR for 

government (left) and community (right) forests. 

4.2. Canopy Height Modeling (CHM) 

CHMs for both GMF and CF forests were generated (Figure 4-5) from airborne LiDAR data point 

clouds. To come up with a CHM, a Digital Terrain Model (DTM) and Digital Surface Model (DSM) are 

first generated from the last and first LiDAR returns respectively (Figure 4-4) as described in section 3.5.3.                                                                                       

          

                                        
 

Figure 4-4: An example of 3D and 2D perspective of DTM (left) and (Centre), and 2D DSM (right). 

In the DTM (bright areas show high elevation and darker areas show low elevation), in the DSM, bright areas show 

the terrain features (trees) while darker areas show the ground surface. In the 3D DTM, areas in red show highest 

elevation while blue show the lowest elevation.                                                                                    
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A height difference between the DSM and DTM represents the absolute height of the trees normally 

referred to as normalized surface model (nDSM or CHM) which represents the height of the tree canopies 

of the forest Figure 4-5.  

                  
                CHM 2D view                                     CHM 3D view 

                  Figure 4-5: 2D (left) and 3D (right) views the generated of canopy height models 

The brighter areas on the image show high values of canopy height while the darker areas represent lower 

canopy height 

4.2.1.  CHM Validation 

The CHM generated was assessed for accuracy by relating the LiDAR-derived height with the real height 

measured in the field. The scatter plots in Figure 4-6 show the relationship between the CHM and the real 

height, which shows that there is 88% and 90% agreement between the two heights (r=0.88; 0.90) from 

CF and GMF forests respectively. The mean error of height estimation was calculated and results shown 

in Table 4-2. GMF forest trees showed a low error (RMSE=12%) than the CF forest trees (RMSE=19%) 

 

   
 

Figure 4-6: Scatter-plots of relationship between LiDAR-derived canopy height and observed height in CF 
and GMF forests. 
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Table 4-2: The average error of height estimation from LiDAR data for the two forest types 

site RMSE Mean error of height 

CF 19% 3.8m 

GMF 12% 2.4m 

4.3. Image segmentation 

Image segmentation was done on Lidar CHM (0.5m) and the Geoeye panchromatic image (0.5m). Before 

image segmentation was undertaken, estimation of scale parameter was carried out to determine the 

appropriate scale. Multi-resolution segmentation was then carried out to group the pixels into 

homogenous area to form an image object. Shadow areas were masked out from the image before 

segmentation process so as to avoid overestimation of the crown projection area. Canopy height was also 

limited to a range of 5m to 40m to avoid inclusion of shrubs and small trees (below 5m). Image objects 

with a height greater than 40m were excluded based on the fact that the maximum height recorded in the 

field was 38m.  

4.3.1. Multi-resolution segmentation  

LiDAR CHM and Geoeye Panchromatic Image were segmented. During the segmentation, there was 

search for local maxima which represents the tree height. Therefore, each of the resulting image objects 

has a height attribute in addition to the geometry and spectral information. Figure 4-7, shows part of the 

output image objects from multi-resolution segmentation.  

  

 
Figure 4-7: An example of individual tree crowns with height values from multi-resolution segmentation 

 



AGB / CARBON MAPPING USING AIRBORNE LIDAR DATA AND GEOEYE SATELLITE IMAGES IN TROPICAL FOREST OF CHITWAN-NEPAL: A COMPARISON OF 

COMMUNITY AND GOVERNMENT MANAGED FORESTS  

 

39 

Segmentation accuracy 

Image objects, (i.e. tree crowns) generated were validated using two accuracy measures namely 1:1 

matching and “D” value. “D”, is a measure of “goodness of fit” which is used to obtain the over-

segmentation and under-segmentation ratio. The “D” value measure ranges from 0-1 and values closer to 

0 are best which indicate that the objects (reference and segmented) are overlapping each other hence no 

problem of over or under-segmentation. The 1:1 matching of manually delineated crowns against the 

segmented image objects based on the visual interpretation was also carried out. The accuracy for the 

GMF forest site was 78% with a “D” value of 0.30 (70% accurate, 30% error) while that for CF forest was 

77% with a “D” value of 0.30 as shown in table 4-3. Figure 4-8 shows the overlay of the image objects and 

reference crowns for the 1:1 method of accuracy assessment of segmentation process.  

 

Table 4-3: Accuracy assessment of the segmentation process using D and 1:1 methods 

 Total no. 1:1 

match 

Total reference Accuracy “D” value 

GMF Forest 80 103 78% 0.30 

CF Forest 175 228 77% 0.30 

 

                          

                      Figure 4-8: Overlap between the image objects and reference crowns 

The purple objects represent the manually delineated crowns for the identified trees while the green 

objects are the output of multi-resolution segmentation. 

4.4. Image classification 

Object based classification is a type of supervised classification technique. The delineated crowns were 

classified into two classes namely: Shorea robusta (dominant species) and all the other tree species were 

grouped into one class (others). Figure 4-9 and Figure 4-10 show the classified maps for the two forest 

management study sites (government and community respectively). 
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Figure 4-9: Species map of government forest. 
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Figure 4-10: Species map of community forest 

The training dataset for classification comprised of 70% of the identified trees which were randomly 

selected from the field dataset while 30% was used to assess the classification accuracy. In total, 67 and 38 

sample trees and were used to validate CF forest and GMF forest classifications respectively. 
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Accuracy Assessment 

The accuracy was assessed based on the overall accuracy, users’ accuracy and producer’s accuracy as 

shown in Table 4-4 and Table 4-5 for community and government forest respectively. Users’ accuracy 

corresponds to error of commission (inclusion). For example, for Shorea robusta class, if samples from class 

‘other’ are included, then it is error of commission, while producer’s accuracy corresponds to the error of 

omission (exclusion). For example, if for Shorea robusta class, some samples are classified as ‘other species’, 

then it is an error of omission. In other words, users’ accuracy tells from the perspective of the user of the 

classified map, how accurate the map is while producer’s accuracy tells from the perspective of the maker 

of the classified map, how accurate the map is.  

 

Table 4-4: Accuracy report for community forest species classification 

 

 

Class Name 

 

 

Reference 

Total 

 

 

Classification 

Total 

 

 

Correct 

Total 

 

 

Producer’s 

Accuracy 

 

 

Users’ 

Accuracy  

Shorea robusta 43 45 34 79% 76% 

Others 24 22 13 54% 59% 

Totals 67 67 47   

Overall classification accuracy = 70%                                                                            

 

Table 4-5: Accuracy report for government forest species classification 

 

 

Class Name 

 

 

Reference 

Total 

 

 

Classification 

Total 

 

 

Correct 

Total 

 

 

Producer’s 

Accuracy 

 

 

Users’ 

Accuracy  

Shorea robusta 9 12 7 78% 58% 

Others 29 26 24 83% 92% 

Totals 38 38 31  

Overall classification accuracy = 82%                                                                             

 

The overall accuracy was higher in GMF forest (82%) than in the CF forest (70%). The accuracy of Shorea 

robusta species was higher (79%) in CF forest compared to that of GMF forest (78%). On the other hand, 

the accuracy of other species in GMF was significantly higher (83%) than in the CF forest (54%). The 

users’ accuracy was highest (92%) in other species classification from GMF forest while also the lowest 

users’ accuracy (58%) was for Shorea robusta classification for the same site.  

Notably, the reference samples for Shorea robusta was relatively small (9 samples) for the GMF forest 

compared to the CF forest (43 samples) 
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4.5. Descriptive Statistics 

During fieldwork, a total of 86 plots were sampled in the CF forest from which 1708 trees were recorded. 

A total of 23 plots were sampled in the GMF forest which had a total of 139 trees. Table 4-6 shows a 

summary of the distribution of the sampled plots in the sites. 

 Table 4-6: Distribution of sample plots and sample trees inventoried in the study sites. 

 

Site Name  

 

Strata Name 

Total 

Plots 

 

Total trees  

Trees 

Identified 

Species 

Shorea 

robusta 

 

Others  

Government Forest Government F 23 139 111 26 85 

 

Community Forest 

Kankali   

 

 86 

 

 

1708 

 

 

341 

 

 

215 

 

 

126 

Kalika  

Davidhunga  

Dharapani 

Satkanya 

 

The study sites had diverse distribution of species. More than 17 different types of tree species were 

recorded in the CF forest, while over 22 species were recorded in the government forest. The dominant 

species in the GMF forest were Shorea robusta (28%), followed by Lagerstromia parviflora (22%) while Careya 

arborea, Sphaeranthus indicus L., Albezia procera and Semicarpous anacardium are among the least occurring 

species and are grouped into others (23%) as shown in Figure 4-11, while the other species in CF forest 

comprised of 17% of the total trees inventoried (Figure 4-12).  

 

 
                    Figure 4-11: Species distribution in the GMF forest 
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        Figure 4-12: Species distribution in the community forest. 

Shorea robusta and Lagerstromia parviflora were the most dominant species in the community forest just like in 

the government forest representing 64% and 8% of the total species respectively. Although Shorea robusta 

is the dominant species in the two areas as indicated on Figure 4-11 and Figure 4-12, there is a significant 

difference in the occurrence of the species in the two sites. 

DBH and height were also measured in the field and are represented in box plots in Figure 4-13. The 

average DBH and height for Shorea robusta and other species in GMF and CF forest are shown in Table 

4-7. Generally, trees from GMF forest were larger in terms of DBH and height compared to those in the 

CF forest (Figure 5-1).  

                  Table 4-7: Average DBH and Height for Shorea robusta and other species 

Forest type Parameter Shorea  robusta Others 

CF DBH (cm) 21 19 

Height (m) 22 18 

GMF DBH (cm) 42 31 

Height (m) 25 17 
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Figure 4-13: Box plots of DBH and height of Shorea robusta and other species for the two forests 

4.6. Model development and Validation 

Interactive models were used to model the statistical relationship between AGB, CPA and LiDAR-derived 

canopy height as described in section 3.9. Four interactive models (equation 4-1 to 4-4), (2 models for 

each forest management type), were developed based on the species classification, to estimate the AGB in 

the study area. Shorea robusta was modelled separately from other species as it was the dominant species. 

The models and the results showing the relationships between CPA, height and AGB of Shorea robusta and 

other species are shown in Table 4-8 to Table 4-15.  

In all the models, AGB = above ground biomass (kg/tree), CPA = Crown Projection Area (m2), and H= 

LiDAR derived tree height. 
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Model 1: Shorea robusta – Community forest 

AGB = -1087.14 + 67.83CPA + 10.67H + 3.0CPA*H………………………….................................eqn 4-1 

 

Table 4-8: Regression analysis for Shorea  robusta  in the community managed forest. 

Shorea robusta Community managed Forest 

Regression Statistics   Coefficients t Stat P-value 

Multiple R 0.91 

  

Intercept -1087.14 -1.02621263 0.311115 

R Square 0.83 H 10.67 0.210231962 0.834581 

Adjusted R Square 0.82 CPA 67.83 1.375055618 0.176963 

Standard Error 1139.55 CPA*H 3.00 1.507918018 0.139634 

Observations 43         

 

Table 4-9: ANOVA test results for Shorea robusta in the community forest 

ANOVA –Shorea robusta  Community managed Forest 

  df SS MS F Significance F 

Regression 3 253266879.1 84422293 65.01049 3.11254E-15 

Residual 39 50645205.39 1298595     

Total 42 303912084.5       

 

Model 2: Other species – CF forest 

AGB = -733.55 + 50.87CPA + 5.63H + 0.29CPA*H………………………………….....................eqn 4-2 

 

 Table 4-10: Regression analysis for other species in the CF forest 

Other Species Community managed Forest 

Regression Statistics   Coefficients t Stat P-value 

Multiple R 0.84   Intercept -733.55 -0.51457391 0.611038 

R Square 0.71   H 5.63 0.116261631 0.908306 

Adjusted R Square 0.67   CPA 50.87 0.728834943 0.472378 

Standard Error 546.78   CPA*H 0.29 0.12685353 0.899996 

Observations 31     
 

Table 4-11: ANOVA test results for other species in the CF forest 

ANOVA Other Species - Community managed Forest 

  df SS MS F Significance F 

Regression 3 19409564 6469854.542 21.64028 2.38401E-07 

Residual 27 8072266 298972.831     

Total 30 27481830       
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Model 3: Shorea robusta – GMF Forest 

AGB = -2975.74 + 221CPA+ 43.44H + 0.9CPA*H………………………………………..............eqn 4-3 

 Table 4-12: Regression analysis for Shorea robusta  in the GMF forest 

Shorea robusta - Government managed Forest 

Regression Statistics   Coefficients t Stat P-value 

Multiple R 0.90   Intercept -2975.73 -0.642456464 0.544329 

R Square 0.80   H 43.43 0.17864954 0.864093 

Adjusted R Square 0.70   CPA 221.00 1.086796431 0.318847 

Standard Error 2457.43   CPA*H 0.91 0.090652807 0.930719 

Observations 10     

 

Table 4-13: ANOVA test results for Shorea robusta in GMF forest 

ANOVA Shorea robusta - Government managed Forest 

  df SS MS F Significance F 

Regression 3 143581508.3 47860503 7.925256513 0.016486211 

Residual 6 36233908.15 6038985     

Total 9 179815416.4       

 

Model 4: Other species Government Forest 

AGB = 9.22 + 19.36CPA – 22.7H + 0.84CPA*H………………………………………....................eqn4-4 

 

Table 4-14: Regression analysis for other species in the GMF forest 

Other species Government managed Forest 

Regression Statistics   Coefficients t Stat P-value 

Multiple R 0.81   Intercept 9.22 0.028580548 0.977335 

R Square 0.66   H -22.70 -1.416536751 0.163993 

Adjusted R Square 0.63   CPA 19.36 1.2739042 0.209702 

Standard Error 499.99   CPA*H 0.84 1.418727558 0.163357 

Observations 46     
 

 Table 4-15: ANOVA test results for other species in the GMF forest 

ANOVA Other species Government Forest 

  df SS MS F Significance F 

Regression 3 20301927 6767308.991 27.06986 6.61304E-10 

Residual 42 10499758 249994.2271     

Total 45 30801685       

 

The model that explained the highest variation in AGB was that for Shorea robusta in the community forest 

with (R2 = 0.83), while the model that explained the lowest variation was that for other species in the 

government forest with (R2 = 0.66). Generally, the relationship between the predictor variables and AGB 



AGB / CARBON MAPPING USING AIRBORNE LIDAR DATA AND GEOEYE SATELLITE IMAGES IN TROPICAL FOREST OF CHITWAN-NEPAL: A COMPARISON OF 

COMMUNITY AND GOVERNMENT MANAGED FORESTS  

 

48 

was higher for single species (Shorea robusta) than in the case of clustered species (other species) for both 

forests. 

One way ANOVA was employed to test the significance of coefficient of determination (R2) and the 

results are displayed on Table 4-9, Table 4-11, Table 4-13 and Table 4-15. All the models were significant 

at 95% confidence level or (ά = 0.05) as shown in the ANOVA tables displayed above. This means that 

the explanation of AGB using CPA and LiDAR derived canopy height was significant. 

4.6.1. Model Validation 

The developed models were used to predict carbon for validation dataset, which was plotted against the 

observed carbon from the field as a way of testing the accuracy of the models. Independent datasets (30%) 

of the sample data was used for validating the four regression models. Coefficient of Determination (R2) 

was calculated to measure the goodness of fit between the observed and predicted carbon. Root Mean Square 

Error (RMSE) was used to test for the amount of errors in each of the models. The model for Shorea 

robusta from the CF forest showed the best fit with (R2 =0.81) and the least error (RMSE = 10%), Table 

4-16, while the model for same species from GMF forest had the highest amount of error (RMSE = 

25%).   The model also had the least RMSE of 13%. Figure 4-14 and Figure 4-15, show the scatter plots 

for models validation for CF and GMF forests respectively.  

 

  
 

Figure 4-14: Scatter plots of model validation for Shorea robusta and other species in CF forests 
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Figure 4-15: Scatter-plots of the model validation for Shorea robusta and other species for GMF forest 

                                                        

Table 4-16: Various accuracy measures for the models 1-4 

Site Name Model/Species Sample size 

(Validation) 

Coefficient of 

Determination (R2) 

RMSE 

 

CF Forest 

Shorea robusta 25 0.81 10% 

Other species 29 0.62 13% 

 

GMF Forest 

Shorea robusta 10 0.69 25% 

Other species 27 0.73 13% 

 

From Table 4-16, Shorea robusta model for CF forest explained 81% of the observed carbon stock with an 

error of 10%, while 73% of the observed carbon stock was explained by the model for other species in 

government forest with an error of 13%. 

4.7. Carbon stock mapping 

The validated non-linear (Interactive) regression models were used to estimate AGB for the study sites 

based on the species classification (Shorea robusta and others species). AGB was further converted to 

carbon stock using a Conversion Factor of 0.5.  A total of 187,025,846 kgs of carbon was estimated for 

CF forest which covers an area of 764 ha thus approximately 244 t C/ha. A total of 29,902,700 kgs of 

carbon was estimated for GMF forest which covers an area of 213 ha which is approximately 140 t C/ha. 

Figure 4-16 and Figure 4-17 show the carbon maps for the two forest management types. A t-test was 

performed to test the strength of the difference in the carbon stocks at 95% confidence level. Table 4-17 

shows that there is a significant difference in carbon stocks in the two forest management types.  
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 Table 4-17: T-test for Carbon stocks from the two forests. 

t-Test: Two-Sample Assuming Equal Variances in carbon stocks 

  CF GMF 

Mean 1215.692921 1009.033 

Variance 2636656.304 2232613 

Observations 153843 29635 

Pooled Variance 2571397.494   

Hypothesized Mean Difference 0   

df 183476   

t Stat 20.31517126   

P(T<=t) two-tail 1.19177E-91   

t Critical two-tail 1.959976858   
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Figure 4-16: Carbon stock map for CF forest 
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Figure 4-17: Carbon stock map for GMF forest 
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5.  DISCUSSION 

5.1.  Forest Condition Assessment 

5.1.1. Comparison of forest management activities in the two forest management types 

In this study, AGB/carbon stock was estimated for two forest management types: government managed 

forest (GMF) and community forest (CF). AGB/carbon stock is directly impacted by the condition of the 

forest. These two forests have different management systems being implemented. This section compares 

the forest management activities undertaken in each of the sites.  

Community Forests 

The aim of CF in forest management and utilization  is to achieve the following: 1) sustainable, active or 

intensive forest management that yields optimal production of forest products while conserving forest 

biodiversity, 2) feasible, economically viable business enterprises to market products and raise revenues at 

CFUGs and sub/interest group level and 3) re-investment of business revenues in other livelihood 

enhancing activities that meet the socio-economic priorities of all CFUG members equitably, especially the 

poor and socially excluded (Sapkota et al., 2009). 

Government forests 

The aim of government in forest management is to achieve the following: 1) rehabilitate the degraded 

forests to restore flora and fauna, 2) coordination and cooperation with other sectors to evacuate illegal 

settlements, controlling encroachment and illegal trade of forest products and 3) management of habitat 

of endangered species of plant and wildlife. Table 5-1 is a summary of the activities that are carried out in 

the two forest management types. 

Table 5-1: Summary of forest management activities in the two forest types 

Activity Community Forest Government forest 

1. Seedling production x x 

2. Occasional planting of trees x x 

3. Biodiversity conservation x  

4. Regular silvicultural operations x x 

5. Extraction of non-timber forest products x  

6. Regeneration management x x 

7. Timber harvesting x x 

8. Encroachment management  x 

9. Forest certification  x 

10. IGA promotion  x 

The activities marked with an (x) indicate that they are practiced in that particular forest type. Some 

activities only apply to one of the forests while others are carried out in both forests. From the table, 

activity 1,2,4,6 and 7 are practiced in both forests whereas 3 and 5 are only carried out in community 
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forests. These latter activities are guided by the objectives of community forest establishment in Nepal, 

which are conservation of biodiversity, REDD implementation programme and livelihood enhancement 

(World Bank, 2001; Sapkota et al., 2009). Additionally, the improvement of the livelihoods of the people is 

directly related to activity number 5. For the government forest however, their general objective is income 

generation from timber harvesting and is concerned with income generating activities (IGA), forest 

certification   and encroachment management. Activities 8, 9 and 10 are only practised in government 

forest where forest management objective is more oriented to market production. However, these are 

practised on a minimal scale in this government forest because it is within a watershed area (Kayerkhola), 

where large scale extraction of timber for market is restricted. 

From the field observations, the implementation of these activities has not been very successful, especially 

in the government forest which has faced adverse deforestation over the years without any reforestation. 

This is evident from the stand density and basal area statistics reported in section 4.1 of this research. 

These activities therefore, are related to the differences in the condition of the two forest management 

regimes in the study as discussed below which eventually impact on the carbon stocks.  

5.1.2. Site statistics 

A statistical analysis of the field data was carried out for the two forest management types. From Figure 

4-13, (boxplots) and Table 4-7 in section 4.6, average DBH and height was significantly higher both for 

Shorea robusta and other species in GMF than in the CF Figure 5-1.  This was so because the GMF was an 

old forest with small number of trees which are remnants of the continuous logging while, the CF was a 

young regenerating forest with many small trees hence the small size of DBH and height. There are 

variations also amongst the species where Shorea robusta has both higher DBH and height on average than 

the other species in the two forest types (Figure 5-1). 

 

    
Figure 5-1: Photographs showing sample trees from community (left) and government forest (right). 
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The species distribution in the sites was also varying. GMF had more than 22 species while CF had 17 

species. Shorea robusta was dominating in both forests (Figure 4-11and Figure 4-12). However, the 

proportion of Shorea robusta was significantly different in the two forests. In the CF, it constituted 64% of 

total trees species, while in the GMF, it constituted only 28% of the total tree species. GMF is highly 

degraded due to extraction of this particular species which is highly valued for its timber, hence the 

smaller numbers of Shorea robusta trees in the GMF. While in the CF, Shorea robusta and all other species are 

taken care of by the CFUG members because they manage the forest sustainably. Additionally, occasional 

replanting is hardly done in the GMF although it is proposed as one of the major activities in the 

management or operational plans. On the other hand, other species were fewer in CF 36% and higher in 

GMF (72%) because they are less valuable species in the timber market while climatic conditions also 

favour the growth of Shorea robusta hence its dominance. Therefore, commercial timber species were found 

dominating in CF, while the non-commercial timber species were dominating in the government forest. 

 

Stand density 

The mean stand density as well as the basal area was also calculated Table 4-1section 4.1. The average 

stand density for the GMF was 120 trees/ha, while that of CF was 397 trees/ ha. This is because of the 

forest disturbance caused by anthropogenic influence on the GMF forest, majorly extracting Shorea robusta 

species for market and other trees for fuel wood. During the field visit, it was evident that the forest has 

been encroached due to the presence of small holder crop farms in the GMF. Unlike in the CF, there has 

been hardly any regeneration in the GMF due to the interference, hence over the years, the previously 

logged areas have been colonized by grasses and shrubs (Figure 5-1). The CF has a higher stand density 

and compact as seen on the canopy density model (Figure 4-1). It was formerly owned by the government, 

but was handed to the community in 1970 for management and utilization. Prior to the handing, these 

forests were deforested too, but due to the effort of the community members guided by the forest 

operational plans and the REDD implementation preparedness, the forest was left to regenerate and now 

it has assumed the structure of a natural forest with young trees as the majority. Generally, the GMF was 

characterized by patchy distribution of stems (Figure 5-1) while the CF had dense homogeneous 

distribution of tree stems hence the differences in stand density.  

The estimates of stand density obtained in this study, are comparable to those of (Sagar and Singh, 2006) 

in a dry tropical forest in India which ranged from 35 to 419 trees/ha across the various sites sampled. 

However, the mean stand density in this study was much lower than that obtained by (Jha & Singh, 1990) 

of 315 to 559 trees/ha in Renukut and Obra forest sites in India. 

Basal area     

Basal area is a standard measure of tree size cross-sectional area near the base of the trunk (at breast 

height). It is a common unit of timber quantity or stocking within a landscape per land area, for example 

square meters per hectare (Fastie, 2010). The basal areas were derived from diameter at breast height 

(DBH). The basal area for GMF was 15 m2/ha while that of CF was 20 m2/ha (Table 4-1). Although the 
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basal areas are varying, they were not significantly different from each other.  The basal area of individual 

trees from the two forest sites was also established (appendix 3). GMF trees had generally higher basal 

areas compared to trees from the CF because GMF trees were significantly large in terms of DBH 

(appendix 3). However, the overall basal area of the CF exceeded that of GMF because of the differences 

in stand density as shown in (Table 4-1 section 4.1.1). 

Similar results of basal area have been found in other studies though different methods of estimation were 

used. Fastie, (2010) estimated stand basal area from forest panoramas for Bananza birch forest in Alaska 

and obtained basal areas of 29.96m2/ha from field measurements, 25.26m2/ha to 32.14m2/ha basal area 

was derived from image analysis and basal area estimated with the prism in the field ranged from 20.66 to 

29.85m2/ha. The values of basal area obtained in this study were higher than those obtained from a similar 

dry tropical forest in India where the mean basal area was 13.78m2/ha (Sagar and Singh, 2006). 

5.1.3. Canopy Density Modeling 

In this research, canopy density models for the two forest sites were derived from LiDAR data as 

described in section 3.7.2 and results shown in section 4.1.1. 

Canopy density model for government forest resulted in large areas with little or no vegetation (blue 

colour) as compared to the community forest as shown on the canopy density maps (Figure 4-1 and 4-2). 

This result is related to other statistical analysis such as the stand density and the basal areas estimated for 

the two forests. As discussed in section 5.1.2, government forest resulted in lower values of both mean 

stand density and basal area than the community forest which explains why the model indicates little or no 

vegetation. This difference in the two canopy models is also related to species distribution as discussed the 

same section above. Other species dominated in the GMF with over 72% occurrence and less of Shorea 

robusta while on the contrary, in the CF, Shorea robusta formed the majority of the trees with 64% 

occurrence. Shorea robusta was less in the government forest because it is highly valued species in the 

timber industry and often extracted by illegal loggers. Generally, the growth of Shorea robusta is better than 

other species in this region but unsustainable extraction of this species has led to degradation in the GMF. 

The difference in canopy density can also be attributed to leakage effects of REDD projects although it 

was not assessed in this study. Leakage refers to increase in greenhouse gas emissions outside of the 

project area but directly attributable to the REDD project activities implemented inside of the project area 

(ICIMOD, 2010). A distinction is made between primary leakage, when the emissions are directly 

attributable to the deforestation agents, and secondary leakage when the emissions are not directly 

attributable to the deforestation agents but rather to other actors through effects on prices and markets 

(Aukland et al., 2003). This could have been the case in this study because community managed forests are 

REDD projects while government managed forest studied is not a REDD project but is adjacent to the 

REDD project area (CF). 
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The canopy density models developed were validated using the canopy density data obtained from the 

field. The agreement (correlation coefficient) between observed canopy density and estimated canopy 

density for GMF and CF was 89% (r=0.89) and 77% (r=0.77) respectively (Figure 4-3). The accuracy for 

CF was significantly lower than that of GMF.  

Canopy density models have been applied in other studies for example for monitoring forest 

fragmentation in Indonesia in Mt. Simpang and Mt. Tilu Nature Reserves (Hadi et al., 2004), assessing 

deforestation and degradation e.g. (Namaalwa et al., 2006) in Uganda, monitoring changes in biomass 

stocks (DeFries et al., 2006) and detecting the forest health (Hadi et al., 2004). 

The accuracies obtained in this study are similar to those in other researches. For example, (Huang et al., 

2001) estimated tree canopy density for three large areas in the USA (Virginia, Utah and Oregon) using 

Landsat 7 ETM+ and high resolution images. The study resulted in correlations (r) of 0.89, 0.85, 0.87 and 

0.70 between the observed canopy density and the estimated canopy density which are similar to the 

results obtained in this research. Iverson et al.,(1989) also estimated forest cover density over large regions 

of Southern Illinois using Landsat Thematic Mapper (TM) and related them to Advanced Very High 

Resolution Radiometer (AVHRR) pixels for the same location and obtained a correlation coefficient (r = 

0.89). 

5.2.  Canopy Height modeling and accuracy assessment 

5.2.1. Canopy Height Modeling (CHM) 

The LiDAR derived canopy height model (CHM) is shown for a part of the study area in Figure 4-5 

section 4.2, where brightness is proportional to height. The brighter areas represent high height values 

while darker areas represent low height values. We can see individual tree crowns for most of the tall trees 

(top most part of the canopy) where interlocking of crowns is less than the lower parts of the canopy. 

5.2.2. Validation of the CHM 

The LiDAR derived canopy heights were validated using the tree height measurements from field data. 

The correlation coefficient (r) for community forest CHM was r=0.88 (Figure 4-6 section 4.2.1), while that 

for GMF forest was r=0.90. Despite the low density of LiDAR point clouds (0.8 points/m2), the mean 

error of height estimation was 2.4m for a height range of 7m to 36m; RMSE =12% (GMF forest) and 

3.8m for a height range of 7m to 38m; RMSE = 19% (CF forest) Table 4-2 section 4.2.1. Notably also, the 

error was lower in GMF forest height estimation than CF forest. This is attributed to terrain and canopy 

density. The GMF site was relatively flat (0 to 15%) with fewer trees as discussed earlier in this chapter 

while the CF site was characterized by very steep slopes ranging from 25% to 95% and dense canopy 

structure. These issues reduce a bit the accuracy of canopy height measurements, since the visibility to 

treetop was obscured by other surrounding trees and introduced some errors. 

These causes of such small reduction in the accuracy of height estimation have also been reported in other 

studies. For instance, according to Kraus et al., (2004), terrain point density fundamentally influences the 
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DTM accuracy, therefore especially for the rough forest terrain, underestimation of the terrain heights 

appeared. Overestimation of the heights also occurs if trees lean towards the lower side of slopes as 

described by (Hirata, 2004). At higher altitudes, the probability that the trees are interlocked to each other 

increases, therefore, it is more difficult to extract single-tree heights (Hollaus et al., 2006). Considering all 

these uncertainties, the derived correlations between the field-measured and the LiDAR derived canopy 

heights are considered reasonable and satisfactory. 

The results obtained in this study are comparable to those of (Hollaus et al., 2006) who estimated canopy 

heights for the Western Australian Alps using airborne laser scanning (ALS) data for summer and winter 

0.9 and 2.7 points/m2 average point density respectively. Their study resulted in coefficient of 

determination (R2=0.84 to 0.87) between field-measured height and ALS canopy heights. While using the 

same accuracy measure for comparison purposes, the results obtained in this study, R2 = 0.78 and 0.81 for 

CF and GMF respectively Figure 4-6 section 4.2.1,  were slightly lower than those reported by Hollaus et 

al., 2006 as already discussed, which was done in a pine and spruce forest. (Naesset, 1997a) also regressed 

Lidar derived canopy heights with ground reference stand heights and obtained a R2 =0.91. St-Onge 

(2000) used small-footprint LiDAR data acquired from an ALTM to study individual trees. A Laplacian of 

Gaussian (LoG), a combined spatial filter and edge detection operator was applied to a canopy height 

model to delineate individual tree crowns. A linear model was used to correlate the LiDAR heights with 

ground measurements which resulted in a (R2=0.90). The accuracies realized in this study plus other 

studies as cited in this discussion, are evidence that tree heights can actually be extracted from LiDAR data 

just as accurately and close to ground measurements (Lim et al., 2003) especially in areas of flat terrain 

coupled with moderately high density point clouds.  

5.3. Image segmentation and accuracy Assessment 

5.3.1. Delineation of tree crowns in eCognition 

In this research, tree crown delineation was done using multi-resolution segmentation approach as 

described in section 3.7.1 and results shown in section 4.3.1 

Several criteria have been used for quantitative evaluation of segmentation accuracy (Moller et al., 2007; 

Radoux and Defourney, 2008; Zhang, 1996; Clinton et al., 2010 and Zhan et al., 2005). In this study, we 

adopted the methods presented by Zhan et al., 2005 (1:1 matching) and Clinton et al., 2010 (“D”value). 

Tree crown delineation for both forests resulted in accuracy of  D =0.30 or 70% accurate while it was 

78% and 77% when using 1:1 correspondence with reference crowns for government and community 

forest respectively as displayed in Table 4-3 section 4.3.1. The delineation in government forest was 

slightly better than that of community forest. This is attributed to the canopy density where by 

government forest had most trees isolated from each other while the community forest was very dense 

with intermingled crowns Figure 5-1. This made it more difficult to explicitly segment crowns of 

individual trees more accurately.  Examples of visually assessed well and poorly delineated crowns are 

shown in Figure 5-2 (a and b). 



AGB / CARBON MAPPING USING AIRBORNE LIDAR DATA AND GEOEYE SATELLITE IMAGES IN TROPICAL FOREST OF CHITWAN-NEPAL: A COMPARISON OF 

COMMUNITY AND GOVERNMENT MANAGED FORESTS  

 

59 

 

           a)Well delineated crowns         b)Poorly delineated crown 

Figure 5-2: An example of well delineated crowns and poorly delineated crowns. 

The purple represents the reference crown while the green represent the tree objects from Multi-

resolution segmentation 

Synergistic use of remotely sensed data has become the focus of present studies to maximize on the 

information extraction, reduce uncertainties and enhance the results in biomass estimation (Goetz et al., 

2009; Lu, 2006 and Koch, 2010). In this study, both Geoeye and airborne LiDAR data were loaded in 

eCognition and segmentation carried out basing on the two layers.  From local maxima search, each of the 

segments is assigned a canopy height value. In this case, the highest canopy values were used for 

modelling biomass, unlike other studies that have utilized other canopy heights such as mean and 

percentiles of height or all the three categories of height. For instance, (Wulder & Seemann, 2003) utilised 

mean canopy height. During the segmentation process too, the tree heights were limited to a range of 5m 

to 40m as described in section 3.5.3. This ensured that small trees or shrubs as well as overly tall objects 

that are not likely to be trees are not included in the carbon stock mapping, because this could potentially 

introduce uncertainties in the final carbon estimate. Lefsky et al., (1999a) segmented images and used 

canopy height ranges of 4m to 40m for deciduous forests of eastern Maryland, USA, using canopy height 

profiles made using the SLICER (Scanning LiDAR Imager of Canopies by Echo Recovery) instrument. 

Multiresolution segmentation is a bottom -up region growing algorithm (Ke et al., 2010) and the most 

widely used segmentation method (Baatz & Schape, 2000). It has been widely applied in other studies 

especially the image extraction from optical data. However, there are very few studies that have 

synergistically extracted image objects from multi-sensor data which is the case in this research. The 

segmentation accuracy results obtained in this study (78% and 77%) were much higher than those 

reported by Kim et al., (2010). They estimated carbon storage of individual trees in Gwangneung forest of 

South Korea and obtained segmentation accuracy of 32% and 63% from fusion of Lidar data of 5 to 10 

points/m2 and aerial photographs (3bands and 0.25 m spatial resolution).    

5.4. Object based Image classification and accuracy assessment 

Delineated tree crowns were further used for species classification as described in section 3.8.1 and results 

shown in section 4.4. 

An object-oriented image classification approach was applied using Definiens eCognition software. Image 

objects generated from segmentation were classified into two classes: Shorea robusta and other species. 

Other species included all other trees that were not Shorea robusta. The overall classification accuracy was 
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70% and 82%, for CF and GMF forest respectively (Table 4-4 and Table 4-5 section 4.4). Figure 4-10 and 

Figure 4-9, show the species classification maps for CF and GMF forests respectively. 

The accuracy of GMF forest was higher than that of CF forest because it was a more open forest hence 

tree discrimination was much easier than in the dense canopy forest (CF).  The accuracy of Shorea robusta 

species was higher (79%) in CF forest compared to that of GMF forest (78%), while on the other hand, 

the accuracy of other species was higher in GMF forest (82%) than in CF forest (54%). This can be 

attributed to species dominance. Shorea robusta formed the majority of trees in CF forest (64%) while other 

species formed the majority of trees in the GMF forest (72%). The reason for low user and producers’ 

accuracy for Shorea robusta in GMF forest is because of the small sample size for training and validation (12 

and 9) in comparison with the same class in the community forest (45 and 43). The lower accuracies for 

class “other” in the community forest too, are attributed to the fact that, different species with variation in 

spectral characteristics had to be grouped together to form a single class “other”, which introduced 

confusion in the spectral response. 

Tree species classification has been carried out by other researchers. For example, a study by (Persson et 

al., no date) classified Scots pine, Norway spruce and deciduous trees in Sweden using high resolution 

Laser data (7 points/m2) and high resolution NIR  digital images (0.1m resolution). They reported tree 

species classification accuracy of 90%. These results are not comparable to the output of our study 

because of the differences in point density and the digital image resolution. Their results are better and 

more accurate than our results. Consequently, we can say that the higher number of airborne LiDAR 

point cloud per square meter, the higher the classification accuracy. Also, the higher the spatial resolution 

of the classified image, the better the classification accuracy. Leckie et al., (2003) classified  seven species in 

a coniferous forest in Nahmint River of Port Alberni, British Columbia using a 8 band multispectral image 

acquired using a hyper-spectral CASI sensor. They reported an average species classification accuracy of 

92.8%. A study by Brandtberg (2007), in West Virginia, USA, used airborne LiDAR data to classify 

individual tree species under leaf-off and leaf-on conditions and obtained an overall classification accuracy 

of 64%. The species classified were oaks, red maple and yellow poplar. Ke at al. (2010) also synergistically 

used QuickBird multispectral imagery (2.4m) and LiDAR data (0.16 points/m2) for tree species 

classification in Heiberg Memorial Forest and State Forest lands in central New York State. The overall 

accuracy reported was 91.6%. Considering their lower point density and lower multispectral image 

resolution than the data used in this study, their results are by far much better than what was obtained in 

our study, which utilized multispectral imagery of 0.5m and LiDAR data of 0.8 points/m2. However, 

considering the species composition, the results are not comparable because their site had a mixture of 

confers and deciduous trees. Generally, coniferous trees are much easier to isolate than broadleaved trees 

as was the case in our study. 

Some of the possible causes of lower accuracy in tree species classification especially those based solely on 

spectral metrics, have been reported in other studies. For instance, Ke et al., (2010), used QuickBird 

multispectral image (2.4m) at a scale parameter of 20 and obtained an accuracy of 53% and 61% at a scale 
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parameter of 50. These low accuracies were attributed to large local spectral variation caused by crown 

textures, gaps and shadows.  

5.5.  Modeling Height, CPA and Carbon stock 

5.5.1. Model development and validation 

The relationship between height, CPA and AGB was established as described in section 3.10 and results 

are shown in section 4.6. 

Nonlinear regression models (Interactive) were found to be best explaining this relationship, after testing 

with both linear and other types of non-linear regression models. These interactive models were found to 

have less error (RMSE) in prediction and resulted in a higher coefficient of determination (R2) with all the 

dataset than the other models. The same model choice criterion was used by Frazer et al., (2011). Most 

importantly also, the choice of non-linear model was influenced by considering the field process in the 

area of study. The distribution of data in scatter plots displayed in appendix 5, show for instance, that the 

relationship between tree parameter height and biomass is non-linear. This is because the site is a young 

regenerating forest where a tree at young stage would rapidly increase in height at a faster rate than 

increase in the biomass/carbon while at a median height, the rate of biomass accumulation tended to 

increase significantly or more rapidly.  

Both CPA and height (predictor or independent variables) were considered for explaining the variations in 

AGB/carbon stock (response or dependent variable). Different tree species were modelled separately 

according to classification (Shorea robusta (Sal) and others). These models are shown in section 4.5.1. All 

models were validated using 30% of sampled data and resulted in RMSE displayed in table 4-16 in section 

4.6.1.Shorea robusta (Sal) resulted in coefficient of determination (R2=0.81) and (R2=0.69) for CF and GMF 

forests respectively, while other species resulted in (R2=0.62 and 0.73) for both sites respectively. Figure 4-

14 and Figure 4-15 section 4.6.1). This means that height and CPA explained 81% and 69% of variance in 

AGB /Carbon stock for Shorea robusta in CF and GMF forests respectively. 

 

The model with least error was that for Shorea robusta in (CF forest) with RMSE = 10% the model with 

highest error RMSE = 25% was Shorea robusta in GMF forest. Validation of Shorea robusta from GMF 

forest had highest error, which can be attributed to the small sample size (10) used for validation (Table 

4-16). This happened because GMF samples had few trees of Shorea robusta species. The reasons behind 

these small numbers of Shorea robusta were earlier discussed in section 5.1.2. Generally, modelling of other 

species resulted in lower coefficient of determination than that of Shorea robusta. This is due to the 

aggregation of many species with variations into class ‘other’ of different spectral reflectance, different 

crown shape and different allometry, which cannot be explained by a single model, while Shorea robusta has 

homogenous characteristics.  

Studies about the relationship between CPA, height and carbon stock or biomass of tree species, studied 

in this research have rarely been done. Nevertheless, Song et al., (2010) used crown diameter from 
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QuickBird and IKONOS image with up to 180 of off-nadir view angle to predict DBH estimates and 

obtained R2 =0.5 to 0.6 for all species. In their study, DBH was taken as a surrogate of biomass as 

highlighted by  Zhao et al., (2008). Their results were lower than those obtained in this study.  Similar to 

the case in our study, other studies have obtained good relationship with CPA and height. For example, 

Bartelink, (1996) studied the allometric relationships among stem, crown dimensions, leaf area, height with 

biomass using linear and non-linear models for beech forest in the Netherlands. The study reported a R2 

=0.924 for CPA and biomass which improved to R2=0.982 when height was included. Kuuluvainen 

(1989), also modelled the relationship between CPA and above ground biomass of various tree classes of 

Norwegian spruce in Switzerland and obtained (R2 range of 0.22 to 0.79). Zhao et al., 2008 modelled 

carbon stock using LiDAR derived heights and obtained R2 range of 0.80 to 0.95 for pine plantation in 

eastern Texas, USA. These results are higher than the output from the models developed in our study 

(except for CF Shorea robusta R2=0.81) although our research was done in a tropical hardwood forest. 

Drake et al (2002) carried out a study in a dense, neo-tropical forest and reported height and estimated 

biomass relationship range (R2 =0.88 to 0.94) which are comparable to the results obtained in this study.  

5.5.2. Biomass and carbon stock estimation 

The carbon stock estimated for the study areas in this research was approximately 244 t C/ha and 140 t 

C/ha for CF and GMF forests respectively. These results are lower than those reported by ICIMOD, 

2010 that the mean carbon stocks were approximately 288 t C/ha for the same CF forest who estimated 

carbon using allometric equations on forest inventory data for 91 plots in the same community forest. A 

study by Tianxiang et al., (1998) on estimation of total biomass in 115 counties Qinghai and Tibet 

provinces of China, reported maximum biomass of 196539 t C/ha for Motuo county and a range of 115 t 

C/ha to 140 t C/ha for other north west Tibetan Plateau regions. The results of the GMF site in our study 

can be compared to the results of most of these counties. However, our results are lower than those of the 

global terrestrial vegetation (782 t C/ha) (Tianxiang et al., 1998). 

5.5.3. Carbon stock comparison for the two forest types 

One of the objectives of this study was to investigate if there is a difference in carbon stock between the 

two forest types under different management regimes. The results of a t-test on the carbon stock from the 

two sites have indeed shown that there is a significant difference in carbon stock as shown in Table 4-17 

section 4.7. Some of the reasons for this difference include differences in stand density and basal area for 

the two areas as discussed earlier in this chapter. Despite the higher DBH values of trees in the 

government forest, the overall biomass of GMF is much lower than that of CF. To a large extent, this is 

influenced by basal area and stand density as revealed in the output of this research.  

5.5.4. Relationship between forest management and AGB /carbon stock 

Generally, from the management activities as discussed in section 5.1.1, there is considerable overlap in 

the activities from the forest management practices in the two forest types. The key parameters as revealed 
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in this study that explain the differences in carbon stock are canopy density which is a function of tree 

density and basal area. These are directly influenced by harvesting rates and replacement of trees in a 

forest. One of the highlighted activities of the government forest is to control encroachment and illegal 

trade of forest products. Most of GMF forests in Nepal are established for timber production and most of 

them are situated in the Terai region. However, there exist other GMF forests in other areas that serve 

other functions such as biodiversity conservation or watershed protection as deemed important by the 

Ministry of Forests. The GMF forest under this study is located in a watershed area and the priority is 

catchment protection. For this reason, extraction of wood is restricted.  However, the site favours the 

growth of Shorea robusta species which is on high demand in the timber market. This has attracted the 

adjacent communities over the years to encroach in the forest and selectively extract this species while 

leaving behind other less valuable species, which has resulted in few numbers of Shorea robusta as 

compared to other species in the area as discussed in section 5.1.2. This was evident during the fieldwork 

due to presence of old and fresh tree cuts on a patchy pattern as well as the small holder farms and grazing 

activities in the site. The government has put measures to control this encroachment by fencing the site 

and digging trenches to prevent illegal entry by loggers as shown by primary data from the area (Figure 5-3 

a and b). The extent of the success of these measures remains a subject for further research.  From the 

findings of this study, we can conclude that indeed, forest management practices influence significantly the 

carbon stocks in the two forest management types. However, care should be taken when making 

generalizations based on these findings because not all government managed forests in Nepal are poorly 

managed and, on the other hand, not all community forests are well managed.  

 

      

a)                                                           b)  

Figure 5-3: Photographs of trenches and fence in the Government forest 

5.6. Sources of error in biomass estimation 

5.6.1. Data characteristics 

Image / data acquisition dates  
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Data integration was employed in this study. Both Geoeye satellite images and airborne LiDAR data were 

used. Geoeye was acquired on November 2009 while LiDAR data was acquired in March 2011. Fieldwork 

was carried out in September/October 2011. The analysis in this study was done with the assumption that 

all data was acquired on the same date or rather no significance changes have taken place within the time 

gaps. Considering that the geospatial space is dynamic, this can introduce errors in the estimation. For 

example, Song et al. (2010) noted that a tree crown during the field work may be slightly bigger than in the 

images because of the growth season in between, which was not an exception in this study.   

Ortho-rectification and co-registration  

For successful extraction of information from various datasets, image co-registration is a very key and 

essential process to obtain accurate information. In most cases, the co-registration process is accompanied 

by errors especially those influenced by terrain and topographic effects in the study area. In this study, 

Geoeye image acquired in 2009, was orthorectified based on Orthophoto image taken in March 2011. 

Although the RMSE was low, there were still slight mismatches of the Geoeye dataset with LiDAR data. 

This can introduce errors especially in the identification of smaller objects (trees). The field data collected 

was also affected by GPS error. The accuracy of GPS used in the field was on average 4m to 8m 

depending on the canopy density. Therefore, the actual location of the trees as marked on the ground and 

as appearing on the image was a challenge.  Co-registration error is a common problem as reported by 

Frazer et al., (2011) who simulated the impact of co-registration error and its interaction with plot size in 

estimation of LiDAR canopy height and density metrics in a young temperate coniferous coastal forest of 

western North America. The study found out that co-registration error (spatial overlap) between ground-

reference and LiDAR samples negatively impacted the estimation of LiDAR metrics, regression model fit 

and the prediction accuracy of TAGB. The study also reported that larger plots maintained a higher degree 

of spatial overlap between ground-reference and LiDAR datasets for any given GPS error and that they 

are more resilient to the ill effects of co-registration error compared to small plots. 

Shadow effect 

The presence of shadow in the image often obscures the pattern of the trees which negatively affected the 

identification of tree tops as they sometimes confuse with branches especially in the dense tropical forest. 

In satellite images, shadows are considered a nuisance obscuring important object space detail. If the solar 

elevation is low at the time of image acquisition, then the presence of shadows will be unavoidable. The 

principal problem caused by shadows is either a reduction or total loss of information in an image (Dare, 

2005). Reduction of information can potentially lead to corruption of biophysical parameters derived from 

pixel values, such as vegetation indices  (Leblon et al., 1996).  Total loss of information means that areas of 

the image cannot be interpreted (Dare, 2005). In a study by Gonzalez (2010), shadows were cast up to 

25m long, which hindered the ability of the automated crown detection algorithm not only to accurately 

locate tree tops, but also to locate trees with relatively smaller crowns. Based on how the tree crown 

appears on satellite images with different sun elevation and view angle, researchers have developed the 

template matching algorithm for detecting tree crowns (Olofsson, 2002; Pollock & Woodham, 1996) 
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(Figure 5-4). Template matching is an image processing technique where a library of 3-D model trees is 

cross-related against any potential tree position in the digital image. 

   

Figure 5-4: Examples of irregularly shaped crowns and templates 

The Geoeye used in our study has shadows but most of them were masked out during segmentation. The 

problem of shadow and tree identification in this study was overcome by integration of LiDAR data in 

segmentation. In the case of using optical data alone for segmentation, only brightness is used to delineate 

the trees, while the use of LiDAR data provides additional criteria like height value. This ensures that trees 

in shadow areas are delineated 

5.6.2. Processing and analysis 

Image processing can also potentially introduce errors in biomass estimation. The major stages in image 

segmentation in this study were canopy height modelling, segmentation, classification and modelling of 

AGB or carbon stock. The possible errors at each of these stages are discussed below. 

CHM modelling 

The current focus of LiDAR application in forestry is the derivation of canopy height (Lim et al., 2003). It 

has been however suspected that the laser response to a forest canopy is not solely a function of tree 

height, but also a function of canopy closure and density (Nelson et al., 1984; Aldred and Bonner, 1985). 

The significance of this hypothesis is that if canopy closure and density significantly influence laser 

response, then inaccurate canopy profiles may be derived from LiDAR data resulting in poor estimates of 

forest attributes (Lim et al., 2003). This phenomenon was verified by Nelson et al., (1984) who found out 

that forest canopy profiles varied across an area exhibiting a gradient of canopy closures caused by gypsy 

moth damage using Airborne Oceanographic Laser (AOL). Effect of topography also plays an important 

role in LiDAR data acquisition. For very heterogeneous terrain, (Nelson, 1997) demonstrates that 

spherical crown shapes in closed canopy situations lead to increased canopy height. This explains why in 

this study, the error of estimating height in the CF forest was much higher than the GMF forest (3.8m 

against 2.6m). Furthermore, the CF forest was characterized by very steep terrain (25% to 95%) slope 
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unlike the government forest which was relatively flat (0 to 15%) slope. Some of the reasons for such 

differences in Lidar derived height verses field observed height are explained below. 

To some extent, the differences between LIDAR derived height and field height found in this study 

should be expected. The effects of modeling stem heights and crown dimensions as well as the 

assumptions that the crowns are cylindrical or circular are simplifications. Drake et al., (2002) points out 

that in reality, crowns are highly irregular in shape and crown materials are often clumped. These certainly 

contribute to differences between field and LiDAR derived profiles (Drake et al., 2002). In addition, the 

LiDAR signal is affected by the decreasing total amount of energy as the LiDAR pulse travels lower into 

the canopy. An example of this situation is illustrated in a study by Drake et al. (2002).   

Segmentation and classification 

Image segmentation was a major and crucial process in this study. The scale parameter usually determines 

the size of the objects generated (Benz et al., 2004). In addition to scale parameter, object size and shape 

are also influenced by characteristics of layers used during segmentation. In this study, large crowns 

representing big trees particularly Shorea robusta in both forests were over-segmented. This conclusion is 

based on visual assessment of the automatically delineated crowns in comparison to the manually 

delineated crowns. Also the “D” value measures for over-segmentation were much higher than under-

segmentation. Figure 5-2 b, gives a visual impression of the over-segmentation problem which resulted in 

multiple segments overlapping with a single reference object. Chen et al., 2007 illustrated three possible 

cases that tree crowns are mis-segmented which include: (a) 1-to-m (over-segmentation), (b) n-to-1 

(under-segmentation), and (c) n-to-m as seen in Figure 5-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Three possible cases that tree crowns are mis-segmented. 

The same problem was also reported in a study by Ke et al., (2010) who segmented image objects based on 

LiDAR data and QuickBird image at scale parameter range of 20 to 800. In their study, they also obtained 

(a) 

(b) 

Segmented crown Reference crown 
(b) (c) 

(c) 
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multiple objects (e.g. Figure 5-2b) at the smallest scale (20) which compares to the scale of 18 that was 

used in this study.  

In this study, species classification was undertaken with acceptable accuracy. However, this does not rule 

out the possibility of error in the process. Generally, a good segmentation output leads to a good 

classification of the objects (Ke et al., 2010), while poor matches between segmented and reference objects 

produce lower classification accuracies. Some of the causes of the lower accuracy especially in the CF 

forest can be attributed to large local spectral variation caused by crown texture, gaps and shadows. 

  

Modelling of carbon stock - Allometric equations, wood specific gravity and plot size 

The most common methods to determine aboveground biomass (AGB) of forests include the 

combination of forest inventories with allometric tree biomass regression models and airborne or satellite-

based remote sensing techniques (Houghton et al., 2001; Brown, 2002 and Houghton, 2005). Recent 

remote sensing techniques such as LiDAR enable increasingly detailed assessment of spatial variation in 

AGB over large spatial scales, but ultimately their accuracy depends on calibration with field data (Lefsky 

et al., 2002; Asner et al., 2010). Thus, allometric models are a crucial link in the estimation of forest AGB 

stocks (Asner et al., 2010).  

Allometric equations are normally classified into two types; species specific and general equations which 

can further be split into site specific models. Owing to lack of species-wise allometric equations for most 

regions, multispecies allometric regression models are commonly used for the estimation of tree AGB. 

These are a major source of uncertainty in the estimation of plot and landscape level carbon stocks 

(Breugel et al, 2011). In this study, generalized allometric equations were used that also incorporated wood 

specific gravity. According to Breugel et al., (2011), the use general allometric equation in biomass 

estimation is biased due to the fact that they are made by aggregating many species in multispecies 

allometric models. For this reason, they might have introduced errors in this study although the amount of 

this specific error has not been assessed in the present study. 

Besides choosing an appropriate allometric model, Clark and Clark (2000); Chave et al., (2004) have 

proposed the use of simple plots of >0.25 ha for carbon stock estimates. They highlight that, many small 

plots rather than a few large plots best reflect the spatial variability of AGB stocks  and may reduce the 

uncertainty in the estimation at landscape-level (Sierra et al., 2007; Kauffinman et al., 2009). The inclusion 

of wood specific gravity in the allometric equations reduces the error in carbon estimation (Chave et al., 

2004). In this study, the sample size for fitting and validating the models for Shorea robusta was below the 

required minimum of n=30 (Table 4-12and Table 4-16), which could have an effect on the accuracy of 

AGB estimates, as was concluded by Breugel et al., (2011).  
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Other errors 

Field measurement 

Apart from the images used in this study, other primary plots and tree measurements data collected from 

the field were also used.  The location of individual trees and sample plot centres were recorded using a 

GPS which introduced some positional error. Field height measurements were coupled with error from 

the Laser Range Finder or the Haga Altimeter as well as inaccuracies arising from dense canopy that 

obscured the view of tree tops for the targeted trees.  

Missing data (Airborne LiDAR points) 

The LiDAR data used in this study was of low point density although it was adequate for the intended 

purpose. This dataset however had gaps (no data) which hindered the extraction of information on those 

locations. Moreover, despite the fact that certain areas that were visible enough were masked out as 

described and illustrated earlier in Figure 3-2 section 3.4.4, some of the gaps were still present and that 

affected the derivation of the CHM more accurately from this data. 

5.7.  Magnitude of errors 

Various studies have reported that biomass estimations are coupled with uncertainties (Chave et al., 2004, 

Breugel et al., 2011 and Gonzalez et al., 2010). This has necessitated the search for more robust methods 

for biomass estimation in current researches. Despite this scenario, the process still is vulnerable to error 

which was not an exception in our study. This section revisits the aforementioned errors and the level at 

which they influenced the accuracy of the final biomass output (Table 5-2). 

 

Sources of errors 

 

Canopy Height 

Modeling 

 

Tree crown 

delineation 

 

Object based 

classification 

 

Modeling Height, 

CPA, Biomass 

Ortho-rectification  * *  

Shadow effect  *  * 

Acquisition dates  * *  

Data gaps * * * * 

Over-segmentation    * 

Low point density * *   

Allometric equations    * 

Field measurement   * * 

Interlocking of trees  * * * 

Table 5-2: Source of errors and their influence on different steps in this research 

 

The quantification of the exact magnitude of these errors is beyond the scope of this study. However, 

from the result and discussion sections, it is worth noting that, some errors such as over-segmentation in 

the tree crown delineation were more influential particularly in the modelling of biomass. Nevertheless, 

considering all the uncertainties in this research, the results can be considered satisfactory.  
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5.8. Strengths and Limitations of this study 

Strengths 

 Integration of LiDAR data reduced the effect relief displacement and shadow effects which are 

common in high resolution multispectral imagery based-segmentations, hence resulting in higher 

segmentation and classification accuracies unlike in previous studies that have utilized optical data 

alone. 

 Shadow problems such as elongated or very large crowns or errors were minimized in the 

segmentation process by including the CHM.  

 Wood specific gravities for trees in the study area were included in the allometric equation used. 

This reduced the errors by improving the fit of height, CPA and AGB regression models (Chave 

et al., 2004).  

Limitations 

 Due to data integration from various sources, inadequate ortho-rectification may have caused 

mismatches in the two layers hence bringing a confusion in the type of information (spectral and 

canopy attribute) extracted for individual trees from the two images.   

 The estimation of scale parameter in eCognition software that was used is a trial and error 

process. This is a limitation in this study which could have greatly influenced the segmentation 

output that particularly affected the large trees in the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AGB / CARBON MAPPING USING AIRBORNE LIDAR DATA AND GEOEYE SATELLITE IMAGES IN TROPICAL FOREST OF CHITWAN-NEPAL: A COMPARISON OF 

COMMUNITY AND GOVERNMENT MANAGED FORESTS  

 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AGB / CARBON MAPPING USING AIRBORNE LIDAR DATA AND GEOEYE SATELLITE IMAGES IN TROPICAL FOREST OF CHITWAN-NEPAL: A COMPARISON OF 

COMMUNITY AND GOVERNMENT MANAGED FORESTS  

 

71 

6. CONCLUSIONS AND RECOMMENDATIONS  

6.1.  Conclusions 

 
In this research, we evaluated the synergistic use of VHR Geoeye satellite images and airborne LiDAR 

data for AGB/carbon stock estimation and comparison for two forest management regimes, as a case 

study in tropical forest area of Chitwan, Nepal. With regards to the results obtained, the following 

conclusions were made on the research objectives and questions formulated for this study. 

 

Question 1. What is the accuracy of biomass estimation for the two forests management types? 

AGB/carbon in this study was estimated using interactive regression models, specifically one for Shorea 

robusta and one for other species for each of the forests. The accuracy of estimation for community forest 

(CF) was R2=0.81 with RMSE = 10%, for Shorea robusta and R2=0.62 with RMSE=13% for other species. 

The accuracy for the government managed forest (GMF) was R2=0.69 with RMSE=25% for Shorea robusta 

and R2=0.73 with RMSE=13% for other species. This means that the prediction accuracy for Shorea 

robusta in CF (90%), was much better than that for the same species in GMF (75%). On the other hand, 

the prediction accuracy for other species in both forests was the same (87%). 

 

Question 2. What is the above ground Biomass/carbon stock in the two forests? 

The average carbon stock for CF was approximately 244 t C/ha while that for GMF was approximately 

140 t C/ha. 

  

Question 3. Is there a significant difference in Biomass/carbon stock from the two forests? 

Yes. The results of the average carbon stock and t-test revealed that there is a significant difference in 

carbon stocks from the two forest management types.  

Question 4. Is there a relationship between the management practices and above ground biomass 

/carbon? 

AGB/carbon stock is a function of stand density, basal area, species composition and canopy density 

among other factors that have not been dealt with in this study. These are influenced by the forest 

management practices. The results of this study show that there are significant differences in these 

variables from the two forests, which in turn lead to the difference in their respective average carbon 

stocks. Therefore, I conclude that there is a strong relationship between forest management practices and 

AGB/carbon stock.  

Question 6. Is there evidence of deforestation in the two forest management types? 

Although much focus was not given in assessing deforestation in this study, from the primary data, 

basically observation during fieldwork as well as site statistics analysis (stand density, canopy density 

models), I conclude that there is some level of deforestation in the GMF. 
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Question 7. What is the stand density in each management unit? Is there a significant difference 

in tree density between the two units? 

The tree density for CF was 397 trees/ha while that for GMF was 120 trees/ha. I therefore conclude that 

there is a significant difference in stand density from the two forest types.  

6.2. Recommendations 

This research has shown that data integration improves carbon stock estimation. However, in order to 

optimize the information from multi-data or multiple sensors, effective matching or co-registration is 

indispensable. 

 

Despite the low density airborne LiDAR data used in this study, the results were satisfactory hence, the 

methods used are transferable to other areas. However, for more accurate estimation, I recommend the 

use of higher point density LiDAR data than what was used in this study. 

 

Modelling of AGB from CPA and LiDAR-derived canopy height for Shorea robusta for GMF was relatively 

poor (RMSE=25%) compared to the same species model in CF (RMSE=10%). This was attributed to the 

small sample size both for model calibration and validation. I therefore, recommend the use of sufficient 

observations for carbon modelling at species / tree level. 

 

Leakage analysis and monitoring after implementation of REDD projects 

Despite the fact that REDD projects advocate for reduction of emissions from deforestation and forest 

degradation, conservation of a forest for REDD may significantly reduce the forest resource that was 

available to its dependants. If the source for needed resource is not substituted, it can potentially cause 

deforestation in other areas outside the REDD project. I therefore recommend that this type of 

assessment be carried out. 
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 APPENDICES 

Appendix 1: Data collection Sheet 

Name of Recorder…………................           Date……………        Canopy Cover (%)………………. 

Slope (%) ……………………………          Aspect……………     Elevation (m)……………………. 

Management Type  Coordinates 

Strata Name   X 

Sampling Plot No.   Y 

 

Tree 

No. 

Species DBH (cm) Height (m) Crown Diameter 

(m) 

Remark 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

16      

17      

18      

19      

20      

21      

22      

23      

24      

25      
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 Appendix 2: Sample plot location for community and government managed forests                                                                                                                                                                                                                                                                                                                                                                     
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Appendix 3: An example of sample individual tree basal area from CF and GMF forests 

 

Government managed forest 

Tree No   Species name   DBH cm            Basal area (m2) 

1   Lagerstromia parviflora 62 0.30 

2  Shorea robusta 81.5 0.52 

3  Shorea robusta 94.5 0.70 

4  Lagerstromia parviflora 49.7 0.19 

5  Albizzia julibrissin 40 0.13 

6  Lagerstromia parviflora 51 0.20 

7  Lagerstromia parviflora 43.3 0.15 

8  Shorea robusta 88.6 0.62 

9  Shorea robusta 79.5 0.50 

10  Shorea robusta 69.5 0.38 

11  Shorea robusta 67.9 0.36 

12  Semicarpous anacardium 21 0.03 

13  Terminalia belerica 45 0.16 

14  Lagerstromia parviflora 44.5 0.16 

 

 

 

 

Community managed forest  

Tree no. Species Name  DBH (cm)                  Basal area (m2) 

1 Shorea robusta 12.7 0.01 

2 Caeseriagraveolens 13.3 0.01 

3 Cassia fistula 24.2 0.05 

4 Cassia fistula 11.7 0.01 

5 Shorea robusta 20.4 0.03 

6 Holarrbena pubescens 17 0.02 

7 Shorea robusta 10.4 0.01 

8 Cassia fistula 21 0.03 

9 Shorea robusta 11.2 0.01 

10 Caeseriagraveolens 10.5 0.01 

11 Shorea robusta 11.5 0.01 

12 Cassia fistula 10.5 0.01 

13 Holarrbena pubescens 10.1 0.01 

14 Shorea robusta 12.7 0.01 
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Appendix 4: Map of sample plot used for tree identification in the field 
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Appendix 5: Data distribution and Models comparison 
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Appendix 6: Slope correction table for the radius of the plot (Plot size = 500m2) 

Slope% Radius(m)  Slope% Radius(m)  Slope% Radius(m) 

0 12.62       

1 12.62  36 13.01  71 13.97 

2 12.62  37 13.03  72 14.00 

3 12.62  38 13.05  73 14.04 

4 12.62  39 13.07  74 14.07 

5 12.62  40 13.09  75 14.10 

6 12.63  41 13.12  76 14.14 

7 12.63  42 13.14  77 14.17 

8 12.64  43 13.16  78 14.21 

9 12.64  44 13.19  79 14.24 

10 12.65  45 13.21  80 14.28 

11 12.65  46 13.24  81 14.31 

12 12.66  47 13.26  82 14.35 

13 12.67  48 13.29  83 14.38 

14 12.68  49 13.31  84 14.42 

15 12.69  50 13.34  85 14.45 

16 12.70  51 13.37  86 14.49 

17 12.71  52 13.39  87 14.52 

18 12.72  53 13.42  88 14.56 

19 12.73  54 13.45  89 14.60 

20 12.74  55 13.48  90 14.63 

21 12.75  56 13.51  91 14.67 

22 12.77  57 13.53  92 14.71 

23 12.78  58 13.56  93 14.74 

24 12.79  59 13.59  94 14.78 

25 12.81  60 13.62  95 14.82 

26 12.82  61 13.65  96 14.85 

27 12.84  62 13.68  97 14.89 

28 12.86  63 13.72  98 14.93 

29 12.87  64 13.75  99 14.97 

30 12.89  65 13.78  100 15.00 

31 12.91  66 13.81  101 15.04 

32 12.93  67 13.84  102 15.08 

33 12.95  68 13.87  103 15.12 

34 12.97  69 13.91  104 15.15 

35 12.99  70 13.94  105 15.19 

 


